
Cold start is coming: How to approximate the optimal set of initial prototypes for
clustering sequence data online

Silviu Fucarev1 , Azqa Nadeem1 , Sicco Verwer1
1TU Delft

Abstract
Clustering data is a classic topic in the academic
community and in the industry. It is by and large
one of the most popular unsupervised classifica-
tion techniques. It is fast and flexible as it can ac-
commodate all kinds of data when a suitable sim-
ilarity metric is found. SeqClu is an online k-
medoids prototype based clustering algorithm de-
signed to handle large quantities of sequence data.
Our main focus is the role initialization plays in the
performance of SeqClu. In this paper we show that
Greedy Heuristics perform significantly better than
K-medoids heuristics. In the context of Greedy
Heuristics we show that these can be combined to-
gether to achieve potentially better accuracy if a
proper metric to choose the initialization results is
elected.

1 Introduction
Clustering is a ubiquitous method for classifying data in an
unsupervised fashion. It allows forming groups and structures
from unlabeled data while revealing the inner structure of a
dataset. The main idea is to leverage the concept of similarity
and use methods of measuring similarity in order to group the
elements of a data source.

This simple idea has given birth to a plethora of algorithms
which are widely used in industry and academia for tasks
linked to classification, recommendation etc. A few examples
are k-means, k-medoids, hierarchical clustering. These have
been proven to be able to consistently solve clustering tasks
whenever the whole dataset fits in memory. For instances
where the dataset is too big, online versions of these algo-
rithms have been developed and have been shown to perform
reasonably well.1

Despite all the positives listed above any clustering algo-
rithm has a weakness, the cold start. This phenomenon hap-
pens when the algorithm cannot cluster any point because it
has no cluster structure information. It is accepted that the
optimality of the initialization has high influence over the op-
timality of the whole clustering. To this end many heuristics

1A more in depth look at online clustering will follow in the re-
lated works subsection

have emerged however there still is no common ground on
which one to use and when. K-means uses random initializa-
tion, maximin, k-means++ or any of the above listed heuris-
tics with repetition to minimize the chance of an unfortunate
initialization. In the offline context clustering algorithms re-
calculate their representative points a number of times pro-
portional to their number of max iterations, a luxury which
an online clustering algorithm does not have. So to be able to
approximate an offline clustering, the online algorithm needs
to select good initialization from the start and use only a small
sample of the data.

The case of SeqClu is similar to most online clustering al-
gorithms built on top of k-medoids, with the exception that
to approximate a cluster, we use 5 prototypes instead of one
medoid. While this contributes to a more stable clustering re-
sult, it also adds a layer of complexity as the number of initial
points we have to find is multiplied by a factor of 5.

Research Question
We want to research how classic offline initialization heuris-
tics approximate the optimal initial prototype sets. We will
study the influence of hyperparameters such as initial batch
size and finally we will compare the accuracy to that of of-
fline SeqClu.

Paper Outline
The paper is structured in the following way. Section 2 com-
prises the description of SeqClu as well as the hypothesis and
the methodology applied in the process of research. Section
3 describes several initialization methods and the motivation
behind them. Section 4 dives into the details of the exper-
imental setup, the goals of the experiment and the obtained
results. Finally Section 6 will summarise the key findings of
the paper and outline possible future work.

Related Work
Research on online clustering algorithms has been a hot topic
ever since data size started going exponential. In this sense
we should mention pioneering works such as Anna Choro-
manska’s Online Clustering with Experts [1], Edo Liberty’s
Online K-means [10] as well as Vincent Cohen-Addad’s On-
line k-means [2]. The above works help better understand the
problem of online clustering however algorithm initialization
(especially online) is barely discussed.

Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

More specialised online clustering algorithm such as
Grua’s Clustream GT [6] and Islam’s BOCEDS [7] treat the
problem of clustering various types of data such as evolving
data in the health domain, or data which requires a density
based approach. Regardless the discussion of initialization is
limited and inconclusive.

On another hand initialization heuristics have themselves
been a popular research topic [4], [8] however these mainly
focus on offline algorithms.

