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Abstract
Offline model-based reinforcement learning uses a
model of the environment, learned from a static
dataset of interactions, to guide policy genera-
tion. Sub-optimal planning decisions can be made
when the agent explores states that are out-of-
distribution, as the world model will have more
uncertainty. This paper explores the use of pes-
simism, the tendency to avoid uncertain states, in
the planning procedure. We evaluate Lower Confi-
dence Bound, ensembles, and Monte Carlo dropout
in the MinAtar breakout environment. Results in-
dicate that ensemble methods yield the highest per-
formance, with a significant performance gain over
the baseline, while LCB also shows varying de-
grees of improvement. MC dropout is generally
shown to not yield a performance improvement.

1 Introduction
Reinforcement learning (RL) is a field with diverse appli-
cations in areas such as self-driving cars, healthcare and,
recently, natural language processing. Standard online RL
methods require the agent to sample interactions directly
from the environment. However, this approach can be im-
practical for many applications, such as self-driving cars,
without a highly accurate simulator. This necessitates RL in
the offline setting, where the agent learns its policy from a
dataset collected a priori. Model-based RL (MBRL) meth-
ods aim to further tackle this problem by creating a model of
the environment and its interactions [1], which is then used
to generate a policy. As the model of the environment is
learned from a finite set of interactions, the agent can explore
regions of the state-space that were not sufficiently covered
in the dataset. In these situations, we expect our model of the
environment to be less accurate, which could lead the agent
to make sub-optimal decisions based on an imperfect world
model. A key idea to compensate for this uncertainty is pes-
simism: to disincentivise actions that lead the agent to out-of-
distribution (OOD) states.

Uncertainty estimation lies at the core of most pessimistic
RL algorithms. The most trivial approach to pessimism is
the lower confidence bound (LCB) approach [2, 3], which
bases its uncertainty directly on how often each data point
appears in the dataset. Other approaches use ensembles of
neural networks to derive an estimate of uncertainty to enact
either a soft penalty [4] or a fixed hard penalty [5]. Addi-
tionally, many studies focus on other Bayesian or Bayesian-
approximation techniques such as Monte Carlo (MC) dropout
[6, 7, 8] or bayesian neural network reparameterisation [9].
Previous research primarily focuses on the model-free Q-
learning based setting, thus the goal of this paper is to transfer
these ideas and evaluate their performance concretely in the
offline model-based setting.

This paper aims to answer the research questions:
• RQ1: How does incorporating pessimism in the plan-

ning loop affect the performance of agents in model-
based reinforcement learning?

• RQ2: What is the effect of the training data distribu-
tion on the performance of pessimism?

To this end, penalty based pessimism methods, based on
LCB, ensemble networks and MC dropout are evaluated in
the MinAtar [10] breakout learning environment. Addition-
ally, the effect of the degree of pessimism, as well as the ef-
fect of different data distributions in the training procedure
are further investigated.

Section 2 covers some preliminaries for the experiments,
including a description of the pessimism approaches consid-
ered. Section 3 gives an overview of the experimental setup,
and Section 4 presents the results. A discussion of the results
and findings is found in Section 5. Finally, a discussion of
responsible research is found in Section 6, followed by the
conclusion and future work in Section 7.

2 Preliminaries
This section covers the relevant background for the problem
setting, the different approaches to pessimism that are inves-
tigated in this paper, as well as some other related works that
are not directly relevant to this paper. Section 2.1 goes over
the reinforcement setting relevant to this work, followed by
Section 2.2 which details the three pessimism techniques used
in this paper. Finally, Section 2.3 briefly goes over other inter-
esting approaches to uncertainty-aware reinforcement learn-
ing.

2.1 Reinforcement Learning Setting
RL problems can be framed as Markov Decision Processes
(MDPs) defined by (S,A, P,R, γ). Here, S denotes the set
of possible states, A denotes the set of possible actions, P de-
notes the transition dynamics, R denotes the reward function
and γ denotes the discount factor. We consider the simplified
version of this problem formulation in which the environment
is deterministic, i.e. ∃st, a, st+1, P (st, a, st+1) = 1. The
goal in RL is then to find the policy, π : S → A, such that the
sum of discounted rewards is maximised.

