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Environmental Impacts Cost Assessment Model of Residential 1 

Building Using an Artificial Neural Network 2 

Abstract 3 

Purpose- Buildings are major contributors to greenhouse gases (GHG) along the various 4 

stages of the building life cycle. A range of tools have been utilised for estimating 5 

building energy use and environmental impacts; these are time-consuming and require 6 

massive data that are not necessarily available during early design stages. Therefore, this 7 

study aimed to develop an Environmental Impacts Cost Assessment Model (EICAM), 8 

that quantifies both energy and environmental costs for residential buildings.  9 

Design/methodology/approach- An Artificial Neural Network (ANN) was employed to 10 

develop the EICAM. The model consists of six input parameters including wall type, roof 11 

type, glazing type, window to wall ratio (WWR), shading device and building orientation. 12 

In addition, the model calculates four measures: annual energy cost, operational carbon 13 

over 20 years, envelope embodied carbon and total carbon per square metre. The ANN 14 

architecture is 6:13:4:4, where the conjugate gradient algorithm was applied to train the 15 

model and minimise the mean squared error (MSE). Furthermore, regression analysis for 16 

the ANN prediction for each output was performed. 17 

Findings- The MSE was minimised to 0.016 while training the model. Also, the 18 

correlation between each ANN output and the actual output was very strong, with an R2 19 

value for each output of almost 0.998. Moreover, validation was conducted for each 20 

output, with the error percentages calculated at 0.26%, 0.25%, 0.03% and 0.27% for the 21 

annual energy cost, operational carbon, envelope materials embodied carbon and total 22 

carbon per square metre respectively. Accordingly, the EICAM contributes to enhancing 23 
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design decision-making concerning energy consumption and carbon emissions in early 1 

design stages. 2 

Research limitations/implications – This study provides theoretical implications to the 3 

domain of building environmental impact assessment, through illustrating a systematic 4 

approach for developing an energy-based prediction model that generates four 5 

environmental-oriented outputs namely: energy cost, operational energy carbon, 6 

envelope embodied carbon, and total carbon. The model developed has practical 7 

implications for the architectural/engineering (A/E) industries, through providing a useful 8 

tool to easily predict environmental impact costs during the early design phase. This 9 

would enable designers in Saudi Arabia to make effective design decisions that would 10 

increase sustainability in the building life cycle. 11 

Originality- This study endeavours to bridge the gap between energy costs and 12 

environmental impacts in a predictive model for Saudi residential units by providing a 13 

holistic predictive model entitled EICAM. The novelty of this model is that it is an 14 

alternative tool that quantifies both energy cost as well as building’s environmental 15 

impact in one model by using a machine learning approach. Besides, EICAM predicts its 16 

outcomes more quickly than conventional tools such as DesignBuilder, and is reliable for 17 

predicting accurate environmental impact costs during early design stages. 18 

Keywords- Artificial Neural Networks, building envelope, embodied carbon, energy 19 

cost, operational carbon 20 

1. Introduction 21 

Buildings have a significant impact on the natural environment and they account for a 22 

significant proportion of global warming due to greenhouse gas (GHG) emissions 23 

(Alrashed and Asif, 2014; Ingrao et al., 2018).  It has been reported that the built 24 
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environment consumes 40% of worldwide energy and is responsible for one-third of the 1 

GHGs which cause carbon emissions (Ching and Shapiro, 2014; Lu et al., 2020). In Saudi 2 

Arabia, buildings consume about 80% of total electrical energy at the national level 3 

during the operational phase. The residential sector accounts for half of the total electrical 4 

energy consumed in the building sector (Al-Ghamdi and Alshaibani, 2018). The 5 

Electricity and Cogeneration Regulatory Authority (ECRA) has reported that 70% of 6 

electrical energy is consumed for cooling the residential buildings (SEEC, 2018). 7 

Additionally, around 71% of Saudi houses lack thermal insulation, which leads to low 8 

energy efficiency performance (AlFaraidy and Azzam, 2019). The architectural design 9 

process is a fundamental phase where early design decisions play a vital role in a 10 

building’s environmental impact and energy performance. Therefore, researchers have 11 

highlighted the significance of forecasting building energy consumption and 12 

environmental impacts during the early architectural design phase (Asadi, Amiri, et al., 13 

2014; Basbagill et al., 2013; Russell-Smith et al., 2015; Schwartz et al., 2016). There are 14 

various building energy simulation tools that are utilised for estimating the amount of 15 

building energy use. These tools provide reliable solutions for forecasting the impact of 16 

different design alternatives (Tsanas and Xifara, 2012). However, previous studies have 17 

revealed that buildings’ environmental impacts are not widely quantified during the early 18 

design stage. This is because conducting life cycle assessment (LCA) and running energy 19 

simulation, can be challenging, time-consuming and requiring user-expertise to run such 20 

tools. Besides, there is a lack of required data during early design stages and design 21 

changes often occur during the conceptual design stage (Attia et al., 2013; Han et al., 22 

2018; Østergård et al., 2016; Russell-Smith et al., 2015). An artificial neural network 23 

(ANN) can be applied for predicting building energy use, which its advantages over 24 

energy simulation tools include simplicity and the fast speed of calculations (Tsanas and 25 
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Xifara, 2012; Turhan et al., 2014). This study aimed to develop a simplified model titled 1 

Environmental Impact Cost Assessment Model (EICAM). It is utilised for estimating the 2 

operational energy cost, operational carbon, building envelope embodied carbon and total 3 

carbon per square metre. The EICAM supports early design decisions by selecting the 4 

desired building envelope combination. This was achieved by creating the model’s data 5 

set spreadsheet and developing an ANN-based model for establishing the EICAM. 6 

2. Previous Studies 7 

The concept of predictive models has evolved rapidly in the fields of architectural and 8 

construction management. Previous studies have shed light on developing models for 9 

assessing building energy, environmental impacts and labour productivity (Graupe, 2007; 10 