2 Methodology
Our research project builds on top of the baseline SeqClu
which is an online, prototype based k-medoids algorithm.
The baseline version has two stages, the initialization and the
classification stage. During the initialization the clusters are
initialized with 5 prototypes of the same class2. The classi-
fication stage simulates the online fashion of processing the
data. It classifies points one by one. A point is assigned to
the cluster i which has the lowest average distance to it. After
each step the cluster is updated by replacing the farthest pro-
totype j from the newly classified point with the point itself.
The rules of the algorithm are formalized below:

i = argminci∈C

1

|ci|
∑
p∈ci

DTW (x, p) (1)

j = argmaxpj∈ciDTW (x, pj) (2)

DTW is used for measuring similarity among sequences.
The goal is to come up with one or more solutions for pro-

totype initialization that will allow clustering the data with a
high degree of accuracy and will help reveal the structure of
the clusters in the dataset.

Hypothesis
We are interested in the particularities of the performance
of the online version of SeqClu with various initialization
heuristics compared to the baseline and the offline SeqClu.
We expect online SeqClu to present a good approximation of
the offline algorithm in similar conditions and to approach the
metrics of the baseline version with best case scenario initial-
ization.

Results Validation
The algorithm is tested on 2 datasets. The first one is the UJI
Pen Handritten Characters. [5] It is comprised handwritten
characters represented as sequences of 2 dimensional coordi-
nates. It has representations for all the letters in the English
alphabet and digits from 0 to 9. For letters both the uppercase
and lowercase versions are treated as the same class. The sec-
ond is a toy dataset consisting of families of sine functions.
Within families, the functions differ within the bounds of a
predefined error. The dataset can be generated on the fly by
specifying the frequency, phase, and error bound for every
family of functions. Both datasets contain labelled data.

2This is only done as a proof of concept to show that with a
successful initialization a high accuracy can be achieved

The performance of the algorithm is measured using the
Silhouette [11], accuracy and Loss, where the Loss is calcu-
lated in the following way.

Loss =
1

|C|
∑
c∈C

1

|c|
∑
x∈c

DTW (x, c) (3)

The accuracy is the ration between true positives (tp) and
the total number of clustered sequences (N).

acc =
|tp|
|N |

(4)

To get a better understanding of the quality of the cluster-
ing, the metrics measured in the online algorithm are going to
be compared to several other implementations namely the on-
line baseline and the offline variant. The baseline is expected
to be a best case scenario for a particular permutation of the
dataset as it will be initialized with 5 prototypes of the same
class. The offline comparison between the performance of the
online and the offline version serves to demonstrate the trade
off between keeping all the data in memory and classifying it
in one go.

3 Greedy Heuristics
As mentioned previously one of the main goals of this paper
is to investigate how the classic initialization heuristics fare
in an online setting and how do they stack up against each
other. One of the most popular heuristics for algorithms such
as k-means, is to select as initial centroids, points that are
sufficiently far apart from each other so as not to arrive at the
situation that 2 or more of the centroids are very close to each
other.

We can already see the outlines of the first heuristic, or
rather the first class of heuristics that we are going to come
up with. Namely we will select c most diverse points to be
the basis of our prototypes. We will employ a procedure sim-
ilar to the one Marina Drosou describes as Greedy Construc-
tion[4]. The main idea behind it is to select c sequences which
have the highest pairwise distances among them, where c is
the number of clusters in the dataset.

We should note that since we operate in an online setting
the sequences we will end up selecting as basis of our proto-
types may or may not correspond with the sequences which
are globally farthest away from each other. Given that we
operate under a memory constraint we will buffer the first k
sequences that arrive and pick our representative sequences
from this batch.

