
Multi-Atlas Based Image Segmentation

Applied on Pulmonary CT Scan Data

Maruti Agarwal

Department of Media and Knowledge Engineering

Delft University of Technology

Multi-Atlas Based Image Segmentation Applied on Pulmonary CT Scan Data

Maruti Agarwal

Department of Media and Knowledge Engineering

Delft University of Technology

Thesis Committee:

Prof. dr. ir. M.J.T. Reinders, EEMCS, TU Delft

Dr. B. C. Stoel, LKEB, LUMC

Dr. C. Botha, EEMCS, TU Delft

Dr. E. A. Hendriks, EEMCS, TU Delft

Dr. M. Staring, LKEB, LUMC

i

Contents

1 Introduction 1

1.1 Application Area . 1

1.2 Atlas Based Segmentation Framework . 2

1.3 Multi-Atlas Based Segmentation . 3

1.4 Research Goals and Contribution . 4

1.5 Thesis Outline . 5

2 Literature Review 6

2.1 Notations Used in Current Work . 6

2.2 Atlas Based Segmentation . 6

2.2.1 Image registration . 7

2.2.2 Image registration for atlas based segmentation 8

2.3 Using More Than One Atlas . 9

2.3.1 Creating an average atlas . 9

2.3.2 Creating a probabilistic atlas . 10

2.3.3 Using single-best atlas . 10

2.4 Multi-Atlas Based Segmentation . 11

2.4.1 Atlas Selection . 11

2.4.2 Analogy with combining pattern classifiers 12

2.4.3 Voting . 13

2.4.4 Weighted voting . 13

2.5 Conclusion . 18

3 Data, Experimental Setup and Registration Setup 20

3.1 Data and Experimental Setup . 20

3.2 Softwares Used . 21

3.3 Image Registration . 21

3.3.1 Elastix . 21

3.3.2 Image registration setup . 21

3.3.3 Problem with the current registration . 22

3.3.4 Rectifying registration . 23

3.4 Result Format . 26

3.4.1 Overlap of fissures . 26

3.4.2 Box-plot of fissure overlap . 27

3.4.3 Box-Plot of fissure overlap for majority voting 27

3.4.4 Low tail of box-plot . 27

ii

4 Improvements to SIMPLE: Performance Based on Estimate of Ground Truth 29

4.1 SIMPLE Algorithm . 30

4.1.1 An example of SIMPLE . 30

4.1.2 Binary input for SIMPLE . 31

4.2 Improvements in SIMPLE Algorithm . 32

4.2.1 Local SIMPLE . 32

4.2.2 Increasing sensitivity (boundary) SIMPLE 34

4.2.3 Re-inclusion of rejected data . 35

4.2.4 Multi-label SIMPLE . 35

4.3 Results And Discussion . 37

4.3.1 Effect of α . 37

4.3.2 Comparison with majority voting and STAPLE 39

4.3.3 Results of proposed modifications in SIMPLE 40

4.4 Conclusion . 51

5 Improving the Input Segmentations via Image Registration 53

5.1 Results and Discussion for Left Lung . 54

5.2 Results and Discussion for Right Lung . 57

5.3 Conclusion . 58

6 Fixed Rules: Performance Based on Success of Registration 59

6.1 Weight Generation . 60

6.1.1 Using distance map of CT data for weights 61

6.1.2 Registration error based weights . 61

6.1.3 Normalized correlation coefficient (NCC) based weights 62

6.2 Importance of Local Confidence Values . 63

6.3 Confidence Calculation . 63

6.4 Parameters in the Current Setup . 64

6.4.1 Neighborhood radius for finding weights 64

6.4.2 Neighborhood radius for confidence calculation 64

6.4.3 Different approaches of confidence calculation 65

6.5 Fixed Rules . 65

6.6 Improving Computation Speed for the Algorithm 66

6.7 Results and Discussion . 67

6.7.1 Comparison between majority and weighted voting 67

6.7.2 Across versus Within confidence calculation 69

6.7.3 Some other ideas which did not work well 70

6.8 Conclusion . 72

7 Ideas Which Did Not Work 74

7.1 Local STAPLE Algorithm . 74

7.2 SIMPLE Fixed Rules . 75

8 Discussion and Conclusion 77

8.1 Discussion . 77

8.2 Conclusion . 79

8.3 Future Work . 80

iii

9 APPENDIX 81

9.1 Parameters for Registration Setup-A . 81

9.1.1 Affine transformation . 81

9.1.2 First B-spline transformation . 82

9.1.3 Second B-spline transformation . 84

9.2 Parameters for Registration Setup-B . 85

9.2.1 Affine transformation . 85

9.2.2 B-spline transformation . 86

9.3 Pseudo Codes of Algorithms . 89

9.3.1 Local Slice-Wise SIMPLE Algorithm . 89

9.3.2 Local Non-Overlapping Cube-Wise SIMPLE Algorithm 90

9.3.3 Boundary SIMPLE Algorithm . 91

9.3.4 Global Multi-Label SIMPLE Algorithm 92

9.4 α Values for SIMPLE Algorithms . 93

9.5 Boxplots for SIMPLE Algorithms . 94

9.5.1 Multi-label versus binary SIMPLE . 94

Bibliography 96

iv

Chapter 1

Introduction

The development of an automatic system for analysis of the medical images is a well researched

topic and it has attracted the attention of various researchers over the decades. The medical

images such as X-ray images, Computed Tomography (CT) scans, magnetic resonance imaging

(MRI) scans play a key role in the diagnosis and treatment planning of several diseases. In

the case of lung diseases, chest X-ray and CT scan images are the first choice of medical

practitioners for detecting abnormalities. X-ray images provide a 2D image of the chest, while

CT scan is a more developed 3D version of X-ray. The chest CT scans can demonstrate various

lung disorders such as lung cancer, tuberculosis, emphysema and chronic obstructive pulmonary

disease (COPD). The chest CT scans are even able to demonstrate the nodules, vessels, and

lobes in the lung.

1.1 Application Area

A typical image of human lung contains a right and a left lung. The right lung is divided into

three lobes: upper, middle and lower as shown in figure 1.1(a). An oblique fissure separates the

lower lobe from the middle, while a horizontal fissure separates the upper lobe from the middle.

On the other hand, left lung is divided by an oblique fissure into two lobes: upper and lower.

As can be seen in the figure 1.1(a), the oblique fissure is present in both the lungs while the left

lung has no middle lobe, so there is no horizontal fissure on that lung.

A lung disease may affect different lung lobes independently. In fact; a disease may be confined

to an individual lobe too. As an example, emphysema disease may be restricted within upper

lobes in both the lungs. An emphysema patient is more likely to gain benefit from lung volume

reduction surgery (LVRS) if the disease is located predominantly in the upper lobes emp [2003].

Lobe-by-lobe analysis of the lungs may not only be useful in treatment planning, but can also

help in identifying COPD or interstitial lung diseases (ILD). Therefore, an automated scheme

for lobe segmentation can be very helpful to medical doctors. In the current work, we aim to

develop automated methods for the lobe segmentation.

As shown in figure 1.1(b), a lobe segmentation image contains different labels (or colors) for

separate lobes. The goal of this research is to do lobular segmentation for pulmonary (chest)

CT scan data. Since fissures are boundaries between the lobes in the lungs, the task of lobe-

segmentation can also be approached by fissure detection. One straightforward way of fissure

detection is manual delineation but manual delineation requires expert knowledge. It is very

tedious and time consuming. The reproducibility of manual delineation can be questioned from

the fact that different people mark slightly different fissures for the same patient data (inter-

1

(a) Adopted from Zhang et al. [2006]. (b) An example of lobe segmen-

tation. Separate lobes are shown

in different colors.

Figure 1.1: Lung lobar anatomy. Left lung has two lobes separated by an oblique fissure; the

right lung has three lobes, with the upper and middle lobes separated by a horizontal fissure

and the middle and lower lobe separated by an oblique fissure.

observer differences). The differences are observed even when the same person delineates the

fissures manually (intra-observer differences) at different points in time. The current work is

presented as an alternative to the manual fissure detection.

1.2 Atlas Based Segmentation Framework

There are several automatic and semi-automatic approaches for the lobe segmentation. We

employ a specific atlas-based segmentation (ABS) framework for this task since it is more

suitable for our application area than intensity based segmentation approaches. The details

on this are provided in chapter 2. An atlas is a set of two images: an intensity image and

its segmentation. Figure 1.2 shows an example atlas for CT scan data of the left lung. The

anatomical information in the atlas is used to obtain a segmentation of an unseen image. ABS

is a two step process:

1. Intensity image in the atlas is transformed to make it similar to the unseen image. This

gives us a transformation from the atlas domain to the unseen image domain. See figure

1.3(a).

2. This transform is applied on the segmentation image in the atlas. The resultant image

obtained through this transformation is a segmentation of the unseen image. See figure

1.3(b).

It should be noted that the accuracy of the segmentation of the unseen image would depend on

the accuracy of the transformation performed in the first step. If the transformation from the

atlas to the unseen image is perfect, then we would obtain a perfect segmentation of the unseen

image.

The transformation from the atlas to the unseen image in the first step is performed using

image registration. In image registration, an image is deformed to make it look similar to

another image. In other words, one image is transformed to another image. The intensity

image in the atlas, called as moving image, is transformed to the unseen image (called as fixed

image), so that both the images appear to be similar. The accuracy of the first step in ABS,

i.e. image registration, is crucial for obtaining a good segmentation of the unseen image. The

2

Figure 1.2: An example atlas of the left lung: (Left) CT scan image ; and (right) segmentation

of the CT scan image. The segmentation of the left lung contains: label 2 for the upper lobe,

label 1 for the lower lobe, and label 0 for the background.

(a) First step in ABS. (b) Second step in ABS.

Figure 1.3: Atlas based segmentation. In the first step, the intensity image from atlas is

transformed to the unseen image. In the second step, the transformation obtained from the

first step is applied on the segmentation image in the atlas.

inaccuracies in the registration may cause a poor segmentation from the output of the second

step in ABS. One way of coping with this would be to use multiple atlases, which is discussed

in the next section.

1.3 Multi-Atlas Based Segmentation

Suppose we are provided with a set of 4 atlases and an unseen image. These atlases can be

transformed to the unseen image domain in four independent ABSs. This results into four

segmentations of the same unseen image. Considering the transformation (or registration) to

be imperfect in all the four ABSs, these four segmentations may not look exactly the same.

Figure 1.4 shows a similar case where the four poor segmentations of the unseen image are

obtained. But if we give a closer look to these fours segmentations, then we realize that they

are locally correct in different regions. These locally correct fissures in the four segmentations are

highlighted in the figure 1.4. In the current work, the focus of multi-atlas based segmentation

approach is on picking up these locally correct red fissures from the four segmentations and

combining them to form a good estimate of the green fissure of the unseen image. This task

3

of combining relevant information from various segmentations can be termed as ’segmentation

fusion’. As long as the registration errors in the independent ABSs are non-symmetric, it is

likely that the local errors in the various segmentations of the unseen image can be corrected

by combining these segmentations.

Figure 1.4: An unseen CT image of the left lung and its four segmentation are shown. Fissure is

highlighted in the unseen image and the correspondingmatching part of the fissure is highlighted

in the four segmentations. We focus on picking up these locally highlighted regions from the

segmentations and combine them to obtain entirely correct fissure for the unseen image.

1.4 Research Goals and Contribution

The goal of current research is to detect the lobes in the pulmonary CT scan images. We use

a specific multi-atlas based segmentation (MABS) approach which requires the ’segmentation

fusion’ step for obtaining a segmentation of the unseen image. The strategy for fusion of the

various segmentations should focus on selecting ’locally-correct’ regions from each segmentation.

We studied the effect of the success of registration (or ABSs) on the output of the segmentation

fusion. Furthermore, the report contains several novel algorithms for segmentation fusion. One

previously published approach to the segmentation fusion: selective and iterative method for

performance level estimation (SIMPLE) performed well on our dataset. Some of our proposed

algorithms obtained significant improvement over the performance of SIMPLE. Some of the

algorithms developed in the current work can be used in any application area for combining

various segmentations, while some parts of the algorithms are specifically for lobular segmenta-

tion of the pulmonary CT scan data.

4

1.5 Thesis Outline

In this chapter, we discussed the motivation of this research, application area, a brief introduc-

tion of the atlas based segmentation framework, and research goals.

Second chapter provides a literature review of various research attempts relevant to ABS. A

detailed review of ABS approaches with discussion on their merits and demerits is provided.

Furthermore, various approaches to segmentation fusion are discussed with a closer look at some

of the popular approaches. Finally the chapter ends with a conclusion.

In the third chapter, we have provided details of our pulmonary dataset, softwares used in

current work, and registrations setup. We have experimented with two different registration

setups, let’s call them A and B. Since the accuracy of registration, i.e. step-1 in ABS, directly

affects the segmentation output from the second step, we studied the effect of the two registration

strategies on the accuracy of the segmentation output. Both the registration approaches are

discussed in this chapter. Finally, the format in which we have reported our results is described.

Fourth chapter is focussed on a specific method for segmentation fusion: SIMPLE. SIMPLE

is found to be the best performing algorithm on our dataset compared to several existing

segmentation fusion algorithms. We have proposed several modifications in SIMPLE. Some of

the modifications provide significant improvement over SIMPLE. We have presented results with

detailed analysis for each of our proposed algorithm. All the results presented in this chapter

are obtained on using registration setup-A for all the ABSs. This chapter contains results only

for the left lung. The chapter ends with concluding remarks.

Fifth chapter contains results of various segmentation fusion algorithms proposed in the fourth

chapter. But this chapter makes use of registration setup-B for performing ABSs. The results

are presented for both the left and the right lung. Since accuracy of registration is crucial

to the output of a segmentation fusion strategy, in this chapter we have focussed on studying

the impact of image registration on the segmentation fusion output quality. The setup-B is

considered an improvement over the setup-A. It is quite interesting to see how drastically the

output of segmentation fusion is affected by the registration accuracy.

In the sixth chapter we make direct use of registration accuracy for identifying the locally good

regions from the segmentations. The registration from the atlas to the unseen image may be

locally correct. We use this local correctness of registration as criteria to select the locally good

parts of the segmentations. In addition to this, we also employ certain fusion strategies, called

’fixed rules’, for combining the local regions within the segmentations. Therefore this chapter

not only focuses on locating correct regions within the segmentations but also on combining

these regions using several criteria. These fixed rule fusion strategies have been used in the

literature for the task of combining pattern classifiers. The motivation of employing the fixed

rules comes from the analogy between the problem of segmentation fusion and pattern classifier

combination. This chapter also contains details of the ideas which have not worked well but

may serve as motivation for future research. The chapter also contains a discussion on the

results and then it concludes.

Seventh chapter discusses the ideas which have not performed to the expectation. Since an

insight into these ideas may help future efforts, we have described the motivation behind them.

A final discussion, conclusion and scope for future work has been provided in the chapter eight.

5

Chapter 2

Literature Review

2.1 Notations Used in Current Work

Table 2.1: Notations
Symbol Name

x a voxel position

Mi ith moving image

Si Manual segmentation of Mi

F Fixed image

DMi ith deformed moving image

DSi ith deformed segmentation image

GT Ground truth, i.e., manual segmentation of F

E(GT) Estimated ground truth

distMi Distance map for the moving image Mi

distF Distance map for the fixed image F

This chapter provides an overview of the available literature on the atlas based segmentation

(ABS) approaches for finding the segmentation of an unseen image. A brief introduction of

the image registration is also provided to help in understanding the details of ABS. There

have also been several research attempts to combine the information from multiple atlases in

order to improve the accuracy of the segmentation of the unseen image. Such multi-atlas based

segmentation (MABS) approaches have been proven to outperform the single ABS approach.

In fact the MABS approach which makes use of the segmentation fusion is found to be more

accurate as compared to other multi-atlas based methods. The chapter gives more insight

on this discussion. An overview of the literature relevant to the segmentation fusion is also

provided. Finally this chapter concludes with an explanation of our approach, for the current

work.

2.2 Atlas Based Segmentation

There are several intensity based classification methods for image segmentation. Usually such

methods assign a label to each voxel based on its intensity value. However, there are certain

applications where it is not possible to establish a well-defined relation between the intensity of

6

a voxel and its label, e.g. pulmonary CT scan data. The upper and lower lobes in the left lung

exhibit a similar range of intensity values. Therefore it is not possible to distinguish both the

lobes by using only their intensity values. What differentiates the upper lobe from the lower

one is its spatial location and a fissure separating both lobes (figure 1.1(a)). Thus, the problem

of finding fissure in a left lung image can also be seen as segmenting the lung into the upper and

the lower lobes. Similar argument holds for the right lung too, where detection of the oblique

and the horizontal fissure can be used to separate the three lobes.

Suppose we are provided with a CT image of lung and its segmentation. This set of two

images, called an atlas, not only gives us anatomical information of lungs but also provides

useful information about the fissure such as its structure and location in the lung region. The

knowledge about the fissure can be used to obtain the fissure in an unseen CT image. The

ABS approach makes use of this knowledge to find the fissure in the unseen image by finding

a correspondence between the atlas and the unseen image. Since ABS makes use of image

registration, it is important to understand basics of registration to get a good understanding of

ABS process.

2.2.1 Image registration

This subsection is adopted from Klein and Staring [2004]. Although the image registration pro-

cess is not the main focus of our work, a brief introduction is provided for basic understanding.

Image registration is the task of aligning two images into a common coordinate system. One

image, called moving image M , is transformed into the coordinate system of the other image,

called fixed image F . Registration is the problem of finding a transformation T which can spa-

tially align the moving imageM with the fixed image F . Therefore, the registration process tries

to find a displacement u(x), for a voxel x, that makes M(x+u(x)) spatially aligned to F (x). In

other words, registration process involves finding a transformation T (x) = x+ u(x) that makes

M(T (x)) spatially aligned to F (x). Commonly, the registration problem is formulated as an

optimization problem in which the cost function C is minimized w.r.t. T :

T̂ = argmin
T

C(T ;F,M), (2.1)

Figure 2.1: Image registration is the task of finding a spatial transformation mapping one image

to another. Adopted from Ibáñez et al. [2005]

The transformation model used for T determines what type of deformations between the fixed

and moving image you can handle. In order of increasing flexibility, these are the translation,

the rigid, the similarity, the affine, the non-rigid B-spline and the non-rigid thin-plate spline like

transformations. The equation 2.1 also has a cost function C, ormetric, which defines the quality

of alignment. There are several choices for this metric such as: sum of squared differences (SSD),

normalized correlation coefficient (NCC), mutual information (MI), and normalized mutual

information (NMI). If the moving image M is perfectly aligned with the fixed image M after

7

the registration, the SSD cost function would be minimum. Refer Klein and Staring [2004] for

details on this topic. Interested readers may also refer Klein et al. [2007], Maintz and Viergever

[1998], Lester and Arridge [1999], Zitová and Flusser [2003], and Hill et al. [2001] for more

literature on the image registration.

2.2.2 Image registration for atlas based segmentation

In the image registration terminology, the intensity image in the atlas is called as the moving

image M and the unseen image is termed as the fixed image F . We have represented the

segmentation image in the atlas by S. As we discussed in the chapter 1, ABS is a two step

process:

1. The moving image M is registered to the fixed image F . This results into a transformation

T from M to F . See figure 2.2.

2. The transform T is applied on the segmentation image S in the atlas. See figure 2.3.

This second step of transforming S is also known as label-propagation. On applying the trans-

form T on S, we obtain a deformed segmentation image DS which represents the segmentation

of the fixed image F .

Figure 2.2: Moving image M is registered to fixed image F . As a result of this registration a

transform T from the moving image to the fixed image is obtained.

Image registration makes it possible to separate one lobe from another, if we know the lobular

segmentation for an observed lung image. The lobes for the observed image may be obtained

by manual delineating the fissures.

In this report, we have interchangeably used the term moving image M to represent the CT

scan intensity image of an atlas and fixed image F represents the unseen CT image. The

segmentation in the atlas is denoted by S which represents the segmentation of the moving

image M . The deformed segmentation image DS obtained from the second step in ABS is

called as an estimate of the segmentation of the fixed image F . The actual segmentation of the

fixed image may be found by manual segmentation. It is called as ground truth (G).

8

Figure 2.3: Transform T obtained from the previous registration step is applied on the segmen-

tation S of the moving image M . Deformed segmentation DS is obtained. DS is an estimate

of a segmentation of the fixed image F .

2.3 Using More Than One Atlas

We can obtain an estimate of a segmentation of the fixed image by a single ABS. There have

also been several attempts to combine information from several atlases into one atlas. The

motivation of such attempts is to combine information from many atlases into one atlas. This

one atlas is expected to be more informative that any individual participating atlas. There are

three famous approaches which try to converge to a single atlas starting from multiple atlases:

1. Creating an average atlas

2. Creating a probabilistic atlas

3. Using a single best atlas

2.3.1 Creating an average atlas

In Guimond et al. [2000] and Rohlfing et al. [2001], a method to generate an ’average atlas’

is described. The average atlas tends to possess variability of all the individual atlases. This

average atlas contains two important properties: an average intensity and an average shape,

both in a single image. The average model is obtained by deforming an average image. This

average image is obtained from the deformed moving images which are registered to a common

fixed image. The deformation applied on this image is computed by taking inverse of the average

of all the individual deformations as shown in figure 2.4. Rohlfing et al. [2001] demonstrated

that the use of such average atlas can provide better segmentation result than any individual

participating atlas.