Ma et al., 2019; Nasirzadeh et al., 2020). Various studies have highlighted the 11 

significance of developing ANN models as a decision support system to assess different 12 

aspects related to architectural design decisions. For instance, an ANN has been utilised 13 

for forecasting building energy based on the amount of daylight, which was developed 14 

by performing daylighting and energy simulations. The study found that the ANN model 15 

provided accurate results due to its high correlation values and low mean squared error 16 

(MSE) (Walger et al., 2013). Another study applied ANN to predict operational energy, 17 

global warming, acidification, ozone depletion, eutrophication, and smog formation 18 

(Azari et al., 2016). In addition, ANN can be integrated with building information 19 

modelling (BIM). Ma et al. (2019) developed a BIM and ANN-based system for 20 

evaluating individual thermal comfort. This system is a plugin within the Revit package 21 

incorporating the C# programming language. The plugin uses the ANN model for 22 

estimating the personal thermal comfort evaluation (Ma et al., 2019). Moreover, an ANN 23 

was developed as an “Energy Cost Prediction Model” that incorporates three-dimensional 24 

(3D) BIM, which predicts annual energy costs for Saudi residential buildings. This model 25 
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was based on 185 data sets of existing houses in six cities in the eastern region of Saudi 1 

Arabi. Furthermore, the study affirmed that the model does not require a professional user 2 

to run it. It was also recommended that other effective factors such as roof type and 3 

building orientation be adopted (Alshibani and Alshamrani, 2017). This study is limited 4 

to estimating energy costs, disregarding environmental impacts such as embodied and 5 

operational carbon. 6 

In comparison, a comprehensive predictive model has been developed that forecasts both 7 

energy and environmental building performance, which aims to support decisions during 8 

the design phase. It consists of 29 inputs and generates seven outputs, including heating 9 

demand, and six environmental impacts categories. This model can be utilised by non-10 

expert users in LCA or building energy modelling (Amico et al., 2019). Another study 11 

developed a model that links Simulation-Based Multi-Objective Optimization (SBMO) 12 

with ANN. It aims to provide a comprehensive prediction of total energy consumption, 13 

Life Cycle Costing (LCC) and LCA for various renovation scenarios and aiding in 14 

selecting optimum scenarios. The application of this model is less time-consuming than 15 

using building energy simulation (Amirhosain and Hammad, 2019). 16 

Environmental impact cost, also known as eco-cost, cover three impact types, emissions, 17 

energy and transportation. It also refers to the impact value of pollution generated through 18 

consumption actions on the environment. Adding to that, it is utilised for assessing 19 

environmental aspects to mitigate the ecological impacts of such activities (Baeza-20 

Brotons et al., 2014; Wang et al., 2020). To date, there are insufficient studies that have 21 

considered the quantification of environmental impact costs in predictive models. These 22 

previous studies on the applications of ANN in the building industry have contributed to 23 

reducing the time consumed in performing building energy simulation modelling as well 24 

as forecasting building environmental impacts. ANN models have the potential to be 25 
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integrated during the early design phase, which assists building designers in decision-1 

making and management. None of the studies described above provided a holistic 2 

predictive model that quantifies both energy and environmental cost for residential 3 

buildings in Saudi Arabia. Therefore, this study attempts to bridge the gap between energy 4 

cost and environmental impacts in a novel predictive mode entitled EICAM. This model 5 

is a robust tool that quantifies carbon emissions and energy costs quickly which has the 6 

potential to be utilised easily during early design stage. 7 

3. Methodology 8 

In accordance with previous studies, ANN datasets are developed using existing data or 9 

based on performing simulations. In this methodology section, as illustrated in Figure 1, 10 

the process of developing EICAM is divided into two main parts; data sets development 11 

and modelling approach (These processes are explained in the following subsections). 12 
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 1 

Figure 1. EICAM development process 2 
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3.1 Data sets development 1 

The EICAM’s data sets, which are formed in an Excel spreadsheet, are based on 2 

energy simulations. This spreadsheet includes a wide range of design combinations of 3 

input parameters and their output variables, and is presented in Appendix I. The outline 4 

of the data set’s spreadsheet consists of 10 main columns, where the first six columns are 5 

referred to as the model’s six input parameters, and the last four columns represent the 6 

four model outputs. The spreadsheet’s rows identify each building envelope design 7 

combination. The EICAM input parameters include wall type, roof type, glazing type, 8 

window to wall ratio, shading devices, and building orientation. These parameters were 9 

chosen due to their vital role in building cooling loads as well as their environmental 10 

impacts. Also, they are the basic design parameters that are significant in early design 11 

phase decisions. The four model outputs are energy cost, operational carbon, envelope 12 

embodied carbon, and total carbon per square metre. The value of each output variable is 13 

influenced by the determined combination of the input parameters. 14 

In this study, Riyadh city, (24.70° N Latitude, 46.73° E Longitude and 620 m above sea 15 

level), is chosen as the base case model’s location for several reasons: (1) Riyadh is the 16 

capital city of Saudi Arabia as well as the largest city in the country, (2) Riyadh is 17 

developing rapidly, and (3) Riyadh’s population has increased dramatically from 5.2 to 18 

7.23 million between 2010 and 2020, which will increase the demand for housing 19 

(Alqahtany, 2020). Riyadh is categorised under climate zone 1 according to the Saudi 20 

Energy Conservation Code for a low-rise residential building (SBC 602). Also, Riyadh is 21 

an extremely hot region with maximum Dry Bulb of 47.2°C, and Cooling Degree Day 10 22 

around 6107 (SBCNC, 2018). The SBC 602 is based on the International Energy 23 

Conservation Code (IECC) and the American Society of Heating Refrigerating and Air-24 

Conditioning Engineers (ASHRAE) (Alfaraidy and Sulieman, 2019). Accordingly, the 25 
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EICAM input parameters comply with SBC 602 requirements. Table I identifies the six 1 

input parameters with their categorised choices, where each is encoded by a numerical 2 

value. This table is used for creating the possible design combinations of the base case 3 

model that are generated in Appendix I. 4 

Table I. Model inputs variables with their specification and code 5 

Input Description Specification Code 

1. Wall type Thermal block wall with expanded polystyrene 

insulation 

U
-f

a
ct

o
r:

