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ABSTRACT

Notwithstanding the predicted demise of signature-based network

monitoring, it is still part of the bedrock of security operations. Rule-

sets are fundamental to the efficacy of Network Intrusion Detection

Systems (NIDS). Yet, they have rarely been studied in production en-

vironments. We partner with a Managed Security Service Provider

(MSSP) to gain more insight into the evolution of rulesets, the alerts

that they trigger and the incidents that get investigated. We analyze

a combined ruleset śincluding both commercial and proprietary

rulesś that consists of 130 thousand rules and was used to monitor

hundreds of networks. We find that these rulesets keep growing

over time but there is almost no overlap among them in terms of

detection options or what indicators of compromise they contain.

The combined ruleset triggered more than 62 million alerts and led

to 150 thousand incident investigations by SOC analysts, though

the vast majority of rules never triggered a single alert. We find that

just 0.5% of all rules are responsible for more than 80% of the alerts

and incidents and only 1.2% of all alerts were deemed to merit closer

investigation. Of all incidents, 16% were labeled as false positives

and 9% carried significant risk to the client organization. Indepen-

dently of the type of rule, updating rules is a minor activity. Most

rules are never modified and only a fraction is deleted, except for

periodic purges in some sets. Seven in-depth interviews with rule

developers corroborate the patterns we found in our analysis. Fi-

nally, we identify several rule management practices that influence

rule and ruleset efficacy, such as supplementing commercial rules

with your own and making rules as specific as possible.
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· Security and privacy → Intrusion detection systems; Net-

work security.
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1 INTRODUCTION

Over the last decade, the number of network attacks has steadily

increased, putting even more emphasis on the efficacy of network

monitoring [8]. Recent research in network intrusion detection

has focused on statistical and machine-learning methodsÐe.g., [12,

23, 25]. The underlying motivation is that conventional rule- and

signature-based methods are deemed unable to keep up with the

fast-evolving threats and therefore they will become increasingly

obsolete. As early as the turn of the century, industry reports were

predicting the demise of signature-based network monitoring [3,

29]. Yet, two decades later, signature-based monitoring is still part

of the bedrock of organizational security. Walk into any security

operations center (SOC) and what you will see is analysts triaging

alerts generated by network intrusion detection systems (NIDS)

that still rely heavily on rulesets. Most, if not all, Managed Security

Service Providers (MSSP) purchase and develop rulesets in order to

detect relevant events on their client networks. Despite important

advances in host-based detection and anomaly detection, there are

few signs that this is changing any time soon.

To put it a bit facetiously, rules work in practice, but not in the-

ory. Rulesets are incredibly important for protecting organizations

everywhere and yet they are barely researched in real-world pro-

duction settings. Prior work has focused mostly on analyzing the

impact of rulesets on the system performance of an NIDS in a test

setting, measuring sensor-based metrics such as CPU load, memory

usage and packet loss [1, 7, 22, 32]. These studies looked at the sen-

sors, not at the rulesets themselves, nor how they are managed to

optimize detection capabilities. Other work has focused on improv-

ing the signatures used in NIDS [9, 24, 30, 31, 33]. The closest work

we could find was a recent study by Gashi and Asad [2], who com-

pared four different open and commercial rulesets, their changes

over a period of five months and the alerts they generated in a test

on a part of a university network. They concluded that there was

barely any overlap in alerts, suggesting that organizations should

combine rulesets to optimize detection.

To the best of our knowledge, we present the first study that

opens up the black box of NIDS rulesets and their management

in a real-world production setting. We have partnered with an

MSSP that monitors hundreds of client networks using various

commercially-acquired rulesets as well as a ruleset it develops in-

house. We present an analysis of four rulesets that collectively

consist of 130 thousand rules, span 13 years (2008ś2021), and func-

tioned in a production environment to monitor hundreds of net-

works. The rulesets received more than one million modifications,

triggered more than 62 million alerts and led to 150 thousand inci-

dent investigations by SOC analysts.

How do rulesets evolve over time? How fast do they get revised

and updated? How many rules actually trigger an alert in practice?
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How many of these alerts represent real threats? We are especially

interested a critical underlying tradeoff: How are rulesets managed

in order to maximize detection of intrusions (true positives) and

minimize the number of alerts that need to be investigated (false

positives)? You can only detect what you create a rule for and yet the

larger the (combined) ruleset, the harder it will be to keep it accurate

and up to date and the higher the likelihood of overwhelming the

SOC analysts with irrelevant alerts.

We analyze the changes in the rulesets, the scale and type of

modifications and the relation between the rules and the alerts and

incidents that are triggered by them. We complement this analysis

by a small, but in-depth, user study of seven rule developers within

the MSSP. We conducted semi-structured interviews to understand

the process of rule writing and management.

In sum, we make the following contributions:

• We present the first longitudinal analysis of NIDS rulesets

spanning up to 13 years (2008ś2021), the alerts they gener-

ated and incidents that they helped detect.

• We created a tool to quantitatively analyzeNIDS rule changes.

This tool allows tracking the evolution of a rule over its lifes-

pan, extract metadata from the rule’s syntax and classify the

different types of modifications. We open source this tool to

the community.

• While in use, around 23% of all rules are updated in terms

of detection capability. We quantify the factors that trig-

ger changes within rulesets and find two major causes: (i)

changes in the threat landscape; and (ii) reducing the num-

ber of alerts by making rules more specific. These factors

are then cross-validated through semi-structured interviews

with seven experts in the area of rule developing and security

incident response.

• We find that 80% of all alerts were triggered by a mere 0.5% of

all rules. The overwhelming majority of rules never trigger

a single alert. This helps explain why rulesets can grow

into the tens of thousands over time, without overwhelming

SOC analysts. Still, only 1.2% of all alerts were deemed to

require closer investigation, and only 0.3% of all alerts carried

significant risk to the organization.

• We identify a number of rule management practices em-

ployed by rule developers and their influence on the efficacy

of the rules. Specifically: (i) multiple rulesets are used simul-

taneously due to the lack of exhaustive coverage of the threat

landscape by any single ruleset; (ii) proprietary rules are up-

dated more often than commercial rules leading to a higher

incident detection rate; and (iii) false positive incidents have

a noticeable impact on rule updates.

2 RELATEDWORK

Research on ‘traditional’ signature-based NIDSs and NIDS rule-

sets is relatively rare. Modern research focuses primarily on cre-

ating statistical or machine learning-based NIDSs in lieu of study-

ing or improving upon signature-based approaches, which remain

an industry standard to this day. Examples include Srivastav and

Challa[25], Shone et al. [23], and Mirsky et al. [12].

In the rare instanceswhere research has indeed looked at signature-

based NIDSs, the effort has gone into studying the performance of

the system itself and what the effect is of ruleset volume changes,

instead of the processes driving rule changes. Soumya Sen [21]

examines the Snort IDS and its performance when varying band-

width and, perhaps unsurprisingly, that as bandwidth increases,

the size of the ruleset must decrease in order to keep Snort’s error

rate below a certain threshold. This effect is magnified for a given

bandwidth when the size of IP payloads decreases, as Snort will

have to process more packets during the same amount of time,

resulting in more packet loss.

Thongkanchorn et al. [28] perform an analysis similar to Sen [21].

The authors take the Snort, Suricata, and Bro (now Zeek) NIDSs

and analyze its performance when varying attack type, ruleset

sizes, and network traffic rates. For the experiment, they use the

Emerging Threats (ET) Open ruleset for all NIDSs. They select a

set of different types of attacks and generated the corresponding

packets to test the different NIDSs. Results from the analysis include

low packet loss and low CPU usage for TCP traffic, and that a higher

traffic rate leads to higher CPU usage, higher packet loss, and a

higher number of generated alerts. Finally, the authors also find

that using more rulesets also causes a higher number of generated

alerts. However, the study does not examine the underlying causes

for the performance detriments, such as potential inefficiencies in

the rules.

