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Abstract: In wavefront characterization, often the combination of a Shack-Hartmann sensor
and a reconstruction method utilizing the Cartesian derivatives of Zernike circle polynomials
(the least-squares method, to be called here Method A) is used, which is known to introduce
crosstalk. In [J. Opt. Soc. Am. A 31, 1604 (2014], a crosstalk-free analytic expression of the
LMS estimator of the wavefront Zersectnike coefficients is given in terms of wavefront partial
derivatives (leading to what we call Method B). Here, we show an implementation of this analytic
result where the derivative data are obtained using the Shack-Hartmann sensor and compare it
with the conventional least-squares method.
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Determination of wavefronts is an important field in optics. In adaptive optics, for example,
the wavefront is constantly monitored in order to feed the servo system that corrects distortions
on it due to the optical system self or due to the environment. Adaptive optics started in
the field of astronomy, but nowadays it has been extended, among others, to the fields of
microscopy and retinal imaging. Apart from that, it is worth mentioning the application in
accurate characterization of complex optical systems for aberrations.
In many applications involving wavefront reconstruction, Shack-Hartmann sensors are fre-

quently used. In these sensors, an array of microlenses focuses the incoming beam into a
camera, resulting in a grid of spots that are displaced from their center position (flat wave
reference) because of aberrations contained in the wavefront. The displacement of each spot
is then determined and used to calculate the local slope of the wavefront across each lens of
the array. Once the slopes are known, an often-used polynomial basis to expand the phase of
the scalar field (wavefront) is the set of Zernike circle polynomials. The wavefront Zernike
coefficients can be estimated with for example, the least-squares method, to be called Method A
henceforth. However, already since the 1980s, it is known that there is a fundamental problem
in the combination of the least-squares method and Zernike circle polynomials: this method
presents crosstalk between coefficients. In 2014, Janssen introduced an analytic result in the form
of a new relation between the wavefront derivative data and the wavefront Zernike coefficients [1].
This relation theoretically solves the crosstalk problem that is present in the least-squares method.
In particular, the wavefront coefficients, once estimated, do not change anymore when the number
of Zernike circle polynomials involved in the fit is increased further.
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In this paper, we show an implementation of Janssen’s analytic result in the reconstruction of
several wavefronts that have been generated using a spatial light modulator. In particular, we
show that this method, to be called Method B henceforth, does not suffer from cross-talk between
the coefficients.

The paper is organized as follows. In Section 2 we present theoretical aspects of the problem,
and in Section 3, the experimental setup and methods are explained. The actual results are
presented and discussed in Section 4, and the conclusions from these measurements are presented
in Section 5.

2. Theory

In this section, Zernike circle polynomials are discussed and used as a basis to describe the
wavefront deviation with respect to a suitably defined reference sphere of an optical system. This
wavefront deviation or wavefront aberration function will be loosely called ’wavefront aberration’
or ’aberration’ in what follows. We start this section by showing the definition of Zernike circle
polynomials and a description of the data that is obtained with the Shack-Hartmann sensor is
discussed. Next, we discuss two reconstruction methods: the well-known least-squares method
(Method A) and the recently method introduced by Janssen [1] (Method B).

2.1. Zernike circle polynomials as a basis for wavefront expansion

In systems where aberrations are desired to be known, such as microscopes and telescopes,
a circular aperture is usually present. In order to describe these aberrations, Zernike circle
polynomials are commonly used. In this paper, the American National Standards Institute (ANSI)
definition for Zernike circle polynomials is considered, which is commonly used to describe
wavefront reconstruction from Shack-Hartmann data [2]. As defined in [3], the polynomials in
polar coordinates (ρ, θ) are given by

zmn (ρ, θ) = Nm
n R |m |n (ρ)Θm(θ), (1)

where

Nm
n =

√
(2 − δm0)(n + 1), (2)

R |m |n (ρ) =
n−|m |

2∑
s=0

(−1)s(n − s)!
s!

(
n−|m |

2 − s
)
!
(
n+ |m |

2 − s
)
!
ρn−2s, (3)

Θm(θ) =
{

cos(mθ), if m ≥ 0,
− sin(mθ), if m < 0,

(4)

such that zmn (ρ, θ) is a real-valued, orthonormal (on the unit disc) expression for Zernike circle
polynomials, n = 0, 1, 2, ... is the degree of the Zernike polynomial, and m = 0,±1,±2, ... the
azimuthal order satisfying:

n ≥ 0, (5)
n − |m| is even, (6)
|m| ≤ n, (7)

ρ ≤ 1 being the radius on the unit disc, and δnn′ the Kronecker delta function. Here, the nth

“order” polynomial is referred to as the nth degree polynomial.
As mentioned above, these circle polynomials are orthonormal on the unit disc, i.e.,
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1
π

∫ 1

0

∫ 2π

0
zmn (ρ, θ)zm

′
n′ (ρ, θ)ρdθdρ = δnn′δmm′ . (8)

With this definition, any real-valued wavefront function (defined on the unit disc) can be
described as a linear combination of the Zernike circle polynomials given by

W(ρ, θ) =
∞∑

m=−∞

∑
n∈ηm

am
n zmn (ρ, θ), (9)

where ηm is the set of allowed n values dependent on m, namely ηm = {|m|, |m| + 2, |m| + 4, . . .},
when m , 0, and ηm = {2, 4, . . . ,∞} when m = 0 and z0

0 = 1. This set ensures that the constraints
set in n and m are all met. Finally, am

n is the real-valued Zernike coefficient.