In MBRL, we aim to learn a dynamics model S × A →
S × R, which is used in planning to look ahead and esti-
mate future rewards. This is in contrast to the model-free set-
ting, where the cumulative discounted rewards are immedi-
ately predicted from the current state, without an intermediate
model of the environment. The model architecture and plan-
ning procedure used in this paper is based on EfficientZero
[11] and Dreamer [12], with several components removed for
simplicity. For example, all recurrent components were re-
moved as we assume a fully observable environment where
the Markov property holds. Additionally, there is no value
function prediction and planning is purely based on immedi-
ate reward predictions.

The model architecture consists of a representation net-
work, a dynamics model, and a reconstruction network that
drive the planning procedure. The representation network
takes a state from the environment and encodes it into a lower
dimensional latent space to be used by the dynamics network.
The dynamics model is further divided into a dynamics net-
work, which predicts the next latent state from a latent state

1



and action, and the rewards network, which predicts the im-
mediate reward from a latent state and action. The reconstruc-
tion network learns to decode the latent state representation
back into the original state space. These networks are then
used in a Monte Carlo tree search (MCTS) planning loop to
determine the policy. At each decision point, N simulations
are performed as part of the MCTS search and the action from
the root node which was selected the most is then selected.
The model architecture and the relevant algorithms are fur-
ther detailed in Section 3.

2.2 Pessimism techniques
We now cover the pessimism techniques that are investigated
in this paper. The techniques considered mostly fall under the
category of penalty-based techniques, where a scalar value,
quantifying the uncertainty in the prediction, is subtracted
from the predicted reward. Penalty-based pessimism tech-
niques were considered due to their ease of integration with
the base architecture. Other pessimistic algorithms exist, such
as Conservative Q-Learning [13] and Ensemble-Diversified
Actor Critic [14], but are not investigated due to the chal-
lenges posed by adapting their frameworks to our setting.
Generally, the reward used in planning follows Equation 1,
where p(s, a) is the penalty term given state, s, and action, a.

r̂(s, a) = r(s, a)− p(s, a) (1)
2.2.1 Lower Confidence Bound
The first approach to pessimism that is considered is derived
from the LCB approach from Rashidinejad et al. [2]. In this
approach, the uncertainty estimate of the dynamics model is
derived directly from the count of state-action pairs in the
training dataset. This requires the state-action space to be
finite, such that the counts of state-action pairs can be practi-
cally stored in memory. The premise behind this approach is
that we expect state-action pairs that are frequently covered
in the training set to be learned more accurately by the dy-
namics model and thus have lower uncertainty. There are two
techniques through which this penalty can be applied; the soft
penalty and the hard penalty approach. For the soft penalty,
the reward predicted for each state-action pair is penalised
according to Equation 2, with penalty, p, and penalty coeffi-
cient, β, which corresponds to the degree to which infrequent
pairs are penalised.

p(s, a) =
β√

count(s, a) ∨ 1
(2)

Alternatively, the hard penalty approach uses a threshold to
penalise state-action pairs with a fixed penalty. This approach
uses the penalty term in Equation 3, where k is the fixed
penalty term and t is the penalisation threshold.

p(s, a) =

{
k if count(s, a) < t

0 else
(3)

2.2.2 Ensembles for Uncertainty Estimation
The ensembles approach to pessimistic reinforcement learn-
ing uses an ensemble of N neural networks to aggregate pre-
dictions. Each network is designed such that there is diver-
sity between the other networks, so that outputs for any sin-
gular input yield different results for each network. This di-
versity can be achieved in the ensemble through training the

networks on different subsets of the training set, using a dif-
ferent order of the training set for each network, or using gra-
dient boosting [15]. Lakshminarayanan et al. have demon-
strated the ability of deep ensembles to quantify the uncer-
tainty of their predictions, by utilising the standard deviation
of the outputs of the individual networks. Similar to the work
in [17], the penalty term for the ensemble approach to pes-
simism then corresponds to the standard deviation of the out-
puts, yϕi , of the networks, ϕi, as can be seen in Equation 4.