Gashi and Asad [2] perform a study more closely related to our

work, as they analyze the evolution of and similarities between

four different rulesets: Snort’s official Community, Registered, and

Subscribed rulesets, as well as the ET Open Suricata ruleset [20].

The analysis was performed on five months of rule updates. They

examine the diversity and overlap between both blacklisted IPs and

rule content options for the four different rulesets. The authors find

that there is minimal overlap between ET’s and Snort’s IP blacklists

and rule content options, with only 1% of rules containing matching

content options. As a result, the alert triggering behavior of the

rulesets from both sources also has minimal overlap, potentially

indicating that both may be useful to provide more defense to a

network.

While the work from Gashi and Asad [2] is somewhat related

to the analysis we carry out in this work, there is only marginal

overlap. To the best of our knowledge, there has been no research

into the nature of rule changes and the rule development process

as a whole. Neither has this rule data been combined with alert

and incident data from production settings ś in our case: an MSSP

ś to investigate the evolution of the rulesets in a changing threat

landscape.

3 BACKGROUND

At the core of this work are two closely related topics, namely

intrusion detection systems and the rulesets they employ to de-

tect potentially malicious traffic. In this section we explain these

concepts and place them within the context of an MSSP.

3.1 Intrusion detection systems

IDSs are classified by their placement and by the techniques that are

used for detection itself. As for the placement of an IDS, there are

network-based, host-based, and application-based intrusion detec-

tion systems. Furthermore, depending on its method of detection,
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Figure 1: Rule syntax used by Snort and Suricata NIDSs.

an IDS can be signature-based or anomaly-based [11]. The type of

IDS that is the focus of this work is the signature-based NIDS.

A network-based IDS is placed at a strategic point within a net-

work and analyzes all network packets it receives to detect attacks.

Signature-based IDSs find malicious activity by matching it with a

predefined set of patterns or events that are characteristic of known

attacks. Examples of such IDSs include Snort [4], Suricata [26], and

Zeek (formerly Bro) [15].

3.2 NIDS rules and rulesets

Signature-based IDSs detect threats in a network with rules that

inform the system what to look for in network traffic. Figure 1

illustrates the syntax of such a rule. An NIDS rule consists of two

main parts: (1) the header, and (2) the options. The header can also

be split up into two different parts: (1a) the action, and (1b) the

network traffic descriptors. The action is the portion of the header

that tells the NIDS what to do in case the rule is triggered (e.g.,

raise an alert, drop the packet, log the packet, among others). The

second portion of the header that we identify is the network traffic

descriptors, which specify the origin and destination IP addresses

and ports, as well as the protocol of the packet that the rule looks

for. The secondary section of the rule is the options, which can

be split up into two parts: (2a) the detection options, and (2b) the

non-detection options. They determine how a packet is analyzed,

and contain fields for matching packet headers, or sections of the

payload content, among others. Non-detection options provide

additional information regarding the type of traffic the rule wants to

detect, such as the category of threat, references to documentation

about the threats, as well as rule ID and version number.

Rule developers create rules that are as specific to the threat as

possible, but also generalizable to different versions of the same

threat present on the Internet. Regardless of how this trade-off is

made, it will inevitably imply some fraction of alerts being false pos-

itives, due to the sheer amount of network traffic flowing through

the Internet. A false positive is defined as normal or legitimate

traffic that is mistaken as malicious. Conversely, malicious activity

can be missed by an IDS if there is no rule present that explicitly

detects it. In order to keep this risk at a minimum, organizations

need to continuously keep up with the latest threat intelligence

and ensure their NIDS is up to date. Organizations can do this by

either purchasing a subscription to a commercial ruleset created by

a third party, or develop the rules in-house.

Figure 2 illustrates the typical life cycle of an NIDS rule. Rules

developed by the MSSP are either directly added to the production

environment, or are first added to a test environment to evaluate

accuracy and false positive rates. Commercial rulesets are added

to production directly, as it is assumed that these rules have al-

ready undergone an acceptable level of quality control. Once in

production, the MSSP only updates its own proprietary rules; the

commercial rules are left alone and are only filtered out through

other methods. Rules in the production environment trigger alerts if

the logic within the rule matches with an incoming packet. Finally,

only if an alert is deemed severe enough by the analysts in the SOC,

the alert is grouped together with a number of related alerts into

an incident. This incident is then thoroughly investigated by the

security analysts.

4 DATA & METHODOLOGY

Our collaboration with an MSSP has enabled us access to a number

of datasets surrounding their NIDS and SOC operations. In this

section we discuss these datasets and how we use them to perform

this work.

4.1 Data collection

NIDS rulesets TheMSSP uses rulesets from different origins on the

network sensors that they install on their customers’ networks. In

addition to commercial rulesets purchased fromEmerging Threats [19]

and VRT [5], they also employ a proprietary ruleset that is created

and maintained by an in-house team of developers. All rulesets

are hosted on internal Git repositories. The MSSP has been using

its own ruleset since 2008, and the repository has been tracking

the changes to that ruleset ever since. Commercial rulesets have

also been used since that time, but have only been mirrored on

a local repository since 2018 or 2019, depending on the ruleset,

meaning that the commercial ruleset data are limited to those years.

Both VRT (now Talos) and Emerging Threats are market leaders in

NIDS rulesets, with the former being the maker of the official Snort

ruleset, and the latter being one of the three paid services specifi-

cally mentioned by OISF, Suricata’s maintaining organization, in

their 2018 SuriCon conference [14]. We feel this is a representative

sample of the NIDS market, and we therefore limit our study to the

two commercial rulesets.

Alert data The rules installed on the network sensors produce

alerts when they detect threats, and all the alerts are logged when

they arrive at the SOC. We have access to alert logs that date from

mid-2009 to mid-2018. The logs are in CSV format and contain

the following information: (i) alert timestamp; (ii) rule ID, revision,

and priority; (iii) rule category; (iv) protocol of packet (TCP, UDP,

ICMP, IP, numerous application layer protocols); and (v) potential

corresponding incident. Between 2017 and 2018, the MSSP was

gradually migrating to a different logging platform, causing this

logging data to be incomplete throughout that last year.

Incident data One or more alerts deemed critical enough by SOC

analysts to merit closer investigation are grouped together into an

incident. The analysts then investigate all related alerts to deter-

mine the cause and severity of this incident and ultimately label it

accordingly. These labels are Undetermined, False positive, Not inter-

esting, Interesting, Low risk, High risk, and Successful hack attacks.
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Figure 2: Life cycle of an NIDS rule. Commercial rules are added to production immediately, while many rules developed in-

house are tested within a testing environment before they are added to production. Once in production, rules are updated or

removed from the ruleset. Rules in the production environment produce alerts if they detect packets that match its detection

logic. If deemed severe enough, related alerts are grouped together into an incident and thoroughly investigated by analysts.

We consider all but Undetermined and False positive incidents as

true positives. The difference between a High risk incident and a

Successful hack attack is that the former involves activities that will

directly lead to network compromise, while the latter is an incident

where such network compromise has already occurred without the

SOC being able to halt the attempt. Undetermined incidents (0.9%)

are excluded, as we cannot establish a reliable label for them.