In Stancanello et al. [2006] and Wu et al. [2006] several atlases are obtained from the same

patient, i.e. intra-patient data. One of the images is selected as fixed image and remaining

images are independently registered to the fixed image. Then an average atlas is created by

using all the deformed moving atlases. In Carmichael et al. [2005], Sluimer et al.,Zhang et al.

[2006], and Li et al. [2003] an average atlas is created by using multiple images from different

patients, i.e. inter-patient data.

The advantage of such approach is that once an average atlas is generated, only a single regis-

tration from the atlas to the unseen image is required to obtain its segmentation. This involves

9

Figure 2.4: Average atlas construction. Adopted from Guimond et al. [2000]

much less computation as compared to performing separate ABS for each atlas. There are two

problems associated with using an average atlas as mentioned in Rohlfing et al. [2005]:

1. An average atlas may not be a good representative of all the participating atlases.

2. The resultant segmentation depends completely on one registration from the average atlas

to the unseen image. If this registration goes wrong, we practically lose the advantage of

having multiple atlases.

2.3.2 Creating a probabilistic atlas

Information from several atlases can be combined into an average atlas containing an intensity

value for each voxel. Each voxel in the segmentation image of this atlas contains a crisp label

which shows the segmentation decision for this voxel. Instead of such crisp labels, one can also

find probability with which the voxel belongs to a particular label. Combining multiple atlases

to form a probabilistic atlas would give such a result. A review of literature on probabilistic

atlas can be found in Park et al. [2003], Sluimer et al., Lorenzo-Valds et al. [2004], and Svarer

et al. [2005].

The probabilistic atlas does not just mean the average boundary of any shape. It comprises

complete spatial distribution of probabilities, e.g., in our application, it would represent the

probability that a voxel in left lung image belongs to the upper, the lower lobe, or the back-

ground. Therefore each voxel would be represented by a n length vector, where n is the number

of different crisp labels present in the segmentation images of atlases. For the left lung n would

be 3, while for the right lung n is equal to 4. Once a probabilistic atlas is registered to the

unseen image, one can find the most probable label for any voxel in the unseen image.

The limitations of probabilistic atlas are same as that of an average atlas. Lack of representation

of the entire population and too much dependency on a single registration are the factors which

motivate researchers to find alternate ways.

2.3.3 Using single-best atlas

In Rohlfing et al. [2005], two approaches are proposed to choose the best atlas from a given set

of atlases. In the first approach, one of the atlases is chosen manually. The choice of atlas was

based on visual assessment of image quality and intensity uniformity. In the second approach,

the atlas which is most similar to the unseen image is chosen. In this case the choice of atlas

was based on four pre-defined criteria:

10

1. Value of normalized mutual information (NMI) after affine registration (NMIaffine). Each

atlas is registered to the unseen image using affine transform. NMI of the transformed

atlas and unseen image is computed and the atlas with highest NMI is chosen.

2. Value of NMI after nonrigid registration (NMInonrigid). As the name suggests, this

criteria makes use of non-rigid registration and selection criteria is same as that of the

NMIaffine.

3. Average deformation of the atlas over all voxels (DEFavg). After nonrigid registration,

the deformation between an atlas and the unseen image is computed and averaged over

the number of voxels. Atlas with least average deformation is selected.

4. Maximum deformation of the atlas over all voxels (DEFmax). This criteria is same as

DEFavg, except that it makes use of maximum deformation instead of average.

Based on the results described in Rohlfing et al. [2005], NMInonrigid criteria worked best. In

all of these single-best ABS approaches, final segmentation relies on the success of only one

registration.

2.4 Multi-Atlas Based Segmentation

MABS methods tend to outperform single-ABS methods , Rohlfing et al. [2004a], Klein et al.

[2005], Svarer et al. [2005], and Heckemann et al. [2006]. Rohlfing et al. [2004a] demonstrated

that in order to obtain the full advantage of using multiple atlases, one should combine the

segmentations of individual deformed atlases, i.e., register each moving image M to the fixed

image separately and combine all the deformed segmentations obtained from independent ABSs.

Assume N moving images Mi(i = 1, 2, 3 · · ·N) and their corresponding segmentations Si(i =

1, 2, 3 · · ·N). Consider a three step process for obtaining the segmentation of the fixed image

F :

1. each Mi is registered to the fixed image F independently, resulting in transforms Ti.

2. The segmentations Si are transformed by applying Ti transformations. As a result, we

get total N estimates DSi(i = 1, 2, 3 · · ·N) of the segmentation of the fixed image F .

3. Combine the segmentationsDSi(i = 1, 2, 3 · · ·N) to obtain a unique segmentation decision

for the fixed image F .

The third step is termed as segmentation fusion or label fusion.

2.4.1 Atlas Selection

In literature, various heuristics have been proposed for selecting only a subset of the atlases from

all the available atlases. One can apply the segmentation fusion based approach on the set of

selected atlases in order to reduce the computational burden of performing registrations for all

the atlases. Atlas selection alleviates the problems associated with the usage of an average atlas,

probabilistic atlas, or single-best atlas. Therefore, the advantage of atlas selection approaches

are two-fold:

1. The segmentation of the unseen image does not depend only on a single registration but

on the registrations of the selected atlases.

11

2. It is computationally less expensive to register the selected atlases instead of registering

all the available atlases.

One can select a subset of atlases either before performing registration Aljabar et al. [2009],

Rohlfing et al. [2004a] or after the registration Klein et al. [2008], Artaechevarria et al. [2009],

I. Isgum and van Ginneken [2009], and van Rikxoort et al. [2010b]. Although pre-registration

atlas selection can be used to reduce the number of atlases before the actual ABS procedure, a

post-registration atlas selection is found to be more accurate in practice. Since the registered

atlases contain more useful information about their similarity with the unseen image. This

makes it easier to select the atlases which are most similar to the unseen image. In a similar

attempt Klein et al. [2008] performed a coarse registration in first and the used the similarity of

its output with the unseen image as a criteria for atlas selection. Next, a finer registration was

performed only for the selected atlases. This methodology gives advantage of post-registration

atlas selection while it is computationally less expensive compared to normal post-registration

atlas selection methods.

One can apply the segmentation fusion based approach on the set of selected atlases only in

order to reduce the computational burden of performing several registrations. The segmentation

fusion approach is discussed in more detail in the

2.4.2 Analogy with combining pattern classifiers

In this report, multi-atlas based segmentation is treated as a segmentation fusion problem.

Another way of looking at this set up is by using pattern recognition terminology. The problem

of segmentation fusion is analogous to the task of combining pattern classifiers Kittler et al.

[1998]. We can consider each deformed moving atlas as a base classifier and the segmentation

by an atlas as its classification decision. This way the task of combining several segmentations

is analogous to combining the classification decisions from various atlases. Therefore, label

fusion (or segmentation fusion) can also be seen as combining classifier. The two most common

approaches for combining classifier are majority voting and weighted voting.

Figure 2.5: The decisions from several base classifiers (i.e. deformed atlases) are combined using

a combining classifier (segmentation fusion).

12

2.4.3 Voting

Voting is the most intuitive and the simplest way of combining the decisions of the several

observers. Consider these three decision making rules: unanimity, majority voting, and plurality

voting. See figure 2.6. These rules are commonly used as combining classifier strategies. Lets

assume black, white and gray colors shown in the figure 2.6 correspond to three separate classes.

Each row represents 10 objects, which are already classified into one of the three classes. The

final decision for the first row is black, on using unanimity for making the final decision. The

unanimity requires 100% support in the favor of the winning class. The final decision for the

second row is black, on using the majority voting. Majority voting requires the winner class

to have more than 50% votes. The ties are resolved arbitrarily. There is one more voting rule

called as plurality voting. A class with maximum support is takes as winner according to the

plurality voting. For the third row, shown in the figure 2.6, the decision of plurality voting

would be black. It should be noted that majority voting cannot make any decision for this case

because of the lack of more than 50% votes in the favor on one class. The final decision for all

the three rows is black by the unanimity, majority voting, and plurality voting respectively.

Figure 2.6: 1st row: Unanimity (all agree); 2nd row: Simple majority voting (more than 50%

votes) ; 2nd row: plurality voting (maximum votes)

Plurality voting is often used with the name majority voting in the literature. To keep our

terminology in accordance with the available literature, we have also used the term majority

voting in this report, which actually represents plurality. Several researchers have used majority

voting Aljabar et al. [2009], Heckemann et al. [2006], Rohlfing et al. [2004a], and Rohlfing

and Maurer [2007] for segmentation fusion in the context of MABS. It makes use of very less

information and only looks at the labels of the corresponding voxel x in the input segmentations

DSi in order to to decide the label for a voxel x in the fusion output. The main advantage of

majority voting is its simplicity and low computation time.

2.4.4 Weighted voting

Weighted voting is a more complex combining classifier strategy than majority voting. In

weighted voting, each input segmentation DSi(i = 1, 2, 3 · · ·N) is assigned some weight. This

weight represents the confidence over the input segmentation. Therefore it is always a probabil-

ity value between 0 to 1. An input segmentation DSi may have a global weight. See figure 2.7

where a global weight of 0.8 is assigned to the entire image. Therefore whatever be the label

of a voxel (0, 1 or 2), it has 0.8 confidence over its label. Instead of having one global weight

value, each voxel in the image may have a local weight value. This local weight represents the

13

confidence over the label of that voxel. In this setting, an image needs to have as many local

weight values as the number of voxels in it, one weight value for each voxel’s label.

Figure 2.7: Global weights: a global weight value of 0.8 is assigned to all the voxels. Therefore

each voxel has 0.8 confidence over its label.

Majority voting assigns default global weight 1 to all the input segmentationDSi(i = 1, 2, 3 · · ·N).

If all the inputs are not equally good, then it is reasonable to give more weight to more accu-

rate segmentation in making the final decision Artaechevarria et al. [2009], I. Isgum and van

Ginneken [2009], Sdika [2010], and Rohlfing et al. [2004a]. In figure 2.8, the more accurate

segmentation is assigned a higher weight value compared to the less accurate one.

Figure 2.8: A higher global weight of 0.8 is assigned to the more accurate estimate of segmen-

tation. Less accurate estimate gets lower weight value.

Similar to majority voting, weighted voting is also performed voxel-wise. For each voxel,

we look at the total weight in the favor of the label of that voxel. N input segmentations

DSi(i = 1, 2, 3 · · ·N) provide us N decisions for an output voxel x. In other words, each input

segmentation contains a weight value for the label of voxel x We count the total weight in the

support of each candidate label for voxel x. A label with the highest total weight is considered

winner. The decision is made for each voxel independently. If weights are correct, one can

expect weighted voting to perform better than majority. Finding reliable weights of individual

segmentations is crucial to the performance of weighted voting. Various authors have intro-

duced several approaches to estimate these weights. We have categorized these approaches in

two different ways (figure 2.9):

14

Figure 2.9: Weight Classification

1. Performance Based Weight Calculation:Performance based weights are further sub-

divided into two categories: (a) performance based on an estimate of ground truth; (b)

performance based on success of registration. The approaches within both the categories

are discussed in detail in this section.

2. Regional Weights:These type of approaches to weight calculation are divided into two

categories: (1) Global weights; and (2) Local weights. In case of global weights, there is

only one weight value for an entire input segmentation. This weight is same for all the

voxels in the image. In case of local weight calculation, a weight value for each voxel

in each input segmentation is computed. In some applications, such local weight based

segmentation fusion approaches have been proved to attain higher accuracy as compared

to the global weight based approaches. But there is also a possibility that the local weights

may be severely affected by the presence of noise in the image data which may hamper

the accuracy of local weight based fusion approaches. A more detailed discussion on this

is provided in this section.

Remember that a deformed segmentation image DSi obtained from the ABS is called as an

estimate of the actual segmentation of the fixed image F , i.e. an estimate of the ground truth.

While the final output segmentation obtained from the segmentation fusion of all the input

segmentations DSi(i = 1, 2, 3 · · ·N) is called as estimated ground truth. This is the typical

terminology used in the literature, therefore we employ the same to be in consonance with the

existing literature.

Performance Based on an Estimate of Ground Truth: Usually approaches in this cat-

egory make use of Expectation-Maximization (EM) algorithm. EM is a two step iterative

process, which repeats expectation and maximization steps. The process starts with computing

an estimate of the ground truth using a simple approach such as majority voting. Based on

this estimate, it is possible to calculate the performance of individual segmentations DSi. In

expectation step (E-step), given the performance, input segmentations are combined to make

an estimate of ground truth. Therefore, this step gives us an updated estimate of the ground

truth. In maximization step (M -step), given an estimate of the ground truth, the performance

of individual input segmentations is maximized. In this step, the performance values of input

segmentations are re-evaluated. Generally, the performance is dependent on certain parameters

and M -step focuses on finding the parameters which maximize the performance of the individ-

15

ual segmentations. In E-step, the estimate of the ground truth is improved, based on these

parameters. This iteration continues till the process converges. One popular such approach

is the Simultaneous Truth and Performance Level Estimation (STAPLE) method proposed by

Warfield et al. [2004]. This method calculates weights for each voxel in the E-step. Further-

more, the sensitivity and specificity of each segmentation is calculated in M -step. Therefore,

E-step computes a local weight value for each voxel in the each input segmentation, and M -step

computes global performance measure for each input segmentation. This global performance

measure is the sensitivity and the specificity of the input segmentations.

Warfield et al. [2004] and Rohlfing et al. [2004b] both proposed multi-label STAPLE. The

method described by Rohlfing et al. [2004b] has the benefit that less memory is required since

weights are not calculated for each voxel, but a confidence matrix for each segmentation is

estimated in the E-step. TheM -step remains similar to the original STAPLE algorithmWarfield

et al. [2004], which focuses on improving the estimate of the ground truth. Therefore Warfield

et al. [2004] makes use of confusion matrix based global weights.

In another approach called as SIMPLE, Langerak et al. [2010] used overlap between an input

segmentation and the estimate of ground truth to find the weight for each input segmentation.

The overlap measure used is DICE similarity coefficient. SIMPLE and STAPLE (as described

in Rohlfing et al. [2004b]), both the methods start with computing an initial estimate of ground

truth. First of all, the performance of each input segmentation is computed w.r.t. to this

initial estimate and then this estimate is updated based on the performance found. Both the

algorithms make use of global performance measure. They use an iterative approach in which

the estimate of ground truth is improved over the iterations. The global weights for each

input segmentation are updated in the each iteration based on the comparison with the current

estimate of the ground truth. We obtain a final estimated ground truth as the process converges.

As is mentioned in Langerak et al. [2010], STAPLE has been reported to outperform majority

voting in Rohlfing et al. [2004b], but in some publications it has been shown that STAPLE

does not give any significant improvement over majority voting Artaechevarria et al. [2009].

SIMPLE is reported to outperform majority voting, STAPLE, and several other local weights

based fusion approaches mentioned in Artaechevarria et al. [2009].

Performance Based on Success of Registration: The approaches in this category usually

rely on the deformed moving images DMi and the fixed image F for weight calculation. They

do not make any use of input segmentations DSi for weight calculation. If the registration is

perfect, a deformed moving image should be exactly the same as the fixed image. In such an

ideal case, the weight for the segmentation obtained from this ABS should be 1. The idea behind

such approaches is that an input segmentation obtained in the second step of ABS is only as

much reliable as the registration from the moving image Mi to the fixed image F in the first step

of ABS. Artaechevarria et al. [2009] used normalized correlation coefficient (NCC), normalized

mutual information (NMC), and mean square distance (MSD) between the deformed moving

image and the fixed image to calculate both: the global and the local weights. It was found

that MSD based weights perform better than majority voting and STAPLE. In another work,

I. Isgum and van Ginneken [2009] employed the absolute difference between deformed moving

image and fixed image for weight calculation.

This completes the literature review of performance based weight calculation methods. Next,

we study the regional weights, which are further divided into two sub-categories: global and

local.

Global Weights: In case of global weights, there is a unique weight value, between 0 to 1, for

an entire input segmentation. This means that all the voxels of Si get the same weight. One

16

problem with global weight is that all the local regions within an input are assigned equal weight

irrespective of their accuracy. Although, computation of global weights is computationally less

expensive that local weights. E.g. the average size of an image (one lung only) used in our

work is 250 × 350 × 600 voxels. Therefore, total number of voxels is in the order of 1 × 107.

Computing local weights for each voxel would be quite expensive. Global weights have shown

reasonable accuracy in many researches such as Langerak et al. [2010] and Warfield et al. [2004].

The difficulty in calculating the local weights reliably makes global weights an attractive option.

Local weights are reported to be sensitive noise Langerak et al. [2010].

Local Weights: Local weights take advantage of the fact that registration may be locally good

in some areas while worse in others. As was mentioned, the main drawback of approaches using

local weights is their computational complexity. Although local MSD weights based weighted

voting strategy has been found to perform better than some global fusion approaches such as

majority voting and STAPLE. We consider the majority voting as a global fusion approach

since it has the same global weight 1 for an entire input segmentation. The main advantage of

using a local weight based strategy becomes clear with a look at figure 2.10. A global fusion

strategy cannot select the locally good regions within different inputs.

Figure 2.10: Example to show limitation of global candidate segmentation combination strate-

gies. Atlas images 1 and 2 have been registered to target image. Image 1 is generally better

registered, except for the upper arm of the star. However, global strategies cannot evaluate

registration performance locally. Therefore, they cannot take advantage of this fact to obtain a

better fused segmentation. Adopted from Artaechevarria et al. [2009]

Artaechevarria et al. [2009] calculated weights for each voxel by looking at the neighborhood

values within a predefined square window. The weights are calculated using NCC, NMI and

MSD in the neighborhood values of corresponding voxel from deformed moving image and fixed

image. I. Isgum and van Ginneken [2009] calculated local weights by considering the absolute

intensity difference between the corresponding voxels of the deformed moving image and the

fixed image. Note that Artaechevarria et al. [2009] computed MSD by using intensity difference

between all the voxel within a window unlike Isgum’s approach of using intensity difference

for each voxel separately. Although Isgum afterwards used a gaussian smoothing filter on the

weights. Langerak et al. [2010] make a point that such weights, based on success of registration,

are sensitive to noise in the image data. Also, image similarity does not correlate perfectly with

registration accuracy or, more importantly, segmentation performance.

Problem with multi-atlas based segmentation fusion approach:

17

It is well proven that multi-atlas based segmentation fusion improves robustness against local

registration failures Rohlfing et al. [2004a]. As long as the registration errors are non-symmetric

and the atlases are independent (which is the case for inter-patient data), it is likely that the

local errors in the various input segmentation can be corrected by combining these segmenta-

tions. However, there are two drawbacks, mentioned in Rohlfing et al. [2004a], on using all

the available atlases: (1) The main drawback is the computational burden introduced by the

multiple registrations and segmentation fusion ; (2) the shape variance in the observed set of

atlases may not represent the unseen image.

2.5 Conclusion

In this chapter we have provided an overview of the literature relevant to the atlas based

approach to segmentation. We employ the ABS approach for lobular segmentation of the

pulmonary CT data. The intensity range of the lobes is similar to that of the fissure, therefore

several popular intensity based segmentation approaches such as active shape models, level sets

etc. cannot be used in this application. This makes the choice of ABS approach a logical option.

A brief review of the image registration is provided since understanding registration is pivotal

for understanding the ABS process. We saw that ABS is a two step process. In the first step,

a moving image is registered to an unseen fixed image. This gives us a transform from the

moving image domain to the fixed image domain. In the second step, the transform obtained

in the first step in applied on the segmentation of the moving image. This gives us an estimate

of the segmentation of the unseen fixed image. The dependency of final segmentation accuracy

on the registration encourages to use multiple atlases. In literature several ways of combining

information from many atlases are proposed: creating an average atlas, probabilistic atlas,

choosing a single best atlas, or segmentation fusion based approach. We select the segmentation

fusion based multi-atlas approach to research further since it has been proven to be more

accurate than other approaches. In this approach, several atlases are independently registered

to an unseen image. These independent ABSs give us several estimates of the segmentation of

the unseen image, or several estimates of the ground truth. A fusion of these estimates can be

more accurate than any individual estimate, if the registration error in the individual ABSs are

non-symmetric, which is usually the case for inter-patient data.

The task of segmentation fusion is analogous to combining several pattern classifiers. In the

context of multi-atlas based segmentation, an input segmentation can be seen as a decision

from one classifier. Therefore, several estimates of ground truth segmentation can be viewed

as classification decision from many pattern classifiers. This makes the segmentation fusion a

typical problem of combining the pattern classifiers. Majority voting and the weighted voting

are some of the popular approaches of combining pattern classifiers, which are frequently used

for segmentation fusion also. In the current chapter we saw a review of such approaches with

a detailed discussion on how the weighted voting has been proven to outperform the majority

voting. Majority voting is undoubtedly the most popular way to combine the classifiers. It

is most intuitive to agree with a decision with maximum support. It has been shown to give

good results with very less computations involved. The problem with majority voting is that it

considers all the inputs to be equally accurate while some of the inputs may have entirely wrong

segmentation decision. Majority voting may be the right choice for fusion if all the inputs are

equally important and there is no need to assign different weights to the input segmentations.