p(s, a) = β

√∑N
i=1(yϕi

− ȳ)2

N
(4)

2.2.3 Monte Carlo Dropout for Uncertainty Estimation
MC dropout [18] has shown to produce uncertainty estimates
that approximate Bayesian methods. This is similar to the un-
certainty estimation achieved by deep ensembles, except MC
dropout can be implemented trivially with a single neural net-
work with little modification. Usually, dropout is used with
neural networks as a regularization technique, where neurons
are deactivated with probability, p, replacing their output with
0. This serves to reduce over-fitting by decreasing the reliance
on single neurons and diversifying the learning of functions
over the whole network. In the context of uncertainty esti-
mation, this idea can be extended by using dropout during
inference time as well, referred to as MC dropout, to produce
multiple varied outputs for a single input. The same penalty
term from the ensemble in Equation 4 is then used during
planning.

2.3 Related Works
Various other methods for pessimism and uncertainty quan-
tification exist in addition to the three approaches explored in
this paper.

There has been extensive research into pessimism in the
model-free RL setting, largely due to Q-learning being prone
to overestimation of the value function. Conservative Q-
Learning (CQL) [13] is one algorithm that has been proposed
to mitigate this bias. This algorithm involves penalizing ac-
tions that deviate from what was observed in the training dis-
tribution. Ensemble-Diversified Actor Critic (EDAC) [14]
uses multiple Q-networks to give pessimistic value estimates.
This approach effectively penalizes actions with high vari-
ance by using the minimum value from all the networks to
update the policy. In addition to these methods, Bootstrapped
DQN [19] similarly uses an ensemble of Q-networks trained
on bootstrapped subsets of the training set to guide efficient
exploration. It utilizes the variability in the outputs of the Q-
networks to avoid out-of-distribution actions when learning
the policy.

Model-based approaches to pessimistic reinforcement
learning also exist. MOReL [20] learns to partition the state-
action space into known and unknown regions using an en-
semble of models. This partition is then used to heavily pe-
nalise actions in the unknown region. This is similar to our
hard LCB approach, where we use counts in the training set
to split the dataset into known and unknown regions. Un-
certainty Weighted Actor-Critic (UWAC) [6] uses dropout to
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estimate uncertainty and down-weights uncertain actions dur-
ing training. This is in contrast to our approach where the
uncertainty estimate is directly used to penalise the predicted
reward.

The ensemble and MC dropout approaches to uncertainty
quantification can be grouped in the class of Bayesian ap-
proximation methods. A more concrete quantification of
the uncertainty can be achieved with Bayesian Neural Net-
works (BNNs), which learn weights as a distribution rather
than a point value, offering natural uncertainty estimates with
predictions. Recent work has explored the application of
Bayesian methods in the reinforcement learning setting [21].
Although the use of BNNs for pessimism would be interest-
ing to investigate, they are heavily limited by high training
times, thus they will not be explored. Additionally, as ensem-
bles and MC dropout approximate these methods, they are
expected to offer similar performance with reduced compu-
tation cost. Other methods build on ensemble networks by
using bootstrapping for potentially more robust uncertainty
estimates [22].

3 Experimental Setup
This section gives an overview of the reinforcement learning
environment, the experimental setup, and the results of the
experiments. Section 3.1 gives a description of the MinAtar
reinforcement learning environment. Section 3.2 details the
architecture of the world model used for the policy genera-
tion. Section 3.3 gives some details about the training of the
model, followed by Section 3.4 which describes the training
data used in the experiments. The steps of the policy gener-
ation are then outlined in Section 3.5. Section 3.6 notes key
details regarding the pessimism approaches implementation.

3.1 MinAtar
The experiments are conducted within the MinAtar breakout
environment [10]. This is due to the lower computational de-
mand from the smaller state-space size, allowing for more
rapid experimentation. Additionally, the open source nature
of MinAtar allows for easier reproducibility of the experi-
ments within this paper. In the experiments, sticky actions
are not used to maintain a deterministic environment with-
out stochasticity. Figure 1 shows an example image from the
MinAtar environment.