2.2. Complex-valued definition of the Zernike circle polynomials

Following the complex-valued definition of the Zernike circle polynomials as used in [1] in polar
coordinates (ρ, θ) on the unit disc, we have that

Zm
n (ρ, θ) = R |m |n (ρ)eimθ . (10)

The radial polynomial R |m |n is given as in Eq. (1) above, and can also be given as

R |m |n (ρ) = ρ |m |P(0, |m |)n−|m |
2
(2ρ2 − 1), (11)

where P(α,β)
k
(x) is the Jacobi polynomial of degree k, which is orthogonal with respect to the

weight (1− x)α(1+ x)β on the interval [−1, 1]. Note that the factor ρ |m | is missing in [1], Eq. (6),
but it is merely a typo and has no consequences in the further developments in that reference. We
set Zm

n = 0 for all values of n and m where n − |m| is odd or negative. There is the normalization
condition ∫ 1

0

∫ 2π

0
Zm
n (ρ, θ)

(
Zm′
n′ (ρ, θ)

)∗
ρdθdρ =

π

n + 1
δnn′δmm′ . (12)

This orthogonality means that, like the real-valued Zernike polynomial, any sufficiently smooth
(complex) wavefront can be described by

W(ρ, θ) =
∞∑

m=−∞

∑
n∈ηm

αm
n Zm

n (ρ, θ), (13)

where αm
n are generally complex-valued coefficients corresponding to the complex Zernike

polynomial and ηn is as in Eq. (9). Expanding the complex exponential in Eq. (10) leads to
the following conversion between this definition of complex Zernike cirlce polynomials and the
ANSI standard

Nm
n Zm

n (ρ, θ) =


z |m |n (ρ, θ) + iz−|m |n (ρ, θ), if m > 0,
z |m |n (ρ, θ) − iz−|m |n (ρ, θ), if m < 0,
zmn , if m = 0,

(14)

where Nm
n is defined in Eq. (2).

From the definition of the complex Zernike polynomial in Eq. (10) we can also see that
the complex conjugate

(
Z |m |n

)∗
is equal to Z−|m |n . This observation, together with the relations
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between the real and complex Zernike circle polynomials leads to the expression

zmn =


Nm

n

2

(
Z |m |n + Z−|m |n

)
= Nm

n <
(
Z |m |n

)
, if m > 0

Nm
n

2i

(
Z |m |n − Z−|m |n

)
= Nm

n =
(
Z |m |n

)
, if m < 0

Nm
n Z |m |n , if m = 0.

(15)

When using complex polynomials to describe a real wavefront, the coefficients are usually
complex valued. In order to transform them back to the coefficients of the real-valued Zernike
zmn , the following relations can be used

am
n =


1

Nm
n
<

(
α
|m |
n + α

−|m |
n

)
, if m > 0

−1
Nm

n
=

(
α
|m |
n − α−|m |n

)
, if m < 0

1
Nm

n
<

(
αm
n

)
, if m = 0.

(16)

Here, the Zernike circle polynomials are evaluated on the computer, and data is saved in vectors
and matrices. To make it easy to loop over all polynomials, a single index is introduced. In the
notation by [3], this single index j = 0, 1, ... is given by

j =
n(n + 2) + m

2
, (17)

where n is the Zernike degree and m the azimuthal order. From now on, we will write Z j = zmn .
The reverse can also be done, that is finding n and m from j as follows

n =
⌈
−3 +

√
9 + 8 j

2

⌉
, (18)

m = 2 j − n(n + 2), (19)

where dxe denotes the “ceiling” function, that is the smallest integer greater or equal than x.

2.3. Data from the Shack-Hartmann sensor

It is well known that aberrations in an optical system degrade its imaging quality. The phase
aberration is defined by a function ϕW = arg(W). A typical way of measuring this function is by
using a Shack-Hartmann sensor. A Shack-Hartmann sensor consists of a camera chip and lenslet
array. The lenslets are placed at the focal distance from the camera chip such that an incoming
plane wave will be focused as many spots on the camera. If the incoming wave is aberrated, the
position of each spot on the sensor will changed.

It can be derived from the theory how much a spot is displaced due to an aberration. Because
this displacement is linear, the reverse problem can be solved as well. In other words, one can
retrieve the aberration given the spot displacement.

In Ref. [4], it has proven that for a varying wavefront over the subaperture, the slope needs to be
averaged over that sub-aperture. The expressions for the average slopes in terms of displacement
of the spot on the camera becomes{

1
AΣ

∫
Σ

∂W
∂x dxdy = r ∆xf

1
AΣ

∫
Σ

∂W
∂y dxdy = r ∆yf

(20)

where ∆x,∆y are the shift in the x− and y− positions of the spots, r is the radius of the incoming
beam on the Shack-Hartmann sensor, and f is the focal length of the sensor lens array, Σ is
the illuminated sub-aperture domain, with surface area AΣ. Here Σ and AΣ change when the
sub-aperture is only partially illuminated (i.e., at the edge of the beam). This averaging of the
slope is of great matter in recovering the wavefront.
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2.3.1. Method A

The least-squares (LSQ) fit is based on the real Zernike circle polynomials, and uses the fact
that the coefficients are not dependent on x and y. The wavefront in x, y coordinates (with√

x2 + y2 ≤ 1) can be described as

W(x, y) =
∞∑

m=−∞

∑
n∈ηm

am
n zmn (x, y). (21)

The measured quantity, however, is not W but ∂W∂x and ∂W
∂y . Taking the partial derivatives to x

and y results in the over determined system of{
∂W
∂x =

∑∞
m=−∞

∑
n∈ηm am

n
∂zmn
∂x

∂W
∂y =

∑∞
m=−∞

∑
n∈ηm am

n
∂zmn
∂y .

(22)

This system can be solved for a finite set of polynomials. Using Eq. (20), given the
displacements ∆x and ∆y, one can create a vector s containing the slopes as such

s =

[
∂W
∂x

�����
1

∂W
∂x

�����
2

· · · ∂W
∂x

�����
nspots

∂W
∂y

�����
1

∂W
∂y

�����
2

· · · ∂W
∂y

�����
nspots

]T
. (23)

The partial derivatives of the Zernikes in the x- and y-direction can also be put in a matrix,
called the geometry matrix. We recall the convention that Z j = zmn with j,m, n related as in

Eqs. (17)–(19). The geometry matrix G can be built up
∂Z j

∂x

�����
n

, the average gradient of Zernike

mode j at the position of subaperture n. This averaging is done due to the fact that the spot
displacement measured with the Shack-Hartmann sensor is proportional to the average slope
of the wavefront, as expressed in Eq. (20). It should be noted that the positions over which the
averaging is done is normalized to the unit disc. These windows are the same defined in Eq. (20).
The matrix will have a size of (2nspot × J), where J is the maximum index for the Zernike modes
used to have a good approximation of the true wavefront. The expression for G becomes

G =



∂Z1
∂x

�����
1

∂Z1
∂x

�����
2

· · · ∂Z1
∂x

�����
nspot

∂Z1
∂y

�����
1

∂Z1
∂y

�����
2

· · · ∂Z1
∂y

�����
nspot

∂Z2
∂x

�����
1

∂Z2
∂x

�����
2

· · · ∂Z2
∂x

�����
nspot

∂Z2
∂y

�����
1

∂Z2
∂y

�����
2

· · · ∂Z2
∂y

�����
nspot

...
...

