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Multi-Graph Convolutional-Recurrent Neural
Network (MGC-RNN) for Short-Term
Forecasting of Transit Passenger Flow
Yuxin He , Lishuai Li , Member, IEEE, Xinting Zhu , and Kwok Leung Tsui

Abstract— Short-term forecasting of passenger flow is critical
for transit management and crowd regulation. Spatial depen-
dencies, temporal dependencies, inter-station correlations driven
by other latent factors, and exogenous factors bring challenges
to the short-term forecasts of passenger flow of urban rail
transit networks. An innovative deep learning approach, Multi-
Graph Convolutional-Recurrent Neural Network (MGC-RNN)
is proposed to forecast passenger flow in urban rail transit
systems to incorporate these complex factors. We propose to use
multiple graphs to encode the spatial and other heterogenous
inter-station correlations. The temporal dynamics of the inter-
station correlations are also modeled via the proposed multi-
graph convolutional-recurrent neural network structure. Inflow
and outflow of all stations can be collectively predicted with
multiple time steps ahead via a sequence to sequence(seq2seq)
architecture. The proposed method is applied to the short-
term forecasts of passenger flow in Shenzhen Metro, China.
The experimental results show that MGC-RNN outperforms the
benchmark algorithms in terms of forecasting accuracy. Besides,
it is found that the inter-station driven by network distance,
network structure, and recent flow patterns are significant factors
for passenger flow forecasting. Moreover, the architecture of
LSTM-encoder-decoder can capture the temporal dependencies
well. In general, the proposed framework could provide multiple
views of passenger flow dynamics for fine prediction and exhibit
a possibility for multi-source heterogeneous data fusion in the
spatiotemporal forecast tasks.

Index Terms— Short-term forecasting of passenger flow,
spatiotemporal dependencies, inter-station correlation,
multi-graph-convolution.

I. INTRODUCTION

SHORT-TERM forecasting of passenger flow is defined as
the forecast with the short period, usually over 5 minutes
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Fig. 1. Spatial dependencies of traffic flow in a transportation network.

and less than 1 hour [1]. Short-term forecasting of pas-
senger flow in urban rail transit is a vital component for
transit management and crowd regulation. A fine short-term
forecast of passenger flow can support transit operators in
optimizing service schedules, enhancing station passenger
crowd regulation planning, thus adapting the supply transport
the more precisely to fit the passenger demand, and also
being aware of an emergency (an influx of passengers) and
implementing emergency preparedness plans in advance [2].
Also, an accurate forecast of passenger flow information can
help passengers to know where an influx of passengers in an
immediate future will be and adjust their travel paths, modes,
and departure times rationally.

However, short-term forecasting of passenger flow is a
challenging task as the dynamics of passenger flow can be
affected by many complex aspects, including spatial dependen-
cies, temporal dependencies, inter-station correlations driven
by other latent factors, and exogenous factors.

A. Spatial Dependencies
Station-level passenger flow in urban rail transit networks is

dominated by the topological structure of the transit network.
Taking the network shown in Figure 1 as an example, the
traffic status at station a is more related to station c than station
b, and likewise, the traffic status at station d is more related
to station e than station f , because the spatial correlations are
based on network-based distance instead of Euclidean-based
distance.

B. Temporal Dependencies
Station-level passenger flow can be affected by differ-

ent temporal features, including temporal autocorrelation,
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Fig. 2. The influence of node a in the network. The green arrows indicate
the influence of the node a on itself at the next time step, i.e., the temporal
correlations. The blue arrows indicate the influence of the node a at its adjacent
nodes b, c, d, e at the current time step T1, which represent the static inter-
station correlations. The purple arrows indicate the influence across both the
inter-station and temporal dimensions, between node a and its accessible
nodes d, f, g, h at the next time step T2.

periodicity, and trend. For example, the traffic peak at 8 A.M.
will affect that at 9 A.M. Besides, traffic conditions during
morning rush hours present similar patterns on consecutive
workdays. Moreover, traffic patterns may present a gradually
increasing or decreasing trend due to seasonal reasons or some
macro factors such as economics and policies.

C. Inter-Station Correlations Driven by Other Latent Factors

In addition to spatial correlations among stations dominated
by the underlying network, stations can correlate with each
other measured by multiple latent factors including static and
dynamic factors. Static factors can be the network struc-
tural characteristics of stations (e.g., degree and betweenness
centrality), operational information, and the functionality of
stations. The dynamics of other accessible stations’ passenger
flow at previous time steps are a kind of dynamic factor. Taking
the network in Figure 2 as an example, we can observe the
dynamic inter-station correlations (orange arrow) in addition
to temporal correlations (green arrow) and static inter-station
correlations (blue arrow). The dynamic inter-station correla-
tions indicate the influence across both the inter-station and
temporal dimensions, between node a and its accessible nodes
at the next time step. Each node in the network can influence
its accessible nodes at the same time step due to static inter-
station correlations. Meanwhile, each node can also influence
itself at the next time step due to the temporal correlations.
Moreover, each node can even influence its accessible nodes
at the next time step because of the dynamic inter-station
correlations, as shown in Figure 2. The dynamic inter-station
correlations result from the dynamical patterns such as the
passenger flow evolving along both the stations and temporal
dimensions simultaneously.

D. Exogenous Factors
Exogenous factors, such as public holidays, day-of-week,

weather, and big events may influence passenger flows. For
example, passenger flow during the National Day Golden
Week is much greater than that of regular days, and the distin-
guishment of day-of-week affects the passenger flow because
of different trip purposes of different days (e.g., commuting
and non-commuting travels). Moreover, extreme weather
such as Typhoon may dramatically decrease passenger
flow.

Some spatiotemporal deep learning approaches have been
successfully applied to traffic forecasting in recent years, and
some of them proposed the traffic forecasting methods based
on a hybrid approach to extract spatiotemporal dependencies
simultaneously. For example, the convolutional Long Short
Term Memory (ConvLSTM) proposed by Shi, Chen, Wang,
& Yeung (2015) [3] was used in spatiotemporal forecasting
on transportation applications [4], [5]. The hybrid architec-
tures show good performance on extracting spatiotemporal
dependencies and correlations in forecasting, however, routine
transportation activities commonly occur on a determined
transportation network but not a Euclidean-based space [6],
and Convolutional Neural Networks (CNNs) are commonly
applied for dealing with Euclidean data [7] such as images,
regular grids, and so on. Therefore, such hybrid models that
combine CNN and Recurrent Neural Network (RNN) cannot
describe the spatial features well when forecasting traffic
flow in the context of a transportation network by taking
the network topology into account. Graph Convolutional Net-
works (GCNs) were widely used to capture network-based
spatial dependencies as GCNs can handle arbitrary graph-
structured data. Several research works applied GCNs to cap-
ture network-based spatial dependencies in traffic forecasting
tasks [8]–[10]. However, these studies only consider the topo-
logical relations between stations/points to build the graphs,
but ignore all other latent factors that could measure the corre-
lations (e.g., traffic patterns and local functionality). Chai et al.
(2018) proposed a multi-graph convolutional neural network
model to predict bike flow at station-level by considering
heterogeneous inter-station relationships [11]. Lv et al. (2020)
proposed a Temporal Multi-Graph Convolutional Network
(T-MGCN) to jointly model the spatial, temporal, semantic
correlations for traffic flow prediction [12]. However, they
didn’t consider the temporal dynamics of the inter-station
correlations, specifically, the correlation regards traffic flow
patterns are time-varying actually.

To fill in the aforementioned gaps, we propose an
innovative deep learning approach, named Multi-Graph
Convolutional-Recurrent Neural Network (MGC-RNN),
to consider spatiotemporal dependencies and the complex
inter-station correlations measured by static and dynamic
factors simultaneously in the short-term forecasting of
passenger flow. Specifically, we generate multiple graphs
(including static and dynamic) to represent the inter-station
correlations driven by different factors, respectively. Then
we apply multiple GCNs to extract each graph’s correlation
information and then weighted-fuse all the extracted
information. Our contributions are four-fold:
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TABLE I

SUMMARY OF PRIOR RESEARCH ON SHORT-TERM TRAFFIC STATE FORECASTING

a) Multiple graphs encoding the spatial and heterogenous
inter-station correlations are generated. In this way, besides
temporal and spatial dependencies on the underlying tran-
sit networks, latent correlations driven by stations’ features
(e.g., similar traffic flow patterns, functionality, and network
structure characteristics) are extracted. Besides, various cor-
relation information is well represented by multi-dimensional
adjacency matrices of multi-graphs.

b) The temporal dynamics of the inter-station correlations
are considered since the inter-station correlations related to
passenger flow patterns are time-varying. More specifically,
the inter-station correlations may change along the temporal
dimensions.

c) Inflow and outflow of all stations in an urban rail transit
network can be collectively predicted with multiple time steps
ahead via a sequence to sequence(seq2seq) architecture.

d) The proposed model is validated on a real-world case,
Shenzhen metro passenger flow forecasting by incorporating
spatiotemporal dependencies and multiple dimensional inter-
station correlations. The proposed model structure is also flex-
ible enough to handle several similar spatiotemporal forecast
tasks.