Greedy Construction v1
The first version of the Greedy Construction heuristic makes
use of the assumption that the clusters are not overlapping
and are far enough so that the k farthest points from each
other will belong to different clusters. Furthermore it relies
on another assumption, that the p-1 closest points to the cho-
sen prototype will also belong to the same cluster. Of course
these assumptions might not hold if the dataset is very noisy,
the clusters are close to each other, if the initial batch con-
tains less than p instances of a particular class or if due to the

Algorithm 1 Greedy Construction

1: DM : Distance Matrix of size k by k
2: c : number of clusters
3: k : batch size
4: procedure GREEDYCONSTRUCTIONV1(DM, c, k)
5: i, j ← argmax(DTW (i, j)) .
6: C ← {{i}, {j}}
7: while |C| ≤ c− 1 do . repeat until c clusters
8: p← argmax(DTW (p, C))
9: C ← C ∨ {{p}}

10: end while
11: P ← {i ∈ 1, k & c ∈ C||(DTW (i, c), i, c)}
12: for all (dist, i, c) ∈ P do
13: if |c| ≤ p− 1 & i /∈ C then
14: c← c ∨ i
15: end if
16: end for
17: Return C
18: end procedure

greedy nature the heuristic lands onto an outlier. However
in the course of experiments, we will prove that even such a
naive heuristic can generate good enough results.

GreedyConstruction v2
In the previous heuristic the greedy step happens when we
select the initial c farthest points from each other. One could
argue that what makes an initialization good is not only the
diversity of the initial points but also the fact that the proto-
types of a cluster are sufficiently close to each other and are
not on the outskirts of the cluster. The motivation behind this
is that in sufficiently separated clusters, points that are close
to each other belong to the same cluster. So for a particular
point c the smaller the sum of distances between itself and
its p-1 closest neighbours, the higher the probability that the
majority of its closest neighbours belong to the same cluster.

This is where the idea for a modified GreedyConstruction
heuristic stems. In this heuristic we will minimize the sum of
distances of a point’s nearest neighbours while maximizing
the distance between the formed prototype clusters.

As previously stated GreedyConstructionV2 aims to min-
imize the sum of distances between the central medoid and
the other 4 prototypes first and then maximize the diversity of
the clusters. It achieves this by doing the following precom-
putations. First the distance matrix for the initialization batch
is computed, which results in a k by k matrix. Then another
matrix (IM) is generated on the basis of the distance matrix.
In every row IM contains the indices of the distances sorted
ascendingly. Then the rows are sorted vertically according to
the sum of the first p distances corresponding to the first p
indices in every row of IM. In such a way the first row corre-
sponds to the point which has the tightest knit cluster of size p
around itself. The sums corresponding to every element index
are computed and saved in another array S of size k.

The algorithm proceeds in the following way. The first
cluster with prototypes is going to be the cluster correspond-
ing to the first row of IM. Next we compute the farthest point
which was not used previously, by taking the last entry in the

Algorithm 2 Greedy Construction

Require: IM is sorted by distance to i for all rows i← 1, k
Require: IM is sorted vertically by sum of first p distances

on each row i for i← 1, k
Require: IM contains indices
Require: S is the array of sums of first 4 closest neighbours

for every point
1: procedure GCV2(IM, S, c, k, p)
2: pointer ← 1
3: farthPnts← {}
4: C ← {}
5: while |C| < c do . repeat until c clusters
6: C ← C ∨AddPrototypesOf(IM, pointer, p)
7: farthPoint, farthPnts ←

getfarthPoint(IM, S, farthPnts, p, k, pointer)
8: pointer ← farthPoint
9: end while

10: P ← {i ∈ 1, k & c ∈ C||(DTW (i, c), i, c)}
11: for all (dist, i, c) ∈ P do
12: if |c| ≤ p− 1 & i /∈ C then
13: c← c ∨ i
14: end if
15: end for
16: Return C
17: end procedure

1: procedure ADDPROTOTYPESOF(IM, pointer, p)
2: C ← {}
3: for i← 1, p+ 1 do
4: C ← C ∨ IM [pointer][i]
5: end for
6: Return C
7: end procedure

1: procedure GETFARTH-
POINT(IM, S, farthPnts, p, k, j)

2: for i← k + 1, p do
3: if IM [j][i] /∈ farthPnts then
4: farthOfJ ← IM [j][i]
5: break
6: end if
7: j ← j − 1
8: end for
9: neighbrs← getPClosestNeighbrs(IM, farthOfJ)

10: farth← argmin(S[i]for i ∈ neighbrs)
11: farthPnts← fartestPnts ∨ farth
12: Return farth, farthPnts
13: end procedure

row in IM corresponding to the pointer. If that entry was al-
ready used we take the previous entry, thus taking the second
farthest away point from the pointer. The next pointer is the
point in the neighbourhood of the farthest point which has the
tightest knit cluster around him (lowest sum of distance to its
p neighbours).