. . .
...

...
...

. . .
...

∂ZJ

∂x

�����
1

∂ZJ

∂x

�����
2

· · · ∂ZJ

∂x

�����
nspot

∂ZJ

∂y

�����
1

∂ZJ

∂y

�����
2

· · · ∂ZJ

∂y

�����
nspot



T

. (24)

The system of Eq. (22) can then be written as

s ≈ G · a, (25)

where a is the vector containing the Zernike coefficients. The least-squares estimation of am
n

becomes
a ≈ G+ · s, (26)

where G+ the generalized inverse of the geometry matrix. This is an approximation as G only
contains the information of a finite number of Zernike modes, and their contribution is averaged
over the lenslet array.
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2.3.2. Method B

Method B relies on an analytical relation found between the local derivatives of the wavefront
and Zernike circle polynomials. This is in contrast with method A, where there is a link between
the local derivatives of the wavefront and the derivatives of the Zernike circle polynomials.
In Ref. [1], it has found that the LMS complex coefficients are given as (see Appendix)

α̂m
n = Cm

n ϕ
m
n − Cm

n+2ϕ
m
n+2, (27)

where

Cm
n =

1 + δn |m |
2n

(28)

ϕmn =
1
2
(β+)m+1

n−1 +
1
2
(β−)m−1

n−1 , (29)

and where δnn′ is the Kronecker delta equal to 1 if n = n′ and 0 otherwise. Furthermore β+ and
β− are the Zernike coefficients of ∂W∂x ± i ∂W∂y so that

∂W
∂x
± i

∂W
∂y
=

∞∑
m=−∞

∑
n∈ηm

(β±)mn Zm
n . (30)

Note that the LMS coefficients α̂m
n are analytically related to four β coefficients, namely

(β+)m+1
n+1 , (β+)

m+1
n−1 , (β−)

m−1
n−1 , and (β−)

m−1
n+1 . As a consequence of orthogonality of the Zm

n in the
right-hand side of Eq. (30), the LMS coefficients, once estimated, do not change anymore when
the number of Zernike terms used in a finitized version of Eq. (30) is increased further.
The fact that α̂m

n is analytically related to β coefficients is desirable, because β-coefficients
can directly be estimated (in a least-squares sense) from measurable quantities. This fit is made
in the same way as the least-squares method. This means that also the complex Zernike circle
polynomials need to be averaged over the lenslets. The fit to get the β coefficients, however, is
done with a different basis than in the least-squares method to find the a-coefficients. The effects
of this are discussed in the following section.

As a note for this method, when n = |m|, there will be non-existent combinations of n and m in
Eq. (29). In that case the value of β will be set to 0. For instance, α̂1

1 is among others dependent
on (β+)20, which goes against the constraint |m| ≤ n. To go from complex coefficient αm

n to the
real coefficient am

n , the relations in Eq. (16) can be used.
In [5], a seemingly different approach, based on vector polynomials, is used to express the

wavefront Zernike coefficients in terms of wavefront slope data. However, we show in the
appendix that this method is essentially equivalent to Janssen’s algorithm in [1].

2.3.3. Wavefront reconstruction using Method A and Method B

The main difference between Method A and Method B for finding the coefficients is in how the
fitting is done. Both methods use a least-squares fit using a geometry matrix, but the matrix
elements are constructed differently. In Method A, the geometry matrix elements are evaluations
of the average gradient of the real-valued Zernike circle polynomials over certain subdisks, while
for Method B, the average of the complex-valued Zernike circle polynomials over the same
windows [see Eq. (30)].

The gradients of the Zernike circle polynomials are known not to be orthogonal. This can
cause problems called crosstalk when fitting the coefficients, especially when there are more
aberrations present in the system than are being fit.
If a is an M-dimensional vector containing the coefficients of the aberrations present in the

system, the slopes on the Shack-Hartmann sensor can be determined as s = Ga, where s is an
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2nspot long vector containing the x- and y-displacement on the Shack-Hartmann sensor and G an
2nspot × J geometry matrix defined in Eq. (24).
The notation Z j = zmn is used since j, n,m are related [see Eq. (17)–(19)]. Z0 is not included

in the matrix since Z0 = z0
0 = 1, and its partial derivatives are equal to 0. Note that the first

column contains the x- and y-derivatives of the first Zernike polynomial evaluated in all nspot
points. When a least-squares estimation of the coefficients â (where the hat means to indicate
that it is an estimated parameter) is made using less Zernike circle polynomials, up to Zernike
polynomial J < M , crosstalk will occur. The estimator â can be expressed as

â ≈ G+l s
â ≈ G+l Ga,

(31)

where Gl is the geometry matrix containing the columns of the first J Zernike circle polynomials.
The estimator will estimate the lower-order values of the coefficients with influence of the
higher-order values, because the matrix G+

l
G will not be an identity matrix.

When estimating the coefficient am
n , a higher-order aberration am′

n′ will influence the estimation
if it is not accounted for in Gl (i.e., the single index of am′

n′ j > J) and if

{(n,m, n′,m′) ∈ Z | n ∈ ηm, m = m′ or m = m′ ± 2, (32)
n′ > n, n ≥ m′ + 2, n′ ∈ ηm′, m′ , 0},

or if

{(n,m, n′,m′) ∈ Z | n ∈ ηm, m = 0 or m = 2, (33)
n′ > n, n ≥ 2, n′ ∈ ηm′, m′ = 0},

where in both cases ηm and ηm′ are the sets of allowed values for n and n′ dependent on m and
m′ such that Eqs. (5)–(7) are all met.

Because of this dependence of an expansion coefficient on the maximum degree of the system
of equations, it is expected that methods such as the least-squares method will incorrectly estimate
the coefficients when there are higher-order aberrations present that are not accounted for in the
geometry matrix Gl . For Method B, the geometry matrix contains the Zernike circle polynomials
themselves, and therefore it is not expected to present any crosstalk. This is experimentally
verified and shown in this paper.

