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1 Introduction

Fault diagnosis combined with fault-tolerant control is a key enabling
technology for increasing safety and reliability of control systems.
Therefore, considerable research effort has been and still is being made to
develop fault diagnosis and fault-tolerant control methods that can read-
ily be applied to complex real-life systems. This thesis makes a contribu-
tion to these ongoing developments. In this chapter the position of the
work performed in this thesis in relation to existing research is explained.
To this end, an overview of existing methods is presented. On the basis
of an analysis of advantages and disadvantages of existing methods, the
chosen path for fault diagnosis and fault-tolerant control in this thesis is
motivated. For fault diagnosis the multiple-model framework is adopted
and for fault-tolerant control a data-driven adaptive control method is
used. Additionally, this chapter presents an overview of the contribu-
tions of this thesis. Finally, this chapter outlines the structure of the thesis
and the relations between the subsequent chapters.

1.1 Need for Diagnosis and Fault-Tolerant Control

Our present-day society is strongly dependent on the availability and correct func-
tioning of control systems. Control systems appear in many products that are used
in everyday life, but mostly remain unnoticed by their users. For example, control
systems can be found in household appliances ranging from washing machines
to coffee makers. But they can also be found in cars, ships, and aircraft. Under
normal conditions, control systems perform the tasks they are designed for and
therefore their users are unaware of them. However, when a fault occurs that pre-
vents correct functioning of the system, this indeed gets noticed by the user. If, for
example, the heating element in a washing machine does not function properly
anymore, this can result in laundry not being entirely clean. Although this lack of
reliability of the washing machine can be annoying for its user, the consequences
are not catastrophic. However, a fault that occurs in a more safety-critical system,

1



2 Chapter 1 Introduction

such as an aircraft, can result in a catastrophe involving injury or even the death
of many people. An example of the catastrophic consequences of a fault is the
disaster related to EL AL flight 1862 that crashed into a building in Amsterdam
in 1992. This crash happened after both engines had separated (Smaili and Mul-
der 2000) from one side of the aircraft. This crash, known in The Netherlands as
the “Bijlmerramp” (NRC 2007), caused the death of 43 people. From this example

it is apparent that measures should be taken to ensure safe operation of control
systems even in the case of faults.

Before continuing, it is important to establish what events can be classified as
a fault. A generally accepted definition of a fault (Blanke et al. 2006) is that it is
an unpermitted deviation of at least one characteristic property or parameter of
a system from its acceptable/usual/standard condition. The determination of a
fault at a certain time is referred to as fault detection. Only detecting that a fault
has occurred usually does not provide enough information to accommodate the
fault. For this purpose, more information, such as the kind of fault and the loca-
tion of the fault, is required. The determination of a fault, its kind, and its location
is generally referred to as fault detection and isolation (FDI). If, in addition to FDI
also the size of the fault is determined, this is referred to as fault diagnosis (FD).

Once a fault has been diagnosed, it has to be accommodated. This can be done
in several ways depending on the type of application. In non-safety-critical sys-
tems (such as washing machines) it can suffice to notify the user of the system
that a fault has occurred. In this way the user knows that something is wrong
with the system and that he therefore has to repair the system. If the fault is re-
paired in a timely fashion this can even prevent more faults from happening as a
result of the first fault. In safety-critical systems a fault has to be accommodated
in a more immediate way to prevent that the fault will eventually lead to a dis-
aster. A method to do so, is to design a controller that can adapt or reconfigure
itself based on the FD information such that the system can still operate safely. A
control system with this property can therefore be named a fault-tolerant control
(FTC) system. In Figure[1.1 the architecture of an FTC system is shown. In this
figure it can be seen that the control system consists of three different parts, all of
which are susceptible to faults. These three parts are the actuators, the sensors,
and the components of the system. Components can be anything that is part of
the physical structure of a system, for example the wing of an aircraft. Component
faults can therefore also be referred to as structural faults. Moreover, it can be seen
in Figure[1.1 that there is a controller that issues a control command v, such that
the controlled system tracks the desired reference signals. For this purpose, the
controller has availability of the reference signals and the measurement outputs
of the system y. It can also be seen that faults are diagnosed based on the signals
u and y. The fault information from the FD system is subsequently used to adapt
or reconfigure the controller.

An important requirement for an FTC system is that the control system has to
be redundant. This means that if a fault occurs, the controller has sufficient con-
trol authority left to proceed with control of the system, possibly with degraded
performance. For example, in most aircraft both the rudder surfaces and aileron
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Figure 1.1: Architecture of an FTC system.

surfaces can be used for lateral control. Although the aileron surfaces are the ones
that are primarily used, if a fault occurs in the aileron surfaces the rudder surfaces
can (partly) take over and vice versa. A series of three examples will be given that
both forms a strong motivation for FTC systems and illustrates how redundancy
can be used to prevent disasters. All of these examples are related to the rudder
problems on earlier versions of the Boeing 737. Several incidents occurred with
this type of aircraft that could possibly be accounted to a failing rudder surface.
Three of these incidents are described in the following:

1. On March 3, 1991, United Airlines flight 585 crashed in Colorado Springs,
USA. 25 people were killed during this disaster. This particular incident was
carefully investigated by the National Transportation Safety Board, which
concluded that this accident was probably caused by an uncontrolled “move-
ment of the rudder surface to its blowdown limit” (NTS@%). The blow-
down limit of a control surface is defined as the maximum amount of surface
travel available for an aircraft at a specific flight condition. This phenom-
enon in which a surface deflects to its maximum or minimum limit is also
known as “runaway” or “hard over”.

2. On September 8, 1994, US Air flight 427 crashed in Pittsburgh, USA. Again it
was concluded by the National Transportation Safety Board that a probable
cause of this accident was the uncontrolled movement of the rudder surface
to its blowdown limit (NTSB M).

3. On April 11, 1994, problems occurred with the rudder on a Boeing 737 prop-
erty of Continental Airlines over the Gulf of Honduras (Seattle Times 2007).
After the pilot had been flying normally, he felt the aircraft suddenly twist
and roll violently to the right. He immediately disengaged the autopilot
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and turned the control wheel sharply to the left. These actions caused the
ailerons to counteract the rolling/yawing movement caused by the faulty
rudder. After that, the pilot succeeded in safely landing the aircraft.

From the last incident the conclusion can be drawn that even in case of a poten-
tially catastrophic fault such as rudder runaway, which most probably also caused
the first two fatal incidents, there is enough redundancy available in the aircraft
to safely land the aircraft. A requirement for this, however, is that appropriate
actions should be taken immediately after occurrence of the fault. The pilot in the
last incident managed to do so successfully. However, even experienced pilots are
not always able to take the necessary actions when faults occur, such as for exam-
ple the pilots of EL AL flight 1862, which caused the “Bijlmerramp”. Therefore,
FTC systems that can quickly take appropriate actions in case of faults can indeed
increase safety in safety-critical systems such as aircraft.

1.2 Model-Based Diagnosis

A generally applicable approach to perform diagnosis is based on the concept of
hardware redundancy. The main idea behind this concept is to use multiple sen-
sors, actuators, and system components for the same purpose. If a fault occurs,
it can then be diagnosed by determining which of the redundant system parts
exhibits different behavior from the others. For example, in the aircraft industry,
using hardware redundancy is a proven concept to diagnose sensor faults (Oost-
erom et al. 2002). Vital sensors are tripled or even quadrupled and faults in these
sensors are diagnosed by using voting schemes. Drawbacks of using hardware
redundancy are that it adds to hardware costs, maintenance, and weight. Fur-
thermore, extra hardware also adds extra weight and requires extra space which
is not desirable in many applications. Note that hardware redundancy should
not be confused with the previously described redundancy of the control system.
The main difference is that for hardware redundancy the system is redundantly
equipped with components having exactly the same function. This is opposed to
redundancy of the control system, for which the components have different pri-
mary functions.

In order to perform diagnosis some kind of redundancy is always required.
If using hardware redundancy is not a viable option, this redundancy must be
obtained otherwise. Another way to do this is, is to use the relations that ex-
ist between the measured variables of the different system parts. This concept
is known as analytical redundancy and exploits the redundant analytical relations
between the different measured variables. A simple example that illustrates an-
alytical redundancy is a washing machine with a faulty heating element. If the
heating element is driven by a certain amount of current (measured by a sensor),
then the water is expected to have a certain temperature. If there is too much
discrepancy between the measured temperature and the expected water tempera-
ture, it can be concluded that a fault has occurred. In this simple case it cannot be
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determined whether the heating element, the temperature sensor, or the current
sensor is faulty. For this purpose more relations (if present) between the differ-
ent system parts should be exploited. The analytical relations between the dif-
ferent system parts can be captured in a mathematical model. This explains why
diagnosis methods that use the analytical redundancy concept are referred to as
model-based diagnosis methods. In Figure[1.2the hardware and analytical redun-
dancy concepts are illustrated for the case of sensor diagnosis. It can be seen that
the scheme based on hardware redundancy (HR) uses a set of redundant sensors,
which provide the same measurements y, as the original set of sensors. Instead of
using redundant sensors the scheme based on analytical redundancy (AR) uses a
mathematical model.

Redundant | ¥
Sensors HR-based
u o - - y Diagnosis ’
stem »>
ctuators y ensors |
)
> AR—based
> Diagnosis
—

Mathematical Model

Figure 1.2: Comparison between sensor diagnosis schemes based on hardware
redundancy (HR) and analytical redundancy (AR).

In accordance with the current trend of research into diagnosis methods, model-
based diagnosis is considered in this thesis. This subject started to be studied in
the early 1970s just after the establishment of observer theory. One of the first re-

orted methods for model-based diagnosis is a fault detection filter (Beard 1971;
m 1973). Since then, this subject has received significant interest in literature
resulting in many different diagnosis methods. Several books and papers have
appeared that give an overview of this field (Chen and Patton 1999; Simani et al.
M;‘Venkatasubramanian et al. 2003‘;‘Kinnaert 2003‘;‘Blanke et al.H2006;‘Isermarm
2006). The bulk of model-based diagnosis methods can be classified into one of
three classes (Frank ). An important aspect that distinguishes the different
classes is the type of faults that can be detected. The two main fault types are mul-
tiplicative faults and additive faults. Multiplicative faults are characterized by a
product of the fault signal with the system variables. Additive faults are char-
acterized by a summation of the fault signal and the system variable. The three
classes for model-based diagnosis are each described in the following.
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Observer-based methods

The main idea behind observer-based methods is to estimate the outputs of the
system from the measurements or subsets of the measurements through use of
observers. Subsequently, the estimation residual (also known as the innovation),
can be computed as the difference between the estimated output and the mea-
sured output. This residual can be used for the purpose of FD. In the nominal
case the model used by the observer and the real system should correspond well,
which would lead to a zero residual. In case of a fault, the residual would be non-
zero. To see how such a residual is constructed, consider the state-space system

Tpr1 = Az + Buyg, (1.1)
Y = C’xk—l—Duk, (12)

where zy, is the state, uy, is the input, and yy, is the output of the system. The state
of this system can be estimated with an observer as follows

Trya AZyp + Bug + L (yx — k) » (1.3)
g = Cip+ Duy, (1.4)

where z) and g, denote estimates of x; and yy, respectively, and matrices A, B,
C, and D are the system matrices. The matrix L is the observer gain, which de-
termines the behavior of the observer. The residual that is of interest for FD is
yr — - Using a single observer is not sufficient for fault isolation. For this pur-
pose several observer schemes can be used (Frank 1990). A well known scheme
is the dedicated observer scheme. This scheme consists of a set of observers each
of which is driven by a different single sensor output. Each of these observers
then estimates the full output vector y;, or if this is not possible, part of the output
vector. The dedicated observer scheme can be used to detect and isolate multiple
faults by analysis of the residuals. Another well known scheme is the generalized
observer scheme. This scheme consists of a set of observers each of which is driven
by all outputs except for one. The generalized observer scheme can be used for
isolation of single faults. Because of its structure, the generalized observer scheme
is less sensitive to modeling errors and disturbances than the dedicated observer
scheme. Another observer-based diagnosis method that does not require multiple
observers to isolate faults is the method based on a fault detection filter (Beard
1971; Jones 1973). Such a filter is characterized by an observer gain that is cho-
sen such that particular faults affect the single residual in a particular manner.
This brief description of observer-based methods is concluded by pointing out
that these methods are especially suitable for additive faults and that an accurate
model is required.

Parity relation based methods

Parity relations are relations consisting of the plant model, or transformed vari-
ants thereof that are zero in the nominal case and non-zero when a fault occurs.
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These parity relations can in principle be either based on direct redundancy or
on temporal redundancy (Chow and Willsk}ﬂ1984). Direct redundancy exploits
relationships among instantaneous outputs of sensors and temporal redundancy
exploits relationships among the histories of sensor outputs and actuator inputs.
A simple example that illustrates a parity relation based on direct redundancy
is based on the discrete-time relation between velocity v, and acceleration a; of
a system: vi41 = v + Tsay, where Ts denotes the sample time. If both veloc-
ity and acceleration can be measured perfectly, then vy, k11 = Vm x + Ts@m i iS
a parity relation (the subscript m denotes a measured quantity). The residual
Th = Um,k+1 — Um,k — Lsm, i can be used to detect faults in the pair of sensors. To
see how a parity relation based on temporal redundancy can be derived, consider
the state-space system defined by (1.1) and (1.2). By repeated substitution of the
state and measurement equations the following relation can be obtained

Y, 0. R U,
—— ——
Yk C D 0 - 0 U
k1 CA T Uk+1
L I e B T as)
. : : : . O :
Ykts cA? CAG-VB ... OB D| Lukss

in which a data window of size s is considered. If it is assumed that the system
matrices A, B, C, and D are known, then the only unknown in the above rela-
tion is the state x;. The dependency on z; can be annihilated by computing a
row vector w, in the left null space of O,, which means that w; has the property
wsO, = 0. Using this vector, the parity relation w;Ys; = ws7,U, can be obtained.
The corresponding residual r; = ws(Ys — 73Us) is non-zero in case of any fault
condition that causes the model described by matrices A, B, C, and D to be in-
valid for modeling the system under diagnosis. Therefore, this particular residual
is only suitable for fault detection, but not for fault isolation. For this purpose,
enhanced residuals (Gertler @) that require information on how faults affect
the state and measurement equation can be designed. Enhanced residuals make it
possible to isolate faults by providing well-defined responses to particular faults.
In conclusion, it should be remarked that parity relations are especially suitable
for additive faults and require the model to be known accurately.

Parameter estimation based methods

Parameter estimation based methods rely on the fact that faults in systems are
often reflected by variation of physical parameters such as, mass, damping, stiff-
ness, etc. Faults can therefore be diagnosed by directly estimating the relevant
parameters. If the estimated parameter value deviates from the nominal parame-
ter value, then a fault has occurred. A general procedure for FD using parameter
estimation consists of the following 5 steps (Isermann 1984; Frank 1990):

1. Choice of a parametric model of the system that relates the inputs, outputs,
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and parameters of the system.

2. Determination of the relationships between the model parameter vector ¢
and the physical parameter vector p:

0= f(p) (1.6)

3. Estimation of the model parameter vector ¢ using the inputs and outputs of
the system, resulting in the estimate 6.

4. Construction of the physical parameter vector from the estimated parameter
vector §

p=f0), (1.7)

and computation of the deviation with respect to the nominal value, i.e.
Ap = p — p. The deviation Ap takes the role of the residual.

5. Faults can be diagnosed by using Ap and the known relations between the
faults and the parameters.

Parameter estimation methods allow for more flexibility in how faults can affect
the system than observer-based and parity relation based methods. Therefore,
parameter estimation methods are well suitable for both additive faults and mul-
tiplicative faults. Furthermore, the requirements on how well the model repre-
sents the system are less strict since the parameters to be estimated do not have
to be known exactly. Another difference with the previously described diagnosis
methods is that parameter estimation methods require sufficient excitation of the
system (by the input) to achieve good estimation performance.

Residual evaluation

Three classes of model-based diagnosis have been described in the preceding sec-
tions, each of which produce residuals that are affected by faults. The next step
is to make decisions on the faults based on these residuals. This step is known
as the residual evaluation step. In this step a change in the residual has to be de-
tected first. The simplest way to do so, is to check whether the residual signal
exceeds a certain fixed threshold. Many other algorithms exist that may produce
better results depending on the properties of the residual signal. A comprehensive
overview of change detection algorithms is given in the two books by Basseville
and Nikiforov (1993) and Gustafsson (2000). The type of change detection algo-
rithm that is used has a significant influence on the performance of the diagnosis
system. For example, a small threshold could result in too many false alarms and
a large threshold could result in too many missed detections, both of which are
undesirable. The choice of the threshold directly determines the performance in-
dices of the diagnosis system. In Figure 1.3 an illustration is given of how the
choice of a threshold influences two important performance indices, namely the
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detection time A, and the diagnosis time A, .. A complete overview of perfor-
mance indices of diagnosis systems is given by Bartys et al. (2006). In Figure1.3 a
residual signal is depicted together with a signal that represents the evolution of
the residual in case of perfect fault information. This latter signal is indicated by a
dashed line. An abrupt fault occurs at 7" = t¢. Using the threshold 7qe this fault is
detected at T" = tqe with a delay of A, ,. Subsequently, using the threshold 7qiag
this fault is diagnosed at 7" = t4;.4 with a delay of A4, . Note that v4;., cannot be
known in advance because the fault size is generally not known before it occurs.
Therefore, v4iag should be interpreted as a parameter that indicates that the esti-
mated fault size is close enough to the actual fault size. This results in 74;.s being
dependent on the actual fault size. For the parameter estimation based methods it
is possible to determine the size of (i.e. to diagnose) a fault from a single residual.
However, for the observer-based methods and parity relation based methods this
is not always possible. In this case only the detection part illustrated in Figure[1.3
can be applied.

Residual

te Ldet tdiag
Time

Figure 1.3: Illustration of how fault information can be obtained from a residual
signal.

Extension to nonlinear systems: an LPV approach

Most of the classical methods developed for model-based FD are developed for
linear models. However, many real-life systems cannot be modeled by linear
models. For this purpose, the linear FD methods should be extended to nonlinear
systems. Therefore, methods have been recently developed that make explicit use
of nonlinear models dDe Persis and Isidori ‘2001 ) ‘Zhan et al. ‘2005). These meth-
ods, which are based on nonlinear control theory (Isidori 1995), can result in very
elegant solutions for specific nonlinear diagnosis problems. However, these solu-
tions are mostly valid under rather restrictive assumptions, which limit their gen-
eral applicability. Furthermore, analysis and design of diagnosis methods based




10 Chapter 1 Introduction

on nonlinear models can become very involved for complex systems. A possible
solution that overcomes these limitations is to use linear parameter-varying (LPV)
models to approximate nonlinear systems. The notion of LPV models was first in-
troduced by Shamma and Athans (1991). The big advantage of LPV models is
that powerful linear design tools for stability and performance can be extended
and applied. LPV models have a linear structure in which the model parameters
can be time-varying. The most general state-space LPV model has the following
form

ey = Alpr)zr + Blpr)uk, (1.8)
ye = Clpr)zr + D(pr)us, (1.9)

where p;, which should be known, is the scheduling vector containing the time-
varying parameters. There exist several examples of the use of LPV models for
diagnosis purposes (Bokor and Balas 2004; Hallouzi et al. 2005; Szaszi et al, 2005).
LPV models can be derived in different ways, for example Hallouzi et al. (2005)
identified an LPV model of a small commercial aircraft using the LPV identifica-
tion techniques developed by‘Verdult etal. 42002). Szészi et al. 42005) used an LPV
model of the longitudinal motion of a Boeing 747 that was directly obtained from
the nonlinear model using state transformations (Marcos and Balas 2004).

A difficult but important part of deriving an LPV model is the choice of the
scheduling vector py,. The reason for this is that this choice very much depends on
the specific system and no systematic approach exists to the author’s knowledge
that can make this choice. Furthermore, for FD purposes the scheduling vector
would ideally consist of the fault parameters. However, these are not known in
advance. An LPV model that can overcome this drawback is the polytopic LPV
model. This type of LPV model has the following form dApkarian etal. ‘1995)

N

oo = > (o) [A(i)xk + B(i)uk} : (1.10)
1=1
Nm . . .
ve = y_u (o) {C(l)l’k +D(Z)Uk] : (1.11)
1=1

where NV, is the number of local models described by the state-space quadruple
{A®, B® c® D}, The model weights 1(!)(py,) are constrained to ensure con-
vexity

Do) > 0, Vie{l,2,...,Ny}, Vk, (1.12)
N,
S u o) = 1, Vk (1.13)
i=1

The polytopic LPV model is also referred to as a multiple-model (MM) system
(Murray-Smith and ]ohansen‘1997) and will also be referred to as such in this the-
sis. MM systems can be used for FD without knowledge of the model weights
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that depend on the scheduling vector. These model weights are left to be esti-
mated on-line. In this sense FD based on an MM system can be classified as a
parameter estimation based approach, with the model weight being the parame-
ter to be estimated. An assumption that is made in this case is that the local models
are known. This is not always the case, as can be concluded from the research by
Verdult et al. (2002) and‘Fujimori and Ljung (2006), in which the local models are
identified assuming that the scheduling vector is known. However, in this the-
sis it is assumed that a system model is present from which local models can be
generated at desired operating conditions.

Multiple-model framework

The MM framework is an attractive framework for FD because of its flexible struc-
ture that allows intuitive modeling of faults. In a state-space setting a component
fault can generally be modeled by a modification of the A-matrix, an actuator
fault can generally be modeled by a modification of the B-matrix, and a sensor
fault can generally be modeled by a modification of the C-matrix. For this rea-
son FD using the MM framework has attracted significant interest (Zhané and Li
‘1998;‘Maybecld 1999; Yen and HOH2003; Verma et al.HZOOZJJ; Ru and Li‘2008; Ducard
and Geering‘ZOOS‘). The MM structure that is usually employed for FD is different
from the one that is defined by (1.10)-(1.11). The difference is that the local models
are not weighted in the same way as is done in (1.10)-(1.11). Instead, a set of local
models, each having a separate state, is used that do not interact with each other.
Transition probabilities between the different local models are defined in a transi-
tion probability matrix. This type of system is referred to as a jump Markov linear
system (JMLS), which is a type of hybrid system. A hybrid system is character-
ized by the fact that it can suddenly switch between distinct modes of operation.
The drawback of using a JMLS for FD is that faults that can be represented by
weighted combinations of local models, which is for example the case when the
considered faults occur only partially, are difficult to diagnose. The model struc-
ture defined by (1.10)-(1.11) is a better option than JMLSs to represent this kind
of conditions as a result of its better interpolation properties. This is shown in
Chapter|2 of this thesis.

1.3 Fault-Tolerant Control

FTC systems are systems that can maintain an acceptable level of control even
after the occurrence of faults. A more formal definition of an FTC system is given
by‘Blanke et al. (2006) as “a control system where a fault is accommodated with or
without performance degradation, but a single fault does not develop into a fault
on subsystem or system level”. Many different methods to perform FTC have
appeared in recent literature. Hajiyev and Caliskan (2003), Jiang (2005), Blanke
et al. (12006), and ‘Zhang and Jiang 42006) have authored books and papers that
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provide an overview of the field of FTC. In this section an overview is given of the
most commonly used methods.

FTC systems can be categorized into two classes: passive FTC systems and ac-
tive FTC systems. Passive FTC systems introduce fault tolerance into a control
system by the use of a fixed controller that is robust to a set of anticipated faults.
Such a robust controller is designed off-line and does not adapt to the anticipated
faults on-line. However, the robustness properties of the controller ensure that
a pre-defined level of performance is achieved in case of anticipated faults. One
disadvantage of this method is apparent: only anticipated faults can be dealt with,
since the robust controller design is based on the set of anticipated faults. Another
disadvantage is concerned with the conservativeness of the robust controller. If a
large set of faults is anticipated, the set of system conditions against which the
controller has to be robust is also large. The robust controller in such a case is
likely to be conservative, which results in a low overall performance level. It is
even possible that a robust controller does not exist for a given set of anticipated
faults. An advantage of passive FTC is that a fixed controller has relatively mod-
est hardware and software requirements. Another advantage is that passive FTC,
due to its lower complexity with respect to active FTC, can be made more reliable
according to classical reliability theory dStoustrup and Blondel 2004). Examples of
passive FTC systems can be found in the research by Liao et al. (2002); Niemann
and Stoustrup dZOOS);‘Zhang et al. 42007).

Active FTC systems differ from passive FTC systems in that they can adapt
on-line to fault information. This on-line adaptation allows active FTC systems
to deal with more faults and generally achieve better performance than passive
FTC systems. For these reasons, more research has been performed in the field
of active FTC systems than in the field of passive FTC systems. In the following
an overview and description will be given of a number of relevant approaches to
FTC that are reported in current literature.

1.3.1 Control Allocation

The control allocation method is concerned with determining the set of actuator
signals that produces a desired set of actuation forces. These actuation forces are
generated by a controller irrespective of faults that have occurred. This is accom-
plished by adapting a matrix By that relates the actuation forces to the actuator
signals. This matrix can be determined by FD or by system identification. The con-
trol allocation method therefore has the ability to adapt the way actuation forces
are generated from the available actuators, to the faults that have occurred. For
example, if the effectiveness of a certain actuator becomes 0% due to a fault, the
corresponding column in B will also become 0. This actuator is then not consid-
ered anymore by the control allocation method. Instead, the remaining actuators
can be used to generate the desired actuation forces. Given a matrix By and the
desired actuation forces Fy, then the control signal for the actuators u. can be
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computed by solving
u. = argmin || Byu — Fyl|, (1.14)

which is formulated without constraints on u.. These constraints must be added
if this is required for the controlled system. Note that the optimization problem in
(1.14) can have more than one solution. In that case u. should be chosen to be one
of these solutions. An advantage of the control allocation method is that the con-
trol law (the one that generates the actuation forces) does not have to be modified
when faults occur. A disadvantage is that preferences to use specific inputs for
specific actuation forces can not be straightforwardly integrated. Control alloca-
tion has received considerable attention from the field of aerospace engineering,
see for example the work by‘Bodson 42002) and‘Ha'rkegérdJ 42004).

1.3.2 Gain-Scheduling

A possible method to achieve fault tolerance is to design separate controllers for
each anticipated fault condition. If one of these fault conditions is diagnosed, then
the corresponding controller is engaged. In case the diagnosed fault condition cor-
responds to a combination of the anticipated conditions, then the corresponding
controllers are weighted accordingly. This concept, known as gain-scheduling,
is regularly used in the field of flight control to deal with changing flight con-
ditions (Nichols et al. 1993; Stilwell 2001). The scheduling is usually based on
functions depending on flight parameters such as altitude and speed. The design
of these functions can be a difficult task when many parameters are involved since
systematic design methods are not readily available. These designs are therefore
mostly done heuristically, which can take much effort (Oosterom @). The MM
framework that can provide the scheduling parameters in the form of the esti-
mated probabilities is therefore an attractive alternative to the heuristic design
methods. For this reason, the MM framework has been used for FTC by various
researchers (Maybeck 1999; Kanev and Verhaegenl 2000; \Zhang and Jiang 2001;
‘Rodrigues et al. 2005). LPV controllers also belong to the class of gain-scheduling
controllers dShamma and Athans‘1991). LPV controllers are linear controllers that
depend on varying parameters, which can also include fault parameters, and can
therefore be used for different operating conditions. For this reason, LPV control
can also be a suitable method for FTC (Shin and Belcastro 200&;‘Géspér and Bokor
2006).

1.3.3 Model Predictive Control

After its introduction in the 1970s, model predictive control (MPC) has become a
popular strategy in the field of industrial process control. The main reasons for
this popularity are the abilities of MPC to control multivariable systems and to
handle constraints. MPC is sometimes also referred to as receding horizon con-
trol. This name is a result of the operating principle of MPC, which is illustrated
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Figure 1.4: Illustration of the receding horizon principle of MPC.

in Figure([1.4. After optimization of a cost function over a time horizon in the fu-
ture, only the first control sample is implemented. Next, the horizon is shifted
with one sample, which means that the start of the future time horizon in Figure
1.4 becomes k + 1. Subsequently, the optimization is performed again using new
measurements. The cost function that is optimized for MPC generally consists
of a summation of two terms. One term corresponds to the tracking error, i.e.
the difference between the reference signal 7, and the predicted output ;. The
tracking error is computed for a horizon of IV, samples. This horizon is referred
to as the prediction horizon. The second term of the cost function corresponds
to the control effort. The control effort is based on the control signal u;, within a
horizon of N. samples. This horizon is referred to as the control horizon and it is
generally chosen smaller than V,,. Optimization of the cost function is frequently
performed subject to constraints. These constraints are usually related to operat-
ing constraints of the system, such as limitations on the control signals. Initially,
MPC was primarily applied to relatively slow processes such as the processes that
can be encountered in the process industry. The reason for this is that MPC can
require a considerable computational effort to compute the control signals. For
the relatively slow processes in the process industry, this drawback was not an is-
sue because of the low sampling frequency of the controllers. However, for faster
systems, higher frequencies were required that prevented on-line implementation
of MPC for such systems. More recently, MPC has become a viable alternative
for faster systems as a result of the increase in computational power that is avail-
able in modern control systems. For example, ‘Seguchi and Ohtsuka (2003) have
used MPC for real-time control of a miniature hovercraft. Another example is the
work by‘Keviczky and Balas (2006), who have used MPC for real-time control of
an unmanned aerial vehicle.

Because of its flexibility, MPC offers good possibilities for FTC dMaciejowski
2002). If a sensor of a controlled output fails, control of that output can be dis-
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carded by removing the corresponding output from the cost function. Actuator
faults can be represented by changing (or adding) constraints to the correspond-
ing control signals. More generally, faults can be accommodated by changing the
predictor, which is used to make the predictions ¢, or by changing the objec-
tive. In this way, changes in the problem formulation can be made as a result of
diagnosed faults. Examples of the application of MPC to FTC are numerous (Ma-
ciejowski and ]ones‘2003; ‘KaneVHZOOéL; Prakash et al. ‘2005‘;‘Kale and Chipperfield
2005; Keviczky and Balas 2006). An important issue when using MPC is the ro-
bustness with respect to model uncertainties. Since MPC heavily depends on how
well the controlled system is represented by the model used, measures should be
taken in case of model uncertainty. One method to do so is to define an uncer-
tainty region around the nominal model and to ensure that the MPC algorithm
achieves a certain minimum performance level for the whole uncertainty region.
MPC methods that take model uncertainty explicitly into account are referred to
as robust MPC methods. One of the first research efforts that addresses the issue
of robust MPC was performed by Kothare et al! (1996). The PhD thesis by Kanev
(M) addresses this issue in the context of FTC.

Like most active FTC methods, MPC-based FTC requires availability of fault
information to accommodate faults. This requirement limits the ability of MPC-
based FTC to deal with unanticipated fault conditions for which fault information
cannot be obtained most of the times. An FTC algorithm that has the ability to
adapt to unanticipated fault conditions is therefore very desirable. Such an algo-
rithm is subspace predictive control (SPC). This algorithm consists of a predictor
that is derived using subspace identification theory (Verhaegen and Verdult 2007),
making it a data-driven control method. This subspace predictor is subsequently
integrated into a predictive control objective function. The basic SPC algorithm
was introduced by/Favoreel (1999) and has since been used by various researchers
(Woodley et al. 2001; Kadali et al. 2003; Wang et al. 2007). If the subspace predic-
tor is updated on-line with new input-output data when it becomes available, then
SPC has the ability to adapt to changing system conditions, which can also include
unanticipated faults. Besides having this ability, another important advantage of
the SPC algorithm is that the issue of robustness with respect to model uncertainty
is implicitly addressed because of the adaptation of the predictor. In Chapter|6 of
this thesis the SPC algorithm is modified for the use in an FTC setting.

1.4 Research Objectives

It is apparent that improving safety and reliability of control systems is a well-
motivated subject. The main research goal of this thesis therefore is to develop
and investigate methods that can be used for this purpose. These methods should
focus on how to obtain information on faults and how to adapt the controller of the
system to accommodate faults. Furthermore, these methods should not focus on
one application field only, but they should be as generally applicable as possible.
In order to fulfill the main research goal, two more specific research objectives are



16 Chapter 1 Introduction

formulated:

1. Development of a diagnosis method for determining which system parts are
affected by faults. This method should be robust to variations in the model
parameters as a result of changing operating conditions.

2. Development of a reconfigurable controller that has the ability to adapt to
faults in a data-driven fashion.

The key property that relates these two objectives is the nature of the fault in-
formation. Most FTC systems require detailed fault information, which at its turn
requires detailed models. Since such models are difficult to obtain, a different phi-
losophy for FTC is used in this thesis. Instead of requiring detailed fault informa-
tion, the objective for FD is only to determine which system parts, e.g. actuators,
are affected by faults. This information is subsequently used by the adaptive con-
troller to reconfigure such that it can optimally accommodate the faults that have
occurred. Next, the adaptive controller can adapt to faults in the reconfigured
setting using input-output data of the faulty system.

The first research objective is met by using the MM framework. This frame-
work is chosen for its ability to represent a wide variety of faults under different
operating conditions. Contrary to mainstream MM methods which are based on
a hybrid model structure, in this thesis an alternative structure is used that allows
weighted combinations of local models. This structure has better interpolation
properties which allow for a smaller model set. The second research objective is
met by developing an FTC method based on the SPC algorithm. This algorithm
combines a subspace predictor with a predictive control law. The ability to adapt
to faults is a result of this subspace predictor being recursively updated using new
input-output data when it becomes available. The fault information obtained by
application of the MM framework is used to switch between different settings of
the SPC-based FTC system.

1.5 Boeing 747 Benchmark Model

Throughout this thesis the theoretical results are illustrated, where possible, by
means of a running example. This example consists of a detailed nonlinear model
of a Boeing 747 aircraft. This model is used as a benchmark in Action Group 16
(AG-16) of the GARTEUR (Group for Aeronautical Research and Technology in
EURope) project. AG-16 aims at integrating advanced FDI methods with control
reconfiguration schemes. AG-16 has participants from both aerospace industry
and universities in Europe. During the course of this thesis, the author has con-
tributed actively to AG-16. The benchmark model has originally been developed
for aircraft simulation and analysis by‘Van Der Linden (1998). Next, it has been
adapted by Smaili (1999) to include a model of the Boeing 747 for the 1992 EL
AL flight disaster in Amsterdam. Subsequently, it has been modified by Marcos
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and Balas M) such that the model could be used as a benchmark for FTC and
FDIL. An FDI system for this benchmark by the same authors has also been re-
ported (Marcos et al. ‘2005). The most recent modifications have been performed
within GARTEUR AG-16 and include a benchmark scenario and a number of spe-
cific faults to be considered by the participants. These most recent modifications
are documented by Smaili et al. (2006). Research performed by participants of
GARTEUR AG-16 based on the latest benchmark model has been reported, for ex-
ample, by‘Lombaerts et al. d2007);‘Cieslak et al. d2008); Alwi and Edwards. (2008).