 W
/ 

m
2
. 

k
 

0.20 1 

Efficient block wall with marble  0.24 2 

Thermal block wall with polyurethane insulation 0.31 3 

External Insulation and Finish System  0.33 4 

2. Roof type Green roof 0.19 1 

Siporex light concrete Tiles 0.18 2 

Reinforced Concrete Insulated slab 0.20 3 

3. Glazing 

type 

6 mm doubled low-e glazing with 12 mm air gap  1.65 1 

6 mm doubled bronze tint glazing with 12 mm air 2.16 2 

6 mm doubled low-e clear glazing with 12 mm 

argon gas 

1.52 3 

6 mm doubled low-e tint glazing with 12 mm 

argon gas 

1.16 4 

4. Window to 

wall ratio 

10% - 10 

20% - 20 

25% - 25 

5. Shading 

device 

Overhang\ Vertical- shading device -50 cm projection 

-Overhang applied for 

South, while vertical 

side fins applied for 

East and West 

windows 

1 

Louver shading device -15 cm projection from 

window 

-5 blades 

-35 cm vertical spacing 

-300 angles 

-25 cm blade depth 

-Applied in all 

windows except the 

north 

2 

6. Building 

orientation 

(Main elevation 

faces direction) 

East  - 0 

South - 90 

West - 180 

North - 270 

A typical Saudi house is selected as the base case model for this study, which was 6 

developed by the Ministry of Housing. There are 500,000 units of this prototype that are 7 

established or to be built among the main cities in Saudi Arabia (Lasker, 2016; Ministry 8 
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of Housing, 2019). Table II demonstrates the typical Saudi house characteristics, which 1 

follow the minimum SBC 602 requirements. 2 

Table II. Characteristics and specifications of typical Saudi house -base case model 3 

Weather File SAU_RIYADH.404380_IWEC 

Orientation  Front elevation facing the East 

Geometry Number of stories 2 

Total gross built are 375 m2 

Total gross floor area 230 m2 

Ground floor area 194 m2 

First floor area 90 m2 

Plan proportion 6:7 

Height 6.7 m 

Gross wall area  318 m2 

Glazing area  15 m2 

WWR 5% 

External Wall 

Construction 

Layers:15 mm cement plaster, 100 mm concrete block, 90 

polystyrene, 100 mm concrete block, 15 mm cement plaster 

U-value 0.34 w / m2. K 

Roof Construction Layers: 20 mm Ceramic tile, 20 mm mortar, 10 mm sand, 100 mm 

polyurethane, 4 mm bitumen felt, 200 mm concrete slab, 15 mm 

cement plaster 

U-value 0.21 w / m2. K 

Glazing Type Double clear glazing (6 mm glass, 12 mm air gap, 6 mm glass) 

U-value 2.6 w / m2. K 

Air Leakage 1.5 L/ s / m2, 0.75 ach 

External shading devices Overhanded 30 cm 

Occupants Numbers 6 (2 adults+ 4 children) 

Lighting Lighting Display Density 7.3 kW/ m2 

Target Illuminance 150 lux 

HVAC System Package terminal air conditioner (DX system) CoP: 2.5 

Heating  21.1 0C 

Heating setback 18.1 0C 

Cooling 23.9 0C 

Cooling setback 27.9 0C 

Humidification setpoint 30 % 

Dehumidification setpoint  50 % 

Under this base case model, the design combinations of the model input parameters are 4 

generated, as they are implemented in Appendix I.  5 

The DesignBuilder simulation tool has a graphical user interface (GUI) and uses the latest 6 

version of EnergyPlus as a dynamic simulation engine for energy calculations (Abdul and 7 

Budaiwi, 2015; AlHashmi et al., 2017). It is utilised in this study as it is an easy-to-use 8 

interface that enables quantifying building energy performance using advanced tools for 9 

3D modelling (DesignBuilder, 2019a; IBPSA-USA, 2019). It also quantifies the 10 
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embodied carbon of building materials (AlHashmi et al., 2017). The carbon data are 1 

obtained from the Inventory of Carbon Energy (ICE) database developed by the 2 

University of Bath (DesignBuilder, 2019b; Kumanayake and Luo, 2017). The EICAM 3 

outputs play a vital role in predicting the environmental impact costs, which are calculated 4 

as follows: 5 

(1) Energy cost  6 

Considering the energy cost in the early design process is essential in order to select the 7 

optimum design alternatives that mitigate the amount of operational energy costs 8 

(Alshibani and Alshamrani, 2017). The energy costs are obtained by multiplying the value 9 

of energy use by the related costs (Mora et al., 2018). The energy cost of each kWh is 10 

0.18 SAR (around 0.048 USD) for Saudi residential units, provided the energy does not 11 

exceed 6000 kWh per month (Saudi Electricity Company, 2018). Accordingly, the energy 12 

cost is considered in EICAM and is calculated as equation (1). 13 

EC = OE × AC  (1) 14 

Where,  15 

EC= Energy cost (SAR) 16 

OE= Operational energy -annual cooling load- generated by DesignBuilder (kWh) 17 

AC= actual energy cost per kWh (SAR) 18 

(2) Operational energy carbon 19 

The operational energy carbon is emitted during the building operational stage, and it is 20 

the highest amount of the total carbon footprint along the building lifetime (Iddon and 21 

Firth, 2013; Monahan and Powell, 2011). The carbon factor for electrical energy in Saudi 22 

Arabia is 0.757 kgCO2/kWh (Krarti et al., 2017). Based on the “Demography Survey 23 