The incident logs contain the following: (i) incident open, re-

sponse, and close timestamps; (ii) corresponding customer; (iii) cat-

egory label; (iv) whether the incident was escalated to the customer.

This data also dates from mid-2009 to mid-2018 and is also missing

entries from 2018 due to the platform migration process.

Interviews We carried out semi-structured interviews with seven

analysts and rule developers employed by the MSSP to better under-

stand their heuristics and work processes. We recorded, transcribed,

and coded the interviews to extract the relevant information.

4.2 Quantifying rulesets’ evolution

Although changes to the rules are tracked by the Git repository, the

evolution of the ruleset as a whole is not. For theMSSP’s proprietary

ruleset, there are no set guidelines when it comes to managing

rules and rulesets. New rules are created on the basis of new threat

intelligence, and from analysis of potentially malicious software.

Furthermore, we learn from the interviews that there are, in general,

two instances where ruleset updating occurs: (i) when analysts or

rule writers have no other work activities planned and go through

the ruleset out of their own initiative; (ii) when a rule triggers alerts

more often than is deemed acceptable by the analysts. While the

creators of the commercial rulesets might also have such guidelines,

the reasons behind rule updates are not logged (publicly) either.

We make a distinction in the methodology that we apply to

the two different datasets that we have access to. The first is the

repositories of both the commercial and proprietary NIDS rules. The

second is the datasets containing the triggered alerts and incidents,

which will be discussed in the next subsection. We analyze the

repositories of the commercial and proprietary rulesets separately,

since the two types of rulesets differ significantly not only in size,

but also in purpose.

First, we implement a tool that is able to track the evolution of

the ruleset over time. This tool checks out every commit made to

the repository and keeps track of the additions and deletions made

to the ruleset. It does this by traversing the repository in a reverse

chronological order and parsing the complete ruleset for every

commit in pairs of two. A new rule is a rule that is present in the

latter ruleset and not present in the former. A deleted rule is a rule

that is present in the former ruleset and not present in the latter;

or a rule that is not commented out in the former ruleset and is so

in the latter ruleset; or a rule that has been moved to a specific file

designated for deleted rules. An updated rule is a rule that is present

in both former and latter rulesets and differ in text. However, not all

updates are made equal. Only updates to the header and detection

options will influence the performance of a rule. Therefore, the tool

also differentiates between the types of updates made to a rule. The

result of this analysis is a list of all the rules that were ever added to

the repository, paired with every modification performed on each

rule over the lifetime of the repository.

To the best of our knowledge, a free and open-source NIDS rule-

set analysis tool has not been developed and released before. We

realize that such analyses might be valuable for other researchers

and professionals. As a contribution to not only the scientific com-

munity, but the numerous users of this type of NIDSs in industry,

we have published the source code on Github 1.

The tool’s output allows us to calculate a number of statistics,

both in total and longitudinally, that we can be used for further

analysis of the rulesets. Such statistics include rule changes occurred

in total and their type, the lifespan of individual rules, and size of

the ruleset over time. All statistics are discussed in Section 5.1.

Manual inspection of rule changes was also performed. Specif-

ically, we randomly sampled 50 rule updates and determined the rea-

sons behind them (i.e., was the rulemademore specific/efficient/etc.).

All rules, commercial and proprietary, have their own unique ID,

and the MSSP ensures that there is no overlap between the IDs of

proprietary rules and commercial rules. Every alert record includes

a reference to the unique ID of the rule that triggered it. This enables

us to link an alert to a specific version of its corresponding rule.

By examining the changes to the Git repository, and combining

this information with alert data and statistics, we can learn not

only how rules change, but also ascertain the reasons behind those

changes and identify trends in the ruleset’s evolution (e.g., moving

1https://github.com/mathewvermeer/ruling-the-rules
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away from very specific to more generic rules, more rule updates

than rule deletions, etc.). This data also allows us to examine the

relationships between rules and alerts.

The proprietary ruleset itself consists of two parts: (1) the rules

in production, and (2) the rules still in testing. In this study, we

focus primarily on alerts that influence the workflow of the SOC

and its analysts. For that reason, we focus only on the ruleset

in production and discuss the evolution of rules in the testing

environment separately.

4.3 Interviews

To complement our data on the rulesets, alerts and incidents, we

also conducted seven interviews with security professionals within

the MSSP who write or manage NIDS rules, or have done so pre-

viously in their career. The participants were recruiting though

snowballingÐi.e., asking each participant for a list of names of

other people who would be relevant to interview on the company’s

NIDS rule development and management. This process was halted

when the only names we received were professionals whowe had al-

ready interviewed before and two participants who did not respond

to our invitations. The semi-structured interview protocol consists

of 37 questions (Appendix A.1). Each interview was conducted by

two interviewers, recorded and transcribed.

These interviews are part of a larger, separate study with similar

interviews in other MSSPs. Here, we only include the data from

interviews inside the partner MSSP for two narrow purposes: (i)

to reconstruct the rule development process and understand the

datasets at the MSSP (Sections 3.2 and 4.1); and (ii) to help interpret

and validate our findings from the analysis of the rules, alerts and

incidents. In the Section 8) (Discussion), we compare our findings

to what we heard in the interviews.

4.4 Ethics

To conduct the user study, we received formal approval from the

Human Research Ethics Committee at our institution. All inter-

viewees explicitly consented to the recording and transcription of

the interview and to the usage of quotes. We minimize the risks of

data leaks by anonymizing all data gathered during the interviews.

The recordings were stored for the duration of this research on an

encrypted hard drive. All answers given were confidential and were

only available to the other researchers involved in this project.

5 RULE EVOLUTION IN PRACTICE

The rulesets employed by MSSPs are very large and, at the surface

level, we find that changes are made to these rulesets constantly.

Upon further inspection, though, we discover a number of different

phenomena within the rulesets. Firstly, many of the created rules

are never meaningfully updated while remaining in use over a long

period of time, though this differs per ruleset: 84% and 68% for the

ET Pro Snort and Suricata rulesets, 97% for the VRT and 65% for the

MSSP rulesets. Then, there is the subset of rules that are deleted

without ever being updated. This subset makes up 12% of the MSSP

ruleset, and at most 0.6% of the commercial rulesets. Finally, there

are rules that are updated throughout their lifetime. The updates

themselves can be divided into four different groups: updates made
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2008 2011 2013 2016 2019
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Figure 3: Size of the proprietary and commercial rulesets em-

ployed by the MSSP over time. The following are the ruleset

sizes at the start and end of their respective curves:MSSP: 20-

2,065; ET Pro Snort: 46,074-53,000; ET Pro Suricata: 39,546-

43,863; VRT: 9,908-12,760.

to a rule’s (1) action, (2) network traffic descriptors, (3) detection op-

tions, and (4) non-detection options. The second and third types of

updates are what we will mainly focus on, since those are the types

that affect detection. The ET Pro rulesets overwhelmingly perform

network traffic descriptor updates over all the other types, while

the VRT ruleset receives much more non-detection option updates,

each signalling different priorities as to their ruleset management

strategies. The subsections elaborate on the deeper examination

we performed to shed light on the unique behavior of each of the

rulesets.