But if input segmentations may vary largely from each other, it is a good idea to find the weight

associated with inputs. In weighted voting, each segmentation is assigned a weight value which

18

shows the probability of this segmentation being correct. Once we decide to use weighted voting

based fusion strategy, finding weights is the main task.

This chapter discusses various approaches to compute the weights for individual segmentations.

We have divided all the weight calculation approaches in two broad categories: performance

based weights and regional weights. In case of performance based weight calculation approaches,

weights are calculated either by using a similarity measure between the deformed moving image

and the fixed image (such as MSD, NCC, or NMI between the deformed moving and the fixed

image) or by comparing input segmentations with an estimate of the ground truth (as is done

in the case of STAPLE and SIMPLE algorithms). We studied the comparison between the

setups of the STAPLE and the SIMPLE algorithm. SIMPLE has been reported to outperform

STAPLE significantly. In case of regional weight calculation approaches, either a global weight

is calculated for an input segmentation or a separate local weight is computed for each voxel of

the segmentation. There are trade-offs among different approaches. The use3 of global weights

is computationally less expensive, but it may give less accurate result as compared to local

weight based segmentation fusion approaches. Of course, this would be the case if the input set

has locally non-symmetric errors.

The input segmentations, created by multi-atlas based segmentations, for our pulmonary CT

scan data are not equally accurate. Therefore a weight based fusion strategy has higher chances

of outperforming the majority voting. Also, the input segmentations for our dataset are found

to be locally good. This happens because of locally correct registration. This means that in

some local region, registration may be more accurate than other regions. Therefore a local

weight based fusion strategy seems to a good choice for the kind of inputs we are working with.

19

Chapter 3

Data, Experimental Setup and

Registration Setup

3.1 Data and Experimental Setup

The data used in this experiment contains CT scans from 23 COPD patients. Manual seg-

mentation and lung masks of the entire dataset are prepared by experts in the LKEB group.

The left lung is segmented into 3 regions: upper lobe (intensity value 2), lower lobe (intensity

value 1), and background (intensity value 0). Similarly, the segmentation of right lung contains

superior lobe (intensity 3), middle lobe (intensity 2), lower lobe (intensity 1), and background

(intensity 0).

Figure 3.1: (Left) An example left lung CT scan; and (Right) its segmentation

On an average, the resolution of one lung is approximately 250 × 350× 600 pixels. In our

experiment, we have processed both the lungs one by one. This was done mainly to improve

computation speed of each algorithm. We conducted the experiment in a leave-one-out fashion.

Therefore, each atlas is once selected as unseen image and all the rest atlases are transformed

to it.

20

Figure 3.2: (Left) An example right lung CT scan; and (Right) its segmentation

3.2 Softwares Used

Coding is done in C++ using ITK. Python scripts are used to call the executables. We use

MeV isLab, a medical image processing and visualization software, for visualizing images. MAT-

LAB is used for making boxplot of the results and wilkoxon test presented in this report.

3.3 Image Registration

3.3.1 Elastix

All the registrations in the current work are performed using a registration package elastix

developed by Staring et al. [2010]. Executables and source code of elastix are publicly available

from the website http://elastix.isi.uu.nl. On the same site one can also find a database

of ’parameter files’, where each file contains a set of registration parameters, together with a

short description of the clinical application for which they were used.

3.3.2 Image registration setup

The CT scan images are obtained from different patients and their resolutions are different as

compared to each other. An affine transformation is not found to be sufficient and non-rigid

registration is needed. Therefore, we employ a three step registration strategy (as was used in

Staring et al. [2010] for intra-patient pulmonary CT data) in order to transform moving images

Mi to the domain of fixed image F .

Effect of masking: As was mentioned in Staring et al. [2010], we make use of ’masked’ fixed

image and ’masked’ moving images for nonrigid registrations in step-2 and step-3. All the voxels

outside the lung segmentation are given the intensity value 0. This was done to mitigate the

effect of the ribs on the transformation within the lungs. The image gradient is relatively high at

the ribs which influences the deformation field, and causes misalignment of fissures and vessels.

This masking step eliminates the problem caused by mismatching of the ribs. The usage of

mask provides a better match of smaller structures within the lung.

1. Affine registration of each moving image Mi to the fixed image F independently, without

using lung masks (table 3.1) for the transform parameters. We obtain transform Ti1 as

a result of this registration. The affine registration is provides a coarse global alignment.

21

Lung masks are not used in order to use the structures in the background part of the

images. Their presence helps in a better global alignment.

2. Nonrigid registration of each ’masked’ moving image Mi to the ’masked’ fixed image F

independently, without using lung masks (table 3.1) for the transform parameters. The

transform Ti1 obtained in step1 is used as initial transform for this registration. We obtain

transform Ti2 as a result of this registration. It was mentioned in Staring et al. [2010]

that the use of lung masks at an early stage shows negative impact on lung boundary

alignment.

3. Nonrigid registration of each ’masked’ moving image Mi to the ’masked’ fixed image F

independently, with the use of lung mask of the fixed image (table 3.1). The transform Ti2

obtained in step1 is used as initial transform for this registration. We obtain transform

Ti3 as a result of this registration. This transform Ti3 is applied to the corresponding

segmentation Si, which gives deformed segmentation DSi.

3.3.3 Problem with the current registration

The above mentioned registration setup has proven to work well for intra-patient pulmonary

CT data, while we are dealing with inter-patient data. In former case, presence of vessels help

with registration as they work as landmarks while it is not possible to match vessels for the

data obtained from different patients. Since different people have quite different alignment of

vessels which is bottleneck for obtaining good registration. In addition to mismatch of vessels,

extremely thin fissures also suffer from registration. Lets have a look at one of registration

result obtained from the 3-step approach discussed in the section 3.3.2. See figure 3.3.

As can be seen in the figure 3.3, the vessels and fissure are severely distorted inside the lung

region. Although the lung boundaries in the deformed moving image DMi match quite well

with that of the fixed image. This severely distorted fissure in the deformed moving image

causes Since our main focus is on the lobe segmentation, it is important to detect the fissures

correctly. Therefore, it is of prime importance to ’fix’ registration in order to retain the fissure

structure in the deformed moving image.

Figure 3.3: (Left) Fixed Image; (Right) One of the deformed moving images. Note that the

region inside lung boundary in completely distorted in the deformed moving image. The fissure

is clearly visible in the fixed image while it is completely lost in the deformed moving image.

The reason of such poor registration is two fold:

22

Table 3.1: Parameter settings for stages 1-3 in registration setup-A (section 3.3.4.1), resolution

levels R1-R5. Adopted from Staring et al. [2010]

Stage Iterations R1 R2 R3 R4 R5

1. Affine 1000

2. Nonrigid without mask 1000 Grid spacing (mm) 80 80 40 20 10

Downsample factor 16 8 4 2 1

3. Nonrigid with mask 2000 Grid spacing (mm) 80 40 20 10 5

Downsample factor 4 3 2 1 1

1. Presence of vessels causes problem in registration. In case of intra-patient data, vessels

may help in registration. But in case of inter patient data, it is difficult to register the

vessels from moving to the fixed image. Therefore we see results such as figure 3.3.

2. The fissures are very thin and their intensity range is same as that of the lobes. Therefore

it is difficult for registration to differentiate the fissures from rest of the lobe region.

Consequently, fissures are almost completely eroded in the registered atlas. See figure 3.3.

3.3.4 Rectifying registration

We experimented with two different registration strategies which give agreeable results for our

dataset.

3.3.4.1 Registration setup A

In this setup, we enhance the fissures in unseen and atlas images , before registration. If intensity

of fissure distinctly vary from that of the nearby lobe region then it may help in registration.

We adopt following strategy for enhancing the fissures in both fixed and moving image, before

registration. See the appendix 9 for details of the transform parameters used in the registrations.

1. Fissure or sheetness detection: A sheetness filter, developed in the LKEB/LUMC group, is

used to detect the fissures in pulmonary CT data. The sheetness filter not only responds to

fissures, but unfortunately also to vessels, since at smaller scale the outer vessel boundary

resembles a sheet. See figure 3.4.

2. Vessel detection: In order to remove vessels from the response of sheetness filter , we

detect the vessels using a vesselness measure described in Xiao et al. [2011]. See figure

3.4.

3. Removing vessel responses from sheetness filter response: The vessels detected in the sec-

ond step are subtracted from the response of sheetness filter from the first step. Although

vesselness measure does not detect all the vessels that are present in the response of sheet-

ness filter. Therefore, the resultant image obtained after vessel subtraction still contains

some vessels, in addition to fissure.

4. Connected component analysis: We retain one largest connected component from the

image obtained form vessel subtraction. The resultant image contains only fissure as

shown in 3.4 and 3.5.

23

5. Enhancing the fissure: Once we have an initial estimate of fissures, we scale down the

intensity of all voxels in the fixed and the moving image by a constant factor, except

at the fissure location. This way we suppress the vessels so that they do not distract

registration. We also mask the background from the images in order to remove ribs for

the same reason as mentioned in section ??. Let us call the resultant image from this step

as enhanced fixed image (EF) and ith enhanced moving image (EMi).

The first 4 of the overall 5 steps discussed above are for obtaining an initial estimate of fissure in

order to support registration. These 4 steps are used in a previous research conducted in LKEB.

The registration setup A is a 3-step strategy (1 affine and 2 b-spline registrations) in which first

2 steps are same as section 3.3.2. In the third step, we perform nonrigid registration of each

enhanced moving image EMi to the enhanced fixed image EF independently. The transform

Ti2 obtained in step1 is used as initial transform for this registration. We obtain transform Ti3

as a result of this registration. This transform is applied to the corresponding segmentation Si

to obtained deformed segmentation DSi.

3.3.4.2 Registration setup B

van Rikxoort et al. [2010a] proposed a registration strategy for pulmonary CT scan data in

which an initial estimate of fissure, bronchial-tree and lung border is used to improve registration

quality. Registration setup-B, proposed by Dr. Marius Staring, is a modified version of their

method. We do not compute bronchial-tree. But we compute an initial estimate of fissure

using the work of Xiao et al. [2011], similar to what we saw in in setup-A. Setup-B is a 2-step

registration strategy (1 affine and 1 b-spline registration) contrary to 3-steps (1 affine and 2

b-spline registrations) involved in setup-A. Following are the steps involved in the setup-B:

1. Affine registration of each ith masked moving image to the masked fixed image indepen-

dently. We obtain transform Ti1 as a result of this registration.

2. Compute lung border for each moving image Mi and the fixed image F .

3. Make an initial estimate of fissure for each moving image Mi and the fixed image F . For

this we the employ approach discussed in first 4 steps of setup-A.

4. Compute distance-map of lung border of each moving image DT (Mi,border) and the fixed

image DT (Fborder). Both the distance maps are truncated after a certain threshold (value

14 used in our experiment).

5. Compute distance map of initial estimations of fissure of each moving imageDT (Mi,fissure)

and the fixed image DT (Ffissure).

6. Non-rigid registration using cost function as given in equation 3.1. The transform Ti1

obtained in step1 is used as initial transform for this registration. We obtain transform

Ti2 as a result of this registration. This transform Ti2 is applied to the corresponding

segmentation Si to obtained deformed segmentation DSi.

T̂µ = argmin
Tµ

α1C1(Tµ;DT (Fborder), DT (Mi,border))

+ α2C2(Tµ;DT (Ffissure), DT (Mi,fissure)),
(3.1)

See the appendix 9 for details of the transform parameter used in the registrations and the

parameters α1 and α2 in the equation 3.1.

24

Figure 3.4: (a) A CT scan image of left lung, (b) Response of sheetness filter. We can see the

encircled fissure and lots of other vessels, (c) Response of vesselness filter. It does not detect all

the vessels that are present in the response of sheetenss filter, (d) Image obtained on subtracting

(b) - (c). We can see that some of the vessels are still present in addition to fissure, (e) Fissure

obtained after connected component analysis of image from step (d), (f) The enhanced CT

image.

25

Figure 3.5: 3D view of the fissure obtained from connected component analysis. (a)Axial view,

(b)Sagitaal view, (c)Coronal view.

3.4 Result Format

3.4.1 Overlap of fissures

Accuracy of a resultant segmentation obtained from any fusion algorithm is calculated by consid-

ering its overlap with the ground truth. Since focus of the current work is lobular segmentation,

a resultant segmentation is considered more accurate if its fissure has higher overlap with that

of the ground truth. As can be seen in figure 3.6, the overlap value of entire 3D segmentation

result with the ground truth is usually high and it does not convey much information about

how good the detected fissure is. Therefore, accuracy of a segmentation result is reported in

terms of the overlap of its 3 voxel wide fissure with that of the ground truth as shown in figure

3.7.

Figure 3.6: (a1, a2) Two input images (b) Ground truth; The number shows overlap value of

corresponding input images with the ground truth.

Figure 3.7: (a1, a2) Two input images (b) Ground truth; The number shows overlap value of 3

voxel wide fissures from the ground truth with that of the input images.

26

3.4.2 Box-plot of fissure overlap

The presented work focuses on multi-atlas segmentation based label fusion strategies (section

2.4) for obtaining the lobular segmentation. The experiments are conducted in a leave-one out

fashion. Therefore, each of the 23 input CT images is taken as fixed image once and remaining

CT images are registered to it, which eventually results into an estimate of segmentation of the

fixed image. Finally, we obtain 23 estimates of segmentation of the fixed image as a result of

23 independent atlas based segmentations. Therefore, we obtain 23 estimates of fissure in the

ground truth. The results are reported by making a box-plot of the overlap of these 23 fissures

with that of the ground truth.

3.4.3 Box-Plot of fissure overlap for majority voting

On using majority voting as the label fusion strategy, we obtain a box-plot as shown in figure

3.8

Figure 3.8: Box-plot of the 23 overlap values obtained from estimates of ground truth fissure.

These estimates are obtained by using majority voting as the label fusion strategy.

3.4.4 Low tail of box-plot

The fissures may not always be visible in standard CT images. In such a situation, initial

fissure estimation may not be able to detect anything, which further causes poor registration.

Therefore, we may encounter a set of deformed segmentations DSi as shown in figure 3.9. No

combination strategy can produce a good estimate of ground truth on using the inputs shown

in the figure because none of the inputs contain locally correct fissure. Such cases result into

either 0 or very less fissure overlap on comparing with the corresponding ground truth. This

causes the tail of box-plot to be quite low (figure 3.8). It should be noted that one needs to

improve registration for improving this result and not the segmentation fusion strategy.

27

Figure 3.9: Reason for low tail of box-plot: A set of four input segmentations and their cor-

responding ground truth is shown. Such inputs are generated due to failure of registration

process. Since none of the input is locally correct, one cannot expect good result from any

fusion strategy.

28

Chapter 4

Improvements to SIMPLE:

Performance Based on Estimate of

Ground Truth

Several researchers have used majority voting for decision fusion in the context of multi-atlas

based segmentation. Majority voting has established itself as a powerful tool for decision fusion.

We can simply trust the decision of majority voting for the region where clear majority is

present. By clear majority we mean the situation when one of the labels has quite high support

as compared to others. If we look at our pulmonary CT data, all the 22 input segmentations

(for any given fixed image) have same label for most of the region. But inputs differ from each

other (figure 4.1) in the region close to fissure. Therefore, using majority voting works good for

entire image but the region nearby fissure.

Figure 4.1: For most of the region, all the 3 inputs have same label as that of the ground truth

, therefore a clear majority is present. But for region close to fissure, input-2 looks more similar

to ground truth compared to others. Therefore the fusion strategy should assign higher weight

to input-2 as compared to other two inputs. But majority voting assigns default 1 weight to

each input.

Majority voting assumes equal weight, i.e. 1, for each input segmentation. If an input seg-

mentation may be more accurate than others, it should be given higher weight. Therefore, one

should consider weighted voting instead of majority voting for fusing such inputs. There are

several methods for finding weight of an input segmentation. In this chapter we have discussed

several algorithms which compare input segmentations with an estimate of ground truth for

finding weights. This chapter is focussed on one such algorithm, SIMPLE. SIMPLE is an itera-

29

tive algorithm. It calculates a weight value for each input segmentation and performs weighted

voting of all the segmentations. This task of weight calculation, then weighted voting, is re-

peated in each iteration in such a way that weights and the result of weighted voting improves

over iterations until the process converges. The result of weighted voting in the final iteration

is considered as the final estimated ground truth. In each iteration, SIMPLE computes DICE

overlap of input segmentations and current estimate of ground truth. These DICE values are

used as weights for performing weighted voting.

We have experimented with several improvements over SIMPLE in which we used the same

DICE measure as weight for input segmentations, but we focus on improving the weights in a

way that they are more representative of locally good regions in a segmentation. Also, SIMPLE

algorithm works only for binary segmentation. We propose a multi-label version of SIMPLE.

This chapter contains results generated only for left lung. All the input segmentations were

obtained through multi-atlas based segmentation and setup-A (see section 3.3.4.1 for details)

was used for performing all the registrations. Section 4.1 contains detail, pseudo code, and

an example of SIMPLE. Various improvements over SIMPLE are explained in section 4.2 in

detail. This section also discusses the motivation of proposed algorithms. In section 4.3 we

have presented the results of various algorithms and their discussion. Section 4.4 concludes.

4.1 SIMPLE Algorithm

SIMPLE uses an iterative strategy which starts with computing an initial estimate of ground

truth by majority voting of all the input segmentations. Furthermore, DICE overlap of each

input and this initial estimate is calculated. Inputs with DICE value less that a certain threshold

are rejected i.e. their weight is made 0. This threshold is computed based on average and

standard deviation of the DICE values of inputs. The DICE values are used as weights in

weighted voting of the remaining inputs. The result of weighted voting provides us with a new

estimate of ground truth. Again, overlap of each remaining input is computed with this new

estimate. Therefore, the process enter into a loop and in each iteration some of the inputs are

rejected while the process continues with the remaining ones. The process stops when inputs

are not rejected anymore. See algorithm-1. Section 4.1.1 demonstrates working of SIMPLE

through an example.

One important note is mentioned in Langerak et al. [2010] that SIMPLE method may fail

occasionally, i.e. lead to a clinically unacceptable segmentation. This happens when the initial

combination of input segmentations DSi(i = 1, · · · , N) does not resemble the unknown ground

truth segmentation. This will mainly be the case when most of the atlas based segmentations

fail because of poor registration. The solution to this problems lies in improving registrations,

rather than improving segmentation fusion scheme.

4.1.1 An example of SIMPLE

Consider an example given below: Lets assume 6 inputs with overlap values (0.95, 0.97, 0.92,

0.89, 0.60, 0.75) with initial estimate of ground truth. Consider α = 0 (see step-9 in algorithm-

1). In the first iteration Threshold0 = Mean0 = 0.85. Therefore inputs with 0.60 and 0.75

overlaps are rejected and estimate of the ground truth is updated by performing weighted voting

of remaining 4 inputs. Now, the overlap values of the inputs change on comparing with the

updated estimate of ground truth. Lets assume it to be (0.94, 0.99, 0.94, 0.86). In second

iteration, Threshold1 = Mean1 = 0.93. Therefore input with 0.86 overlap is rejected and the

30

Algorithm 1 SIMPLE algorithm

Require: DSi, α

1: perform majority voting of DSi to obtain an initial estimate of ground truth, i.e., E(GT)0
2: initialize iter = 0

3: initialize NumberOfInputs0 = N

4: while NumberOfInputsiter ̸= NumberOfInputsiter−1 do

5: for i = 1 to NumberOfInputsiter do

6: compute Dicei = overlap of DSi and E(GT)iter
7: end for

8: compute Meaniter(Dice) and StdDeviter(Dice)

9: compute Thresholditer = Meaniter − α× StdDeviter
10: for i = 1 to N do

11: if Dicei < Thresholditer then

12: reject DSi

13: end if

14: end for

15: count NumberOfRejectedInputsiter
16: NumberOfInputsiter+1 = NumberOfInputsiter −NumberOfRejectedInputsiter
17: iter = iter + 1

18: perform weighted voting of remaining DSi to obtain E(GT)iter. DICEi is used as weight

for DSi.

19: end while

20: E(GT)iter is final fusion result, i.e., E(GT) (estimated ground truth)

process continues until we stop rejecting inputs. This example gives an idea of how rejection of

data helps in improving the ’threshold’ over iterations.

4.1.2 Binary input for SIMPLE

Since SIMPLE is designed to work for binary segmentation only and segmentation of a left lung

contains three labels in our data, we chose to make the label of upper lobe same as that of the

background i.e. zero, figure 4.2. We can still locate fissure using the binary inputs.

Figure 4.2: (Left) Segmentation image for a left lung, (Right) Binary input to binary SIMPLE

algorithms.

31

4.2 Improvements in SIMPLE Algorithm

SIMPLE is proven to attain significantly higher accuracy as compared to majority voting

Langerak et al. [2010]. But there are possible improvements which may help SIMPLE in per-

forming even better. In this section we have proposed several modifications in SIMPLE and

their theoretical contribution is discussed in detail.