3. Experimental setup and methods

In Fig. 1, a schematic view of the experimental setup is shown. The phase of an uniform,
collimated laser beam (HeNe laser) is modified by a spatial light modulator (SLM, Holoeye
PLUTO-2-VIS-056) in such a way that known aberrations are added to the beam. In order to
remove the zeroth- order reflected light from the SLM, a phase ramp is added to all SLM patterns
so that the unaberrated spot is blocked by the iris after being focused by lens L3. The lenses
L1 and L2 and L3 and L4 form two 4 f systems that projects the phase imposed on the SLM
onto the Shack Hartmann sensor (SHS). For each set of aberrations added in the SLM we obtain
experimentally the raw data of the SHS, i.e., the image of the x-y displaced spots detected by the
camera of the SHS. This data is used to find the average slopes of the wavefront as explained in
Section 2.3.

Initially, the system is tested to identify its intrinsic aberrations (from lenses, SLM, etc). After
calibration of the system response, theses aberrations are canceled by the SLM (flattening).
Afterwards, additional and controlled aberrations are applied to the SLM with specific strength
of a few Zernike coefficients. The raw measurements made with the SHS are further processed
and used to compare the reconstruction methods A and B. In Algorithm 1 we describe all steps
of the experiments.
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Laser           FR        WP        L1             L2                                                SLM

                                                                         L3

                                                                        L4

                                 

                                                                 SHS        

Iris

Fig. 1. Scheme of the experimental setup. FR is a Faraday isolator, WP is a halfwave plate,
SLM is a spatial light modulator, SHS is the Shack Hartmann wavefront sensor. The zeroth
order light of the SLM is blocked by the iris.

Algorithm 1 Complete measurement and comparison of Shack-Hartmann phase retrieval
algorithms
1: Remove initial aberrations of the entire system
2: Add controlled aberration a to the SLM
3: Gather flat and aberrated wavefront Hartmannograms, i.e., the image of the spot pattern

generated by the Shack-Hartmann sensor
4: Find the optimal center and radius position of the pupil for both methods separately such that

the RMS value is minimized
5: Determine the Zernike coefficients using optimized center and radius of the pupil with a

desired maximum degree. With the obtained Zernike coefficient values, reconstruct the
wavefront for both Method A and Method B.

6: For each set of added aberrations, we also calculate the “reference” wavefront, which is the
wavefront that is constructed with the nominal values of the added controlled aberrations

7: Calculate error between reference and estimate wavefront

3.1. Addressing a phase pattern to the SLM

3.1.1. Canceling the intrinsic aberrations

In order to be sure that only the aberration added on the SLM is measured, first all initial
aberrations are eliminated. These aberrations can include alignment errors and the surface of the
SLM itself, which might not be completely flat [6]. Removing the initial aberrations has been
done by using the Shack-Hartmann sensor and retrieving the wavefront using the least-squares
method (Method A).
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3.1.2. Calibration of the SLM response

The way a phase pattern is addressed to the SLM is as follows. First, an aperture on the SLM is
defined. In the current research this is a circular aperture, but the same method is valid if an
annular aperture is used. All pixels i within this aperture are used. A “Zernike matrix” can be
set up, such that for each pixel i within the aperture the value of all necessary Zernike circle
polynomials can be computed. In matrix form this would be

Z =



Z1 |1 Z2 |1 · · · ZJ |1
Z1 |2 Z2 |2 · · · ZJ |2
...

...
. . .

...

Z1 |I Z2 |I · · · ZJ |I


, (34)

where J is the total number of Zernike circle polynomials evaluated, and I is the total number of
pixels within the aperture. Note that here only the real valued polynomials were added in the
wavefront, since this is compatible with the experiment. Due to the cyclic nature of the phase
pattern and the limits of the SLM, the phase difference assigned to the SLM should be between 0
and 2π. This can be done using the modulo (or mod) operation: a mod n = a − n ba/nc.

If p is a vector containing the values of the individual pixels of the SLM, it can be constructed
from the vector a containing the coefficients for the to-be-added aberration by

p = (Za) mod 2π. (35)

Therefore, in the case of updating the SLM pattern we use

pnew = (pold − γZ â) mod 2π, (36)

where γ is the gamma function of the SLM, calibrated for the used wavelength.
After the correction is done and the wavefront from the SLM is flattened, the phase pattern of

the “flat” phase is saved. To this phase pattern, a phase ramp is added to separate the 0th and
1st order of the SLM together with the desired aberration, in the same fashion as the correction
is added. After this, it is necessary to check if the maximum phase change over 4 pixels is not
being exceeded. Such a check is necessary to avoid aliasing of the SLM-phase.

In the current research, this aliasing constraint is simplified to the constraint that the difference
between two neighboring pixels should not exceed 0.5π. This is evaluated by letting pi, j be the
value of the pixel located at position i, j on the SLM electrode matrix. Then, first two matrices
are constructed:

∆px = pi, j+1 − pi, j,

∆py = pi+1, j − pi, j .
(37)

Afterward, the element-wise minimum is taken between ∆p and 2π − |∆p| for both x and y, in
order to account for the modulated phase. If any of the values of this piecewise minimum is
above 0.5π, it is said to break the aliasing constraint.

3.2. Constructing the matrix G

Recalling from the theory described in the previous section, in order to recover the coefficients
describing the aberrated wavefront, s and G have to be constructed. Here, s relies on the two
Hartmannograms, one of the flat wavefront and one of the aberrated wavefront from the SLM,
and the radius rSH of beam hitting the Shack-Hartmann sensor. Two G matrices will then be
constructed for the respective Methods A and B.
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3.2.1. Initial wavefront reconstruction pupil

To construct G, it is necessary to average the gradients of the Zernike circle polynomials for
method A or the complex valued Zernike circle polynomials for method B. The window over
which the polynomial has to be averaged can be seen as a scaled version of the lenslet, scaled so
that all illuminated lenslets fit the unit disc. In order to compute the Zernike circle polynomials
in these windows, the center position c and the radius rSH of the beam on the Shack-Hartmann
sensor have to be known. The window size is estimated by the average distance between the
nearest neighbor spots on the Shack-Hartmann sensor. The center position c follows the average
position of all the midpoints of the spots on the Shack-Hartmann sensor. The radius is estimated
by calculating the length between the center and the furthest spot from the center.