The remainder of this paper is organized as follows.
Section II reviews the prior research on traffic state forecasting
and OD matrix forecasting. Section III provides the relevant
notations and formulates the short-term OD matrix forecast-
ing problem, and describes the methodology for short-term
forecasting of passenger flow in urban rail transit. Section IV
describes the real-world datasets used in the validation exper-
iment and provides details for experiment settings and results

analysis and discussion. Finally, Section V concludes this
work.

II. PRIOR RESEARCH

We summarized the related prior research on short-
term traffic state forecasting in terms of the methods they
used and what endogenous features they considered in
Table I.

Table I shows that short-term traffic state forecasting con-
sists of two categories according to the data features to be
considered. The first category is formulated as time series
prediction problems which only consider temporal dependen-
cies of traffic state data. The second category is formulated as
spatiotemporal data forecasting problems which consider both
spatial and temporal dependencies.

For the above two categories of forecasting problems,
a considerable number of studies were devoted to traffic
state forecasting: and the existing methods can be categorized
into two groups, including parametric methods (time series
methods) and non-parametric methods. In time series analysis,
Autoregressive Integrated Moving Average (ARIMA) and its
family are the most general class of models for forecasting
a time series. Hamed et al. (2002) applied ARIMA model to
predict the short-term traffic volume on urban arterials [13].
Williams & Hoel (2003) presented the theoretical basis for
modeling univariate traffic condition data streams as Sea-
sonal Autoregressive Integrated Moving Average processes
(SARIMA) [14].

Compared with time series methods (which are mainly
parametric approaches), nonparametric models are flexible
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and sophisticated since their structure and parameters are not
fixed. Higher prediction accuracy and more complex data
modeling can be achieved by these models, such as k-Nearest
Neighbors algorithm (KNN), Support Vector Machine (SVM),
and Neural Networks (NNs) L. Zhang et al. (2013) pre-
sented a KNN model to predict short-term traffic flow [15]
Cai et al. (2016) proposed an improved KNN model to
enhance forecasting accuracy based on spatiotemporal cor-
relation and to achieve multi-step forecasting [16]. Besides,
several researchers applied SVM to traffic prediction and
also proposed improved-version SVM, e.g., chaos wavelet
analysis SVMs [17], least-squares SVMs [18], particle swarm
optimization SVMs [19], and genetic algorithm SVMs [20].
However, the biggest limitation of SVMs lies in the choice
of the kernel. NNs and deep learning approaches have
achieved a better performance in the domain of computer
vision [21], [22]. Recurrent Neural Networks (RNNs) have
made success for sequence learning tasks [23]. Involving long
short-term memory (LSTM) or gated recurrent unit (GRU)
enables RNNs to capture the long-term temporal dependency
of time series Ma et al. (2015) validated the effectiveness of
LSTM by using Travel speed data in Beijing and demonstrated
that LSTM could achieve the best prediction performance in
terms of both accuracy and stability [24]. CNNs [25] especially
the one-dimensional CNNs have been applied to sequences
for decades [26]. Bai, Kolter, & Koltun (2018) proposed a
generic temporal convolutional network (TCN) architecture
that is applied to sequence modeling and found it demonstrated
longer effective memory [27]. Some studies later proposed
deep learning frameworks based on TCN in short-term traffic
forecasting [28], [29].

However, these algorithms cannot capture the spatial fea-
tures. Thanks to the powerful ability in capturing the corre-
lations in the spatial domain, CNN is now widely used in
learning from spatial data [25]. Especially for data types of
spatial maps and spatial rasters, which can be represented as a
two-dimensional matrix. Spatial dependencies are fundamental
features to be extracted from traffic data, thus CNN is well
suited to learn the spatial features of them [30]–[33]. When
both spatial and temporal dependencies are considered in
traffic forecasting tasks, traffic data are naturally spatiotem-
poral data, which are sometimes represented as a tensor or
a sequence of tensors, three-dimensional CNNs [34] can be
used to learn the complex spatial and temporal dependencies
of the data.

Moreover, if the form of the input traffic data is a sequence
of image-like matrices, hybrid models that combine CNN
and RNN can be used to model the input. Some researchers
proposed the forecasting methods based on a hybrid approach
to extract spatiotemporal dependencies simultaneously in
short-term traffic forecasting tasks. For example, Wu & Tan
(2016) [7] and Yu, Wu, Wang, Wang, & Ma (2017) [35]
proposed the structures with the combination of CNN and
LSTM for spatiotemporal forecasting. Instead of simply stack-
ing the architectures of CNN and RNN, by extending the
fully connected LSTM (FC-LSTM) to have convolutional
structures in both the input-to-state and state-to-state tran-
sitions, Shi, Chen, Wang, & Yeung (2015) proposed the

convolutional LSTM (ConvLSTM) and used it to build an
end-to-end trainable model for the precipitation nowcasting
problem [3]. ConvLSTM was then used in spatiotemporal
forecasting on transportation applications [4], [5]. The hybrid
architectures show good performance in extracting spatiotem-
poral dependencies and correlations in forecasting, but the
training procedure may become time-consuming as the size
of the dataset increases as RNNs are affected by the size of
sequences. Furthermore, J. Zhang et al. (2018) proposed a
SpatioTemporal Residual Network (ST-ResNet) for forecasting
crowd flow in each regular region of a city, yet it cannot be
adapted to deal with the forecasts in irregular-shaped regions
or Non-Euclidean space [36].

CNNs are commonly applied for dealing with Euclidean
data such as images, regular grids, etc. However, spatial
features based on the topological structure of a network or
a graph have strong effects on modeling graph-structured
data. Graph Convolutional Networks (GCNs) were widely
used to capture network-based spatial dependencies as GCNs
can handle arbitrary graph-structured data. In transportation
fields, GCNs were popularly applied in traffic prediction tasks.
Zhao, Song, Deng, & Li (2018) developed a spatiotemporal
neural network named Temporal Graph Convolutional Net-
work (TGCN) for forecasting problems, which combines the
GCN with GRU [8]. Sun, Zhang, Li, Yi, & Zheng (2019)
proposed a Multi-View Graph Convolutional Network to pre-
dict the inflow and outflow in each irregular region of a
city [37]. Besides, another graph neural network, similar to
GCNs, Diffusion Convolutional Neural Networks (DCNNs)
were also developed for graph-structured data [38]. Later
on, Li, Yu, Shahabi, & Liu (2017) proposed to model the
traffic flow as a diffusion process on a directed graph and
introduce Diffusion Convolutional Recurrent Neural Network
(DCRNN), which is a deep learning framework for traffic
forecasting that incorporates both spatial and temporal depen-
dency in the traffic flow [39]. Besides, attention mechanism
was also widely applied to the extraction of temporal and
graph-structured spatial dependencies. Spatiotemporal Graph
Attention Networks (GAT) was proposed to finish the tasks of
spatiotemporal forecasts of traffic states [26], [40]. However,
the abovementioned studies only considered the topological
relations between stations/points of underlying transportation
networks to build the graphs, but ignored all other latent
factors that could measure the correlations (e.g., traffic patterns
and local functionality).

To consider other latent factors influencing inter-station
correlations, some related-studies came up with thoughts
of using multi-graph convolutional neural networks to
extract inter-station correlations measured by other fac-
tors Chai et al. (2018) proposed a multi-graph convolutional
neural network (M-GCN) model to predict bike flow at
station-level by considering heterogeneous inter-station rela-
tionships [11]. Lv et al. (2020) proposed a Temporal Multi-
Graph Convolutional Network (T-MGCN) to jointly model
the spatial, temporal, semantic correlations for traffic flow
prediction [12]. However, they didn’t consider the temporal
dynamics of the inter-station correlations, specifically, they
treated the correlation regards traffic flow patterns as static.
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TABLE II

NOTATIONS USED IN THIS STUDY

Instead, the inter-station correlations driven by traffic patterns
are time-varying actually because of the temporal dynamics
of traffic patterns.

III. METHODOLOGY

This paper aims to forecast inflow and outflow collec-
tively of a certain station in an urban rail transit network in
the immediate future based on the historical passenger flow
information and available factors including the information of
network distance, network structure, operational information,
and stations’ local functionality.

A. Notations and Problem Statement

In this subsection, we provide notations and he problem
statement of this study. For easy retrieval, we summarize the
notations used in this study in Table II.