Diversity or Similarity?
The 2 initialization methods spark an interesting debate on
what would be more important in an online environment
when it comes to initialization. A definite answer to this ques-
tion would require a multitude of examples with data or even
a rigorous proof. The later will not be found in this paper.
However we would like to shift the attention of the reader not
to the answer of the question but rather to the situations and
the way in which SeqClu behaves as a result of employing
one initialization or another on a particular permutation of a
dataset. An interesting question would be how these methods
can complement each other in an online environment as many
of the precomputations can be reused. This will be further in-
vestigated in the course of the experimental phase.

4 Clustering Heuristics
A somewhat different approach to tackling the initialization
of prototypes is performing offline clustering on the initial
batch of data. The idea to perform offline clustering on an
initial batch of data is also taken from Marina Drosou’s paper
on Comparing Diversity Heuristics.

The 2 heuristics proposed are both offline K-medoids algo-
rithms without prototypes. These are based on assumptions
similar to the Greedy Heuristics, namely that the clusters are
sufficiently spread apart, so that the k initial medoids with the
biggest pairwise distance among them will correspond to dif-
ferent clusters, also it relies on the idea that points that are
from the same cluster will be closer to one another.

The 2 heuristics differ in their eagerness to select their ini-
tial medoids. The first one, K-Medoids greedy, greedily se-
lects c farthest points from each other and performs offline
clustering with these as medoids.

K-Medoids Greedy

K-Medoids++
A small modification of the previous heuristic emerges from
doubts similar to the Greedy Construction heuristics. What if
the heuristic lands on outlier data? Do we really need the far-
thest points from each other to achieve diversity in the case of
clustering heuristics? Given that k-means++ is a well known
improvement of the classic k-means algorithm, a similar im-
provement can be implemented in the case of k-medoids as
well. In our case k-medoids++ will first randomly pick a se-
quence from the initial batch and then pick subsequent se-
quences based on probabilities proportional to the square of
their distances to the previously picked seuqence(s). Similar
to the previous heuristic the prototypes will be the clusters re-
sulting from running offline k-medoids on the initial batch of
sequences.

Algorithm 3 K-MedoidsGreedy

1: procedure KMEDOIDSGREEDY(DM, c, k)
2: i, j ← argmax(DTW (i, j))
3: C ← {{i}, {j}}
4: while |C| ≤ c− 1 do . repeat until c clusters
5: p← argmax(DTW (p, C))
6: C ← C ∨ {{p}}
7: end while
8: medoids← C
9: while Any of the medoids change do

10: for i← 1, k do
11: ci ← argminc(i, c)
12: C[ci]← C[ci] ∨ i
13: newMedoids← {}
14: for all c ∈ C do
15: newMedoid
16: ← argmini∈c

1
|c|

∑
j∈c\i DTW (i, j)

17: newMedoids←
18: newMedoids ∨ newMedoid
19: end for
20: if newMedoids = medoids then
21: Return C
22: end if
23:
24: end for
25: Return C
26:

Algorithm 4 K-Medoids++

1: procedure KMedoids++(DM, c, k)
2: i,← randomInt(k)
3: C ← {{i}, }
4: while |C| < c do . repeat until c clusters
5: probabilities← getProbabilities(DM,C)
6: p← pickWithProbability(k, probabilities)
7: C ← C ∨ {{p}}
8: end while
9: medoids← C

10: while Any of the medoids change do
11: for i← 1, k do
12: ci ← argminc(i, c)
13: C[ci]← C[ci] ∨ i
14: newMedoids← {}
15: for all c ∈ C do
16: newMedoid
17: ← argmini∈c

1
|c|

∑
j∈c\i DTW (i, j)