The defined benchmark scenario consists of a number of flight phases includ-
ing a heading change and a descent. The idea behind this scenario is that a num-
ber of elementary maneuvers should be flown even after the occurrence of faults.
Another goal of AG-16 is to evaluate the developed FD and FTC methods in a 6
degree-of-freedom research flight simulator called SIMONA (SIMONA 2007). For
this purpose the FTC and FD methods should be constructed such that they can
run in real-time. The real-time simulator environment used in SIMONA is the
Delft University Environment for Communication and Activation (DUECA) (Van
Paassen et al. \M).

GARTEUR AG-16 has been concluded with the organization of a final work-
shop, which was held in November 2007 in Delft dGARTEUR‘ZOO7). This work-
shop was also open for participants not involved in the GARTEUR project and it
included an FTC demonstration on the SIMONA. In addition to the workshop, a
book will be published that contains the results and descriptions of the methods
developed by the different participants (Edwards et al. 2008). One chapter of that
book will be based on Chapter 6/of this thesis.

1.6 Contributions

The contributions of this thesis to the current state-of-the-art of FD and FTC are
contained in Chapters |2 to 6. The main contributions from these chapters are
described in the following:

e MM systems provide a suitable framework for modeling a wide variety of
faults. The MM systems that are traditionally applied to the purpose of FD
are based on a hybrid model structure. An alternative MM system struc-
ture is proposed in this thesis that has better model interpolation proper-
ties. These properties allow for the use of smaller model sets. Algorithms
for the nonlinear estimation of the state and model weights are developed,
analyzed, and compared to existing algorithms based on the hybrid model
structure. Part of these contributions have been reported in previous publi-
cations (Hallouzi et al. 2006a, 2008).

e Systematic design of model sets for the MM framework is a topic that has
received very little attention in literature. In this thesis three novel model
set design methods are described and analyzed. Two of these model set
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design methods are based on the availability of a model from which local
linear models can be generated at any desired operating condition. The third
model set design method is based on limit values of the physical variables
of the system and has also been described by‘Verhaegen et al. (2006).

e One of the three proposed model set design methods is used for modeling
“lock-in-place” faults of actuators in aircraft. This type of fault is charac-
terized by a control surface that freezes at a certain deflection position irre-
spective of the actuator command. The resulting model sets are evaluated
using the Boeing 747 benchmark model. This contribution has also partly
been reported by Hallouzi et al. (2006b).

e The basic SPC algorithm is modified for the purpose of FTC. The modifica-
tions include the implementation of an efficient recursive updating scheme
for the predictor. Moreover, a condition that ensures persistency of exci-
tation is implemented (Hallouzi and Verhaegen 2008b). This condition is
necessary because a valid predictor can only be derived if the input-output
data on which it is based contains sufficient information on the system.

e The SPC-based FTC system is integrated with a scheme for MM-based di-
agnosis and is applied to the Boeing 747 model. The proposed method has
been applied to the faults defined in AG-16 of the GARTEUR project. The
results for a number of these faults have also been reported in previous pub-
lications dHallouzi and Verhaegen‘2007,‘2008a).

e An efficient real-time implementation of the SPC-based FIC system is de-
veloped. With this real-time implementation it is shown that although the
FTC system may seem to be computationally intensive, it can indeed be ap-
plied to real-time FTC of a complex aircraft model such as the model of the
Boeing 747.

Besides the previously mentioned main contributions, during the course of
this thesis the author has contributed to the field of longitudinal control for auto-
mated vehicles with three papers (Hallouzi et al. 2004a,b; Gietelink et al. 2007a).
Furthermore, contributions have also been made to diagnosis for such automated
vehicles (Gietelink et al. 2007b).

1.7 Organization of the Thesis

This thesis is organized in two parts. The first part, which consists of Chapters
2 tol4, is concerned with FD. The second part, which consists of Chapters/5 and
6, is concerned with FTC and its integration with FD. The different chapters of
this thesis are based on (parts of) different publications as is clear from Section
1.6. A consequence of this is that the notation used in these publications has been
modified for this thesis to achieve notational consistency. Although frequently
used notations are consistently used throughout the thesis, the different chapters
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do still have local notations, which are defined per chapter. These locally defined
notations, which should not be confused with local notations in other chapters, are
characterized by the fact that they are used only on a small number of occasions
within one chapter. In the following a brief description of the chapters is given.

In Chapter 2/the MM framework is described along with a frequently used
method for MM estimation using a conventional hybrid MM structure. Next, an
alternative MM structure is proposed that allows for weighted combinations of
the local models. It is shown that this structure leads to better interpolation prop-
erties than the conventional MM structure. Having better interpolation properties
allows for the use of smaller model sets.

An important issue when using the MM framework is how the model sets to
be used for MM estimation are designed. Although this is an important issue,
few references can be found in the literature that address the structured design of
such model sets. Chapter(3 presents three methods for structured design of model
sets. Two of these methods rely on the availability of a large model set that con-
tains local models corresponding to different conditions of the system. This large
model set is subsequently reduced by using either orthogonal decompositions or
a convex polytope with a limited amount of vertices that contains all local models
in the large model set. A third model set design method that is presented is based
on the limit values of the system parameters.

In Chapter[4/the method based on orthogonal decompositions is used to de-
rive model sets for diagnosis of faults in aircraft. The considered faults include
lock-in-place faults of control surfaces, which are also one of the main fault types
considered in GARTEUR AG-16. The designed model sets are evaluated on the
Boeing 747 benchmark for their ability to act as a basis for an MM diagnosis sys-
tem.

Chapter 5/introduces the SPC algorithm. The update of the subspace predic-
tor, which is part of the SPC algorithm, requires persistent excitation of the system.
Therefore a condition for persistency of excitation is developed for the SPC algo-
rithm that allows an efficient on-line implementation. Next, in Chapter|6 an FTC
system based on a closed-loop version of the SPC algorithm is developed. This
FTC system uses the FD scheme developed in Chapter |4 to switch between dif-
ferent settings of the SPC algorithm. The developed FTC system is applied to the
Boeing 747 benchmark model. Results for different fault scenarios, including the
“Bijlmerramp” scenario, are also provided in this chapter.

The main conclusions of this thesis as well as the recommendations for further
research are given in Chapter|(7.
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Multiple-Model Estimation: a
Convex Model Formulation

n important issue when using the multiple-model framework is how
A.the estimation is performed. In this chapter a brief overview is
given of the mainstream methods for multiple-model estimation and a
new method is proposed. Contrary to existing methods that mostly
adopt a hybrid model structure, the proposed method uses a more gen-
eral multiple-model framework that allows for weighted combinations of
the local models. The main advantage of this framework is that it has
better model interpolation properties. These improved properties allow
for smaller model sets, which is very useful in, for example, fault detec-
tion and isolation of partial faults. The improved interpolation properties
are demonstrated by two simulation examples, one of which addresses a
fault detection and isolation problem, and one of which addresses a target
tracking problem. Monte-Carlo simulation results of these two examples
are given. In these simulations, the well-known IMM filter is compared
to two estimation algorithms based on the proposed model structure.

2.1 Introduction

Research on the multiple-model (MM) approach has attracted considerable inter-
est in the last decades. The reason for this is the elegant solutions that the MM ap-
proach provides for estimation, control, and modeling problems (Narendra et al.
2003; Li et al. 2005; Fekri et al. 2006b). A well studied example of the application of
MM to estimation is the target tracking problem. In this problem the local models
usually correspond to kinematic modes, such as straight flight and coordinated
turns of the target. An elaborate explanation of different MM algorithms applied
to target tracking problems is given by‘Bar—Shalom et al. (2001). Another impor-
tant estimation application of the MM framework is fault detection and isolation
(FDI).

Numerous research efforts have been made in the field of MM FDI (Zhang and
Li 1998; Maybeck‘1999;‘Ni and Fulleﬂ‘ZOOE%‘;‘Uppal and Patton 2005; Silva et al. 2007;
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‘Rodrigues et al. 2008; Ducard and Geering‘2008). The main motivation for using
the MM framework for FDI is that it allows for a large class of fault conditions
to be modeled. The reason for this is that in principle each of the local models
might have totally different dynamics. Therefore, from an FDI perspective, the
MM framework allows for the modeling of actuator, sensor as well as component
faults. The basic idea of performing FDI with MM systems is as follows: a model
set must be created that contains local models corresponding to different fault
conditions of the monitored system. In addition to the fault models, the model
set usually includes the nominal model. Faults are isolated by estimating which
of the local models is valid using MM estimation algorithms. When there are no
faults present in the monitored system, the nominal model will be valid. In case
of a fault, one of the other models in the model set will become valid.

Most of the existing MM estimation algorithms provide a solution to the prob-
lem of estimating the state and the mode of a jump Markov linear system (JMLS).
Numerous solutions are reported for this estimation problem ranging from par-
ticle filters (Doucet et al. 2001‘) to the well-known interacting MM (IMM) filter
(Blom and Bar-Shalom‘1988). A thorough overview of these different solutions is
provided by Li and Jilkov (2005). The underlying model structure of a JMLS is
hybrid. This means that it consists of a number of local models that do not inter-
act with each other. Interaction between the different models can be added by the
MM estimation algorithms themselves. However, it is important to note that this
interaction is not inherent to the model structure itself. Both the MM estimation
algorithms that do not have interaction between the models and the ones that do,
display deteriorated performance in case the model set does not contain a model
corresponding to the true system. This is the result of the assumption that the
model corresponding to the true system should be included in the model set (Li
and Jilkov 2005).

In case the weighted combinations of the local models in the JMLS model set
correspond to physically relevant conditions, it is desirable to interpolate between
these models. For example, Fisher and MaybecH (2002) use the MM adaptive es-
timation (MMAE) algorithm, which is also based on a JMLS, to identify partial
actuator faults. For this purpose, model sets are used that contain models of the
same fault with different sizes in order to be close to the true system in case of a
fault with an arbitrary magnitude. This indicates that the MMAE is not able to
interpolate well between models as a result of the chosen model structure. Oth-
erwise, the partial faults could have been modeled by a weighted combination of
only the nominal model and the total fault model. Another example in which the
poor interpolation properties of the MM methods based on the JMLS are recog-
nized is reported by Ru and Li (2003, 2008). These researchers have added an
extra feature to the IMM filter for identifying partial faults. This feature intro-
duces model sets with a finer parametrization (which means a larger model set)
after the detection of the fault.

A possible remedy for the poor interpolation properties of MM algorithms
based on the JMLS is to use another model structure that does explicitly interpo-
late between local models. Such a structure is the blended MM structure (Shorten
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etal. ’@). In this structure, the model that is valid at a certain time is a weighted
combination of the local models in the model set. When the combinations of the
local models are restricted to be convex, a subset of the blended MM structure is
created that is named the convex model (CM) structure. The convexity restric-
tion is added to ensure that hybrid combinations (i.e. one of the local models is
fully valid and the rest is not), are a subset of the set that consists of the convex
combinations of the local models. This allows the use of the same type of model
sets when MM estimation algorithms are used that are based on either the hybrid
structure or the CM structure. MM estimation using the CM structure entails esti-
mating both the state and the model weights of the local models. This estimation
problem is nonlinear and nonconvex due to products of the state and the model
weights.

In this and subsequent chapters, the MM system with a CM structure is used
in the context of estimation for the purpose of diagnosis. However, this is not the
only application of this particular type of MM system. Other applications of the
MM system with a CM structure can also be encountered in the field of robust
control (Wang and Balakrishnan 2002). In this field, the MM system is used to
model uncertainties around a nominal model. As a result of the convexity of the
model with uncertainty, elegant control synthesis methods can be derived for it
by using linear matrix inequalities. Another application field of the MM system
with the CM structure is MM control (Fekri et al. 2006a). In this application, local
controllers are developed for different local models. The actual control signal of
the MM controller is a weighted combination of the control signals from the local
controllers. How the control signals are weighted is determined by the estimated
model weights.

The main contribution of this chapter is to present the CM structure as an al-
ternative to the hybrid model structure of the JMLS. The CM structure is an im-
provement upon the hybrid model structure in the following ways:

1. The CM structure has better model interpolation properties because it ex-
plicitly allows for interpolations of local models. Better interpolation prop-
erties are very desirable when the weighted combinations of local models
also correspond to physically relevant conditions. This is the case, for exam-
ple, for partial fault modeling in FDI problems. In this case, having better
interpolation properties allows for smaller model sets.

2. The CM structure does not apply a transition probability matrix. This matrix
contains the transition probabilities between the different local models in a
JMLS. In theory, this matrix is usually assumed known for MM estimation in
a JMLS. However, in practice, the transition probability matrix is considered
to be a “design parameter” due to insufficient information being available.
Since this parameter can be difficult to design in practice, recently methods
have been proposed for online estimation of the transition probability matrix
(Jilkov and Li 2004). Instead of using the transition probability matrix, MM
estimation methods based on the CM structure rely more on measured data
and less on a priori information (i.e. the transition probability matrix).
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In this chapter, the IMM filter is chosen as the representative filter for MM estima-
tion based on JMLSs because it is widely accepted for this purpose and because
of its simplicity. Although the IMM filter does not provide an exact solution for
MM estimation based on JMLSs, it provides a sufficiently approximate solution
for many applications (Li and Jilkov 2005). For the nonlinear estimation problem
related to the CM structure, two filters are used. These two filters also provide
an approximate solution to the original estimation problem. One filter solves the
problem in two linear filtering steps using dual filtering methods (Wan and Nel-
son 2001) and the other filter uses the augmented extended Kalman filter (EKF)
(Ljung|1979), which is based on linearization. A comparison between the IMM
filter and the two CM filters is presented in this chapter. This comparison is based
on an FDI problem and a target tracking problem.

This chapter is organized as follows. First the JMLS and the CM structure
will be described in Section 2.2 together with the estimation objectives of the MM
estimation algorithms based on these two structures. Subsequently, in Section
2.3 the MM estimation algorithms themselves are described. Section 2.4/provides
two Monte-Carlo simulation examples that have the purpose to demonstrate the
advantages and disadvantages of the conventional and newly proposed model
structure. Finally, Section|2.5 will end this chapter with concluding remarks.

2.2 Problem Formulation

Consider the following linear time-varying system

zep1 = Alpr)zk + Bloe)ur + Qo) *wi, (2.1)
ye = Clpe)zk + D(pr)ur + R(pr)" v, (22)

where z;, € R is the state, u;, € R™ is the input, v, € RY is the output, w, € R”
is the process noise and v;, € R? is the measurement noise. Both v, and wy, are as-
sumed to be zero-mean Gaussian white noise sequences with unit variance. A(py),
B(pr), C(pr), and D(py) are the system matrices that depend on parameter py.
Q(pr) and R(py,) are noise covariance matrices that also depend on p;,. The para-
meter p;, can take values in the bounded set R. Although the set R is bounded,
the parameter p; can have infinitely many values. Let the infinite set of models
defined by (2.1)-(2.2) for all p;, € R be denoted by M and let M be represented by
the dashed area in Figure2.1| The goal of MM methods is to approximate M by as
few models as possible. The JMLS is often used for approximating M. In Figure
2.1, the JMLS model set chosen to approximate the dashed area consists of 6 local
models. These local models are represented by stars and denoted by 91 — 9t(6).
Furthermore, model M() € M is also depicted. If this model corresponds to the
true system, then MM estimation algorithms based on the JMLS with model set
oM — 9O perform less well. In order to maintain performance in this case, 90(¢)
should be added to the existing model set. This principle can lead to large model
sets in practice, which is not desirable because of the increased computational
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cost. However, it is also possible to represent 9t(°) by a convex combination of
M — MO, If an alternative model structure is adopted that allows convex com-
binations of models, then all models from M could be represented with the same
model set as the JMLS in this case. In this section first the JMLS and its estimation
objectives will be described. Subsequently, an alternative structure that allows
convex combinations of models is proposed. Also for this alternative structure
estimation objectives are given.

Figure 2.1: Schematic diagram of a multiple-model system.

2.21 Hybrid Model Structure

The MM system that is commonly adopted for MM estimation algorithms has a
hybrid model structure. This structure consists of a set of local models, only one
of which is active at a time. Furthermore, a hybrid MM is characterized by sudden
switches between the local models and has the following form

T = APz 4+ By, 4 (QER)Y 2wy, (2.3)
yp = CCRap + DGy 4 (R 2y, (2.4)

where AGr), Blsx) C(sx) D(k) Q(x) and R(**) are system matrices, which are
functions of the first-order homogenous Markov chain sy, referred to as the system
mode. wy and v, represent unit variance white noise sequences with means wy,
and vy, respectively. Q*) and R(*¥) are the noise covariance matrices. The system
mode s, € Z" has N states and the entries of the transition probability matrix
IT € R¥*N are given by

Hij = P(Sk+1 = ]|Sk = ’i)7 (25)

where i,j € S, with S = {1,2,..., N}, and the notation P(A|B) denotes the con-
ditional probability density of “A given B” for discrete random variables. The
system defined by (2.3)-(2.4) combined with (2.5) is known as a JMLS.
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The estimation objective of most MM estimation algorithms based on a JMLS
is to obtain minimum mean square error (MMSE) estimates of both the state and
the mode of the JMLS (Doucet et al. 2001; Li and ]ilkov‘ 2005‘). There are also MM
estimation algorithms that use the maximum a posteriori (MAP) criterion. For
example, \Logothetis and Krishnamurthy (1999) have proposed a non-recursive
algorithm for MAP estimation, which is followed up by a recursive MAP estima-
tion algorithm (Johnston and Krishnamurthy 2001). In this chapter, the MMSE es-
timate of the state is considered. This estimate is can be computed as (Bar-Shalom

et al.2001)

Nk'
Erp = Blok|Yi] = > Bl ME", i P(M*E|y), (2.6)

n=1

where Yy, = [yi yk—1 - - - Yo, F[] denotes the expectation of a random variable, and
M*m) denotes the n-th possible mode sequence of N* sequences at time step k. It
can be seen that evaluating (2.6) is a very computationally intensive task since the
number of possible mode sequences N* to be considered increases exponentially
with time. Therefore, most MM estimation algorithms apply approximations to
deal with this complexity. Different strategies exist for making such approxima-
tions resulting in different filters. These strategies differ in the way in which all
possible mode scenarios in the past are used for estimating the mode at the current
time step. An elaborate explanation of these different strategies is given by Li and
Jilkov (2005). In this chapter the approximation of the IMM filter for obtaining the
MMSE estimate of the state is considered. This approximation is given by:

N
Jﬁk|k = E[$k|Yk] ~ ZE[xk‘Sk = Z',Yk],u;:), (27)

i=1

where MS) = P(sy, = i|Y%) is the model weight of the i-th model. The weight vec-
tor py, is composed of the individual model weights as i, = [,u,(cl) u,(f) . /L](CN)]T.
Evaluation of (2.7) can be performed in a much more computationally efficient
manner than (2.6). This reduction of the computational effort has been obtained
by not considering all possible mode sequences in the past (as was the case in
(2.6)) but instead considering only each possible current model based on the in-

formation from the previous time step.
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2.2.2 Convex Model Structure

An alternative to the hybrid system defined in (2.3)-(2.5) is given by

N
trer = O p Az, + BOw] + Q) Pwy, (2.8)
i=1
N ) ) .
ye = ZHS) [C(z)xk +D(Z)uk} + Rllc/2vk’ (2.9)
1=1
w =0, Yow! =1, (2.10)
=1

where ,u,(j) is the model weight corresponding to the i-th model represented by the
state space quadruple { AW, B") C® D@} w; and vy, are mutually uncorrelated
zero-mean Gaussian white noise sequences with unit variance, @), and Ry, are co-
variance matrices, and N is the number of local models. The model structure de-
fined by (2.8)-(2.10) is named the CM structure because of the convex combination
of the local models in this structure. The CM structure explicitly uses weighted
combinations of the local models contrary to the hybrid model structure. Note
also that the CM structure allows modeling of the same systems as the JMLS.

The objective for MM estimation using the CM structure is to estimate both the
state and the model weights. This objective is defined by means of the following
optimization problem

(fures Tho|e) = argﬁrk}gc)ip(uk,myk), (2.11)

where the notation p(A|B) denotes the conditional probability density of “A given
B” for continuous random variables. The result of (2.11) ia a MAP estimate of the
desired parameters. However, because the considered noise sequences in the CM
structure have a Gaussian distribution, the MAP estimate also corresponds to the
MMSE estimate. The reason for this is that the point at which the Gaussian distri-
bution has maximum probability (location of the MAP optimum) corresponds to
its center of probability mass (location of the MMSE optimum).

2.3 Multiple-Model Estimation Algorithms

In this section, three algorithms for MM estimation will be described. One of these
algorithms is the IMM filter. The IMM filter is probably the most popular solution
for the problem of estimating the state and mode of a JMLS. Although there are
many variants of the IMM filter, each of which is aimed at improving performance
in specific (practical) situations, the main core of these variants is the same. There-
fore, the basic version of the IMM filter is considered as the benchmark algorithm
for MM estimation using a JMLS. It will be summarized in the following section.
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For the CM structure two MM estimation algorithms will be described that pro-
vide an approximate solution for (2.11). These filters differ in the sequence of
estimation of the state and the weights. The EKF estimates the state and weights
at the same time, while the dual CM filter (CMF) estimates the state and weights
separately in two steps.

2.3.1 IMM Filter

Jilkov ). It was preceded by the autonomous MM (AMM) filter in the first
category. The third category is the category of the variable structure MM (VSMM)
filter. The AMM filter is characterized by the fact that there is no interaction be-
tween the different filters, each of which is based on a different local model from
the model set. Interaction between filters was introduced in the second category,
which explains the name of the IMM filter. In addition to this, the third category
allows for a time-varying model set. This means that the model set can contain a
different number of models at different times.

The IMM filter consists of four steps that are performed in each cycle of the
filter to compute (2.7). These four steps are:

1. Model-conditioned re-initialization
2. Model-conditioned filtering
3. Model probability update

4. Fusion of estimates

In Table 2.1, the steps that are performed in one cycle of the IMM filter are de-

scribed. For convenience, throughout this table the notation A(**=7) = A,(Cj ) is

used for the system matrices. In the first step, mixing of the estimated states 50,(5' L

and error covariances P,i‘J,z takes place. The transition probability matrix II forms
the basis for this mixing step. In the second step, one cycle of the Kalman filter
is performed for each local model. In the third step, the likelihood for each local
model is computed based on the probability distribution, which is assumed to be
Gaussian

L & 0o i) S A (050,50, 2
where s{;;, is the mode sequence {s1 = j,..., s = j} and N(2:2,%) = exp[—(z —

2) 'Yz - 2)/2]/(1/|27X]). In this relation, the determinant of matrix 273 is de-
noted by |27%|. In the fourth and final step, the fusion of the local estimates of the
state vector and covariance matrix takes place in order to obtain the overall values
of these two quantities. The fusion is based on the model weights computed in
the third step of the algorithm. Note that the overall values of the state and co-
variance are not used in the next cycle of the filter. The main tuning parameter of
the IMM filter is the transition probability matrix II.
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Table 2.1: One cycle of the IMM filter dLi and ]ilkov\ZOOS).

1. Model-conditioned re-initialization (for j = 1,2,..., N)

predicted probability: MEC]| L =N mul?

mixing weight: ity = W /i

mixing estimate: o’c,(jzl‘k_l = Efv 1 i,(:) e 1,u2|J 1

mixing covariance: ﬁ(j)l‘k L= SY u;‘j L [(a:,(j)llk ) :ﬁ;c) 1k-1)
X(xl(cj)uk 1 33"1(;) 1lk— DT+ Pk(i)l|k71]

2. Model-conditioned filtering (for j = 1,2,..., N)

predicted state: xl(jl; L A,(j)l‘éj)”k, L+ B w1+ QY W)

predicted covariance: P1£|]12 =AY pU ‘)1‘ e (AD T QW

measurement residual: 7Y = g, — C,gj)mk‘k L= Dy, — R](Cj)v,(j)

residual covariance: nY) = C,E )(C’,i NT + RY)

filter gain: K = k|k ) (CINT(x n-1

updated state: i,(jli = :17,(:‘36_1 + KDz

updated covariance: P1£|712 = P1£|j12-—1 - K ,ij )Z,(cj)(K ,gj T

3. Model probability update (for j = 1,2,...,N)
) assume exp|— (1/2)(zP)T (20100

|2W2<7> ‘1/2

[€)] [€)]
‘U’AJM 1LJ

Zi\[ | #k‘k 1L(1)

model likelihood: L(J

model probability: pd =

4. Fusion of estimates

overall state: Ty = Z;V L ac,(jlz,ug)
overall covariance: Py = Zj:l [ ,5“2 + Bk — ail(jli)(a%k‘k — :@,(CJ‘L)T] u,(f)

2.3.2 Dual CMF

In the following, an objective function is derived that must be minimized to solve
the optimization problem formulated in (2.11). Using Bayes’ rule, the joint condi-
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tional density p(u, xx|yx) from (2.11) can be expanded as

P(Yk| Tk, o) P(Tk, i)
P(Yk)
_ Pyklze, (@l ) p(ps) (2.13)
p(yr)

Ptk T |yn)

)

Next, assuming that process and measurement noise have a Gaussian distribution,
the following relation dWan and Nelson‘ZOOl) can be derived

P(Un, Tl pn) = p(Yr|Tr, ) p(@n | 1), (2.14)

which can be substituted in (2.13) to obtain

P(Yk, Tkl )p (i) (2.15)
P(yk)

P(Mk,$k|yk) =

The problem of maximizing p(uk, Tx|yx), i-e. solving the problem formulated in
(2.11), boils down to maximizing p(yx, x| ) with respect to u and xy,. The rea-
son for this is that p(yx) is a function of neither x, nor py, and furthermore the term
p(pr) can also be discarded if it is assumed that there is no prior information avail-
able on the distribution of the weights (Nelson and Wan 1998). This assumption is
motivated by the observation that the transition probability matrix in a JMLS (i.e.
the prior information on the weights) in practice is often not known in advance
and is therefore considered to be a tuning parameter d]ilkov and Li ‘2004). The
same lack of a priori information is also assumed for the CM structure.

An expansion of (2.14) results in the following relation

p(@k|pr)
1 1 \T -1 _ )
T = ——— —exp|—= (2 —x Tp — T

(ks The | o) 20, p( 2( k=) Qpt (zk — )

N— ( (o — )" By *)) 2.16)
——exp | —= — — , .
|27rRk\ p B Yk — Yk r \Ye — Yk
p(yr |k, k)
where

‘TI; = Ap,ki'kfl\kfl + B#kuk,h (217)

Cup®r + Dy uk, (2.18)

<
S
|
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and
N ) ' N ] .
Au = 2omAY By =3 BY, (2.19)
=1 =1
Cu = Sou’CD, Dy =" DO, (2.20)
=1 =1

The notation from (2.19)-(2.20) will also be used in the remainder of the chapter in
a similar manner for indices other than yy. Taking the logarithm of (2.16), drop-
ping the terms that are independent of both y, and z, and changing the sign,
reduces it to the following objective function

AT = - - _ _
(@, pie) = (zr —21) Qf ! (zp —2) + (ye — yk)T Ry (yk — ) - (2.21)

Now, (2.11) can be rewritten as the following optimization problem
(fik; Zype) = arg min J (g, fir)- (222)

This problem is nonlinear (and nonconvex) due to the product of z;, and y;, that is
present in J(z, uy). In general, solving problem (2.22) can be done by using two
approaches. These approaches can be decoupled or direct (Wan and Nelson 2001). In
the direct approach, both z), and py, are estimated jointly by solving a multivariate
nonlinear optimization problem. A filter that uses the direct approach will be
described in Section|2.3.3| The principle of decoupled approaches is to optimize
with respect to one variable at a time, while keeping the other variable fixed and
vice versa. Filters based on the decoupled approach are also referred to as dual
filters (Wan and Nelson‘ZOOl‘).

In the following;, a filter that uses the decoupled approach is described. The de-
coupled filter, which is given the name dual CMF, uses two linear filtering steps
to minimize J(xzy, p). In the first step of the dual CMEF, the weight vector is as-
sumed to be fixed and it is chosen to be the current estimate, i.e. jy = fix_1. This
assumption leads to the following objective function

Te (ks fie—1) = (2 — 26)" Qi (wx — k) + (un — 06)" Ry (ye —Tk) . (223)
This objective function forms the basis for the optimization problem
Ty = arg Hxlin Jo(Th, fr—1),

s.t. T = Aﬂk_lii'k—uk—l + Bﬂk_luk,l, (2.24)

Yk = Cﬂk—lmk + Dﬂk—lulﬁ
the solution of which is the state estimate.

The solution of (2.24) can be computed by applying one step of the Kalman
filter to the CM structure in which the current estimates of the weights are used
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(i.e g = fix—1). The best way to see that this can indeed be done is to rewrite
the Kalman filter as a weighted least squares problem. This is done, for example,
by‘Verhaegen and Verdult d2007). The solution of (2.24) has been obtained in Step
1 of Table 2.2 by using one iteration of the square root covariance filter (SRCF)
implementation of the Kalman filter. The SRCF is a numerically more robust im-
plementation of the Kalman filter. Kanev and Verhaegen (2005) give a detailed
treatment of the SRCFE. In Step 1, the matrices Sy, and Sy, correspond to the
error covariance matrices defined as

SkkSie = Bl — Zr) (@ — 2ep) 7], (2.25)
Sk|k—15£\k_1 = El(@r — Erp—1) @k — Zp—1)’]- (2.26)

In Step 2 the state is assumed to be fixed and it is chosen to be the current
estimate, i.e. 7, = Ty This assumption leads to the following objective function

N A T =1 (4 - . - .
T @xis ) = (Erpe — 25) " Qit (Ewpe — 2) + (e — 9) " R * (i — ) - (2.27)
This objective function forms the basis for the optimization problem

fr = arg n;in (B ks b)),

s.t. Uyr = Cuki’k\k + Dy, u, (2.28)

the solution of which is the estimate of the model weight. This solution is com-
puted in Step 2 of the dual CMF. In this step, one iteration of a (square root infor-
mation) recursive least squares estimator (Verhaegeﬁ ’@) is used to obtain jij.
This estimator has been implemented with a forgetting factor A € [0, 1]. The for-
getting factor determines to what extent old data is taken into account. In case
A = 1, the recursive least squares estimator equally weights all data from the past.
The smaller ) is chosen, the more past data is “forgotten”. The forgetting factor A
forms the main tuning parameter of the dual CMF.
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Table 2.2: The dual CMF.

1. State estimation: Given Ay, ., By, _,, Cp,_,, Dpy s Qs Rie, Skji—1, Trjk—1, Uk,
and yj, compute:

e Using the QR-decomposition, find the orthogonal matrix U; and matrices
Re, Gk,l/ Gk,z, Sk\kl Vk‘,l/ and Vk’g, such that

R, 0 0 Cin 1 Skik1 —RY? 0
Gea Sep 0 | =1  Sipes 0 0o |, (2.29)
Gr2 Via Vie Aji_ Skik—1 0 172

o Compute

Erk = Brjp—1 — Gra R (Cpy_y Brpi—1 + Dy ur — yk) (2.30)

e Using the Q R-decomposition, find orthogonal matrix U, and matrix Sy, 1|z,
such that
[Sk41jk 0] = [Vir Vi2)Ua (2.31)

o Compute
"%k—o—l\k = Aﬂk_l‘%k\k—l —&—Bﬂk_luk (2.32)

—Gr 2R (Cpy Brji—1 + Dy ke — Yi)

AW B AN) BN
c pm | o) p@) |7 Te=1lk=1

ks k-1, Th—1, A\, up—1, ug, and yx, compute:

2. Model weight estimation: Given {

o Let
—1 140 g {fﬁk—llk—l} L TA) BV [if?k—m_lH

@ [[ ] Uk—1 [ ] Up—1
®= (2.33)

R! [[C(l) DW] [“«"klk] - [ctN) DIN] [wmkH

Uk Uk
and )
Qr £k|k:|

I'= 7 : 2.34
[ Rklyk ( )

Using the Q) R-decomposition, find an orthogonal matrix Us and matrices T},
&k, and €, such that

|:j(;k E::| _ (]3 |:\/ng—l \/X]é-—:k_l] (235)

e Compute
fue =T (6r) (2.36)
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Covariance propagation

In the two previously described steps of the dual CMF, a direct substitution of
the current estimates of the weights and states into the objective function (2.21) is
performed. With this direct substitution the uncertainty of the current estimates
is overlooked. If this uncertainty were also to be considered, in the first step the
substitution y, = fiz—1 — S§_,fu, should have been made. In this substitution,
the uncertainty of /iy is expressed by the term S}’ , fi;, consisting of the error

covariance matrix S (= (TE_ITk,l) 71) and a zero-mean white noise signal fij.
For the second step of the dual CMF, the substitution x = &, — SyxZx should
have been made. In this substitution Z;, represents a zero-mean white noise sig-
nal. With these two modified substitutions the two steps of the dual CMF would
have changed to nonlinear estimation steps due to cross-products of the intro-
duced noise terms and the quantities to be estimated. Therefore, in this chapter
the direct substitution of current estimates is preferred as is also done by e.g. Wan
and Nelson (2001). Nelson (2000) also attempts to incorporate the errors of the
estimates. This attempt resulted in modified versions of (2.24) and (2.28), which
had to be linearized to allow the two estimation steps to be linear again. However,
it was concluded that the performance of the resulting algorithm was not better
than the algorithm that used direct substitution of the current estimates.

Constraint implementation

The algorithm described in Table[2.2/does not take the constraints from (2.10) into
account. This can be done in an additional step by using the theory for implement-
ing equality and inequality constraints in Kalman filters as is described by Simon
and Chia (2002]) and Simon and Simon 42006), respectively. For implementing the
equality constraint, the projection method described by‘Simon and Chia (2002) is
used. This method directly projects the unconstrained estimate fi;, onto the con-
straint surface to obtain the constrained estimate /if. This problem is formulated
as follows

min(4§ — )T W (g — fir) such that Dj§ = d, (2.37)

c

where W is a symmetric positive definite weighting matrix, which is chosen to be
an identity matrix. The solution to this problem is given by

i = i — WL DT(DW L DT) " (Djig — d). (2.38)

The inequality constraint can be also cast as an equality constraint if it is a priori
known that the inequality constraint indeed holds. This idea was also suggested
by Simon and Simon d2006). For estimating /if, this means that first it has to be
determined for which i it holds that ,&S) < 0. Subsequently, for these i’s an extra
equality constraint is added in the form of ﬂ,(;) = 0 to the already existing equality
constraint 25:1 ug) = 1. With this augmented set of constraints, a constrained
estimate /if, is computed. This constrained estimate is to be checked again for ﬂ,(j)’s
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that violate the inequality constraint. If this is the case, then a new constrained
estimate should be computed in the same way as the previous one. This sequence
is repeated until the whole constrained weight vector /i¢ satisfies the constraints.