1) Multiple Graphs Generated From Different Aspects: A
transit network graph is denoted as G(V , E, M), where V =
{v1, v2, . . . , vN } represents a set of nodes representing stations
in the transit network, and N refers to the number of stations.
E � ei j denotes a set of edges from node i to j , i, j ∈ V ,
indicating the correlation between node i and j . M ∈ R

N×N

denotes the adjacency matrix, indicating the weights of two
correlated nodes. The larger the weight, the higher the two
stations correlate with each other. The proposed model is
able to incorporate multiple graphs according to the different
perspectives of correlations among stations. In this study,
we include network distance graph G1, Point-Of-Interest (POI)
correlation graph G2, network structure correlation graph G3,
operational information correlation graph G4, and recent flow
correlation graph G5

t at time t . Corresponding to each of
the graphs, we denote the network distance adjacency matrix,
POI correlation adjacency matrix, network structure correla-
tion adjacency matrix, and operational information correlation
adjacency matrix as M1, M2, M3, M4 ∈ R

N×N . Since we
consider the dynamic inter-station correlations, the recent flow

correlation adjacency matrix is time-varying, and the recent
flow correlation adjacency matrix at time t is denoted as
M5

t ∈ R
N×N .

2) Historical Inflow & Outflow Sequence: The passenger
flow on the transit network changes dynamically over time.
It is denoted as Y t ∈ R

N×S of each station of the network at
time t , where S denotes the passenger flow type of each station
(i.e., S = 2, referring to inflow and outflow, respectively).
Given input sequence length l, the historical inflow and out-
flow sequence can be denoted as [Y T −l , Y T −l+1, . . . , Y T −1].

3) Exogenous Factors:
a) Day-of-week: We use a categorical variable denoted by

dt to represent the day-of-week. dt captures the distinguished
properties between each day of the week. If t belongs to the
r th day of the week, then

dt = r, r = 1, 2, . . . , 7 (1)

b) Holiday: We also denote another dummy variable ht

to be the holiday-or-not, which distinguishes whether it is a
holiday (includes adjacent weekends) or not.

ht =
�

1, if t belongs to holidays

0, otherwise
(2)

c) Hour-of-day: We use another categorical variable
denoted by ot to represent the hour-of-dat. ot captures the
distinguished properties between each hour of the day. Note
that we only consider the opening hours of subway in one day,
e.g., the opening hours of Shenzhen metro system in 2013 of
all 5 lines are 6:30-23:00, so there are 17 hourly period during
the opening hours per day. If t belongs to the sth hour of the
day, then

ot = s, s = 1, 2, . . . , 17 (3)

d) Weather: The weather variable has 3 dimensions
including the weather conditions with 8 types, temperature,
and wind speed during the t-th time interval, which is denoted
as A t = (a1

t , a2
t , a3

t ). The first dimension a1
t is a categorical

vector distinguishing eight weather conditions clear, sunny,
fog, cloudy, light rain, rain shower, thunderstorm, and overcast,
and the last two digits (a2

t , a3
t ) are numeric vectors that denote

temperature and wind speed respectively.
4) Problem Statement: Given five generated

graph G1(V , E, M1), G2(V , E, M2), G3(V , E, M3),
G4

�
V , E, M4

�
, and G5

t (V , E, M5
t ) and the

historical observations and pre-known information
{Y t |t= 0, . . . ,T −1;dt ,ht , ot |t = 0, . . . , T ; At |t =
0, . . . , T − 1}, predict [Y T ,Y T +1, . . . ,Y T +p]. Note that
the day-of-week dt , holiday ht , and hour-of-day ot of the t-th
time interval are pre-known at t .

B. Overall Framework

Figure 3 shows the overall procedures of the pro-
posed framework, which includes six parts: raw data, fea-
ture engineering, input layer, graph convolutional layer,
LSTM_encoder-decoder, and output layer.

First of all, raw data including adjacency and travel
times among stations, and stations’ features including POI
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Fig. 3. The architecture of MGC-RNN.

information, network structure, operational information, and
historical inflow and outflow are fed into the framework,
as shown in Figure 3. The raw data are then processed
through feature engineering procedures, wherein, stations’
features are used to calculate different adjacency matrices via
a sparse-based reconstruction model [41], as shown in Input
3 to input 6, denoted by M2, M3, M4, and M5. Input 2,
network distance adjacency matrix M1 was generated with
the information of adjacency and travel times among sta-
tions, here, the weights were calculated by a Gaussian ker-
nel function. Input 1 is the historical inflow and outflow
sequence, [Y t−l,Y t−l+1, . . . , Y t−1], and the sequence length
is l, where Y T has the dimension of N×S. N denotes
the number of stations, S equals 2 representing inflow and
outflow, i.e., the two types of passenger flows. They were
concatenated by using the raw historical passenger flow data.
Since M1, M2, M3, M4 are static information, we need to
repeat them l times to make them as a sequence of equal
length with other input sequences, i.e., input 1 and input 6.
Input 6 is recent flow correlation adjacency matrix sequence
[M5

t−l,M5
t−l+1, . . . , M5

t−1], as mentioned earlier, the optimal
reconstructed coefficient matrix M5 is time-varying, so they
naturally make up a sequence. The sequence of recent flow
correlation adjacency matrix ensures the temporal dynamics
of inter-station correlations to be considered.

The graph convolutional layer, for each time step in the
sequences, we combine each adjacency matrix with each
inflow and outflow at each time step as the topological
structure and node’s feature of a graph, and then conduct five
graph convolution operators for all these input graphs, then
use a self-defined weighted fusion layer to merge the outputs
from the five graphs, and the weights here are learnable.
In this way, we extract the network-based spatial dependencies
among stations as well as static and dynamic inter-station
correlations.

Then via flatten and fully-connected layers, we concatenate
the output at each time step and reshape it as the input to the
LSTM network, here the size of LSTM input is [l,N × S].
We would like to conduct multi-step forecasting, so we apply
one of the seq2seq structures, i.e., LSTM encoder-decoder
structure. We can see encoder and decoder are all LSTM
units. The encoder is to read and encodes the input sequence,
and the decoder will read the encoded input sequence. After
encoding by the encoder, the internal representation of the
input sequence is repeated multiple times, once for each time
step in the output sequence. This sequence will be presented
to the LSTM decoder. To interpret each time step in the output
sequence, the interpretation layer and the output layer are
wrapped in a TimeDistributed wrapper and reuse the same
weights to perform the interpretation.
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There are four parallel structures for modeling the categori-
cal exogenous factors (i.e., day-of-week, holiday information,
hour-of-day, and weather conditions), where each structure
has two layers, and the first layer serves as an embedding
layer for keeping the size of the input vector much smaller
than the huge one-hot encoded vector. The second layer is an
F-C layer. As the wind speed and temperature are numeric
vectors, we will use F-C layer to process them directly
without embedding. The outputs of the exogenous factors
unit are then merged (adding operation) with the output from
LSTM_encoder-decoder structure.

Finally, we can see we output the p-step outputs,
Y t , Y t+1, . . . , Y t+p.

C. Multigraph Convolution

To fully encode the relationship between stations, we gen-
erate multiple graphs that contain heterogeneous spatial and
inter-station correlations and employ multiple parallel graph
convolutional operators on multigraphs in our neural network
model.

1) Multigraph Generation: Graph generation is the fun-
damental step for GCNs. Stations in transit networks often
correlate with each other in different aspects. The higher cor-
relations between stations, the larger the weight to be assigned.
On this basis, we innovatively generate five alternative graphs
in terms of different aspects, including network distance graph,
POI correlation graph, network structure correlation graph,
operational information correlation graph, and recent flow
correlation graph.

a) Network distance graph G1: In practice, since the
distance graph is generated to model the spatial correlations
among stations, it is necessary to consider the network layout
when calibrating the distance, however, existing studies usu-
ally just use Euclidean-based distance metric to calibrate the
distance no matter how the locations connected. In practice,
in subway networks, one station is connected to another station
with the railway, so the Euclidean-based distance cannot
reflect the actual distance between two stations. The study
uses network-based distance to measure spatial connectivity
instead of Euclidean-based distance [42]. Also, considering
the actual travel costs that passengers take, we use the average
of the travel times between two stations as the network-based
distance. Specifically, we take the average of the travel times
between two stations during different periods (per hour period)
of workday and weekend from AMap1 by checking the travel
time of the routes by transit mode. After getting the network-
based distance di j between station i and j , we calculate the
weight Wij between i and j of the adjacency matrix by a
Gaussian kernel function as (4).