5.1 Ruleset evolution

Ruleset size. Figure 3 illustrates the sizes of all the different rule-

sets employed by the MSSP. It seems to show a general increasing

trend for all rulesets. However, the data we have of the commercial

rulesets are limited to the last two to three years, trends across

longer time spans are not visible. The evolution of the ET Pro rule-

sets are punctuated by significant purges of rules, with a linear

increase between the purges. The third commercial ruleset used

is the one created by VRT, now Talos, which is the organization

that maintains the official Snort rulesets [5]. Though the size of

this ruleset is significantly smaller than the ET Pro rulesets, it ex-

hibits similar behavior to the ET Pro rulesets in the apparent steady

addition of new rules without concurrent deletion of old and po-

tentially outdated ones. Figure 4 illustrates this. This could mean

that they either prefer to have the most number of threats covered

by their rules regardless of quality, or deem most newly created

rules of a high enough quality to remain (unchanged) in the ruleset

indefinitely. The MSSP’s ruleset is significantly smaller than the

commercial rulesets, which can be explained by the fact that ruleset

creation is not the core of the business. Similar to the ET Pro rule-

sets, the MSSP also has occasional purges of rules. As evidenced

by the rising curve in Figure 3, though, this deletion of rules does

not happen regularly, nor does it happen enough to maintain the

ruleset at a (near) constant size, similar to the VRT ruleset. This

indicates that efficiency through ruleset size limits is not a priority

for rule management, though it certainly was in the past [21].

Next, we examine the overlap between the rulesets using two

different measures, illustrated in Figures 5b and 5a, respectively.

The first method used here is comparing the detection options

extracted from all rules in a manner similar to that performed by
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Figure 4: Number of additions, modifications, and deletions performed on the different commercial rulesets.
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Figure 6: Number of updates in the proprietary ruleset.

Gashi and Asad [2], which aims to measure the functionality of the

rules themselves. We supplement this overlap measure with the

overlap in unique IP addresses and domains present in a rule. This

measure is an indicator for a subset of threat intelligence-based

rules that act as a blacklist (i.e., raise an alert solely due to the

presence of a specific IP or domain). While the former measure has

limitations, since different implementation of the same detection

logic would result in no match, taking both measures together

yields a general overview of the threat coverage of the different

rulesets Irrespective of these limitations, both figures show that

despite the large sizes of the commercial datasets and the large

coverage they provide, the overlap is nearly negligible.

Rule updates. Of all rules currently active in the different rulesets,

many have never been updated after their creation. This percentage

stands on roughly 14% for both ET Pro rulesets, 42% for the MSSP

ruleset, and 69% for VRT. There is also set of rules that are never

touched until their deletion. This phenomenon occurs more often

in the MSSP ruleset than the commercial rulesets: of all rules ever

added to this ruleset, this number stands at 12%. For all commercial

rulesets, this percentage is at most 0.6%.

Then, there is the set of rules that are updated throughout their

lifetime. We disregard trivial updates to the non-detection options,

as these have no effect on the working of a rule. To investigate

the nature of these rule updates, we sampled 50 rule updates that

alter either the rule header or the rule’s detection options from

the different rulesets and grouped them into a number of broad

categories:

• Efficiency improvements: Changes to a rule that make the

rule faster or less resource intensive, for instance using the

fast_pattern keyword or optimizing byte comparisons or

regular expressions, while keeping the rest of the rule un-

changed.

• More specific: Narrowing the rule’s search space by, for in-

stance, increasing the length of the content string to match

or explicitly specify the subset of ports on which to look for

the threat.

• More general: Widening the search space in a manner con-

trary to the previous.

• Bug fixes: Updates made to a rule due to the rule not working

as intended or improper usage of certain rule options. Ex-

amples include detecting buffer overflows using isdataat

instead of the dsize keyword, as usage of the latter can lead

to false negatives.

• Threat intel updates: Implement into a rule discoveries made

through threat intel such as changes to malicious domains

or IPs or changes in how certain malware operates.

• Other : Any other type of modification such as change in rule

action, editing of flowbits, or fixing typos.

This categorization is illustrated in Table 1. Interestingly, for the ET

Pro rulesets, all of the sampled rule updates fall under the łthreat

intel updatež category. The sampled updates from both the propri-

etary and VRT rulesets are distributed in a more balanced manner

across the different categories. It seems that there is a general trend

Table 1: Rule update categories for the 50 randomly sampled

updates from every ruleset.

Type of update MSSP ET Pro Snort ET Pro Suricata VRT

Efficiency improvement 10% - - 6%
More specific 36% - - 30%
More general 10% - - 24%
Bug fix 4% - - 30%
Threat intel update 22% 100% 100% -
Other 18% - - 10%
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Figure 7: Number of updates to existing rules per month and the type of modification for the different commercial rulesets.

Updates to non-detection options are shown in blue, network traffic descriptors in teal, and detection options in red.
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proprietary ruleset per two months and the type of modifi-

cationmade. Updates to non-detection options are shown in

blue, network traffic descriptors in teal, detection options in

red, and to the action in pink.

towards making rules more specific, perhaps to reduce the chances

of false positive alerts.

We can also split the non-trivial updates into two broad cat-

egories, the first of which is network traffic descriptor updates.

Emerging Threats is, essentially, the only organization that focuses

largely on network traffic descriptor updates (see Figures 7 and 8).

TheMSSP also performs such updates, although hardly to the extent

as Emerging Threats. VRT, on the other hand, performs a negligible

number of such updates. Both this, and the findings in Table 1, are

consistent with Figure 5b.

The second category of non-trivial updates are those made to a

rule’s detection options. We first examine these changes made by

the updates by means of the Levenshtein ratio between two con-

secutive versions of a rule’s detection options, shown in Figure 9,

which is a measure of their similarity. The ratio computed with

the following formula: 𝐿𝑒𝑣𝑟𝑎𝑡𝑖𝑜 =

sum of string lengths−2×𝐿𝑒𝑣𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
sum of string lengths

.

Clearly, this metric is not suitable for the analysis of rule update

semantics, since single-character changes could be the difference

between detecting a threat or not, and large changes could be an

attempt at efficiency improvement without affecting detection at

all. Therefore, we simply use it to identify update trends and mass

update events. We see that the ET Pro rulesets exhibit notably

different behavior: the Suricata ruleset has a spike at around the

0.5-mark, and both spike at around the 0.75-mark. The latter spike

corresponds to nearly 4, 000 nearly identical rule updates in each

ruleset, each with a Levenshstein distance of 46. Most of the updated

rules detect DNS lookups for potential trojans, ransomware, mali-

cious URLs, etc., and the updates themselves change the manner

in which the first 12 bytes of the UDP packet are matched. Inter-

estingly, the spike at the 0.5-mark in the ET Pro Suricata ruleset

corresponds to updates made to the same rules as the latter spike,

and again altering the way these DNS lookups are detected. In this

case, the detection options are updated with the Suricata-specific

dns_query keyword, which explains why this spike is absent in the

ET Pro Snort curve. Other minor spikes in both the ET Pro Snort

and Suricata rulesets are similar in that they involve the introduc-

tion of case-specific keywords due to efficiency improvements [10].

Interestingly, though, these updates were not the direct effect of

keyword release or deprecation, since these updates were made

many years after the fact [13], and many rules using the deprecated

keywords still remain in the ruleset. In fact, Emerging Threats an-

nounced support for these new features back in late 2019 [27], but

noted that the implementation of the features were still a łwork

in progress and under active development,ž explaining why such

updates are still made periodically.

The fact that these spikes are so evident when looking at the ratio

indicates that many of the updates in the ET Pro rulesets are made in

a single wave to all of the rules of that type. And although the curve

of the VRT ruleset appears much smoother than the ET Pro curves,

only 355 updates are made to the detection options during the two

years we have records of for that ruleset Ð a minuscule amount

compared to the nearly 13, 000 rules in this set. Finally, we see that

the MSSP ruleset also produces a very smooth graph, indicating

that there are no mass update events, and that the updates that do

occur are done on a more case-by-case basis. Thus, most detection

option changes are made to the syntax of a rule without changing

detection itself in a meaningful way, such as the aforementioned

DNS lookup rules.