3.2.2. Wavefront pupil boundaries optimization (with RMS optimization)

After this first estimation of the center position and radius is made, a better estimation can be
found by optimization. For this optimization, an error has been defined that can be minimized.
In this research, a root-mean-square, or RMS type error is chosen. Using the known added
aberration and the measured aberration coefficients, an RMS error can be defined. To this
purpose, a new Zernike matrix similar to Eq. (34) is constructed, this time with N points on a grid
within the unit disc. The reference phase pref and the recovered phase prec can be constructed as

p = Za, (38)

where for pref, the reference vector aref is used, while for prec the estimated coefficient vector â is
used. The RMS error is then defined

ε =



pref − prec

N





2
, (39)

where ‖x‖2 is the Euclidean vector norm of vector x. This RMS error is then minimized for
center position and radius of the beam on the Hartmannogram. A limited memory bound
Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) minimization algorithm is applied to find the
center position and radius [7]. The termination conditions for this optimization are:

f k − f k+1

max{| f k |, | f k+1 |, 1}
≤ 10−5, (40)

max{|proj(gi)| i = 1, ..., n} ≤ 10−5, (41)

k ≥ 103, (42)

where f k is the value of the RMS error of the k th iteration of the minimization algorithm, and
proj(gi) is ith component of the projected gradient where n projections are made. If any of these
statements were true, the optimization was terminated.

After looking at the RMS error landscapes, it was found that not every minimum found was a
global minimum. If this was the case, the global minimum coordinates were estimated using the
RMS landscape graphs, and a brute force optimization was run around those coordinates. This
brute force optimization calculates the RMS error value in a grid of points. From the coordinates
with the lowest RMS error, a new downhill simplex minimization algorithm is started. This way
the global minimum was attempted to be found, and the optimal center and radius positions were
determined.
These optimized parameters can then be used to find the RMS value fitting any degree of

Zernike circle polynomials, and can also be used to determine the error landscape by calculating
the RMS values when the center and radius differ slightly from the optimal value.
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3.2.3. Application to the Zernike coefficients determination

Following the rule of thumb defined in [8], the amount of Zernike circle polynomials that can be
fit given k spots on the Shack-Hartmann sensor is k/3. In the current research, there were about
144 spots on the Shack-Hartmann sensor, so, in this way, the optimum amount of polynomials
was determined to be 45, i.e., Zernike expansion with a maximum degree of eight. In Figs. 5 and
6 other fitting orders are shown for some Zernike coefficients, and as one can see, this fitting
order is good for all cases.
For method A, the amount of polynomials fit is equal to the amount of retrieved coefficients,

while for Method B, if a fit is made with up to maximum degree of eight, the first seven degrees
can be retrieved.

It should be noted that this optimization can take long due to the fact that the geometry matrix
needs to be calculated in every iteration, as the values in the matrix depend on the center position
and radius.

4. Results

The two methods have been implemented for three different test cases: (a) single Zernike
aberrations, (b) a combination of three aberrations, assumed not to show crosstalk, and (c) four
cases of aberrations where crosstalk is present. The aberrations are listed in Table 1. We remind
that the values of the Zernike coefficients presented in the table are the nominal values that are
added to the SLM, in addition to the intrinsic aberrations of the system. These nominal values
have been used to calculate the reference wavefront in order to compare it with the estimated
wavefront from experimental data using Method A and B. In Figs. 5 and 6 one can see the
nominal values (dotted red line) and the values that are estimated using Method A (triangles) and
Method B (dots) for several maximum fitted Zernike degree when some of the added Zernike
coefficients (Experiment sub_zerns_1 and sub_zers_3).
The reconstructions using the recovered coefficients are shown in Figs. 2–4. For these

reconstructions, the first eight degrees in the Zernike expansion were used. The left column
shows the reference wavefront that is constructed by using the nominal aberrations that have
been added on the SLM, while the middle and right column show the wavefront reconstruction
starting from the Shack Hartmann data and using our own implementation of the least-squares
method (Method A) and Method B, respectively, as explained in the previous two sections. The
RMS error, defined in Eq. (39) is the error between the reconstructed wavefronts using Method
A and B (middle and right columns) and the reference (left column) is indicated below each row
in the figures. From these results, it can be seen that the Method B compares very well with
Method A and the input reference wavefront.
Based on the errors in the reconstruction found in Figs. 2, 3, and 4, one can see that both

methods provide comparable accuracy in reconstructing the wavefront. However, it is known (and
also observed here) that Method A presents crosstalk of coefficients when less Zernike powers
are fit than there are aberrations present in the system. In the following, we show experimentally
that this is not the case for Method B.
Using the same center position and radius, different amount of Zernike degrees can be fit in

order to see the convergence behavior of gathered coefficients. Due to the fact that there are only
1, 2, or 3 Zernike modes present in the specific Zernike experiment, the convergence behavior of
these experiments can be visualized.
Based on analysis of the aberrations listed in Table 1, the single Zernike experiments 5_1

and 6_4 and 3 random Zernike experiments 3_zerns_1 and 3_zerns_3, one can see in
Figs. 2 and 3 that the coefficients seem to be measured independently from each other, and
there is a little difference between the two methods. However, looking at the subsequent Zernike
experiments sub_zerns_1 and sub_zerns_3, a large difference can be seen between the
two reconstruction methods. The initial guesses of Method A over- or underestimate the presence
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Table 1. Coefficients Used in Specific Zernike Experiments, Rounded Off to 3 Significant
Numbers
Experiment name Values of the applied Zernike coefficients (Units of waves)

5_1
a1

5

0.750

5_5
a5

5

1.250

6_2
a2

6

0.500

6_4
a4

6

1.000

6_6
a6

6

2.000

3_zerns_1
a0

2 a4
4 a−2

6

2.000 1.500 0.500

3_zerns_2
a0

2 a−1
3 a5

5

2.000 3.000 1.500

3_zerns_3
a−2

2 a0
4 a−4

6

2.000 1.500 0.750

sub_zerns_1
a0

2 a0
4 a0

6

4.000 1.500 0.750

sub_zerns_2
a1

1 a1
3 a1

5

4.000 1.500 0.750

sub_zerns_3
a3

3 a3
5

2.500 0.750

sub_zerns_4
a2

2 a2
4 a2

6

2.500 1.000 0.500

of the aberration when not enough powers are fit. From Fig. 5, it can be seen that defocus is
overestimated by more than 50% until 4 degrees are fit. Until a maximum degree of four, the
spherical aberration coefficient a0

4 is overestimated. All values seem to be within normal range
when fitting a maximum degree of eight. The same can be seen in Fig. 6, where the coefficient
a3