2.3.3 EKF

The nonlinear problem of estimating both the state and weights as is formulated
in (2.11) has been reformulated as (2.22). In the previous section this objective
function is minimized in a decoupled fashion. In this section the direct approach
in which the state and model weights are jointly estimated is adopted. A novel
algorithm for this nonlinear estimation problem is proposed by Hallouzi et al.
(2006a). The main feature of this algorithm is that it reduces the number of pa-
rameters in the nonlinear estimation problem. In this algorithm only the weight
vector is estimated in a nonlinear estimation step. The state is estimated in a linear
estimation step. Because the nonlinear estimation step can become computation-
ally intensive, especially if the model set is large, another type of algorithm will be
considered in this chapter. This algorithm uses linearization as an approximation
to the nonlinear problem. This approximation is performed by an EKEF. In this
filter, the state is augmented with the weights. At each time step the nonlinear
augmented state-space model is linearized around the current estimate. This ap-
proach is quite common and is proposed for example by\Bar—Shalom et al. (2001)
and Ljung (1979) for general parameter estimation problems. In the augmented
state, the weights are assumed to evolve as a random walk process

Ml = Hk—1 + Wy, (2.39)

where w,,, is a zero-mean Gaussian white noise sequence with covariance matrix
Q. The resulting augmented state model obeys the following equations

Al‘/k—l 0 Tk—1 B/Lk—l
[ 0 I]|#k— oo [

[ —
T8
i
[ I
|

@2
1/2 0
+ | YAt . Wp—1, (2.40)
0 (Qp_)"?
ye = [Ch 0] {Zﬂ + Dy, uy + Ry oy, (2.41)

where w;,_; and 7y, are zero-mean white noise sequences of appropriate dimen-
sions with unit variance. The augmented state and covariance matrix are denoted
by z, and Q¢_,, respectively. Let (2.40) and (2.41) be represented by the following
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shorthand notation

2z = F(zp—1,up—1,0k-1), (2.42)

then the Jacobian matrices required for the EKF can be computed as

— oF

Ak—l = %‘Zzﬁk,”k,l? (2'44)
— oH
Ok == E|z:£k\k*1' (245)

The complete EKF algorithm is described in Table 2.3| The main tuning parameter
of the EKF is the covariance matrix Q.. The convexity constraints can be included
in the same manner as is explained in Section|2.3.2|for the dual CMF.

2.3.4 Properties of Multiple-Model Filters

At this stage three different MM filters have been described. The IMM filter, which
uses the hybrid model structure, and the dual CMF and EKEF, which use the CM
structure. In Table[2.4 an overview is given of the most important properties of
the described filters. One of the main differences between the IMM filter and the
filters based on the CM structure is the number of local filters. Contrary to the
IMM, which uses N local filters, the CM based filters use only one global filter.
The main tuning parameter of the IMM filter is the transition probability matrix
II. In practice, tuning this parameter might prove to be a difficult task (Jilkov
and Li 2004). The counterparts of II in the other two filters are A and Q. These
parameters are much easier to tune in practice since \ is a single scalar and Q)
can be chosen as a diagonal matrix of which the size of its entries relative to Q)
is of importance. More information on how to choose the tuning parameters of
the different filters can be found in Section [2.4. Model interaction between the
different local models is present in the IMM filter only as a step of the filter. There
is no interaction between models in the model structure (JMLS) itself. In the other
two filters there is an explicit interaction present in the CM structure.

2.4 Experimental Results

In order to compare the performance of the three filters described in the previous
section, Monte-Carlo type simulation experiments are performed using two prob-
lem cases. Monte-Carlo simulations in the context of this section are characterized
by the consideration of a number of different simulation runs, based on the same
model, but each with different random noise sequences for signals such as process
noise, measurement noise, and input signals. The first simulation experiment con-
siders an FDI problem for a linearized model of the Boeing 747 benchmark model.
The second simulation experiment considers a target tracking problem.
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Table 2.3: The EKF.

AL M) AN gN)
c® pWm Cc(N)  p()
Yk, U, and uy_1, compute:

Given . s B—1k—1, Tr—1jk—1, Qi_1, By Pr_1jk—1,

e Time update

Trik-1 = Apeipeos Te—1jk—1 + By, k-1 (2.46)

fre—1 = fr—1jk—1 (2.47)
— T

Pyr—r = A1 P14+ Qg (2.48)

e Measurement update

T T _
Ki = Pup-1Cy (CrPyi-1Cy + Rip) ™! (2.49)
T Tlk— .
l Akk‘| = Aklk ! + Kk(yk - Cﬁmkqulk—l - Dﬂk\k—luk) (2-50)
ok Fk|k—1
Py = (I - Kkak)quk—l (2.51)
with
Tp_1)k-1 Tp_1jk—1
T Ay 1 [AD BO] ! ] o [AN) BV | ]
k-1 = Uk—1 Uk—1
0 I
(2.52)

Cr = [c,lk‘,c_l [COgy 1+ DBy, - CMgy )y +D(N)uk]} (2.53)

Table 2.4: Overview of the properties of the described filters.

IMM | Dual CMF EKF

Structure Hybrid CM CM
Number of filters N 1 1
Primary tuning parameters II A Qy

Model interaction filter structure | structure
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2.4.1 Aircraft FDI

For this simulation experiment a linearized model of the Boeing 747 benchmark
is used. This model is linearized at a constant altitude of 600 m with a constant
velocity of 133.8 m/s. The continuous linear time invariant model of the longitu-
dinal dynamics of the Boeing 747 at the previously mentioned operating point is
given by

#(t) = Axz(t)+ Bu(t) +w(t), (2.54)

y(t) = Cz(t) +v(t), (2.55)
The state of the model is given by = [q Vras a 0 h]T, where ¢ [rad/s] is the
pitch rate, Vrag [m/s] is the true airspeed, o [rad] is the angle of attack, ¢ [rad]
is the roll angle and h [m] is the altitude. A graphical representation of these
flight parameters is provided in Appendix A. The input of the model is given by
U = [6c 85 Tt Tha Tns Tha]T, where 6, [rad] is the column deflection, d, [rad] is the
stabilizer deflection and 77,1 — 7,4 [N] represent the thrust generated by the four
engines. The measurement vector y contains measurements of g, Vras, «, and h,
respectively. This means that the state ¢ is not measured.

The goal of this simulation experiment is to isolate four classes of faults for
the aircraft operating in the regime described by the linear model (2.54)-(2.55).
These fault classes include two types of actuator faults: loss-of-effectiveness in the
column and stabilizer commands. Furthermore, two classes of sensor faults are
modeled: multiplicative faults in the Vrag and « sensors. A model set consisting
of five models is used for the purpose of isolating these four classes of faults. Table
2.5 gives a description of this model set.

Table 2.5: Model set for MM estimation.

Model # | Model description

Nominal model

Total loss-of-effectiveness of §..
Total loss-of-effectiveness of d,
Total fault in Vpag-sensor
Total fault in a-sensor

Qb WO =

The system matrices of the local models in the model set are given by:

-591-107Y —1.56-10"* —1.36 0 —1.23-10°¢
—1.47-107Y —8.72-1073 4.83 —9.81 5.31-107°
A= 980 107" —1.18-107% —6.72-107! 0 6.83-107" |, (2.56)
1 0 0 0 0

0 0 —1.34-10%> 1.34-102 0
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1.41 2.681 2.08-107® 5.59-107°%  5.59-107%  2.08-107%
0 0 3.31-107¢  3.31-100° 3.31-107% 3.314-10°¢
B=[470-10"* 0 —-291-107° -291-107% -291-107? —-291-107° |,
0 0 0 0 0 0
0 0 0 0 0 0
(2.57)
1 00 00
01 000
C = 00 10 o0l (2.58)
00 0 0 1
1.41 0 208-107% 559-107%  5.59-107%  2.08-107%
0 0 331-100% 331-107° 331-107° 3.31-10°°
B® = [470-107 0 -291-107° —291-107° —291-107° —291-107° |,
0 0 0 0 0 0
0 0 0 0 0 0
(2.59)
0 2681 2.08-107% 5.59-107% 5.59-107%  2.08-107%
0 0 3.31-107° 3.31-107® 331-107® 3.31-107°
B® =10 0 -291-100° -291-107° -291-107° -291-107°|,
0 0 0 0 0 0
0 0 0 0 0 0
(2.60)
1 0 0 0 0 1 0 0 0 0
4 00 0 0 0 5 01 000
= 001 00 , C® = 000 0 0 (2.61)
00 0 0 1 00 0 0 1

The state-space matrices for the nominal model are given in (2.56)-(2.58). The
system matrices for Model 2 in the model set are the same as the nominal model
except for the B-matrix, which is given by B in (2.59). The same holds for
Model 3, for which the B-matrix is given by B> defined in (2.60). Note that
B® and B®) are created by zeroing the relevant column. Models 4 and 5 differ
from the nominal model in the C-matrices, which are defined by CW and C®),
respectively, in (2.61). The differences of the matrices defined in (2.59)-(2.61) with
respect to the nominal matrices are pointed out by an underlining of the changed
entries.

For MM estimation the models in the model set are discretized by means of
zero-order-hold discretization with a sample time of 7 = 0.01 s. Using the dis-
cretized models a fault scenario is simulated in closed loop. A linear quadratic
state feedback controller (Astrém and Wittenmark 1997) synthesized for the nom-
inal system is used in the closed loop system. This state feedback controller uses
the nominal states, which means that it is assumed that the non-faulty state signal
is always available for computation of the control input. This choice is motivated
by the fact that the goal of this experiment is not focused on controller design, but
on evaluation of the estimation performance of the proposed algorithms. Addi-
tional noise is added to the control signal to provide different input realizations
for the Monte-Carlo simulations. The simulated fault scenario consists of a se-
quence of faults corresponding to partial occurrences of the faults modeled by the
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models in the model set. These partial faults do not correspond exactly to the
models from the model set. Instead, they correspond to weighted combinations
of the models from the model set. Therefore, this experiment allows evaluation of
the interpolation properties of the different filters. The simulated fault scenario is
described in Table[2.6. Noise with a covariance of R = diag([1075 1074 107> 1073])

Table 2.6: Description of the fault scenario.

Fault description Time interval (samples)
30% fault in a-sensor 200 — 300
40% loss-of-effectiveness of 6, | 400 — 500
50% loss-of-effectiveness of 6. | 600 — 700
20% fault in Vppag-sensor 800 — 900

is added to the measurements and noise with a covariance of Q = 107675 is added
to the process. This particular choice of parameters results in a signal-to-noise ra-
tio (SNR) of approximately 35 dB for all four measurements. The SNR of a signal
is a measure for the ratio between the useful information of a signal and the noise
on the signal. Given the signal t;, = t;, + i, where j, corresponds to the useful
information of ¢4 and ;, corresponds to the noise, then the SNR of signal ¢ in the
sample interval k = 1,2, ..., ny is defined as

1 Nk (7 \2
i 2ok (t)
SNR() = 20log,q 2" 7 (2.62)

mr ke (E)?

The tuning parameter II of the IMM filter in this experiment is chosen as

0.9 0.025 0.025 0.025 0.025

01 09 0 0 0
m=[01 0 09 0 0 |. (2.63)
01 0 0 09 0
01 0 0 0 09

The reasoning behind this choice is that if the system is in the nominal (fault-free)
condition, the probability of occurrence for each of the four possible faults is 0.025.
Once one of the four faults has occurred, the system remains in the same fault con-
dition with a probability of 0.9. The probability that the system returns from each
of the faulty conditions to the nominal condition is 0.1. This particular choice of
the transition probability matrix is inspired by a similar choice for similar local
models made by ‘Zhang and Jiang (2001). The covariance matrices for the IMM
filter are chosen as QM = @ and RJMM = R for all k and for all five models. The
covariance matrices for the dual CMF are chosen as QP“MF = , RPCMF = R for
all k£, and the forgetting factor is chosen as A = 0.85. The covariance matrices for
the EKF are chosen as QFXF = Q, REFXY = R, and QY = 0.0115 for all k. The values
of the main tuning parameters of the different filters (II, A, and Q) are obtained
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by careful tuning. Tuning of A and Q) is relatively easy: if the entries of diago-
nal matrix Qg are chosen too large or X is chosen too small, then the estimated
model weights vary too much. However, if the diagonal entries of Q) are chosen
too small or A is chosen too large (e.g. A = 1) then the estimated model weights
hardly vary. So, an acceptable compromise between these two extremes must be
found through tuning. For the IMM filter the tuning is not so straightforward. The
transition probability matrix II contains information on the probabilities of jump-
ing from one model to other models. These probabilities can be chosen different
for each jump, which makes II difficult to tune. Therefore, usually a number of
jumps are chosen to have the same probability as is done in this experiment.

The performance of the MM estimation algorithms has been evaluated by per-
forming 100 Monte-Carlo simulations. The root mean square error (RMSE), which
is closely related to standard deviation, is used as a performance measure. The
RMSE is defined as

1 Nuc

RMSE(p.) = Moo Z (ke — Pr,i)T (P — Dri) (2.64)
i=1

where Nyic is the number of Monte-Carlo simulations, py, is the real value of quan-
tity p at time step k and py, ; is the estimation of py, in the i-th Monte-Carlo simula-
tion run. p;, can also be a vector, in which case the RMSE may only be physically
interpretable if the entries of the vector have the same units.

The RMSE values for the state and the weight vector for the defined fault sce-
nario are depicted in Figures 2.2 and 2.3, respectively. The shaded intervals in
these two figures correspond to regions in which faults are injected into the sys-
tem. The RMSE value for the state is unitless since the state consists of physical
quantities with different units. Although the state RMSE is not physically inter-
pretable it gives a good overview of the state estimation performance. Further-
more, the computation of the state RMSE in this way is justified by the fact that
the errors in the 5 individual signals that form the state are of the same order of
magnitude. In Figure [2.2]it can be observed that no clear pattern can be recog-
nized on which to base conclusions on state estimation performance. However,
Figure 2.2 is still important since it shows that the estimation performance of all
three filters is acceptable; the largest RMSE error is about 10~%-%°. Figure[2.3 gives
a clearer view on how the filters perform relative to each other. In this figure it
can be observed that the weight estimation performance of the two filters based
on the CM structure is always better than the performance of the IMM filter in
the intervals in which faults have occurred. Especially in the sample intervals
[400, 500] and [600, 700], the RMSE of the weights of the IMM filter becomes rel-
atively large. The reason for this, is that in these intervals the weight estimates
switch quickly between two models (i.e. in these intervals the two models inter-
change a full probability of 1 in an abrupt manner) because the IMM filter has
difficulties interpolating the two concerning models. Furthermore, it can be seen
that the IMM filter generally outperforms the two filters based on the CM struc-
ture in the intervals without faults.
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Additionally, from Figure[2.3 some insights on the convergence properties of
the different filters can be gained. From the fact that the weight RMSE of the EKF
becomes very small during faults, it can be concluded that the model weights esti-
mated with the EKF get very close to the correct value for all faults. The dual CMF
performs worse in this aspect, especially the first fault in the interval [200, 300] is
not identified well. The same holds for the IMM filter; it does not converge to
the correct weight for any of the faults. However, a benefit of the dual CMF with
respect to the EKF is that it performs better in the cases in which the true system
corresponds exactly to a model in the model set, i.e. the sample intervals in which
no faults occur. The reason for this is that the EKF is slower to adapt to a nominal
condition again after a fault has occurred. So, a general design consideration is
that of the two filters based on the CM structure, the dual CMF is to be preferred
when most of the expected system conditions are modeled by the models in the
model set. If it is expected that many of the anticipated system conditions are
represented by convex combinations of the models in the model set (such as is
the case for partial faults), then the EKF is filter to be preferred. Therefore, under
the conditions in this simulation example, the EKF is the filter to be preferred for
isolation of the partial faults.

- IMM
‘‘‘‘‘ Dual CMF
= = =EKF

State RMSE [-]

0 200 400 600 800 1000
Samples

Figure 2.2: RMSE of the estimated states during the FDI scenario.
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| —— IMM
o= = Dual CMF

Weight RMSE [-]

0 200 400 600 800 1000
Samples

Figure 2.3: RMSE of the estimated weights during the FDI scenario.

2.4.2 Tracking of a Maneuvering Target

In this section the tracking problem of a maneuvering target in the presence of
noisy measurements is considered. The goal of target tracking is to obtain a con-
sistent estimate of the state even in case of noisy measurements and maneuvers of
the target. The target tracking problem considered in this section is largely based
on a target tracking problem considered by several other authors (Bar-Shalom and
Li1995; Doucet et al.2001; Doucet and Andrieu|2001). It can therefore be consid-
ered to be a representative target tracking problem. The state of the target is given
by x = [p; vs py vy]T, where p, [m] and p, [m] represent the positions in the =
and y directions of the target, and v, [m/s] and v, [m/s] represent the velocities
in the  and y directions, respectively. The maneuvering target evolves according
to a JMLS, with parameters

. C =1, (2.65)

coom
oo~
o~ oo
—NHoo

The switching term in this model is the B-matrix. This matrix can have three
possible values that correspond to three different maneuver commands: straight
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flight, left turn, and right turn. These three matrices are given by

BY = 00007,
B® = 2[-0.25 —0.5 0.25 0.5]7,
B® = 2[0.25 0.5 —0.25 —0.5]7. (2.66)

The fact that the B-matrix is the only system matrix that is time-varying has some
consequences for the two filters based on the CM-structure. The consequence for
the dual CMF is that the assumption that is required for the first step (i.e. u; =
fir—1) is not required anymore. This can be seen by observing that the first three
equations of the dual CMF described in (2.29)-(2.31) do not contain any instances
of the B-matrix. The matrix B appears for the first time in the fourth equation
(2.32). This equation can now be postponed until the vector yy, is evaluated in the
second step of the dual CMF. This means that (2.32) can be evaluated after (2.36).
The consequence for the EKF is that it simplifies to an ordinary Kalman filter with
an augmented state consisting of the state =5, and the weight vector ji;,. The reason
for this is that there is no product between x;, and (i, in the system equations since
the B-matrix is the only system matrix that is time-varying.

For the simulation experiment, process and measurement noise are used with

covariances
2.5-10* 0 0 0

0 1 0 0
0 0 25-10* 0
0 0 0 1

Q=10"L;, R= (2.67)

This particular choice results in a SNR of approximately 20 dB for all four mea-
surements. The system is simulated for 400 samples using T = 1 s. In this sim-
ulation a left turn is simulated in the sample interval [100, 150] and a right turn is
simulated in the sample interval [250, 300]. The left turn is simulated with half the
acceleration that corresponds to B(?). This means that for samples k& € [100, 150],
By, = 0.5B® is simulated, where B}, denotes the B-matrix used at sample k. The
right turn is simulated with the same acceleration as B(®). The initial state of the
target is chosen as [-500 0 — 500 5]7.

As has been discussed before, one of the benefits of the CM structure is its
interpolation property. To illustrate this, the model set used for the two filters
based on the CM structure is composed of only two models. These models are
the two turn models. This can be done because the possible convex combinations
of these two models also include the model for straight flight (B(Y) = 0.5B%) +
0.58(). The model set used for the IMM filter contains all three models. This
choice has been made to allow an honest comparison with the other two filters.
The transition probability of the IMM filter in this experiment is chosen as

0.98 0.01 0.01
II= |00l 098 0.01]. (2.68)
0.01 0.01 0.98
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The covariance matrices are chosen as QM = @ and RM™ = R for all k and
for all three models. The covariance matrices for the dual CMF are chosen as
QPME = @, RPCMF — R for all k, and the forgetting factor is chosen as A = 0.9.
The covariance matrices for the EKF are chosen as QXY = @, REXF = R, and
QL = 10721, for all k.

The state estimation results obtained with 100 Monte-Carlo simulations of the
three filters are given in Figure 2.4. In this figure the RMSE values of the posi-
tion states and velocity states have been computed separately to obtain physically
interpretable RMSE values. The shaded intervals in Figure[2.4|correspond to the
intervals in which a maneuver takes place. It can be observed that the RMSE val-
ues of the position is approximately the same for all three filters. However, the
RMSE values of the velocity show significant differences. In general, the IMM fil-
ter has the lowest RMSE value, but in the sample interval [100, 150] it clearly does
not. The reason for this is that in this interval a maneuver is performed for which
the explicit model is not present in the model set used by the IMM filter. How-
ever, the same also holds for the other two filters. In the sample interval [100, 150],
the IMM filter tends to switch rapidly between two models, which clearly has a
negative influence on the state estimation performance. The two CM estimation
algorithms on the other hand manage to interpolate between the two turn models,
resulting in better state estimation performance.
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Figure 2.4: State estimation results for the target tracking example.

Since the three filters do not all use the same model set, the weight estima-
tion performance cannot be evaluated by analyzing the weights directly. There-
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fore, the weight estimation performance is evaluated by reconstructing the B-
matrix using the estimated weights. For the two filters using the CM structure,
the B-matrix is reconstructed by By, = [L,(Cl)B(Q) + ﬂéz)B(?’). For the IMM filter,
which uses a model set containing three models, the B-matrix is reconstructed by
By = p\"BW 4+ 3P B@ 4 1Y B®) The RMSE of the reconstructed B-matrix
for the three filters is computed using (2.64) and depicted in Figure2.5. Note that
this RMSE is dimensionless since it is based on physical quantities with differ-
ent units. Note also that the 4 entries of the B-matrix are in the same order of
magnitude, which justifies the use of the RMSE. In Figure 2.5, the same important
observation can be made as in Figure[2.4. This observation is that in the sample
interval [100, 150] the IMM filter is clearly outperformed by the other two filters.
In general, the performance of the three filters is in the same order of magnitude.
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Figure 2.5: B-matrix reconstruction results for the target tracking example.

An important conclusion that can be drawn from this simulation experiment is
that the CM structure is to be preferred when interpolation between models from
the model set is required. Furthermore, it can be concluded that for the considered
target tracking example, the CM structure can indeed allow for smaller model sets,
while at the same time maintaining the same estimation performance as an IMM
filter with a larger model set. In fact, for situations in which model interpolation
is required the estimation performance can be even better with smaller model sets
when using the CM structure.
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2.5 Conclusions

In this chapter an alternative model structure is proposed for the hybrid model
structure of jump Markov linear systems. This structure, which is given the name
convex model (CM) structure, explicitly allows for interpolation between mod-
els. The benefit of the estimation algorithms based on this structure is that they
have better model interpolation properties. Having better model interpolation
properties allows for smaller model sets. Furthermore, the CM structure does
not require knowledge of the transition probabilities, which greatly simplifies the
tuning process. Two estimation algorithms based on the proposed CM structure
are explained and compared to the well-known IMM filter. This comparison has
been performed by means of Monte-Carlo simulations of an FDI problem and a
target tracking problem. In this comparison, conditions have been simulated that
require interpolation of the local models in the model sets used by the three es-
timation algorithms. It has been concluded that the two filters based on the CM
structure clearly outperform the IMM filter for these conditions.
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3 Automatic Model Set Design

esides the choice of a model structure with an accompanying estima-

tion algorithm, model set design is an important issue when using
the multiple-model framework. In this chapter three structured model
set design methods are developed. The first method uses orthogonal de-
compositions, the second method uses an algorithm that creates convex
polytopes, and the third method efficiently represents the model parame-
ters by only considering the limit values of these parameters. The key
assumption for the first and second method is that a large number of lo-
cal models can be generated that correspond to the different conditions
to be modeled. For the third method it is assumed that physical model
equations that describe the parameter variations are available.

3.1 Introduction

An important aspect of the application of multiple-model (MM) estimation meth-
ods is the design of the model set. Performance of the MM estimation methods is
directly related to how well the system conditions to be modeled are represented
by the models in the model set. Although model set design is such an important
issue, it has been given little attention. This is in contrast to the many different
MM estimation algorithms and applications of these algorithms that have been
addressed in the literature dLi and Jilkov 2005). A straightforward method to de-
sign a model set is by gridding the set of varying model parameters and to include
the resulting gridded models in the model set (Fisher and Maybeck 2002; Ru and
Li 2008). However, this approach has two drawbacks. In case a system must be
modeled for many different conditions, the model set designed with this approach
can become very large resulting in a computationally demanding MM algorithm.
Furthermore, the models in this large model set could be close to each other in
terms of input-output behavior, which could lead to performance deterioration of
the MM estimation algorithm thang and Li 1998). Therefore, the need for a more
structured model set design method that overcomes these drawbacks is apparent.

51
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One of the few research efforts on the topic of structured model set design is
the work by Li et al, d2005). In this work, three classes of model set design meth-
ods are presented, all of which are based on the probability density function (PDF)
of the system to be approximated by an MM system. The PDF is a function of the
varying model parameters. A drawback of this method is that it is not always an
easy task to derive such a PDF. Therefore, this method is difficult to apply to sys-
tems for which the PDF is not readily available as is also remarked by Verhaegen
et al. (2006). For example, for many components (sensor/actuators) used in con-
trol systems, information on the probability of occurrence of faults is not present.
In this case, the PDF of the fault parameters cannot be computed exactly and has
to be approximated. Since the model set design methods themselves are approxi-
mating procedures, an approximation of an approximated PDF is then made. This
can result in unacceptable performance of the MM system.

In this chapter three methods for model set generation are proposed that do
not require a PDF of the varying parameters. Instead, the methods are based on
the varying parameters themselves. All three methods have the objective to effi-
ciently represent the parameter space of the varying parameters. This parameter
space is related to the physical model equations, which can generally be deter-
mined more accurately than the PDF of the varying parameters. Two of the pro-
posed methods rely on the availability of a large model set that contains samples
of the system model taken at different operating conditions. This large model set
is then reduced by using two different methods. The first method to be presented
in this chapter reduces the large model set by using a rank revealing QR (RRQR)
decomposition (Chan and Hansen 1992), which is an orthogonal decomposition
(OD). The second method reduces the large model set by computing a convex
polytope (CP) enclosing all models in the large model set (Kanev 2006). The re-
duced model set then consists of the vertices of the CP. The third model set design
method is different from the first two in the fact that it does not initiate with a
large model set. Instead, this method is based directly on the limit values of the
varying model parameters. Furthermore, the model structure of the MM system
of the third method is slightly different from the model structure of the first two
methods, which both use the model structure proposed in Chapter|2.

This chapter is organized as follows. In Section 3.2]a general problem formu-
lation is given. In Section 3.3 a model set generation method is proposed that
reduces an initially created large model set to a smaller model set by using or-
thogonal decompositions. In Section 3.4 also model set reduction is performed,
but now by using an algorithm that encloses all models in the large model set in
a CP. In Section [3.5/a model set design method is proposed that constructs local
models based on the limit values of the varying model parameters. In Section[3.6
the three proposed model set design methods are compared in simulation by us-
ing a linear parameter-varying (LPV) model of a multiple input, multiple output
mass-spring-damper (MSD) system that includes both faults and other varying
system parameters. Finally, the conclusions can be found in Section[3.7.
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3.2 Problem Formulation

Consider the following LPV state-space system

w(t) = Alp®)z(t) + Blp(t))u(t) + w(t), B.1)
y(t) = Clp@®)z(t) + D(p(t))ult) + v(t), (3.2)

where z(t) € R" is the state, u(t) € R™ is the input, y(t) € R! is the output,
w(t) € R™ is the process noise, and v(t) € R is the measurement noise. Both
v(t) and w(t) are assumed to be mutually uncorrelated Gaussian zero-mean white
noise sequences. The parameter p(¢) can take values in the bounded set R. Al-
though the set R is bounded, the parameter p(¢) can have infinitely many values.
The goal in this chapter is to develop three model set design methods that can
generate compact model sets for the approximation of the model defined in (3.1)-
(3.2) for all p(t) € R. Details concerning the MM system structure and how the
approximation is done, is explained separately for each model set design method
in the following three sections. All three model set design methods are formu-
lated in a state-space setting. However, it must be noted that the main principles
of these methods can also be applied to other model types such as input-output
models.

3.3 Orthogonal Decomposition Based Method

The goal of the OD-based model set design method, is to approximate a large
model set by approximating the space spanned by the parameters of the individ-
ual local models in this model set. The local models in the large model set are
created by sampling the model (3.1)-(3.2) at different values of p(t) € R. A similar
approximation approach is applied to complexity reduction of fuzzy models (Yen
and Wang 1999; Setnes and Babuska 2001). For example, Yen and Wang (1999)
determine the most important rules from an existing rule base by applying differ-
ent orthogonal decompositions on the firing matrix based on a large number of
inputs. The firing matrix contains the firing strengths per rule for each input data
point. Another example of the use of OD-based methods for model approxima-
tion is the work by Bos et al. (M). In this work, a nonlinear state-space model
is approximated by computing a model set that contains the most important di-
rections of the parameter space using a singular value decomposition (SVD). This
parameter space was obtained by linearizing the nonlinear model for many oper-
ating conditions along a pre-defined trajectory. A property of this approach is that
the local models do not necessarily represent physically interpretable conditions.
It is the linear combinations of the local models that correspond to physically in-
terpretable conditions.
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3.3.1 Motivation for Using Orthogonal Decompositions

The MM system that is used to approximate (3.1)-(3.2) is given by

N

z(t) = Z,u(i)(t)[A(i)x(t) + BOu(t)] + w(t), (3.3)
N

y(t) = Y p@CDx(t) + DDu(t)] + o(b), (3.4)

i=1

where () (t) is the model weight corresponding to the i-th local model repre-
sented by the state space quadruple {4 B® C® DO} and N is the number
of local models in the model set. Note that the CM structure, which is used in
Chapter 2} is a discretized version of the MM system described by (3.3)-(3.4). The
objective of these algorithms is to estimate both the state and the model weights.
How well this estimation problem can be solved depends on the observability of
the system. A system is called observable if for any sequence of the state and in-
puts, the current state can be determined in finite time by using only the outputs.
Observability of a system depends on the system matrices. So, observability is
a valid criterion for a model set design method to make the estimation problem
related to the resulting MM system as well defined as possible.

Since the combined state and model weights estimation problem is nonlinear
due to the product of state and model weights, using the well-known linear ob-
servability matrix dVerhaegen and Verdult 2007) to determine observability of the
MM system is not possible. Therefore, a notion for nonlinear observability should
be used instead. Such a notion is strong local observability (Nijmeijeﬂ@ﬁl). In the
following a definition will be given that can be used for determining strong local
observability of a system.

Definition 3.1 (Verdult et al. 2004) Consider the nonlinear state-space system

Tre1 = f(ze, u), (3.5)
ye = h(x), (3.6)
where x), € R™ is the state, up € R™ is the input, y,, € R is the output and where

[ iR xR™ — R", and h : R — R are smooth functions. This nonlinear system is
strongly locally observable at (x, uy,) if

rank (8/1(5%,1%)) =n, (3.7)
&rk
where
h(ﬂi‘k,uk) ) up,
ho fH(xk, uy) Uk41
R (zy, up) = ) , ap = : , (3.8)

hofn_l(ajk,ﬂz_l) Uk+n—1
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with h o fi(xk,ﬂ};) = h(fi(xk,ﬂ};),ukﬂ) and fl(xk,ﬂz) = fuppic1 © fuppiin © -0
fuk+1 © fuk (mk)/ where fuk+i © fuk (l‘k) = f(f(xka uk)aukJrl)-

The working principle of orthogonal decompositions, when applied for model
set reduction, is to develop a reduced set of local models that approximates the
initial large model set. The reduced set of local models has the property that
it consists of the most influential models of the large model set. Which models
are most influential is determined by the condition number of the matrix whose
columns form a basis for the parameter space of these models. The smaller the
condition number of the described matrix, the more influential the models. The
condition number of a matrix can be computed with the function cond(-), which
is defined as follows

Umax(Q)

Omin (Q) ’

where omax(2) and omin(2) are the largest and smallest singular values of (2,
respectively. Matrices with a small condition number are referred to as well-
conditioned matrices. This section started with describing the relevance of ob-
servability of the MM system and subsequently addressed well-conditioning of
the parameter space basis of the model sets designed with the OD-based method.
These two criterions are not conflicting. In fact, they are closely related to each
other, as is demonstrated in Example[3.1.

cond(Q2) = 3.9)

Example 3.1 In this example an MM system consisting of 4 state-space models
with the following structure is considered

4

trpr = 3 [ADzy, + BOuy), (3.10)
=1

e = [1 0], (3.11)

where A®) € R?*2? and B € R?*! Vi € {1,2,3,4}. Matrices A1), A®), B and
B® are randomly generated. It is ensured that the eigenvalues of A(") and A
lie within the unit circle in the complex plane to ensure stable behavior of at least
the individual local models. Matrices A®), A®, B®) and B® are created from
AN, A2 BM and B? in the following way

1.05 0.95 1.05
G — A0 ®) — g
AT =4 '[0.95 1.05}’ B =5 '[0.95]’ (3.12)
AW = 0440 4+ 0647, BW =0.4B" +0.6B?, (3.13)

where e denotes the entrywise product, which is also known as the Hadamard
product. This particular model set is constructed such that it supports the goal of
this example. This goal is to clearly demonstrate the relation between the condi-
tion number of the parameter space basis of the reduced model set and the degree
of observability of the MM system. The parameter space of the designed model
set, consisting of 4 models, is deliberately chosen such that it can be approximated
well by only 2 models.
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According to Definition 3.1} checking whether condition (3.7) holds, is a valid
method for computing strong local observability. This method only indicates
whether a system is strongly locally observable or not. In order to get an idea

of the degree of observability, the condition number of the nonlinear observability
Oh™ (zy,u})
Oxy

Based on the MM structure defined in (3.10)-(3.11), different state realizations
for different (randomly created) model sets are obtained through simulation. The
simulated model weights are chosen as sinusoidal signals and are the same for
each of the different realizations. The input signal is chosen to have a constant
value of 1. For each of the randomly created model sets consisting of 4 models,
the condition number of the parameter space basis of the 6 different choices of two
models is determined as follows

clir) = cond ([vec ([AUQ) B(i‘Z)]) vec ([A(i") B“”])D ,

matrix is used instead.

where the indices iy, 14, and i, can take values [i,, iq, %] € {[1, 1,2],12,1,3],[3,2,3],

[4,1,4],[5,2,4],[6,3,4] }, and the operator vec(-) stacks a matrix into a vector in a

column-wise fashion. Next, the rank of the nonlinear observability matrix is de-
termined for the different state realizations and for the different choices of two
models. Note that the nonlinear observability matrix is computed for an MM
system with two local models. The results of the simulations are given in Table

Table 3.1: Mean of condition numbers of the observability matrix based on 6 dif-
ferent pairs of models. The mean of the condition numbers is computed based on
100 samples from the state realization. The results of this procedure are presented
for 15 different model sets and their state realizations. The model pair with the
smallest condition number is indicated in bold font for each model set.