18: newMedoids←
19: newMedoids ∨ newMedoid
20: end for
21: if newMedoids = medoids then
22: Return C
23: end if
24:
25: end for
26: Return C
27:

1: procedure getProbabilities(DM,C)
2: probs← {}
3: for all i← 1, k + 1 do
4: probs[i]← (minc∈CDTW (c, i))2

5: end for
6: for all i← 1, k + 1 do
7: probs← probs/

∑
p∈probs

8: end for
9: Return probs

10: end procedure=0

5 Experimental work
As we previously mentioned we are interested in 3 metrics
when it comes to our initialization methods, namely accu-
racy, loss, and silhouette. An obvious hyperparameter which
needs tuning for each method is the batch size. We could as-
sume that all methods can simply make do with c× p but our
conclusions would not be as valuable.

For a better understanding of the clustering we will also
record the quality of the initial prototypes as a function of the
number of classes present and the presence of a majority class
in every prototype cluster.

Similarly, we want to understand whether any one method
in the 2 classes we have come up with is preferable over
all dataset permutations, or whether they compliment each
other.

6 Experimental Setup and Results
Setup
The performance of the initialization heuristics is measured
against two datasets. The main dataset is UJI Pen Handwrit-
ten Characters [5] and performance on it will be the main
source of conclusions. The second dataset called ’Sine’ will
be used to reinforce or debate ideas, and conclusions formu-
lated on the basis of the previous dataset.

For the experiment to be more likely to generate in mean-
ingful results we set up the following pipeline. The 2 datasets
are permuted 30 times and every permutation is saved sepa-
rately so that it can be accessed. Together with the permu-
tations we precompute the corresponding distance matrix so
that calculations are only done once and valuable time can be
saved in the course of the experiment.

The SeqClu implementation is built with modularity in
mind, so that different initialization methods can be used with
the same implementation code. Similarly an experiment in-
frastructure is built so that the classification of the data and
the evaluation of results can be done independently.

Batch size
For the batch size optimization we used 10 permutations of
the ’handwritten’ dataset which contained data belonging to
4 classes, namely the letters ’W’, ’O’, ’S’, ’C’. The choice
of these classes was based on their relative distance to each
other. We have clusters like ’W’ and ’O’ which are well sep-
arated from all the other clusters, and we also have clusters
’C’, ’S’ which are very close together and often can be inter-
preted as the same cluster.

Figure 1: Average accuracy values per batch size for GreedyCon-
structionV2, GreedyConstructionV1, K-Medoids Greedy and K-
Medoids++

As previously mentioned the batch size is the size of the
initial batch of points fed to the initialization heuristic so that
the prototypes can be initialized. The goal of this experiment
is to establish optimal values of batch sizes for every heuristic
and investigate the existence of a trend between bath size and
clustering goodness.

We also need to mention that different batch sizes we used
for both datasets given that the size of the data differed sig-
nificantly. The table below summarises sheds light on batch
sizes per dataset as well as dataset sizes.

Ds Sz Batch sizes
UJI 211 25 30 35 40 45 50 55 60 65
sine 100 22 24 26 28 30 32 34 36 38

Table 1: Batch sizes per dataset

Results
Greedy Methods
There are several things that are worth discussing from the
results. The accuracy results in Figure 1 show that the meth-
ods have a pretty similar performance, it is interesting that
for smaller batch sizes the GreedyConstructionV1 shows on
average a better accuracy than the second method, however
as the batch size is increased their accuracy values converge,
and for GreedyConstructionV1 it even drops.

Figure 2: Average Silhouette Values per batch size for Greedy-
ConstructionV2, GreedyConstructionV1, k-Medoids Greedy and k-
Medoids++

In terms of comparison to the offline version which ran on
the same data with a similar initialization we can clearly see
that the online initialization methods showcase only a small
drop in accuracy. In terms of silhouette score the drop is more
significant which says that in terms of minimizing distances
within clusters, the offline version generates a superior solu-
tion.