Altogether, it seems a minority of updates are actually made due

to rule performance issues. Instead, most updates involve either

changes in metadata, syntax, or swapping out threat indicators.

Most rules are, evidently, of high enough quality once they en-

ter production. Furthermore, rule development is primarily input

driven, with the focus lying not so much on the eventual efficacy

or precision of rules as observed by an organization or SOC, but on

creating these rules for new threats in the first place.

Rule deletions. Aside from ruleset management through the up-

dating of existing rules, sometimes rules are also deleted from the

ruleset. Looking at the deletion behavior in all of the analyzed rule-

sets, there seems to be little reason to throw out rules. As is the case
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Figure 9: CDF of the Levenshtein ratio between the detection

options of a rule and its previous version. A higher ratio in-

dicates a high similarity between both versions.

with update behavior in the ET Pro rulesets, deletions also revolve

around changes in threat intelligence. For instance, a large portion

of the deleted rules in the major ET Pro rule purges (see Figure 3)

involve outdated C&C servers and SSL certificates [16ś18]. Thus,

the absence of threat intel-based rules from the VRT ruleset could

explain the lack of deletions for this particular ruleset. The MSSP

ruleset somewhat shares the deletion behavior of the ET Pro ruleset,

since it contains a number of threat intel-based rules, although not

to the degree of ET Pro. Many of the deleted MSSP rules, however,

fall outside of this category. This unique behavior can be explained

by the direct feedback loop that the rule developers have from the

MSSP’s SOC.

5.2 Rule testing

We must not overlook the fact that rules are tested before being

enabled in a production environment. Interestingly, we see that the

overwhelming majority of rules are added fairly quickly. It seems

that the MSSP’s priority is to have a rule pushed to production

as quickly as possible, and only optimize the rule after the fact if

necessary. That said, 26% of rules from the testing environment

never make the cut and are deleted from testing before they make

it to the production environment. While many of these rules are

deleted relatively early on (roughly a third within the first week),

the remaining rules are deleted in a random fashion.

6 ALERTS TRIGGERED OVER TIME

The MSSP with which we collaborate has a particular manner

in which alerts arriving at the SOC are processed. Under normal

circumstances, all alerts that arrive are processed by the analysts

working in the SOC. Deviation from these normal circumstances

occurs in cases of false positive floods, for instance. In such cases,

the alerts from the responsible rules may be manually suppressed

to prevent overburdening the analysts and taking out the SOC

back-end systems. In case that one or multiple alerts are suspicious

and merit further investigation, these suspicious alerts are grouped

together into an incident. Incidents are composed of one or multiple

alerts that are potentially part of the same threat. Every incident

is individually investigated. From this investigation, the analysts

determine whether the incident is a false positive, and if so, it

is labeled as such. In case of a true positive, the analysts assess

the severity of the incident and label the incident If an incident

is deemed severe enough, an escalation takes place whereby the

0 10000 20000

0.0

0.5

1.0

120000

rules

ra
ti
o

alerts per rule

incidents per rule

0 500
0.0

0.5

1.0

Figure 10: CDF of the number of alerts and incidents trig-

gered over the rules employed by the MSSP. Includes all dis-

tinct rules that have ever been added to both the proprietary

and commercial rulesets. The dashed and dotted lines indi-

cate the 80%-mark for alerts and incidents, respectively.

customer itself is informed of the incident in order to carry out the

necessary defensive and mitigation measures.

We have obtained nine years of alert and incident data for our

analysis, from mid-2009 to mid-2018. We first analyze the raw alert

data. It simply contains every alert triggered by any active rule

present on the probes. Naturally, not every rule will trigger as

often as the rest, as some malicious activities are more common

than others. We expect this distribution to follow a power-law-

esque distribution. Indeed, this is what we find if we plot the data.

Figure 10 illustrates this, and we see that 672 rules are responsible

for 80% of all alerts. Additionally, out of all the proprietary and

commercial rules that we have records of, over 110, 000 rulesÐ85%Ð

did not trigger a single alert. However, we do not have access to the

entire lifespan of the commercial rulesets. As a result, we have no

records of commercial ruleset modifications before May 2018. Some

rules may have been created and subsequently deleted before the

MSSP began mirroring the ruleset on its local repository. The actual

number of rules that never generated an alert could, therefore, be

much larger.

To further investigate the nature of these highly productive rules,

we randomly sample and manually examine 50 of the 672 rules. This

examination allows us to identify characteristics of the rules that

makes them trigger the number of alerts that they do, as oftentimes

rules or rule descriptions are unclear, ambiguous, or mislabeled. Of

the sampled rules, 52% consists of reconnaissance activity detection

and detection of known vulnerability exploitation attempts. This

explains the large number of alerts, since these activities are carried

out by many a malicious actor on a daily basis across the entire

IPv4 space. The remaining 48% not in the two aforementioned cate-

gories consists of activities that are not as common an occurrence.

Examples include internal network policy violations, DNS requests

for malicious domains, or usage of vulnerable software. Therefore,

a high level of alerts maintained over a longer period of time is

not realistic explanation for the productivity of these types of rules.

Indeed, what we find is that 28% of the total sample population are,

in essence, quiet rules until a single event causes the rule to trigger

up to thousands of times in a single day (see Figure 11).
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Figure 11: Alerts over time of 24 of the uncommonly trig-

gered rules in our 50-rule sample. Notice the sudden spikes

above the quiet baseline for many of them.

As the size of the proprietary ruleset increased since 2008, so

have the number of rules that trigger alerts: from 3, 758 after the

first year to 6, 787 just before the MSSP started migrating to a new

logging platform (mid-2017). Not only that, but the proportion

of the total alerts that are triggered by proprietary rules has also

increased from 1% to 6%. Nevertheless, the number of rules that

compose 80% of all the alerts per year remains fairly stable every

year: roughly between 200 and 250 rules. Between 18% and 50% of

these rules overlap year on year.

Of the aforementioned 672 rules responsible for 80% of alerts,

164 (26%) are proprietary rules, even though proprietary rules make

up just 3% of all rules employed by the MSSP that we have a record

of. Additionally, of the roughly 20, 000 distinct rules responsible for

all of the alerts, around 1, 000 rules are from the MSSP’s proprietary

ruleset. Taking into account the smaller size of the proprietary

ruleset compared to the commercial rulesets (see Figure 3), it is

apparent that the proprietary ruleset performs better in terms of

rule utility.

Since different rules detect different threats, and, therefore, ex-

hibit different alerting behavior, we examine if such differences

in behavior are also reflected in a rule’s updates. Table 3 shows

that rules in both the commercial and proprietary rulesets that

trigger alerts are over eight times as likely to receive an update

than rules that do not trigger any alert, and almost thrice as likely

when looking solely at the MSSP rules. We stated in Section 5.1

that most of the commercial ruleset updates are threat intelligence-

based, where, for instance, out of date indicators of compromise are

swapped out for new ones. These are updates that occur regularly,

and it makes sense that they be not affected by the the number of

alerts that these rules trigger. Looking solely at detection options,

the number of updates drops drastically in both alert and non-alert

subsets, and the update frequencies per rule drop to 0.18 and 0.16,

respectively, meaning that rules that trigger alerts are 12.5% more

likely to receive updates than rules that do not trigger.

7 SECURITY INCIDENTS

Most of the alerts produced by the rulesets are not deemed relevant

or severe enough by the SOC. Of the millions of alerts that the SOC

has processed over the years, only a relative handful are investigated

more thoroughly: 735 thousand (or 1.2%), which are produced by

6,720 different rules. This subset of alerts add up to 150 thousand

incidents. The precise numbers are specified in Table 2.