Model set | Model pair: | Model pair: | Model pair: | Model pair: | Model pair: | Model pair:

index {1,2} {1,3} (2,3} (1,4} (2,4} (3,4}
1 37 6.31-10° 125 85.2 128 85.8
2 5.58 226 5.53 8.75 12.9 8.49
3 10.5 6.29 - 103 27.5 22.6 33.8 21.7
4 110 9.45 - 103 87.4 178 264 126
5 291 440 128 321 468 154
6 23.4 424 22.4 37.8 56.3 35
7 48.7 1.41 - 104 61.7 77.3 116 89.5
8 278 1.17 - 103 178 464 695 234
9 45.9 809 44.1 72.2 108 75
10 29.2 234 24.6 48.3 72.2 35.9
11 30.1 2.71-103 31 50.5 75.6 48.4
12 24.2 477 23.4 40.1 60.1 36.3
13 42.8 4.75-103 105 640 666 353
14 367 4.25-10° 73.2 564 662 74.8
15 53.1 3.01-103 64 94 141 90.7

3.1. In this table the mean of the condition number of the observability matrix
is computed for the 6 different model pairs for 15 different model sets. It can be
seen that either model pair {1, 2} or {2, 3} has the smallest mean condition num-
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ber. This is according to what could be expected from the generated model sets
since the parameter space bases of these two pairs have the smallest condition
number. It can also be seen that the mean condition numbers for pair {1, 3} are
the highest of all pairs since models 1 and 3 are almost similar (see (3.12)). Fur-
thermore, it can be observed that pair {2,4} has a higher mean condition number
than pairs {1,4} and {3,4}. The reason for this is that model 4 consists for 60%
of model 2, while it consists only for 40% of model 1 (see (3.13)). These different
observations all indicate that the choices of two models with the highest condition
number of the parameter space basis also have the highest condition number of
the nonlinear observability matrix. This leads to the conclusion that model sets
with well-conditioned parameter space bases are better suited for the combined
state and model weight estimation problem.

3.3.2 Derivation of the OD-based Model Set Design Method

In this section first the problem of designing a model set with a parameter space
basis that is as well-conditioned as possible is formally posed. Next, the solution
for this problem using orthogonal decompositions is given. The local models of
(3.3)-(3.4) can be represented in a compact form by using the vectorizing operator

vec(-) as follows
; A@ B

where () € R and n, is the number of entries that define the i-th model. It
should be noted that it is assumed that all local models have the same structure
and therefore all models have n,, entries, as is also clear from (3.3)-(3.4). The model

representation from (3.14) allows the large model set to be represented as
M, = | m® ... gV | (3.15)

where N, denotes the number of models in the large model set and in general it
holds that n, << N,. The models in this large model set are obtained by taking
a large number of samples from the system to be approximated, i.e. the system
defined by (3.1)-(3.2), at different operating conditions.

Now that the notation has been explained, the model set design problem can
be formulated. Let a large model set M, be given, find a column selection matrix
IT € RYexNr that selects N = N, models from M, such that a reduced model set
can be computed as M, = M/II. Given the number of models to be selected (2V,),
this problem can be cast into the following optimization problem

min cond (M,IT)
MMeRNe X Nr
st.  OTII =1y, (3.16)

IL; €{0,1}, Vie{l,2,...,Ne}, j€{1,2,..., N},
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where II; ; denotes the element of II on the i-th row and j-th column. Note that
the two constraints regarding II ensure that it is indeed a column selection matrix.

A possible solution for the optimization problem defined in (3.16) is to use the
rank revealing QR (RRQR) decomposition. An RRQR decomposition of a matrix
A has the following form

Ry 312] (3.17)

AHRRQRQ{ 0 Roy

where IlgR is a permutation matrix, @ has orthonormal columns and R;; is a
k x k matrix, with k£ the numerical rank of A with respect to a tolerance ¢, which
is defined as (Golub and Van Loan‘1996)

kE=k(Ae) HAIE%IﬁSErank(B). (3.18)
In words this definition means that the numerical rank of A is equal to the number
of columns in A that are linearly independent for any perturbation of A with norm
less than or equal to the tolerance e. The RRQR decomposition is also referred to
as pivoted QR, for example by‘Setnes and Babugka (2001), who have used it for
fuzzy rule base reduction. The RRQR decomposition of a rectangular matrix can
also be used as a reliable and efficient computational alternative to the SVD for
problems that involve rank determination dChan and Hansen‘1992).

Before the RRQR decomposition can be applied to a model set that should be
reduced, two issues should be dealt with. The first issue is concerned with how
the dimension of Ry in (3.17) should be chosen. This dimension determines the
number of models in the reduced model set and is related to the numerical rank
of the matrix to be decomposed. The most obvious method to determine the nu-
merical rank of a matrix is to compute an SVD of the matrix and to determine
the position at which a significant gap occurs between subsequent singular val-
ues (TVerhaegen and Verdult 2007). However, determining this rank can also be
done, without computing an SVD, by analyzing the absolute values of the diag-
onal entries of matrix R from (3.17). These values are decreasing by definition
of the RRQR decomposition and tend to track the singular values well enough
to expose gaps dSetnes and Babuska ‘2001). So, the number of models to be cho-
sen for the reduced model set can be determined by determining the position of
a significant gap between subsequent absolute values of the diagonal of R. The
second issue to be dealt with is concerned with the property that a linear com-
bination of physically interpretable state-space models only delivers a physically
interpretable state-space model if the model weights sum up to 1. For example,
consider a number of local models that all have a measurement matrix C' equal
to the identity matrix (i.e. all states are measured). If the weights of the linear
combination of these measurement matrices do not sum up to 1, then the linear
combination can never be equal to the identity matrix. Therefore, this property is
explicitly taken into account in the model selection procedure. This procedure is
described in the following:
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1. Given the large model set to be reduced M, compute its RRQR decomposi-
tion
MIIn, = Qm, R, (3.19)

and determine the position of the first significant gap in the absolute values
of the diagonal of Rng,. This position N, determines the size of the reduced
model set.

2. Compute the reduced model set as follows:
Mr = [MZHMK](:,llNT+1) ) (320)

where the notation [.](. 1., +1) denotes the first N,. + 1 columns of the con-
cerning matrix. Note that the size of the reduced model set is increased with
1 to accommodate the fact that the weights should sum up to 1.

3. Compute the projection of the models in the large model set onto the space
spanned by the reduced model set M,, with an additional constraint that
the model weights of the models in the reduced model sum up to 1. This
projection is performed as follows:

T
M[,_{ M, } {Mf] (3.21)
1n,.+1 1y,

where 1 denotes an N-dimensional row vector consisting of only ones and
[.]T denotes the pseudo-inverse of the corresponding matrix.

4. Compute the RRQR decomposition of M,

M1y = Qgz, Ry, (3.22)
and finally compute the reduced model set using the initial large model set
M@i

M, = — = [m@® 9@ ... gnp(NVe+1)
M, = (Ml | A [ M) ] (3.23)

The state-space matrices for the models ﬁ(i),Vi € {1,2,...,N, + 1} can be

reconstructed as @ 0
{g@) g(ﬂ] = vec! (). 59

For illustration purposes, the proposed model set design method is applied to
a set of 1000 randomly generated local models with a 2-dimensional parameter
space. This means that for all local models it holds that M(®) € R2. The result
of this method is shown in Figure 3.1. In this figure it can be seen that 3 models
are chosen from the models in the 2-dimensional parameter space (which means
N, = 2in this case). A choice of only two models would have lead to a linear com-
bination of the two models that would have been represented by a line because
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of the constraint that the model weights should sum up to 1. In this way not all
models could be approximated well. With the choice of 3 models each randomly
generated model can be exactly represented even with the constraint. Note also
that the 3 chosen models are well separated from each other as a consequence of
the use of the RRQR decomposition.

The model sets designed with the OD-based method have the property that
the local models correspond to physically interpretable conditions. An important
advantage of this property is that the weights corresponding to the local models
are more easily interpretable. Consider, for example, the case that a model set
is designed for a fault diagnosis (FD) problem that contains only one model that
corresponds to the nominal condition. In this case, the weight of the local model
corresponding to the nominal condition has a value of 1 when there are no faults.
So, when this model weight deviates from a value of 1, it is immediately clear that
the system has deviated from its nominal condition.

3 = Randomly generated models |
¥ Model set based on OD

2 L 4

1 L 4

0 L -
—1F b4 1
2t * |
-3 I I I I I

-3 -2 -1 0 1 2 3

Figure 3.1: [llustration of the OD-based model set design method applied to a set
of 1000 randomly generated models with a 2-dimensional parameter space.

3.4 Convex Polytope Based Method

The starting point for the model set design method presented in this section is
the same initial large model set M, defined in (3.15). Contrary to the OD-based
method, the method presented here does not select models from the large model
set. Instead, a convex polytope (CP) is computed that encloses all models in this
set (Kanev ‘2006). The reduced model set is then constructed from the vertices of
the CP. The MM structure used for this method is the same as the one defined in
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(3.3)-(3.4), with the addition of the constraints () (t) > 0,Vi € {1,2,..., N} and
Zf;l 1) (t) = 1, the combination of which ensures convexity of the model set.

Let the models from M, define a set
M? = {m<1>,9n<2>, . ,sm“vf)} : (3.25)
and let the convex hull of M be denoted as
M = conv(MY), (3.26)

where conv(.) is the operator that computes a convex hull of a set. The goal now is
to construct a CP, denoted by V, with a desired number of vertices IV}, that encloses
the polytope M, i.e. M C V. It would be undesirable if the volume of the polytope
V, denoted by vol(V), would be much larger than vol(M). The reason for this is
that many irrelevant system conditions would also unnecessarily be represented
by V. Therefore an objective function should be introduced that prevents this.

The most straightforward objective function would be one that contains the
difference between vol(M) and vol(V). However, computing the volume of a
polytope is a computationally burdensome task. Therefore, Kane (2006) has pro-
posed an alternative objective function. This objective function is based on the
projection of a point z onto the polytope M. This projection is defined as a point
on M that is closest to z

é(z, M) :argéréi/\r/lle—ngz. (3.27)

A graphical representation of this projection is depicted in Figure 3.2 (left). The
distance from point z to its projection on M is defined as

d(z, M) = ||z = ¢(z, M), - (3.28)
Using this distance measure, the following objective function can be formulated

Jep(ME, V)= > d*(v,conv(M})). (3.29)
vevert(V)

The vertices of a polytope V are denoted as vert(V) = {v™) v?) ... v(N0)} The
objective function Jop(MYF, V) is a measure for how well a polytope V approxi-
mates the set M} and it is a viable alternative to an objective function that uses
volumes of polytopes. In Figure|3.2/(right) a graphical representation is given of
such an approximating polytope V. The distances of the vertices of V to M are
represented by dotted lines. The optimization problem to be solved to obtain the
vertices of V can now be formulated as

[U(l) oW —arg  mi Jop(M5, V)

n
{50,560}

st.  MCYV =conv ({17(1), . ,5<Nh>}) .(3.30)
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A big advantage of choosing Jcp (M7, V) as an objective function is that optimiza-
tion problem (3.30) can be solved in a relatively efficient way. It has been shown by
Kanev (2006) how (3.30) can be cast as a non-convex optimization problem with
quadratic equality and inequality constraints.

d(v®, M)

Figure 3.2: The projection of a point z onto the 2-dimensional polytope M is de-
noted by the point ¢(z, M). The distance between z and its projection onto M
is denoted by d(z, M) (left). The 2-dimensional polytope V encloses polytope M.
The objective function of the algorithm that computes the vertices v(*) of V is based
on the distances d(v(®), M) (right).

¢(z, M)

The models from M, all have n, entries. However, not all these n, entries are
depending on the varying model parameters. Furthermore, some of the entries
that do vary can vary in a similar manner to other entries. It is therefore not re-
quired to consider all n, entries in the process of finding an approximating CP.
This allows decreasing the computational complexity of the optimization prob-
lem. The reduction of entries to be considered can be achieved by using an SVD.
In the following the complete CP-based model set design method, including the
reduction step, is described.

1. Given the large model set to be reduced M/, compute its SVD

1 1 \T
M, = [Upr, Ung,] {23” E% } “%234 (3.31)

where ¥}, € R™*"s and n, is the position at which a gap occurs in the
singular value plot (n, is equivalent to the numerical rank defined in (3.18)).
Next, compute

M, =24y, (Vag,)" (3.32)

2. Let Mﬁ denote a set consisting of the models from M,. Now, the ozptimiza—
tion problem (3.30) can be solved by using the cost function Jcp(My, V) and
Ny, > Ng + 1.
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3. With the result obtained from the optimization problem, i.e. [o(}) ... v(Nn)],
the state-space matrices of the reduced model set can be reconstructed Vi €
{1,2,...,N,} as

(1) (@) .
|:é(L) g(b) :| = VeC71 (UI%/IZ’U(Z)) . (3-33)

In Figure(3.3 a graphical illustration is given of the CP-based model set design
method. In this figure the same set of 1000 randomly generated models is used
as in Figure[3.1l Results are shown of convex polytopes with 3, 4, and 5 vertices.
It can be seen that the higher the number of vertices, the smaller the volume of
the CP. A small CP volume is beneficial in the sense that less irrelevant space is
enclosed in the polytope. However, a larger number of vertices also means a larger
model set, which results in increased computational load. Therefore, a trade-off
has to be made between these two properties.

* Randomly generated models
3 Vv 3-vertices based CP
& 4-vertices based CP
2r O 5-vertices based CP
1r J
Or |
1t 4
ot J
R 1 2 3 4

Figure 3.3: Illustration of the CP-based model set design method applied to a
set of 1000 randomly generated models with a 2-dimensional parameter space.
Results for polytopes with 3, 4, and 5 vertices are shown.

3.5 Limit Values Based Method

Unlike the two previously presented model set design methods, the starting point
of the method presented in this section is not a randomly generated large model
set. Instead, this method is based on limit values (LV) of the varying entries of the
system matrices. Consider the LPV system defined in (3.1)-(3.2). Let the entry on
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the i-th row and j-th column of A(p(t)) be denoted by a,]( ). As a result of the
variation of p(t), a;;(t) varies in the interval a;;(t) € [a;;, a; ]] This entry can be
modeled as follows

ai(t) = p(H)ag + (1 —pgt)a (3.34)
— + a - +
= Qg+ g (t)(aij - aij) (3.35)
= af + pfi(t)a;, (3.36)

where f;(t) € [0,1]. Let A* be defined as the matrix in which all entries are at
their maximal values and let AZ-Aj be defined as the matrix in which all entries are

0, except for a;; = agj, ie.
At = {Avay=aVije{l,2,...,n}}, (3.37)
A5 = {Aiay=afna; =0vitij#i). (3.38)

If a similar notation is also used for the B, C, and D matrix, then the following
MM system can be formulated

i(t) = (A+ + ZA”MU ) (t) + <B+ + BHubi( )) u(t) + w(t), (3.39)

ij

<
—~
~+
~
|

(C+ + Z 1 ( ) (t) + <D+ + ZD@u?j(t)) u(t) + v(t), (3.40)

with the additional constraint that all weights, i.e uf;(t), ul;(t), us;(t), and pd;(t)
should lie in the interval [0, 1] for all possible combinations of indices i and j.
Note that the MM system defined in (3.39)-(3.40) differs from the MM system
defined in (3.3)-(3.4) in two points. The first point is that the system matrices
all have offset terms (A", BT, C*, and D) that are not weighted. The second
point is that the weights now only weigh a single matrix instead of a full state-
space quadruple { A, B C) D)} as is the case in (3.3)-(3.4). Because of these
differences, the MM estimation algorithm to be used for the MM system defined
in (3.39)-(3.40) also differs from the algorithm used for the MM system defined in
(3.3)-(3.4). However, this difference is small. The only required modification is to
restructure the weights in the MM estimation algorithm for the system defined in
(3.3)-(3.4) such that it fits the system defined in (3.39)-(3.40).

3.6 Simulation Example

In this section, the three proposed model set design methods are evaluated. Fur-
thermore a comparison is made with a model set design method developed by Li
et al. 42005). For these purposes, an LPV model of an MSD system is used. This
type of system is generally considered to be a realistic testbed for the study of
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control and estimation algorithms. The particular MSD system that is used here
is adopted from the work by Fekri et al. (2006b), in which it is used in an MM
adaptive control setting. This MSD system consists of 3 masses, 4 springs, and 4
dampers that are linked together. In Figure 3.4 a schematic overview is given of

this system.

|—>y1::z:1 |—>y2:x2

by
Uy —p M1 bs k;l b4 )
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|—> Y3 = I3
Figure 3.4: Overview of the MSD system.
The dynamics of the continuous-time MSD system are described by a state-

space system, with a state zyisp and system matrices Ayisp, Busp, and Cusp,
which are defined as

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
AMSD = | _ ki+ks J1 ks _bitbs by by |, (3.41)
ﬁl _ k1 -Tkl2+k4 E ﬁl _bh Tbl2+b4 E
E ﬁz ’:Q-ZFM E ﬁZ 71;?—29—134
m3 m3 m3 m3 m3 m3
X1 0 0
0 0
o o 0 1 0 000 0
TMSD = vj , Bmsp = EREEE Cvusp= |0 fo 0 0 0 0], (342
i 0O O 1 0 0 O
Vg 0 0
U3 0 mis

where k; are the spring constants, b; are the damping coefficients, x; and v; are
the positions and velocities of masses m;, and u; are the applied control forces.
Besides the nominal system parameters, two fault parameters are introduced. Pa-
rameter f; € [0, 1] implements an actuator fault in the first actuator. In case f; =1,
the actuator is fully functional and in case f; < 1 the actuator operates with de-
graded effectiveness. Parameter f> € [0, 1] implements a sensor fault in the second
sensor and can be interpreted similarly as f;. In this simulation example only sin-
gle faults are considered. So, only one of the two fault parameters can have a
value smaller than 1 at the same time. Note that the system has no D-matrix since
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it does not have a direct feedthrough term. The nominal system parameters in
these system matrices are all known, except for ki and mgs. The values for the
known parameters are

mp = Mo = 1,
by = by = b3 = by = 0.01, (3.43)
ko = 0.15, ks = 1, ky = 0.2,

and the upper and lower bounds for the unknown parameters are given by

ky € [k EPe) =[0.25 1.75),
mz € [mP™ mP] =[0.20 1.80].
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Figure 3.5: Overview of points in the parameter space of k; and mg at which
model samples are taken for the large model set (left). Singular values of the large
model set and absolute values of the diagonal of R (right).

3.6.1 Model Set Design For a Mass-Spring-Damper System

The OD-based and CP-based model set design methods both require a large model
set that is obtained by sampling of the parameter space of the LPV model. For
these two methods a model set is generated by performing a uniform sampling
in the parameter space. The points at which the model is sampled are depicted
in Figure 3.5 (left). Since only single faults are considered, the sampling pattern
depicted in this figure has been implemented separately for both f; and f> (while
at the same time the value of the non-sampled fault parameter is held constant at
a value of 1).

The dynamics of the MSD system is described in continuous-time. Since the
model weight estimation algorithms operate in discrete-time, the continuous-time
model set has to be discretized. In Appendix /B it is shown that the local models
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can be individually discretized if a first-order Taylor approximation is made of
the discretized system matrices. A requirement for this type of discretization is
that the sample time must be chosen relatively small such that the truncation er-
ror is also small. Therefore, the sample time used in this example is chosen as
T, = 2.5-1073 s. The first-order discretization is performed before the models are
assembled into the matrix M, defined in (3.15).

Once matrix My is constructed using the previously described sampled local
models, the OD-based and CP-based model set design methods can be used to ob-
tain a reduced model set. The number of local models to be used in the model sets
can be determined by either locating a gap in the absolute values of the diagonal
of the R matrix (of the RRQR decomposition) or by locating a gap in the singular
value plot. Which of these two procedures should be followed depends on which
of the two model set design methods is used. In Figure|3.5 (right) the values ob-
tained with the two procedures are depicted. In this figure it can be clearly seen
that both procedures lead to the conclusion that the numerical rank of the model
set is equal to 5. Moreover, it can be seen that the previously made statement that
the absolute values of the diagonal of the R matrix tend to track the singular val-
ues well enough to expose gaps, holds true. According to the indications given
in the model set design procedures for the OD-based method and the CP-based
method, 6 local models are chosen for both methods. The model set obtained with
the OD-based method contains a selection from the models in M,. The parame-
ters of the 6 selected models are given in Table 3.2. In this table it can be seen that
the selected models are well separated from each other. Two models correspond
to the nominal situation (no faults). Two models correspond to a maximal fault in
the first actuator (f; = 0) and two models correspond to a maximal fault in the
second sensor (f, = 0).

Table 3.2: Parameters of the models selected with the OD-based model set design
method.

Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6
k1 1.75 1.75 0.25 0.25 1.75 1
ms 0.2 1.8 1.8 0.2 0.2 0.2
fi 1 0 1 0 1 1
f 0 1 1 1 1 0

The MSD system has 12 varying entries in its system matrices as can be seen in
(3.41) and (3.42). When the LV-based method is used separately for each of these
12 entries, a model set consisting of 12 models would result. However, many of
these entries vary in a similar manner. Therefore, the number of local models
can be reduced to 4 local models in case of the considered MSD system. Each of
these local models corresponds to one of the 4 varying parameters. The model set
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constructed with the LV-based method then has the following form

_ + k1 m3
Th+1 = (TS(AMSD + pik, Aisp T Hms Ayisp) + I) Lk
+ m3 f1
+T5(Byisp + tms Baiép + # Brisp) e + W, (3.44)
_ + fa
Y = (CMSD + pi g, CMSD)JL‘k + vk, (3.45)
where
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0 0 0 0 0 1
Ahgp = | -H = -kt =, (346)
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and 0;,; € R™J denotes a zero matrix.

3.6.2 Simulation Results

The three model sets constructed in the previous section are evaluated by assess-
ing the performance of the three corresponding MM filters, all of which are joint
EKFs as described in Chapter 2. For this purpose, a continuous-time simulation
has been performed with the parameter-varying MSD system in which the aim
was to simulate as many system conditions as possible. During the simulation,
the parameters k; and mg are varied such that a large part of the parameter space
of these parameters is covered. The simulated trajectory in the parameter space
of k1 and mj is depicted in Figure 3.6. Furthermore, two faults are inserted se-
quentially during the simulation. A partial actuator fault is inserted in the time
interval 30 — 50 s and a partial sensor fault is inserted in the time interval 70— 80 s.
Furthermore, measurement noise is added such that the three measurements have
an SNR of 60 dB.
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Figure 3.6: Simulated trajectory in the parameter space of k; and ms.

Estimates of the parameters are required for some purposes. For example, in
case of the considered MSD system estimates of parameters f; and f; are required
in order to perform FD. However, there is no direct relation between the estimated
model weights and the parameters when the CP-based model set design method
is used. Therefore, a procedure is proposed for (indirectly) reconstructing the
values of the parameters from the estimated model weights. This procedure de-
termines which model from M, has the smallest distance to the estimated model
at each time step. The parameters of the model with the smallest distance are then
used as the reconstructed parameters. The estimated model at time step k can be
computed as

NICP = Uy, {vu) v(Nm} ACP, (3.51)

where ST denotes the vector with the estimated model weights of the local mod-
els in the CP-based model set. Subsequently, the model from M, that is closest to
MFF, can be computed as

ng = arg min
i€{1,2,...,N¢}

‘zm“) — e HQ : (3.52)

where n corresponds to the index of the model from the large model set that is
closest to MCP. Tt should be noted that also for the OD-based model set, there is
not always a direct relation between the estimated model weights and the para-
meters. In this case, the described procedure can also be used.

Using the model sets designed with the three proposed methods and the input-
output data from the previously described simulation, the state of the system and
the model weights of the local models are estimated. The state estimation per-
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formance is evaluated by computing the variance accounted for (VAF) for all six
estimated states. The VAF is defined as

var(zy, — )

vaf(z, &) = max {1 - ,0} x 100% (3.53)

var(xg)

where var(-) denotes the variance of the corresponding signal. In Table3.3]it can
be seen that the VAF values are well above 90%. The estimation results of the
model weights are presented separately for each of the three model sets in the
following.

Table 3.3: VAF values of the states estimated by using the three model sets de-
signed with the three proposed methods.

OD-based | CP-based | LV-based

model set | model set | model set
vaf(r1,41) | 100% 100% 100%
Vaf(wg, j}Q) 95.9% 95.4% 91.5%
Vaf(l‘g,, j?g) 100% 100% 100%
vaf(m, 171) 99.2% 99.5% 99.9%
vaf(vy,9) | 97.1% 96.8% 95.7%
vaf(vs, 93) | 99.1% 99.5% 99.7%

The estimated model weights of the model set designed with the OD-based
method do not have a direct relation with all parameters. Therefore, the pre-
viously described procedure to reconstruct these parameters from the estimated
model weights is used. The results of this procedure are depicted in Figures|3.7
and[3.8. In these two figures it can be seen that the simulated values are generally
tracked well by the reconstructed values. Note that in both figures the parameters
are discretely valued. The reason for this is that the reconstruction procedure is
based on M/, which contains models sampled at discrete levels of the parameter
space (see Figure (left)). Note also that the reconstructed values of the fault
parameters, depicted in Figure|3.8, allow an accurate and quick diagnosis of the
simulated faults. As is previously mentioned, the estimated model weights of the
local models from the OD-based model set do not have a direct relation with all
parameters. However, for the two fault parameters f; and f> there exists such a
relation. This relation becomes clear if the estimated model weights of the models
that correspond to the same system condition, i.e. the nominal condition or one of
the two fault conditions, are summed together. This means that for the model set
described in Table|3.2, the weights of models 3 and 5, the weights of models 1 and
6, and the weights of models 2 and 4 should be summed together. The result of
these three summations are depicted in Figure 3.9. From this figure it is clear that
the relations f; = 1 — (22 + %) and fo = 1 — (4! + %) hold. Moreover, it can be
seen that diagnosis of the faults is very well possible from the summed weights.
Therefore, it can be concluded that if FD were the only purpose of the MM system
and the values of parameters k; and ms were not needed, the parameter recon-
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Figure 3.7: Reconstructed values of k; and mg using the model set designed with
the OD-based method.
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Figure 3.8: Reconstructed values of f; and f> using the model set designed with
the OD-based method.

struction procedure could be omitted for the OD-based model set.

The estimated model weights of the model set designed with the CP-based
method cannot be directly related to the varying parameters because the local
models do not correspond to physically interpretable conditions. Therefore, also
here the previously described procedure to reconstruct these parameters is used.
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Figure 3.9: Sums of the estimated model weights of models 3 and 5 (both corre-
sponding to a nominal condition), models 1 and 6 (both corresponding to a sensor
fault) and models 2 and 4 (both corresponding to an actuator fault).

The results of this procedure are shown in Figures(3.10 and[3.11. In these figures it
can be seen that the simulated values are tracked well by the reconstructed values.
Again the reconstructed values are discretely valued as a result of the parameter
reconstruction procedure.
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Figure 3.10: Reconstructed values of k; and m3 using the model set designed with
the CP-based method.
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Figure 3.11: Reconstructed values of f; and f; using the model set designed with
the CP-based method.

The model weights of the local models designed with the LV-based method do
have a direct relation to the model parameters. In the case of the considered MSD
system, the following relations can be deduced for the different parameters

ki = kP4 g, (B — kP, (3.54)
,rnénaxmgnin
ms = min max min ’ (355)
ME™ A fhy (M — mEm)
fl = 1- Hfis (356)
foo= 1—pp. (3.57)

It should be noted that the specific way in which the parameters vary in the MSD
system, makes their reconstruction relatively easy. If the parameters would vary
in a strongly nonlinear way, this reconstruction would be more involved.

The estimation results obtained with the LV-based method are depicted in Fig-
ures|3.12 and [3.13. Because of the direct relation between the model weights and
the parameters, the parameters are estimated more smoothly than in case of the
OD-based and CP-based model sets. The estimated fault parameters, f; and f,
depicted in Figure|3.13 allow diagnosis of the faults that are simulated.

3.6.3 Differences Between the Model Set Design Methods

The presented simulation results indicate that all three methods can be success-
fully applied to model set design of the parameter-varying MSD system. How-
ever, there are differences between the presented methods that can make one
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Figure 3.12: Estimated values of k; and mg3 using the model set designed with the
LV-based method.
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Figure 3.13: Estimated values of f; and f> using the model set designed with the
LV-based method.

method to be preferred over the other. A specific case is when local models can be
generated without exact knowledge of how the system entries vary as a function
of the parameters. This knowledge is required for the LV-based method but not for
the OD-based and CP-based methods. Aslong as local models can be generated at
desired operating conditions, the latter two methods can be applied. An example
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of an application in which local models at different conditions can be generated
without exact knowledge of the variation of the entries is the Boeing 747 bench-
mark model considered in this thesis. This nonlinear model can be trimmed and
linearized at a desired flight condition resulting in a local linear model valid at
this flight condition. In Chapter |4 model sets for the benchmark model will be
generated using the OD-based method.

Another difference between the presented methods is how estimates of the pa-
rameters are obtained from the model weights. An important property of the CP-
based method is that the estimated model weights do not have a direct relation
to the parameters. Therefore, the estimates of the parameters have to be recon-
structed with the proposed procedure. In case of the OD-based method, there can
be a relation between the weights and the parameters as is shown in the presented
example. However, if this is not the case then also for the OD-based method the
reconstruction procedure should be used. When the LV-based method is used, the
model weights and parameters have a direct relation. The reconstruction proce-
dure is therefore not necessary.

A difference between the OD-based method and CP-based method is that the
CP-based method is more flexible in its choice of local models. The reason for
this is that the OD-based method is restricted to including only the models from
the large model set in the reduced model set. The CP-based does not have this
restriction. It is therefore possible that the CP-based model set can result in a
better conditioned estimation problem than the OD-based method as a result of
this flexibility.

The results obtained with the three model sets design methods are not signifi-
cantly different for the presented example. However, the three methods do have
different properties. It can therefore be concluded that the method that is to be
preferred for a specific application depends on these properties.

3.6.4 Comparison with the “Minimum-Mismatch” Method

In Section 3.1/ the model set design methods presented by Li et al. (2005) were
mentioned. These methods use a different design philosophy from the methods

resented in this chapter. The main difference is that the methods presented by
Li et al. (2005) are based on the PDF of the varying parameters, while the meth-
ods presented in this chapter are based on the varying parameters themselves. In
order to make a comparison between these design philosophies, the “minimum-
mismatch” model set design method presented by |Li et al. (2005) is used to create
a model set for the MSD system. The main idea of this method is to approximate
the cumulative distribution function (CDF) of a varying parameter by a discrete
CDE. The model set is computed by partitioning the parameter space into equally
probable regions based on the CDE. Subsequently the local models are chosen
such that the local models correspond to the centers of each region. A drawback
of this method that it is applicable to the CDF of only one parameter. In order to al-
low comparison with the model set design methods presented in this chapter, the
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MSD system with only one varying parameter is considered. The parameter myg is
chosen to be this single varying parameter. Parameters k1, f1, and f> are chosen as
constant parameters, all with a value of 1. The “minimum-mismatch” model set
design method creates a model set that consists of (physically interpretable) mod-
els of the form (3.1)-(3.2), sampled at some p(t) € R. In this sense, this model set
can be best compared with the model set obtained with the OD-based model set
design method. Therefore, in the following a comparison is made between these
two methods only.

The minimum number of local models required to create a model set with the
OD-based method is 2, for the case that mj3 is the only varying parameter. The
model set created with the “minimum-mismatch” model set design method is
therefore also chosen to consist of two local models. It is assumed that the PDF of
ms is Gaussian:

1 —(mas _21)2
fs (m3) = \/ﬂg € 270 s (358)
0

with a standard deviation of 09 = 0.2. The CDF of mj is the integral of f,(ms3)
and is denoted by F;(m3). The CDF is partitioned into two equally probable re-
gions. These two regions are indicated by dashed lines in Figure(3.14. Next, the
centers of these regions, which are indicated by dotted lines, are determined. The
discrete CDF F},,(m3) can then be constructed as a stair-case type function that
goes through the points at which the centers of the regions intersect with Fi(ms).
This stair-case type function is also depicted in Figure(3.14. Furthermore, it can be
seen in this figure that for one local model obtained with this method it holds that
ms = 0.865 and for the other local model it holds that mz = 1.135.

The two local models obtained with the OD-based method have values for ms
of 0.2 and 1.8, i.e. the minimum and maximum value. This model set is compared
to the model set obtained with the “minimum-mismatch” method by determin-
ing for which model set the combined model weight and state estimation problem
is best conditioned. For this purpose, Definition 3.1 of strong local observability
is used. Different state realizations are generated by simulating the MSD system
with different randomly generated sequences of m3. The values of both input sig-
nals are chosen as 1. For each state realization, the mean condition number of the
nonlinear observability matrix is computed. The model weights that are also re-
quired for the computation of the nonlinear observability matrix can be computed
from the randomly generated sequences of m3 for each of the two model sets. The
mean condition number of the observability matrix for 5 different state realiza-
tions and for both model sets is shown in Table(3.4. In this table it can be seen
that the mean condition number of the observability matrix for the “minimum-
mismatch” model set is higher than for the OD-based model set in case of all 5
realizations. This observation is not surprising because the OD-based model set is
specifically designed such that the combined model weight and state estimation
problem is well-conditioned. A conclusion that can be drawn from this experi-
ment is that the model set obtained with the OD-based method is to be preferred
over the model set obtained from the “minimum-mismatch” design method when
the MM structure defined in (3.3)-(3.4) is used.
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Figure 3.14: Cumulative distribution function of m3 denoted by F(mg). The dots
on this function correspond to the points at which two local models are selected

according to the “minimum-mismatch” model set design method presented by Li
et al. (2005).

Table 3.4: Mean condition number of the nonlinear observability matrix com-
puted for 100 samples and for 5 different state realizations.

OD-based | “minimum-mismatch”
model set model set

1] 1.39-10° 2.24-10°

2| 1.55-10° 2.5 - 108

3| 1.32-10° 2.13- 106

4| 1.39-10° 2.24 - 108

51 221-10° 3.57-10°

3.7 Conclusions

An important issue that should be considered when using the multiple-model
framework is how the model set is designed. This model set should be as com-
pact as possible and at the same time it should make a good approximation of the
system to be modeled. In this chapter three methods have been proposed for the
structured design of model sets for multiple-model systems. Two of the proposed
methods are based on the availability of a large model set that contains local mod-
els sampled from the system to be modeled at the desired operating conditions.
One of these two methods reduces the large model set by making a selection of
the models such that this selection of models renders the estimation problem as
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well-conditioned as possible. This selection is made by using orthogonal decom-
positions. The other of these methods reduces the large model set by enclosing all
local models in a convex polytope. The local models are formed by the vertices
of this polytope. The main difference between these two methods is that the local
models obtained with the model set design method based on orthogonal decom-
positions correspond to physically interpretable system conditions. This is not the
case for the model set that consists of the vertices of a convex polytope. Moreover,
a third method is presented that does not require the availability of a large initial
model set. Instead this method creates a model set based on the limit values of the
varying parameters of the system. The multiple-model structure for the model
sets created with this third method is slightly different from the structure of the
first two methods.