3 is overestimated at maximum degree of three and four. Method B does not present this
over-estimation. This behavior is also observed in the sets sub_zerns_2 and sub_zerns_4
(not shown in the figures). We also note that in the case of sub_zerns_3, both methods
present some overestimation for large fitted degree. We don’t know the exact reason for that, but
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Fig. 2. Reference wavefronts (left column) for the first four experiments of Table 1.
Reconstructed wavefronts from experimental data using Method A (middle column) and
Method B (right column). The RMS errors under each row have been obtained by comparing
the reconstructed (middle and right column) with reference wavefront (left column). For the
reconstructions, the first 8 degrees in the Zernike expansion has been used.

we observe that for this experiment, the RMS error between both methods and the reference
wavefront was higher than for the case of sub_zerns_1, sub_zerns_2 and sub_zerns_4
(see Fig. 4).
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Fig. 3. Reference wavefronts (left column) for the second four experiments of Table 1.
Reconstructed wavefronts from experimental data using Method A (middle column) and
Method B (right column). The RMS errors under each row have been obtained by comparing
the reconstructed (middle and right column) with reference wavefront (left column). For the
reconstructions, the first 8 degrees in the Zernike expansion has been used.
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Fig. 4. Reference wavefronts (left column) for the last four experiments of Table 1.
Reconstructed wavefronts from experimental data using Method A (middle column) and
Method B (right column). The RMS errors under each row have been obtained by comparing
the reconstructed (middle and right column) with reference wavefront (left column). For the
reconstructions, the first 8 degrees in the Zernike expansion has been used.

5. Conclusion and outlook

In conclusion, we have implemented a new wavefront reconstruction method (Method B)
for Shack-Hartmann sensors based on Zernike expansion of derivatives of the Zernike circle
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Fig. 5. Convergence of coefficients for the sub_zerns_1 experiment.

Fig. 6. Convergence of coefficients for the sub_zerns_3 experiment.

polynomials that was introduced in [1]. We have shown with experiments that Method B is
advantageous as compared to other known methods such as a least-squares method (Method
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A) due to the lack of cross-talk between the coefficients. We have also compared Method B
to Method A for reconstructing the wavefront using a Shack-Hartmann sensor for some sets of
aberrations.
Based on the error values of the reconstruction with optimal amount of Zernike coefficients,

the quality of the fit is in general similar for Method A and Method B. When less than the optimal
Zernike powers were fit, it was seen that Method B estimates the coefficients more accurately.
For the single Zernike aberration case, it was shown that only Method A shows cross-coupling of
higher order aberrations, while Method B does not.

As to computational load, we may point out that these are of comparable order, with Method
B somewhat more demanding due to the complex arithmetics and the alignment needed for
compatibility with the ANSI-format of the Shack-Hartmann sensor.

Finally, we would like to point out that there are also alternative expansions to treat this problem,
namely the use of eigenfunctions of the Laplacian with Neumann boundary conditions [9, 10]
that do have orthogonal gradients. It would be interesting as future work to compare this method
with Method A and Method B considered in the present paper.

Appendix: Relation with orthogonal vector polynomials

In the course of our investigations, we became aware of a seemingly different approach to obtain
the wavefront aberration coefficients from wavefront derivative data. We shall describe and
relate this approach to our method in the framework and notations of [1], so that the Zernike
circle polynomials are unnormalized and have exponential azimuthal dependence facilitating
mathematical developments. The reader will have no particular problems in reformulating the
main results of this appendix in terms of the ANSI-style circle polynomials using Eqs. (27)–(29).
Thus, we have for integer n and m such that n − |m| is even and non-negative:

Zm
n (ν, µ) ≡ Zm

n (ρ, θ) = R |m |n (ρ)eimθ, (43)

with real ν, µ such that ν2 + µ2 ≤ 1 and

ν + iµ = ρeiθ ; ν = ρ cos θ; µ = ρ sin θ, (44)

and the radial polynomials R |m |n (ρ) given by Eq. (11). We now sketch the approach in [5], where
the notations and conventions differ from our present analysis. The approach [5] uses the notion
of vector polynomials

Gm
n = Gm

n (ρ, θ) = (G
m
n,1(ρ, θ),G

m
n,2(ρ, θ)) ∈ C

2 (45)

for integer n,m such that n − |m| is even and non-negative with n , 0, that satisfy

1
π

∫ 1

0

∫ 2π

0
∇Zm

n (ρ, θ).Gm′∗
n′ (ρ, θ)ρdρdθ = δm,m′δn,n′ (46)

for integer n,m, n′,m′ such that n − |m| and n′ − |m′ | are even and non-negative while n , 0 , n′.
In Eq. (46) we denote for (z,w) ∈ C2 and (g, h) ∈ C2

(z,w) · (g, h) = zg + wh, (47)

the ∗ denotes complex conjugation, and

(∇Zm
n )(ν, µ) =

(
∂Zm

n

∂ν
(ν, µ), ∂Zm

n

∂µ
(ν, µ)

)
∈ C2. (48)
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With αm
n the Zernike coefficients of W (to be found) according to Eq. (13), where, due to

orthogonality [see Eq. (12)],

αm
n =

n + 1
π

∫ 1

0

∫ 2π

0
W(ρ, θ)Zm∗

n (ρ, θ)ρdρdθ, (49)

we have
∇W =

∑
n,m

αm
n ∇Zm

n , (50)

and

αm
n =

1
π

∫ 1

0

∫ 2π

0
∇W(ρ, θ)Gm∗

n (ρ, θ)ρdρdθ. (51)

In [5], Section 2.1, the condition Eq. (46) is elaborated using Green’s theorem, where it should
be noted that in [5] the attention is restricted to the cases n = n′,m = m′ in Eq. (46). It is shown
that the problem of satisfying Eq. (46), with n = n′, m = m′ is solved when we can find Gm

n such
that on the pupil

∇.Gm
n =

∂Gm
n,1

∂ν
+
∂Gm

n,2

∂µ
= −(n + 1)Zm

n , (52)

while the boundary condition

Gm
n,1(ρ = 1, θ) cos θ + Gm

n,2(ρ = 1, θ) sin θ = 0 (53)

should be satisfied at the rim ρ2 = ν2 + µ2 = 1 of the pupil. Next, in [5], Section 2.2.1, the
Gm

n are required to be irrotational, meaning that the ∇ × Gm
n = 0, because of considerations of

minimal noise propagation. This condition of irrotationality is satisfied when there is a scalar
function Um

n on the pupil such that
Gm

n = ∇Um
n . (54)

Combining Eq. (54) and Eq. (52), we see that we want Um
n to satisfy

∇2Um
n = ∆Um

n = −(n + 1)Zm
n (55)

while the boundary condition Eq. (53)