Of the 6,720 rules that are present in the incidents, 4,806 (71%)

of them are present in 80% of the rules; a very uniform distribu-

tion that is in stark contrast to the 672 that produce 80% of all

alerts. Interesting here is that of these 672 rules, only 89 are inves-

tigated by the SOC, indicating that high alert-producing rules do

not necessarily provide usable security information.

The incident labels described in Section 4.1 allows us to group

the incidents into two larger groups: risky and non-risky incidents.

The risky group contains incidents labeled Low risk, High risk, and

Successful hack attack, while the non-risky group is made up of

False positive, Not interesting, and Interesting incidents. Due to the

granularity of the labeling, this alternate categorization perhaps

better represents the relative severity of the different incidents.

Figure 12 illustrates that the number of alerts and (risky) in-

cidents have, not only increased over time, but are also highly

correlated. All three curves in the figure are also very much cor-

related with the increase in the MSSP’s customer base. However,

we must exclude the exact customer data from the paper due to

reasons of confidentiality. The correlations suggests that organiza-

tions remain exposed to external threats to a constant degree as

time goes on. We encounter the same phenomenon when observing

the rate of triggered incidents by rules of a certain age, illustrated

in Figure 13. The figure shows that the newest rules produce the

most incidents per week, but this activity levels out as the rule gets

older. Within several weeks, the rule ceases to produce as much

incidents as in the moments closer to its inception. This can indicate

an evolution of threats and vulnerability to novel threats, as well

as an adaptation to older threats by organizations as to no longer

remain vulnerable to them.

Table 2: Number of alerts that compose the different types

of incidents, and the corresponding number of distinct rules

that triggered the alerts.

# Associated alerts Distinct associated rules

Alerts - 62,321,663 19,744
Incidents 150,437 735,262 6,720
True positive incidents 69,471 674,177 4,731
Risky incidents 13,589 157,388 2,618
Successful hack attacks 106 734 80

With the commercial rulesets being significantly larger (over

20 times as large), one could likely expect the alerts and incidents

to be caused by the different rulesets in similar proportions. This

is not the case, however, as we actually find that MSSP rules are

overrepresented in many of the true positive incidents, highlighting

type of łquality over quantityž philosophy. We calculate the preci-

sion of all rules in the different rulesets by dividing the number of

true positive incidents of that rule by the total number of incidents

in which that rule is present. The ET Pro and VRT rulesets have

an average rule precision of 0.68 and 0.65, respectively, and the

proprietary ruleset bests both with an average rule precision of

0.74, which clearly shows the higher utility of the MSSP’s propri-

etary ruleset. Indeed, despite making up a fraction of all the rules

employed by the MSSP, the proprietary rules are present in 27%

of all true positive incidents. Thus, a smaller but contextualized

ruleset adds significant detection capability, which supports the

economic reasons that were mentioned in the interviews to develop

the ruleset.
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Figure 12: Number of alerts, incidents, and risky incidents handled by the SOC. The grayed out portion on the right-hand side

of the graph indicates the MSSP’s period of migration to a new logging platform. Note the secondary and tertiary axes.
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Figure 13: Average number of incidents per week triggered

by MSSP rules of a certain age within the first year.

Table 3: Average updates per rule (to header or detection op-

tions) for different rule subsets.

Rules subset # Rules # Updates
Updates

per rule

# Updates

(detection

options)

Updates per rule

(detection

options)

No triggered alerts 115,482 276,339 2.39 18,738 0.16

Triggered only alerts 9,988 370,417 37.1 1,768 0.18

Triggered only incidents 6,513 31,635 4.88 1,910 0.29

No triggered alerts (MSSP rules) 2,506 1,097 0.44 626 0.25

Triggered only alerts (MSSP rules) 447 576 1.29 432 0.97

Only TP incidents (MSSP rules) 276 244 0.88 124 0.45

At least one FP incidents (MSSP rules) 293 512 1.74 405 1.38

Most rules that cause false positive and low risk incidents are

updated more quickly than the rest of rules. Specifically, with a

median of 13 and 15 days, respectively, as opposed to the 30+ days

for other incident categories. After the occurrence of false positive

incidents, updates mainly fall into three different categories, namely

bug fixes, threat intel updates, and making rules more specific (see

Table 1 for the full list of categories), as is expected in case of false

positive incidents. As for the low risk incidents, most of the rules

updated within the first two weeks are updates made to the non-

detection options, indicating that low risk incidents are no cause

for concern and its corresponding rules are working as intended.

Since the MSSP also tests many of its own rules before adding

them to the production environment, we examine its effects on the

incidents triggered by these rules. The benefit of testing rules over

a longer period of time is not immediately clear from the data. For

all rules that trigger incidents and are tested before being added to

the production environment, they remain in testing for a median

of 11 days, with a notable outlier being the true positive-only rules

that are tested for a median of 16 days. The fact that this subset of

rules is tested for a longer period seems to indicate that this action

has a positive effect on the quality of rules. However, only 21% of

this true positive-only subset was tested at all before being added

to the production environment.

In addition to examining the incidents themselves, this section

will also investigate the effect of incidents on ruleset update behav-

ior. Section 6 points out that the update behavior of alert-producing

rules differs significantly from rules that never trigger throughout

their lifetime. This section will expand on those findings and ana-

lyze the effect of incidents and their type on rule update behavior.

In a similar vein as alert-producing rules, Table 3 shows that rules

that trigger incidents are more likely to receive updates than rules

that do not trigger at all. This holds for both types of updates shown

in the table.

Updates made to the commercial rulesets are independent from

the MSSP’s alert and incident statistics; the MSSP does not influ-

ence the update behavior of the commercial rules. Furthermore, the

datasets provided to us give us no way of knowing which commer-

cial rules have been suppressed manually, due to, for instance, alert

floods or false positives. When looking at the effect of incidents on

update behavior, we therefore also focus on the MSSP’s proprietary

ruleset.

We find in Table 3 that false positive incidents are a much higher

driver of updates. Rules that appear in at least one false positive

incident are over twice as likely to receive updates than rules that

only appear in true positive incidents. You don’t change a winning

team, and it seems the same goes for NIDS rules. This also makes

sense from the perspective of a SOC. If a rule is causing valuable

man-hours to be wasted on a fruitless investigation, it may be well

worth it to make sure that rule performs as intended.

8 DISCUSSION AND LIMITATIONS

Our analysis has generated several takeaway findings. First, rule-

sets have grown over time and now a single sensor is running a

combined set of over 65k rules. The focus in earlier research on the

performance impact of large rulesets on an NIDS, seems to have

disappeared as a concern. Only sporadically are rules purged from

the set.

Second, notwithstanding the size of each ruleset, there is almost

no overlap among them in terms of detection options or what

indicators of compromise they contain. This suggests each ruleset

covers a different and very limited fraction of the threat landscape,

even those from leading vendors like Emerging Threats and Talos

(formerly VRT). Thus, to maximize detection, all rules are combined
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and enabled by default, regardless of official recommendations

against this practice [6]. This finding also underlines the economic

reasons for the MSSP to invest also in in-house rule development. It

is tailored to high-end threats relevant to their client base which the

MSSP felt were not sufficiently captured by the commercial rulesets.

The results bear out their intuition. While these proprietary rules

make up just a tiny fraction of the entire collection of rules, they

contribute disproportionately to the detection of incidents that are

evaluated as posing a real threat.