Figure 1: A frame from the MinAtar breakout environment.

3.2 World Model Architecture
The world model aims to learn the interactions in the envi-
ronment to ultimately predict the next sequences of rewards
given a state and actions. To this end, the model consists of a
representation network, dynamics model, and reconstruction
network. The representation network is a convolutional neu-
ral network which takes a state and outputs its lower dimen-
sional latent representation. The dynamics model consists of
the dynamics, reward and done sub-networks. The dynamics
network predicts the next latent state given a latent state and
action, while the reward and done networks predict the reward
and termination given a latent state. The termination value is
used to prune actions that are expected to end the game. The
reconstruction network then takes a latent state and recon-
structs the original state. Note that the reconstruction network
is never actually used in the policy generation, yet is used to
ensure the world model learns a meaningful latent state repre-
sentation which maps to the original state space. This is also
useful for visualising the latent states when debugging. This
can optionally be left out of the model architecture, as this
does not guarantee performance benefits. A detailed diagram
of the model architecture including the individual network ar-
chitectures can be found in Figure 2.

The objective loss function that is learned is shown in
Equation 5. Let zϕ be the representation network, fϕ be the
dynamics network, dϕ be the done network, rϕ be the reward
network, and xϕ be the reconstruction network. The coeffi-
cients in front of the the individual loss components are tun-
able parameters, as some of the components are conflicting
objectives.

L = E [MSE(st, xϕ(zϕ(st))) + MSE(rt, rϕ(zϕ(st)))
+BCE(dt, dϕ(zϕ(st)))
+0.5 ·MSE(zϕ(st+1), fϕ(zϕ(st), at))

+0.1 ·MSE(fϕ(zϕ(st), at), zϕ(st+1))]

(5)

3.3 Training and Performance
The training and model evaluation were performed on the
Delft High Performance Computing (DHPC) cluster [23].
Model training was performed over 15 epochs with mini
batches of size 128 and took four hours on an NVIDIA A100
GPU. Model evaluation was parallelized and performed on
16 cores on an Intel Xeon E5-6248R CPU, taking roughly an
hour for each evaluation. For each method, three models were
trained with different random seeds, and the results were av-
eraged over the different seeds. For the experiments on the
effect of the data distribution, only one model was trained for
each approach and distribution due to time constraints.

3.4 Data Generation
The world model was trained on 5M frames of interactions
in the MinAtar environment. The trajectories are tuples con-
taining the state, action, reward, and whether the action termi-
nated the game, referred to as the “done value”. These trajec-
tories were collected using a near optimal Deep Q-Network
(DQN) following an epsilon-greedy action selection strategy.
The strategy uses an annealed epsilon value which starts at
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Figure 2: The architecture of the world model. The blue encoder represents the representation network. The encoded states, zi, are then used
to predict r̂i by the reward network, the termination d̂i by the done network and the reconstructed ŝi by the reconstruction network. The
dynamics network takes zi and predicts the next zi+1. The reconstruction network takes zi and predicts the corresponding state ŝi in the
original state space. On the right, the individual model architectures can be seen.

1.0 and ends at 0.1, linearly transitioning over the first 100k
frames. For the later experiments, which investigate the effect
of different data distributions on pessimism, this same DQN
was used to collect 5 million frames with varying epsilon val-
ues without an annealing strategy.

3.5 Model Evaluation
The learned world model must then be used to guide the ac-
tion selection of the agent, such that the world model can be
evaluated in terms of cumulative undiscounted return. To this
end, a Monte Carlo Tree Search (MCTS) is performed from
each environment state, using the dynamics model to deter-
mine future latent states and expected rewards. This process
is shown in Algorithm 1. A standard MCTS implementation
is used with UCB1 [24], 128 simulations, an exploration fac-
tor of 1.0, a discount factor of 0.97 and a planning horizon of
32 to avoid accumulating errors. Additionally, a form of early
branch pruning is performed to avoid states which have likely
led to the end of a game. A cumulative continuation prob-
ability value is maintained for each state, corresponding to
the multiplication of the state’s last cumulative continuation
probability with the compliment of the predicted done value
in [0,1]. When the cumulative continuation probability goes
below 10−6, the branch is pruned. Finally, the action from the
root node with the highest visit count, rather than the highest
expected value, is chosen by the agent according to [25]. It-
eratively performing the MCTS results in a cumulative return
value for each world model. The model evaluation is then
performed 100 times with different randomisation seeds, and
the returns are averaged for an aggregate result.