The three methods have been applied to the design of model sets for a linear
parameter-varying model of a mass-spring-damper system with four varying pa-
rameters. Two of these parameters are fault parameters. The simulation of the
model has been performed with variations in all four parameters. Subsequently,
the state and model weights are estimated based on the three designed model
sets. The state estimation results show good performance for all three model sets.
The estimated model weights based on the three model sets cannot be compared
directly with each other because of the different properties of the local models in
the model sets. Instead, the estimated model weights are used to reconstruct the
values of the parameters. For the method based on limit values, a direct relation
exists between the estimated weights and the parameters. For the other two meth-
ods, such a direct relation does not exist. Therefore, a reconstruction procedure is
used to reconstruct the parameters from the estimated model weights. The results
for all three methods are comparable; the varying parameters are tracked well
and a quick and accurate diagnosis is possible from the two fault parameters. For
the model set created by using orthogonal decompositions, it should be remarked
that the reconstruction procedure is not required for the two fault parameters. It
is shown that, for the considered example, these two parameters have a direct re-
lation with the estimated model weights. Since the results obtained with the three
model sets design methods are comparable for the presented example, which of
the methods is to be preferred over the other depends on the type of application.

A comparison has been made between the OD-based model set design method
and the “minimum mismatch” model set design method presented by Li et al.
(2005). It has been concluded that when using an MM structure that explicitly
interpolates between the local models, the OD-based method is to be preferred
for the comparison example.



Model Sets for Aircraft Fault
Diagnosis

n Chapter 3, three model set design methods have been described. In
Ithls chapter one of these methods, namely the orthogonal decompo-
sition based method, is used to create model sets for fault diagnosis of
the Boeing 747 benchmark model. The considered faults include sensor
faults, actuator faults, and component faults such as the faults that oc-
curred during the “Bijlmerramp”. Both linear and nonlinear simulations
are performed to evaluate the modeling accuracy of the designed model
sets. The nonlinear simulations are used to assess the ability to isolate
faults, while the linear simulations are used to assess the ability to also
identify the faults.

4.1 Introduction

The main motivation for using the multiple-model (MM) framework for fault de-
tection and isolation (FDI) is that it allows a large class of fault conditions to be
modeled. These fault conditions include sensor faults, actuator faults as well as
component faults. The MM framework proposed in this thesis distinguishes it-
self from the commonly used MM framework dLl and ]11k0v‘2005) by the fact that
it explicitly allows weighted combinations of local models. This property allows
the use of relatively small model sets that at the same time can represent a large
number of fault conditions. The philosophy behind the proposed MM framework
is that local models in the model set form a basis of the fault conditions that may
occur. In other words, these fault conditions are represented by a weighted com-
bination of the local models in the model set. This is in contrast to the conven-
tional MM framework, in which it is common practice to model each considered
‘fault condition by a separate local model thang and ]1ang‘2001 ; Diao and Passino
2002

In critical situations in aircraft, completely relying on fault-tolerant control
(FTC) might not be desirable in some situations. Therefore, keeping the pilot in

79
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the loop is important for FTC dMaciejowski and Jones 2003). For this reason, the
pilot should also have information on the faults that have occurred. In this chap-
ter, this fault information is obtained by MM estimation. The main contribution of
this chapter is the assessment of the fault isolation and identification capabilities
of the proposed fault modeling strategy using a realistic benchmark model. The
difference between fault isolation and identification is that for isolation only the
location of faults is to be determined. For identification the size of faults should
also be determined in addition to their location. The assessment of the identifi-
cation capabilities is performed using linear simulation, while the assessment of
the isolation capabilities is performed using nonlinear simulation. The reason for
this is that for identification less model error is allowed between the system un-
der diagnosis (i.e. the simulation model) and the model that represents this real
system (i.e. the weighted combination of the local models in the model set). Both
simulations use models, either linear or nonlinear, of the Boeing 747 benchmark
model.

The primary fault type that is considered in this chapter is lock-in-place of
control surfaces. Because of its challenging nature from an FTC point view it is
also the main fault type considered in the Boeing 747 benchmark model. In order
to display the versatility of the MM framework in combination with a structured
model set design method, in this chapter also sensor faults and component faults
are considered. The considered components faults are a hydraulic outage of one
of the 4 available hydraulic systems and engine separation of two engines on one
side of the aircraft such as had occurred during the “Bijlmerramp” (Smaili and
Mulder M). The method based on orthogonal decomposition (OD) for model
set generation is used to create the model sets. This method has been described in
Section 3.3.

Modeling of lock-in-place faults in an MM setting has also been considered
in the work by Liao et al. dM). In this work, lock-in-place faults are modeled
by model sets containing local models that correspond to conditions at which a
control surface is stuck at its upper or lower limit. These model sets are derived
rather heuristically instead of using a structured approach. Furthermore, these
model sets have only been used for the synthesis of a passive fault-tolerant con-
troller, which is robust with respect to all faults modeled by the convex hull of the
models from the designed model sets. This passive FTC method requires no in-
formation on the actual condition of the system, which is therefore not estimated.
The purpose of the model sets developed by Liao et al. (2005) is therefore different
from the purpose of the model sets in this chapter.

This chapter is organized as follows. Section[4.2 provides a discussion on lock-
in-place faults. Next, Section[4.3 presents two model sets obtained with the OD-
based model set design method. The simulation results are provided in Section
4.4. Finally, conclusions are provided in Section 4.5.
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4.2 Lock-in-Place Faults

One of the fault types considered in this chapter is lock-in-place of control sur-
faces. This fault type is characterized by a control surface that freezes at a certain
position and does not react to the control commands anymore. The motivation for
considering this fault type stems from a number of aircraft incidents. Three exam-
ples of such incidents are the incidents that have occurred with earlier versions of
the Boeing 737, as is described in Chapter|1 on page[3| All of these three incidents
were most probably caused by runaway of the rudder surface to its maximum or
minimum deflection position. Note that because runaway of a control surface is
also characterized by freezing of the surface, it can be considered to be a lock-in-
place fault. This class of faults can result in severe performance degradation of
the aircraft depending on the position at which the control surface freezes. For ex-
ample, rudder runaway is much more severe than lock-in-place of the rudder at
its neutral position. The possibly catastrophic nature of this class of faults makes
it very challenging from an FTC point of view. For this reason, this class of faults
is the main fault type that is considered in GARTEUR AG-16. In fact, besides the
“Bijlmerramp” scenario and a loss of the vertical tail plane it is the only fault type
considered in GARTEUR AG-16. The project considers lock-in-place faults of dif-
ferent groups of control surfaces such as elevators, ailerons, and rudders. In the
benchmark model it is assumed that these groups of control surfaces move and
fail together.

A straightforward method to diagnose lock-in-place faults is to install surface
sensors on the control surfaces of the aircraft. If the actual deflection of the sur-
faces measured by the surface sensors does not correspond to the deflection that
could be expected from the actuator command signal, then a fault is detected.
Such an approach has been pursued by Vargg @%) for the Boeing 747 bench-
mark model. Although the number of surface sensors is kept minimal, i.e. not all
surfaces are equipped with sensors, the additional sensors still add to hardware
costs and maintenance of the aircraft. Furthermore, faults in the surface angle
sensors should also be considered when using these additional sensors, which
has not been done by Varéa (@). In this chapter a different philosophy is used
to diagnose lock-in-place faults to overcome these drawbacks. Instead of using
additional surface sensors, only the sensors that measure important flight para-
meters are used. These sensors are already available on the aircraft and they are
fitted redundantly, as a result of which they can be considered to be practically
fault-free. By using these existing sensors, the method that is adopted for fault
diagnosis in this chapter does not require additional hardware. The diagnosis is
therefore based on analytical redundancy rather than hardware redundancy.

The problem of modeling lock-in-place faults in aircraft using the MM frame-
work has also been considered by Liao et al. M). These authors model lock-in-
place faults on a fighter aircraft by using a polytopic model. The vertices of this
polytopic model consist of local models that correspond to the cases in which the
control surfaces are stuck at one of their two outer limits. The polytopic model,
however, also approximately describes the aircraft in case the corresponding con-
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trol surfaces were stuck at any other position between the two outer limits. In
Figure|4.1, a graphical representation is given of the range of lock-in-place faults
that can be approximately described by two local models. In this figure, a control
surface is depicted with its maximum and minimum deflection, 6% and §™in, re-
spectively. The two models to be included in the model set, correspond exactly to
the conditions in which the aircraft has the control surface stuck at its maximum
or minimum deflection. An intermediate lock-in-place fault of the same control
surface, as is represented by %, in Figure|4.1 can be approximated by a convex
combination of the two models.

Figure 4.1: Outer limits of a control surface.

Lock-in-place faults only affect the control surfaces. In a state-space setting it
might therefore be expected that this fault type can be modeled by modifying only
the B-matrix of the nominal model. However, a control surface that is stuck at a
certain fixed position influences the complete dynamics of the aircraft. It is there-
fore pointed out in Liao et al. m) that the local linear models corresponding to
lock-in-place faults differ in both the A-matrix and the B-matrix from the nominal
model.

4.3 Model Set Design

In this section, the OD-based model set design method is used to design two
model sets to perform fault diagnosis (FD) of the Boeing 747 benchmark model.
The OD-based model set design method is one of the three methods presented in
Chapter|3 for structured model set design. The other two methods are the method
based on a convex polytope (CP) and the method based on limit values (LV). The
CP-based method is not chosen since its local models do not correspond to phys-
ically interpretable models. This property prohibits the direct diagnosis of faults
from the estimated model weights, which is desired in this section. The LV-based
method is not chosen since the exact physical equations that describe the dynam-
ics of the Boeing 747 aircraft are not directly available from the benchmark model.
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The first model set to be designed is primarily meant to display the versatility of
the model set design method. It therefore considers actuator faults, component
faults, and a range of faults in one sensor. The second model set is designed with
the purpose to isolate the different expected lock-in-place faults considered in the
benchmark model.

4.3.1 Description of the Linearized Models

In order to obtain the local linear models required for the OD-based model set
design method, the nonlinear model is linearized for a straight-and-level flight at
h = 980 m, Vias = 92.6 m/s, with a flap setting of 20 deg, and a total weight
of 263 - 103 kg. This operating point corresponds to the initial condition of the
benchmark trajectory. The same operating point is used for the nominal model
as well as the fault models. All linearized models are 10" order models of the
longitudinal and lateral/directional motion of the aircraft and have 6 inputs. An
overview of the states and inputs of the linearized models is given in Table 4.1.
In the linearization routine of the benchmark it has been assumed that similar
surfaces operate and fail together. For example, the inner right, inner left, outer
right and outer left elevator surface have been lumped into one generic elevator
surface controlled by the input J.. Note that this has been done for simplifica-
tion purposes only and that the presented modeling method can be modified to
include separate commands for each individual control surface.

Table 4.1: Description of the linearized model.

States Inputs

p: roll rate [deg/s] 0,: aileron deflection [deg]
¢: pitch rate [deg/s] dsp: spoiler deflection [deg]
r: yaw rate [deg/s] 0e: elevator deflection [deg]

Vras: true airspeed [m/s] 0st: stabilizer deflection [deg]
a: angle of attack [deg] 0,: rudder deflection [deg]

B: sideslip angle [deg] O7: Thrust [N]

¢: roll angle [deg]
0: pitch angle [deg]
1 yaw angle [deg]
h: altitude [m]

The linearization routine of the benchmark delivers continuous-time models.
Therefore, the local models are first discretized according to the procedure de-
scribed in Appendix[B. The values for the parameters required for this procedure
are chosen as: T = 0.01s and M=1. The error bound defined in (B.5) can be com-
puted to be in the order of 10~ for this particular choice of parameters (|| A ~ 3,

for all local models), which results in sufficiently accurate local models for FD.
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4.3.2 Incorporating Different Trim Offsets

Before the benchmark model is linearized, it first has to be trimmed such that
there is an equilibrium of forces and moments at the desired operating point of
the aircraft. The resulting trim values for the input vector and the state vector are
slightly different in case the local models correspond to different fault conditions
near the same operating point. The trimming routine therefore causes that the
local models are linearized at different equilibria. This issue has been resolved by
using the following model description

Thp1 = Z“(Z) A(z) - (oi))Jch(ii)(uk7u(o,i))+x(o,i)]+wk, (4.1)
Y = Z,ul(f)C(i):L‘k—l-vk. (4.2)

i=1

This description is a discretized version of (3.3)-(3.4) and is extended such that it
can deal with different trim offsets. In this description, #(>") and u(*%) correspond
to the offsets in the state and input of the i-th local model, respectively. The matri-
ces Ay and By denote discretized versions of their continuous-time counterparts
A and B. Note that the discretized model does not have a D-matrix, because the
aircraft model does not have direct feedthrough.

4.3.3 Model Set 1

Besides modeling lock-in-place faults, model set I is designed to model multi-
plicative sensor faults in the angle of attack («) sensor. Moreover, the model set
also models two fault conditions of the aircraft that occurred during the “Bijlmer-
ramp”. One condition corresponds to an outage of hydraulic system # 4, which is
one of the 4 hydraulic systems on a Boeing 747. This fault results in loss of control
of a number of control surfaces. The other condition corresponds to a separation
of both engines on the right wing. This condition also includes the weight loss,
center of gravity change, and wing damage that resulted from the separation. In
Figure 4.2} the locations on the aircraft that are affected by the considered faults
are highlighted. The surfaces affected by the hydraulic outage are indicated by
hatching or light shading.

As explained in Section (3.3, the OD-based method requires the generation of
a large number of models that should be arranged in a matrix M,. These models
correspond to samples from the set of system conditions to be modeled. For model
set I, a matrix M} is created that consists of the models described in Table/4.2,

By using M} as a basis, the model set described in Table|4.3 is designed. The
number of local models has been chosen to be 8, according to the rules provided
in Section 3.3. The order in which the local models are listed in Table /4.3 is directly
determined by the OD-based model set design algorithm. So, the “most influen-
tial” model is listed at the top of the table. It can be seen in this table that the faults
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Figure 4.2: Place of occurrence of the faults on the aircraft.



86 Chapter 4 Model Sets for Aircraft Fault Diagnosis

Table 4.2: Description of models in M} used to create model set .

Fault type Sampled fault sizes | Number of models
Rudder lock-in-place {—25,-24,...,24,25} | 51

Elevator lock-in-place {—23,-22,...,16,17} | 41

Fault in a-sensor {0,0.1,...,1} 11

Hydraulic system # 4 outage - 1

Engine separation - 1

that can occur with different sizes are represented by local models corresponding
to the maximum fault sizes. For example, rudder lock-in-place faults in the range
[—25,25] deg are represented by two local models: one model with the rudder
stuck at its upper limit and one model with the rudder stuck at its lower limit. For
the range of elevator lock-in-place faults and multiplicative faults in the a-sensor
similar fault models appear in the model set. Note that the sensor fault model cor-
responding to 100% effectiveness is the same as the nominal model. Furthermore,
it can be seen that the fault models corresponding to engine separation and the
outage of hydraulic system # 4 also appear in the model set. This observation is
according to the expectation that these two models have very specific dynamics
that cannot be represented by a weighted combination of the other models in the
model set.

Table 4.3: Description of model set L.

Model # | Model description

Rudder stuck at upper limit (25 deg)
Rudder stuck at lower limit (—25 deg)
Elevator stuck at upper limit (17 deg)
Elevator stuck at lower limit (—23 deg)
Engine separation

Total fault in a-sensor (0% effectiveness)
Hydraulic system # 4 outage

No fault in a-sensor (100% effectiveness)

IO Ul WN -

4.3.4 Model Set Il

From model set I it can be concluded that even exceptional faults such as engine
separation can be represented well in the model set. However, it is not reasonable
to assume that such faults can be anticipated. Therefore, for model set II only
faults that can reasonably be anticipated are considered. These faults are lock-
in-place of the ailerons, rudders, and elevators. Again, a large number of local
models is sampled from the system to be modeled. These sampled models, which
are described in Table/4.4, are used to construct the matrix M.
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Table 4.4: Description of models in M} used to create model set II.

Fault type Sampled fault sizes | Number of models
Rudder lock-in-place | {—25,—-24,...,24,25} | 51
Elevator lock-in-place | {—23,-22,...,16,17} | 41
Aileron lock-in-place | {—15,—14,...,14,15} | 41

The application of the OD-based model set design method to M}, results in
the model set described in Table|4.5. The order in which the local models are listed
is again directly determined by the model set design algorithm, which means that
the “most influential” model is located at the top of the table. It can again be
seen that the lock-in-place faults are represented in the model set by local models
corresponding to lock-in-place faults at the maximum or minimum positions. In
addition to these limit models, the elevator lock-in-place fault is represented by
a local model corresponding to a lock-in-place fault at —6 deg, which is located
close to the middle of the deflection range of the elevator, i.e. [-23,17] deg. From
the fact that elevator lock-in-place faults are modeled by one additional model
it can be concluded that this fault type is more difficult to model than the other
lock-in-place faults.

Table 4.5: Description of model set IL.

Model # | Model description

Rudders stuck at upper limit (25 deg)
Rudders stuck at lower limit (—25 deg)
Elevators stuck at lower limit (—23 deg)
Ailerons stuck at upper limit (15 deg)
Elevators stuck at upper limit (17 deg)
Elevators stuck at —6 deg

Ailerons stuck at lower limit (—25 deg)

NGk QN

Both model set I and model set II represent lock-in-place faults by local models
with the corresponding control surfaces stuck at their limit position. This way of
modeling lock-in-place faults has also been proposed by Liao et al. (2005), and
therefore confirms the correctness of the OD-based model set design method.

4.4 Simulation Results

In this section the proposed fault modeling strategy is evaluated using the Boeing
747 benchmark model. Model set I is evaluated by linear simulation of the aircraft.
In the linear simulation the full fault diagnosis capabilities of the proposed mod-
eling strategy can be demonstrated. In order to also demonstrate the usefulness of
the proposed method for the nonlinear aircraft model, in a second simulation the
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full nonlinear Boeing 747 model is simulated. For this second simulation model
set II is used. An exact identification of the fault is difficult to perform for the
second simulation due to nonlinear behavior of the aircraft model. This behav-
ior cannot be represented well by the designed model set because it is valid in a
limited operating region near the operating condition at which the model set is
designed. However, it will be shown that an isolation of faults is still very well
possible.

4.4.1 Linear Simulation

A fault scenario is simulated in which 5 faults are injected sequentially into the
aircraft model. This scenario is described in Table [4.6. The simulation is per-
formed in closed-loop and in continuous-time. A closed-loop simulation has been
performed because the local models corresponding to the faults in Table (4.6 are
unstable. For this purpose a linear quadratic regulator is used. The MM estima-
tion algorithm used for this simulation study is the extended Kalman filter (EKF),
which has been described in Table|2.3 on page(39. It uses the measurements of all
states, except for § and ¢. Although these two variables are normally also mea-
sured in the Boeing 747, they are omitted to test the state estimation performance
of the MM estimation algorithm combined with the designed model set. During
the simulation, process noise and measurement noise are added to the system.
The added process noise has a covariance of

Q. = diag([107® 107® 107® 107" 107* 107* 107* 107']), (4.3)

where diag([a]) denotes a diagonal matrix with vector a on its diagonal. The
added measurement noise has a covariance of

R, = diag([1.73-107* 1.73-107* 1.73-107* 107"
1.73-107* 1.73-107* 1.73-107* 107Y)), (4.4)

which corresponds to the realistic noise covariance of the sensors on a Boeing 747
(Breeman 2006).

Table 4.6: Simulated fault scenario for the linear simulation.

Fault description Time interval
Elevators stuck at 10 deg 15-20s
50% fault in a-sensor 35-40s

Rudders stuck at —15 deg 52.5-60s
Hydraulic system # 4 outage | 75-80s
Engine separation 95 s-

The model weight estimation results, which are obtained by using Model set
I are given in Figure[4.3. In this figure the time intervals in which a deviation is
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to be expected from the nominal situation, i.e. u® = 1and p®,... u(M =0, are
indicated by a shaded background. The first fault that is injected is an elevator
lock-in-place fault at a deflection of 10 deg. This fault results in the model weight
13 becoming approximately 0.7. From this weight it can be deduced that the
elevator is stuck at a position of 0.7-17 = 11.9 deg, which closely approximates the
injected fault of 10 deg. The second fault is a 50% fault in the a-sensor. This fault
is correctly identified since the model that corresponds to a total a-sensor fault
has a weight of approximately 0.5, while the nominal model also has a weight
of approximately 0.5. The third fault is a lock-in-place fault of the rudders at a
deflection of —15 deg. This fault is described by the weight 1(?) a2 0.55 in the time
interval 52.5 — 60 s. From this model weight it can be deduced that the rudder
surfaces are locked at a position of 0.55 - —25 = —13.75 deg, which again closely
approximates the injected fault. The fourth fault is a total outage of hydraulic
system 4. This fault is identified by u(™), which approaches a value of 1 during
insertion of the fault. The last fault corresponds to the separation of two engines
on the right wing. It can be seen that this fault is correctly identified at 7’ = 95s by
1), which becomes almost 1. Moreover, it can be seen that throughout the whole
simulation ;(®) approaches 1 again when there are no faults injected. The two
unmeasured states 3 and ¢ are both estimated well. The variance accounted for
(VAF) (defined in (3.53) on page|70) values for the estimates of both unmeasured
states are above 90%. The VAF values for the estimates of the measured states are
all above 99%, which indicates an almost perfect state reconstruction.

4.4.2 Nonlinear Simulation

The simulation of the nonlinear model is initiated with the same initial condition
as the linear simulation. Again, the simulation is performed in closed-loop. The
controller used for the simulation is a subspace predictive controller, which will
be described in Chapter[6. The simulations are performed under turbulent con-
ditions in order to excite the aircraft, which is beneficial for fault diagnosis. The
simulated fault scenario differs from that of the linear simulation in the fact that
the faults are not injected sequentially. Instead, a number of nonlinear simula-
tions is performed, each time starting at the same operating point. The operating
point of the aircraft throughout the nonlinear simulation is held near the operat-
ing point at the start of the simulation by the controller. This is done deliberately
to ensure that the linear models in the model set are able to adequately represent
the nonlinear aircraft model.

In each simulation, the lock-in-place faults are injected at 7" = 20 s. For each
of the considered surfaces, the lock-in-place positions cover the whole deflection
range with intervals of 0.5 deg. For example, the first simulation to asses the iso-
lation performance of rudder lock-in-place faults starts at a lock-in-place fault at
—25 deg. In the subsequent simulations, the lock-in-place position is increased
with 0.5 deg until the maximum deflection of 25 deg is reached. In this way, 101
different simulations are performed. For elevator lock-in-place faults 81 simula-
tions are performed and for aileron lock-in-place faults 61 simulations are per-
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Figure 4.3: Estimated model weights.
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formed. Note that the deflection position at which the lock-in-place faults are in-
jected does not necessarily correspond to the actual position of the surfaces at the
moment of fault injection. So, just after injection of the faults the surfaces move
with their maximum operation rate to the lock-in-place position.

The model set used for the simulations is model set II, which has been de-
scribed in Table In addition to the local models in model set II, the nominal
model is added to this model set. This has been done to simplify the isolation
process. If the nominal model would not be present in the model set, it would
not be immediately clear from the estimated model weights whether the system is
operating in a nominal condition. In this case, the system condition must be recon-
structed by using (3.52) on page69. With the addition of the nominal model in the
model set, however, this can be omitted. For the purpose of fault isolation from
the estimated model weights, a decision logic is designed. For this logic, 4 system
modes are defined. Each of these modes has a different fault signature. The sys-
tem modes and their signatures are described in Table/4.7. In this table, “AND”
denotes the logical “AND” operator, S,,, denotes the system mode, 7% is the fixed
fault threshold, which is chosen as Ty = 0.2, and the signatures Fy,..., F, are
boolean variables. The fault threshold is chosen such that false alarms, which are
highly undesirable in aircraft, are completely prevented in the simulations that
have been performed.

Table 4.7: Fault types and their signatures.

Sm | Description Signature

0 | Nominal Fo=|1-u®| <Ty

1 Elevator fault | Fy = [u® + p® 4+ 4| > Ty AND |1 — u®| > Ty
2 | Aileron fault | F3=|u® +uD|> Ty AND |1 — pu®| > Ty

3 | Rudder fault | F; = [V +pu®| > Ty AND |1 — p®)| > T}

The isolation results for elevator lock-in-place faults are shown in Figure/4.4. It
can be seen that these faults are generally isolated correctly and also quite quickly
with a mean isolation delay of 1.9 s. There is also a small number of faults that
is incorrectly isolated. The deflection positions at which faults are incorrectly iso-
lated, are close to the positions at which the elevator surfaces are normally operat-
ing for the simulated flight conditions. This has the result that it is more difficult
to notice a stuck surface. Since the aircraft dynamics for these specific faults can
not be modeled only by the nominal model, an incorrect isolation is made.

The isolation results for aileron lock-in-place faults are shown in Figure [4.5.
It can be seen that generally the faults are correctly isolated. The mean isolation
delay for aileron lock-in-place faults is 4.5 s. This delay can be accounted to the
relatively slow dynamics of the Boeing 747 benchmark model. Since the isolation
is directly depending on how the faults affect the aircraft dynamics, the isolation
delay can also be expected not to be very fast. Furthermore, the threshold 7 is
chosen quite large to prevent false alarms.
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The isolation results for rudder lock-in-place faults are shown in Figure[4.6. It
can be observed that although most of the time the faults are isolated correctly,
there are also quite some faults that are missed. These faults are in the deflection
range 0 — 13 deg. The reason for this is that the rudder surface is already in this
deflection range at the moment of fault injection. This is also the reason why the
isolation results are asymmetric with respect to the deflection range of the rudder.
Another reason that adds to the missed alarms is the choice of the threshold T7.
The mean isolation delay for rudder lock-in-place faults is 3.8 s.
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Figure 4.4: Isolation results for elevator lock-in-place. The asterisk () denotes a
correct isolation and the circle (o) denotes an incorrect isolation.

A summary of the isolation results is given in Table 4.8| In this table, the per-
centages for correct isolation, incorrect isolation, missed alarms, and false alarms
are listed. It can be seen that no false alarms were encountered in any of the 243
simulations that have been performed. This, however, was a specific objective
which was used for tuning of the threshold 7. An apparent downside of this
choice is that a larger isolation delay should be accepted and that faults are some-
times not isolated at all, resulting in missed alarms. This is one of the reasons
that the percentage of missed alarms for rudder lock-in-place faults is quite high.
Furthermore, the missed alarms are caused by the simulations being performed
near the same operating point. Allowing the aircraft to operate in varying oper-
ating regions would generally lead to a heavier use of the control surfaces, which
would lead to a smaller missed alarm rate.
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Figure 4.5: Isolation results for aileron lock-in-place. The asterisk (x) denotes a
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Table 4.8: Summary of the isolation results.

Elevator Aileron Rudder
lock-in-place | lock-in-place | lock-in-place
Correct isolation 91.4% 93.4% 75.2%
Incorrect isolation 8.6% 6.6% 3%
Missed alarm 0% 0% 21.8%
False alarm 0% 0% 0%

4.5 Conclusions

Two model sets have been designed for the Boeing 747 benchmark model with
the method based on orthogonal decompositions, which has been described in
Chapter 3. The first model set is designed with the purpose of showing the ver-
satility of the used model set design method. It therefore models two types of
lock-in-place faults, a range of multiplicative sensor faults, and two components
faults that occurred during the “Bijlmerramp”. A second model set is designed
that only includes those faults considered in the benchmark model that can rea-
sonably be anticipated. These faults are lock-in-place faults in three groups of
control surfaces, namely rudders, ailerons, and elevators. An important observa-
tion that could be made from the designed model sets is that lock-in-place faults
are represented by local models that correspond to conditions in which the con-
trol surfaces are stuck at their limit position. This way of modeling lock-in-place
faults has also been proposed by |Liao et al. (2005), which confirms the correctness
of the used model set design method. The two model sets have been evaluated in
two separate simulation studies. In the first study a linear simulation of the air-
craft is performed. In this study a number of faults including specific faults that
occurred during the disastrous EL AL flight 1862 are correctly identified. In the
second study, the isolation capabilities of the proposed method are demonstrated
by means of simulation of the full nonlinear aircraft model.
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Persistency of Excitation for
Subspace Predictive Control

ubspace predictive control is a control method that is characterized

by the combination of a predictive control law with a subspace pre-
dictor. If the subspace predictor is updated on-line with new input-output
data from the controlled system then subspace predictive control can be
considered to be a data-driven adaptive control method. The property
of data-driven adaptation is very suitable for fault-tolerant control. For
the purpose of updating the predictor, the input-output data should be
persistently exciting. In this chapter a method is presented that ensures
persistency of excitation for subspace predictive control. This is done by
adding a term to the cost function used by the predictive control law. This
term is designed such that only the least excited directions of the input
space are additionally excited. An advantage of the method is that the
optimization problem that has to be solved for the predictive controller
can still be solved by using quadratic programming. The proposed exci-
tation method is evaluated in simulation on a linear parameter-varying
model. The simulation results show both the ability of subspace predic-
tive control to function as an adaptive control method and how the pro-
posed excitation method is used to persistently excite the system.

5.1 Introduction

Subspace identification is a technique that can be used for identification of state-
space models from input-output data. This technique has drawn considerable
interest in the last two decades (Van Overschee and De Moor‘1996;‘Verhaegen and
Dewilde ’@), especially for linear time-invariant systems. A reason for this is
the efficient way in which models are identified for systems of high order and
with multiple inputs and outputs. Subspace identification can be used to form a
subspace predictor for prediction of future outputs from past input-output data
and a future input-sequence. This subspace predictor can be computed without
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realization of the actual state-space models, which significantly reduces compu-
tational requirements. Favoreel and De Moor (1999) have combined the subspace
predictor with model predictive control dMaciejowski 2002), resulting in a con-
trol algorithm that has been given the name subspace predictive control (SPC). In
SPC, the output predicted by the subspace predictor is part of the cost function
of the predictive controller. As a result of the subspace predictor being generated
completely from input-output data, SPC is a data-driven control algorithm.

SPC has since its establishment by\Favoreel and De Moor (1999) been modi-
fied to fit application-specific requirements by different researchers dWoodley etal.
‘2001,' Kadali et al.H2003). For example, Kadali et al. 42003) have used a predictive
control objective function with incremental inputs instead of the regular inputs.
Furthermore, the same authors have added constraint handling and a feedfor-
ward term to the basic SPC algorithm bV‘Favoreel and De Moor d1999). However,
the implementation of Kadali et al. (2003) did not take advantage of the ability
of SPC to adapt to changes in the system. If SPC is implemented such that the
subspace predictor is updated on-line based on new input-output data, it can be
considered to be an adaptive controller. Woodley et al. (2001) have implemented
SPC in an adaptive manner and have also extended it to include H, cost func-
tions. Furthermore, they demonstrated the adaptive implementation of SPC on a
simple single-input single-output model. A suggestion made by Woodley et al.
(M) is that in the near future falling cost of computation would also make the
algorithm suitable for more complex situations.

An important requirement for obtaining a subspace predictor that can accu-
rately predict the system outputs, is that the available input-output data contains
sufficient information on the system. This requirement can be met by ensuring
that the input signals are persistently exciting the system. In this chapter, the no-
tion of persistency of excitation (PE) is directly linked to non-singularity of a data
matrix that contains input signals stacked in a particular order. This matrix will be
explained later. The requirement for PE can conflict with the control objective, e.g.
in the steady-state case. In such a case the control objective can be met by using
constant input signals, which are not persistently exciting the system. If the input-
output data in this case is used to update the subspace predictor, this can lead to
a drastic degradation of the performance of the predictor. Therefore, in order to
ensure PE, even in the steady-state case, the system should be excited more than
strictly necessary for control. Instead of using a randomly generated excitation
signal, such additional excitation can be derived by minimizing a control-oriented
measure of model mismatch, as is done for example by‘Forssell and Liungﬁ (2000);
Bombois et al. d2006) for prediction error identification.

In the framework of simultaneous predictive control and system identification,
methods for excitation have been proposed by formulating additional constraints
for the optimization problem related to the predictive control law (Shouche et al.
1998; ‘Aggelogiannaki and Sarimveis 2006). The drawback of these methods is
that the additional constraints are non-convex. The result of this is that a non-
convex optimization problem should be solved each time step to compute the
control input. Standard constrained generalized predictive control problems re-
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quire solving a quadratic program, which is a convex optimization problem (Ma-
ciejowski|2002). Since solving non-convex problems is significantly more involved
than solving convex problems, the additional non-convex constraints are not de-
sirable from a computational point of view.

The contribution of this chapter is twofold. First, this chapter shows that SPC
can be used as a data-driven adaptive control method if the subspace predictor is
updated on-line each time new input-output data becomes available. The prop-
erty of SPC to adapt to changing system conditions is very desirable for fault-
tolerant control, because it allows for adaptation to unanticipated fault conditions.
Second, an excitation method is proposed for the SPC algorithm. This excitation
method only considers the input directions that are least excited. These directions
are then additionally excited. In this aspect the proposed excitation method is re-
lated to the methods described by\Forssell and Ljung (2000); Bombois et al. (2006).
The excitation method is integrated with SPC by adding an extra term to the cost
function of the predictive control problem. The additional term allows the opti-
mization problem to remain convex and quadratic. This problem can therefore
still be solved by using quadratic programming. The two contributions of this
chapter are demonstrated in simulation by means of a linear parameter-varying
(LPV) model of a mass-spring-damper (MSD) system. This model has been intro-
duced in Chapter 3.

The SPC algorithm presented in this chapter is derived for the deterministic
case, which means that it assumed that there is no process noise and measure-
ment noise. This choice is motivated by one of the goals of this chapter, which is
to display the effectiveness of the proposed excitation method. Adding process
and measurement noise to the system also excites the system. Since this would
make the actual contribution of the excitation method less visible, it is omitted.
A derivation of the SPC algorithm in a stochastic setting, i.e. with process and
measurement noise, can be found in Chapter|6|

The organization of this chapter is as follows. In Section 5.2, SPC theory is
described for the deterministic case. Next, in Section 5.3 the proposed method
for ensuring PE is explained. Section|5.4 contains the simulation results. Finally,
concluding remarks are provided in Section|5.5.

5.2 Subspace Predictive Control

The SPC algorithm proposed by‘Favoreel and De Moor (1999) elegantly combines
two theories, namely subspace identification and generalized predictive control.
This combination results in a controller that does not require a model of the sys-
tem in advance. Instead, based on input-output data, a subspace predictor can be
identified that is used by the predictive controller. Because SPC does not require
an explicit model of the system, it can be referred to as a “model-free” control
method (Favoreel et al. 1999). However, this name is arguable because the sub-
space predictor can be considered to be a kind of model dWoodley et al. 2001).
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In the following, the subspace predictor is derived first. Next, this predictor is
integrated with a predictive control law.