2016” issued by the General Authority for Statistics, most of Saudi houses in Riyadh City 24 
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have a life span of 20 years (General Authority for Statistics, 2016). Consequently, the 1 

operational energy carbon is quantified in equation (2). 2 

 OECO2 = OE × CF × A (2) 3 

Where, 4 

OECO2= Operational Energy carbon emissions (kgCO2) 5 

OE= Operational energy generated by DesignBuilder (kWh) 6 

CF= Carbon factor (kgCO2/kWh) 7 

A= Approximate age 8 

(3) Envelope Embodied Carbon 9 

The embodied carbon includes the sum of carbon emissions resulting from energy that is 10 

consumed during life cycle of all the materials life cycle starting from harvesting to 11 

disposal (Ching and Shapiro, 2014). In this study, the embodied carbon was quantified 12 

based on the ICE database, which provides equivalent carbon (kgCO2) for material 13 

manufacturing processes (DesignBuilder, 2019b). In this study, the materials are limited 14 

to the external walls, roof type, glazing type, and shading device materials. 15 

(4) Total Carbon Emissions 16 

The total carbon emissions are the sum of the operational carbon and embodied carbon, 17 

divided by the building area. The total carbon emissions per square metre (CO2/m2) were 18 

calculated in equation (3). 19 

Total CO2/m2 = (OECO2 + ECO2) ÷ Building Area (3) 20 

Where,  21 

OE CO2= Operational carbon (kgCO2)  22 

E CO2= Embodied (envelope materials) carbon emissions (kgCO2) 23 

3.2 Modelling Approach 24 

There are various ANNs approaches that are used widely for developing predictive 25 

models, such as multi-layer feed-forward, general regression, recurrent, group method of 26 
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data handling, auto regressive with an exogenous inputs, and radial basis function neural 1 

networks (Reza et al., 2019). The feed-forward neural network is considered the simplest 2 

and most prominent type of network (Asadi, Silva, et al., 2014; Hee et al., 2017; Tso and 3 

Yau, 2007). It consists of three main layers: input, hidden and output layers (He and Xu, 4 

2009). Each layer comprises several neurons that are connected by mathematical 5 

processing, where neurons receive an input signal (x). Each input neuron is associated 6 

with a corresponding weight value (w). The sum obtained by multiplying the input value 7 

and its weight is added to the (b) value, which is called bias; this factor is associated with 8 

information storage (Kim, 2017). The network’s neurons are connected in a single 9 

direction. It is commonly organised in a layered form where there are no connections 10 

between neurons located in the same layer, but each neuron is connected to another 11 

neuron in its neighbouring forwarding layer (Du and Swamy, 2019).  12 

Figure 2 represents the computational flow chart of EICAM, where a feed-forward neural 13 

network is applied to develop the model in this study. 14 
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 1 

Figure 2. EICAM computational flow chart 2 

3.2.1 ANN Architecture 3 

“Neural Designer” software was utilised in this study for developing EICAM. It 4 

implements neural network algorithms that allow predictive models to be built. Its user 5 

interface guides the model builder through a sequence of well-defined stages to simplify 6 

data entry. It comprises five sequential phases: data set, neural network, training strategy, 7 

model selection, and testing analysis (Neural Designer, 2019a). 8 

EICAM’s input layer consists of six neurons, while the output layer (target) comprises 9 

four neurons. The neurons in the hidden layer are calculated by equation (4) (Biswas et 10 

al., 2016; Moon, 2009). 11 
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nh = (2 × ni) + 1 (4) 1 

Where,  2 

nh = number of hidden neurons 3 

ni = number of input neurons 4 

Accordingly, the hidden layer comprises 13 neurons, where Figure 3 illustrates the 5 

architecture of EICAM, which is 6:13:4:4. 6 

 7 

Figure 3. Artificial Neural Network architecture for developing EICAM 8 

The minimum number of required data sets to establish the ANN model is 64, as 9 

calculated by equation (5) (Biswas et al., 2016; Moon, 2009). 10 

nd = (nh − ( 
ni+n0

2
))

2

 (5) 11 

Where, 12 

 nd = minimum data sets number 13 

 nh = number of hidden neurons 14 



16 

 

 ni = the input neuron numbers 1 

 n0 = number of output neurons. 2 

In this study, 201 data sets, gathered in an Excel spreadsheet, were implemented in Neural 3 

Designer software in the first step “Data set”. The data sets were divided into three main 4 

categories, of which 70% used for training, 15% were used for testing and 15% were used 5 

only for validation. Table III includes the statistical analysis of the model data sets 6 

including maximum, minimum, mean and standard deviation for both input and output 7 

variables. 8 

Table III. Statistical analysis of model data 9 

 Maximum Minimum Mean Slandered deviation  

In
p

u
ts

 

Wall Type 1 4 - - 

Roof Type 1 3 - - 

Glazing Type 1 4 - - 

WWR 10 25 19.63 6.67 

Shading Device 1 2 - - 

Building Orientation 0 270 110.15 102.80 

O
u

tp
u

ts
 

Annual Energy cost 2617 4096 3289.86 369.02 

Operational Energy Carbon  220181 344556 276713.40 31038.53 

Envelope Embodied Carbon 20056 32538 26484.19 3486.18 

Total Carbon per square metre  1024 1530 1263.32 129.26 

3.2.2 The ANN Activation Functions 10 

The neural network creates a function which, when given inputs, produces outputs. In 11 

general, the approximation of the function depends on the input domain as well as the 12 

repetition of applying training data (Taylor, 2006). The hidden layer is where the sums of 13 

the weighted inputs are stored, and the output layer results from the transformation of the 14 

total weighted inputs by using an activation function (Kim, 2017). The weighted sum is 15 

calculated according to mathematical equation (6) (Zhang, 2010). 16 

V = ∑ W1i. Xi + b (6) 17 
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Where, 1 

 v= weighted sum  2 

W1i = connection weight of input neuron i that targets neuron 1 3 

i = 1, 2, ..., n,  4 

b = bias that is a real number 5 

Each input signal from the input layer is multiplied by the weight before it reaches the 6 

node in the hidden layer, and the sum of the weighted signals are stored at the node  (Kim, 7 

2017). The network output is defined by the activation function (f) according to the 8 

weighted sum (v), which is usually a non-linear function (He and Xu, 2009). The 9 

following equation, (7), represents the activation function’s general formula. 10 

yi = 𝑓(𝑣) (7) 11 

Where, 12 

 yi= output of neuron 13 

 f= activation (response) function 14 

v= weighted sum 15 

The most commonly applied activation functions are sigmoidal functions such as the 16 

hyperbolic tangent function and logistic function (Du and Swamy, 2019; Kim, 2017). The 17 

activation function for the hidden neurons in developing EICAM is followed by the 18 

logistic function, as formulated in equation (8), where its outputs always have positive 19 

values (Enquist and Ghirlanda, 2013).  20 

a =
1

1+ e−v (8) 21 

3.2.3 ANN Training (Learning) Methods 22 

“Learning Algorithm” refers to the procedure utilised for conducting the training process. 23 