This is also the stage where pessimistic penalties are en-
acted. In the MCTS, predicted rewards returned by the world

model are augmented with the penalty associated with each
state and action, as shown in Equation 1.

Algorithm 1 Model Evaluation

Input: env, model
return← 0
done← false
while not done do

z ← model.representation net(env)
best action← MCTS(z, model)
reward, done← env.act(best action)
return← return+ reward
return return

end while

3.6 Pessimism Experiment Details
The following section provides important details of the ex-
periments conducted for each of the pessimism techniques.

3.6.1 LCB
For the LCB method, counts of state-action pairs in the train-
ing dataset must be retrievable. For this, an in-memory hash
map is maintained containing the counts. This bring rise to
multiple important considerations. Firstly, the entire train-
ing set of states and actions must be stored in memory; for
large training sets or larger state spaces, this approach may
no longer be feasible. Secondly, the state-action pairs must
be discrete for a hash map of counts to be plausible. Lastly,
the MCTS used for model evaluation encodes states using
their latent representation, rather than the original represen-
tation which the counts are associated with. There are 2 con-
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sidered approaches to retrieving the original representation
for each latent state. The first approach is to use the recon-
struction network to transform the latent state into the origi-
nal state space. As the reconstruction network is not perfect,
this leads to losses due to imperfect reconstructions and tran-
sitions of latent spaces, which is an even larger problem at
deeper branches of the MCTS due to compounding errors.
A solution to this is using the original environment to sim-
ulate the actions and retrieve the original states that would
be reached by taking actions. In a real RL setting, the agent
would not have access to this environment, however the latter
approach is used to give an upper bound on the performance
of LCB. We experiment with both a soft and a hard penal-
isation approach. The former uses Equation 2 to calculate
the penalty while the latter uses Equation 3. Additionally, we
experiment with a variation of the hard approach where state-
action pairs below the threshold are not able to be visited at
all.

3.6.2 Ensemble
In the ensembles approach, we use an ensemble of network
and combine their results to produce uncertainty estimates.
The experiments for the ensemble approach use a configura-
tion with an ensemble size of 5. Network diversity is impor-
tant for ensembles to have robust learning and meaningful un-
certainty estimates. The networks are each trained on the en-
tire train set, differing only in their random initialisations and
order of mini-batches. This is contrast to the common method
of splitting the dataset into even and independent partitions,
as experiments showed that training on the entire dataset gave
higher performance. This is also the approach used by [16].
The MCTS algorithm must be modified here to maintain a list
of the latent states for each network in the ensemble. The re-
sults are only aggregated when the reward is predicted from
the latent states. The uncertainty estimate used as the penalty
then corresponds to the standard deviation in the different re-
wards predicted by each of the ensembles.

3.6.3 MC Dropout
In the MC Dropout approach, dropout layers are used in the
network to perform multiple stochastic forward passes during
inference to estimate uncertainty. Specifically, dropout rates
of 0.01 and 0.05 are used to explore the effect of different
dropout rates on model performance. Unlike the ensemble
method, the uncertainty estimation for MC dropout can also
use the standard deviation in the latent space rather than the
reward predictions. This could improve performance based
on the hypothesis that applying dropout in the dynamics net-
work offers more meaningful and informative uncertainty es-
timates than the reward network. An explanation for this is
that the latent space is expected to contain more information
than a single reward estimate. Therefore, we test MC dropout
with uncertainty estimates for both the latent space and re-
ward prediction. The standard deviation of 10 forward passes
is then used as the uncertainty measure.