5.2.1 Subspace Predictor

The general problem considered in linear subspace identification is to find system
matrices A, B, C, and D, given measurements of the inputs u;, € R™ and outputs
yi, € R! of a linear time-invariant state-space system described by

Tpy1 = Axp+ Bug, (5.1)
yr = Cuxp+ Duy, (52)

where x;, € R" is the state of the system. Matrix input-output relations are com-
monly used in subspace identification. These relations can be obtained by a recur-
sive substitution of (5.1)-(5.2) and they are given by

Y, = 0,X,+7T;U,, (5.3)
Yy = 0;X;+T;Uy. (5.4)
Let the measurements of the inputs and outputs u; and y; be given for k €

{0,1,...,2M + j — 2}, then the Hankel matrices for the output are constructed
as

[ yo vy Yj—1
yl y2 “ e y]
}/p = . . . y
LYm—1 Ym0 YM4j-2
Y Ym+1 0 YM4j-1
Ym+1  Ym+2 YM+j
L YoM -1 YoM 0 YoM 452

and the Hankel matrices for the input (U, and Uy) are constructed in a similar
fashion. The subscripts p and f denote “past” and “future”, respectively. The
matrices X, and X are defined as
Xp = [3?0 xrq1 - .’L’j,ﬂ, (56)
Xy = lom v o Tvag-al (5.7)

The parameter M, which denotes the number of block rows of the Hankel matrices
is typically chosen much smaller than the number of columns j. The observability
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matrix O; and the block Toeplitz matrix 7; are given by

C D 0 ... 0
CA CB D ... 0
CAI—t CAI=2B CAI3B ... D

A relation between X, X,,, and U, can be formulated as
Xy = AjXp+’CjUp, (5.9)

where K; = [A7"'B A772B ... B]. The objective of the subspace predictor is to
provide a prediction of future outputs (i.e. Yy) given the past inputs and outputs
(i.e. Y, and U,) and a future control input sequence (i.e. Uy). Such a prediction
can be obtained by manipulation of the matrix relations (5.3), (5.4), and (5.9). From
(5.3) the following relation for X, can be derived

Xp = O} Yy = TUp), (5.10)

Where (9; denotes the pseudo-inverse of O;. Substitution of (5.10) into (5.9) results
in
_[aipt ot Y,
Xy = [470] K; - 410]T}] [Uz] (5.11)

Next, substitution of (5.11) into (5.4) results in the desired relation
Yy =0; |[A0] K; —AJ’O}TJ-] [Z} + T,Us = L,V, + LUy, (5.12)

where V,, = [Y,]' U!'" and L, and Ly are the predictor matrices. Given the data
matrices V,,, Yy, and Uy, these predictor matrices can be estimated by solving the
following least squares problem

2

. Vi
er]{lilf Yf — [Lp Lf] |: Uf :l F7 (513)
where || - || denotes the Frobenius norm of a matrix. The least squares problem

defined in (5.13) can be solved efficiently by computing the RQ-decomposition
(Van Overschee and De Moor 1996)

R
v, Ry 0 0 Qf
Us | =| Ry R 0 T (5.14)
Yy R31 R3» Rss T
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and subsequently computing

Ry 0

—1
=[L, L 5.15
N R 19

L =[R31 R3] {

where L, € RMX(m+OM and [, € RMIXMm are the predictor matrices. These
matrices can subsequently be used to form the subspace predictor

9f = Lyvp + Lyuy, (5.16)
where v, denotes [y uy | with y, = [y a1 ¥nrge o 9T up = [l
ul_yr4o -+ uf]”, and ¢ denotes the current time step. The future input vector is
defined as uy = [uf,, uf,, --- uf,,]". Note that (5.16) makes use of the fact
that matrix relation (5.12) also holds for the individual vectors of V},, Yy, and Uy.
In order to further clarify the derivation of the subspace predictor, the time line
related to it is shown in Figure|5.1. In this figure a distinction is made between
an identification part and a prediction part, which takes place in the actual future.
The identification part consist of two time intervals, one which is named “Past”
and one which is named “Future”. The data from these two intervals is used to
create the “past” and “future” Hankel matrices (see (5.5)). Note that although
the name of the “Future” time interval in the identification part might indicate
otherwise, it contains data from the past. In the identification part a subspace
predictor is derived, which is used to make a prediction in the actual future. The
time interval over which the prediction is made is indicated in the right part of
Figure(5.1 by the prediction horizon.

Identification Prediction
“Future”
Prediction
“Past” Horizon

I I I I
I I I I b

k=0 k=M k=M+j—2 k=t+1 k=t+M

k=2M+j—-2=t
Figure 5.1: Time line for the subspace predictor.

New input-output data becomes available at each time step. This new data
should be used to update the predictor matrices L, and L. This can be done by
computing a new RQ-decomposition at each time step using the new input-output
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data. Subsequently the updated predictor matrices can be derived by using (5.15)
and the new RQ-decomposition. In this way the predictor is based on a batch of
data from a fixed-size time window that lags behind one time step with respect to
the actual time. Because of its operating principle this updating scheme is referred
to as a receding horizon scheme (Woodley et al. 2001).

5.2.2 Subspace Predictor Integrated with a Predictive Control Law

The predictive control problem can be formulated as follows. Given a future
reference output ry = [riy1 re42 ... 74, and a prediction of the outputs
Uf = [Yir1 Yir2 --- Yeen,), find an input sequence uy such that the following
quadratic cost function is minimized

N, N,

P c
J = Z@Hk —rik) " Qe(itk — Tevk) + Z uﬂrkRCqu,
k=1 k=1
= (G —r5)" Qaliiy — rg) + uf Rouy, (5.17)

where N, is the prediction horizon, N. is the control horizon, Q. € R™*!, and R, €
R™*™ are the positive semi-definite weighting matrices for the tracking error and
the input effort, respectively. The matrices Q, € RYe'*Nol and R, € RNemxNem
are formed from Q. and R, as follows

Qe 0 0 R. 0 0
Qa = 0o . 0 |> R, = 0 0 (5.18)
0 0 Q. 0 0 R

The cost function used by Favoreel and De Moor (1999) is equal to (5.17). How-
ever, this cost function does not penalize the rate with which the input signal
changes. Since this is desirable for practical systems such as aircraft, the objective
function has been augmented with an additional term. This term consists of the
incremental inputs Auy, where A = (1 — z71) and 27! is the back-shift operator
of one time step. The resulting cost function is of the form

J= (95 — rf)TQa(g)f —rp)+ u?Rauf + Au?RaAAuf, (5.19)

where R2 has matrices R on its diagonal and is constructed in a similar manner
as R,. The main idea of SPC is to use the subspace predictor derived in (5.16)
to compute ¢ rather than to use a mathematical model as is common in model
predictive control (MPC) dMaciejowskibOOZ). Before the subspace predictor from

(5.16) can be used in (5.19), it has to be modified such that the control horizon is
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properly incorporated. This can be done in the following way

E
"L, 0 - 07
0 I, :
R : . w0
yf:LpUp+Lf o .- 0 I, ur, (5.20)
0 - 0 I,
L O 0 I/

where I,,, € R™*™ denotes an identity matrix. Next, the incremental input Auy
has to be formulated as a function of uy to ensure that uy is the only optimization
variable in J. This can be done as follows

Sa
Sy

I, 0 0o .-
—In  In 0 0 oo --- 0 0 I,
. . o0 -~ 00 O

Auy = 0 —I, I, - Slup—| .. L e (B2D)
: S0 0 0 00 0
0 0 —I,, In

Now, (5.20) and (5.21) can be substituted into (5.19), which results in the following
relation

J = vy Ly QaLyvp + vy Ly QuLyBug — vy Ly Qury +uj BT L QuLyvp
+uf E' L QoLgEuy — uf ETLT Qary — 17 QaLyvy — 17 QoL Euy
+rf Qary + ufRaqu +uy SAR Saug —uy SAR Syvp
—vl'STRS Sauy + vl ST RE Sy, (5.22)
where the underlined terms do not depend on uy and can therefore be discarded

from the cost function. The remaining terms can be written in a compact form as
follows

J(uy) :u?HuercTuf, (5.23)

where
H = FE"L7Q.L{E+ SXR:Sa + Ra, (5.24)
"' = 2] LIQuLsE —rfQoLsE — v STRESA) . (5.25)

The SPC algorithm can subsequently be derived by minimizing J(u ;) with respect
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to uy. This can be done by computing the value of u for which it holds that

8J(uf)_ T /T T _
76‘1” —uf(H +H)+c =0. (5.26)

This computation results in the control law

up=—c(H" + H)™ " (5.27)

The control law formulated in (5.27) does not take into account any constraints
on the inputs, input rates, and outputs that exist in practical systems. Therefore,
this control law must be modified such that it does take these constraints explic-
itly into account. The constraints in question are given by the following set of
inequalities

AUvmin < Auf < AUvmax; (528)

Umin < uf < Umaxv (529)

Ymin < gf < Ymam (530)
where Umin = [ugin T uﬁin]T’ AUmin = [Auﬁin T Auain]T’ Ymin = [yglin T

yL.]¥, and the same notation also holds for the parameters with subscript max.
Again, it must be ensured that u; is the only optimization variable to appear in
these constraints. This can be done by substituting (5.20) and (5.21) into the in-
equality constraints, which then results in

AIjmin + vap S SAuf < Aljrna)c + vapa (531)
Umin < uy < Uma)u (532)
Ymin - Lp’Up < LfEuf < Ymax - Lp’l)p. (533)

Now, the inequality constraints can be grouped into one inequality constraint of
the form

Aincquf S bincqa (534)
with
T
Aineg = [Ivom —Inom S5 =83 (LB —(LE)'] . (5.39)
bineq = [Urgax 7Utz:in (AUmax+vap)T (7AUmin*S'uUp>T
T
(Yimax — Lpvy)T (—YmiﬁLpup)T} . (5.36)

Next, the predictive control law can be formulated as a solution for the following
quadratic programming (QP) problem at each time step
min J(uy)
uf

s.t. Ainequf S bineq~ (537)
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Solving a QP problem with linear constraints is a convex problem provided that
matrix H, which appears in the cost function J(uy), is positive semi-definite. This
is the case for J(uy). Several efficient methods exist for solving convex QP prob-
lems dMaciejowskiHZOOZ). Note that at each time step only the first input vector
from uy, i.e. w441, is used for control because of the receding horizon operating
principle of the predictive controller. This principle has been illustrated earlier in
Figure[1.4 on page 14.

5.3 Persistency of Excitation

The control law defined by (5.37) can result in a constant control signal (i.e. Auy =
0), for example during steady-state situations. The result of this is that the matrix
to be inverted in (5.15) becomes singular. Therefore, a method is proposed that
prevents this by ensuring PE. A formal definition for PE is the following

Definition 5.1 (Verhaegen and Verdult 2007) The sequence uy, k = 0,1,2,..., Ny is
persistently exciting of order h if and only if there exists an integer Ny, such that the
matrix

ug U1 . UN,—1
Ul u2 . UN,,

Uonn, = | . ) ) (5.38)
Up  Up+1 coo UNp+h-—1

has full rank h.

According to this definition, PE can be achieved by manipulating the input such
that the Hankel matrix containing the inputs (Up j,n,) over a time window does
not become (close to) singular. Note that the matrix Uy j, n, is constructed in the
same way as Uy and U,,. Since Uy is the data matrix that is most directly manip-
ulated by the SPC algorithm, this matrix is used as the target matrix to be manip-
ulated by the excitation algorithm. The corresponding part of Uy in the R-matrix
defined in (5.14) is [R21 Rao]. So, by manipulating Uy, the part of the R-matrix
that must be prevented from becoming singular is also manipulated. Note that by
manipulating [Ra1 Rg2|, matrix Ry; is also (indirectly) manipulated.

Now that it is determined that [R2; Rao| is the part of the R-matrix that is to
be manipulated, it should be determined how it must be manipulated. A sensible
approach to do this, is to additionally excite the least excited directions of Uy, i.e.
those directions in the input space that actually need to be excited. The least ex-
cited directions can be determined by performing a singular value decomposition
(SVD) on [Ra1 Ra2]. Computing an SVD of [Ry; Ra2] is equivalent to computing
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an SVD of Uy. The SVD of [R21 Rs;| has the following form

[Ro1 Rl = [wi wa -+ Wnm—1 Warm) -
SR T
sy 0 O e 0 0 07 vy
0 s D0 0 :
o . - 0 0 0 UMm—1 ) (5.39)
. UMm
. . SMm—1 0 0 0
L 0 N 0 0 SMm 0 0 i
I/

where w; € RM™ and v; € R'*7. The least excited direction of [Ry; Ras] (and
hence Uy) is warym, and the second least excited direction is ws.,—1, etc.

5.3.1 Computing the SVD Using Inverse Iterations

Computing the complete SVD of matrix [R2; Ra2] becomes a computationally
burdensome task if the dimensions of this matrix are large. The need to compute
such an SVD at each time step of the control algorithm would make it unsuit-
able for on-line implementation. Moreover, computation of the complete SVD is
not necessary since only the least excited directions are sought after. Therefore,
only these least excited directions are computed efficiently by using the inverse
iteration algorithm (Chan 1984) that only computes that part of an SVD that cor-
responds to the smallest nonzero singular value. The inverse iteration algorithm
is described as follows. Let wg, and vy, be vectors from the SVD of a matrix ©
that correspond to the smallest singular value oy,. In the case of (5.39), this would
mean that wsy, = Warm, Vsy = Vi, and os, = Sy, The inverse iteration algo-
rithm starts with an initial guess for ws, at & = 0, followed by an iteration that
should be performed until convergence:

1. OV (k+ 1) = wsy (k).

2. Vsy(k +1) = Oy (k + 1)/ |05y (k 4 1)]|2-

3. 0T (k+ 1) = vey (k + 1).

4. wey(k+1) = Wey (k4 1) /||Wsy (k + 1)]|2.
After convergence of this iteration, the smallest singular value can be computed as
Osv = 1/||Tsv 2. In order to run the inverse iteration algorithm the pseudo-inverse
of matrix © must be computed since it is required in steps 1 and 3. For example,

step 1 of the iteration is solved by @, (k + 1) = OTwg, (k). It suffices to compute
the pseudo-inverse only once, since (07)" = (61)7.

The described inverse iteration sequence computes only one direction that is
least excited. It can be desirable to compute more than one direction. This can
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also be done very efficiently using inverse iterations. For this purpose the influ-
ence of the least excited direction is removed to compute the second least excited
direction. Since not O itself, but O, is used in the inverse iteration algorithm, the
influence of the least excited direction is removed directly from O in the follow-
ing way

ef=oef - USVwSTV/USV. (5.40)

Next, the second least excited direction can be computed by applying the inverse
iteration algorithm using ©1. This second sequence of iterations would then result
in Warm—1, YMm—1, and sarm—1 from (5.39). The same procedure can be repeated
several times to obtain more least excited directions.

5.3.2 Excitation Condition Integrated with the SPC Cost Func-
tion

Once one or more non-persistently excited directions are obtained, the cost func-
tion used in the optimization problem defined in (5.37) should be modified such
that the system is additionally excited in the non-persistently excited directions.
For this problem the following optimization is introduced

P z 2
—~ =
WMm I
. WMm—1 I
min |[p ) —| .| ur|l (5.41)
Uf . .
WMm—Npg+1 I
2

where p denotes the excitation level and Npg denotes the number of least excited
excited directions that should be additionally excited. The objective of the op-
timization problem posed in (5.41) is to get u; as close to the non-persistently
excited directions as possible. Since by definition of the SVD, the directions w; are
normalized vectors, the norm of vector [wl,, . w1 -+ wij,_n..4]7, which
is v/ Npg, might make P much smaller than Z. Therefore, the parameter p is intro-
duced to ensure that P and Z have the same order of magnitude. Furthermore, p
can be used to determine the excitation level. The higher p is chosen, the higher

the excitation level.

Evaluation of the cost function from (5.41) results in
Jexc(ug) = up T  Tuy — 2P  Tuy. (5.42)

This function can then be added to the cost function from (5.37). Before this is
done, a multiplication factor 7 > 0 is introduced that weighs Jex.(us) before it
is added. This factor 7 allows 7Jexc(us) to be in the same order of magnitude as
the other terms in the cost function. It can be considered to be the same kind of
tuning parameter as ), R,, and R2, relative to which it should be chosen. After
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addition of 7Jex(uy), the modified H and ¢ matrices (defined in (5.24) and (5.25))
become

Heyweo = HA47I'T, (5.43)
k. = ' —2rP71, (5.44)

exc
and Aineq and bineq remain unaltered. Note that Hey. is still positive semi-definite
since it consists of the sum of two positive semi-definite matrices. It is therefore
apparent that the resulting optimization problem can still be solved by convex
quadratic programming. This is an important advantage of the proposed excita-
tion condition since it allows an efficient computational implementation.

5.4 Simulation Results

The goal of this section is twofold. First, the ability of SPC to adapt to a varying
system is demonstrated. Second, the proposed method for ensuring PE is evalu-
ated. The two goals are addressed separately using two different simulations. The
reason for this is that the PE condition is best demonstrated in a steady-state sim-
ulation, while the simulation used to demonstrate the adaptation ability of SPC
does not contain any steady-state situations. Both simulations use the LPV model
of the MSD system that has been introduced in Chapter|3.

5.4.1 SPC as an Adaptive Controller

The LPV-MSD model that has been introduced in Chapter|3 consists of four vary-
ing parameters, namely the parameters k; and ms, and two fault parameters f;
and f>. In this section, only k; and ms are used as varying parameters. The fault
parameters f; and f> are both chosen to have a constant value of 1, which corre-
sponds to the nominal (non-faulty) value. In order to assess the ability of SPC to
adapt to changing parameters, a simulation of the LPV-MSD model has been per-
formed. In this simulation, the parameters k; and mg3 vary according to the signal
trajectories shown in Figure[5.2. In addition to these parameter variations, a more
severe change of the model dynamics is injected into the simulation at 7" = 200 s.
This change of the model dynamics involves a time delay of 0.25 s in both input
channels and is inspired from Fekri et al! 42006b), in which it was also used to
assess the quality of an adaptive controller. The time delay can be interpreted as
a fault. The objective of the SPC algorithm in the simulation is to track a constant
reference signal for the variables z; and x3, which are measured by y; and y3 (see
Figure 3.4 on pagel65 for a graphical representation of these variables). The SPC
algorithm is simulated with a frequency of 10 Hz, which means that the subspace
predictor is also updated with this frequency. The relevant tuning parameters for
the SPC algorithm are chosen as: M = N, = 20 and N, = 5. The value for M is
chosen according the rule that it should be chosen two or three times larger than
the expected system order (Van Overschee and De Moor 1996). For comparison
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purposes, a conventional MPC algorithm is implemented with the same control
objective as the SPC algorithm. This MPC algorithm is based on a model of the
system with parameter values k; = 1 and m3 = 1. Note that these two values cor-
respond exactly to the centers of the intervals in which they vary. Furthermore, the
control parameters for the MPC algorithm are chosen similar to the parameters of
the SPC algorithm.

The result of the simulation is shown in Figure |5.3. In this figure the root
mean square error (RMSE) values for the SPC algorithm and MPC algorithm are
depicted. These values are computed for the two tracked signals, i.e. x; and z3. It
can be seen in the figure that the RMSE value for the SPC algorithm is rather large
at the start of the simulation. The reason for this is that the SPC algorithm requires
data to adjust to the controlled system. In the time interval from 50 s to 200 s, the
SPC algorithm has settled and a good comparison can be made with the MPC
algorithm. An important observation that can be made is that the SPC algorithm
manages to maintain a relatively steady RMSE in this interval as opposed to the
MPC algorithm. This is not surprising since the MPC algorithm is designed for
the operating point with k; = 1 and m3 = 1. So, when the simulated system
moves away from this operating point, the performance of the MPC algorithm
tends to deteriorate as can be seen in the figure. A much larger deterioration of
the performance of the MPC algorithm can be recognized after the injection of
the delay in the two input signals at 7' = 200 s. The SPC algorithm, on the other
hand, manages to maintain a steady performance after a short transient period,
in which data is gathered to adapt to the changed system conditions. This result
clearly shows the ability of SPC to adapt to changes in the controlled system.

0 50 100 150 200 250 300

0 50 100 150 200 250 300
Time [s]

Figure 5.2: Simulated values for k; and ms.
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Figure 5.3: RMSE values of the tracked signals using MPC and SPC.

5.4.2 Persistency of Excitation for SPC

In this section again the LPV-MSD model is simulated. However, in this simula-
tion no parameters are varied. The values for the varying parameters are chosen
constant as k1 = 1 and m3 = 1. This is done to display how the proposed exci-
tation method can be used to persistently excite the system in steady-state situa-
tions, which is where it is needed most. The control objective in this simulation
is, similarly to the previous section, to track a constant reference signal for the
variables x; and x3. The described simulation is performed for the cases with
and without additional excitation. The tuning parameters related to the SPC al-
gorithm without excitation are chosen similarly to the previous section. In case
of additional excitation, the two least excited directions are computed and addi-
tionally excited. Tuning of the parameters p and 7 is performed empirically and is
very much dependent on the parameters of the controlled system. The parameter
p is chosen such that the vector containing the least excited directions and the vec-
tor containing the input signals (see (5.41)) have a norm that is in the same order
of magnitude. The parameter 7 is chosen relative to the other tuning parameters
in the predictive control cost function, i.e. Q,, R,, and Rf, such that a desired
level of excitation is achieved.

In order to evaluate how the proposed method affects the excitation of the
system, the reciprocal condition number of [Re; Rgs] is analyzed. For the two
cases, this condition number is depicted in Figure 5.4. A low reciprocal condi-
tion number indicates a (nearly) singular matrix and therefore a low excitation
level. In Figure 5.4 it can be clearly seen that the condition number for the case
without additional excitation becomes very small. More specifically, it approaches
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the smallest number that can be represented on the machine used for the simula-
tion. This indicates that the considered matrix becomes singular. On the other
hand, the condition number for the case with excitation remains at a steady level
of approximately 10~* throughout the whole simulation. The price to pay for this
excitation is a lower control performance. This is illustrated in Figure[5.5. In this
figure, the RMSE values of the tracked signals are shown for the cases with and
without additional excitation. It can be seen that the RMSE for SPC with excita-
tion is larger than for SPC without excitation. However, it should be noted that
the RMSE for SPC with excitation is in the order of magnitude of 10!, which can
still be considered acceptable.

Reciprocal condition number of [Re1  Raa)

10 T .
107+
107
107+ Nt

— With excitation mi ‘m

- = =Without excitation h

I
10’20 I I
0 50 100 150

Time [s]

Figure 5.4: Comparison of the reciprocal condition number of [Ry; Ras] for the
cases with and without additional excitation.

5.5 Conclusions

In this chapter subspace predictive control has been introduced. This control
method combines a predictive control law with a subspace predictor. An on-line
update of the predictor using new input-output data gives this control method
the ability to adapt to changing system conditions, which is very desirable for
fault-tolerant control. An issue concerned with updating of the subspace predic-
tor is that the input-output data should be persistently exciting. For this purpose,
a method has been proposed to ensure persistency of excitation. The notion of
persistency of excitation is related to non-singularity of a Hankel matrix contain-
ing input signals. In order to ensure persistency of excitation an additional term
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Figure 5.5: RMSE values of the tracked signals for the cases with and without
additional excitation.

is added to the cost function used by the subspace predictive controller. This ad-
ditional term ensures that the system is excited in the least excited directions of
the input space. A big advantage of the proposed method is that the optimiza-
tion problem that is required to be solved each time step can be solved by using
quadratic programming. This is in contrast to methods proposed in literature that
require a non-convex problem to be solved. Two simulation examples are pre-
sented that both use a linear parameter-varying model of a mass-spring-damper
system. One simulation shows the ability of subspace predictive control to adapt
to changing system conditions, while the other simulation shows the effectiveness
of the proposed excitation method. Although persistency of excitation comes at
the cost of a slightly degraded control performance, it is shown that a satisfactory
trade-off can be made between persistency of excitation and control performance.
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Subspace Predictive Control
Applied to Fault-Tolerant
Control

his chapter presents a fault-tolerant control system based on sub-

space predictive control. In this control method the mathematical
model used by conventional predictive controllers to predict the future
output is replaced by a subspace predictor. Because the subspace predic-
tor is continuously updated in a closed-loop setting based on new input-
output data, it can naturally adapt the controller after a fault has occurred.
This property is very useful for fault-tolerant control since faults might
be unanticipated. A novel feature of the presented subspace predictive
control algorithm is that the predictor is recursively updated in a compu-
tationally efficient way. A multiple-model fault isolation scheme is used
to distinguish between different anticipated faults. For anticipated faults
the control system is specifically configured such that it can accommodate
these faults more quickly. For unanticipated faults a more general setting
of the control system is used to allow full adaptation. The proposed fault-
tolerant control system is evaluated on the Boeing 747 benchmark model.

6.1 Introduction

In Chapter 5 the basic subspace predictive control (SPC) algorithm has been in-
troduced and it has been extended with a condition that ensures persistency of
excitation. In this chapter other extensions are made to the SPC algorithm, which
include the derivation of the subspace predictor in a stochastic closed-loop setting
and the recursive update of this predictor. In previous papers in which SPC has
been used (Favoreel and De Moor 1999; Woodley et al. 2001; Kadali et al. 2003)
as well as in Chapter 5 the subspace predictor has been derived using open-loop
subspace identification techniques. However, when the SPC algorithm is active,
the data gathered to update the predictor inherently is closed-loop data. It has
been proven that using closed-loop data from a stochastic system for subspace
identification results in a biased predictor (Ljung and McKelvey‘1996‘). Therefore,
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a number of different methods have appeared in literature to deal with this issue
(Ljung and McKelve}ﬁ 1996; Favoreel et al. 1999; Jansson 2005). Most of these meth-
ods require explicit knowledge of the controller or are based on (overly) stringent
assumptions that limit their applicability. Recently, a practically applicable closed-
loop subspace identification technique that does not require explicit knowledge
of the controller has been developed by Chiuso (2007). Based on this technique
a subspace predictor under closed-loop conditions can be derived (Dong et al.
@), which is also used in this chapter.

Another novel feature of the SPC algorithm presented in this chapter is the
way in which the subspace predictor is updated in a recursive manner. This up-
dating scheme differs from others that are based on the “receding horizon” prin-
ciple, such as, for example, the scheme proposed by‘Woodley et al. (2001). In the
“receding horizon” updating scheme the predictor is based on input-output data
from a fixed time window lagging behind the current time step. In the recur-
sive updating scheme new data is appended to the old data, which is discounted
with an exponential forgetting factor. This scheme has the advantage that it can
be implemented in a computationally efficient manner by using Givens rotations
(Golub and Van Loan“l996).

The implementation of SPC as an adaptive controller makes it very suitable
for fault-tolerant control (FTC) of aircraft. Most FTC systems deal with faults by
using pre-designed or parameter dependent controllers depending on the type of
fault that has occurred (Hajiyev and Caliskan 2003). These systems require that
the faults either be known in advance or be modeled by a variation of specific
parameters (TSong et al. 2002; Shin and Belcastro 2006; Belkharraz and Sobel 2007).
In this way control designs can be made for each anticipated fault. Besides the
fact that this approach can be very involved if many faults are anticipated, unan-
ticipated faults or faults that cannot be modeled by parameter changes such as
severe structural damage can occur. An advantage of SPC is that it can adapt on-
line to this type of faults. This property is the result of the subspace predictor that
is continuously updated using new input-output data. The main contribution of
this chapter is to display the usefulness of SPC for realistic FTC problems. The
developed SPC-based FTC system is applied to the Boeing 747 benchmark model.
Simulations are performed with this model, in which the objective is to fly a pre-
defined flight trajectory even after the occurrence of a number of critical faults.
The considered fault conditions are stuck control surfaces and the fault condition
of the aircraft during the disaster with EL AL flight 1862, that crashed into an
apartment building in Amsterdam in 1992. This disaster is also referred to as the
“Bijlmerramp” (NRC W)

Most aircraft flying today have control laws that are designed using classi-
cal single-loop control methods. These methods are preferable over multivari-
able control methods from a clearance point of view dFielding et al. ‘2002). How-
ever, single-loop control methods are likely to display a degraded performance
in case of faults that cause heavy cross-couplings between flight modes. These
cross-couplings are usually the result of loss of symmetry of the aircraft after
faults. Multivariable control methods can cope better with these cross-couplings

”
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because they simultaneously achieve several control objectives. Multivariable
control methods are therefore to be preferred over single-loop control methods
from an FTC point of view (Bodson and Groszkiewicz 1997; Kale and Chipper-
field 2005). This is one of the reasons that research into multivariable flight control
recently has attracted considerable interest. From this perspective the FTC appli-
cation of SPC, which is also a multivariable control method, is well motivated.

This chapter is organized as follows. First, the architecture of the FTC system is
explained in Section|6.2. Subsequently, the closed-loop SPC algorithm is described
in Section[6.3. In Section 6.4 the mechanism that (re-)configures the SPC-based
FTC system is explained. The simulation results of this system applied to the
Boeing 747 model are given in Section|6.5| Section 6.6 explains how the proposed
FTC is implemented in a real-time simulation environment. Finally, concluding
remarks are provided in Section[6.7.

6.2 Architecture of the Fault-Tolerant Control System

The architecture of the SPC-based FTC system consists of two control loops. The
task of the outer control loop is to provide reference signals for the manipulated
variables to be tracked by the inner loop. The manipulated variables are roll angle
¢, pitch angle 6, and true airspeed Vrag, each of which is a function of one of
three controlled variables. These controlled variables are the altitude h, the yaw
angle 1, and the true airspeed Vrag, respectively. A desired flight trajectory can be
generated by choosing appropriate reference signals for the controlled variables.
The architecture of the SPC-based FTC system is depicted in Figure[6.1. In this
figure it can be seen that, besides the two control loops, a fault isolation system
is present. Both the control loops and the fault isolation system are explained in
more detail in the following.
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Figure 6.1: Architecture of the SPC-based FTC system.
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6.2.1 Control Loops

The outer loop is implemented by means of a straightforward proportional inte-
gral derivative (PID) scheme. In order to track a desired altitude h,.¢, a pitch angle
command is generated as follows

d(h — hyet)

T (6.1)

ercf - P@(h - hrof) + I@ /(h - hrcf)dt + DG
where P, Iy, and Dy are design parameters that determine the behavior of the
outer loop. The desired yaw angle v is tracked by issuing a roll angle command
to the inner loop. This command is generated as follows

bt = ol =) + 1y [0 = vrtar + 0,0 (6
where P, I, and Dy are the design parameters. An anti-windup scheme is im-
plemented for both (6.1) and (6.2) to prevent the integrators from continuing to
integrate in case of saturated control signals. The command for true airspeed is
generated in the outer loop by directly issuing the true airspeed command to the
inner loop. The inner loop is implemented using SPC, which is explained in detail
in Section/6.3.

6.2.2 Fault Isolation

When SPC is used for FTC, in principle no fault information is required because
SPC has the ability to adapt to changed system conditions. However, this adap-
tation process can take some time. In case of anticipated faults the adaptation
can be expedited by using prior knowledge of the fault. This prior knowledge
includes information as to which controls should be used to accommodate the an-
ticipated fault. The requirement for the fault isolation scheme used in this chapter
is therefore to obtain this information by determining which controls cannot be
used anymore due to faults. This requirement is more easily achieved than the
requirements for fault detection and isolation (FDI) systems commonly used for
FTC.

An important requirement for FDI systems commonly used for FTC is that the
faults should be estimated with a certain accuracy, since they are directly used
by the FTC system (TSong et al. ‘2002;‘Pachter and Huang‘ZOOfB,‘WShin and Belcastro
2006). If these faults are not estimated accurately enough, poor performance of the
FTC system may result. There also exist methods that explicitly take uncertainty
of the FDI information into account, such as for example the methods developed
by Kanev (2004). A requirement for the application of these methods is that the
uncertainty of the FDI information must be known. Obtaining this uncertainty,
however, is not a straightforward task. Therefore, the SPC algorithm uses a differ-
ent philosophy to deal with fault model uncertainty. This philosophy is to let the
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controller adapt to a changing system using available input-output data. In this
way, no fault model is used and also no fault model uncertainty is required.

Fault isolation is implemented by means of multiple-model estimation. A
multiple-model system consists of a model set that contains local models, each
corresponding to a specific condition of the system. In an FDI setting, the lo-
cal models usually represent different fault conditions of the monitored system
(Zhang and LiH1998). Besides fault models, the model set also contains the nom-
inal fault-free model of the system. When the system is free of faults, the model
corresponding to the nominal case has maximum activation, which corresponds
to a model weight of one, and all other models in the model set have a model
weight of zero (minimum activation). In case of a fault, one or more of the local
models corresponding to faults have model weights larger than zero.

The model set used for fault isolation is derived using the model set design
method based on orthogonal decompositions, which has been described in Chap-
ter(3. Since the local models in this model set are valid in a limited region around
the operating point at which they have been derived, they are used accordingly.
This means that fault isolation is performed only near this operating point in the
simulations.

6.3 Closed-Loop Subspace Predictive Control

The SPC algorithm (Favoreel and De Moor 1999) elegantly combines a subspace
predictor with a generalized predictive control law. When the subspace predictor
is updated recursively, SPC has the ability to adapt to unanticipated conditions. In
this section, it is first explained how the subspace predictor is derived in a closed-
loop setting and how it can be updated recursively, then it is explained how the
predictor is integrated with a predictive controller.

6.3.1 Closed-Loop Subspace Predictor

Contrary to previous work in which SPC was used (Favoreel and De Moor 1999;
‘Woodley et al. ‘2001 H ‘Kadali et al. ‘2003), in this chapter the subspace predictor is
derived using closed-loop identification techniques. In this previous work, open-
loop identification techniques were used under closed-loop conditions. This re-
sults in a biased predictor due to correlation between inputs and measurement
noise dLjung and McKelvey 1996). Favoreel et al. (1999) have described an SPC
method in which the subspace predictor is based on a closed-loop identification
technique, but this technique is based on explicit controller knowledge and also
assumes that the controller is time-invariant. This assumption prohibits the use of
SPC as an adaptive controller. Therefore, the subspace predictor is derived using
the closed-loop identification techniques developed by Chiuso @), which do
not have the aforementioned limitations. ‘Dong et al. (2008‘) give a complete ex-
planation of how these identification techniques can be used to derive a subspace
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predictor that can be integrated with a predictive control law. In this section, only
the basic steps are treated.