∂Um
n

∂ν
(ρ = 1, θ) cos θ +

∂Um
n

∂µ
(ρ = 1, θ) sin θ = 0 (56)

should hold on the rim ρ = 1 of the pupil. In [5] Section 2.2.2–2.2.3, the Um
n are found by

writing the condition Eq. (55) in polar coordinates, with separate consideration of the cases
m = 0 and m , 0, and explicitly using the series representation of radial polynomials. This yields
the two components of Gm

n in trigonometric polynomial form, for which it can be shown that the
boundary condition Eq. (53) is satisfied as well. In [1], Section 4, it is shown that Eq. (55) has a
solution

Um
n = −

[ Zm
n+2

4(n + 2) −
(n + 1)Zm

n

2n(n + 2) +
Zm
n−2
4n

]
. (57)

We shall verify below that, when n = |m| + 2, |m| + 4, ..., this Um
n also satisfies the boundary

condition Eq. (56), and that a concise formula for Gm
n = ∇Um

n in terms of Zernike circle
polynomials results. For the case that n = |m|, we shall show that

Um
n = −

[ Zm
n+2

4(n + 2) −
(3n + 4)Zm

n

4n(n + 2)

]
, n = |m|, (58)
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satisfies Eqs. (55) and (56), and we find a concise formula in terms of the Zernike circle
polynomials for Gm

|m | as well. This then can be used to show that αm
n of Eq. (51) actually coincide

with the LMS estimator found in [1], Section 3. The trigonometric/polynomial solution form of
Gm

n found in [5] involves the coefficients in the series representation of R |m |n (ρ) in Eq. (58), and
these become awkward to use when the degree becomes large (n should be limited to ≤ 44 when
using double precision). This problem is virtually absent when the representation of the Gm

n in
terms of the Zernike circle polynomials is used since there are nowadays several methods for
reliably computing (the radial parts of the) Zernike circle polynomials of arbitrary large degree n
and azimuthal order m, [11], [12].
We shall now show for m = 1, 2, ... and n = m + 2,m + 4, .... that Um

n of 57 satisfies Eq. (56).
Recalling the convention in [1] that any Zm′

n′ with |m′ | > n′ is set to 0, we have

(
∂

∂ν
± i

∂

∂µ

)
Zm′
n′ (ν, µ) = 2

n′−|m′ |
2∑

l=0
(n′ − 2l)Zm′±1

n′−1−2l, (59)

see [1], Eq. (13). Using Eq. (59) with ν + iµ = eiθ , noting that

Zm±1
n−1−2l(1, θ) = ei(m±1)θ, l = 0, 1, ...

1
2
(n − |m| − 1), (60)

while (as m > 0)
Zm−1
m−1 (1, θ) = ei(m−1)θ, Zm+1

m−1 (1, θ) = 0, (61)

we have (
∂

∂ν
+ i

∂

∂µ

)
Zm
n = 2

n−m
2∑

l=0
(n − 2l)ei(m+1)θ − 2mei(m+1)θ, (62)

(
∂

∂ν
− i

∂

∂µ

)
Zm
n = 2

n−m
2∑

l=0
(n − 2l)ei(m−1)θ . (63)

Adding and subtracting Eqs. (62) and (63) from one another then gives

∂Zm
n

∂ν
= 2eimθ cos θ

n−m
2∑

l=0
(n − 2l) − mei(m+1)θ, (64)

∂Zm
n

∂µ
= 2eimθ sin θ

n−m
2∑

l=0
(n − 2l) − 1

i
mei(m+1)θ . (65)

We also observe that
n−m

2∑
l=0
(n − 2l) = n + m

2

(n + m
2
+ 1

)
. (66)

Then, from Eqs. (57), (64) and (66), we get

∂Um
n

∂ν
(ρ = 1, θ) =

= −
[

1
4(n + 2)

∂Zm
n

∂ν
− n + 1

2n(n + 2)
∂Zm

n

∂ν
+

1
4n

∂Zm
n−2
∂ν

]
= −2Dm

n eimθ cos θ + mEnei(m+1)θ, (67)
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where

Dm
n =

n+2+m
2 ( n+2−m

2 + 1)
4(n + 2) −

(n + 1) n+m2 (
n−m

2 + 1)
2n(n + 2) +

n−2+m
2 ( n−2−m

2 + 1)
4n

= 0, (68)

and
En =

1
4(n + 2) −

n + 1
2n(n + 2) +

1
4n
= 0. (69)

Hence, (∂Um
n /∂ν)(ρ, θ) = 0 for ρ = 1 and, similarly (∂Um

n /∂µ)(ρ, θ) = 0 for ρ = 1, and this
implies that Eq. (56) holds. This handles the case that m = 1, 2, ... and n = m + 2,m + 4, .... The
case the that m = −1,−2, ... and n = |m| + 2, |m| + 4, ... follows from the case already handled by
using that

Zm′
n′ (ν, µ) = (Z−m

′
n′ (ν, µ))∗. (70)

The case that m = 0 and n = 2, 4, ... can be proved in the same way as the case m = 1, 2, ... and
n = m + 2,m + 4, ..., where now in Eqs. (64) and (65) the terms involving ei(m+1)θ disappear.
We shall next show that for n = |m| + 2, |m| + 4, ...

∂Um
n

∂ν
= −1

4
[
Zm+1
n+1 + Zm−1

n+1 − Zm+1
n−1 − Zm−1

n−1
]
, (71)

∂Um
n

∂µ
= − 1

4i
[
Zm+1
n+1 − Zm−1

n+1 − Zm+1
n−1 + Zm−1

n−1
]
. (72)

Then Eqs. (71) and (72) yield the announced concise expression in terms of the Zernike circle
polynomials for

Gm
n =

(
∂Um

n

∂ν
,
∂Um

n

∂µ

)
. (73)

Using Eqs. (59) and (57), we have that

∂Um
n

∂ν
= −[ 1

4(n + 2)

n+2−|m |
2∑

l=0
(n + 2 − 2l)(Zm+1

n+1−2l + Zm−1
n+1−2l)

− n + 1
2n(n + 2)

n−|m |
2∑

l=0
(n − 2l)(Zm+1

n−1−2l + Zm−1
n−1−2l)

+
1
4n

n−2−|m |
2∑

l=0
(n − 2 − 2l)(Zm+1

n−3−2l + Zm−1
n−3−2l)] (74)