4 Results
This section presents the results of the experiments. Sec-
tion 4.1 presents the results of the different pessimism ap-
proaches on the standard dataset, corresponding to RQ1.

Section 4.2 then shows the results of the experiments re-
peated over multiple data distributions collected over differ-
ent epsilon-greedy policies, which corresponds to RQ2.

4.1 Evaluating Pessimism
This section covers the results for RQ1:

How does incorporating pessimism in the planning loop af-
fect the performance of agents in model-based reinforcement
learning?.

The performance of each of the approaches can be seen in
Table 1. The ensembles are shown to have the highest per-
formance of all the approaches, while the LCB method also
achieves a score greater than the baseline. The MC dropout
method achieves performance lower than the baseline non-
pessimistic agent.

Model Score Standard Error
Baseline 6.28 0.44
LCB 9.89 0.57
Ensemble 10.59 1.58
MC Dropout 5.61 0.34

Table 1: Performance comparison of different models. The value
for LCB is achieved with the hard constraint approach. MC Dropout
uses a dropout rate of 0.05 and uncertainty on the reward prediction.
The standard errors correspond to three trials with different random
seeds.

4.1.1 LCB
The soft penalty LCB approach, from Equation 2 does not
improve the baseline model performance. The scores for dif-
ferent penalty coefficients can be seen in Figure 3. A large
penalty coefficient is shown to reduce the performance of the
agent to 0.

Figure 3: The performance of soft penalty LCB for different penalty
coefficients.

Following from the soft penalty LCB approach, we exper-
iment with the hard penalty approach that uses Equation 3.
The results for different thresholds and penalties are shown in
Figure 4. This approach yields similar performance to the soft
penalty approach. These results indicate that the count based
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Figure 4: The performance of hard penalty LCB for different penal-
ties and thresholds.

uncertainty estimates, used by the penalties, do not provide
any utility for the agent to explore safer states.

As the performance of the thresholded penalty was shown
to not yield better results, an alternate approach was tested
with a hard constraint rather than a penalty. In the new ap-
proach, state-action pairs with counts below the threshold can
no longer visited, restricting the search to state-action pairs
in the training set. The results of this method are shown in
Figure 5. This method achieves a score of 9.89, which is
the best from the LCB approaches, and is significantly higher
than the baseline. This indicates that for the dataset used,
the counts are able to be used to guide safer action selection.
However, this result is highly dependent on the dataset used,
as to achieve runs with with high scores, the model must have
seen those episodes with high scores in the training set.

Figure 5: The performance of hard constrained LCB for different
thresholds. No penalty is enacted but branches with counts lower
than the threshold are not explored.

4.1.2 Ensemble
The results shown in Figure 6 show the mean undiscounted
return for various penalty values. As seen in the figure, the
ensemble method achieves the highest mean undiscounted re-
ward at a penalty value of 0.5, significantly outperforming the
baseline model. The performance substantially decreases as

Figure 6: The performance of the ensemble for different penalties.

the penalty value varies beyond this point, indicating an op-
timal penalty value for the ensemble method. Increasing the
penalty too high results in a return of 0.

The use of multiple neural networks for uncertainty quan-
tification leads to robust results as the uncertainty is shown
to be a Bayesian uncertainty approximation [16], without a
trade-off in model performance. As ensembles use multiple
diverse networks, it is expected that their expressive capabil-
ity is higher than standard neural networks, so it is naturally
expected that their performance is higher than standard net-
works. However, the experiments showed that the increase
in performance is not attributed to the increase in expressive
power, as the increase in performance was only observed after
enacting the penalty.

4.1.3 MC Dropout
Figure 7 shows the results for MC Dropout for dropout rates
of 0.01 and 0.05, and uncertainty estimates for both the la-
tent space and reward value. A dropout rate of 0.05 on the
dynamics network, corresponding to the uncertainty in the la-
tent space, is shown to significantly reduce performance com-
pared to the other settings. This indicates that the dynamics
network contains most of the complexity required for effec-
tive planning, and high dropout rates on the dynamic network
lead to a high loss in expressive capability. Using dropout on
the reward network is shown to have a lower drop in planning
performance. However, for all approaches, enacting a penalty
based on the MC dropout uncertainty estimates is not shown
to improve performance, in contrast to the ensemble method.