4.2.1 Local SIMPLE

In SIMPLE, the performance of an input segmentation is represented by a global weight value

which is obtained by computing its overlap with current estimate of ground truth. Therefore,

all the local regions of an input segmentation are assumed to be equally accurate and each

voxel is weighted by the same global overlap value. We have already discussed in section 2.4.4

that a combination strategy based on local weights is expected to perform better as compared

to one based on global weights. Since an input segmentation may be locally good in some

area while bad in some other area. Let’s have a look at figure 4.3 in which some of the input

segmentations and their corresponding ground truth is shown. Since our focus is on fissure

detection only, fissures in the input segmentations are highlighted if they match with the fissure

in the ground truth. As can be seen, none of the input segmentation has completely correct

fissure while most of the inputs have local regions in which their fissure matches well with that of

the ground truth. Therefore it is reasonable to assign different weights to different local regions

within the same input segmentation. We have proposed 3 different methods which employ local

weights:

1. Local slice-wise

2. Local non-overlapping cube-wise

3. Local overlapping cube-wise

4.2.1.1 Local slice-wise SIMPLE

As was mentioned in section 3.1, the input segmentations are 3D images. An input image can be

considered as a number of 2D slices stacked over each other along a particular dimension. The

algorithms starts with an initial estimate of ground truth by majority voting of input segmen-

tations. Furthermore, DICE overlap of each slice of an input is calculated w.r.t corresponding

slice of the initial estimate of ground truth. In this setup, we get a separate mean overlap and

threshold for each slice index. Therefore, instead of rejecting entire 3D input segmentation,

particular slices are rejected if their overlap is less than the threshold for that slice index. In

this methodology, we focus on rejecting only bad slices from an input and remaining good ones

can still participate in weighted voting. Similar to SIMPLE, it is an iterative procedure and

the process continues until no slice is rejected from any input. See algorithm-3 for pseudo code

of local slice-wise SIMPLE given in the appendix 9.3.

4.2.1.2 Local non-overlapping cube-wise SIMPLE

This algorithms is quite similar to ’local slice-wise’ SIMPLE since we focus on finding weights

for local regions separately. Each local region is assigned a separate threshold to compare with.

Some of the local regions may be rejected from an input, but the remaining ones still participate

32

Figure 4.3: For most of the region, all the 3 inputs have same label as that of the ground truth

, therefore a clear majority is present. But for region close to fissure, input-2 looks more similar

to ground truth compared to others. Therefore input-2 should be assigned more weight. While

using majority voting here assigns 1 weight to each input.

in weighted voting. This is also an iterative process which continues unless we stop rejecting any

local region from any input. The main difference from ’local slice-wise’ algorithm is the division

of an input image into small non-overlapping cubes of pre-defined size. Also, this algorithm

need the cube-size as user input. See algorithm-4 for pseudo code of the local non-overlapping

cube-wise algorithm given in the appendix 9.3.

If we look at figure 4.3, fissure in input-5 does not match with the shown ground truth at

all. Considering this ground truth to be the current estimate, all the cubes containing fissure

in input-5 have high chances of being rejected. But remaining cubes with label-1 may still

participate.

4.2.1.3 Local overlapping cube-wise SIMPLE

In ’local non-overlapping cube-wise’ algorithm an input image is divided into smaller non-

overlapping cubes. Instead we can divide an image into overlapping cubes. Weight for each

voxel of an input image is calculated by considering the overlap of its 3D neighborhood with the

neighborhood of corresponding voxel from estimate of ground truth. Therefore, each voxel from

an input segmentation is rejected or retained based on the overlap value of its neighborhood.

This algorithm also needs a user to input the cube-size. The effect of changing the size of

overlapping cubes is governed by two effects:

33

1. The subdivision into overlapping cubes has ’averaging effect’ on local weight values. It

ensures smooth variation of weights. For instance, assuming a 2D image and a square

window of 10 × 10 pixels, on shifting the square window by 1 unit (along one of sides of

square), two neighboring pixels share 90 out of 100 pixels which are used to compute local

weight. This large number of shared pixels provides smooth variation of weights along

an image. On increasing the neighborhood radius, the averaging effect also increases.

But such weights are less local and may result into worse performance. Therefore, it is

expected that on increasing the size of the sliding window (or cube size), the performance

should improve initially because of reducing effect of noise and worsen further because of

increasing global nature of weights.

2. It is possible that a very small window does not contain enough information to calculate

local weights reliably. Therefore, smaller window size (or cube size) may result in poor

performance, while increasing window size may improve the performance.

It is difficult to predict which one of the above two effects may dominate, for a given cube size.

Improving Computation Speed for the Algorithm: Local overlapping cube-wise algo-

rithm calculates DICE overlap value for each voxel of an input image. This value is computed

by considering all the voxels, within a 3D window of given size, in the neighborhood of the

voxel in consideration. Afterwards, this window is shifted by just one voxel along a particular

dimension. It incurs a lot of computation which can be avoided, since majority of the voxels

are still same within a window, on shifting it by just one voxel. Therefore, we shift the window

by more than one voxel space,e.g., consider local overlapping cubes of size 50 × 50 × 50 vox-

els. If we shift the window by 5 voxel size, instead of 1 voxel, then it gives us approximately

5× 5× 5 = 125 times higher computation speed. Since DICE value is calculated for 125 times

lesser number of cubes. Now, we have two parameters in this algorithm: the window size (also

termed as cube-size in this report) and the window shift.

4.2.2 Increasing sensitivity (boundary) SIMPLE

SIMPLE algorithm computes accuracy of an input segmentation by its overall overlap with the

current estimate of ground truth. This overall overlap value may not be a good representative

of how good an input segmentation is. Since even with poor boundaries, a greater part of an

input segmentation still matches with current estimate of ground truth. Therefore the overlap

value is always quite high. We can obtain a more sensitive measure of goodness of an input

segmentation by computing the overlap of its boundaries with that of the current ground truth.

In SIMPLE, the performance of an input is represented by overlap value of 3D input image with

the current estimate of ground truth, which is also a 3D image. This overlap value of entire 3D

volume may not be a good representative of boundaries of an input image, as shown in figure

4.4.

One can see in figure 4.4 that boundaries of second input are more similar to that of the ground

truth but the overlap value of both the inputs are quite close to each other since most of the

3D volume of both the inputs overlap with the ground truth.

Instead of computing overlap of entire input volume, we consider overlap of only boundary

of an input with the boundary of ground truth, as shown in figure 4.5. This may provide

more clear distinction among the good and bad inputs. See algorithm-5 for pseudo code of the

boundary-SIMPLE algorithm given in the appendix 9.3.

34

Figure 4.4: (a1, a2) Two input images (b) an estimate of ground truth; The number shows

overlap value of corresponding input images with that of the ground truth estimate.

Figure 4.5: (a1, a2) Two input images (b) an estimate of ground truth; The number shows

overlap value of 3 voxel wide fissures from the ground truth with that of the input images.

4.2.3 Re-inclusion of rejected data

In SIMPLE, input data is rejected on comparing with current estimate of ground truth. This

ground truth improves iteratively. Once thrown, an input never participates back into fusion.

One problem with this set up is that input data is thrown based on a comparison with ground

truth which is still improving.Therefore, it is possible that a useful input is wrongly rejected in

an initial iteration.

Consider an example given below: Lets assume 6 inputs with overlap values (0.95, 0.97, 0.92,

0.89, 0.60, 0.75) with initial estimate of ground truth. Consider α = 0. In the first iteration

Threshold0 = Median0 = 0.91. Therefore inputs with overlaps 0.89, 0.60 and 0.75 are rejected

and estimate of ground truth is updated by performing weighted voting of remaining 3 inputs.

Now the overlap values of inputs change when compared with updated estimate of ground truth.

Lets assume it to be (0.94, 0.95, 0.95, 0.91, 0.65, 0.79). In second iteration, Threshold1 =

Median1 = 0.93. Therefore inputs with overlaps 0.91, 0.65 and 0.79 are rejected and the

process continues until we stop rejecting inputs. This example gives an idea of how rejection of

the data helps in improving the ’threshold’ over iterations. The estimate of the ground truth

is updated by making use of only non-rejected inputs. The use of ’median’ instead of ’mean’

ensures that threshold is not affected by outlier overlap values.

4.2.4 Multi-label SIMPLE

SIMPLE algorithm is designed to work only for binary segmentation. It computes a global

overlap value for foreground and this overlap value is taken as weight for all foreground vox-

els. The similar approach can be employed for a multi-label segmentation problem. If input

segmentations have more than one label, overlap of each label can be computed separately by

comparing with corresponding label present in the current estimate of ground truth.It should

be noted that we need a separate threshold for each label. In this setup, only voxels with a

particular label are discarded if their overlap value is less than a certain threshold. Therefore,

it is possible to reject a set of voxels with a particular label while voxels with another label are

retained within the same input image.

35

Algorithm 2 Re-Inclusion of Rejected Data

Require: DSi, α

1: perform majority voting of DSi to obtain an initial estimate of ground truth, i.e., E(GT)0
2: initialize NumberOfInputs0 = NumberOfInputs

3: initialize iter = 0

4: while NumberOfInputsiter ̸= NumberOfInputsiter−1 do

5: for i = 0 to N do

6: compute Dicei = overlap of DSi and E(GT)iter for all the input segmentations.

7: end for

8: compute Medianiter(Dicei) and StdDeviter(Dicei) using all the input segmentations.

9: compute Thresholditer = Medianiter − α× StdDeviter
10: for i = 0 to N do

11: if Dicei < Thresholditer then

12: reject DSi

13: end if

14: end for

15: count NumberOfRejectedInputsiter
16: NumberOfInputsiter+1 = NumberOfInputsiter −NumberOfRejectedInputsiter
17: iter = iter + 1

18: perform weighted voting of remaining DSi to obtain E(GT)iter. DICEi is used as weight

for DSi.

19: end while

20: E(GT)iter is final fusion result, i.e., E(GT)

4.2.4.1 Global Multi-Label SIMPLE

Global multi-label SIMPLE works in the same way as SIMPLE. A separate overlap value, mean,

and threshold is computed for each label. The DICE overlap computed for a particular label is

a global weight value, since all the voxels with this label are assigned the same DICE value as

weight. In a way, this algorithm performs SIMPLE for each label independently but weighted

voting considers all the labels simultaneously, at the end of each iteration. See algorithm-6 for

pseudo code of the boundary-SIMPLE algorithm given in the appendix 9.3.

4.2.4.2 Local Non-Overlapping (and Overlapping) Cube-Wise Multi-Label SIM-

PLE

Local non-overlapping (or overlapping) multi-label SIMPLE algorithms works almost same as

’local non-overlapping (or overlapping) cube-wise SIMPLE’ algorithm 4.2.1.2. But instead of

rejecting (or retaining) all the voxels within a cube, only voxels with a common label are rejected

(or accepted). If input segmentations have 3 labels then each non-overlapping cube in an input

has 3 weight values associated with it. Each of these weight value corresponds to a different

label. An input image is divided into non-overlapping (or overlapping) cubes depending on the

choice of algorithm.

36

4.3 Results And Discussion

4.3.1 Effect of α

SIMPLE computes a unique threshold value in each iteration based on the mean and standard

deviation of the overlap values of all the inputs. The equation for threshold calculation is as

following:

Thresholditer = Meaniter − α× Stddeviter (4.1)

where Meaniter and Stddeviter represent the mean and standard deviation of overlap values of

all the input segmentations for a particular iteration iter. This threshold also depends on a

scalar variable α. In figure 4.6, α is given as a function of the number of selected segmentations

as reported in Langerak et al. [2010]. No significant difference was found in final fusion result on

using different α values. Although it was reported that this holds for cases in which there is a

large set of atlases. In other words, although SIMPLE is not sensitive to the threshold rule, i.e.

α, but this may be different for other (smaller) atlas sets. It should be noted that the number

of inputs used Langerak et al. [2010] is 100 which is much larger than out dataset having only

22 atlases and an unseen image.

Figure 4.6: Selection threshold α (vertical axis) as a function of the number of selected seg-

mentations (horizontal axis). Therefore α value in an iteration depends on the number of input

segmentations that were selected in the previous iteration. Adopted from Langerak et al. [2010].

Effect of α on Our Data: The convergence speed of SIMPLE depends on the parameter

α. It controls the amount of input data rejected in an iteration. The algorithm converges

when inputs are not rejected any more. For a given α, SIMPLE may converge in 7 iterations

with 30% inputs rejected while for another α, algorithm may converge in 5 iterations with 50%

inputs rejected. Figure 4.7 shows performance of SIMPLE on our pulmonary CT dataset. The

performance is represented by a boxplot of overlap values of 3-voxel wide fissure obtained from

the SIMPLE result and the ground truth. See section 3.4 for the details on format of our result

reporting. We experimented with several α values which are listed in table-4.1. f -value in the

table denotes fraction of selected segmentations in previous iteration. We found statistically

significant difference between the overlap values on using different α, e.g., Wilkoxon test statistic

between the results obtained on using α = 0 and α = 2 is found to be 0.0021. Therefore, it is

37

important to choose the right α to get optimum performance from the algorithm. The α values

given in table-4.1 are the ones for which SIMPLE worked best.

Figure 4.7: Box-plot of the 23 overlap values obtained on comparing fissures (3 voxel wide)

obtained from ground truth and SIMPLE algorithm for different values of α.

Table 4.1: V arious α values used for SIMPLE algorithm.
Index α-value

0
√
(1− f)

1 0.0

2 0.5

3 1.0

4 1.5

5 1/f

The convergence criteria of SIMPLE does not consider performance change over iterations,

therefore it is possible that the accuracy of fusion result keeps on decreasing, but the algorithm

still does not converge until α allows to reject more input data. Therefore, the algorithm

does not keep any track of whether it is improving the final segmentation or making it worse.

Therefore role of α becomes more important to ensure that the algorithm stops before it starts

deteriorating the performance.

α Tuning Specific To Each Algorithm: We experimented with several α values for each

of the proposed modified SIMPLE algorithm. A set of six α values is chosen separately for

each algorithm. The results are calculated for each of these six α , as shown in figure 4.7,

and one with highest value of median (α1 in figure 4.7) is considered as the best result. The

report contains only best result for each algorithm. It should be noted that different versions

of SIMPLE algorithm may work best for different α. For these α values (given in table-9.1 and

table-9.3 in Appendix), an algorithm’s performance has no statistically significant difference.

Therefore, we may chose any of these α to test on an unseen image.

38

Figure 4.8: Box-plot of the 23 overlap values obtained on comparing fissures in label fusion

result and ground truth. The fusion strategies used are majority voting (left) and SIMPLE

(right).

4.3.2 Comparison with majority voting and STAPLE

Figure 4.8 shows performance of majority voting, STAPLE, and SIMPLE algorithms. It is

evident that SIMPLE improves over majority voting and STAPLE. We analyze the difference

of the corresponding overlap values obtained from majority voting and SIMPLE for detailed

analysis. On doing a paired comparison for each patient (figure 4.9(a)), we see that SIMPLE

improves fissure overlap for most of the patients but for some cases it performs worse, compared

to majority voting. A box-plot of the difference of the corresponding overlap values can be

seen in figure 4.9(b). Portion of the box-plot below 0 represents those cases where SIMPLE

deteriorate the fissure overlap value compared to majority voting and STAPLE.

39

(a) The patient numbers for which SIMPLE

improves over majority voting are shown in

blue color while red marks show the patients

for which SIMPLE performed worse than ma-

jority voting.

(b) The portion of the box-plot below 0 represents

the cases when SIMPLE performed worse as com-

pared to majority voting and STAPLE.

Figure 4.9: Comparing SIMPLE with majority voting and STAPLE. A plot of difference in

overlap values of fissure obtained from various algorithms.

4.3.3 Results of proposed modifications in SIMPLE

Figure 4.10 shows box-plot of overlap of fissure obtained from SIMPLE and few other algorithms.

Figure 4.11 contains box-plot of the difference in the overlap of fissure, obtained on subtracting

fissure overlap value from various algorithms with that of the SIMPLE. We have discussed the

result of each algorithm one by one.

Figure 4.10: Box-plot of the 23 overlap values obtained on comparing fissures obtained from

ground truth and various SIMPLE algorithms.

SIMPLE with re-inclusion algorithm: In figure 4.10, box-plot for ’SIMPLE with re-

inclusion’ algorithm shows a bit higher median compared to SIMPLE. Major part of box-plot

for ’SIMPLE with re-inclusion’ algorithm is above 0 in figure 4.11, which represents the exam-

ples where final fissure overlap was improved compared to SIMPLE. But we also see 2 outliers

below 0-line, the examples for which SIMPLE performed better. We further do ’Wilkoxon-test’

40

Figure 4.11: A box-plot of difference in overlap values of fissure.

between the fissure overlap values obtained from SIMPLE and ’SIMPLE with re-inclusion’. The

test statistic comes out to be 0.7380 (see table 4.2) which means there is no statistically signifi-

cant difference between the fissure overlap values from the two algorithms. On analyzing output

from the re-inclusion algorithm, we realize that in most of the cases if re-inclusion algorithm

rejects any input once, then this input is rejected in all the further iterations also. Therefore

for majority of the cases, choice of re-including the inputs does not give any advantage over

SIMPLE algorithm.

Local slice-wise SIMPLE algorithm: In figure 4.10, box-plot for ’local slice-wise’ algorithm

shows a bit higher median and entire box-plot is shifted slightly upwards compared to SIMPLE.

Major part of box-plot for ’local slice-wise’ algorithm is above 0 in figure 4.11, therefore it seems

to be performing better compared to SIMPLE for majority of the examples. Interestingly, fissure

overlap of one example is improve by more than 0.3 by slicewise algorithm, as shown in figure

4.11. This result encourages us to focus on local SIMPLE algorithms. The Wilkoxon test

statistic between the fissure overlap values obtained from SIMPLE and slice-wise algorithm

comes out to be 0.2355 (see table 4.2) which means there is no statistically significant difference

between the fissure (3 voxel wide) overlap values from the two algorithms.

Table 4.2: Wilkoxon Test
algorithms p-value

Global Re-inclusion 0.7380

Local Slice-Wise 0.2355

Global Boundary 0.7578

Local Slice-Wise Boundary 0.0106

Boundary SIMPLE algorithm: In figure 4.10, box-plot for ’boundary SIMPLE’ algorithm

looks just as good as that of the SIMPLE, although median is slightly higher but entire box-plot

is shifted slightly downwards. A look at figure 4.11 tell us that boundary SIMPLE performs

41

worse for more examples than those for which it improves over SIMPLE. Two outliers below

0-line also testify worse performance of the boundary SIMPLE. The Wilkoxon test statistic

between the fissure overlap values obtained from SIMPLE and ’local slice-wise’comes out to be

0.7578 (see table 4.2) which means there is no statistically significant difference between the

fissure overlap values from the two algorithms. The suspect that the reason for such result is

2-fold:

1. If we look at figures 4.4 and 4.5, as the overlap of entire 3D input with corresponding

ground truth increases, then overlap of boundaries of both the images also increases.

Therefore, if SIMPLE rejects an input in first iteration because of low overlap of 3D

volume, then boundary-SIMPLE also rejects that input because of low overlap value of

3D boundary. Therefore, boundary-SIMPLE does not improve over SIMPLE.

2. We expect boundary-SIMPLE to improve over SIMPLE since it enhances the sensitivity

of SIMPLE. It gives a better estimate of how good an input segmentation is. But we have

to keep in mind that we take entire boundary of an input segmentation into account for

boundary-SIMPLE algorithm while the evaluation is performed only for fissure overlap.

Therefore it does not add much to the sensitivity of SIMPLE.

Therefore, we think that boundary algorithm may help with an application where performance

measure depends on entire boundary and not just fissure. Increasing sensitivity for such an

application may be quite helpful.

Figure 4.12 shows the effect of changing boundary width on the performance of boundary

SIMPLE algorithm. The change in boundary width has no significant effect on the performance.

Figure 4.12: Boundary SIMPLE: effect of changing the boundary width.

Local slice-wise Boundary SIMPLE algorithm: Local slice-wise Boundary SIMPLE algo-

rithm performs worse compared to SIMPLE. Lowered box-plot in figure 4.10 and major part of

the box-plot below 0-line in figure 4.11 confirm the same. The Wilkoxon test statistic confirms

that SIMPLE is significantly better compared to local slice-wise Boundary SIMPLE algorithm.

One possible reason for this may be because the boundary slice-wise algorithm computes weights

by considering boundary of an input segmentation within a slice. In our opinion, this boundary

contains too less voxels to measure DICE overlap reliably.

42

Local non-overlapping cube-wise SIMPLE algorithm (LNOC): Figure 4.13 shows re-

sults obtained on using cube-size 100 and cube-size 25 for local non-overlapping cube-wise

algorithm. We can see a sudden jump in the fissure obtained on using cube-size 25. This

boundary-effect may appear at intersection-surfaces of two cubes. Since final fissure within

these two cube locations comes from separate weighted voting, performed on different set of

cubes. Therefore, such jumps are possible. Following are the effects of changing the cube-size:

1. Smaller cube-size provides more local weights. The weights tend to be global on increasing

the cube-size. Therefore, we lose the advantage of local fusion strategy.

2. As shown in figure 4.13, we may encounter jumps in fissure at intersection-surfaces of

two cubes. A small cube-size may cause many intersection-surfaces within a fissure and

consequently may cause many jumps. Therefore, a large cube size may provide more

smooth fissure.