i. Wij = exp(−d2
i j

σ 2 ) (4)

where σ is the standard deviation of distances.
b) POI correlation graph G2: When forecasting the

passenger flow for a station, it is intuitive to other stations that

1Source: https://www.amap.com/

perform similar functionality with this station. The functional-
ity of the station can be measured by POI information around
the station. The edges’ weights of POI correlation graph are
calculated via a sparse-based reconstruction model proposed
by S. Zhang et al. (2017) [41].

c) Network structure correlation graph G3: Stations
could also correlate with each other in terms of the char-
acteristics of network structure. Network structure includes
degree and betweenness of stations serving as the nodes in
metro networks, and days since the stations opened, as well
as spatial characteristics of each station: distance to the city
center. In the field of complex networks, as degree is a simple
centrality measure that counts how many neighbors a node
has, and the betweenness centrality for each node refers to
the number of shortest paths that pass through the node [43],
thus they are correlated to the information for transfer stations
or terminal stations, and the importance of stations in the
aspect of their controlling over flows passing between others
of metro networks. Days since stations opened reflect not only
the operation time of stations but also the line information of
stations. The edges’ weights of network structure correlation
graph are also calculated via the sparse-based reconstruction
model.

d) Operational information correlation graph G4: Sta-
tions with similar operational patterns could also correlate
with each other. Specifically, the information of metro line’s
headways of peak hours and off-peak hours is treated as each
metro station’s operational features. Note that for the transfer
station, the smaller headway is taken as its headway. The
edges’ weights of operational information correlation graph
are also calculated via the sparse-based reconstruction model.

e) Recent flow correlation graph G5
t : Last but not the

least, stations with similar traffic patterns could also correlate
with each other. Specifically, the correlation between stations
in terms of similar traffic patterns is measured by the historical
passenger flow of the stations. Instead of taking all historical
inflow and outflow [11], [12], we take the recent 10 time
intervals’ inflow and outflow Xt ∈ R

20×N as features of the
current time t to measure the recent flow correlation among
stations. In this way, the passenger flow correlations captured
are time-varying but not static, which accords with the actual
conditions. The edges’ weights of the recent flow correlation
graph at each time slot are also calculated via the sparse-based
reconstruction model.

Sparse-Based Reconstruction Model: As mentioned ear-
lier, we calculate the POI correlation adjacency matrix M2,
network structure correlation adjacency matrix M3, oper-
ational information correlation adjacency matrix M4, and
recent flow correlation adjacency matrix W5

T at each time
slot T via a sparse-base reconstruction model proposed by
S. Zhang et al. (2017).

The principle of the sparse-base reconstruction model is
as follows: given the observed feature matrix X∈R

P×N =
[x1, . . . ,xN ], where P denotes the number of features
of each node. The original attribute matrix X is used to
reconstruct each node’s attribute vector xi , with the objective
that minimizing the distance between XW and X, where
W = [w1, . . . ,wN] ∈R

N×N represents the reconstructed
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Fig. 4. Standard convolution vs. graph convolution. (a) Standard convolution.
(b) Graph convolution.

coefficient matrix or the correlations between nodes’ features
and themselves, i.e., the adjacency matrix we are aiming to.
The objective function for the reconstruction process is as (5):

min
w

{�XW − X�2
F + ρ1 �W�1 + ρ2Tr

�
WT XT LXW

�
, }

W � 0 (5)

where ρ1 and ρ2 are tuning parameters, and L ∈R
P×P is

a Laplacian matrix, which indicates the relational infor-
mation between features. As shown in (4), the first part
�XW − X�2

F is the least square loss function to measure the
distance between XW and X. The second term ρ1 �W�1 is
an �1− norm regularization term, which is used to generate
the sparse reconstruction coefficient. The third term of (4) is
also a regularization term with the assumption that, if some
features are related in regressing, then their predictions are also
related to each other. Thus, their corresponding predictions
should have the same or similar relation. To utilize such
relation, the relation among nodes in X to be reflected in the
relationship between their predictions is imposed, and through
the derivation (see details in [41]), the third term is obtained .

All of the three terms as well as the nonnegative constraint
in (4) are convex, thus the final objective function is convex.
On this basis, the optimal reconstructed coefficient matrix, i.e.,
the adjacency matrix can be obtained through solving convex
optimization.

Gaussian Kernel Function: The weight W 1
i j between station

i and station j of the network distance adjacency matrix M1 is
calculated from a kernel function. Gaussian kernel is a popular
function to calculate weight matrix in spatial models [44]. The
weight calculated from Gaussian kernel function continuously
and gradually decreases from the center of the kernel. Gaussian
kernel is expressed as (3). If the stations i and j satisfy di j = 0,
Wij = 1, whereas Wij decreases according to a Gaussian curve
as di j increases.

2) Graph Convolutional Network (GCN): In the proposed
MGC-RNN model, parallel GCNs are employed to extract
spatial correlations and inter-station correlations in terms of
multiple aspects of multiple graphs. In our study, we mainly
focus on the spectral framework to apply convolutions in
spectral domains, which is named the spectral graph convo-
lution [45]. Figure 4 presents a comparison between standard
convolution and graph convolution. To better compare, we can
treat images as a graph, i.e., each pixel of images can be
represented as a node of the graph. As depicted in Figure 4(a),
the neighbor nodes of the orange node are determined by a
3∗3 filter, which is applied to take the weighted average of the

pixel values of the orange node and its neighbor nodes. The
ordering of the orange node’s neighbor nodes is based on their
positions, and the weights of neighbor nodes can be shared
over all the positions of nodes. Similarly, a spectral graph
convolution is the multiplication of a graph signal with a filter
in the Fourier space of a graph, i.e., it also takes the average of
the central node’s attributes and its neighbor nodes’ attributes.
As shown in Figure 4 (b), assuming that the orange node is
the central node, GCN can obtain the topological relationship
between the central node and its neighbor nodes, so that it can
learn the spatial features reflected by a network.

The idea of GCN is to realize convolution operation on the
topological graph with the help of graph theory. Next, the core
part of the GCN is introduced. Take a simple form of a layer-
wise propagation rule as an example:

H (l+1) = σ
�

AH (l)W (l)
�

(6)

wherein, H (l) denotes the l-th neural network layer with a
weight matrix W (l). A represents an adjacency matrix and σ (·)
refers to a non-linear activation function such as RE LU .

Since the node itself cannot be included when counting in
all neighbor nodes’ features by multiplication with A, so an
identity matrix is added to A to fix this limitation, and a matrix
with a self-loop structure Â = A + I is obtained, where I is
the identity matrix. Moreover, multiplication with A which is
not normalized will change the scale of the feature vectors,
so a symmetric normalization is applied to address this issue,
i.e., Ã = D̂− 1

2 ÂD̂− 1
2 . Above all, the propagation rule can be

expressed as:
H (l+1) = σ

�
D̂− 1

2 ÂD̂− 1
2 H (l)W (l)

�
(7)

where D̂ denotes the diagonal node degree matrix of Â.
3) Fusion of the Outputs of Multigraph Convolution: Inter-

station correlations can be influenced by multiple aspects
(multiple graphs) and the degree can be different. Therefore,
we apply a weighted fusion method as (8) in the model:
gmerge = W1◦ g1

+W2◦ g2 + W3◦ g3 + W4◦ g4 + W 5◦ g5∈R
N×U (8)

wherein, ◦ denotes Hadamard product (i.e. element-wise prod-
uct), W 1,W2,W3,W4, and W5 are the parameters that
can be learned, which quantify the degrees affected by the
feature extracted from the five graphs above, denoted by
g1,g2,g3,g4, and g5 respectively. Note that, the weighted
fusion was applied on each step of the output sequences, and
the merged output is also one step of the sequence, which has
the dimension of N × U , where U is the number of graph
convolutional units.

D. LSTM_Encoder-Decoder

In this study, we conduct multi-step passenger flow forecast-
ing because it can provide multiple time steps of predictions
for operators and passengers, enabling them to have more time
to react and take action. The Seq2Seq architecture is applied to
tackle the multi-step forecasting in our study, which is shown
in Figure 5.
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Fig. 5. The structure of Seq2Seq model.

The structure of seq2seq is comprised of two sub-models:
one is the encoder that reads the input sequences and com-
presses them to a fixed-length internal representation, and an
output model is the decoder that interprets the internal repre-
sentation and uses it to predict the output sequence. We can use
the network structure of LSTM or CNN as the components of
the encoder and decoder. The strength of LSTM is in tackling
sequence input, supporting multivariate inputs, and mapping
input to output vector that may represent multiple output time
steps. On this basis, we adopt the structure that LSTMs being
both encoder and decoder.

LSTM_Encoder-Decoder is the structure whose encoder and
decoder are all LSTM units [46]. As shown in Figure 3, the
LSTM encoder is to read and encodes the input sequence as
the internal representation, which is then repeated multiple
times, once for each time step in the output sequence. The
output sequence will be presented to the LSTM decoder.