4.2 Effect of Data Distribution
This section covers the results for RQ2:

What is the effect of the training data distribution on the
performance of pessimism?.

The experiments are repeated for different data distribu-
tions to examine how effective the approaches are under dif-
ferent conditions. We test the approaches with 6 new datasets,
generated by changing the epsilon value in the epsilon-greedy
action selection strategy. The datasets range from mostly op-
timal actions to mostly random actions, corresponding to an
epsilon value of 0 and 1 respectively. The results of the ex-
periments are shown in Figure 8.
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Figure 7: The performance of MC Dropout for different dropout rates and uncertainty sources. The performance in each setting is shown
over a range of penalty coefficients.

Figure 8: The performance of each of the pessimism approaches for
models trained on data distributions with varying epsilons for the
epsilon-greedy action selection strategy. The MC dropout method
uses uncertainty on the reward value, as this was shown to give the
highest return in the previous experiments.

Hard-constrained LCB is shown to perform the best out
of all methods when the dataset used is entirely optimal (ep-
silon 0 in epsilon-greedy). This is expected as this approach
effectively memorises the trajectories seen in the dataset, so
a dataset of a single perfect trajectory will always result in
the maximum score. The performance of this method signif-
icantly drops for other values of epsilon. In these cases, the
model is forced to stay within the dataset it was trained on.
The drop in performance suggests that the baseline model is
able to generalise well to unseen states, as limiting the search
to seen states leads to a large drop in performance.

The ensemble method is shown to perform the best out of
all methods for the other data distributions, with its peak per-
formance at an epsilon of 0.8. This is surprising, as an epsilon
of 0.8 corresponds to taking mostly random actions, thus the
dataset contains mostly suboptimal trajectories.

MC Dropout also generally under performs compared to
the baseline, but it is able to outperform the baseline for some
values of epsilon. The dropout rate of 0.01 is also shown
to out-perform the dropout rate of 0.05 for all data distribu-
tions, due to a loss in expressive capability of the networks
for higher dropout rates.

5 Discussion
The findings indicate that ensemble methods provided the
highest performance boost, significantly outperforming the
baseline model. The hard constrained LCB method also
showed improvement but was highly sensitive to the train-
ing data distribution. MC dropout generally did not improve
performance and often underperformed compared to the base-
line.

The LCB method’s moderate improvement highlights the
utility of count-based penalties for steering the agent towards
more promising states. However, it is then surprising that the
penalty based LCB approaches did not provide any improve-
ment in performance, as the penalty-based approaches im-
plicitly aim to achieve the same effect as the hard constraint.
The need for the entire dataset to be in a tabular form and
stored in memory presents practical limitations for LCB’s ap-
plicability in larger and more complex environments.

The performance of ensemble methods can be attributed
to their ability to robustly quantify uncertainty without sacri-
ficing the expressiveness of the network. This is in contrast
to MC dropout, where the uncertainty quantification effec-
tively results in a loss in model complexity, as the network
is expected to have p neurons deactivated during inference.
However, it is still unexpected that using the uncertainty es-
timates in MC dropout does not result in better performance,
even when taking into account the lost model complexity. It is
possible that these results would be different for larger mod-
els and potentially different dropout rates. Work from Osband
et al. has shown that MC dropout can provide a poor approx-
imation of the Bayesian posterior [26]. This is likely why the
uncertainty estimates provided by MC dropout do not guide
the agent to make better decisions.

The results have shown the potential of ensemble networks
to be used for robust planning for MBRL agents. The ensem-
ble networks were shown to perform well under a wide range
of data distributions, and the ability of ensembles to perform
well with suboptimal data highlights their potential in real life
applications where data is rarely optimal.