Third, maintenance of the rulesets to improve detection is a mi-

nor activity. Most rules are produced once and then either remain

untouched or they are modified in bulk for technical reasons, like

changes in syntax or replacing the indicators from threat intelli-

gence. In the small fraction of updates where the detection options

are changed, the primary reason for the update is to make the rule

more specific to the threat it is trying to detect, possible in response

to alerts flooding the SOC. Rules that trigger alerts more often

are also more likely to receive updates. In rule management, as

elsewhere, it seems that the squeaky wheel gets the grease.

Fourth, most rules do not contribute directly to detection. In

fact, 85% of all rules never trigger a single alert in their lifetime.

Only a minuscule fraction of these tens of thousands of rules are

responsible for tens of millions of alerts: 0.5% of all rules generate

80% of all alerts. The overwhelming majority of these are noise.

Only 1.2% of all alerts ś generated by 5% of all rules ś are deemed

worthy of investigation by the SOC as incidents. And only a fraction

of these investigated alerts ś 0.3% of all alerts ś turn out to carry

legitimate risk to an organization.

8.1 Interviews

Our findings are supported and informed by the interviews with

the security analysts who wrote or managed the rulesets. In terms

of growing rulesets, the interviewees expressed that they did not

really see a downside to keeping all the rules enabled by default.

Even though older rules are much less active than newer ones, they

are rarely deleted: łMost of the rules don’t really get out of production

anymore, because it was proven that the rule works. [...] Maybe the

[malicious] tool has new version and the old rule doesn’t trigger on

this new version, but you cannot say for certain that an actor wouldn’t

use the old version, so then it’s better to have it active.ž

Most participants did not really see experience concerns for the

impact of growing rulesets and continually adding rules to the NIDS:

łUnless it starts to flood [...] or becoming slow, maybe we don’t even

notice it. Then there’s no process to evict this rule. [...] I probably think

this rule will still be in the ruleset.ž That said, some interviewees

did express some concern, perhaps carried over from an earlier

time, when performance impact might have been a factor. When

asked about a computationally-expensive rule for the detection of

a banking trojan, one interviewee stated: łyeah, that’s the trade-off,

[...] if they already say the performance impact is high, I wouldn’t

deploy it.ž

The lack of overlap ś and thus threat coverage ś of each ruleset

was indeed a concern that led to the development of in-house rules:

łI do think you also need to have rules for [...] more advanced malware

that maybe Emerging Threats doesn’t really look into.ž One analyst

remarked that their proprietary rulesmake up łthirty to forty percent

of the cases we escalate, so these rules are so much better. [...] They are

a really small part of our rule set but they have enormous impact.ž

In terms of rule maintenance and modifications, one security

analyst noted that: łwe tend to only delete rules if they’re actually, like,

flooding.ž This fits with out finding that substantive changes to rules

are often to make them more specific to the threat. Another analyst

pointed to the fact that rules would be tested, before they are taken

into production, thus reducing the need for later modifications:

łusually you give it like one or two days, or preferably a week, to run

this rule [...] in testing.ž

Finally, no interviewee had remarked on the fact that most rules

never contribute directly to detection ś i.e., never generating a

single alert. This is understandable to some extent. No one would

expect all rules to trigger alerts, so they would not evaluate rulesets

that way. Lack of coverage would be much more critical than re-

dundant rules. Thus, there is an intrinsic drive towards more rules,

even if they never get triggered. All interviewees did remarked

on false positives. One analyst said that an ideal rule is one that

is łextremely specific for a specific type of malware [...] with as low

amount of false positives as possible, while maximizing true positives.ž

This is an important trade-off, since most interviewees agree that a

false positive alert flood is the most severe situation that can occur

in a SOC: łrule-wise, I think that is the worst thing that could happen:

flooding of the SOC. Not only because you cannot handle the alerts

anymore, but it could take the back-end down because the database is

not responding.ž There are no rules on how to make trade-offs like

these. Instead, they depend on the experience of a developer. And

the resulting outcome is much skewed than the interviews led us to

believe: nearly 99% of all alerts are never even investigated and only

0.3% are ever evaluated as indicating actual risk. This corresponds

to 16% of all rules.

8.2 Limitations

The ruleset repository tool we developed contains a limitation that

is inherent to its design.While it is able to accurately track additions,

updates, and deletions from the ruleset, it is possible to introduce

errors in its analysis. Since the tracking of rules across commits is

based on a rule’s ID, altering the ID of an already existing rule is

counted as an addition of a new rule with the new ID and a removal

of the rule with the old ID. While this does affect the computation

of total additions and deletions over time, it does not affect the

ruleset’s total rule count. Through manual examination, we are able

to estimate that of the approximately 8, 800 modifications made to

the proprietary ruleset, only around 100 have been ID alterations.

Rule IDs are meant to be unique identifiers, and thus this limitation

is an unfortunate symptom of ruleset mismanagement.

The manner in which the alert data is collected affects the result

of the analysis. Specifically, the size of the customer base affects

the distribution of alerts over rules. As the customer base of the

MSSP grows, the same rules will trigger more often, and the more

skewed the distribution will be (see Figure 10). This does not give a

realistic view into the alert behavior within a single organization.

However, we have approached this analysis from the perspective

of the MSSP, not a single organization. Such an issue is inherent

to an MSSP and undoubtedly plays a role in the processes that go

into the management of the different rulesets.
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9 CONCLUSION

Traditional NIDSs and their rulesets are an often overlooked portion

of network security. This work presents the first study that aims to

shed light on this cornerstone of network security.

After analyzing four different NIDS rulesets containing around

130 thousand rules, we find that the vast majority of rules fail to

produce a single alert, i.e., 80% percent of all alerts were triggered

by a mere 0.5% of all rules. However, this does not pose a problem

for the SOC analysts as rule developers keep adding new rules and

barely modifying the existing ones. In fact, only around 23% of all

rules are updated in terms of detection capability, with primarily

two objectives: (i) adapt to changes in the threat landscape; and (ii)

reducing the number of alerts and false positives by making rules

more specific. Hence the possibility of using large rulesets without

overwhelming SOC analysts. Just 1.2% of all alerts were deemed

important enough to be investigated by the SOC, and only 0.3% of

all alerts carried significant risk to the organization.

We also identified a set of common rule management practices

that include: (i) using multiple rulesets simultaneously due to the

lack of exhaustive coverage of the threat landscape by any single

ruleset; (ii) creating proprietary rules to cover client-specific threats

and updating these with higher frequency than commercial rulesets;

and, (iii) reducing false positive incidents by updating the rules that

triggered the corresponding alerts.

Finally, our analyses allow us to conclude that the rumours of

the death of signature-based monitoring were greatly exaggerated.

Contrary to what appeared to be popular opinion, the findings

in this paper seem to indicate that that signature-based NIDSs

and its rulesets remain vital in network security. Future work is

needed to compare this with different approaches, such as host-

based detection in the form of end-point monitoring. With such

analysis, we move closer to determining the fate of traditional

signature-based systems: is it an archaic and obsolete technology

or does it remain an indispensable part of a secure network?
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The conversation will be recorded and before each interview verbal permission will be sought form each participant 

using the following text: 

 

1. Do you give permission to record the interview? The recordings will only be used for transcription. It will 

not be shared beyond the research team. 