Looking at the results from the perspective of finding op-
timal values for the batch size (k) we see that on average
smaller batch size are preferred to larger ones (Figure 1). It
is interesting that the value of batch size does not seem to
have significant effects on the goodness of clustering in terms
of silhouette (Figure 2) and loss (Figure 20), even showcas-
ing similar performance to the best case scenario initialization
(baseline).

While small batch sizes for GreedyConstructionV1 show-
case a good enough result, these still fall short of the baseline,
which has best case scenario initialization. We can explain
this with by simply looking at the true labels of the initial
prototypes. Even though every set of 5 prototypes are mutual
closest neighbours to one another, there is no real guarantee
that they belong to the same cluster (i.e. have the same la-
bels). The influence of these ”wrong” clusters can be in turn
aggravated or fixed by the cluster update rules that SeqClu
has. However this is a vast topic in itself and surely deserves
attention on its own.

Going back to our greedy heuristics, we can conclude
that the these are stable, solutions for clustering initialization
which provide a good enough performance compared to the
offline algorithm and the baseline.

Figure 3: Highest Accuracy Clustering for K-Medoids Greedy ini-
tialization. K-Medoids Greedy deals badly with clusters that are
close to each other

Clustering Methods

From the results above it is clear that clustering methods re-
quire bigger batch sizes to showcase an accuracy and sil-
houette value similar to their greedy counterparts. In terms
of comparing the 2 clustering methods, we see that the k-
medoids++ variant is preferable in most of the situations (Fig-
ure 1, 2).

The k-medoids++ heuristic results in both higher accu-
racy, and higher silhouette score compared to the k-medoids
greedy heuristic. This is explained by the fact that the greedy
nature of the former heuristic oftentimes results in imbal-
anced clusters, a scenarios that leads to clusters whose sizes
vary dramatically 4. This is amplified when an unfortunate
choice of the initial medoid which results in a heterogeneous
cluster, is further amplified by the characteristic swap step
of the k-medoids algorithm. Thus, we can conclude that
the k-medoids++ method is significantly more stable than its
greedy clustering counterpart.

One interesting find is that the K-Medoids++ heuristic
manages to minimize the clustering the best in terms of sil-
houette coefficient (Figure 2), overperforming even compared
to the baseline. Of course this is not reflected in the accuracy
score, where the baseline still is vastly superior, but this is a
valuable find in clustering data that is not labeled.

One clear pitfall of the clustering heuristics are the clus-
ters that are too close together. Even with an appropriate
batch size and a ’fortunate’ initialization the algorithm does
not treat the clusters belonging to ’C’ and ’S’ as two separate
clusters but rather as a single one Figure 3.

Figure 4: k-Medoids Greedy, often suffers from initial cluster im-
balance

Prototype Cluster Size Imbalance
After effectuating the experiment, the cluster imbalance phe-
nomenon has emerged as a clear shortcoming in comparison
to greedy heuristics (Figure 4) which have fixed size proto-
type clusters. Although it seemed that the cluster imbalance
can be solved by simply taking a bigger initial batch, evi-
dence shows that even with sufficiently large batch size this
phenomenon still happens (Figure 18).

Complementarity of Methods
A more attentive look at the accuracy data by the two greedy
heuristics showcases another interesting find, namely that
the 2 approaches, despite having similar performance on the
handwritten dataset, exhibit different mistakes. Thus for
some permutations Greedy Construction V1 has better ac-
curacy, while for others Greedy Construction V2 has better
accuracy (Figure 5).

This leads us to 2 possible scenarios. Either the methods
are complementary, i.e. when one has poor accuracy the other
has good accuracy, or they are not complementary but there
still is some metric which can predict with some degree of
accuracy which set of initial prototypes is better.

Our goal is to see whether we can achieve a higher accu-
racy than the highest average accuracy for the optimal value
of the batch size. We select k=25 as optimal value of the ini-
tial batch size. Thus further experiments on complementarity
of the methods will be conducted only for this value of the
batch size.