E. Loss

Mean Square Error(MSE) and Mean Absolute Error(MAE)
are the most commonly used regression loss functions. MSE
is greater for learning the outliers in the dataset, on the
other hand, MAE is good to ignore the outliers. However,
the shortcoming of using MAE as a loss function for the
training of neural networks is its constantly large gradient,
which can lead to missing minima at the end of training using
gradient descent. Additionally, a model using MSE will make
predictions skewed towards outliers. In some cases, the data
which looks like outliers not bothered and also those points
should not get high priority. Huber loss can be really helpful in
such cases, as it curves around the minima which decreases the
gradient, and it’s more robust to outliers than MSE. Therefore,
Huber loss is the combination of both MSE and MAE. The
Huber loss is defined by:

Lδ

�
y, ŷ

� =

⎧⎪⎨
⎪⎩

1

2

�
y − ŷ

�2
, for

��y − ŷ
�� ≤ δ,

δ
��y − ŷ

�� − 1

2
δ2, otherwise.

(9)

where δ is the hyperparameter to define the range for MAE
and MSE. Huber loss approaches MSE when δ ∼ 0 and MAE
when δ ∼ ∞ (large numbers.). We manually tuned the δ value
here.

In this way, MGC-RNN can be trained with the following
optimization objective:

arg max
�

�
t∈T

�N

i=1

�S

s=1
Lδ(Y t [i, s] , Ŷ t [i, s]) (10)

where � denotes all the learnable parameters of MGC-RNN.
Y t [i, s] denotes the element of the i -th station and i -th type
of passenger flow (inflow/outflow) of Y t .

TABLE III

LIST OF AFC DATA FIELDS

Fig. 6. Shenzhen metro map of 2013. (a) Schematic map of Shenzhen metro.
(b) Spatial distribution of Shenzhen metro stations.

IV. CASE STUDY: SHORT-TERM FORECASTING OF

STATION-LEVEL INFLOW AND OUTFLOW OF

SHENZHEN METRO NETWORK

A. Dataset Description

1) Passenger Flow Dataset: The passenger flow dataset was
collected from the Automatic Fare Collection (AFC) system of
Shenzhen Metro Cooperation2 in China, which covers a time
span of 63 days from Sep. 10th to Nov. 11th in the year of
2013. By 2013, there are 5 metro lines and 118 stations in
Shenzhen. The Shenzhen Metro smart card data fields used in
this study are listed in Table III.

As shown in Table III, a quadruple record (Card_id, Sta-
tion_name, Transaction_timestamp, Transaction_type) can be
employed to describe a smart card transaction, where Card_id
identifies the cardholder (i.e., passenger), Station_name refers
to a station, Transaction_timestamp indicates the timestamp
of transaction, and Transaction_type identifies either tap-in or
tap-out of the station.

Figure 6(a) is the schematic map3 of Shenzhen metro in
2013, and Figure 6(b) truly reflects the spatial distribution
of those stations with the involvement of the geographical
information collected from Google map.4

Concerning the forecasting step, it denotes the granularity
of data aggregation in the modeling stage, which is also named
analysis interval. Through reviewing the literature about short-
term forecasting of subway passenger flow, we found that
15-min was mostly taken as the analysis interval [47]–[50].
Several studies also used 10-min[51] and 1-hour [52], [53] as
the analysis interval. On this basis, we determine the analysis
interval as 15-min, which is neither too long nor too short
for the trade-off between real-time response and stability of
the traffic condition. According to the operation of Shenzhen
metro system in 2013, the opening hours of all 5 lines are

2Shenzhen Metro Cooperation: http://www.szmc.net/
3Source: http://toursmaps.com/wp-content/uploads/2017/02/shenzhen_

metro_map-1.gif
4Source: https://maps.google.com
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Fig. 7. The raw passenger flow data v.s. the moving aggregated (one-hour
sliding window) passenger flow data. (a) The raw passenger flow data of
Liyumen station from 2013/11/05 to 2013/11/11. (b) The moving aggregated
passenger flow data of Liyumen station from 2013/11/05 to 2013/11/11.
(c) The raw passenger flow data of Zhuzilin station from 2013/11/05 to
2013/11/11. (d) The moving aggregated passenger flow data of Zhuzilin
station from 2013/11/05 to 2013/11/11. (e) The raw passenger flow data
of Shenzhen North Railway station from 2013/11/05 to 2013/11/11. (f) The
moving aggregated passenger flow data of Shenzhen North Railway station
from 2013/11/05 to 2013/11/11.

6:30-23:00. Divide this period by 15-min aggregation interval,
we get �16.5h ∗60/15� = 66 time slots per day.

Three stations are randomly chosen and their inflow and
outflow are visualized during each 15-min interval from
Nov. 5, 2013 to Nov.11, 2013, as shown in Figure 7(a), (c),
and (e). We can see the data oscillated too much, which
may make it hard to train the model. Therefore, to reduce
the oscillation, we use a one-hour rolling window to move
aggregate the 15-min inflow and outflow data. In this way,
we can get the recent one-hour inflow/outflow during each
15-min interval. Note that there are 63 time slots per day after
moving aggregation since the first three time intervals don’t
have the aggregated values.

As shown in Figure 7(b), (d), and (f), we can see the data are
smoother than before, and the model can learn the regulation
of data change more easily than before.

We aggregate each station’s transaction records
(i.e., inflow+outflow) using metro AFC data on October
14. Figure 8 shows the spatial distribution of AFC data
transaction records in one day. It presents that the transaction
records are most densely distributed at Grand Theatre Station
and Laojie Station, closely followed by Huaqiang Road
station and Luohu station, and the transaction records of
other stations have relatively sparse distribution. From the

Fig. 8. Spatial distribution of records aggregated at each station during a
whole day.

perspective of the spatial distribution of AFC records in a
single day, more latent complex spatial dependencies among
stations are pending for being captured.

2) POI and Network Structure Dataset: Before collecting
the POI-related data, a critical first step is to evaluate the
walking distance to metro stations, i.e., the size of a Pedestrian
Catchment Areas (PCA), aiming to determine the range of
data collection. As the average friendly walking distance is
generally assumed to be 500 m in large and middle-sized
cities according to Kim et al. (2017) [54], we also define the
distance of PCA of each Shenzhen metro station as 500m.
In our work, we use a buffer to create circular PCA by
500 m. Based on the buffer with 500m radius determined,
POI-related data are collected subsequently. All of the POI
data within a PCA were collected from Baidu Map with the
assistance of API, and POI data consist of the stations’ nearby
residence, entertainment, services, business, education, offices.
Specifically, the information covers the numbers of residences,
restaurants, schools, offices, hospitals, banks, shopping places,
bus stations, and hotels within 500m PCA [55].

Network structure data comprise the degree centrality and
betweenness centrality of the metro network nodes, days
since stations opened, and distance to the city center. Degree
centrality and betweenness centrality were calculated accord-
ing to their definitions and the actual topology of Shenzhen
metro network. The information of days since metro lines
and stations opened was collected from a website named
“UrbanRail”.5 As for the distance Disti of each station i to
the city center, i.e., Shenzhen Municipal People’s Government,
located in Futian District, we calculate it by the following (10)
considering the effect of the radius of the earth:

Disti = R × arcos (cos (Lat0) × cos (Lati )

× cos (Lon0 − Loni ) + sin (Lati ) × sin (Lat0))

× π

180
(11)

The POI-related data and network structure information
hypothesized to influence passenger flows of stations are
summarized in Table IV.

3) Operational Information: The information of the metro
line’s headways of peak hours and off-peak hours is consid-
ered as each metro station’s operational features. The mean

5Source: http://www.urbanrail.net/as/cn/shen/shenzhen.htm
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TABLE IV

SUMMARY OF POI-RELATED DATA AND NETWORK
STRUCTURE INFORMATION

TABLE V

THE MEAN HEADWAY OF EACH LINE OF SHENZHEN METRO

headways6 of each line in Shenzhen metro are listed in
Table V. Note that for the transfer station, the smaller headway
is taken as its headway.

Finally, for the weather factor, the historical weather infor-
mation of Shenzhen was collected from the website of Tianqi.7

We consider 3 categories of weather variables, including tem-
perature (measured by Celsius degree), weather condition, and
wind speed (measured by kilometer per hour). The weather
condition variable contains 31 types: such as sunny, clear,
fog, rain, etc. We grouped all these types into 8 categories:
clear, sunny, fog, cloudy, light rain, rain shower, thunderstorm,
and overcast. The weather information we collected takes one
value for one hour, so we need to repeat the hourly weather
information four times to make it the same length as the other
sequences (15-min as the interval).