2. Do you confirm that you are participating voluntarily and aware that you may stop at any time? 

3. Do you give permission for the processing of personal data in this study?  

Questionnaire: 

PROCEDURE 

1) Welcome 

2) Short overview of the study 

3) Explanation of the interview 

4) Informed consent 

5) Start interview 

6) Debriefing 

ANALYST RECONSTRUCTION OF WORKFLOW 

1) Could you describe to me your workflow? 

a. Probe about routine and non-routine tasks 

2) What do you see as the main objectives of your work?  

a. Probe on incentives that they have to reach this objective 

3) Can you walk me through the process of the acquiring, creating, changing, and deactivating rules? 

a. Probe on when a rule is added into the sensor 

b. Probe on all the testing that is done before rules are added into the sensor 

4) How many rules do you investigate every day?  

a. Probe on how they perceive this task (creative / procedure / workload) 

b. Do you have any tasks that you don’t have enough time for? 

c. Probe rule evaluation 

MANAGEMENT  

5) How do you work together with other colleagues on making or changing rules? 

a. Probe on working together or separation of tasks in specific client's rulesets?  

b. Probe if they ever had a disagreement on certain rules 

6) How do you seek additional information in order to assess a rule? 

a.  Probe on who they asked, what advice they received. 

b. What kind data they were looking for. 

7) Did someone ever follow up with you after you made or changed a rule?  

8) In your experience, what is the most severe thing that could go wrong with the rulesets you are using? 

a. Probe on fear of FN 

b. What are potential consequences of a ruleset that isn’t functioning properly 

c. Probe on the amount of risk that they perceive on missing TP 

d. Probe on the amount of FP and their perception and definition of a FP 

e. Probe on how likely they think consequences might happen 

9) Have there been made any mistakes while adapting rulesets? 

a. Probe on how this came to light. 

10) What procedures does the organization have on making or changing rules? 

A APPENDIX

A.1 Interview protocol
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11) Who is responsible for the quality of the rules? 

a. Probe on differences between the responsibility of individual, senior, manager. 

12)  How is a client involved in the creation of rules? 

a. Probe on relationship with clients 

13) Can you give an example of feedback that you received from clients? 

14) In your opinion, what could be improved in the management of rules?  

OBJECTIVES 

15) In your opinion, what is a good ruleset? 

a. Probe on the influence of the volume of a ruleset 

16) How do you optimize a ruleset as a whole? 

17) What is the best ruleset that is achievable in practice? 

EVALUATING RULES 

18) Can you walk me through the process on how you determine whether a rule is good or bad? 

19) Can you give an example of a good rule? 

a. Probe on why this is a good rule 

20) Can you give an example of a bad rule? 

a. Probe on why this is a bad rule 

21) Which data do you use for evaluating rules? 

a. Probe on what they think is the most important data 

22) Is there additional data that you would like to have? 

23) What do you do when you have doubts on a rule? 

24) How do you deal with rules that do not or no longer generate any alerts? 

25) Is there anything else you would like to tell me that could benefit our research? 

 

[EXPLANATION] 

Now we are going to show you two rules that are used in a ruleset of one of your clients. I would like to ask you to 

take a look at the rule and give your evaluation I encourage you to say everything that comes to your mind. 

Afterwards I will show you the alerts this rule has captured and then will ask you to evaluate the rule again with this 

information in mind. 

  

26) RULE EXAMPLE 1: How would you evaluate this rule? 

[START TIME MEASUREMENT IN SECONDS] 

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"ET POLICY Vulnerable Java Version 

1.8.x Detected"; flow:established,to_server; content:" Java/1.8.0_"; http_user_agent; 

content:!"251"; within:3; http_user_agent; flowbits:set,ET.http.javaclient.vulnerable; 

threshold: type limit, count 2, seconds 300, track by_src; metadata: former_category 

POLICY; reference:url,www.oracle.com/technetwork/java/javase/8u-relnotes-2225394.html; 

classtype:bad-unknown; sid:2019401; rev:30; metadata:affected_product Java, 

attack_target Client_Endpoint, deployment Perimeter, deployment Internal, 

signature_severity Informational, created_at 2014_10_15, performance_impact Low, 

updated_at 2020_04_27;) 

 

27) The rule you just saw generated the following alerts: 0 TP, 4497 FP, how would you evaluate this rule 

knowing this information? 

[END TIME MEASUREMENT] 

28) RULE EXAMPLE 2: How would you evaluate this rule? 
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[START TIME MEASUREMENT IN SECONDS] 

alert tcp $HOME_NET any -> any any (msg:"ET EXPLOIT Possible OpenSSL? HeartBleed? 

Large HeartBeat? Response (Client Init Vuln Server)"; flow:established,to_client; 

content:"|18 03|";depth:2;byte_test:1,<,4,2;flowbits:isset,ET.HB.Request.CI; 

flowbits:isnotset,ET.HB.Response.CI;flowbits:set,ET.HB.Response.CI; 

flowbits:unset,ET.HB.Request.CI; byte_test:2,>,150,3; threshold:type limit,track 

by_src,count 1,seconds 120; metadata: former_category CURRENT_EVENTS; 

reference:cve,2014-0160; reference:url,blog.inliniac.net/2014/04/08/detecting-openssl-

heartbleed-with-suricata/; reference:url,heartbleed.com/;reference:url,blog.fox-

it.com/2014/04/08/openssl-heartbleed-bug-live-blog/; classtype:bad-unknown; 

sid:2018377; rev:4; metadata:created_at 2014_04_09, updated_at 2014_04_09 

 

29) The rule you just saw generated the following alerts: 17 TP, 0 FP, how would you evaluate the rule knowing 

this information? 

[END TIME MEASUREMENT] 

 

30) RULE EXAMPLE 2: How would you evaluate this rule? 

alert http $HOME_NET any -> $EXTERNAL_NET any (msg: "ET TROJAN [PTsecurity] 

Tinba (Banking Trojan) Check-in";flow: established, 

to_server;content:!"Referer|3a|";http_header;content: "|0d0a0d0a|"; depth: 

2000; 

byte_extract: 2, 0, byte0, relative; 

byte_extract: 2, 0, byte1, relative; 

byte_test: 2, =, byte1, 6, relative; 

byte_test: 2, !=, byte1, 7, relative; 

byte_test: 2, =, byte1, 10, relative; 

byte_test: 2, !=, byte1, 11, relative; 

byte_test: 2, !=, byte1, 23, relative; 

byte_test: 2, !=, byte0, 25, relative; 

byte_test: 2, !=, byte1, 27, relative; 

byte_test: 2, =, byte0, 40, relative; 

byte_test: 2, =, byte1, 42, relative; 

byte_test: 2, =, byte0, 44, relative; 

byte_test: 2, =, byte1, 46, relative; 

byte_test: 2, =, byte0, 48, relative; 

byte_test: 2, =, byte1, 50, relative; 

content:!"|0000|";depth:30; http_client_body; 

content: "|0000|";offset:34;depth:2; http_client_body; fast_pattern; 

content: "|0000|";distance:2;within:2; http_client_body; 

content: "|0000|";distance:2;within:2; http_client_body; 

metadata: former_category TROJAN; 

reference:md5,be312fdb94f3a3c783332ea91ef00ebd; classtype:trojan-activity; 

sid:10003433; rev:1; metadata:affected_product 

Windows_XP_Vista_7_8_10_Server_32_64_Bit, attack_target Client_Endpoint, 

deployment Perimeter, tag Banker, signature_severity Major, created_at 

2018_08_07, malware_family Tinba, performance_impact High; ) 

31) The rule you just saw generates just a single true positive during the span of one month/year. (Take 

performance impact into account) 

DESCRIPTIVES 

32) What is your name? 

33) What is your job title? 

34) How old are you? 

35) What is your educational level? 

36) How many years have you been doing this work? 

37) Do you know anyone else who we could interview for this research? 
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