To find out whether the methods were complementary we
performed the Pearson correlation test [9] on a sample of ac-
curacy values of both Greedy Initialization Methods. If the
methods are complementary, we expect the test to yield a

Figure 5: Average accuracy values per dataset permutation for
GreedyConstructionV2, GreedyConstructionV1 for k=25

negative value smaller than -0.5. The test yielded r=-0.02473
thus disproving the hypothesis that the methods are comple-
mentary. This can be further confirmed by Figure 6 where no
negative slope trend can be observed.

This leaves us with the hope that we may be able to guess
with some degree of accuracy whether a set of initial pro-
totypes is better than another by using some metric such as
Silhouette, Davies-Bouldin Index [3] or Average Loss.

When using Silhouette, we will prefer the set of prototypes
with greater Silhouette value. When using Average Loss, or
Davies-Bouldin Index, we will prefer the set of prototypes
with smaller value of loss, or DB-Index respectively.

Further experiments show that none of the above metrics
help determine a potentially more accurate clustering, thus
the accuracy of the combined greedy heuristic is at best equal
to that of the Greedy Construction V1. (Figures 17, 7, 8).

7 Responsible Research
Reproducibility
As one might expect with any scientific work, the experimen-
tal setup is as important as the conclusions and ideas pre-
sented in the paper. To this end it is obvious that both the data
used in the experiments and the code generated during the
process of research and experimentation will be made public
on the Cyber Analytics Lab Github Page of TU Delft.

To get a better understanding of the ideas in the paper and
the execution of the experiments the code will be well docu-
mented and refactored to reflect the best software engineering
practices and to enable others to easily extend and modify the
codebase.

Figure 6: Lack of a negative correlation for accuracy values of
GreedyConstructionV2, GreedyConstructionV1 for k=25

Figure 7: Accuracy when we choose the prototype set with highest
silhouette score across 25 trials, batch size k=25

Figure 8: Accuracy when we choose the prototype set with lowest
Davies Bouldin Index across 25 trials batch size k=25

Data Integrity
The data in the experiments is used as is and has not un-
dergone any manipulation or tinkering. In order to give
more credibility to the results, multiple experiments were at-
tempted and logged.

Scientific Integrity
In the best traditions of scientific integrity, the paper will con-
tain a bibliography with pointers to works which were funda-
mental in the process of this research project. Moreover ideas
and any help will be dutifully noted in the paper.

8 Conclusions and Future Work
The online clustering of Sequences is an exciting and impor-
tant topic both for the academic community and the industry.
In this paper our main goal was answering how to best initial-
ize the prototypes of SeqClu, in order to deal with the cold
start phenomenon. We discussed the importance of a correct
initialization and how to approximate the best case scenario
with various heuristics. The main classes oh heuristics were
the greedy and clustering heuristics.

We delved into optimizing an important hyperparameter
like the initial batch size and we measured the performance
of the algorithm with metrics like accuracy, silhouette score,
and loss in order to establish best practices and explain the
behaviour of the algorithm.

The two greedy heuristics proved to be preferable to both
the clustering heuristics in terms of both accuracy and sil-
houette score. These dealt better (albeit not perfectly) with
issues like clusters being too close together and proved to re-
quire smaller size initial batches in order to approximate the
behaviour of the offline algorithm and the baseline algorithm.
The fixed prototype cluster size made them less prone to clus-
ter imbalance and enabled the subsequent stage of the SeqClu
namely the classification phase to result in a good enough
clustering. The experiments showed that a batch size of 25

points yielded the best accuracy and silhouette score. Clus-
tering heuristics needed a bigger batch sizes (k=45, 50, 55)
for maximum accuracy and silhouette score.

In terms of performance compared to the offline version,
online SeqClu with any greedy heuristic presents no signif-
icant trade-off in terms of accuracy. The use of clustering
heuristics results in inferior solution compared to offline Se-
qClu.

A closer look at the mistakes the greedy heuristics made,
showed the potential of a combined heuristic which would
choose the best prototype set by looking at a particular metric
of cluster goodness with respect to the initial set of prototypes
selected by either heuristic. Potential metrics like silhouette,
DB-Index, and total loss were tested but the results showed
no significant jump in accuracy.