The main function of the learning algorithm is to obtain the desired output objective by 24 

modifying the network weights in an orderly fashion (Kialashaki, 2014). These 25 

algorithms are gradually mitigate the approximation error (He and Xu, 2009). In this 26 
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study,  the mean squared error (MSE) in equation (9) was utilised to calculate the model 1 

error (Azari et al., 2016). 2 

E =
1

N
 ×  (∑ yi − yt

N
i=1 )

2
 (9) 3 

Where,  4 

E = error value  5 

N = training data number 6 

yi = ANN output  7 

yt = target values 8 

There is a wide range of learning algorithms for feed-forward ANN, where the 9 

Backpropagation (BP) algorithm and its diverse methods are applied effectively (He and 10 

Xu, 2009). The most common training algorithms in building energy analysis are 11 

Steepest/ Gradient Descent (GD), Conjugate Gradient (CG), Newton’s Method (NM) and 12 

Levenberg-Marquardt (LM) (Mohandes et al., 2019). The CG algorithm is a common 13 

substitute for BP (Du and Swamy, 2019), which was used for training the EICAM. 14 

4. Results 15 

4.1 Model Training 16 

The loss index plays a vital role in training the neural network, as it provides a measure 17 

of the neural network accuracy that is required for the training process. The error is the 18 

most essential term in the loss expression, as it calculates how the neural network fits the 19 

training instances to the data sets (Neural Designer, 2019b). In this regard, MSE was used 20 

for calculating the error values by quantifying the average squared error between the 21 

model output and the output target in the actual data sets. The initial value of the training 22 

error was 80.52 and the initial selection error was 81.70. Since the accuracy of error 23 

minimisation, as well as the speed of model training, are significant in acquiring a reliable 24 
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model, an optimisation algorithm (CG) was employed for minimising the error through 1 

an iteration (epochs) process. The training and selection errors were minimised through 2 

735 iterations to 0.0162 and 0.00659 respectively. 3 

4.2 ANN Testing 4 

Linear regression analysis is a statistical tool that is applied for evaluating the 5 

performance of ANN model output (Amico et al., 2019; Ascione et al., 2017). The 6 

coefficient of determination value, known as R2, indicates the correlation between the 7 

actual output value and the model output value. When R2 is close to 1, it indicates optimal 8 

correlation, where the actual and model outputs are close (Alqahtani and Whyte, 2013; 9 

Alshibani and Alshamrani, 2017). In this study, four regression analyses, illustrated in 10 

Figure 4, were carried out to test the correlation between each EICAM output variable 11 

and its actual target value. In the energy cost linear regression, the y-intercept is 54.6 and 12 

the slope is 0.981; chart (A) shows that the correlation between the actual and predicted 13 

energy cost is high, where R2 is 0.993. In the operational carbon linear regression, the y-14 

intercept is 5920.14 and the slope is 0.981; chart (B) shows that the correlation between 15 

the actual and predicted carbon is high, where R2 is 0.993. For the envelope embodied 16 

carbon linear regression, the y-intercept is 575 and the slope is 0.976; chart (C) illustrates 17 

a strong correlation between actual and predicted envelope embodied carbon, with a R2 18 

value of 0.998. In the total carbon per square metre linear regression, the y-intercept is 19 

21.3 and the slope is 0.981. Chart (D) indicates a high correlation, where the R2 value is 20 

0.993. 21 
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 1 

Figure 4. Correlation between real outputs and predicted outputs of EICAM 2 

4.3 Model Validation 3 

“Neural Designer” software provides a tab “Model deployment”, which refers to utilising 4 

the developed model for predicting any new input; consequently, it will generate a report 5 

of outputs. Based on this, a set of combinations of input variables in the data set was 6 

implemented in “Model deployment” tab to calculate the four model outputs. Each of the 7 

output variables obtained from EICAM was compared to the actual values in the data sets. 8 

Furthermore, the error percentage of each model output was calculated to ensure the 9 

accuracy of EICAM.  includes four graphs validating EICAM performance. Each graph 10 

represents a comparison between the output values obtained from ANN and actual values 11 

in the data sets. Firstly, graph (A) illustrates the comparison of energy cost values, where 12 

error percentage is 0.26%. Secondly, graph (B) shows the difference between operational 13 

carbon values, where error percentage is 0.25%. Thirdly, graph (C) clarifies the 14 
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comparison of envelope embodied carb values, where error percentage is 0.03%. 1 

Fourthly, graph (D) demonstrates the comparison of total carbon per square metre values, 2 

where error percentage is 0.27%. 3 

 4 

Figure 5. EICAM validation 5 

5. Discussion 6 

According to the training process, the MSE initiated value was 80.52, then after 735 7 

iterations using CG it was minimised to 0.016, which is near zero. This indicates that 8 

EICAM properly predicted the data behaviour. Regarding the testing phase, linear 9 

regression provided the correlation of each EICAM’s output, where the R2 values were 10 

equal to approximately one (ranging from 0.993 to 0.998). These results ensure the 11 

reliability of EICAM. Moreover, the performance of EICAM was further checked 12 

through conducting a comparison between the obtained output values by ANN and the 13 

actual dataset, which revealed that the error percentage of each predicted output was less 14 

than 1 percent. Furthermore, a new input combination that was not used in the data sets 15 
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was examined. These input data were implemented in both tools, EICAM and 1 