B. Data Preprocessing and Settings

1) Data Preprocessing (Log+Diff): Time series is differ-
ent from traditional classification and regression predictive
modeling problems. The temporal structure adds order to
the observations. When a time series is stationary, it can
be easier to model. Statistical modeling methods assume
or require the time series to be stationary to be effective.
Observations from a non-stationary time series show seasonal
effects, trends, and other structures that depend on the time
index. Classical time series analysis and forecasting methods
are concerned with making non-stationary time series data
stationary by identifying and removing trends and removing

6Reference: http://dt.cncn.com/shenzhen/list_time
7Website: www.tianqi.com

seasonal effects [49]. Similarly, we also consider removing
seasonal and trend effects from the data before feeding them
into the deep learning model, to see if it can make model
training easier and performing better.

First, log transformation makes data linear and smoother,
so we take log transformation to the raw data, as there is zero
in raw data, we add 1 to them to make the log calculable.

Besides, differencing makes the data stationary as it removes
time series components from the data [56], [57]. The first order
differencing takes away only trend, not seasonality. Comparing
the results of several orders differencing and observing that
there is no clear trend in our data, we take 63th order
differencing to remove seasonality, because our data have
seasonality at lag = 63, i.e., one day has 63 time slots.

In the experiment, we use the passenger flow data after
log and differencing transformation from 10/09/2013 to
05/11/2013 (56 days, 3528 time slots) as training data, and
the remained 7 days (441 time slots) as testing data.

Moreover, data preparation involves using techniques such
as the normalization to rescale input and output variables prior
to training a neural network model. Min-Max normalization
preserves the shape of the original distribution, and doesn’t
reduce the importance of outliers. Thus, we use the training
data to train the Min-Max scaler and use it to convert the
passenger flow data after log and differencing transformation
to [0, 1] scale.

After prediction, we denormalize and reverse the differenc-
ing and log transformation of the prediction value and use it
for evaluation.

2) Evaluation Metric: With regards to the evaluation met-
rics, the most used metrics, i.e., Root Mean Squared Error
(RMSE), and MAE are employed (expressed as (11) and (12)).
Mean Absolute Percentage Error (MAPE) considers not only
the error between the predicted value and the true value but
also the ratio between the error and the true value.

However, MAPE has the issue of being infinite or undefined
due to zeros in the denominator. Besides, If any true values
are very close to zero, the corresponding absolute percentage
errors will be extremely high and therefore bias the informa-
tivity of the MAPE. The symmetric mean absolute percentage
error (sMAPE) was first proposed as a modified MAPE which
could be a simple way to fix the issue (expressed as (13))
[58]. It was then used in the M-Competitions (a series of open
competitions organized by teams led by forecasting researcher
Spyros Makridakis and intended to evaluate and compare the
accuracy of different forecasting methods) as an alternative
primary measure to MAPE [59].

RM SE =



1

n

�n

i=1

�
ŷi − yi

�2
(12)

M AE = 1

n

�n

i=1
|ŷi − yi | (13)

sM AP E = 1

n

�n

i=1

2
��ŷi − yi

��
(
��ŷi

�� + |yi |) (14)

where yi and ŷi are the true value and predicted value, and n
is the number of all predicted values.

3) Model Parameters Determination and Training Settings:
The hyperparameters of MGC-RNN are mainly: learning rate,
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batch size, the number of epochs at the training stage, the
length input sequence, the predicted step the number of graph
convolution units, the number of encoder LSTM units, and the
number of decoder LSTM units. In the experiment, we man-
ually adjust these hyperparameters. Learning rate decay is a
technique for training neural networks. It starts with a large
learning rate and then decays it multiple times. An initially
large learning rate accelerates training or helps the network
escape spurious local minima, and decaying the learning
rate helps the network converge to a local minimum and
avoid oscillation. So through manual adjustment, we set the
learning starts at 0.002, and the decay rate is 0.002 (lr =
lr∗ 1

1+decayrate∗iterat ions ). The batch size is set as 16. The
training epoch is set as 50. The input sequence length is 16,
and the prediction step is 4 (i.e., 1 hour). We apply 64 graph
convolution units for each parallel graph convolutional layer
and 200 LSTM units for both encoder and decoder parts. For
decoder LSTM, we tried to adopt dropout to avoid overfitting.
In LSTM, there are two dropouts applied for different parts
of LSTM, wherein dropout rate means the fraction of the
units to drop for the linear transformation of the inputs, and
recurrent dropout rate means the fraction of the units to drop
for the linear transformation of the recurrent state, which
drops the connections between the recurrent units[60]. In our
experiment, we manually adjust them and set both the dropout
and the recurrent dropout rate as 0.2.

The MGC-RNN here is trained by using Adam
optimizer [61].

C. Results and Discussion

1) Visualization of Weights of Adjacency Matrices of Multi-
graphs: First of all, to better understand the rationality
of the adjacency matrices of multigraphs calculated by
the sparse-based reconstruction model and Gaussian ker-
nel function, we visualize the weights of adjacency matri-
ces M1, M2, M3, M4, and M5

t of Shenzhen metro in two
ways, i.e., map-based correlation, and heatmap. The following
Figures 9 and 10 show the visualizations of the four static
adjacency matrices M1, M2, M3, M4 of Shenzhen metro in
the form of map-based correlation, and heatmap, respectively.
The brighter the color of Figure 9 and the darker the color of
Figure 10, the higher the weights. In Figures 9 and 10, to bet-
ter visualize the weight of each pair of correlated stations,
we transform the true values of weights between all station
pairs by the log. Besides, the axis labels of Figure 10 consist
of both station name and station identifier. For the sake
of convenience in representing and understanding, we use
alphanumeric code instead of Chinese to denote each station
name.8 The order of stations is arranged by lines, and the

8Here, we define identifiers for station names according to the following
rules: (1) non-transfer stations consist of 3 digits, where the first digit denotes
the line number, and the rest 2 digits denote the sequential number of station;
(2) transfer stations start with character t followed by 3 digits, where the
first 2 digits denote the intersection of two lines, and the last digit means
the sequential number of intersections between those two lines. For example,
“402” represents the 2nd station of Line 4, and “t131” represents the transfer
station that is the first intersection of lines 1 and 3. In this way, all 118 stations
can be encoded by such identifiers containing the line and station information
literally.

Fig. 9. Map-based visualization of weights of four static adjacency matrices.
(a) Weights of network distance adjacency matrix M1. (b) Weights of POI
correlation adjacency matrix M2. (c) Weights of network structure correlation
adjacency matrix M3. (d) Weights of operational information correlation
adjacency matrix M4.

transfer stations are placed at last. Figures 9(a) and 10(a)
show the network distance adjacency weights, we can see
the nearer the two stations, the weights are higher. For POI
correlation (as shown in Figures 9(b) and 10(b)), the weights
can be interpreted by combining the land use information of
Shenzhen [45]. For network structure correlation (as shown
in Figures 9(c) and 10(c)), we can see the central stations
and corner stations have higher weights, which is reflected
in Figure 10(c) as the blocked distribution because they
have similar network structures. For operational information
correlation, we can see the higher weights are on the edges
between stations in line 4 (as shown in the darkest block of
Figure 10(d)) because line 4 is the busies line with the shortest
headways in Shenzhen metro.

With regards to the dynamic adjacency matrix M5
t , the

recent flow correlation weights will change over time.
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Fig. 10. Heatmap of weights of four static adjacency matrices. (a) Weights
of network distance adjacency matrix. (b)Weights of POI correlation adja-
cency matrix. (c) Weights of network structure correlation adjacency matrix.
(d) Weights of operational information correlation adjacency matrix.

We select the morning peak (7:00∼7:15) and evening peak
(18:00∼18:15) of weekday (2013/09/10 (Tuesday)) and week-
end (2013/09/14 (Saturday)) to visualize the weights (as shown
in Figures 111 and 12). According to Figures 11 and 12,
we can observe that some edges with higher weights are
changing over time, while some edges are always with higher
weights.

Fig. 11. Map-base visualization of weights of dynamic adjacency matrix
during different periods. (a) Weights of recent flow correlation adjacency
matrix during 7:00∼7:15 on 2013/09/10 (Tuesday). (b) Weights of recent flow
correlation adjacency matrix during 18:00∼18:15 on 2013/09/10 (Tuesday).
(c) Weights of recent flow correlation adjacency matrix during 7:00∼7:15
on 2013/09/14 (Saturday). (d) Weights of recent flow correlation adjacency
matrix during 18:00∼18:15 on 2013/09/14 (Saturday).