6 Responsible Research
This section reflects on the reproducibility and integrity of
the research conducted in this study. The reproducibility of
the research was addressed in multiple ways. Firstly, the
MinAtar [10] breakout environment was used as a computa-
tionally inexpensive and open-source RL environment, to al-
low for easy replication. Additionally, key architectural and
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algorithmic aspects of the research are well documented in
this paper. The model architectures, datasets, planning algo-
rithms, and hyperparameters are thoughtfully reported to al-
low the experiments to be reproduced as closely as possible.
In other areas where standard algorithms such as MCTS are
used, only the algorithms parameters are reported for the sake
of brevity. Lastly, the code used for this paper can be found
in this github repo.

The experiments were performed on the Delft High Perfor-
mance Computing cluster [23], and Section 3.3 outlines the
hardware used and time taken for the experiments. This can
be used as a reference for other researchers when reproduc-
ing the experiments, to help them with the correct allocation
of resources.

With respect to the integrity of this research, it is impor-
tant that the results presented are accurate. To this end, all
results are presented with their standard errors. However, this
does not eliminate all sources of inaccuracy; there are sev-
eral sources of stochasticity in training neural networks, such
as the order of batches and random initialisation. To further
improve the accuracy of the results, the experiments were re-
peated multiple times with three random seeds. This was not
done for the experiments on the effect of the data distribution
as this was infeasible due to the high time and resource re-
quirements of training and evaluating the models. Improved
integrity of this research could be achieved by also repeating
the experiments on the effect of the data distribution.

Any negative ethical implications of the research should
also be considered. In this case, any improvements to RL
models can also be applied to malicious RL models, making
their threat larger. However, the risk here is determined to be
limited, as this research focuses on the comparison of already
existing methods.

7 Conclusions and Future Work
This research investigated the effect of different pessimism
techniques for offline model-based reinforcement learning
agents. To mitigate the effect of overestimation bias for states
that are not sufficiently covered in the training dataset of
the world model, pessimism aims to steer the agent towards
more in-distribution states. To this end, three pessimism
techniques, Lower Confidence Bound (LCB), ensembles, and
Monte Carlo (MC) dropout, were evaluated in the MinAtar
breakout environment. An additional goal of this paper was
to evaluate the different techniques under different data dis-
tributions.

The LCB method showed a moderate increase in perfor-
mance compared to the baseline. LCB was tested in multiple
configurations: using a soft penalty, thresholded penalty and
a hard constraint (where low-count state-action pairs are not
visited). The soft and thresholded penalty showed no increase
in performance, while the hard constraint yielded a more sig-
nificant increase in peformance. However, the hard constraint
approach was highly influenced by the data distribution, with
near-optimal datasets required to achieve good performance.
Additionally, this method requires the entire dataset to be tab-
ular and to be stored in memory, which is infeasible for many
applications. LCB was evaluated using a perfect world model

to retrieve state-action pair counts, thus this result is an upper
bound on what can be achieved in practical settings.

The ensembles achieved the highest performance among
the evaluated techniques. The use of multiple neural networks
allowed for robust and useful uncertainty quantification with-
out a trade-off in network expressiveness. Interestingly, en-
sembles were shown to perform the best with relatively sub-
optimal datasets (epsilon 0.8).

MC dropout generally underperformed compared to the
baseline model. The uncertainty quantification using dropout
at inference did not provide any utility during planning.

Future research could focus on new adaptive methods
for automated optimisation of the penalty coefficients. All
penalty based methods were shown to be highly sensitive to
the chosen penalty coefficient. Improvements in this area
could yield more robust performance under a wider range of
conditions.

These methods could also be applied to more complex en-
vironments to provide more insights into their generalisabil-
ity. Applying these techniques to real-world applications,
such as autonomous driving or healthcare, where offline data
is common, could provide new insights into their suitability.
Considering safety, these experiments should be in simulated
environments.

Additionally, the effect of the size of the models could also
be investigated. MC dropout provides uncertainty estimates
at the expense of worse model capacity. It is possible that
increasing the model size improves the performance of the
dropout network without pessimism, such that the penalties
can be used to achieve better performance than the baseline.
The decomposition of the uncertainty estimate into epistemic
and aleatoric uncertainty may also provide a more useful un-
certainty quantification.
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