We now observe that the three series in the last member of Eq. (74) have the same terms, except
that the second series omits the term l = 0 from the first series and the third series omits the
terms with l = 0, 1 from the first series. Using Eq. (69), we see that the terms in the first series
with l = 2, 3, ...(n + 2 − |m|)/2 are canceled, and we get

∂Um
n

∂ν
= −[ 1

4(n + 2) ((n + 2)(Zm+1
n+1 + Zm−1

n+1 ) + n(Zm+1
n−1 + Zm−1

n−1 ))

− n + 1
2n(n + 2)n(Z

m+1
n−1 + Zm−1

n−1 )]

= −
[
1
4
(Zm+1

n+1 + Zm+1
n−1 ) −

1
4
(Zm+1

n−1 + Zm−1
n−1 )

]
, (75)

and this is Eq. (71). In a similar fashion, we get Eq. (72).
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We now consider the case that n = m = 1, 2, .... Then Zm
n−2 = 0 and ∆Zm

n = 0, and so it follows
from Eq. (64) that ∆U = −(m + 1)Zm

m holds for any U of the form

U = −
[ Zm

m+2
4(m + 2) − CZm

m

]
. (76)

We shall determine C such that Eq. (56) holds for n = m. Now

Zm
m (ρ, θ) = ρmeimθ, Zm

m+2(ρ, θ) = ((m + 2)ρm+2 − (m + 1)ρm)eimθ, (77)

and so the condition Eq. (56) for n = m and θ = 0 yields

C =
3m + 4

4m(m + 2) . (78)

It can be shown that with this value of C the U of Eq. (76) satisfies Eq. (56) also for θ , 0. This
handles the case that n = m = 1, 2, ..... The case n = m = 0 is non-existent, and the case with
n = −m = 1, 2, ... follows from the case already handled by complex conjugation. We now also
compute for this U, using Eq. (59), and m > 0

∂U
∂ν
= −

[
1

4(m + 2)
∂Zm

m+2
∂ν

− 3m + 4
4m(m + 2)

∂Zm
m

∂ν

]
= −

[
1
4

Zm+1
m+1 +

1
4

Zm−1
m+1 +

m
4(m + 2) Z

m−1
m−1 −

3m + 4
4m(m + 2)mZm−1

m−1

]
= −

[
1
4

Zm+1
m+1 +

1
4

Zm−1
m+1 −

1
2

Zm−1
m−1

]
, (79)

and similarly
∂U
∂µ
= −1

i

[
1
4

Zm+1
m+1 −

1
4

Zm−1
m+1 +

1
2

Zm−1
m−1

]
. (80)

The results Eqs. (79) and (80) continue to hold when m < 0 and n = |m|. Hence, also in this
case we get a concise result for Gm

|m | as in Eqs. (71)–(73).
We finally show that the αm

n obtained in [1], Section 3 coincide with the αm
n of Eq. (51).

Observe that the vector polynomials Gm
m in Eq. (51) were derived in [5] from the conditions

Eq. (46) and Eq. (53) under the assumption that they have vanishing curls, whereas the LMS
estimator found in [1], section 3 has been derived under the condition that a natural mean-square
error functional involving expansion coefficients is minimized. This LMS estimate uses the
expansion coefficients (β±)mn in

∂W
∂ν
± i

∂W
∂µ
=

∑
n,m

β±
m
n Zm

n . (81)

That is, we have for m , 0

αm
n = Cm

n ϕ
m
n − Cm

n+2ϕ
m
n+2, n = |m|, |m| + 2, ..., (82)

with

ϕmn =
1
2
(β+)m+1

n+1 + (β−)
m−1
n−1 , (83)

Cm
|m | =

1
|m| , Cm

n =
1
2n
, n = |m| + 2, |m| + 4, .... (84)
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(when m = 0 we only consider n = 2, 4, ...). In the case that n = |m| + 2, |m| + 4, ..., we see that
Eq. (82) and (83) gives

αm
n =

1
4n
(β+)m+1

n−1 +
1
4n
(β−)m−1

n−1 −
1

4(n + 2) (β+)
m+1
n+1 −

1
4(n + 2) (β−)

m−1
n+1 . (85)

Now we have from Eq. (81)

∂W
∂ν
=

∑
n,m

1
2
((β+)mn + (β−)mn )Zm

n (86)

∂W
∂µ
=

∑
n,m

1
2i
((β+)mn − (β−)mn )Zm

n . (87)

Therefore, from Eq. (71) and (72) and the orthogonality/normalization of the Zm
n , see Eq. (12),

we see that the integral expression at the right-hand side of Eq. (51) becomes

1
π

∫ 1

0

∫ 2π

0

(
∂W
∂ν

∂Um∗
n

∂ν
+
∂W
∂µ

∂Um∗
n

∂µ

)
ρdρdθ

= − 1
8π

∫ 1

0

∫ 2π

0

∑
n′,m′
((β+)m

′
n′ + (β−)m

′
n′ )Zm′

n′

×
[
Zm+1
n+1 + Zm−1

n+1 − Zm+1
n−1 − Zm−1

n+1
]∗
ρdρdθ

= − 1
8π

∫ 1

0

∫ 2π

0

∑
n′,m′
((β+)m

′
n′ − (β−)m

′
n′ )Zm′

n′

×
[
Zm+1
n+1 − Zm−1

n+1 − Zm+1
n−1 + Zm−1

n+1
]∗
ρdρdθ

= − 1
8(n + 2) ((β+)

m+1
n+1 + (β−)

m+1
n+1 + (β+)

m−1
n+1 + (β−)

m−1
n+1 )

+
1
8n
((β+)m+1

n−1 + (β−)
m+1
n−1 + (β+)

m−1
n−1 + (β−)

m−1
n−1 )

− 1
8(n + 2) ((β+)

m+1
n+1 − (β−)

m+1
n+1 − (β+)

m−1
n+1 + (β−)

m−1
n+1 )

+
1
8n
((β+)m+1

n−1 − (β−)
m+1
n−1 − (β+)

m−1
n−1 + (β−)

m−1
n−1 ), (88)

and this coincides with the right-hand side of Eq. (86) when the various cancellations are noted.
In a similar fashion the case n = |m| > 0 can be handled using Eqs. (79) and (80), and this

yields that the αm
|m | from Eqs. (82) and (83) coincide with the right-hand side integral expression

in Eq. (51).
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