To better understand the correlation between stations with
higher weights, we visualize the inflow and outflow of two
stations with always higher weights in the recent flow correla-
tion adjacency matrix (as shown in Figure 13). Figure 13 (a),
Figure 13(b), and Figure 13(c) show the inflow and outflow
of Shuanglong v.s. Airport Eastern, Laojie v.s. Guomao, and
Grand Theatre v.s. Guomao, respectively. We can see each pair
of two stations present quite similar patterns of their inflow and
outflow. In this way, we are convinced that the extracted recent
flow correlation adjacency matrix is significant to represent the
inter-station correlation in terms of passenger flow patterns.
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Fig. 12. Heatmaps of weights of dynamic adjacency matrix during different
periods. (a) Weights of recent flow correlation adjacency matrix during
7:00∼7:15 on 2013/09/10 (Tuesday). (b) Weights of recent flow correlation
adjacency matrix during 18:00∼18:15 on 2013/09/10 (Tuesday). (c) Weights
of recent flow correlation adjacency matrix during 7:00∼7:15 on 2013/09/14
(Saturday). (d) Weights of recent flow correlation adjacency matrix during
18:00∼18:15 on 2013/09/14 (Saturday).

2) Performance Analysis on Multi-Graphs: First of all, the
performance of the models with some of different numbers of
alternative combinations of graphs as input was compared (as
shown in Table VI, the results of the models with all possible
combinations of graphs are shown in Table XI in Appendix).

Fig. 13. The inflow and outflow of stations with always higher weights during
2013/09/10∼2013/09/16 in the recent flow correlation matrices. (a) Inflow and
outflow of Shuanlong v.s. Airport Eastern during 2013/09/10 ∼ 2013/09/16.
(b) Inflow and outflow of Laojie v.s. Guomao during 2013/09/10 ∼
2013/09/16. (c) Inflow and outflow of Grand Theatre v.s. Guomao during
2013/09/10 ∼ 2013/09/16.

In addition, in order to see the effect of multigraphs on
extracting multi-aspects of features, we also construct a model
with only graph, i.e., the network distance graph representing
the original topology of the transit network. This model
was denoted by GC-RNN, which was also compared with
MGC-RNN.

According to Table VI, it is found that the best result is
obtained by the MGC-RNN with 3 graphs including M2 POI
correlation graph, M3 network structure correlation graph,
and M5

t recent flow correlation graph as the input, which
performs much better than the model with 2 graphs with-
out network structure (comparing row 5 with row 11 of
Table VI), indicating network structure is very important for
the forecasting. Moreover, the model with 4 graphs (rows
2 and 3 of Table VI)or all 5 graphs (row 1 of Table VI) doesn’t
perform the best, indicating that the model doesn’t perform
better with more features included. Comparing with row 2 and
row 3 in Table V, we may conclude that M2 POI is more
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TABLE VI

THE FORECASTING RESULTS OF MGC-RNN WITH DIFFERENT
ALTERNATIVE COMBINATIONS OF GRAPHS AND

EXOGENOUS FACTORS AS INPUT)

important than M4 operational information in MGC-RNN for
forecasting passenger flow. Moreover, in order to see if the
exogenous factors including day-of-week, holiday information,
hour-of-day, and weather information can help improve the
performance of passenger flow forecasting, we compare the
best MGC-RNN models including 3 graphs (M2,M3,M5

t )
with different combinations of the exogenous factors and
those without exogenous factors (row 5 to row 10). The
results show that just including hour_of_day can improve
the forecasting accuracy, and the other exogenous factors
including holiday, day_of_week, and weather information can-
not help to improve the forecasting accuracy but make the
performance much worse than before, indicating that day-
of-week, holiday information, and weather cannot contribute
to the short-term (15-min) forecasting of Shenzhen metro
passenger flow. In addition, we also compare MGC-RNN with
GC-RNN with M1 and find that using multiple parallel graphs
to extract different types of inter-station correlations has a
better performance than using one single graph to extract all
of the aspects of inter-station correlations excepted for the
network distance graph.

3) Comparison With Other Forecasting Methods: We com-
pare the performance of the MGC-RNN model with the
following baseline methods.

• History Average (HA): which uses the average passen-
ger inflow and outflow during the previous seasons as
the prediction to model the passenger flow as a seasonal
process. In this experiment, we take 63 as the period, i.e.,
1 day. For example, the average inflow during 7:00∼7:15
at station i is estimated by the mean of all historical
inflow on all historical 7:00∼7:15 of previous days

at station i . Through compare 63-order HA with our
MGC-RNN with 63-order differencing, we can know if
the differences trained by our model are more accurate
than directly using historical average data.

• ARIMA: which is trained on each station’s inflow
and outflow respectively. The parameters in ARIMA
are determined based on Bayesian Information Crite-
rion (BIC) [62], Specifically, the parameters are set
as (p, d, q) = (2, 0, 0). To achieve multi-step ahead
forecasting, the recursive multi-step forecast strategy is
adopted (which uses a one-step model multiple times
where the prediction for the prior time step as an input
for predicting the following time step). Besides, since
ARIMA adopts a dynamic training strategy but not
the static training as the regression-based model does,
so the training set continually changes as the fixed-
length training window slides. Therefore, to try to ensure
the fairness of comparison, we have the following two
schemes of training:

a) Train on 3528 steps’ data, and rolling forecast on
4 steps’ data.

b) Train on 16 steps’ data, and rolling forecast on
4 steps’ data.

• Vector Auto-Regressive (VAR): The parameter of VAR,
i.e., the lag order p was determined based on the
Akaike Information Criterion (AIC) [63], and p was set
as 16. VAR is also trained on 3528 steps’ data, and
rolling forecast on 4 steps’ data. The recursive multi-
step forecast strategy is adopted to achieve multi-step
forecasting.

• Least absolute shrinkage and selection operator
(LASSO): which takes 3528 steps’ inflow and outflow
data as the training set to fit the linear regression model
with l1 regularization, and takes the remaining data as
the testing set. We achieve multivariate forecasting by
applying multi-output regression. The recursive multi-
step forecast strategy is also adopted to achieve multi-
step forecasting.

• LSTM_encoder-decoder: to see the effects of multi-
graph convolutions in MGC-RNN, LSTM_encoder-
decoder is compared with MGC-RNN. We also train
it on 3528 steps’ inflow and outflow data, and
test on the remaining data. The hyperparameters of
LSTM_encoder-decoder are: batch_size = 16, epochs =
50, lstm_seq_len = 16, predict_step = 4, No. of encoder
LSTM units = 64, No. of decoder LSTM units = 64,
lr = 0.001.

• CNN-LSTM_encoder-decoder: A popular approach
has been to combine CNNs with LSTMs, where the
CNN is as an encoder to learn features from sub-
sequences of input data which are provided as time
steps to an LSTM. This architecture is called a
CNN-LSTM. Here, we employed CNN-LSTM archi-
tecture to play the encoder and decoder roles, respec-
tively, so we called it as CNN-LSTM_encoder-decoder.
We also train it on 3528 steps’ inflow and outflow data,
and test on the remaining data. The hyperparameters
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TABLE VII

THE FORECASTING RESULTS OF MGC-RNN MODEL
AND OTHER BASELINE METHODS

of CNNLSTM_encoder-decoder are: batch_size = 16,
epochs = 50, lstm_seq_len = 16, predict_step = 4,
No. of Conv1D layer = 2, No. of Conv1D units in
each layer = 64, No. of decoder LSTM units = 200,
lr = 0.001.

• ConvLSTM_encoder-decoder: Unlike the CNN-LSTM
that is interpreting the output from CNN models,
the ConvLSTM is using convolutions directly as part
of reading input into the LSTM units themselves.
Here, we took a 2D ConvLSTM connecting the Flat-
ten layer as the encoder and LSTM as the decoder.
We called it as ConvLSTM_encoder-decoder. We also
train it on 3528 steps’ inflow and outflow data,
and test on the remaining data. The hyperparameters
of ConvLSTM_encoder-decoder are: batch_size = 16,
epochs = 50, lstm_seq_len = 16, predict_step = 4, No.
of ConvLSTM2D layer = 1, No. of ConvLSTM2D units
in each layer = 64, No. of decoder LSTM units = 200,
lr = 0.001.

In the experiment, the input inflow and outflow data fed
into all baselines excepted for HA model, are transformed
by log and differencing transformation, as well as Min-Max
normalization.

Table VII presents the forecasting performance of the
best MGC-RNN model (i.e., with 3 graphs including net-
work distance, network structure, and recent flow correlation
graph, without exogenous factors) with other baseline meth-
ods on passenger flow forecasting, including HA, ARIMA,
VAR. LASSO, LSTM_encoder-decoder, CNNLSTM_encoder-
decoder, and ConvLSTM_encoder-decoder model.