Derivation of the subspace predictor

The model considered for deriving the subspace predictor is a state-space model
in innovation form and has the following form

Tht1 = Az, + Buy, + Key, (6.3)
ye = Cuzp+eg, (6.4)

where z;, € R" is the state of the system, u;, € R™ is the input of the system,
yr € R! is the output of the system, and ¢, is assumed to be a zero-mean white
noise sequence. The matrices A, B, C, and K are the state-space matrices that
describe the system. The model described by (6.3)-(6.4) can also be written as

Trp41 = Pxp + Buyp + Ky, (6.5)

where = A— K. Subspace identification is based on relations between matrices
that are systematically filled with input-output data. Two of such data matrices
that are required for the derivation of the subspace predictor are created as follows

Y = [Ur Yet1 0 Ukaji-1l, (6.6)
[ Uk—p  Uk—pi1 cr Uk—pij1 ]
Yk—p Yk—p+1 " Yk—pt+j—1
Uk—p+1 Uk—pt+2 - Uk —p+j
Zlppk)y = Ye—p+1  Yk—p+3 - Yk—p+i |, (6.7)
Uk—1 Uk e Uk+45—-2
L Yk—1 Yk Yk+j—2 |

where p denotes the “past” time horizon, the subscript [k —p, k) denotes the range
of the time indices of the entries in the first column of Zj;,_, 1), and j denotes the
number of columns that is used to create the data matrix Zj;,_,, 1y. Usually it holds
that j > p. Let f denote the “future” time horizon, then the following matrix
relation can be derived (Chiusd‘2007; Dong et al.‘2008‘)

Yy 0 0 0 Ej,
Vi1 C[B K] 0 0 Ejg1
: = : 5 . ikt ) +
Yirf-1 COI2B K] -+ C[BK] 0 B -1
Co*~'[BK] C®2?BK] - C[B K]
0 C®~1BK] --- ..+ C®[BK]
+ : 3 3 : 3 : Zikp,k): (6-8)

0 0 C®'BK] --- C®BK]
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where Ej,; and Y;;, Vi € {0,1,..., f — 1}, are defined in a similar manner as Y},
in (6.6). Note that an important property of (6.8) is that the first block row does
not depend on “future” inputs, i.e. ugy;, Vi € {0,1,..., f — 1}. It is this property
that allows for an unbiased estimate of the system matrices. In order to estimate
the predictor, it suffices to only consider the first block row, which can be written

in the compact form
Y, = EOZ[kfp,k) + E. (6.9)

Subsequently, =y can be estimated by solving the least squares problem

Ep = argmin ||V — Z0Zp_pp) I3, (6.10)
=0

where || - ||p denotes the Frobenius norm. The least squares problem defined
in (6.10) can be solved, similarly to (5.13) on page 101, by performing an RQ-

decomposition
R
—_—N—

Zjje— R 0 QT
[k—pk) | _ 11 1 6.11
[ Yy } {Rm R22} {Q%’}’ (6.11)
from which the estimate =, can be computed as

Zo = Ra1 Ry (6.12)

Let ¢ denote the current time step, then based on the estimate éo, a subspace
predictor of the following form can be derived

Wp A
I, — ¢
——
R Up— .
yt+1 1"1 yz p A1 0 O i
Ut+2 Iy - A A ST U1
. =1 . S ! , . (6.13)
. r . U1 : : 0 '
g1 S Ajoy Ajg - Ay Lttsr—2

where I', and A, are the desired subspace predictor matrices and the parameters
I'; and A; can be constructed from & as

i—1
I, = Ei+)» CO KT, (6.14)
j=0
i—1
A = COTIB4Y COTTIKA;, (6.15)

J=1

with Tg = Zg and A; = CB. The parameters g, Vi € {1,...,f —1} can be
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constructed from = by using the relation

CosUBK] Cd2ABK] --- C[B K] Zo
0 CH-UBK] - o C9BK] 21
= ,(6.16)
0 0 CHUBR] - CHUBE] éf.fl

where the matrix on the left-hand side of (6.16) is an estimate of the corresponding
matrix from (6.8).

Recursive implementation of the R-update

For the construction of the data matrices Y and Z,_,, ;) explained in the previ-
ous section it was assumed that input-output data was present from time steps:
k—pk—p+1,...,k+ j— 1. For an adaptive implementation of the subspace
predictor, the predictor matrices should be recomputed again each time new data
becomes present, i.e. at each new time step. In case of the receding horizon updat-
ing scheme, this would mean that new data matrices Y1 and Zj,_p, 1 j41) must
be generated using data from time steps: k —p+ 1,k —p +2,...,k + j. Subse-
quently, a new estimate for the predictor matrices could be obtained by comput-
ing the RQ-decomposition from (6.11) based on the new data matrices. However,
computing such an RQ-decomposition at each time step can become computa-
tionally expensive for large data matrices. This computation can be prevented by
using Cholesky updating and downdating of the R-matrix dWoodley et al. 2001).
The principle of this method is that old data is removed in the downdating step
and new data is included in the updating step. These two steps combined require
much less computational effort than computing the whole RQ-decomposition. A
drawback of using Cholesky updating and downdating is that matrix RRT is re-
quired to be positive definite at any time. However, this cannot be guaranteed.
Therefore, a recursive updating scheme of the R-matrix is used, which is similar
to the one developed by‘Lovera et al. (2000). This recursive updating scheme dif-
fers from the “receding horizon” scheme in the fact that it does not use a fixed
window of data. Instead, new data is appended to the old R-matrix, after it is
discounted with an exponential forgetting factor. The recursive updating scheme
is explained in the following.

Let the upper left and bottom left block matrix of R at time step ¢t — 1 (R(t —
1)) be denoted by Ry1(t — 1) and Rg;(t — 1), respectively. If new data becomes
available at time step ¢, a new vector [wg yI'1T can be created. This vector can be
used to update matrix R(t — 1). The updating step consists of firstly appending
[wl yl 1" to [Ri1(t — 1)T Rai(t — 1)T]". Subsequently, by applying a sequence
of orthogonal Givens rotations (Golub and Van Loan 1996), the matrix is made
lower triangular, i.e. updated. This sequence of manipulations is described in the
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following equation

VAR (t—1) | w, }Q: [ Ru(t) | 0 } 7 6.17)

VAR (t — 1) ‘ Yt Ro1(t) | 9t

where (2 denotes the sequence of orthogonal transformations and R;;(¢) (which
is lower triangular) and Ry, (t) are the matrices from which an updated = can be
computed according to (6.12). A more detailed explanation of Q is given in Ap-
pendix|Cl Note that R33 is not considered in the updating process because it does
not influence the computation of Ry (¢) and Ry (t). Also, in (6.17) a forgetting
factor A € [0, 1] is implemented to discount old data. The smaller the value of X
that is chosen, the more old data is discounted.

6.3.2 Closed-Loop Subspace Predictor Integrated with a Predic-
tive Control Law

The predictive control problem has been formulated in Section[5.2.2] In that sec-
tion the following cost function has been derived

J = (iy —rp)"Qally — ry) + uf Rauy + Auf RS Auy. (6.18)

This cost function requires a prediction of the future output, i.e. §¢. The subspace
predictor derived in (6.13) can be used for this purpose. In order to include a
control horizon, the subspace predictor is modified as follows

E
"I, O - 0]
0 In :
. : c. t. 0
Yr erwp—i-Ar 0 0 I, Uf, (6.19)
0 0 Iy
L O 0 Inl
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where the matrix E ensures that the input remains constant after the control hori-
zon N.. Next, Auy can be written as a function of the optimization variable u

Sa
I"L O 0 N
I L. o0 0 00 - 00 I, 0
_ , 00 - 00 0 0
Auy = 0 —I, I, . Slup—1 . . ... | wpe
o0 00 00 0 0
O O _Im [m
(6.20)

When relations (6.19) and (6.20) are substituted into (6.18) and the terms that do
not depend on uy are discarded, the following cost function results

J(us) = uf (E"ATQuAvE + SKRSSa + Ra) uy
+2 (W TTQuAE — 1T QoA E — wl STRSSA) uy.  (6:21)

Constraints should be placed on uy, Auy, and 3y according to the physical
limitations of the aircraft. These constraints can be formulated as follows

Unin < uf < Umax, (622)
AUpin < A’u,f < AUpax, (623)
Yiin < gf < Yma)u (624)

where Umin = [urjglin e ugin]T’ AUmin = [Auglin e Auﬁin]T’ Ymin = [ylrl;lin e

yL. 17, and the same notation also holds for the parameters with subscript max.
Since the considered optimization variable is u, relations (6.19) and (6.20) are
substituted into constraints (6.22)-(6.24). This substitution results in the inequality

constraint

Ainequf < bineq7 (625)
with
T
Aieg = [Inom —Inm S5 =SK (0B (0B (626)
bineq = [Urz;ax - Ugin (AUmax + Swwp)T (_AUmin - Swwp)T
T
(Yinax — Frwp)T (=Ymin +Frwp)T} . (6.27)

The predictive control law can now be formulated as a solution of the following
quadratic programming (QP) problem at each time step

min J(uy)
uf
s.t. Ainequf < bineg- (6.28)

Efficient solvers exist for this QP problem (MaciejowskiHZOOZ). Note that at each
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time step only the first input vector from u is used for control.

The control law (6.28) is derived for linear time invariant systems of the form
(6.3)-(6.4). However, in this chapter it is applied to a nonlinear aircraft model. This
usage is justified since the nonlinear aircraft model can be approximated well by
a linear parameter-varying (LPV) model (Marcos and Balas 2004), which has the
same structure as (6.3)-(6.4) but with time-varying system matrices. The variation
of the time-dependent parameters is relatively small most of the time. In this
case SPC can easily adapt to the time-varying system. Only during fast variations
of the time-dependent parameters with respect to the dynamics of the aircraft or
during strong nonlinear behavior of the aircraft, SPC can be less accurate.

6.4 SPC (Re-)configuration

SPC is a control method that can adapt itself to the system for which it is used.
In order to fully exploit these capabilities, preferably all relevant available inputs
and outputs should be used to estimate the subspace predictor. Since the Boe-
ing 747 model has 30 control inputs (see Appendix A) and even more outputs,
a selection of these inputs and outputs must be made to minimize the computa-
tional burden of updating the subspace predictor. Therefore, the SPC-based FTC
system is configured such that it uses different sets of control inputs for different
fault conditions. For anticipated faults a specific set of inputs is chosen and for
unanticipated faults a more general set is chosen. In this way, the changed dy-
namics in case of anticipated faults can be captured quicker than purely relying
on adaptation of SPC. Both sets of control inputs are chosen such that sufficient
control redundancy is available to perform “elementary manoeuvres” after the
occurrence of a fault. By “elementary manoeuvres” three basic abilities of the air-
craft are meant. These are: the ability to descend or ascend, the ability to change
heading, and the ability to decelerate or accelerate.

The SPC-based FTC system is demonstrated for three fault conditions, all of
which are also used as benchmark faults in GARTEUR AG-16 dSmaili etal. ‘2006).
Two of these three fault conditions are an anticipated elevator lock-in-place and
an anticipated rudder runaway. Lock-in-place is characterized by the freezing of
a control surface at a certain position, regardless of the actuator commands. Run-
away of a control surface is characterized as when the surface suddenly deflects
to its maximum or minimum deflection position and locks at that position. These
faults can have drastic consequences since they make further operation of the air-
craft extremely difficult. The considered rudder runaway fault affects both the
upper and lower rudder. The elevator lock-in-place fault affects all 4 elevator sur-
faces. The two faults are isolated using the multiple-model framework described
in Chapter|2 based on model set II described in Section|4.3.4. The third fault condi-
tion is the condition of the aircraft during the disastrous “Bijlmerramp” scenario.
For this fault condition it is not reasonable to assume that it can be anticipated be-
cause of the highly improbable faults that occurred during this disaster. Therefore
this fault condition is treated as an unanticipated fault. The faults that occurred
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on the aircraft during this disaster include loss of the engines and the pylons on
the right wing of the aircraft. This loss caused a shift of the center of gravity of
the aircraft, a total weight loss of 10.028 kg and damage to the right wing of the
aircraft. This wing damage at its turn resulted in lift loss, increased drag, a yaw-
ing moment, and a pitching moment. On top of this, hydraulic systems 3 and 4
malfunctioned, which resulted in reduced or total loss of control authority of a
number of control surfaces dSmaili and Mulder‘ZOOO).

In the nominal case, the previously mentioned manoeuvres can be performed
using SPC with an input vector u; consisting of only 4 inputs, which are listed
in Table 6.1. Each input can, however, drive more than one of the controls of
the Boeing 747 listed in Appendix [A. This is because it is assumed that these
controls are symmetrically actuated (or asymmetrically in case of the ailerons and
spoilers). In Table 6.1 the numbers of the controls driven by the SPC inputs are
shown between brackets. The control surfaces that are not directly driven by SPC
are chosen constant and equal to a value that is valid for a trimmed situation at
the beginning of the flight simulation. For an elevator lock-in-place fault, the SPC-
based FTC system uses the stabilizer instead of the elevator surfaces for control of
the longitudinal motion. For the rudder lock-in-place fault, the engine controls are
subdivided into a control input that controls the left engines and one that controls
the right engines such that differential engine thrust can be used when necessary.
Furthermore, spoilers are used asymmetrically to increase the control authority in
the lateral direction. A positive value of the SPC spoilers input results in a positive
deflection of spoilers 5 to 8, while spoilers 13 to 16 remain at a zero deflection. A
negative value of the SPC spoilers input results in a positive deflection of spoilers
13 to 16, while spoilers 5 to 8 remain at a zero deflection. For unanticipated faults
a set of inputs is chosen with redundant control authority for both longitudinal
and lateral dynamics. Note that for anticipated conditions, the input set can be
chosen smaller. This has the additional benefit that SPC can be implemented in a
more computationally efficient manner.

Besides the input vector uy, the SPC-based FTC system also requires a number
of measurements from the aircraft to be used in the output vector y;. A selection
is made from the many available measurements taking into consideration three
issues. The first issue is the size of the output vector y;, which should be chosen
as small as possible to keep the computational requirements low. The second
issue is concerned with the quality of the subspace predictor. For this purpose,
the chosen outputs should capture the relevant dynamics of the system. Finally,
the third issue is concerned with the manipulated variables. The control objective
of the SPC-based FTC system is for the reference trajectory r to be tracked by
the predicted output vector §; (see (6.18)). Therefore, the output vector y;, should
include the measurements of the physical quantities to be manipulated. With the
previous considerations in mind, 7 outputs are chosen, which are listed in Table
6.2 together with their noise levels. These realistic noise levels correspond to those
of conventional aircraft sensors (Breeman 2006).

The SPC-based FTC system should be initialized such that it does not start
identifying the system from scratch when a switch is made from nominal opera-
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Table 6.1: SPC input allocation.

Ailerons (1-4)
Elevators (17-20)
Rudders (22-23)
Engines (26-29)
Ailerons (1-4)
Stabilizer (21)
Rudders (22-23)
Engines (26-29)
Ailerons (1-4)
Spoilers (5-8/13-16)
Rudder lock-in-place Elevators (17-20)
Engines left (26-27)
Engines right (28-29)
Ailerons (1-4)
Spoilers (5-8/13-16)
Elevators (17-20)
Unanticipated faults Stabilizer (21)
Rudders (22-23)
Engines left (26-27)
Engines right (28-29)

Nominal case

Elevator lock-in-place

tion to an operation mode corresponding to a fault or when the simulation starts
from T' = 0 s. Therefore, matrix R is initialized using input-output data obtained
from simulation of the open-loop aircraft. In case of anticipated faults, open-loop
data of the model with the anticipated fault is used to initialize the R matrix. And,
in case of unanticipated faults, open-loop data of the nominal model is used to ini-
tialize the R matrix.

Table 6.2: Outputs used for SPC.

Output Symbol | Unit | Noise (standard dev.)
roll angle ¢ deg 1.73-107*
pitch angle 0 deg 1.73-1074
yaw angle 0 deg 1.73-107*
true airspeed Vras | m/s 1.00- 1071
angle of attack a deg 1.73-1073
sideslip angle B deg 1.73-1073
altitude h m 1.00- 1071
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6.5 Simulation Results

In this section the results of four simulations are presented. In all four simulations
a flight scenario is flown consisting of an initial straight and level flight at an
altitude of 980 m. During this first flight phase, the faults are inserted. Next,
a second phase consisting of a heading change is initiated. The third and final
flight phase of the trajectory consists of a descent to an altitude of 100 m. In the
first simulation, the flight scenario is simulated without any faults. In the second,
third, and fourth simulation, faults are injected during the first flight phase. In
the second simulation a lock-in-place fault of the elevators is injected, in the third
simulation a rudder runaway fault is injected, and in the fourth simulation the
faults that occurred during the “Bijlmerramp” are injected.

Before the actual simulation results are presented, the choices for the simu-
lation settings and tuning parameters are described first. The aircraft model is
simulated at a sampling frequency of 100 Hz. The fastest mode of the aircraft that
has been observed from linearizations of the nonlinear aircraft model at different
operating points is about 0.25 Hz. The sampling frequency of the SPC-based FTC
system is 10 Hz, which is chosen sufficiently fast relative to the aircraft dynamics.
The SPC parameters are chosen as: p = 20, f = 20, A = 0.995, N, = f,and V. = 5.
The subspace predictor parameters p and f are chosen relative to the aircraft dy-
namics. The parameter A is tuned such that the predictor is modified just enough
at each time step to cope with the varying dynamics. The weighting matrices (),
R,, and Rf are tuned relative to each other based on a combination of simulation
experience and tuning rules as described in Chapter 7 of the book by Maciejowski
(2002). In that chapter, it is for example argued that increasing R, and R2 rel-
ative to ), leads to reduced control activity. Although reduced control activity
can be very desirable for a stable steady-state condition, it limits the ability of the
controller to deal with disturbances, which can result in an unstable closed-loop
system in extreme cases. Therefore, in tuning the weights, a trade-off has to be
made between having little control activity and having the ability to deal with
disturbances. Next, it is noted that the weighting matrices are tuned differently
for the different settings described in Table[6.1} Furthermore, weighting matrix Q,
only contains nonzero entries on its diagonal for the entries that are manipulated
by SPC, i.e. ¢, 0, Vras, and §.

The tuning procedure for the outer loop parameters Py, Iy, Dy, Py, 15, and
Dy is based on simulation experience, similar to the weighting matrices. Parame-
ter j, which determines the number of columns in the data matrices in (6.6) and
(6.7) is chosen to have a value of 1000. This means that the data matrices contain
1000/10 Hz=100 s of data. Note that these large data matrices are created only
once for each condition. Once an R-matrix is computed based on these data ma-
trices, only the R-matrix is used and updated by the SPC algorithm. The R-matrix
is generally much smaller than the data matrices since its dimensions do not de-
pend on j. All simulations have been performed under closed-loop conditions
with measurement noise levels as described in Table 6.2. Moreover, turbulence
that is modeled using the Dryden spectra (Van Der Linden 1998) is added to the
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simulated aircraft.

6.5.1 Trajectory Following for the Nominal Case

In this section, the simulation results for the nominal condition are presented.
The flight trajectory starts with a straight and level flight at an altitude of 980 m,
a true airspeed of 92.6 m/s, and a flap setting of 20 deg. This initial condition
corresponds to the initial condition defined in GARTEUR AG-16. During the first
flight phase the control objective is to maintain a constant altitude, yaw angle,
velocity, and sideslip angle. Next, at 7' = 75 s a change in yaw angle from 180 deg
to 60 deg is initiated. Finally, at 7" = 150 s a descent is initiated to an altitude of
100 m. This descent is performed with a fixed flight path angle v of —5 deg. In
Figure|6.2 the references for the manipulated variables are represented by dashed
lines. It can be seen that the reference signals are tracked very well, especially
when the fact is considered that the SPC-based FTC system is completely data-
driven. It can be seen that during the heading change maneuver, the sideslip angle
is allowed to have a minimal tracking error, preventing large surface deflections.
The flight trajectory is depicted in Figure[6.3 as well as the angle of attack, yaw
angle, and the altitude. The actuator deflections and the engine commands are
depicted in Figure|6.4. The engine commands are expressed in engine pressure
ratio (EPR). It can be seen that the control signals are quite smooth and remain
well within their operating limits, which is a result of the constraints on u .
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Figure 6.2: Roll angle, pitch angle, true airspeed, and sideslip angle of the aircraft
for the nominal condition. The dashed signals correspond to the control reference
signals.

6.5.2 Trajectory Following for Elevator Lock-in-Place

In this section, the simulation results for elevator lock-in-place are presented. The
simulation starts with the same initial condition as is described in the previous
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Figure 6.4: Actuator deflections and engine commands for the nominal condition.

section for the nominal case. The elevator lock-in-place fault is injected at 7" = 18 s
at a deflection of 1.9 deg. The fault is correctly isolated at 7" = 28 s. The relatively
large isolation delay is a result of the fact that the elevator locks at a deflection
position, which exactly suits the flight condition at that time. So, the faults can
not be isolated until the aircraft is sufficiently excited by turbulence. It can be seen
in Figure|6.5/that the reference signal for the true airspeed has been increased just
after isolation of the fault. This has been done to increase the effectiveness of the
stabilizer surface to allow sufficient control authority. Furthermore it can be seen
that tracking of the reference signals is performed satisfactorily. Only during the
descent, which is again performed with a fixed flight path angle of —5 deg, the
pitch angle command is tracked with a small error. In Figure 6.6, the angle of
attack, yaw angle, and altitude are depicted together with the flight trajectory. For
comparison purposes, the same trajectory is also flown using the autopilot from
the GARTEUR AG-16 benchmark, the result of which is indicated by a grey signal
in the figure showing the flight trajectory. It can be seen that the result of the
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fault is a pitching moment which cannot be counteracted by the autopilot since it
does not have control over the stabilizer. Therefore, when the autopilot is used,
human pilot intervention is required to accommodate this fault. Since the elevator
lock-in-place fault does not affect lateral motion, the heading change maneuver is
still performed adequately by the autopilot. In Figure[6.7 the actuator deflections
and engine commands of the SPC-based FTC system are shown. It can be seen
that the elevator deflection remains constant after the fault is injected and that the
stabilizer takes over after the fault is isolated. Note also that the rate of change
of the stabilizer input is small when compared to the other surfaces. The reason
for this is that the stabilizer surface has a maximum deflection rate of 0.5 deg/s,
which is about 100 times smaller than the other surfaces. Generally, it can be
concluded from these simulation results that the reaction on the fault is performed
quickly and adequately as a result of the available prior knowledge being open-
loop simulation data from a similar fault condition. This prior knowledge has
significantly reduced adaptation time.
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Figure 6.5: Roll angle, pitch angle, true airspeed, and sideslip angle of the aircraft
for elevator lock-in-place. The dashed signals correspond to the control reference
signals.

6.5.3 Trajectory Following for Rudder Runaway

In this section, the simulation results for rudder runaway are presented. The rud-
der runaway fault is injected at 7' = 18 s. After this, the upper and lower rudder
surfaces start moving with a rate of 50 deg/s from their position at 7" = 18 s to
the maximum deflection position of 25 deg. The rudder runaway fault is isolated
at T = 22 s. It can be seen in Figure[6.8 that the aircraft starts to slip immedi-
ately after insertion of the fault and that the reference signals are not tracked very
well just after the fault. This is because SPC needs some time to gather data for
adapting to the faulty condition. After this has been done, the reference signals
are tracked satisfactorily again, except for the sideslip angle. The reason for this
is that it cannot be controlled completely towards zero due to the severity of the
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elevator lock-in-place. In the trajectory plot, the gray line corresponds to the tra-
jectory flown with the autopilot.

>

= . . .
2 5 —
= sl ; w5
g
A
< 5 ; ; i 2
=z
w
=3
7
£2
5
=1 1.6
8
£ L4r
E @
£ I £12
Z 0 £
£ 3]
< 0.8
= -1
< ; ; ; ; ; 0.6 i i i i i
0 50 100 150 200 250 300 0 50 100 150 200 250 300

Time [s] Time [s]

Figure 6.7: Actuator deflections and engine commands for elevator lock-in-place.

fault. AtT = 75 s the heading change is initiated. Subsequently, at 7" = 150 s a
descent to 100 m is initiated with a fixed flight path angle of —5 deg. Note that
the aircraft picks up speed in this descent. This is the result of the fact that the
engines are required to provide differential thrust to counteract the yawing mo-
ment of the rudder runaway and can therefore not reduce thrust. In Figure 6.9
it can be seen that both the heading change and the descent manoeuver are per-
formed adequately. Furthermore, it can be observed that the autopilot is unable
to counteract the yawing moment resulting from the rudder runaway fault, not
even with a full deflection of the spoilers and ailerons. It is therefore clear that the
human pilot must intervene to try to accommodate the fault. In Figure|6.10 it can
be seen that after the fault some time is required before the control signals become
smooth again, which is a result of the adaptation process. Also, it can be seen how
the ailerons work together with the engines (providing differential thrust), and
the spoilers to counteract the yawing moment resulting from the rudder runaway
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fault. Next, it can be observed that in the time interval 7' = 150 — 300 s the rudders
have moved away from their maximum deflection position of 25 deg because the
aircraft picks up speed resulting in a reduced blowdown limit, which means that
the rudders are forced back towards their neutral position.
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Figure 6.8: Roll angle, pitch angle, true airspeed, and sideslip angle of the air-
craft for rudder runaway. The dashed signals correspond to the control reference
signals.
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rudder runaway. In the trajectory plot, the gray line corresponds to the trajectory
flown with the autopilot.

6.5.4 Trajectory Following for “Bijlmerramp” Condition

In this section, the simulation results for the “Bijlmerramp” fault condition are
presented. The simulation setting in this section differs from the setting of the pre-
vious three simulations in the fact that it can accommodate unanticipated faults.
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Figure 6.10: Actuator deflections and engine commands for rudder runaway.

The setting for unanticipated faults continuously uses 7 inputs to control the air-
craft, as is described in Table|6.1. Furthermore, no FDI is used for this setting. The
simulation starts at an altitude of 980 m, a true airspeed of 133.8 m/s, and a flap
setting of 1 deg according to the initial conditions defined in GARTEUR AG-16 for
this specific fault. The fault is injected at 7' = 10 s. Immediately after injection of
the fault, the aircraft starts to roll and slip as can be seen in Figure|6.11. However,
the SPC-based FTC system manages to quickly regain control and track the refer-
ence signals again after a period of about 15 s. In Figure|6.12 it can be seen that
the trajectory can be flown safely even after occurrence of the very severe fault
condition. Furthermore, it can be seen that the autopilot is not capable of safely
flying the aircraft, since it crashes about 50 s after the injection of the fault. In Fig-
ure|6.13 the actuator deflections and the engine commands for the “Bijlmerramp”
scenario are shown. It can be seen that the right engines immediately stop pro-
viding thrust after the fault is injected. Furthermore, it can be observed that the
stabilizer is used in a limited range to prevent overly large altitude fluctuations
due to the slow operation of this surface. An important conclusion that can be
drawn from this simulation is that the SPC-based FTC system is able to adapt to
an unanticipated condition, which severely changes the dynamics of the aircraft.

6.5.5 Discussion of the Simulation Results

The presented simulation results show that by using the proposed methodology
it is possible to design a controller for the nominal and faulty aircraft using only
input-output data. This conclusion is remarkable, especially when the complex-
ity of the aircraft model is considered. Two desirable properties of the proposed
control design methodology are described in the following;:

1. Modeling of the system to be controlled takes up a large part of the design
process of model-based controllers. Since the proposed methodology pro-
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vides a framework to derive a controller using only input-output data, a
significant amount of time can be saved in the design process.

2. For fault-tolerant control it is often required to have a model of the post-fault
system. This requirement results in the impossibility of providing fault-
tolerant control for all possible faults since not all possible faults can be
anticipated. However, the proposed methodology has the ability to adapt
on-line to unanticipated faults using input-output data. Therefore, it is a
very suitable method for fault-tolerant control.

Opposing these desirable properties, there is an important issue of SPC that
has not been addressed in this chapter. This issue is concerned with guaranteed
stability of the SPC algorithm. Although from the many simulations that have
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Figure 6.13: Actuator deflections and engine commands for the “Bijlmerramp”
fault condition.

been performed there is no reason to believe that stability is an insuperable issue,
a formal proof for stability is as of yet not available. It should be noted that SPC
forms no exception in this aspect, since global stability proofs for a number of
other adaptive controllers are also not available. An example of such an adaptive
control scheme is robust multiple-model adaptive control (Fekri et al. 2006a), for
which a proof for global asymptotic stability is also lacking.

6.6 Real-Time Implementation

The simulation results of the SPC-based FTC system presented in the previous
section have been obtained using off-line simulations. An important property of a
control method that is meant for real-time on-line implementation is its computa-
tional requirements. These requirements should not be too large such that they re-
strict a practical implementation for realistic systems. In order to demonstrate that
the presented SPC-based FTC system does not have too restrictive computational
requirements, an on-line version has been developed. This on-line version has
been created in the scope of GARTEUR AG-16. In this project the participants have
been invited to develop on-line FTC schemes for implementation on the SIMONA
research flight simulator (SIMONA 2007). A real-time simulator environment has
been developed specifically for this research simulator. This environment, which
has been named Delft University Environment for Communication and Activa-
tion (DUECA) (Van Paassen et al. ‘2000), poses different requirements to the FTC
system than the off-line simulation environment, which is MATLAB/Simulink.

An important requirement of the on-line simulation environment is that all
computations required for the FTC system should be finished well within the
sample time of the Boeing 747 benchmark model, which is 0.01 s. Since the com-
putations required for the developed SPC-based FTC system are too heavy to be
finished within 0.01 s, a multi-rate real-time architecture has been developed. This
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architecture consists of 2 blocks that run at different operating frequencies. One
block runs at the same sampling frequency as the aircraft model and one block
runs at a sampling frequency of 10 Hz. A schematic diagram of the multi-rate
architecture is shown in Figure 6.14. In Block 2 the time-consuming computations
that cannot be finished within 0.01 s are performed. These computations include
the update of the subspace predictor and the solver for the quadratic program-
ming problem (6.28). Block 1 contains the less demanding computations, such as
the computations required for the multiple-model FDI system. It should be noted
that the sampling frequency of 10 Hz of Block 2 is chosen sufficiently fast relative
to the dynamics of the Boeing 747 model.

Boeing 747
Model

o M m Em m oEmoEmomeoEmemeomeom o= o

Figure 6.14: Schematic diagram of the multi-rate real-time architecture.

The tuning parameters of the on-line SPC-based FTC system that determine
the computational requirements are chosen as: N, = 20, N. = 5, p = 20, f = 20,
m = 5,and | = 7. Furthermore, the maximum number of iterations of the solver
for the quadratic programming problem has been set to 100 to ensure that the
available computation time is never violated. The described parameter configu-
ration results in an SPC-based FTC system that is fast enough to be run on the
DUECA simulation environment using a computer with an AMD Athlon 64 X2
5600+ processor operating at 2.8 GHz and 4 Gb of RAM. It should be remarked,
however, that it has not been possible to implement the setting for unanticipated
faults sufficiently fast on this computer. Because for this setting it holds m = 7,
ceteris paribus. Since the on-line results are similar to the off-line results, which
have been previously presented, no on-line results are presented in this chapter.
In conclusion, it is remarked that the on-line version of the SPC-based FTC system
demonstrates that it is indeed possible to perform real-time data-driven adaptive
control of a complex system such as the Boeing 747 benchmark model.
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6.7 Conclusions

A reconfigurable fault-tolerant control system has been presented that is able to
adapt on-line to faults. This system consists of a subspace predictor, derived in
a closed-loop setting, combined with predictive control. The subspace predic-
tor, which does not require knowledge of a mathematical model, is continuously
updated on-line using new input-output data. It is this property that gives the
proposed system its ability to adapt to faults. These faults may be either antici-
pated or unanticipated. In case of anticipated faults, prior knowledge of the faults
allows the changed dynamics to be captured faster than purely relying on adapta-
tion. A special setting for unanticipated faults has been designed that uses more
control inputs than for anticipated faults to fully exploit the adaptation capabil-
ities. The proposed fault-tolerant control system is evaluated in simulation on a
detailed model of a Boeing 747. In the performed simulations, three fault condi-
tions have been successfully accommodated. These fault conditions include an
elevator lock-in-place, rudder runaway, and the “Bijlmerramp” fault condition.
In the simulations it could be observed that the controller requires some time to
adapt to the new fault situation. This is an inevitable consequence of the data-
driven adaptation concept. However, it can be concluded from the performed
simulations that the system allows to safely perform the required elementary ma-
neuvers in both the nominal condition and the considered fault conditions.



Conclusions and
Recommendations

n this thesis two research objectives have been addressed: one that
Ideals with the development of diagnosis methods using the multiple-
model framework and one that deals with the development of an adap-
tive fault-tolerant controller. In this chapter the main conclusions of this
research are provided. As with any research, new questions can be formu-
lated based on the research presented in this thesis. These new research
questions are formulated in this chapter as recommendations for further
research.

7.1 Conclusions

Convex Model Structure for Multiple-Model Estimation

The multiple-model (MM) framework is a suitable framework for fault diagnosis
because of its extensive modeling capabilities. Each of the local models in the
model set used by an MM system can have totally different dynamics. This is
a very useful property for fault diagnosis since it allows many types of faults to
be modeled. The mainstream methods for MM estimation use a hybrid model
structure. An important drawback of this structure is that it requires that all model
conditions that can occur, should be approximated by a local model in the model
set. If this is not the case then the estimation performance of the MM system can
deteriorate significantly. For fault diagnosis this issue is especially relevant since
many fault conditions can also occur partially, for example a partial sensor fault.
This would mean that ideally the model set should consist of infinitely many local
models, each corresponding to a specific partial fault size. However, such a model
set is not a computationally viable solution.

In Chapter 2|an alternative structure has been proposed for the hybrid MM
system to overcome the aforementioned drawbacks. This structure is character-
ized by the fact that it explicitly interpolates between the local models. The result-
ing improved interpolation properties allow smaller model sets to be used for the
proposed MM system. An additional advantage with respect to the hybrid MM
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structure is that a transition probability matrix is not required. This matrix, which
contains the transition probabilities from one local model to another local model,
can be difficult to design in practice.

The estimation problem related to the proposed MM system is nonlinear. This
is caused by the product between the state of the MM system and the model
weights. Two filters have been proposed to solve the estimation problem: one
filter estimates the state and the model weights in one step while the other fil-
ter uses two separate steps. These two filters are compared with a representative
filter for the hybrid model structure. This representative filter is the interacting
MM (IMM) filter, which has been chosen for its simplicity and widespread use
in MM estimation. The comparison between the three filters is performed using
two relevant Monte-Carlo simulation examples, one of which involves a target
tracking problem and one of which involves a fault diagnosis problem. Both ex-
amples clearly show that the alternative MM structure is to be preferred over the
hybrid MM structure when the actual system condition is not represented by a
local model in the model set but by a weighted combination of these local mod-
els. Furthermore, it is illustrated that the alternative structure allows for the use
of smaller model sets, while at the same time the estimation performance is not
negatively affected.