DesignBuilder. Figure 6 demonstrates the EICAM deployment window, where each 2 

input value is determined; accordingly, the outputs are calculated.  3 

 4 

Figure 6. EICAM deployment window for validation 5 

Figure 7 shows the results of each of the four outputs generated by both tools in bar chart 6 

format. The results are almost the same. Hence, the performance of EICAM for the new 7 

combination is accepted as providing validation, and accurate results for any new inputs 8 

not included in the model’s original data sets.  9 

 10 

Figure 7. EICAM performance for further validation 11 
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Without doubt DesignBuilder is a reliable tool that performs energy simulations, carbon 1 

emissions calculations, and evaluates energy costs (Alhuwayil et al., 2019; Cho et al., 2 

2019). The advantage of EICAM over DesignBuilder is that it estimates the 3 

environmental impact costs quickly and accurately without developing a 3D model of the 4 

building during early design decisions. Besides, EICAM’s user doesn’t require 5 

experience to run the model. Hence, the developed model can be used by the A/E industry 6 

as well as building owners and real-estate developers to forecast environmental impact 7 

costs. 8 

6. Conclusion 9 

This study provides theoretical contributions to the field of building environmental 10 

impact assessment, by representing a systematic approach for developing an energy-11 

based prediction model (EICAM) that estimates four environmental-oriented outputs 12 

namely: energy cost, operational energy carbon, envelope embodied carbon, and total 13 

carbon emissions. EICAM contributes practical implications to the A/E industry by 14 

providing a decision support tool for easily predicting the environmental impact costs 15 

during the early design stage. This would enable the designers to evaluate different design 16 

alternatives with effective design decisions that would fulfill sustainability requirements. 17 

EICAM was developed in this paper through two main procedures; data sets and ANN 18 

modelling. The data sets were developed through conducting energy simulation and 19 

carbon calculations, including 201 combinations organised in a spreadsheet. Every 20 

combination was defined by six input variables, and its four model outputs. The data sets 21 

were implemented into ANN to develop the model. Accordingly, EICAM evolved 22 

through three main steps; training, testing, and validation. The results revealed that 23 

deploying EICAM is easy and fast, compared to the time required by other building 24 

energy modelling methods for calculating all four output variables with valid results. 25 
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Hence, it is recommended that architectural firms adopt the use of EICAM during the 1 

early design phase of residential units to select the desired building envelope, regarding 2 

environmental impact costs. 3 

However, aesthetic factors are not considered as EICAM is limited to being utilised 4 

during the schematic design phase. Accordingly, for future research work, it is 5 

recommended that a wider range of detailed model inputs, such as building area, location, 6 

and interior finishes, continue to be considered. Choices of input variables, such as wall 7 

types, can include wall assemblies from the field. In addition, model output categories 8 

could be expanded to include additional output variables such as the total operational 9 

carbon resulting from lighting loads and heating loads. When considering the embodied 10 

carbon in materials, construction and demolition phases should be accounted for. 11 

Appendix I. Model data sets 12 
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1  1   1  1  25  1  -    3,628  305,162  23,348  1,369  

2  1  2  1  25  1  -    3,663  308,129  21,206  1,372  

3  1  3  1  25  - -    3,676  309,219  25,064  1,393  

4  1  1  2  25  1  -    3,833  322,376  23,294  1,440  

5  1  1  3  25  1  -    3,684  309,855  23,348  1,388  

6  1  1  4  25  1  -    3,381  284,359  23,348  1,282  

7  1  1  1  20  1  -    3,361  282,709  22,972  1,274  

8  1  1  1  10  1  -    2,832  238,167  22,219  1,085  

9  1  1  1  25  1  90  3,598  302,618  23,355  1,358  

10  1  2  1  25  1  90  3,632  305,480  21,213  1,361  

11  1  3  1  25  1  90  3,646  306,630  25,070  1,382  

12  1  1  2  25  1  90  3,810  320,499  23,301  1,432  

13  1  1  3  25  1  90  3,656  307,509  23,355  1,379  

14  1  1  4  25  1  90  3,368  283,285  23,355  1,278  

15  1  1  1  10  1  90  2,826  237,713  22,222  1,083  

16  1  2  2  25  1  -    3,861  324,753  21,152  1,441  

17  1  2  3  25  1  -    3,713  312,323  21,206  1,390  

18  1  2  4  25  1  -    3,399  285,934  21,206  1,280  

19  1  2  2  10  1  -    2,942  247,494  20,056  1,115  

20  1  2  3  10  1  -    2,870  241,377  20,077  1,089  

21  1  2  4  10  1  -    2,769  232,868  20,077  1,054  

22  1  1  1  25  1  180  3,629  305,207  23,350  1,369  

23  1  2  1  25  1  180  3,664  308,175  21,208  1,372  

24  1  3  1  25  2  180  3,248  273,156  25,066  1,243  

25  1  1  2  25  2  180  3,427  288,266  23,296  1,298  

26  1  1  3  25  2  180  3,273  275,291  23,350  1,244  

27  1  2  4  10  2  180  2,683  225,692  20,078  1,024  

28  1  1  1  20  2  180  3,045  256,139  22,973  1,163  

29  1  3  3  10  2  180  2,769  232,899  23,936  1,070  

30  1  1  1  25  2  90  3,206  269,689  23,355  1,221  

31  1  2  1  25  2  90  3,229  271,627  21,213  1,220  

32  1  3  4  25  2  90  3,096  260,378  25,070  1,189  

33  1  1  3  10  2  90  2,743  230,734  22,222  1,054  
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34  1  1  4  10  2  90  2,682  225,571  22,222  1,032  