3. A very small cube-size may not contain enough voxels to compute DICE measure reliably.

Figure 4.13: Results of local non-overlapping cube-wise SIMPLE algorithm on using cube-size

(a)100 and (b)25. A sudden jump in the fissure can be observed in (b)

It is difficult to say how these 3 factors will interact with each other. Therefore we need to look

at the performance of the LNOC algorithm to see which cube-size works better. In figure 4.14,

the box-plot of fissure overlap is quite low for cube-size 10. It seems that cub-size 10 is too low

(therefore contains too less voxels) to compute DICE measure reliably. For cube-sizes greater

than 50, the algorithm performs better. Figure 4.15 confirms that cube-size 10 performance

worse than SIMPLE, for most of the examples. One interesting observation in figure 4.15 is

a positive outlier for cube-size 25 and higher. This particular example is greatly improved by

LNOC algorithm. Figure 4.16 shows various slices for this outlier obtained from both SIMPLE

and LNOC. One can see that fissure detected by both the algorithms is quite different in different

local regions which accounts for such significant improvement for this example.

The performance of the algorithms vary arbitrarily at higher cube-sizes as shown in 4.15. We

discussed the three effect of changing the cube-size on the performance. It is difficult to predict

that which effect may dominate for a specified cube-size. The result of Wilkoxon test for

43

Figure 4.14: LNOC algorithm: Effect of changing cube size on fissure overlap for local non-

overlapping cube-wise SIMPLE algorithm.

Figure 4.15: LNOC algorithm: Comparison against SIMPLE. Effect of changing cube size on

difference in overlap of fissure for local non-overlapping cube-wise SIMPLE algorithm.

different cube-sizes is listed in table 4.3. The LNOC algorithm performs significantly better

than SIMPLE for cube-size 100.

Local non-overlapping cube-wise SIMPLE with re-inclusion (LNOCR): LNOCR al-

gorithm improves over SIMPLE for some examples (see figure 4.18), but also deteriorate fissure

overlap for almost equal number of examples. The Wilkoxon test statistic confirms (table 4.3)

that the LNOCR does not provide any statistically significant improvement over SIMPLE. The

reason for such performance is same as discussed for ’global SIMPLE with re-inclusion’ algo-

rithm.

Local non-overlapping cube-wise boundary SIMPLE algorithm (LNOCB): Figure

4.19 and 4.20 give an overview of the performance of LNOCB algorithm for different cube-sizes.

The algorithm shows no significant improvement over SIMPLE (table 4.3). Since local boundary

algorithms hold too less information in a local region to compute the DICE measure reliably.

The reasons responsible for poor performance of boundary SIMPLE algorithm play role here as

well.

44

Figure 4.16: Various slices of a resultant fusion image obtained from SIMPLE and local non-

overlapping cube-wise SIMPLE algorithm. The fissure overlap for this example is improved by

approximately 0.3 compared to SIMPLE.

Local overlapping cube-wise SIMPLE algorithm (LOC): Figure 4.21 and 4.22 give an

overview of performance of LOC algorithm for different cube-sizes. The algorithm shows sta-

tistically significant improvement over SIMPLE for cube-size 50 and higher (table 4.3).

One point must be noted that LOC algorithm is devoid of boundary-effect, which contributes

to improved performance. Also the smoothing effect, discussed in section 4.2.1.3, helps in

improving the performance. We can see in figure 4.22 that LOC consistently performs better

than SIMPLE, therefore it gives us freedom to select any cube-size greater than 35 for an unseen

image. Since a higher cube-size increases computation time of LOC algorithm, therefore one

should prefer a cube size close to 65 for better and fast results. Remember that this optimum

cube-size may be different for some other data set containing inputs of different dimensions

than ours.

45

Figure 4.17: LNOCR algorithm: Effect of changing cube size on fissure overlap for local non-

overlapping cube-wise SIMPLE with re-inclusion algorithm.

Figure 4.18: LNOCR algorithm: Comparison against SIMPLE. Effect of changing cube size on

difference in overlap of fissure for local non-overlapping cube-wise SIMPLE with re-inclusion

algorithm.

Table 4.3: Wilkoxon test statistics for local cube-wise SIMPLE algorithms, Threshold = 0.05
Cube Size LNOC LNOCR LNOCB LOC

10 0.0039 0.0042 0.0026 0.0014

25 0.8552 0.8552 0.2604 0.5841

35 0.8314 0.5230 0.5841 0.1443

50 0.0516 0.3778 0.3155 0.0386

65 0.1283 0.6265 0.7380 0.0177

75 0.3458 0.4115 0.5304 0.0089

85 0.3458 0.4842 0.6702 0.0106

100 0.0042 0.3304 0.1209 0.0056

46

Figure 4.19: LNOC algorithm: Effect of changing cube size on fissure overlap for local non-

overlapping cube-wise boundary SIMPLE algorithm.

Figure 4.20: LNOC algorithm: Comparison against SIMPLE. Effect of changing cube size on

difference in overlap of fissure for local non-overlapping cube-wise boundary SIMPLE algorithm.

47

Figure 4.21: LOC algorithm:Effect of changing cube size on fissure overlap for local overlapping

cube-wise SIMPLE algorithm.

Figure 4.22: LOC algorithm:Comparison against SIMPLE. Effect of changing cube size on

difference in overlap of fissure for local overlapping cube-wise SIMPLE algorithm.

48

Multi-Label SIMPLE algorithm: Figure 4.23 shows the performance of non-overlapping

cube-wise multi-label SIMPLE and figure 4.23 for overlapping cube-wise multi-label algorithm.

As we saw in the case of binary counterparts of these algorithms (figure 4.14 and 4.21), the

performance of the overlapping algorithm is consistent on changing the cube size. A set of

optimum α values, for multi-label algorithms, is given in the appendix 9.4.

Figure 4.23: Effect of changing cube size on the fissure overlap for local non-overlapping cube-

wise multi-label SIMPLE algorithm.

Figure 4.24: Effect of changing cube size on the fissure overlap for local overlapping cube-wise

multi-label SIMPLE algorithm.

49

Comparison between the results from binary and multilabel SIMPLE The multi-

label version of the overlapping cube-wise algorithm also provides significant improvement over

the results of binary global SIMPLE, as shown in table 4.4. Our notion that cube wise 10

is too small to hold meaningful information for DICE calculation is again confirmed by the

Wilkoxon test statistics in the table 4.4. The performance of multi-label overlapping algorithm

is consistently better that SIMPLE for all the cube sizes greater than 25. Figure 4.25 shows

box-plot of difference in fissure overlap values between multi-label overlapping and binary global

SIMPLE.

Figure 4.25: Comparison against SIMPLE. Effect of changing cube size on difference in overlap

of fissure for local overlapping cube-wise multi-label SIMPLE versus binary global SIMPLE

algorithm.

Table 4.4: Wilkoxon test statistics for local overlapping cube-wise multi-label versus global

binary-SIMPLE, Threshold = 0.05
Cube Size LOC

10 0.0516

25 0.4115

35 0.0480

50 0.0177

65 0.0138

75 0.0208

85 0.0081

100 0.0068

More results on the comparison between multi-label algorithms and their binary counterparts,

are given in the appendix 9.5.1. The performance of a multi-label algorithm is not exactly the

same as its binary version. We are not able to explain the reason of such result. It would be

interesting to study it in detail. There was no statistically significant difference found in the

performance of a multi-label algorithm and its binary version.

50

4.4 Conclusion

The aim of multi-atlas based segmentation is to cope for the inaccuracies of individual ABSs.

We obtain several estimate of segmentation of an unseen image through independent ABSs.

The task comes down to combining these input segmentations to form one final estimate of

segmentation of the unseen image. SIMPLE performs this by weighted voting of inputs, where

weights are a global DICE overlap value. For our data, it is most useful to focus on a combination

strategy which is able to select the locally good regions from different segmentations. The

methodology of computing local goodness of an input segmentation is crucial for the success of

a local combination scheme. We used SIMPLE algorithm as basis and proposed several methods

for estimation of local goodness of inputs. In this chapter we focus on making a separate local

decision for different regions within inputs. We do not change the weights used, i.e. DICE

overlap, and the fusion criteria, i.e. weighted voting, as is used in the SIMPLE algorithm.

An input segmentation can be divided into different local regions in many different ways. We

experimented with 3 of them: slice-wise, non-overlapping cube-wise, and overlapping cube-wise.

Slice-wise algorithm does not show any statistically significant improvement over SIMPLE. We

experimented considering slices to be stacked over each other along Z-dimension only because of

time constraints, it would be interesting to see if the performance changes on considering slices

to be arranged along any other dimension. In our next local fusion approach, non-overlapping

cube-wise algorithm seems to work significantly better than SIMPLE for some particular cube-

sizes such as 50 and 100. For these particular cube-sizes, the local cubes divide the fissure

within input segmentations is intersected in such a way that it produces least boundary effect

(see section 4.3 for details on boundary effect). Now, the problem is that these two cube sizes

work best for our data set but we do not know which cube size may perform well for an unseen

CT scan image. We propose overlapping cube-wise algorithm to address this problem. As the

name suggests, we divide an input image into overlapping cubes in this algorithm, which provides

a smooth change in local weights because of averaging effect. Also, sharing of a large number

of voxel between adjacent cubes ensure that boundary-effect is minimized. As a result of this,

overlapping cube-wise algorithm shows significant improvement over SIMPLE for any cube-size

greater than 35. Therefore one should prefer using cube-size 50 or 65, since the computation

time increases for higher cube-sizes. It is found in our experiment that DICE overlap does not

give reliable weights for a cube size less than 25 or lesser.

We experimented with several global and local boundary algorithms with focus on increasing

the sensitivity of SIMPLE for rejection (or selection). Boundary algorithm considers overlap

of only boundary of an input segmentation with that of the estimation of ground truth. As is

shown in figure 4.5, this algorithm takes overlap of entire boundary of an input segmentation

into account, but we evaluate the segmentation performance only by measuring the fissure

overlap. The remaining boundary matches almost perfectly for all the inputs. Therefore, it

does not add much sensitivity to SIMPLE. We recommend to use boundary SIMPLE algorithm

only for applications where we expect segmentation error at the entire boundary of an object.

On the other hand, all the local boundary algorithms: slice-wise and cube-wise perform worse

compared to SIMPLE. We believe that boundaries within these local regions contain too less

voxels to compute DICE overlap reliably. Therefore weights are not representative of goodness

of an input segmentation. We infer that local boundary algorithms are not a good choice.

Once rejected, SIMPLE never uses any input back in the final estimation of ground truth. We

suspect that some of the inputs may be rejected too early and their weights may improve over

iterations as the estimation of ground truth improves. Our experiments confirms this notion.

51

In some cases inputs are indeed re-included in the fusion process after getting rejected at initial

iterations. But for majority of the cases if an input is rejected in an initial iteration, its rejected

in all the future iterations. Therefore, we do not see any significant improvement over SIMPLE

on enabling it to re-include the rejected data.

SIMPLE algorithm works only for binary segmentation. Since our data set contains 3 labels

for left lung and 4 labels for right lung, we felt the need of a multi-label SIMPLE algorithm.

Although experimented with few other multi-label segmentation fusion algorithms, but multi-

label SIMPLE is a significant improvement over them. Figure 4.8 shows the performance of

majority voting and STAPLE on our dataset. SIMPLE and thus, multi-label SIMPLE gives

significant improvement over others. We proposed a global and few local multi-label algorithms.

As we already saw in the case of binary inputs, overlapping cube-wise algorithm works best for

multi-label data as well and it performs well for cube sizes greater than 25. Appendix-9.5.1

shows some more results on a comparison among several multi-label versus binary algorithms.

This section would be incomplete without discussing on α used in the threshold calculation. α

controls the amount of data that can be thrown in overall process. In a way it also controls

the convergence speed of an algorithm. A particular α may allow more than half of the data

to be thrown while some other α may not allow any rejection at all. SIMPLE was tested on a

dataset containing 100 input segmentations. Therefore even if some α ends up throwing 75%

of the data, they are still left with 25 good segmentations. For the same reason choice of α

does not have any significant effect on the performance for their dataset. In our case, choice

of α is important since we have only 22 inputs. We experimented a number of α values for

each algorithm and a set of six α is recommended for each algorithm. There was no significant

difference in performance of an algorithm for any of these six α. Since we have relatively small

dataset, the best α are those which do not reject much data. In our case as α which stops at

15-18 inputs (for global algorithms), starting from 23 works best. One reason responsible for

the performance of re-inclusion algorithm is the fact that we already tune the algorithms to α

values which reject very less data, therefore using the feature of re-inclusion does not improve.

One look at the α values given in the appendix 9.4 helps in understanding the α which works

well for all the algorithms. α = 1/f works well for all of our good performing algorithms such

as binary and multi-label local overlapping cube-wise and global multi-label. The same set of

α values was used for both: the left and the right lung. Also, these α values are optimum for

both the registration setups: A and B. Therefore, we conclude that choice of α is specific to an

algorithm and α = 1/f is a good choice for all the good performing algorithms. f -value denotes

fraction of selected segmentations in previous iteration.

52

Chapter 5

Improving the Input Segmentations

via Image Registration

This chapter contains discussion and results of various segmentation fusion strategies discussed

in chapter-4, on using registration setup-B for each atlas based segmentation. The results are

presented for both the left and the right lung. For left lung, overlap of 3 voxel wide horizontal

fissure is computed, from the segmentation fusion output. In the case of right lung, results for

both the oblique and the horizontal fissures are provided. Since the right lung contains 4 labels

as compared to the 3 labels present in the left lung (see figure 5.1), we used only multi-label

SIMPLE algorithms for locating fissures in the right lung. In case of left lung, we used binary

input as shown in the figure 4.2.

Figure 5.1: (Left) 3 labels present in the manual segmentation of the left lung. (Right) 4 labels

for the right lung.

In the chapter 4, we discussed various improvements over SIMPLE. The best result that we

achieve is by ’local overlapping cube-wise SIMPLE’ algorithm (figure 4.21), but it is noticeable

that even the best result obtained is far less accurate than manual segmentation. The reason

becomes clear if we give a look to some of the input segmentations (i.e. DSi) for a particular

fixed image. See figure 5.2. All the input segmentations shown miss the correct fissure almost

completely. It is not possible for any segmentation fusion method to make a good estimate of

53

fissure on combining these inputs. Therefore, we need to improve the fissures present in the

input segmentations in order to obtain more accurate fissure. Since each input segmentation is

obtained through an ABS process, as discussed in section 2.2. Therefore, we need to improve

the registration for obtaining better inputs, i.e., those with fissure more similar to that in the

ground truth. This time we use registration setup-B, discussed in section 3.3.4.2.

Figure 5.2: Registration setup-A: Some of the bad input segmentations are shown for a particular

fixed image. Some points on the fissure in ground truth image are selected and same points

are shown in input segmentations. It is clear that all the input segmentations shown miss the

fissure almost completely. No fusion criteria can give a good estimate of ground truth fissure

for such input set.

5.1 Results and Discussion for Left Lung

Figure 5.3 shows the overlap of 3 voxel wide fissure obtained from various global and local binary

SIMPLE algorithms discussed in chapter 4. The overlap of fissure in unexpectedly high and all

the algorithms seem to be performing equally well. If we look at the boxplot of difference in

overlap of fissure given in figure 5.4 and 5.5, we realize that there is no significant difference in

the overlap of fissure obtained from any algorithm. These results are almost as good as manual

segmentation. Let’s give a look to the input segmentations. Figure 5.6 shows some of the input

segmentations obtained on using registration setup-B for atlas based segmentations. The fixed

image is same for both the figure 5.2 and 5.6. As it turns out, the registration setup-B creates

good fissures in all the input segmentation. A strategy as simple as majority voting is able to

account for the slight disagreement among various inputs.

54

Figure 5.3: Left lung: Box-plot of the 23 overlap values obtained on comparing fissures obtained

from ground truth and various SIMPLE algorithms.

Figure 5.4: Left lung: A box-plot of difference in overlap values of fissure on comparing against

SIMPLE.

Figure 5.5: Left lung: A box-plot of difference in overlap values of fissure on comparing against

majority voting.

55

Figure 5.6: Registration setup-B: Some of the bad input segmentations are shown for a particular

fixed image. Some points on the fissure in ground truth image are selected and same points

are shown in input segmentations. It is clear that all the input segmentations shown miss the

fissure almost completely. No fusion criteria can give a good estimate of ground truth fissure

for such input set.

56

5.2 Results and Discussion for Right Lung

We saw that registration setup-B is able to generate almost perfect fissure for left lung. It is

close to the manual segmentation that we used. We decided to use the setup-B for right lung

too. Presence of two fissures makes it a more difficult registration problem as compared the

the left lung, therefore we expect lower performance for right lung. Figure 5.7 and 5.8 show

the result obtained for the horizontal and the oblique fissure respectively. The results are again

very close to the manual segmentation. All the algorithms perform equally good here.

Figure 5.7: Right lung: Box-plot of the 23 overlap values obtained on comparing fissures ob-

tained from ground truth and various SIMPLE algorithms.

Figure 5.8: Right lung: Box-plot of the 23 overlap values obtained on comparing fissures ob-

tained from ground truth and various SIMPLE algorithms.

57

5.3 Conclusion

If most of the input segmentations are wrong at a particular local region, then most probably

their fusion output may also be wrong at the location. The only way to improve this situation

is to obtain better input segmentations. We experimented with registration setup-B with the

same motivation. Quite to our surprise the registration improves the input segmentation to

great extent. For such a good input set we do not even need to do MABS, since a single ABS

itself can achieve the accuracy of manual segmentation. We consider the right lung as a more

difficult data to register compared to left lung, since alignment of both the horizontal and the

oblique fissure is required from a moving to the fixed image. But we again see almost perfect

registration. It would not be wrong to say that the problem of lobe segmentation is resolved

to the accuracy of manual segmentation. We still find the registration setup-A useful, the one

which created poor segmentations, since inaccuracy of input segmentations makes it a difficult

segmentation fusion problem. We require locally good input set to test our various algorithms.

Each algorithm performs almost equally good on using the inputs generated from setup-B,

therefore it is not possible to do comparative study of algorithms for such an ideal input set.

It is quite interesting to see how quality of registration can drastically affect the segmentation

fusion output.

58

Chapter 6

Fixed Rules: Performance Based on

Success of Registration

Consider an atlas based segmentation process in which a moving image Mi is registered to a

fixed image F . See figure 6.1. In addition to the deformed moving image DMi, a transform Ti

from the moving image to the fixed image is also obtained. On applying this transform Ti on the

segmentation of Mi, i.e. Si, deformed segmentation DSi is obtained. See figure 6.2. This DSi

is an estimate of segmentation of the fixed image F . If registration was perfect, the deformed

moving image DMi would be exactly same as the fixed image F . Also, deformed segmentation

DSi would be exactly same as segmentation of the fixed image, in case of a perfect registration.

It can be concluded that a better registration results into higher similarity between the deformed

moving image DMi and the fixed image F . In such a case deformed segmentation DSi would

be more similar to the segmentation of fixed image.

Figure 6.1: Moving image Mi is registered to fixed image F . As a result of this registration

deformed moving image DMi and a transform T from the moving image to the fixed image is

obtained.

In the current chapter, our first focus is on finding local weights for a deformed segmentation

DSi based on the similarity between DMi and F , which eventually depends on the ’local success

of registration’. Higher similarity between deformed moving image DMi and the fixed image F

in a particular local regions results into higher weight for corresponding deformed segmentation

DSi, for that local region. Secondly, we aim to research on finding a suitable fusion strategy

for the local weights found.

In the chapter 4, we found local weights based on the accuracy of the input segmentations DSi.

59

Although accuracy of input segmentations depends on the success of registration. But in this

chapter we make direct use of the registration quality for finding the local weights for the input

segmentations. Also, in the chapter 4 we used weighted voting as the fusion criteria for all the

algorithms. In this chapter we experiment with several fixed rules as fusion strategies. As such

weighted voting itself is kind of a fixed rule since it behaves in a fixed manner irrespective of the

input data. But we have also experimented with other fixed rules such as summation, median,

maximum, product etc. Performance of fixed rules depends on the input dataset. It is hard to

tell beforehand that which fixed rule may work better than others for our dataset. Therefore,

we also aim to find the most suitable fixed rule for our application.

Figure 6.2: Transform T obtained from previous registration step is applied on the segmentation

Si of moving image Mi. Deformed segmentation DSi is obtained. DSi is an estimate of

segmentation of fixed image F , i.e., ground truth. If the registration is perfect, DSi would be

exactly same as segmentation of fixed image.

This chapter contains results generated only for left lung. All the input segmentations were

obtained through multi-atlas based segmentation and setup-A (see section 3.3.4.1 for details)

was used for performing all the registrations. In the section sec:weightgeneration, the theory of

finding local weights based on the success of registration is explained. We propose to compute

confidence values from these weights, whose importance and methodology is explained in the

section 6.2 and 6.3. Section 6.4 gives detailed of the parameters used in the proposed setup.

These parameters need to be tuned for our dataset. The theory of fixed rules and their working

is explained in the section 6.5. Since we found the computation time of our algorithm to be

quite high, we use a trick to improve the run time of our algorithm. This trick is explained in

the section 6.6. Section 6.7 contains results and discussion. Section 6.8 concludes.