Model Set Design

If many different conditions are to be represented by a model set, then choosing
which local models to include in the model set can prove to be a difficult task.
Therefore, an important issue when using the MM framework is the structured
design of model sets. This issue has attracted very little attention in literature. For
most MM designs encountered in literature this issue is either resolved by con-
sidering only a limited number of system conditions to be modeled or by using
heuristic model set design methods. Three methods for structured model set de-
sign are presented in Chapter 3} all of which are based on approximation of the
parameter space of the varying parameters. Two of these methods assume that
linear models can be obtained at any desired operating point of the system to be
modeled. In this way a large model set can be generated that is subsequently
reduced by these two methods. One of these two methods uses orthogonal de-
compositions (ODs) for reducing the large model set. The other method uses an
algorithm that computes a convex polytope (CP), which has a limited number of
vertices and contains all models in the large model set. These vertices are subse-
quently used to form the local models in the reduced model set. An important dif-
ference between the OD-based method and the CP-based method is that the local
models obtained with the OD-based method are physically interpretable, while
the local models obtained with the CP-based method are not. A third model set
design method is presented that is based on the limit values (LV) of the system pa-
rameters. For this method the model equations are assumed to be known exactly,
which is not the case for the other two methods.

The three proposed methods for structured model set design have been eval-
uated on a linear parameter-varying model of a mass-spring-damper system. It is
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observed that the MM estimation algorithms based on each of the three methods
have good state estimation performance. The assessment of the model weight es-
timation performance for the model sets created with the OD-based method and
CP-based method cannot be performed directly. The reason for this is that the
estimated model weights do not have a direct relation with the simulated vary-
ing model parameters. Therefore, a method has been proposed that reconstructs
the varying model parameters from the estimated model weights. These recon-
structed parameters are shown to correspond well to the simulated parameters
for both model sets. The estimated model weights from the model set obtained
with the LV-based method are directly related to the model parameters and there-
fore no reconstruction is necessary. The model parameters estimated with this
method also correspond well to the simulated parameters. All three methods re-
sult in comparable estimation performances for the considered example, but dif-
fer in their properties. Therefore, it is concluded that the most important reason
to choose one method over the other is the suitability of the method for a specific
application.

Model Sets for Aircraft Fault Diagnosis

The Boeing 747 benchmark model used throughout this thesis considers lock-in-
place faults of control surfaces and the faults that occurred during the disastrous
EL AL flight 1862 accident, which is known as the “Bijlmerramp”. In Chapter
4 two model sets are designed for this benchmark model using the OD-based
method. The first model set is designed to model lock-in-place faults in two
groups of control surfaces, a range of multiplicative sensor faults in one sensor,
and two rare faults that occurred during the “Bijlmerramp” flight. The model set
resulting from the OD-based method contains the two models corresponding to
the two rare faults and it also contains models corresponding to the lock-in-place
faults and the sensor fault. It is therefore concluded that this structurally designed
model set compactly represents the considered faults. It should be noted, how-
ever, that it is not reasonable to assume that the faults that occurred during the
disastrous flight can be anticipated. The purpose of the design of the first model
set is therefore only to illustrate the versatility of the proposed model set design
method. A second model set has been designed that considers lock-in-place faults
in three groups of control surfaces that can indeed be reasonably anticipated.
These faults are represented in the model set by local models that correspond to
the condition at which the control surfaces are stuck at their maximum or mini-
mum deflection position.

Persistency of Excitation for Subspace Predictive Control

Subspace Predictive Control (SPC) is a control method that is characterized by the
combination of a subspace predictor and a predictive control law. The subspace
predictor, which is derived using input-output data of the system is used to pre-
dict the future output for the predictive controller. An important property of SPC
is that it can adapt to system variations if it is implemented in an adaptive manner,
i.e. if the subspace predictor is updated on-line with new input-output data. This
updating scheme makes the adaptive controller a data-driven one. In Chapter!5,
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SPC has been applied for control of a linear parameter-varying model of a mass
spring damper system. It has been shown that SPC can indeed adapt to parame-
ter variations of this model as opposed to a model predictive controller that uses
a fixed model. An important issue in SPC is that the system must be persistently
excited so as to ensure that the predictor contains sufficient model information.
Therefore, in Chapter|5 a method has been proposed that additionally excites the
system in the directions of the input space that are least excited. This method has
the property that it allows the optimization problem related to the constrained
predictive control law to remain convex and quadratic. In this way the optimiza-
tion problem can still be solved by using quadratic programming, which can be
efficiently implemented.

Subspace Predictive Control applied to Fault-Tolerant Control

Most conventional fault-tolerant control (FTC) systems require faults to be antici-
pated. However, in practice faults may occur that cannot be anticipated. Therefore
it is very convenient if the controller has the ability to adapt to the system after an
unanticipated fault has occurred. SPC is a control method that has the ability to
adapt on-line to a varying system, which therefore makes it very suitable for FTC.
An SPC-based FTC system has been developed for the Boeing 747 benchmark
model in Chapter|6. The faults that this system can handle may be either antici-
pated or unanticipated. Anticipated faults are isolated by using a scheme based
on the MM framework. The model set used for this isolation scheme is described
in Chapter(4. In case of anticipated faults, prior knowledge of the faults allows the
changed dynamics to be captured faster than purely relying on adaptation. This
prior knowledge includes information on which control inputs should be used to
accommodate a specific fault. A special setting for unanticipated faults has also
been designed that uses more control inputs than for anticipated faults to fully ex-
ploit the adaptation capabilities. The simulation results show that the SPC-based
FTC system is able to successfully accommodate anticipated faults, such as eleva-
tor lock-in-place and rudder runaway. Furthermore, the developed FTC system is
also shown in simulation to be able to adapt to the unanticipated fault conditions,
which had occurred during the “Bijlmerramp” flight.

Besides the off-line version of the SPC-based FTC system an on-line version
of this system has been developed. This system is fast enough to run on the real-
time environment of the SIMONA aircraft simulator at the Aerospace Engineering
department of the Delft University of Technology. With this on-line version of the
SPC-based FTC system it is demonstrated that it is indeed possible to perform
real-time data-driven adaptive control of a complex system such as the Boeing
747 benchmark model.
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7.2 Recommendations for Further Research

In Chapter 2, the Convex Model Filter (CMF) has been introduced for the com-
bined estimation of the system state and the model weights of an MM system.
This filter applies a fixed forgetting factor in the model weight estimation step.
This forgetting factor is used to discount old data. In practical situations the model
weights can vary in various manners: slow in steady-state situations and abrupt
when faults occur. These two types of variations ideally require two different val-
ues for the forgetting factor to achieve good estimation performance. So, when
a fixed forgetting factor is chosen a trade-off should be made between tracking
performance in steady-state situations and during transients. Therefore, it is rec-
ommended to integrate an adaptive forgetting factor in the CMF that can deal
with both situations.

The two filtering methods proposed in Chapter 2 both provide approximate
solutions to the original nonlinear problem of estimating the state and the model
weights. It is worthwhile to investigate how the estimation performance of these
filters can be improved by a nonlinear filter or an advanced approximating filter
such as the particle filter. It is especially interesting to assess whether the addi-
tional computational cost involved with the suggested filters significantly pays
off in additional performance for the considered estimation problem.

A requirement for good model weight estimation performance is that the sys-
tem should be excited well enough. One way to do this is to sufficiently excite
the system by practical matters such as performing maneuvers or including tur-
bulence and noise. Another way, which has not been considered in this thesis,
is to design excitation experiments specifically aimed at distinguishing between
local models. This field of research has received little attention, while it is highly
relevant for the MM framework. It is therefore recommended to perform further
research this field. Good starting points are the work by‘Blackmore and Williams
(2006) and the book by Campbell and Nikoukhah (2004).

This thesis provides a number of contributions to SPC theory. One research
item that remains open for further research is concerned with the global asymp-
totic stability of the closed-loop system when using SPC. Although this thesis
shows that SPC is stable for the many simulations that have been performed, a
formal proof is lacking. It should be noted, however, that even for established
methods such as robust multiple-model adaptive control (Fekri et al. 2006a) a
proof for global asymptotic stability is lacking. A good starting point in the search
to a proof for global stability of the SPC algorithm would be to first consider the
unconstrained case. In this way the nonlinear behavior as a result of constraints
can be disregarded.

Another useful addition to SPC theory is to incorporate the uncertainty in the
determination of the predictor matrices directly in the predictive control law. This
would make the SPC algorithm more robust to predictor uncertainty. A good
measure for this uncertainty is the covariance matrix of the least squares problem
that should be solved to obtain the predictor matrices.
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Chapter [5 has presented a method that ensures persistency of excitation for
SPC. This method has been developed for the case in which the subspace predic-
tor is derived under open-loop conditions. In Chapter|6, the subspace predictor
has been derived under closed-loop conditions. An interesting item for further
research is therefore to extend the proposed persistency of excitation method to
closed-loop conditions.

In Chapter(6, the SPC-based FTC system has been applied to recover from three
faults. For two of these faults, namely the elevator lock-in-place fault and the fault
condition corresponding to the “Bijlmerramp”, the commanded true airspeed is
set to a relatively high level by the outer loop. This has been done to increase the
control authority of the remaining control surfaces. How this and the other outer
loop commands should be modified as a function of faults has not been addressed
in this thesis. It is, however, an important research topic that deserves further
investigation. A possible solution is to estimate the post-fault flight envelope and
to subsequently modify the outer loop commands such that the aircraft remains
inside this flight envelope.



Flight Parameters and Controls
of the Boeing 747 Aircraft

A.1 Flight Parameters

In this appendix three different views of the Boeing 747 aircraft are used to visu-
alize the relevant aircraft flight parameters. These flight parameters include the
attitudes, which are defined with respect to a body-fixed and an earth-fixed refer-
ence frame. The body-fixed reference frame consists of three axes X, Y5, and Zp
that are oriented in a fixed manner with respect to the aircraft. This means that
the body-fixed reference frame rotates in a similar fashion as the aircraft. The ori-
gin of this reference frame is the center of gravity of the aircraft. The earth-fixed
reference frame is fixed with respect to the earth and it can therefore rotate with
respect to the aircraft. The earth-fixed reference frame also has its origin in the
center of gravity of the aircraft and consists of three axes: Xy, Yy, and Zy. The
axis Zy is pointed in the direction of the gravity vector, Xy is pointed to the north
and Yy is pointed 90 degrees to the right of the Xy axis. This reference frame
is also known as the vehicle carried normal earth reference frame dMulder et al.
M). In Figures A.1,/A.2} and|A.3|the aircraft flight parameters listed in Table A.1
are depicted with respect to the two defined reference frames.

Figure A.1: Front view of the Boeing 747.
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Figure A.3: Side view of the Boeing 747.

A.2 Controls of the Boeing 747

The Boeing 747 has 29 different controls. These controls are listed in Table A.2
together with the mechanical limits and operation rates (Hanke and Nordwall
(197&)). The locations of these controls on the aircraft are depicted in Figure/A 4.



A.2 Controls of the Boeing 747
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Table A.1: Aircraft flight parameters.

roll rate

pitch rate

yaw rate

true airspeed
angle of attack
sideslip angle
flight path angle
pitch angle
roll angle

yaw angle
tracking angle
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Figure A.4: Locations of controls on the Boeing 747.
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Table A.2: Controls of the Boeing 747.

Control no. | Description Mechanical limits | Operation rate

1. Right inner aileron —20/20 deg 40/45 deg/s (1/1)
2. Left inner aileron —20/20 deg 40/45 deg/s (1/1)
3. Right outer aileron —25/25 deg 45/55 deg/s (1/1)
4. Left outer aileron —25/25 deg 45/55 deg/s (1/1)
5. Spoiler panel # 1 0/45 deg 75 deg/s

6. Spoiler panel # 2 0/45 deg 75 deg/s

7. Spoiler panel # 3 0/45 deg 75 deg/s

8. Spoiler panel # 4 0/45 deg 75 deg/s

9. Spoiler panel # 5 0/20 deg 75 deg/s

10. Spoiler panel # 6 0/20 deg 25 deg/s

11. Spoiler panel # 7 0/20 deg 25 deg/s

12. Spoiler panel # 8 0/20 deg 75 deg/s

13. Spoiler panel # 9 0/45 deg 75 deg/s

14. Spoiler panel # 10 0/45 deg 75 deg/s

15. Spoiler panel # 11 0/45 deg 75 deg/s

16. Spoiler panel # 12 0/45 deg 75 deg/s

17. Right inner elevator —23/17 deg 37 deg/s

18. Left inner elevator —23/17 deg 37 deg/s

19. Right outer elevator —23/17 deg 37 deg/s

20. Left outer elevator —23/17 deg 37 deg/s

21. Stabilizer —12/3 deg 0.2t0 0.5 deg/s
22. Upper rudder surface | —25/25 deg 50 deg/s

23. Lower rudder surface | —25/25 deg 50 deg/s

24. Outer flaps 0/25 deg 1.8 deg/s

25. Inner flaps 0/25 deg 1.8 deg/s

26. Thrust engine # 1 0.7/1.7 EPR -

27. Thrust engine # 2 0.7/1.7 EPR -

28. Thrust engine # 3 0.7/1.7 EPR -

29. Thrust engine # 4 0.7/1.7 EPR -




Discretization of a
Multiple-Model System

This appendix describes how a multiple-model (MM) system can be discretized
while preserving the linearity in the interpolations of the local models. Consider
the continuous-time MM system given by

N,

a(t) = > pO)[AYz(t) + BOu(t)] +w(t), (B.1)
N,

y(t) = > u@)[CV2(t) + DPu(t)] + v (t), (B.2)

where () (t) is the model weight corresponding to the i-th local model repre-
sented by the state space quadruple {A("), B® C® D@} and N,, is the number
of local models in the model set. For application in an on-line environment a
discrete-time version of this MM system is required. In the following the method
is described that has been proposed by‘Hallouzi et al. (2006b) for discretization of
an MM system. This method uses the Taylor expansion of the A and B matrices,
which is given by

o AkTE
k=0
— Ak-1pT*
By = ZT’ (B.4)
k=1

where Ag and By are the discretized versions of the continuous-time system ma-
trices A and B, respectively, and T is the sampling time. The C' and D matrices
are not changed by discretization and are therefore not considered. The matrices
Aq and By can be approximated by truncating the Taylor expansion in (B.3)-(B.4).
Such an approximation results in truncation errors which can be bounded in case
of the A matrix as follows dMoler and Loan‘2003‘)

(AT |
Ireal < ( QL+ 1)! > (1— ||A||T/<M+2>) =6 (B:5)
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where M is the number of terms used for computing the Taylor expansion, € is a
prescribed error tolerance and r; ; represents the element in row 7 and column j
of the remainder matrix R, which is defined as

R= > Aka. (B.6)

The matrix norm ||A|| used in is defined as

n

Al = Z |ai ;s (B.7)

i,j=1

with A € R™*" and a; ; represents the element of A in row ¢ and column j. For
matrix B a similar bound as (B.5) can be derived.

From (B.5) it is clear that € is proportional to the sample time 7'. So, a suffi-
ciently small e can be achieved by using a first-order approximation (M =1) in
combination with a sufficiently small sample time 7. Consider the continuous-

time state equation (B.1), the first-order approximation of the discretized state
equation is given by

N,
Tpy1 = Log + Z /AI(CZ) [TA(Z)xk + TB(i)uk] + wy. (BS)

i=1

If it holds that the model weights sum up to 1, which is the case if the local models

correspond to physical models, then Iz}, can be substituted with S~ ug)xk and

(B.8) becomes

Af;,) Bf;>
Non —_——~ —~
her = 3 p [(TAD + 1)y + TBO uy] + wy. (B.9)
i=1

Now it can be seen that, for a first-order approximation and under the condition
that the model weights sum up to 1, the discretized MM system is exactly the
weighted sum of the individually first-order discretized local models. This prop-
erty results in a very convenient discretization procedure for the continuous-time
local models, because it preserves linearity of the interpolation of the local models.

The previously described method is also considered as a viable option to dis-
cretize LPV models by |Téth et al. (200§).



C Recursive Update of Matrix R

This appendix describes how the R-matrix in an RQ-decomposition can be re-
cursively updated. Let the matrix on the left-hand side of (6.17) on page 123 be
represented by

rx 0 O 0| x T
x x 0 0| x
X ( )‘ X X
AR;1(t—1 Wy . . . D
= : : N = R(t), C.1
\f/\Rgl(t—l) ‘ n . : : .0 () ( )
X X X e X | X
L X X X - X | X |

where x denotes the nonzero matrix entries. Updating the tall matrix from (C.1)
can be performed by making it lower triangular. This can be done by performing
a number of orthogonal transformations. The first transformation is performed
by T, which rearranges the columns of this matrix such that the last column is
placed between the first and second column

1T 0 0 - - 07 [ x o o .-l o 1
X X 0 -] o0
: : « :

R T R I 0 |- €2

0 : ._. ~.. O % % % % L

L ] % y y % y

where the entries that need to be annihilated are indicated by a box. An efficient
way to annihilate matrix entries one at a time is to use Givens rotations (Golub and
Van Loan 1996). Let [a b] be a given vector, with a and b being nonzero scalars. El-
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ement b of this vector can then be annihilated with a Givens rotation G as follows

aT
——

[a 0] {z CS] =[r 0], (C3)

where r = Va? +b?, ¢ = a/r, s = b/r and G is an orthogonal matrix. Using the
Givens rotation matrix G, the first entry of R(¢)7), can be annihilated as follows

R(t)T,
_é X 0 0 0 T Gy
X X X 0 0 C1 —S1 0 ... 0
% X S1 C1 0 ... 0
0 0 0 1 =
X X X X X : : 0
Lo 0 0 0 1
| X X X X x|
[ x" 0 0 0 0 ]
x! x! 0 0
 x
S R E (C4)
x' x' X e
x' x' X e | X

where ¢; and s; are computed using a Givens rotation applied to the two un-
derlined entries of the leftmost matrix in (C.4), i.e. R(t)T;. The resulting Givens
rotation matrix G applies this Givens rotation only to the first two columns of
R(t)T,. In the right hand side of (C.4) it can be seen that one entry of R(t)T,G
has been annihilated and that the entries that are modified by G are indicated by
a superscript . The entries that need to be annihilated in further steps are again
indicated by a box.
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In the next step, the annihilation of the second entry can be performed as

R(t)T,-G1
G2
rTx" 0 0 0 0 7 -
<" %' x 0 0 1 0 0 0 0
o 0 Co —S92 0 0
x x 0 S9 C2 0 0
S Ollo o o 1 -
x" x' x x X )
. . . 0 : 0
oo 0 0 0 0 1)
| X' x' x x X ]
<" 0 0 0 -] 0 ]
x'" x" 0 o --- 0
: : : 1o | (C.5)
<! " %! % .
></ X'// x'// X . X

where, similarly to (C.4), c2 and s, are computed using a Givens rotation applied
to the two underlined entries of the leftmost matrix in (C.5), i.e. R(t)TTGl. The
entries that are modified by G, i.e. all nonzero entries in the second and third
column, are now indicated by a superscript ” in the right-hand side of (C.5). The
same sequence as described above, should be repeated until all entries to be anni-
hilated, which are indicated by a box in (C.5), are indeed annihilated. In this way
an orthogonal matrix Q = T,.GG1G - - - G (;m41)+1 can be obtained. This matrix can
be used to obtain the updated matrix R(t) = R(t)Q.
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Summary

Multiple-Model Based Diagnosis for Adaptive Fault-Tolerant Control

Redouane Hallouzi

Safety and reliability of control systems is becoming increasingly important in
present-day society. This is caused by the large presence of control systems in
many products that are used in everyday life. When faults occur in such control
systems this has consequences for their operation. Especially in safety-critical sys-
tems such as, for example, aircraft, consequences of faults can be catastrophic. In
order to maintain an acceptable level of performance of control systems in case
of faults, these faults have to be diagnosed and accommodated. This thesis deals
with the development of methods for fault diagnosis and the accommodation of
faults in control systems.

Fault diagnosis is concerned with detection of faults, the determination of
which components are affected by faults, which is referred to as fault isolation,
and the determination of the size of the faults. A straightforward approach to di-
agnose faults is to use multiple redundant hardware components for the same
purpose. This approach, which is based on the principle of hardware redun-
dancy, allows faults to be diagnosed by comparing the operation of the redun-
dant hardware components with each other. Drawbacks of this approach are that
it increases the overall cost of control systems and that it adds to the weight and
maintenance requirements. Analytical redundancy is an alternative to hardware
redundancy that overcomes these drawbacks. Analytical redundancy is based on
mathematical models of the system rather than redundant hardware. Faults are
diagnosed by comparing the expected system behavior from the mathematical
model with the actual system behavior. This type of diagnosis is referred to as
model-based diagnosis.

In this thesis, the multiple-model (MM) framework is used for fault diagnosis
because of its flexible structure that allows modeling of a wide variety of fault
conditions. An MM system consists of a model set that contains local models cor-
responding to different operating conditions, which also include fault conditions.
Faults are diagnosed by estimating the model weights, which correspond to the
validity of the local models. The mainstream of estimation algorithms for the MM
framework is based on a hybrid MM structure. This structure has the property
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that there is no interaction between the different local models. This property lim-
its the ability of estimation algorithms to interpolate between local models, which
is very desirable because it allows the use of smaller model sets. Therefore, an
MM structure has been proposed that explicitly interpolates between local mod-
els. MM estimation algorithms have been developed for this structure. These
algorithms are compared with a widely used MM estimation algorithm that uses
the hybrid model structure. From this comparison it has been concluded that the
proposed MM structure indeed has better interpolation properties, which allow
for the use of relatively small model sets.

An important issue when using the MM framework is the design of model sets
given a set of operating conditions to be modeled. Very little attention has been
paid in literature to methods that address the structured design of model sets.
Therefore, three methods have been proposed for this purpose, all of which have
the objective to compactly represent the parameter space of the parameters that
vary as a result of varying operating conditions. Two of these methods depend
on the availability of an initial model set that contains a large number of models
sampled at different operating conditions to be modeled. The first method re-
duces this large model set by applying orthogonal decompositions. The second
method uses a convex polytope with a limited number of vertices that contains
all models in the large model set. The vertices of the convex polytope are used to
form the local models in the reduced model set. A third model set design method
is presented that is based on the limit values of the varying parameters. The three
methods have been evaluated on a linear parameter-varying model that also in-
cludes faults. The three methods have shown a comparable good estimation per-
formance for the considered model. Since the three methods result in model sets
with different properties, the application requirements determine which method
is most suitable.

The model set design method based on orthogonal decompositions has also
been used for generating model sets for the purpose of fault diagnosis of a de-
tailed nonlinear model of a Boeing 747 aircraft. The considered faults include
“lock-in-place” of control surfaces. These faults are characterized by the control
surfaces getting stuck at a fixed position. The model sets designed for this type
of faults consist of local models corresponding to conditions at which the control
surfaces are stuck at their maximum or minimum deflection. The correctness of
these model sets is confirmed by the presence of similar model sets in literature for
the same fault type. Furthermore, it has been shown in simulation that the model
sets are accurate enough to isolate different “lock-in-place” faults of the Boeing
747 model.

Once information about a fault has been obtained it can be used for accom-
modation of the fault. Control systems with the ability to accommodate faults
are referred to as fault-tolerant control (FTC) systems. Most FTC systems require
detailed fault information, which limits their practical applicability, especially in
case of unanticipated faults. Therefore, in this thesis a data-driven FTC system is
developed that has the ability to adapt to changing system conditions including
faults. The data-driven FTC system relies on subspace predictive control (SPC) for
its adaptation to the system. SPC consists of a subspace predictor integrated with
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a predictive control law. The subspace predictor is identified using input-output
data of the system and is continuously updated on-line with new data when it
becomes available. In this way, the subspace predictor can adapt to changing sys-
tem conditions. An issue that is related to SPC is that it has to be ensured that
the input-output data contains sufficient information about the controlled system.
For this purpose a persistency of excitation condition has been developed that en-
sures that the system is additionally excited only in those directions of the input
space that are least excited. An important advantage of this excitation condition
is that it can be implemented in a computationally efficient manner.

Another extension to SPC presented in this thesis is the application of a closed-
loop subspace predictor instead of an open-loop one. Furthermore, an efficient
recursive updating scheme has been developed for this closed-loop subspace pre-
dictor. The FTC system based on SPC has been applied to the Boeing 747 aircraft
model. In order to react more quickly to anticipated faults, the fault information
obtained from an MM fault isolation scheme is used to switch between different
settings of the FTC system. Results have been presented of three simulations, each
of which with a different fault condition of the aircraft model. Two simulations
have been performed with anticipated fault conditions: “lock-in-place” of the el-
evator surfaces and runaway of the rudder surfaces to their maximum deflection.
The third simulation has been performed with an unanticipated fault condition
modeled after the EL AL aircraft that crashed into an apartment building in Ams-
terdam in 1992. This disaster is known as the “Bijlmerramp”. The “Bijlmerramp”
fault condition includes the separation of both engines on the right wing of the
aircraft. All three fault conditions have been accommodated well by the devel-
oped FTC system. It has been shown for all three fault conditions that the aircraft
has been able to perform the elementary maneuvers required for a safe landing.

In addition to an off-line version of the SPC-based FTC system, an on-line ver-
sion has been implemented in a real-time simulation environment. With this on-
line version it is demonstrated that it is indeed possible to perform real-time data-
driven adaptive control of a complex system such as the Boeing 747 benchmark
model.
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Samenvatting

Multi-Model Gebaseerde Diagnose voor Adaptief Fouttolerant Regelen

Redouane Hallouzi

Veiligheid en betrouwbaarheid van regelsystemen worden steeds belangrijker in
de huidige maatschappij. Dit komt door de grote aanwezigheid van regelsyste-
men in veel producten die dagelijks worden gebruikt. Als er fouten optreden
in dergelijke regelsystemen, dan heeft dit gevolgen voor het functioneren ervan.
Vooral in veiligheidskritische systemen, zoals vliegtuigen, kunnen de gevolgen
van fouten catastrofaal zijn. Om een acceptabel prestatieniveau van regelsyste-
men te kunnen handhaven in geval van fouten, moet er een diagnose worden
gemaakt van deze fouten en moet er op passende wijze worden ingegrepen. In
dit proefschrift zijn methoden ontwikkeld voor foutdiagnose en het omgaan met
fouten in regelsystemen.

Het doel van foutdiagnose is om fouten te detecteren, te bepalen welke compo-
nenten worden beinvloed door fouten, ook bekend als foutisolatie en te bepalen
wat de grootte is van fouten. Een simpele aanpak om fouten te kunnen diagnosti-
ceren maakt gebruik van redundante hardware componenten met dezelfde functi-
onaliteit. Deze aanpak, die gebaseerd is op het principe van hardware redundan-
tie, zorgt ervoor dat fouten kunnen worden gediagnosticeerd door het vergelijken
van de functionaliteit van de redundante hardware componenten. Nadelen van
deze aanpak zijn de toename van de totale kosten van regelsystemen en de toe-
name van het gewicht en de onderhoudsvereisten. Analytische redundantie is
een alternatief voor hardware redundantie dat de genoemde nadelen kan onder-
vangen. Analytische redundantie is gebaseerd op wiskundige modellen in plaats
van op redundante hardware. Fouten kunnen worden gediagnosticeerd door het
vergelijken van het door een wiskundig model verwachte systeemgedrag met het
feitelijke gedrag. Dit type diagnose wordt ook wel modelgebaseerde diagnose
genoemd.

In dit proefschrift is het multi-model (MM) raamwerk gebruikt voor foutdia-
gnose vanwege de flexibele structuur die het toelaat om een breed scala aan fout-
condities te modelleren. Een MM systeem bestaat uit een modelset die lokale mo-
dellen bevat. Deze lokale modellen komen overeen met verschillende systeem-
condities waaronder foutcondities. Foutdiagnose vindt plaats door het schatten
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van de modelgewichten, die betrekking hebben op de validiteit van lokale mo-
dellen. De meeste schattingsalgoritmen voor het MM raamwerk maken gebruik
van een hybride modelstructuur. Deze structuur heeft de eigenschap dat er geen
onderlinge interactie is tussen de verschillende lokale modellen. Deze eigenschap
beperkt de mogelijkheid van de schattingsalgoritmen om te interpoleren tussen
de lokale modellen, hetgeen zeer wenselijk is omdat dat het gebruik van kleinere
modelsets toestaat. Daarom is een MM structuur voorgesteld die expliciet inter-
poleert tussen de lokale modellen. Voor deze structuur zijn schattingsalgoritmen
ontwikkeld die vervolgens zijn vergeleken met een veelgebruikt MM schattingsal-
goritme voor de hybride modelstructuur. Uit deze vergelijking is gebleken dat
de voorgestelde MM structuur daadwerkelijk betere interpolatie eigenschappen
heeft, die leiden tot het gebruik van kleinere modelsets.

Het ontwerpen van modelsets in het MM raamwerk, gegeven een set van sys-
teemcondities die gemodelleerd moeten worden, is een belangrijk aandachtspunt.
Tot nu toe is er weinig aandacht besteed in de literatuur aan gestructureerde ont-
werptechnieken voor modelsets. Daarom zijn er hiervoor drie technieken ontwik-
keld met als doelstelling het compact representeren van de parameterruimte van
de parameters die variéren als gevolg van variérende systeemcondities. Twee van
deze technieken zijn gebaseerd op de beschikbaarheid van een initiéle modelset
die een groot aantal lokale modellen bevat, elk overeenkomend met verschillende
systeemcondities die gemodelleerd dienen te worden. De eerste techniek maakt
gebruik van orthogonale decomposities om de grote modelset te verkleinen. De
tweede techniek maakt gebruik van een convexe polytoop met een beperkt aantal
hoekpunten dat alle modellen uit de grote modelset omvat. De hoekpunten van
de polytoop worden vervolgens gebruikt om de lokale modellen in de verkleinde
modelset te vormen. Verder is er een derde techniek voor het ontwerpen van mo-
delsets voorgesteld die gebruik maakt van de limietwaarden van de variérende
parameters. De drie ontwerptechnieken zijn met elkaar vergeleken op basis van
een lineair parameter-variérend model waarin ook fouten gemodelleerd zijn. Alle
drie technieken hebben geleid tot een vergelijkbare en goede schattingsprestatie.
Omdat de eigenschappen van de modelsets verkregen met de drie verschillende
technieken verschillend zijn, bepalen de eisen van de specifieke applicatie met
betrekking tot deze eigenschappen welke methode het meest geschikt is.

De modelset ontwerptechniek gebaseerd op orthogonale decomposities is ook
gebruikt voor het genereren van modelsets voor foutdiagnose van een gedetail-
leerd niet-lineair model van een Boeing 747 vliegtuig. De beschouwde fouten om-
vatten “lock-in-place” fouten van stuurvlakken. Dit soort fouten wordt gekarak-
teriseerd door het vastzitten van de stuurvlakken. De modelsets ontworpen voor
deze fouten bevatten lokale modellen die foutcondities representeren waarbij de
betreffende stuurvlakken vast zitten op de maximale of minimale uitslag. De cor-
rectheid van deze modelsets wordt bevestigd door het feit dat “lock-in-place” fou-
ten op dezelfde manier gemodelleerd zijn in de literatuur. Het is daarnaast aan-
getoond dat de ontworpen modelsets nauwkeurig genoeg zijn om verschillende
“lock-in-place” fouten van het Boeing 747 simulatiemodel te isoleren.

Zodra een fout is gediagnosticeerd, kan de foutinformatie worden gebruikt om
het regelsysteem aan te passen. Regelsystemen die op passende wijze met fou-
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ten kunnen omgaan worden ook wel fouttolerante regelsystemen genoemd. De
meeste fouttolerante regelsystemen vereisen gedetailleerde foutinformatie, wat de
praktische bruikbaarheid beperkt. Dit is vooral het geval voor onverwachte fou-
ten. Daarom is in dit proefschrift een datagedreven fouttolerant regelsysteem ont-
wikkeld dat zich kan aanpassen aan variérende systeemcondities waaronder fou-
ten. Dit fouttolerante regelsysteem vertrouwt op subspace predictive control (SPC)
voor de aanpassing aan variérende systeemcondities. SPC bestaat uit een sub-
space voorspeller die is geintegreerd met een voorspellende regelaar. De subspace
voorspeller is geidentificeerd door gebruik te maken van ingang/uitgangsdata
van het systeem. De voorspeller wordt continu on-line bijgewerkt met nieuwe in-
gang/uitgangsdata. Op deze manier kan de subspace voorspeller zich aanpassen
aan variérende systeemcondities. Voor het gebruik van SPC is het noodzakelijk
dat de ingang/uitgangsdata voldoende informatie over het geregelde systeem
bevat. Daarom is er een excitatie conditie ontwikkeld die ervoor zorgt dat het
systeem alleen wordt geéxciteerd in die richtingen van de ingangsruimte die het
minst geéxciteerd zijn. Een belangrijk voordeel van de ontwikkelde excitatie con-
ditie is dat deze op een efficiénte manier kan worden geimplementeerd.

Een andere uitbreiding op SPC die beschreven is in dit proefschrift is het ge-
bruik van een gesloten-lus subspace voorspeller in plaats van een open-lus voor-
speller. Verder is er een efficiént recursief algoritme ontwikkeld dat de gesloten-
lus subspace voorspeller continu bijwerkt met nieuwe data. Het fouttolerante re-
gelsysteem dat is gebaseerd op SPC is toegepast op het Boeing 747 vliegtuigmodel.
Om sneller met verwachte fouten om te kunnen gaan, wordt foutinformatie, ver-
kregen met behulp van MM foutisolatie, gebruikt om te schakelen tussen verschil-
lende instellingen van het fouttolerante regelsysteem. Er zijn resultaten gepresen-
teerd van drie simulaties die elk met verschillende foutcondities uitgevoerd zijn.
Twee simulaties zijn uitgevoerd met verwachte fouten: “lock-in-place” van de
hoogteroeren en het weglopen naar de maximale uitslag van de richtingsroeren.
De derde simulatie is uitgevoerd met een onverwachte fout die is gemodelleerd
naar het EL AL vliegtuig dat zich in 1992 in een flat in Amsterdam boorde. Deze
ramp staat ook wel bekend als de Bijlmerramp. De foutcondities van het Bijlmer-
ramp vliegtuig omvatten het afvallen van de beide motoren aan de rechtervleugel.
Uit de simulaties uitgevoerd met alle drie de beschouwde foutcondities is geble-
ken dat het fouttolerante regelsysteem in staat is geweest om zich aan te passen
aan de opgetreden fouten. In alle drie de simulaties is het vliegtuig in staat ge-
weest om elementaire manoeuvres uit te voeren die vereist zijn voor een veilige
landing.

Naast een off-line versie van de fouttolerante regelaar is er ook een on-line ver-
sie ontwikkeld voor een real-time simulatieomgeving. Met deze on-line versie is
aangetoond dat het mogelijk is om in real-time een datagebaseerde adaptieve fout-
tolerante regeling toe te passen op een complex systeem zoals het Boeing 747
vliegtuigmodel.
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