35  1 1  1  20  2  90  3,044  256,033  22,977  1,163  

36  1  1  2  10  2  90  2,819  237,092  22,201  1,080  

37  1  1  1  25  1  270  3,612  303,814  23,355  1,363  

38  1  1  3  25  1  270  3,671  308,750  23,355  1,384  

39  1  3  4  20  1  270  3,205  269,568  24,683  1,226  

40  1  1  2  10  1  270  2,933  246,661  22,201  1,120  

41  1  2  3  10  1  270  2,870  241,422  20,080  1,090  

42  1  2  4  10  2  270  2,685  225,813  20,080  1,025  

43  2  1  1  25  1  -    3,518  295,881  30,776  1,361  

44  2  2  1  25  1  -    3,551  298,682  28,635  1,364  

45  2  3  1  25  1  -    3,564  299,772  32,492  1,384  

46  2  1  2  25  1  -    3,716  312,535  30,724  1,430  

47  2  1  3  25  1  -    3,577  300,847  30,777  1,382  

48  2  1  4  25  1  -    3,287  276,456  30,777  1,280  

49  2  1  1  20  1  -    3,262  274,382  30,820  1,272  

50  2  1  1  10  1  -    2,756  231,793  30,908  1,095  

51  2  1  1  25  1  90  3,489  293,459  30,783  1,351  

52  2  2  1  25  1  90  3,521  296,154  28,641  1,353  

53  2  3  1  25  1  90  3,534  297,274  32,499  1,374  

54  2  1  3  25  1  90  3,550  298,606  30,783  1,372  

55  2  1  4  25  1  90  3,274  275,412  30,783  1,276  

56  2  1  2  20  1  90  3,413  287,054  30,783  1,324  

57  2  1  1  10  1  90  2,752  231,460  30,910  1,093  

58  2  2  2  25  1  -    3,750  315,396  28,582  1,433  

59  2  2  3  25  1  -    3,604  303,163  28,635  1,382  

60  2  2  4  25  1  -    3,304  277,940  28,635  1,277  

61  2  2  2  10  1  -    2,862  240,726  28,744  1,123  

62  2  2  3  10  1  -    2,794  235,003  28,765  1,099  

63  2  2  4  10  1  -    2,698  226,933  28,765  1,065  

64  2  1  1  10  2  180  2,646  222,528  30,908  1,056  

65  2  2  1  25  1  180  3,552  298,742  28,637  1,364  

66  2  3  4  20  1  180  3,116  262,073  32,538  1,228  

67  2  1  2  10  1  180  2,852  239,863  30,887  1,128  

68  2  1  3  25  1  180  3,577  300,892  30,779  1,382  

69  2  1  4  25  2  180  2,983  250,885  30,779  1,174  

70  2  3  3  20  2  180  3,045  256,139  32,538  1,203  

71  2  2  1  10  2  180  2,653  223,179  28,766  1,050  

72  2  1  1  25  2  90  3,115  261,967  30,784  1,220  

73  2  2  4  10  2  90  2,620  220,393  28,768  1,038  

74  2  3  1  25  2  90  3,151  265,056  32,499  1,240  

75  2  1  3  20  2  90  3,014  253,489  30,826  1,185  

76  2  1  4  25  2  90  2,984  250,961  30,783  1,174  

77  2  1  2  20  2  90  3,137  263,830  30,783  1,228  

78  2  1  1  10  2  90  2,647  222,619  30,910  1,056  

79  2  1  2  25  2  270  3,333  280,363  30,731  1,296  

80  2  2  3  25  2  270  3,204  269,462  28,641  1,242  

81  2  2  4  25  2  270  2,998  252,142  28,641  1,170  

82  2  1  2  10  2  270  2,745  230,855  30,889  1,091  

83  2  2  3  10  2  270  2,681  225,525  28,768  1,060  

84  2  2  4  10  2  270  2,618  220,181  28,768  1,037  

85  3  1  1  25  1  -    3,632  305,450  29,483  1,396  

86  3  2  1  25  1  -    3,649  306,888  27,340  1,393  

87  3  3  1  25  1  -    3,666  308,341  31,198  1,415  

88  3  1  2  25  1  -    3,828  321,998  29,429  1,464  

89  3  1  3  25  1  -    3,697  310,991  29,483  1,419  

90  3  1  4  25  1  -    3,416  287,297  29,483  1,320  

91  3  1  1  20  1  -    3,384  284,602  29,454  1,309  

92  3  1  1  10  1  -    2,893  243,300  29,397  1,136  

93  3  1  1  25  1  90  3,602  302,951  29,489  1,385  

94  3 2 1 25 1 90 3,619 304,359  27,347  1,382  

95  3  3  1  25  1  90  3,636  305,828  31,205  1,404  

96  3  1  3  25  1  90  3,670  308,674  29,489  1,409  

97  3  1  4  25  1  90  3,403  286,207  29,489  1,315  

98  3  1  2  20  1  90  3,533  297,123  29,416  1,361  

99  3  1  1  10  1  90  2,888  242,891  29,399  1,135  

100  3  2  2  25  1  -    3,847  323,587  27,287  1,462  

101  3  2  3  25  1  -    3,711  312,096  27,340  1,414  

102  3  2  4  25  1  -    3,423  287,887  27,340  1,313  

103  3  2  2  10  1  -    2,990  251,506  27,233  1,161  

104  3  2  3  10  1  -    2,925  246,040  27,255  1,139  

105  3  2  4  10  1  -    2,833  238,258  27,255  1,106  

106  3  1  1  25  2  180  3,236  272,142  29,485  1,257  

107  3  2  4  25  2  180  3,114  261,892  27,342  1,205  
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108  3  3  3  20  2  180  3,166  266,328  31,171  1,240  