6.1 Weight Generation

As was mentioned in section 2.4.4, if all the segmentations DSi are not equally good, then one

should assign higher weight to a more accurate segmentation. Artaechevarria et al. [2009] and

I. Isgum and van Ginneken [2009] used success of registration as base for calculating weights

for individual segmentations.

60

6.1.1 Using distance map of CT data for weights

We propose to use distance map of CT scan images for calculating weights. First of all we make

an initial estimate of fissure for both fixed and moving images. For fixed image, we directly

compute the distance transform on this initially estimated fissure, as shown in figure 6.3. Let’s

call this distance map distF . While for a moving image, we make use of the fissure present in the

corresponding deformed moving image DMi. The fissure is extracted from the deformed moving

CT image by intensity thresholding, and then distance transform of that fissure is computed.

Let’s call it distMi . See section 3.3.4.1 for details of the computation of the initial estimate of

fissure.

Figure 6.3: Distance map for the fixed image F : (Left) An unseen CT scan im-

age,(Center)Estimated fissure from the unseen image, (Right)Distance map of the fissure

As can be seen in figure 6.4, the intensity values in the distMi and the distF are quite close

to each other at the points where fissure matches in both the images. Therefore, this minima

in the difference of the intensities of the corresponding points in distMi and distF tells us

about matching of the fissure. If the intensity difference is higher at a particular location, we

know that both the images are dissimilar at that location. Therefore, the extent of difference

in the intensity values of these two distance maps tell us about the similarity between the

corresponding deformed moving image and the fixed image. We have experimented with two

type of weights which are calculated based on these distance maps:

6.1.2 Registration error based weights

I. Isgum and van Ginneken [2009] used absolute difference in intensities between a deformed

moving image DMi and the fixed image F as weight for the corresponding segmentation DSi.

But we compute the weights using distMi and distF :

Di = |distMi − distF | (6.1)

Weight for a voxel x of ith input segmentation DSi:

Wi(x) =
1

|Di(x) ∗ gσ(x) + ϵ|
(6.2)

61

Figure 6.4: (Left) Distance map for a moving image i.e. distMi . (Right) Distance map for

the corresponding fixed image i.e. distF . The intensity values at various corresponding points

are shown. Lower the difference in the intensity values of a corresponding voxel, more is the

similarity between the two images.

Since these weights can take any positive value, I. Isgum and van Ginneken [2009] normalized

the weight of a voxel x with the sum of weights for the same voxel from other deformed moving

images. The normalized weight Wi,norm(x) can take any between 0 to 1.

Wi,norm(x) =
Wi(x)

N∑
i=1

Wi(x)

(6.3)

6.1.3 Normalized correlation coefficient (NCC) based weights

Artaechevarria et al. [2009] used normalized correlation between a deformed moving image DMi

and fixed image F to find weight for an input segmentation DSi. Instead we use distMi and

distF for computing NCC based weights The intensity values in the rectangular neighborhood

(of radius r) of a voxel x in distMi are stored in a vector Vi,r(x). Similarly, intensity values in

the rectangular neighborhood of the voxel x in distF are stored in a vector Vr(x). The local

weight for the voxel x in DSi is calculated by using expression:

Wi,r(x) = NCC[Vi,r(x), Vr(x)] (6.4)

Therefore, we consider intensity values neighborhood of each voxel for finding its local weight.

This weight value is always between 0 and 1.

62

6.2 Importance of Local Confidence Values

Any of the weight generation strategy discussed above provides a local weight for each voxel

in each input image. See figure 6.5. Although this much information is enough to perform

weighted voting. But we aim to investigate if can make a more informed decision than weighted

voting. Section 6.5 contains details and example of many such decision strategies which require

more information compared to weighted voting.

Figure 6.5: (Left) Weight for the highlighted voxel in a deformed moving image DMi is 0.31.

It represents the weight of corresponding voxel in deformed segmentation DSi. (Right) Weight

for the highlighted voxel, with label 1, is 0.31.

In figure 6.5, we know weight (i.e. 0.31) associated with label-1 for the highlighted voxel. But

there is no information on the weight associated with other labels. The knowledge of how

remaining 0.69 weight is divided between the remaining label-2 and label-0 can be useful. In

this case, on can see that none of the neighborhood voxel has label-0, therefore we expect label-0

to have little or no part of remaining 0.69 weight. We propose to calculate confidence values

from these weights to find confidence associated with all the labels.

6.3 Confidence Calculation

The registration accuracy based weight Wi(x) for any voxel in DMi provide us with a weight

value for the label of corresponding voxel x in DSi. We propose to use this weight Wi(x) as

basis for computing confidence values associated with all the labels, for voxel x. For confidence

calculation, we make use of labels in neighborhood of the voxel x in DSi. Consider an example

given below:

Table 6.1: Example
1 1 2

2 0 0

0 1 1

Therefore, Let us assume:

Ntot = Total number of voxels in neighborhood of center voxel with weight W0.

63

N0 = Total number of voxels in neighborhood, with label 0 (center voxel).

N1 = Number of voxels in neighborhood, with label 1.

N2 = Number of voxels in neighborhood, with label 2.

Now,

Confidence for label 0 = W0 + (N0 − 1)× 1−W0

Ntot − 1
= W0 + (2− 1)× 1−W0

9− 1

Confidence for label 1 = (N1)×
1−W0

Ntot − 1
= (4)× 1−W0

9− 1

Confidence for label 2 = (N2)×
1−W0

Ntot − 1
= (2)× 1−W0

9− 1

(6.5)

After calculation of confidence values for all the voxels in all the inputs, we can arrange them

in a matrix in following manner:

Table 6.2: Example
Atlas1 Atlas2

Voxel Number label0 label1 label2 label0 label1 label2

1. 0.4 0.3 0.3 0.1 0.5 0.4

2. 0.9 0.1 0.0 0.4 0.2 0.4

3. 0.25 0.15 0.6 0.2 0.3 0.5

4. 0.8 0.1 0.1 0.1 0.45 0.45

5. 0.7 0.15 0.15 0.15 0.35 0.5

Let us have a close look at the equation set 6.5. Confidence for label-0 contains two terms: first

is the weight which is calculated based on success of registration, second is the factor (N0 −
1)× 1−W0

Ntot−1 . This second factor enhances confidence on label-0 if any voxel in the neighborhood

also contains label-0. Therefore for a region of uniform intensity, e.g. black background with

intensity 0, the overall confidence for label-0 adds up to 1. For such a case confidence on label-2

and label-1 would be 0 since the neighborhood does not contain any voxel with label-2 or label-1,

N2 = 0 and N1 = 0.

6.4 Parameters in the Current Setup

6.4.1 Neighborhood radius for finding weights

The σ of gaussian kernel as shown in equation 6.2 and neighborhood radius of rectangular

window as shown in equation 6.4 are the parameters used in weight calculation. Both of these

parameters ensure smooth variation of weights. Thus, avoid the effect of noise. High value

of these parameters can cause excess smoothing which may result into loss of local nature of

weights, also it increases computation time of weights. While a very low value may result into

noise affected weights. Therefore we need to study this trade-off and find an agreeable value of

these parameters for our dataset.

6.4.2 Neighborhood radius for confidence calculation

For confidence calculation, for voxel x, we look at the rectangular neighborhood of the voxel

as shown in table 6.2. Increasing the size of this rectangular window may not have any effect

64

of the confidence values of voxel-As shown in figure 6.6. But it will not be the case for voxel-

B since voxels with different labels will also be captured in the larger rectangular window.

Therefore confidence value will decrease for label-1 and increase for label-2. Therefore, changing

neighborhood radius for confidence calculation may have different effect for voxels at different

locations within the same image.

Figure 6.6: Rectangular window for confidence calculations of voxel A and B is shown. Increas-

ing the size of this window will not change confidence values for voxel-A.

6.4.3 Different approaches of confidence calculation

We experimented with two different approaches for confidence calculation: (1) within (2) across.

The across approach is an improvement over our within approach.

Within normalization: The example of confidence calculation given in section 6.3 employs

within normalization. In this approachN0, N1, N2, andNtot shown in equation 6.5 are calculated

within the rectangular window around voxel x in an input segmentation DSi.

Across normalization: For calculating confidence values for a voxel x in an input image, we

consider the neighborhood of of corresponding voxel in all the other input segmentations. See

figure 6.7. For confidence calculation of voxel x in input, we compute the total number of voxels

with label-0 in the neighborhood of all the inputs which represents N0. Similarly, N1, N2, and

Ntot are computed by looking at all the inputs instead of only input-1 (figure 6.7). Now, we

can use the same equation set 6.5 for finding the confidence values of voxel x.

6.5 Fixed Rules

Artaechevarria et al. [2009] and I. Isgum and van Ginneken [2009] used weighted voting for fusing

the weights found based on success of registration. Once we have confidence values as shown in

table 6.2, we can use many other combining strategies such as summation, product, maximum,

median, minimum, voting. These are usually termed as Fixed Rules, since they behave in

same manner irrespective of input data. Fixed rules are commonly used for combining pattern

classifiers. Any fixed rule may perform better than other rules depending on input data. Usually,

a fixed rule which gives least training error is applied on test data. Therefore, we applied for

all the fixed rules mentioned above to investigate which rule works best for our dataset. The

65

Figure 6.7: For across confidence calculation of voxel X in input image-1, we need to look at

the corresponding neighborhood of other input images too.

working of summation and product fixed rules is explained with the help of an example shown

in figure 6.8.

Figure 6.8: A demonstration of SUM and PRODUCT rule is shown. The rules are applied for

each voxel independently. In SUM rule, the confidence values of corresponding labels are added

and the sum represent overall confidence for that label. Finally a label with highest confidence

is selected. The selected labels are highlighted red for both SUM and PRODUCT rule. For

voxel number 3, we see a tie between label0 and label1. Such ties are broken randomly.

6.6 Improving Computation Speed for the Algorithm

Even the very bad input segmentations, whose fissure are not correct in any local region as

compared to ground truth, posses same label for a majority of voxels. See figure 6.9. For all

the voxels where a clear unanimity exists among all the input segmentations, we do not need to

make any further computation of weight or confidence value. We simply rely on the unanimous

decision for such voxels. So we calculate weight/confidences and apply fixed rules only for those

voxels for whom unanimity does not hold. This technique was used in Artaechevarria et al.

[2009].

66

Figure 6.9: A set of four input segmentations and their corresponding ground truth. We can

see clear unanimity for all the voxels except those which are encircled.

6.7 Results and Discussion

Figure 6.10, 6.11, 6.12, and 6.13 show results of various fixed rules for NCC and registration

error based weights, where WVOTE represents weighted voting which uses NCC or registration

error based weights without any confidence calculation. MAJORITY represents majority voting

which is applied directly on the input segmentations and no weights or confidences need to be

computed. VOTE represents voting rule applied on the confidence values. As we can see

that none of the fixed rules improve the result over majority voting. We experimented with a

number of values of σ for gaussian, size of the rectangular window for NCC weights and different

approaches of confidence calculation, but still majority voting performs better. A comparison

between the results of weighted voting and majority voting helps in understanding the reason

for such results.

6.7.1 Comparison between majority and weighted voting

Majority voting performs better than weighted voting, for both the NCC and the registration

error based weights. As we discussed in section 2.4.4, weighted voting is expected to improve

over majority. The poor performance of weighted voting is due to bad weights which do not

represent the correctness of individual input segmentations correctly. We propose the idea of

confidence calculation to make a more informed decision than weighted voting. Since confidence

values make use of these weights, we cannot expect good results from any fixed rule which is

applied on these confidence values.

The registration error and NCC weights were used in previous researches and weighted voting

performed significantly better than majority for the dataset used in I. Isgum and van Ginneken

[2009] and Artaechevarria et al. [2009]. But for our dataset it does not work to the expectation.

67

Figure 6.10: Box-plot of different fixed rules for weights based on normalized correlation coeffi-

cients and within normalization used for confidence calculation. Rectangular window of radius

1 was used for both weight and confidence calculation.

Figure 6.11: Box-plot of different fixed rules for weights based on normalized correlation coeffi-

cients and across normalization used for confidence calculation. Rectangular window of radius

1 voxel was used for both weight and confidence calculation. WVOTE represents weighted

voting which makes use of NCC weights without any confidence calculation. MAJORITY rep-

resents majority voting which is applied directly on the input segmentations and no weights or

confidences need to be computed. VOTE represents voting rule applied on confidence values.

Therefore, one needs to address the problem of finding reliable weights based on the success

of registration for pulmonary CT scan data. This area is still open to research. We leave

it as a message for further research that it would be right approach to check authenticity of

weights before developing any strategy which uses these weights. Comparing the performance

of weighted voting with majority voting is an easy way to do that. Once we have good weights,

it may be the case that some of the fixed rules improve over weighted voting. In our experiment

summation, median, and vote fixed rules consistently performed better than weighted voting

(figure 6.12, 6.13, 6.10, and 6.11). But we cannot be sure of this in absence of good weights.

Our registration strategy (setup-A ,see section subsubsec:registrationsetupOLD), focuses on

aligning initially estimated fissure in the fixed and moving images. As a result of this, the

intensity values in the deformed moving image and fixed image are arbitrary and do not convey

any information on registration quality. Therefore we do not compute the weights from the fixed

and deformed moving images directly. We used distance map images for weight calculation, since

68

Figure 6.12: Box-plot of different fixed rules for weights based on registration error and within

normalization used for confidence calculation. Gaussian kernel radius (σ) and rectangular win-

dow for confidence calculation both were taken as 1 voxel.

Figure 6.13: Box-plot of different fixed rules for weights based on registration error and across

normalization used for confidence calculation. Gaussian kernel radius (σ) and rectangular win-

dow for confidence calculation both were taken as 1 voxel.

a difference in the intensity of corresponding voxels (in the two distance maps) gives an idea of

the accuracy of registration. See section 6.1.1 for details.

6.7.2 Across versus Within confidence calculation

We experimented with two ways of confidence calculation: across and within. We consider

the across approach as an improvement over the within approach. In the within approach,

confidence values for a voxel x are calculated within the rectangular neighborhood an input

image. If entire neighborhood is wrong as shown in figure 6.15, we get wrong confidence values.

In the case shown in the figure 6.15, confidence for label-1 is 1 and 0 for label-2. (since there

is no voxel with label-2 within the rectangular window of x, i.e. N2 = 0 in equation 6.5) One

look at the ground truth is enough to tell that these confidence values are wrong. Since the

corresponding voxel in ground truth is surrounded with voxels of label-2, therefore confidence

for label-2 cannot be 0.

In case of across confidence calculation, N2 is calculated by looking at all the input segmen-

tations. There are higher chances that N2! = 0 anymore, thus confidence for label-2 will be

non-zero and it will depend on the total number of voxels with label-2 in the corresponding

69

(a) Weights are based on registration error. (b) Weights are based on normalized correlation co-

efficients.

Figure 6.14: Comparison of majority voting with weighted voting. For both the cases radius =

1 voxel is used for weight calculation.

neighborhoods of all the inputs. See figure 6.15.

Figure 6.15: Input segmentation has wrong label for the voxel shown.

6.7.3 Some other ideas which did not work well

I found a 1000 different ways not to make a light bulb before making it once and for all- Thomas

Edison. This section contains some of the ideas which did not work well but they may serve

as motivation for future research. We have only discussed the ideas and results are not shown.

Once we realized that we first need to find good weights for our dataset, we methods of finding

weight using distance map of fissure of fixed and deformed moving image. Read section 6.1.1

before going through this section.

Using signed distance map Distance map that we used for weight generation has lowest value

(0) at the fissure and further, it increases on both sides of this oblique fissure (figure 6.4). But

many deformed moving images encounter the case shown in figure 6.16 where mismatch of fissure

should cause completely different intensity values for voxels close to fissure. But for the voxel

highlighted in figure 6.16, the distance maps from fixed and deformed moving images posses

same value. Similarly for many other nearby voxels intensity difference in these two distance

maps may be quite low which results into high weights (NCC or registration error). Now

70

the problem arises because this voxel has label-1 in the corresponding deformed segmentation,

therefore this high weight value is assigned to label-1. But if we look at the segmentation of

fixed image, this voxel should have label-2. So here we are assigning a high weight value to a

wrong label. The same story goes for most of the neighbor voxels. We must not forget that

these wrongly weighted voxels are close to fissure and have important role in deciding the final

estimation of fissure obtained through fixed rule strategy.

Figure 6.16:

In order to solve this problem, we decided to use distance maps with positive values on one side

of fissure and negative values on the other side. In this case, the voxel shown in figure 6.16 will

have intensity value 10 in distance map for deformed moving image and intensity value 10 in

the corresponding fixed image distance map. As a result, the mismatch of fissure causes higher

difference in intensity values and so lower weight for the voxel.

Since intensity value are increasing on both sides of fissure, we used gradient of distance map

in Y-direction, which resulted into positive values above fissure and negative below. The sign

of each voxel of this gradient image can be multiplied with the corresponding intensity values

in distance map to obtain the signed distance map that we discussed above.

As we already know this idea did not work since the problem lies in the fissure which is used

to compute distance map. Consider the case shown in figure 6.17. The areas enclosed within

the red rectangle has positive high values in the distance map for fixed image while the similar

red rectangle contains quite low positive values (and zeros) in the distance map for moving

image.This arbitrary difference in the intensity values causes unreliable weights for the region

within the red rectangle.

Using fissure mask: Once we realized that having incomplete fissure creates such a distance

map which causes false weights in the region away from fissure, we decided to focus only on the

region close to initially detected fissure of fixed image. We prepared a mask from this fissure.

See figure 6.18. Furthermore, we calculate weights, using distance map, only for voxels within

the mask. For remaining voxel we directly calculate confidence values, considering weight to be

0, based on the label of neighborhood voxels (refer equation 6.5). This did not work either and

we are not sure about the cause.

71

Figure 6.17: (a) Ground Truth, (b) Distance map of initially detected fissure in a fixed image,

(c) Distance map of fissure present in one of the deformed moving images, (d) Deformed segmen-

tation corresponding to (c). The red rectangle shown in (b) contains positive high values while

the similar rectangle contains several 0 in (c). This mismatch in values causes wrong weights

for the region enclosed within the red rectangle. While it is not the case for voxels enclosed

within green rectangle. Both the distance maps contains zeros or low positive values which

eventually generates high weights for this region. Since the deformed segmentation contains

fissure correctly for this region, we expect weights to be high.

Figure 6.18: (Left) Initially detected fissure from a fixed image, (center) distance map of the

fissure, (right) mask around this fissure. We rely on the values of signed distance map only

within the mask.

6.8 Conclusion

The chapter is focussed on two aspects of the fusion of segmentations fusion: (1) Finding reliable

weights based on the success of individual atlas based segmentations, (2) Suitable fusion strategy

for those weights. We discussed several fusion strategies or Fixed Rules as is usually called. Any

of these fixed rules (sum, median, product, maximum, and minimum) may perform better than

others depending on the input data. Therefore we experimented with all of these rules to see

which one works best for our pulmonary CT scan dataset.

In previous publications, few researchers have computed weights based on the success of reg-

istration and performed weighted voting for fusing the weights. As is evident from section 6.2

and 6.5, fixed rules are more informed ways of decision making as compared to weighted voting.

72

We propose the idea of confidence values which uses:

1. Weights based on the success of individual atlas based segmentation, i.e., success of reg-

istration.

2. Labels of voxels in the neighborhood of voxel in consideration.

We further investigated two methods of confidence calculation: Within, which makes use of the

labels present in the neighborhood of the voxel in consideration. It considers the neighborhood

within the atlas which contains this voxel. While Across confidence calculation considers the

corresponding neighborhood of all the atlases. See section 6.3 for details. This way we attempt

to extract more information from the input data. We do not only look at the weights obtained

from registration but also at the labels of segmentations to be fused. This way equation for

confidence calculation depends on the reliability of weights also. As we found in our experiment,

NCC and registration error based weights do not give reliable information about the quality of

registration for our pulmonary dataset. The difficulty in aligning vessels and fissures from one

patient data to other makes it impossible to calculation registration quality based weight directly

from the fixed and the deformed moving image. Therefore, we used distance map of fixed and

moving images for weight calculation. For the fixed image, the distance map is calculated by

using its initially estimated fissure, which was also used to support the registration in setup-A

(3.3.4.1). In case of moving image, we make use fissure present in the deformed moving image

for calculating distance map. See section 6.1.1 for details on distance map computation. As

a key finding of our experiment, the weights generated from these two distance maps are not

reliable which can simply be observed if we compare the performance of weighted voting with

majority voting as shown in section 6.7.1. We experimented several ways to find reliable weights

using these distance maps but unfortunately none of them succeeded. Therefore, finding good

weights, based on success of registration, for pulmonary CT scan data is still open to research.

We leave it as a message for future research that one should first compare the performance

of weighted voting with majority voting and if weighted voting shows significant improvement

over majority, then we can assume such weights to be reliable. In absence of good weights, we

cannot comment on the results obtained from applying fixed rules on confidence values. The

only reason of presenting these results is to show that they do not provide any improvement.

73

Chapter 7

Ideas Which Did Not Work

In this chapter some of the ideas which did not work as we expected are elaborated.