According to Table VII, we can see the best result is
MGC-RNN, and the second-best is LSTM encoder-decoder,
indicating the multi-aspects of inter-station correlations
extracted by multiple graph convolutions can improve the pre-
diction accuracy of short-term forecasting of passenger flow.
Then we can see ARIMA with the training scheme a) performs
much better than the scheme b), indicating the training set size

matters a lot for ARIMA model. CNNLSTM_encoder-decoder
and ConvLSTM_encoder-decoder don’t perform better than
LSTM_encoder-decoder, indicating that 1D convolutional lay-
ers and ConLSTM architecture cannot have a better perfor-
mance than LSTM layers as the encoders. LASSO and VAR
follow and HA performs not well in this study. Since we take
63 as the period when conducting HA, and we take 63-order
differencing before training MGC-RNN, through comparing
63-order HA with our MGC-RNN with 63-order differenc-
ing, we can know if the differences trained by MGC-RNN
model are more accurate than directly using the historical
average data. The comparison between HA and MGC-RNN
showed in Table VII proves that the differences trained by
MGC-RNN indeed work in the forecasting of passenger flow.
Moreover, we can see only ARIMA cannot extract inter-station
correlations.

Also, compared with other related studies on passenger
flow forecasting of Shenzhen metro [64]–[68], our model
outperforms their models in terms of prediction accuracy, for
both single stations and overall network.

a) Fairness of comparison: Furthermore, the fairness of
comparison among forecasting models is discussed. There are
two kinds of training schemes of forecasting models: dynamic
training scheme and static training scheme.

For dynamic training models using the sliding window
strategy, such as the ARIMA and VAR models, the training
set continually changes as the fixed-length training window
slides.

For static training models, they are often regression-based
models, such as linear regression, LASSO, ridge regression,
and deep learning-based models, they have fixed training and
testing sets. The trained model is obtained during a “one-time”
training stage via several epochs and then used to predict all
of the cases in the testing set.

The biggest weakness of static models compared with
dynamic models is that if some stations’ passenger flows
present the opposite scenarios in the training and testing
stages, the static models may have poor forecasting results
for such certain stations, for which the trained static models
do not accurately predict the testing data.

On this basis, we may compare these methods more objec-
tively from the perspective of the training mechanism of these
methods.

4) Discussion on the Performance of Each Prediction Step:
Since we conduct multistep forecasting, we can obtain the
4 steps of predicted results at one time. Here, we randomly
chose several stations in each prediction step to visualize
the prediction results. Besides, according to the number of
passenger flows, we can categorize the stations into busy and
non-busy stations groups (Through analyzing the empirical
cumulative distribution function (CDF), we took 150 as the
boundary, i.e., stations with a maximum passenger flow of less
than 150 are classified as non-busy stations, and vice versa).
Therefore, we can observe the predicted results of randomly
chosen stations at each predicted step. Figure 14 shows four
busy stations’ predicted results at one prediction step by
MGC-RNN with 3 graphs including network distance, network
structure, and recent flow correlation. Figure 15 shows four
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Fig. 14. The predicted results for four randomly chosen busy stations at one
predicted step. (a) Predicted outflow v.s. the true value of Shenzhen University
station at the first forecasting step. (b) Predicted inflow v.s. the true value
of Shenzhen University station at the second forecasting step. (c) Predicted
outflow v.s. the true value of Futian Checkpoint station at the third forecasting
step. (d). Predicted inflow v.s. the true value of Futian station at the fourth
forecasting step.

non-busy stations’ predicted results at one prediction step by
MGC-RNN with 3 graphs including network distance, network
structure, and recent flow correlation.

Through these two figures, we can see our model can cap-
ture the passenger flow patterns accurately no matter of busy
stations or non-busy stations. Even for the sudden extreme
peak such as that at Liyumen station, we can accurately detect
it in advance.

Besides, to observe each-step prediction errors, we choose
one representative of models using recursive multi-step fore-
cast strategy to conduct multi-step forecasts, i.e., ARIMA, and
compare it with MGC-RNN model with 3 graphs including

Fig. 15. The predicted results for four randomly chosen non-busy stations
at one predicted step. (a) Predicted outflow v.s. the true value of Lianhuacun
station at the first forecasting step. (b) Predicted outflow v.s. the true value of
Liuxiandong station at the second forecasting step. (c) Predicted inflow v.s.
the true value of Shenzhen Northern Railway station at the third forecasting
step. (d). Predicted inflow v.s. the true value of Liyumen station at the fourth
forecasting step.

network distance, network structure, and recent flow correla-
tion graph, which uses Seq2seq architecture to achieve multi-
step forecasts. The results of MGC-RNN and ARIMA with
the training scheme a) at each predicted step are shown in
Table VIII.

According to Table VIII, we can see the prediction errors
of ARIMA accumulate as the forecasting step increases, but
errors of MGC-RNN don’t propagate. The error propagation
is not presented by Seq2Seq architecture in our four-step fore-
casting task (not really further-step), indicating the strength of
Seq2Seq architecture compared with the traditional recursive
multi-step forecast strategy in multi-step forecasting.
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TABLE VIII

THE FORECASTING RESULTS OF MGC-RNN WITH 3 GRAPHS AND
ARIMA WITH THE TRAINING SCHEME A) AT EACH PREDICTION STEP

V. CONCLUSION

In this paper, we propose a novel deep learning approach,
named Multi-Graph Convolutional-Recurrent Neural Network
(MGC-RNN), to consider spatiotemporal dependencies and
the complex inter-station correlations measured by static and
dynamic factors simultaneously in the short-term forecasting
of passenger flow. Specifically, we generate multiple graphs
(including static and dynamic) to represent the inter-station
correlations driven by different factors, respectively. Then we
apply multiple GCNs to extract each graph’s correlation infor-
mation and then weighted-fuse all the extracted information.
With regards to the temporal dependencies, one of Seq2Seq
architecture, LSTM_encoder-decoder was employed to extract
temporal dependencies and achieve the multi-step forecasting.
Furthermore, MGC-RNN can also include exogenous factors
such as national public holidays, and the information of day-
of-week by processing through embedding and F-C layers.

MGC-RNN is validated on a real-world dataset, the Shen-
zhen metro smart card data collected from AFC system. Our
model is also compared with several benchmark algorithms,
including the traditional time series methods such as HA,
ARIMA, VAR, machine learning methods, LASSO, and the
popular used forecasting neural network, LSTM_encoder-
decoder. The results show that the MGC-RNN outperforms
the benchmark algorithms in the measurements of RMSE,
MAE, and sMAPE significantly, indicating that the proposed
approach performs better at capturing the complex inter-
station correlations and temporal dependencies for passen-
ger inflow and outflow forecasting of all stations together.
In the experiment, we found that the inter-station driven by
network distance, network structure, and recent flow patterns
are significant factors for passenger flow forecasting. Exoge-
nous factors including day-of-week and holiday information
cannot help to improve the prediction accuracy. Besides, the
architecture of LSTM-encoder-decoder can not only capture
the temporal dependencies well but also make predictions at
each predicted step accurately. The error propagation doesn’t
present in our model for the four-step forecasting, indicat-
ing the strength of Seq2Seq architecture compared with the
traditional recursive multi-step forecast strategy in multi-step
forecasting.

TABLE IX

THE FORECASTING RESULTS OF MGC-RNN WITH ALL ALTERNATIVE
COMBINATIONS OF GRAPHS AS INPUT

Above all, our proposed deep learning framework has pre-
sented the capability of short-term passenger flow forecasting
multi-step ahead with high accuracy. Moreover, the proposed
model structure is expected to be flexible enough to han-
dle several similar spatiotemporal forecast tasks, e.g., traffic
state forecasting in other transportation systems, infectious
disease forecasting, and weather conditions forecasting, etc.
In practical scenarios, the proposed framework could provide
multiple views of passenger flow dynamics for fine prediction.
Specifically, by incorporating various types of inter-station
correlations, temporal dependencies, and exogenous factors,
the framework exhibits a possibility for multi-source hetero-
geneous data fusion in a big data environment. With the
accurate passenger inflow and outflow in the immediate future
forecasted through our proposed framework, it is possible for
transit operators to be aware of an emergency (an influx of
passengers) and implement emergency preparedness plans in
advance, optimize service schedules, and enhance station pas-
senger crowd regulation planning. For passengers, an accurate
short-term forecast of passenger flow information can help
them to adjust their travel paths, modes, and departure times
flexibly and rationally. Thus, systematic objectives related to
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safety, high efficiency, and service quality can be achieved.
In the future, we will try to find some more exogenous factors
in the model to help to capture the abnormal patterns of
passenger flow. More work will be done on the passenger flow
forecasting under uncertainties.

APPENDIX

See Table IX.
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