109  3  1  2  10  2  180  2,880  242,240  29,376  1,132  

110  3  1  3  25  1  180  3,698  311,036  29,485  1,419  

111  3  1  4  25  1  180  3,416  287,327  29,485  1,320  

112  3  3  1  20  1  180  3,415  287,236  31,171  1,327  

113  3  2  1  10  1  180  2,896  243,603  27,255  1,129  

114  3  1  3  25  2  90  3,303  277,834  29,489  1,281  

115  3  2  3  10  2  90  2,813  236,593  27,257  1,099  

116  3  3  1  25  2  90  3,261  274,276  31,205  1,273  

117  3  1  3  25  2  90  3,303  277,834  29,489  1,281  

118  3  1  4  20  2  90  2,990  251,506  29,459  1,171  

119  3  1  2  20  2  90  3,259  274,155  29,416  1,265  

120  3 1 1  10 2 90 2,782  234,019  29,399  1,098  

121  3  1  2  20  2  270  3,262  274,337  29,416  1,266  

122  3  2  3  25  2 270 3,315  278,818  27,348  1,276  

123  3 1 4 25 1 270 3,415  287,251  29,389  1,319  

124  3 2 2  10  1  270  2,993  251,763  27,236  1,162  

125  3  2  3  10  1  270  2,925  246,040  27,257  1,139  

126  3  3  4  10  1  270  2,860  240,559  31,115  1,132  

127  4  1  1  25  1  -    3,862  324,859  24,950  1,458  

128  4  2  1  25  1  -    3,889  327,130  22,808  1,458  

129  4  3  1  25  1  -    3,904  328,341  26,666  1,479  

130  4  1  2  25  1  -    4,067  342,103  24,895  1,529  

131  4  1  3  25  1  -    3,924  330,082  24,950  1,479  

132  4  1  4  25  1  -    3,626  304,995  24,950  1,375  

133  4  1  1  20  1  -    3,602  302,997  24,652  1,365  

134  4  1  1  10  1  -    3,085  259,515  24,056  1,182  

135  4  1  1  25  1  90  3,830  322,149  24,957  1,446  

136  4  2  1  25  1  90  3,857  324,375  22,815  1,447  

137  4  3  1  25  1  90  3,872  325,646  26,672  1,468  

138  4  1  3  25  1  90  3,895  327,584  24,957  1,469  

139  4  1  4  25  1  90  3,612  303,799  24,957  1,370  

140  4  1  2  20  1  90  3,758  316,063  24,613  1,419  

141  4  1  1  10  1  90  3,080  259,030  24,059  1,180  

142  4  2  2  25  1  -    4,096  344,556  22,753  1,530  

143  4  2  3  25  1  -    3,784  318,243  22,808  1,421  

144  4  2  4  25  1  -    3,640  306,146  22,808  1,371  

145  4  2  2  10  1  -    3,194  268,659  21,892  1,211  

146  4  2  3  10  1  -    3,122  262,618  21,914  1,186  

147  4  2  4  10  1  -    3,023  254,246  21,914  1,151  

148  4  1  4  25  2  180  3,303  277,804  24,952  1,261  

149  4  2  3  25  2  180  3,522  296,275  22,810  1,330  

150  4  3  1  10  2  180  2,991  251,581  25,773  1,156  

151  4  1  2  20  2  180  3,465  291,430  24,609  1,317  

152  4  1  3  25  1  180  3,924  330,067  24,952  1,479  

153  4  2  4  25  1  180  3,640  306,131  22,810  1,371  

154  4  3  1  20  1  180  3,640  306,131  26,369  1,385  

155  4  1  3  10  1  180  3,116  262,089  24,057  1,192  

156  4  1  2  25  2  90  3,658  307,660  24,901  1,386  

157  4  2  2  20  2  90  3,478  292,535  22,471  1,313  

158  4  3  2  20  2  90  3,496  294,064  26,329  1,335  

159  4  1  3  25  2  90  3,507  294,942  24,957  1,333  

160  4  1  4  25  2  90  3,304  277,864  24,957  1,262  

161  4  1  1  20  2  90  3,282  276,032  24,657  1,253  

162  4  1  1  10  2  90  2,968  249,643  24,059  1,140  

163  4  2  2  25  1  270  4,083  343,451  22,859  1,526  

164  4  1  3  25  1  270  3,907  328,599  24,957  1,473  

165  4  3  4  20  1  270  3,447  289,931  26,373  1,318  

166  4  2  2  10  1  270  3,194  268,674  21,895  1,211  

167  4  2  3  10  2  270  3,001  252,429  21,917  1,143  

168  4  2  4  10  2  270  2,936  246,964  21,917  1,120  

169  4  3  2  25  2  270  3,696  310,885  26,617  1,406  

170  4  3  3  25  2  270  3,543  297,970  26,672  1,353  

171  4  3  4  25  2  270  3,332  280,287  26,672  1,279  

172  4  3  2  10  2  270  3,097  260,484  25,752  1,193  

173  4  3  3  10  2  270  3,022  254,170  25,775  1,166  

174  4  3  4  10  2  270  2,957  248,690  25,775  1,144  

175  3  3  2  20  2  270  3,289  276,623  31,132  1,282  

176  3  3  3  20  2  270  3,169  266,555  31,175  1,241  

177  3  3  4  25  1  270  3,441  289,462  31,205  1,336  

178  3  3  2  20  1  270  3,574  300,635  31,132  1,382  

179  3  3  3  10  1  270  2,947  247,842  31,115  1,162  

180  3  2  4  10  1  270  2,838  238,743  27,257  1,108  

181  1  1  2  25  2  270  3,430  288,523  23,301  1,299  
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182  1  3  3  25  2  270  3,312  278,561  25,070  1,265  

183  1  3  4  25  2  270  3,098  260,590  25,070  1,190  

184  1  2  2  10  2  270  2,827  237,804  20,058  1,074  

185  1  3  3  10  2  270  2,771  233,080  23,938  1,071  

186  1  3  4 10  2  270  2,705  227,494  23,938  1,048  

187  1  3  2  25  2  -    3,468  291,657  25,010  1,319  

188  1  3  3  25  2  -    3,310  278,440  25,064  1,265  

189  1  3  4  25  2  -    3,095  260,317  25,064  1,189  

190  1  3  2  10  2  -    2,843  239,106  23,914  1,096  

191  1  3  3  10  2  -    2,769  232,868  23,935  1,070  

192  1  3  4  10  2  -    2,701  227,191  23,935  1,046  

193  2  3  2  25  2  -    3,368  283,300  32,440  1,316  

194  2  3  3  25  2  -    3,219  270,733  32,492  1,263  

195  2  3  4  25  2  -    3,012  253,338  32,492  1,191  

196  3  2  3  20  2  -    3,149  264,829  27,312  1,217  

197  3  2  3  25  2  -    3,315  278,818  27,340  1,276  

198  3  2  4  10  2  -    2,750  231,279  27,255  1,077  

199  4  2  2  25  2  -    3,679  309,446  22,753  1,384  

200  4 2  3  20  2  -    3,352  281,907  22,510  1,268  

201  4  2  4 10  2 - 2,934  246,767  21,914  1,120  
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