7.1 Local STAPLE Algorithm

STAPLE makes use of global weights which are based on confusion matrix. This confusion

matrix is computed between the input segmentations and the estimate of ground truth. We

tried developing local non-overlapping cube-wise STAPLE and local overlapping cube-wise STA-

PLE. As the name suggests, weights were computed using a non-overlapping and overlapping

sliding window respectively. Figure 7.1 shows an output image obtained from local overlapping

STAPLE on using the binary left lung segmentations as input.

Figure 7.1: A sample output from local overlapping cube-wise STAPLE algorithm on using

cube-size 50 .

We are not able to explain the exact reason for such result. One possibility is that confusion

matrix calculation within a local window was not reliable. It may be because a window may

not contain the same number of labels as the entire input image. Therefore confusion matrix

computation within such a window may be erroneous. Our initial guess is that use of prior

information for each label may improve these results. But it requires more experiments to say

something further on it.

74

7.2 SIMPLE Fixed Rules

In chapter 4 we saw that DICE overlap between an input segmentation the estimate of ground

truth provides reliable weights for the segmentation. For the same reason the performance of

weighted voting in SIMPLE was found to be significantly better than majority voting. In the

next chapter 6, we studied about confidence calculation and fixed rules that can be applied on

those confidence values. The major problem with our confidence values based approach was

the unavailability of reliable weights. Since registration error based weights were not found to

be reliable. Therefore we decided to use DICE overlap based weights as basis for confidence

calculation. This also gives as another opportunity to see if any fixed rule can outperform the

weighted voting.

We combined the SIMPLE algorithm with our confidence calculation and fixed rule approach.

The SIMPLE fixed rule algorithm starts with computing an initial estimate of ground truth.

Similar to local overlapping cube-wise SIMPLE algorithm, DICE value for each overlapping

cube within an input segmentation is comptued. Now we use these DICE weights to compute

the confidence values as shown in equation 6.5. Then average and standard deviation of the

confidence values is used to find a threshold value corresponding to each label present in the

input segmentations. The confidence values less than the corresponding thresholds are made

0, i.e., those voxels are rejected. Finally, fixed rules are applied on the remaining confidence

values.

Problem with the algorithm: The overlap of 3 voxel wide fissure obtained from this algo-

rithm was worse compared to even majority voting. The problem lies in using DICE overlap

as weights for computing confidence values for each voxel in the input segmentations. As we

mentioned in the chapter 4, DICE overlap based weights are not reliable for small cube sizes.

Consider a case shown in figure on using the cube-size 50 for DICE calculation. Since a number

of voxels with label 1 match in both the images, the dice overlap for the voxel in the center

of the window shown comes out to be 0.65. This voxel’s confidence value for label 1 would go

even higher than 0.65 depending on the label of neighbor voxels. This is the reason for which

DICE based weights cannot be used for confidence calculation. A large cube size gives reliable

DICE weights, but a large number of voxels may have same label in the input segmentation and

the estimate of ground truth which gives usually high DICE weight. Confidence value will add

more to this already high weight. Therefore label 1 gets a very high confidence value for this

center voxel while we can see in the figure 7.2 that the center voxel has label 2 in the estimate

of ground truth. Need of higher cube size is need for reliable DICE weight and the larger cube

causes false confidence values for the voxel in the center of the window.

For computation of confidence values we need a separate weight value for each voxel. DICE

overlap give provides kind of a global weight value. Therefore it is not a good idea to use DICE

values for confidence calculation.

75

Figure 7.2: SIMPLE fixed rule: fissure in the segmentation of the moving image does not match

with the estimate of ground truth, within the enclosed cube of size 50. But since a number

of label-1 and label-2 voxels match in both the images, therefore DICE overlap for say label-1

comes out to be 0.65. Now using 0.65 as weight for confidence calculation increases the final

confidence value for label 1 even more, depending on the number of neighbors with label 1.

76

Chapter 8

Discussion and Conclusion

8.1 Discussion

In the current work, we have introduced several segmentation fusion approaches for coping with

the local errors in the individual segmentations. These individual segmentations are obtained as

a result of multi-atlas based segmentation, applied on the inter-patient pulmonary CT data. The

local registration errors in the individual ABSs cause the locally erroneous segmentations. The

accuracy of a segmentation is different from the other, therefore it is of key importance to find

the weights of segmentation images. Since the input segmentations for our dataset are locally

correct, we research on various methods of finding the local weights for input segmentations.

Once these local weights are found, the second task would be the fusion of these weights,

which can be done by several fusion strategies such as weighted voting or fixed rules. We

have experimented with three type of approaches: First, which computes the local weights

by comparing an input segmentation with an estimate of the ground truth. Second, which

computes the local weights based on the local success of the registration. Third is a hybrid

approach of the first two.

In the first type of approach, we have proposed several modifications in the SIMPLE algorithm.

The SIMPLE algorithm uses global weights of input segmentations and weighted voting is used

as the fusion strategy. Some of the modifications worked well for our dataset. We incorporated

these features in the SIMPLE: re-inclusion of data, local weight calculation, increasing sensitivity

(boundary), and multi-label version. Out of these four features, local and multi-label versions

show significant improvement over the SIMPLE, for our dataset.

If we find the input set to be locally correct in different regions, which is the case with our

dataset, then local SIMPLE algorithms can significantly improve over SIMPLE. Local non-

overlapping cube wise (LNOC) algorithm is computationally less expensive as compared to the

local overlapping cube-wise (LOC) algorithm. But LNOC shows improvement over SIMPLE for

a specific cube size 100 only which may be because of the lesser boundary effect for such high

cube-size. The reason for change in the performance with cube-size is caused by three factors:

(1) Smaller cube-size provides more local weights and as we increase the cube-size, the weights

become more and more global. Therefore, we lose the advantage of local fusion strategy. (2)

As shown in the figure 4.13, we may encounter jumps in the fissure at intersection-surfaces of

the two cubes. A small cube-size may cause many intersection-surfaces within a fissure and

consequently may cause many jumps. Therefore, a large cube size may provide more smooth

fissure. (3) A very small cube-size may not contain enough voxels to compute DICE measure

reliably. It is difficult to say how these 3 factors will interact with each other. Therefore it

77

is difficult to say beforehand that which cube-size may work better for a given set of atlases.

We propose the LOC algorithm as an improvement over LNOC. The LOC algorithm shows

statistically significant improvement over SIMPLE for cube-size greater than 35 (table 4.3). We

believe that the reason for such result is because DICE overlap cannot be computed reliably

for smaller cube-sizes (less than 35). One point must be noted that LOC algorithm is devoid

of boundary-effect, which may contribute to the improved performance.

In our dataset, a segmentation image of the right lung contains 4 labels (0, 1, 2, and 3).

Therefore, the multi-label version of SIMPLE is important for lobular segmentation of the right

lung. As we already noticed, in the case of binary inputs overlapping cube-wise algorithm works

best for multi-label data as well. The results of multi-label overlapping cube-wise algorithm

provide significant improvement over SIMPLE (cube-size ¿ 25), thus over other two multi-label

fusion algorithms too, such as majority voting and STAPLE. Since SIMPLE already outperforms

these two algorithms.

α = 1/f works well for all of our good performing SIMPLE algorithms such as binary and multi-

label local overlapping cube-wise and global multi-label. f -value denotes fraction of selected

segmentations in previous iteration. The same set of α values was used for both: the left and

the right lung. Also, these α values are optimum for both the registration setups: A and B.

Therefore, we conclude that choice of α is specific to an algorithm and α = 1/f is a good choice

for all the good performing algorithms. Appendix 9.4 contains the optimum alpha values.

If all the input segmentations are wrong at a particular local region, then most probably their

fusion output would also be wrong at that location. The only way to improve this situation

is to obtain better input segmentations. We experimented with registration setup-B with the

same motivation. Quite to our surprise the registration improves the input segmentation to

great extent. All the inputs are close to the manual segmentation. We consider the right

lung as a more difficult data to register as compared to left lung, since alignment of both the

horizontal and the oblique fissure is required by image registration. But we again see almost

perfect registration similar to the case of the left lung. It would not be wrong to say that the

problem of lobe segmentation is resolved to the accuracy of manual segmentation. We find

the registration setup-A useful, since inaccuracy of input segmentations makes it a difficult

segmentation fusion problem. We need such an input set to test out various algorithms. Each

algorithm performs almost equally good on using inputs generated from setup-B, therefore it is

not possible to do comparative study of algorithms for such an ideal input set. The important

observation in this experiment is role of the success of registration for improving the output of

multi-atlas based image segmentation.

In the second type of approach, which computes weights directly based on the local success

of registration, we proposed to use distance maps for the fixed and the moving images to

compute the local weights for individual segmentations. The distance map for the fixed image

is generated using its initially estimated fissure. We make use of the deformed moving image for

computing the other distance map. We compute registration error and normalized correlation

coefficient (NCC) based weights from these two distance maps. These weights can be used to

apply weighted voting fusion strategy. We further propose to compute the confidence values

based on these weights. These confidence values make use of not only accuracy of registration

based weights, but also use the labels present within a pre-defined neighborhood in the input

segmentations. Since these confidence values employ more information than weighted voting, we

wanted to test if this extra information can help in improving the fusion output. But as it turns

out, the weights computed using the distance maps do not provide reliable estimate of the local

accuracy of the input segmentations. Therefore, the confidence values computed using these

78

weights also do not give correct results. The computation of weights based on the local success

of registration is still open to research for the pulmonary CT data. Since, these registration

error and NCC based weights have reported to improve the performance of weighted voting over

majority voting, in some other application areas. Although these weights are directly computed

from the fixed image and the deformed moving image in the literature. Finally, we believe that

if one can compute the registration based weights reliably, the application of fixed rules on the

confidence values (computed based on these weights) may improve the results over the weighted

voting.

In the third hybrid approach, we use the local cube-wise DICE overlap based weights as basis

for computing the confidence values. Since we found the DICE overlap based weights reliable

for our dataset, we aimed to test if the application of confidence values and fixed rules can

improve the performance over local cube-wise SIMPLE which employs weighted voting. In

this approach, the selection (or rejection) of data is done using the threshold computed by the

mean and standard deviation of the corresponding confidence values. But this approach did not

outperform even majority voting. The problem is associated with the need of a cube size higher

than 25 for reliable DICE calculation. See figure 7.2 for details. The confidence values expect

per voxel based local weights which may take any value between 1 to 0. But DICE overlap

of a cube size 35 (or greater) usually has higher overlap because of the matching of greater

part within the cube even if there are local errors within this cube. Computing confidence of

an already high weight value makes it even higher depending on the label of the neighborhood

voxels (equation 6.5). Eventually these confidence values convey wrong information about the

local accuracy of input segmentations since confidence is usually high because of high weight

values. Refer section 7.2 for details.

8.2 Conclusion

In conclusion, the proposed local overlapping cube-wise SIMPLE algorithm outperforms SIM-

PLE for binary segmentation by considering local weights for selecting the locally good regions

within a segmentation. The multi-label version of local overlapping cube-wise algorithm out-

performs the other multi-label segmentation approaches such as majority voting and STAPLE.

Thus the local fusion approach performs better than global approaches. The registration setup-

B, tends to the accuracy of the manual segmentation for lobe detection.

79

8.3 Future Work

The following topics deserve to be subject of further study:

1. Finding reliable local weights based on the local registration accuracy.

2. Focusing on a hybrid approach which uses not only input segmentations but also local

registration errors for finding the reliable confidence values. Studying performance of fixed

rules on the confidence values would be interesting. One can also use trainable classifiers

(support vector machine, linear discriminant classifier, k-nearest neighbor etc.) instead of

fixed rules.

3. In our local-overlapping cube-wise approach, a fixed cube size is used. It would be in-

teresting to see if a variable cube size provide any improvement. For such an approach,

the cube size should be selected based on the anatomical information of an atlas. E.g.

entire region near hilum can be selected within a single cube, since hilum region is difficult

to register and using many small cubes only increases the computation and may be the

boundary-effect too, while we can consider using many smaller cubes for the region near

fissure in order to obtain more local weights.

4. Local STAPLE, which makes use of the local weights based on the confusion matrix

computed within a predefined window size.

80

Chapter 9

APPENDIX

9.1 Parameters for Registration Setup-A

9.1.1 Affine transformation

//********** Image Types (FixedInternalImagePixelType ”float”)

(FixedImageDimension 3)

(MovingInternalImagePixelType ”float”)

(MovingImageDimension 3)

//********** Components (Registration ”MultiResolutionRegistration”)

(FixedImagePyramid ”FixedRecursiveImagePyramid”)

(MovingImagePyramid ”MovingRecursiveImagePyramid”)

(Interpolator ”BSplineInterpolator”)

(Metric ”AdvancedNormalizedCorrelation”)

(Optimizer ”AdaptiveStochasticGradientDescent”)

(ResampleInterpolator ”FinalBSplineInterpolator”)

(Resampler ”DefaultResampler”)

(Transform ”AffineTransform”)

//********** Pyramid // Total number of resolutions (NumberOfResolutions 5)

(ImagePyramidSchedule 16 16 16 8 8 8 4 4 4 2 2 2 1 1 1)

//********** Transform (AutomaticScalesEstimation ”true”)

(AutomaticTransformInitialization ”true”)

(HowToCombineTransforms ”Compose”)

//********** Optimizer

// Maximum number of iterations in each resolution level:

(MaximumNumberOfIterations 1000)

(AutomaticParameterEstimation ”true”)

(UseAdaptiveStepSizes ”true”)

//********** Metric

//********** Several (WriteTransformParametersEachIteration ”false”)

81

(WriteTransformParametersEachResolution ”true”)

(WriteResultImageAfterEachResolution ”false”)

(WriteResultImage ”false”)

(ShowExactMetricValue ”false”)

(ErodeMask ”false”)

(UseDirectionCosines ”true”)

//********** ImageSampler

//Number of spatial samples used to compute the mutual information in each resolution level:

(ImageSampler ”RandomCoordinate”)

(NumberOfSpatialSamples 2000)

(NewSamplesEveryIteration ”true”)

(UseRandomSampleRegion ”false”)

(MaximumNumberOfSamplingAttempts 5)

//********** Interpolator and Resampler

//Order of B-Spline interpolation used in each resolution level:

(BSplineInterpolationOrder 1)

//Order of B-Spline interpolation used for applying the final deformation:

(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:

(DefaultPixelValue 0)

9.1.2 First B-spline transformation

//********** Image Types

(FixedInternalImagePixelType ”float”)

(FixedImageDimension 3)

(MovingInternalImagePixelType ”float”)

(MovingImageDimension 3)

// ********** Components

(Registration ”MultiResolutionRegistration”)

(FixedImagePyramid ”FixedRecursiveImagePyramid”)

(MovingImagePyramid ”MovingRecursiveImagePyramid”)

(Interpolator ”BSplineInterpolator”)

(Metric ”AdvancedNormalizedCorrelation”)

(Optimizer ”AdaptiveStochasticGradientDescent”)

(ResampleInterpolator ”FinalBSplineInterpolator”)

(Resampler ”DefaultResampler”)

(Transform ”BSplineTransform”)

// ********** Pyramid

// Total number of resolutions

(NumberOfResolutions 5)

(ImagePyramidSchedule 16 16 16 8 8 8 4 4 4 2 2 2 1 1 1)

82

// ********** Transform

(FinalGridSpacingInPhysicalUnits 10.0 10.0 10.0)

(GridSpacingSchedule 8.0 8.0 4.0 2.0 1.0)

(HowToCombineTransforms ”Compose”)

// ********** Optimizer

// Maximum number of iterations in each resolution level:

(MaximumNumberOfIterations 1000)

(AutomaticParameterEstimation ”true”)

(UseAdaptiveStepSizes ”true”)

// ********** Metric

// Just using the default values for the NC metric

// ********** Several

(WriteTransformParametersEachIteration ”false”)

(WriteTransformParametersEachResolution ”true”)

(WriteResultImageAfterEachResolution ”false”)

(WritePyramidImagesAfterEachResolution ”false”)

(WriteResultImage ”false”)

(ShowExactMetricValue ”false”)

(ErodeMask ”false”)

(UseDirectionCosines ”true”)

// ********** ImageSampler

//Number of spatial samples used to compute the mutual information in each resolution level:

(ImageSampler ”RandomCoordinate”)

(NumberOfSpatialSamples 2000)

(NewSamplesEveryIteration ”true”)

(UseRandomSampleRegion ”false”)

(SampleRegionSize 50.0 50.0 50.0)

(MaximumNumberOfSamplingAttempts 50)

// ********** Interpolator and Resampler

//Order of B-Spline interpolation used in each resolution level:

(BSplineInterpolationOrder 1)

//Order of B-Spline interpolation used for applying the final deformation:

(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:

(DefaultPixelValue 0)

83

9.1.3 Second B-spline transformation

// ********** Image Types

(FixedInternalImagePixelType ”float”)

(FixedImageDimension 3)

(MovingInternalImagePixelType ”float”)

(MovingImageDimension 3)

// ********** Components

(Registration ”MultiResolutionRegistration”)

(FixedImagePyramid ”FixedRecursiveImagePyramid”)

(MovingImagePyramid ”MovingRecursiveImagePyramid”)

(Interpolator ”BSplineInterpolator”)

(Metric ”AdvancedNormalizedCorrelation”)

(Optimizer ”AdaptiveStochasticGradientDescent”)

(ResampleInterpolator ”FinalBSplineInterpolator”)

(Resampler ”DefaultResampler”)

(Transform ”BSplineTransform”)

// ********** Pyramid

// Total number of resolutions

(NumberOfResolutions 5)

(ImagePyramidSchedule 4 4 4 3 3 3 2 2 2 1 1 1 1 1 1)

// ********** Transform

(FinalGridSpacingInPhysicalUnits 5.0 5.0 5.0)

(GridSpacingSchedule 16.0 8.0 4.0 2.0 1.0)

(HowToCombineTransforms ”Compose”)

// ********** Optimizer

// Maximum number of iterations in each resolution level:

(MaximumNumberOfIterations 2000)

(AutomaticParameterEstimation ”true”)

(UseAdaptiveStepSizes ”true”)

// ********** Metric

// Just using the default values for the NC metric

// ********** Several

(WriteTransformParametersEachIteration ”false”)

(WriteTransformParametersEachResolution ”true”)

(WriteResultImageAfterEachResolution ”false”)

(WritePyramidImagesAfterEachResolution ”false”)

(WriteResultImage ”true”)

(ShowExactMetricValue ”false”)

(ErodeMask ”false” ”false” ”true” ”true” ”true”)

(UseDirectionCosines ”true”)

84

// ********** ImageSampler

//Number of spatial samples used to compute the mutual information in each resolution level:

(ImageSampler ”RandomCoordinate”)

(NumberOfSpatialSamples 2000)

(NewSamplesEveryIteration ”true”)

(UseRandomSampleRegion ”false”)

(SampleRegionSize 50.0 50.0 50.0)

(MaximumNumberOfSamplingAttempts 50)

// ********** Interpolator and Resampler

//Order of B-Spline interpolation used in each resolution level:

(BSplineInterpolationOrder 1)

//Order of B-Spline interpolation used for applying the final deformation:

(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:

(DefaultPixelValue 0)

9.2 Parameters for Registration Setup-B

9.2.1 Affine transformation

// ********** Image Types

(FixedInternalImagePixelType ”float”)

(FixedImageDimension 3)

(MovingInternalImagePixelType ”float”)

(MovingImageDimension 3)

// ********** Components

(Registration ”MultiResolutionRegistration”)

(FixedImagePyramid ”FixedRecursiveImagePyramid”)

(MovingImagePyramid ”MovingRecursiveImagePyramid”)

(Interpolator ”BSplineInterpolator”)

(Metric ”AdvancedNormalizedCorrelation”)

(Optimizer ”AdaptiveStochasticGradientDescent”) (ResampleInterpolator ”FinalBSplineInter-

polator”)

(Resampler ”DefaultResampler”)

(Transform ”AffineTransform”)

// ********** Pyramid

// Total number of resolutions

(NumberOfResolutions 5)

(ImagePyramidSchedule 16 16 16 8 8 8 4 4 4 2 2 2 1 1 1)

// ********** Transform

85

(AutomaticScalesEstimation ”true”)

(AutomaticTransformInitialization ”true”)

(AutomaticTransformInitializationMethod ”GeometricalCenter”)

(HowToCombineTransforms ”Compose”)

// ********** Optimizer

// Maximum number of iterations in each resolution level:

(MaximumNumberOfIterations 1000)

(AutomaticParameterEstimation ”true”)

(UseAdaptiveStepSizes ”true”)

// ********** Metric

// ********** Several

(WriteTransformParametersEachIteration ”false”)

(WriteTransformParametersEachResolution ”true”)

(WriteResultImageAfterEachResolution ”false”)

(WriteResultImage ”true”)

(ResultImageFormat ”mha”)

(ShowExactMetricValue ”false”)

(ErodeMask ”false”)

(UseDirectionCosines ”true”)

// ********** ImageSampler

//Number of spatial samples used to compute the mutual information in each resolution level:

(ImageSampler ”RandomCoordinate”)

(NumberOfSpatialSamples 2000)

(NewSamplesEveryIteration ”true”)

(UseRandomSampleRegion ”false”)

(MaximumNumberOfSamplingAttempts 5)