Future Work
Albeit the clustering heuristics proved clearly inferior to the
greedy heuristics presented in the paper, one can always argue
that they simply were too naive to do the job. These heuristics
have the benefit that they can be extended by applying local
search, or evolutionary algorithms to the solutions (prototype
clusters) they provide[8].

As for the greedy heuristics, these can be improved by find-
ing a metric for the Combined Greedy Heuristic. Similarly,
an interesting direction of research would be adding nonde-
terminism, which would allow using repetition to minimize
the probability of picking unfortunate initial medoids.

References
[1] Anna Choromanska and Claire Monteleoni. Online

clustering with experts. In Neil D. Lawrence and Mark
Girolami, editors, Proceedings of the Fifteenth Interna-
tional Conference on Artificial Intelligence and Statis-
tics, volume 22 of Proceedings of Machine Learning
Research, pages 227–235, La Palma, Canary Islands,
21–23 Apr 2012. PMLR.

[2] Vincent Cohen-Addad, Benjamin Guedj, Varun Kanade,
and Guy Rom. Online k-means clustering, 2019.

[3] David L. Davies and Donald W. Bouldin. A cluster sep-
aration measure. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-1(2):224–227, 1979.

[4] Marina Drosou and E. Pitoura. Comparing diversity
heuristics. 2009.

[5] Dheeru Dua and Casey Graff. UCI machine learning
repository, 2017.

[6] Eoin Martino Grua, Mark Hoogendoorn, Ivano Mala-
volta, Patricia Lago, and A.E. Eiben. Clustream-gt:
Online clustering for personalization in the health do-
main. In IEEE/WIC/ACM International Conference on
Web Intelligence, WI ’19, page 270–275, New York,
NY, USA, 2019. Association for Computing Machinery.

[7] Md. Kamrul Islam, Md. Manjur Ahmed, and Kamal Z.
Zamli. A buffer-based online clustering for evolving
data stream. Information Sciences, 489:113–135, 2019.

[8] L. Kazakovtsev and I. Rozhnov. Application of algo-
rithms with variable greedy heuristics for k-medoids
problems. Informatica (Slovenia), 44, 2020.

[9] Wilhelm Kirch, editor. Pearson’s Correlation Coeffi-
cient, pages 1090–1091. Springer Netherlands, Dor-
drecht, 2008.

[10] Edo Liberty, Ram Sriharsha, and Maxim Sviridenko.
An algorithm for online k-means clustering, 2015.

[11] P. Rousseeuw. Silhouettes: a graphical aid to the in-
terpretation and validation of cluster analysis. Journal
of Computational and Applied Mathematics, 20:53–65,
1987.

Figure 9: Average accuracy for the first 6 trials with GreedyCon-
structionV1 aggregated by batch size

Figure 10: Average accuracy for the first 6 trials with GreedyCon-
structionV2 aggregated by batch size

Figure 11: Average accuracy for the first 6 trials with KMedoids
Greedy aggregated by batch size

Figure 12: Clustering comparison Greedy Construction V1 vs
Greedy Construction V2

Figure 13: Clustering comparison Greedy Construction V1 vs
Greedy Construction V2, GCV2 does better than GCV1

Figure 14: Clustering comparison Greedy Construction V1 vs
Greedy Construction V2, GCV1 does better than GCV2

Figure 15: Accuracy vs DB-Index for batch size k=25 accross 25
trials

Figure 16: Accuracy vs Silhouette for batch size k=25 accross 25
trials

Figure 17: Accuracy when we choose the prototype set with lowest
loss across 30 trials, batch size k=25

Figure 18: k-Medoids Greedy, Higher batch sizes do not eliminate
initial cluster imbalance issues

Figure 19: k-Medoids Greedy, often suffers from initial cluster im-
balance

Figure 20: Average Loss Values per batch size for GreedyCon-
structionV2, GreedyConstructionV1, k-Medoids Greedy and k-
Medoids++

	Introduction
	Methodology
	Greedy Heuristics
	Clustering Heuristics
	Experimental work
	Experimental Setup and Results
	Greedy Methods
	Clustering Methods
	Prototype Cluster Size Imbalance

	Responsible Research
	Conclusions and Future Work