// ********** Interpolator and Resampler

//Order of B-Spline interpolation used in each resolution level:

(BSplineInterpolationOrder 1)

//Order of B-Spline interpolation used for applying the final deformation:

(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:

(DefaultPixelValue 0)

9.2.2 B-spline transformation

// ********** Image Types

(FixedInternalImagePixelType ”float”)

(FixedImageDimension 3)

(MovingInternalImagePixelType ”float”)

(MovingImageDimension 3)

86

// ********** Components

(Registration ”MultiMetricMultiResolutionRegistration”)

(FixedImagePyramid ”FixedRecursiveImagePyramid” ”FixedRecursiveImagePyramid”)

(MovingImagePyramid ”MovingRecursiveImagePyramid” ”MovingRecursiveImagePyramid”)

(Interpolator ”BSplineInterpolator” ”BSplineInterpolator”)

(Metric ”AdvancedMeanSquares” ”AdvancedMeanSquares”)

(Optimizer ”AdaptiveStochasticGradientDescent”)

(ResampleInterpolator ”FinalBSplineInterpolator”)

(Resampler ”DefaultResampler”)

(Transform ”BSplineTransform”)

// ********** Pyramid

// Total number of resolutions

(NumberOfResolutions 5)

(ImagePyramidSchedule 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1)

// ********** Transform

(FinalGridSpacingInPhysicalUnits 10.0 10.0 10.0)

(GridSpacingSchedule 8.0 8.0 4.0 2.0 1.0)

(HowToCombineTransforms ”Compose”)

// ********** Optimizer

// Maximum number of iterations in each resolution level:

(MaximumNumberOfIterations 1000)

(AutomaticParameterEstimation ”true”)

(UseAdaptiveStepSizes ”true”)

// ********** Metric

// Just using the default values for the NC metric

(Metric0Weight 1.0)

(Metric1Weight 4.0)

// ********** Several

(WriteTransformParametersEachIteration ”false”)

(WriteTransformParametersEachResolution ”true”)

(WriteResultImageAfterEachResolution ”false”)

(WritePyramidImagesAfterEachResolution ”false”)

(WriteResultImage ”true”)

(ResultImageFormat ”mha”)

(ShowExactMetricValue ”false”)

(ErodeMask ”false”)

(UseDirectionCosines ”true”)

// ********** ImageSampler

87

//Number of spatial samples used to compute the mutual information in each resolution level:

(ImageSampler ”MultiInputRandomCoordinate” ”MultiInputRandomCoordinate”)

(NumberOfSpatialSamples 2000)

(NewSamplesEveryIteration ”true”)

(UseRandomSampleRegion ”false”)

(SampleRegionSize 50.0 50.0 50.0)

(MaximumNumberOfSamplingAttempts 50)

// ********** Interpolator and Resampler

//Order of B-Spline interpolation used in each resolution level:

(BSplineInterpolationOrder 1)

//Order of B-Spline interpolation used for applying the final deformation:

(FinalBSplineInterpolationOrder 3)

//Default pixel value for pixels that come from outside the picture:

(DefaultPixelValue 0)

88

9.3 Pseudo Codes of Algorithms

9.3.1 Local Slice-Wise SIMPLE Algorithm

Algorithm 3 Local Slice-Wise SIMPLE

Require: DSi, α

1: initialize iter = 0

2: perform majority voting of DSi to obtain an initial estimate of ground truth, i.e., E(GT)0
3: count the number of slice, numSlices in an input image DSi

4: for j = 0 to numSlices do

5: initialize NumberOfSlices0,j = numSlices

6: end for

7: while Any slice from any input is rejected in last iteration do

8: for j = 0 to numSlices do

9: for i = 1 to N do

10: compute Dicei,j = overlap of jth slice from DSi and E(GT)iter for all the slices that

are not rejected.

11: end for

12: compute Meaniter,j(Dice:,j) and StdDeviter,j(Dice:,j) using only the slices that are not

rejected.

13: compute Thresholditer,j = Meaniter,j − α× StdDeviter,j
14: end for

15: for i = 0 to N do

16: for j = 0 to numSlices do

17: if Dicei,j < Thresholditer,j then

18: reject jth slice from DSi

19: end if

20: end for

21: end for

22: for j = 0 to numSlices do

23: count NumberOfRejectedSlicesiter,j
24: NumberOfSlicesiter+1,j = NumberOfSlicesiter,j −NumberOfRejectedSlicesiter,j
25: perform weighted voting of remaining DSi,j to obtain E(GT)iter+1,j

26: end for

27: iter = iter + 1

28: end while

29: E(GT)iter is final fusion result, i.e., E(GT)

89

9.3.2 Local Non-Overlapping Cube-Wise SIMPLE Algorithm

Algorithm 4 Local Non-Overlapping Cube-Wise SIMPLE

Require: DSi, α, cubeSize

1: initialize iter = 0

2: perform majority voting of DSi to obtain an initial estimate of ground truth, i.e., E(GT)0
3: Each DSi is divided into non-overlapping cubes of size cubeSize

4: count the number of cubes, numCubes in an input image DSi

5: for j = 0 to numCubes do

6: initialize NumberOfCubes0,j = numCubes

7: end for

8: while Any cube from any input is rejected in last iteration do

9: for j = 0 to numCubes do

10: for i = 1 to N do

11: compute Dicei,j = overlap of jth cube from DSi and E(GT)iter for all the cubes that

are not rejected.

12: end for

13: compute Meaniter,j(Dice:,j) and StdDeviter,j(Dice:,j) using only the cubes that are not

rejected.

14: compute Thresholditer,j = Meaniter,j − α× StdDeviter,j
15: end for

16: for i = 0 to N do

17: for j = 0 to numCubes do

18: if DICEi,j < Thresholditer,j then

19: reject jth cube from DSi

20: end if

21: end for

22: end for

23: for j = 0 to numCubes do

24: count NumberOfRejectedCubesiter,j
25: NumberOfCubesiter+1,j = NumberOfCubesiter,j −NumberOfRejectedCubesiter,j
26: perform weighted voting of remaining DSi,j to obtain E(GT)iter+1,j

27: end for

28: iter = iter + 1

29: end while

30: E(GT)iter is final fusion result, i.e., E(GT)

90

9.3.3 Boundary SIMPLE Algorithm

Algorithm 5 Increasing Sensitivity (Boundary) SIMPLE

Require: DSi, α

1: perform majority voting of DSi to obtain an initial estimate of ground truth, i.e., E(GT)0
2: initialize NumberOfInputs0 = NumberOfInputs

3: initialize iter = 0

4: while NumberOfInputsiter ̸= NumberOfInputsiter−1 do

5: for i = 0 to N do

6: compute Dicei = overlap of 3D boundary of DSi and E(GT)iter for all the input

segmentations that are not rejected.

7: end for

8: compute Meaniter(Dice) and StdDeviter(Dice) using only the input segmentations that

are not rejected.

9: compute Thresholditer = Meaniter − α× StdDeviter
10: for i = 0 to N do

11: if Dicei < Thresholditer then

12: reject DSi

13: end if

14: end for

15: count NumberOfRejectedInputsiter
16: NumberOfInputsiter+1 = NumberOfInputsiter −NumberOfRejectedInputsiter
17: iter = iter + 1

18: perform weighted voting of remaining DSi to obtain E(GT)iter. DICEi is used as weight

for DSi.

19: end while

20: E(GT)iter is final fusion result, i.e., E(GT)

91

9.3.4 Global Multi-Label SIMPLE Algorithm

Algorithm 6 Global Multi-Label SIMPLE algorithm

Require: DSi, α

1: perform majority voting of DSi to obtain an initial estimate of ground truth, i.e., E(GT)0
2: initialize NumberOfInputs0 = NumberOfInputs

3: computer the number of labels in an input image NumLabels

4: initialize iter = 0

5: while NumberOfInputsiter ̸= NumberOfInputsiter−1 do

6: for l = 0 to NumLabels− 1 do

7: for i = 1 to N do

8: compute Dicei,l = overlap of voxels with lth label in DSi and E(GT)iter for all the

input segmentations that are not rejected.

9: end for

10: compute Meaniter,l(Dice:,l) and StdDeviter,l(Dice:,l) using only the input segmenta-

tions that are not rejected.

11: compute Thresholditer,l = Meaniter,l − α× StdDeviter,l
12: end for

13: for i = 0 to N do

14: if Dicei < Thresholditer then

15: reject DSi

16: end if

17: end for

18: count NumberOfRejectedInputsiter
19: NumberOfInputsiter+1 = NumberOfInputsiter −NumberOfRejectedInputsiter
20: iter = iter + 1

21: perform weighted voting of remaining DSi to obtain E(GT)iter. DICEi is used as weight

for DSi.

22: end while

23: E(GT)iter is final fusion result, i.e., E(GT)

92

9.4 α Values for SIMPLE Algorithms

Table 9.1: Binary segmentation: Set of α values used for various algorithms
α Index re-inclusion boundary slicewise slicewise boundary

α0 -0.35 0.5 0.75 1.75

α1 -0.25 0.75 1.0 2.0

α2 -0.15 1.0 1.25 2.25

α3 -0.05 0.25/f 1.5 2.5

α4 0 0.5/f
√

(1− f) 2.75

α5 0.25 0.75/f 1/f 1/f

Table 9.2: Binary segmentation: Set of α values used for various algorithms
α Index LNOC LNOCB LOC LNOCR

α0 0.75 0.75 1.0 0.0

α1 1.0 1.0 1.25 0.25

α2 1.25 1.25 1.5 0.5

α3 1.5 1.5 1.75 0.25/f

α4 1/f exp(−f) 1/f 0.1/f

α5 exp(−f) 1/f 0.5/f 0.01/f

Table 9.3: Multi-Label: Set of α values used for various algorithms
α Index Global LOC LNOC

α0 1.0 1.0 0.75

α1 1.25 1.25 1.25

α2 0.25/f 1.5 0.25/f

α3 0.5/f 1.75 0.5/f

α4 0.75/f 0.5/f 0.75/f

α5 1.0/f 1/f 1/f

93

9.5 Boxplots for SIMPLE Algorithms

9.5.1 Multi-label versus binary SIMPLE

Figure 9.1: A comparison of multilabel and binary global SIMPLE.

Figure 9.2: A comparison of multilabel and binary non-overlapping cube-wise SIMPLE.

94

Figure 9.3: A comparison of multilabel and binary overlapping cube-wise SIMPLE.

95

Bibliography

A randomized trial comparing lung-volumereduction surgery with medical therapy for severe

emphysema. New England Journal of Medicine, 348(21):2059–2073, 2003. doi: 10.1056/

NEJMoa030287.

P. Aljabar, R.A. Heckemann, A. Hammers, J.V. Hajnal, and D. Rueckert. Multi-atlas

based segmentation of brain images: Atlas selection and its effect on accuracy. Neu-

roImage, 46(3):726 – 738, 2009. ISSN 1053-8119. doi: DOI:10.1016/j.neuroimage.2009.

02.018. URL http://www.sciencedirect.com/science/article/B6WNP-4VP4WC5-2/2/

0c9e225b2baf87400dbc24d5135517e1.

X. Artaechevarria, A. Munoz-Barrutia, and C. Ortiz de Solorzano. Combination strategies

in multi-atlas image segmentation: Application to brain MR data. Medical Imaging, IEEE

Transactions on, 28(8):1266–1277, August 2009.

O. Carmichael, H. Aizenstein, S. W. Davis, J. Becker, P. M. Thompson, C. Meltzer, and Yanxi

Liu. Atlas-based hippocampus segmentation in alzheimer’s disease and mild cognitive im-

pairment. NeuroImage, 27(4):979 – 990, 2005.

A. Guimond, J. Meunier, and J.P. Thirion. Average brain models: A convergence study. 77(2):

192–210, February 2000.

Rolf A. A. Heckemann, Joseph V. V. Hajnal, Paul Aljabar, Daniel Rueckert, and Alexander

Hammers. Automatic anatomical brain MRI segmentation combining label propagation and

decision fusion. NeuroImage, 33(1):115–126, October 2006. ISSN 1053-8119. doi: 10.1016/j.

neuroimage.2006.05.061. URL http://dx.doi.org/10.1016/j.neuroimage.2006.05.061.

D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes. Medical image registration. 46

(3):R1 – R45, 2001.

A. Rutten M. Prokop M. A. Viergever I. Isgum, M. Staring and B. van Ginneken. Multi-atlas-

based segmentation with local decision fusion-application to cardiac and aortic segmentation

in ct scans. Medical Imaging, IEEE Transactions on, 28(7):1000–1010, 2009.

L. Ibáñez, W. Schroeder, L. Ng, and J. Cates. The ITK Software Guide. Kitware, Inc. ISBN

1-930934-15-7, second edition, 2005.

Josef Kittler, Ieee Computer Society, Mohamad Hatef, Robert P. W. Duin, and Jiri Matas. On

combining classifiers. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20:

226–239, 1998.

Arno Klein, Brett Mensh, Satrajit Ghosh, Jason Tourville, and Joy Hirsch. Mindboggle: Au-

tomated brain labeling with multiple atlases. BMC Medical Imaging, 5(1):7, 2005. ISSN

96

1471-2342. doi: 10.1186/1471-2342-5-7. URL http://www.biomedcentral.com/1471-2342/

5/7.

S. Klein, M. Staring, and J. P. W. Pluim. Evaluation of Optimization Methods for Nonrigid

Medical Image Registration Using Mutual Information and B-Splines. IEEE Transactions on

Image Processing, 16:2879–2890, December 2007. doi: 10.1109/TIP.2007.909412.

S. Klein, U.A. van der Heide, I.M. Lips, M. van Vulpen, M. Staring, and J. P. W. Pluim.

Automatic segmentation of the prostate in 3d mr images by atlas matching using localized

mutual information. Medical Physics, 35(4):1407–1417, April 2008.

Stefan Klein and Marius Staring. elastix. http://elastix.isi.uu.nl, 2004. URL http://elastix.

isi.uu.nl.

Robin Langerak, Uulke A. van der Heide, Alexis N. T. J. Kotte, Max A. Viergever, Marco van

Vulpen, and Josien P. W. Pluim. Label fusion in atlas-based segmentation using a selective

and iterative method for performance level estimation (simple). IEEE Trans. Med. Imaging,

29(12):2000–2008, 2010.

H. Lester and S. R. Arridge. A survey of hierarchical non-linear medical image registration. 32

(1):129 – 149, 1999.

B. Li, G. E. Christensen, G. McLennan, E. A. Hoffman, and J. M. Reinhardt. Establishing a

normative atlas of the human lung: Inter-subject warping and registration of volumetric CT.

Acad. Radiol., 10(3):255, 2003.

Maria Lorenzo-Valds, Gerardo I. Sanchez-Ortiz, Andrew G. Elkington, Raad H. Mohiaddin,

and Daniel Rueckert. Segmentation of 4d cardiac MR images using a probabilistic atlas

and the EM algorithm. Medical Image Analysis, 8(3):255 – 265, 2004. ISSN 1361-8415.

doi: DOI:10.1016/j.media.2004.06.005. URL http://www.sciencedirect.com/science/

article/B6W6Y-4CVV50R-5/2/539f3691e37256a59aed75626d5eb4d2. Medical Image Com-

puting and Computer-Assisted Intervention - MICCAI 2003.

J. B. A. Maintz and M. A. Viergever. A survey of medical image registration. 2(1):1 – 36, 1998.

H. Park, P. Bland, and C. Meyer. Construction of an abdominal probabilistic atlas and its

application in segmentation. IEEE Trans. Med. Imag., 22(4):483 – 492, April 2003.

Torsten Rohlfing and Calvin R. Maurer, Jr. Shape-based averaging. IEEE Transactions on

Image Processing, 16(1):153–161, Jan. 2007. doi: 10.1109/TIP.2006.884936.

Torsten Rohlfing, Robert Brandt, Calvin R. Maurer, Jr., and Randolf Menzel. Bee brains,

B-splines and computational democracy: Generating an average shape atlas. In Lawrence

Staib, editor, IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pages

187–194, Kauai, HI, 2001. IEEE Computer Society, Los Alamitos, CA. ISBN 0-7695-1336-0.

doi: 10.1109/MMBIA.2001.991733.

Torsten Rohlfing, Robert Brandt, Randolf Menzel, and Calvin R. Maurer, Jr. Evalua-

tion of atlas selection strategies for atlas-based image segmentation with application to

confocal microscopy images of bee brains. NeuroImage, 21(4):1428–1442, Apr. 2004a.

doi: 10.1016/j.neuroimage.2003.11.010. URL http://www.sciencedirect.com/science/

article/B6WNP-4BS0F4N-1/2/3452c4a5336f3edc4eb47d0e98f88163.

97

Torsten Rohlfing, Daniel B. Russakoff, and Calvin R. Maurer, Jr. Performance-based classifier

combination in atlas-based image segmentation using expectation-maximization parameter

estimation. IEEE Transactions on Medical Imaging, 23(8):983–994, Aug. 2004b.

Torsten Rohlfing, Robert Brandt, Randolf Menzel, Daniel B. Russakoff, and Calvin R. Maurer,

Jr. Quo vadis, atlas-based segmentation? In Jasjit Suri, David L. Wilson, and Swamy

Laxminarayan, editors, The Handbook of Medical Image Analysis – Volume III: Registration

Models, chapter 11, pages 435–486. Kluwer Academic / Plenum Publishers, New York, NY,

Aug. 2005.

Michal Sdika. Combining atlas based segmentation and intensity classification with

nearest neighbor transform and accuracy weighted vote. Medical Image Analy-

sis, 14(2):219 – 226, 2010. ISSN 1361-8415. doi: DOI:10.1016/j.media.2009.

12.004. URL http://www.sciencedirect.com/science/article/B6W6Y-4XY4GT3-1/2/

3e0a707c0748b20e44726c11bd39c1e0.

I. Sluimer, M. Prokop, and B. van Ginneken. Towards automated segmentation of the patho-

logical lung in CT), journal = IEEE Trans. Med. Imag., volume = 24, month = August, year

= 2005, number = 8, pages = 1025 - 1038,.

J. Stancanello, P. Romanelli, N. Modugno, P. Cerveri, G. Ferrigno, F. Uggeri, and G. Cantore.

Atlas-based identification of targets for functional radiosurgery. Medical Physics, 33(6):1603

– 1611, 2006.

M. Staring, S. Klein, J.H.C. Reiber, W.J. Niessen, and B.C. Stoel. Pulmonary Image Regis-

tration With elastix Using a Standard Intensity-Based Algorithm. In Bram van Ginneken,

Keelin Murphy, Tobias Heimann, Vladimir Pekar, Xiang Deng, editor, Medical Image Analy-

sis for the Clinic: A Grand Challenge, Workshop Proceedings of MICCAI, volume of Lecture

Notes in Computer Science, pages – , Beijing, China, September 2010.

C. Svarer, K. Madsen, S. G. Hasselbalch, L. H. Pinborg, S. Haugbol, V. G. Frokjaer, S. Holm,

O. B. Paulson, and G. M. Knudsen. MR-based automatic delineation of volumes of interest

in human brain PET images using probability maps. Neuroimage, 24(4):969–979, February

2005. ISSN 1053-8119. doi: 10.1016/j.neuroimage.2004.10.017. URL http://dx.doi.org/

10.1016/j.neuroimage.2004.10.017.

E.M. van Rikxoort, M. Prokop, B. de Hoop, M.A. Viergever, J.P.W. Pluim, and B. van Gin-

neken. Automatic segmentation of pulmonary lobes robust against incomplete fissures. IEEE

Transactions on Medical Imaging, 29(6):1286–1296, 2010a.

Eva M. van Rikxoort, Ivana Isgum, Yulia Arzhaeva, Marius Staring, Stefan Klein,

Max A. Viergever, Josien P.W. Pluim, and Bram van Ginneken. Adaptive local multi-

atlas segmentation: Application to the heart and the caudate nucleus. Medical Im-

age Analysis, 14(1):39 – 49, 2010b. ISSN 1361-8415. doi: DOI:10.1016/j.media.2009.

10.001. URL http://www.sciencedirect.com/science/article/B6W6Y-4XFGJJN-1/2/

b107e3dd298ef173d8b096ed67916578.

Simon K. Warfield, Kelly H. Zou, William M. Wells, and William M. Simultaneous truth and

performance level estimation (staple): An algorithm for the validation of image segmentation.

IEEE Trans. Med. Imag, 23:903–921, 2004.

98

M. Wu, O. Carmichael, P. Lopez-Garcia, C. S. Carter, and H. J. Aizenstein. Quantitative com-

parison of air, spm, and the fully deformable model for atlas-based segmentation of functional

and structural mrimages. Human Brain Mapp, 27(9):747 – 754, 2006.

Changyan Xiao, Marius Staring, Denis Shamonin, Johan H.C. Reiber, Jan Stolk, and Berend C.

Stoel. A strain energy filter for 3d vessel enhancement with application to pulmonary ct

images. Medical Image Analysis, 15(1):112 – 124, 2011. ISSN 1361-8415.

L. Zhang, E.A. Hoffman, and J.M. Reinhardt. Atlas-driven lung lobe segmentation in volumetric

x-ray ct images. 25(1):1–16, January 2006.

B. Zitová and J. Flusser. Image registration methods: a survey. 21(11):977–1000, 2003.

99

