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Summary

This thesis focusses on good ultrafilters. There are two main theorems which are proven. The
first is the theorem which states that good, countably incomplete ultrafilters exist. The second
theorem proves that good ultrafilters make ultraproducts saturated.

In the first section we start by defining ultrafilters. We also discuss an alternative definition
and prove that ultrafilters exist. Subsequently we define countably incomplete ultrafilters and
again give an alternative definition. Finally good ultrafilters are defined and an example is given
by showing that every ultrafilter on a set of cardinality ℵ0 is good.

This brings us to the next section where it is shown that good, countably incomplete ul-
trafilters exist. To prove the existence of good ultrafilters we use the notion of an independent
set of functions. We construct sequences of filters {Fη}η<2α and independent sets {Sη}η<2α

which satisfy a list of conditions. Then the filter U =
⋃
η<2α Fη is a good, countably incomplete

ultrafilter.
Having proven that good, countably incomplete ultrafilters actually exist, we next use them

to show that they make ultraproducts saturated. Before giving the proof of the theorem, the
third section contains a short introduction in model theory. The definitions of a language and
its terms and formulas are given. We then discuss when a sentence is satisfied in order to come
to a definition for a model.

The next part gives the definition of an ultraproduct and states the fundamental theorem
of ultraproducts. This theorem is used in the proofs of the two theorems in the last part of this
thesis.

Finally we come to the part where the theorem stating that good, countably incomplete
filters make ultraproducts saturated is given. At first a weaker version of this theorem is proven.
The structure of this proof is similar to the one proving good ultrafilters make ultraproducts
saturated. Then we finish with the proof of the theorem.
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Introduction

Ultrafilters are special subsets of the power set of a set. They are mostly known for their
use in model theory. An example of an application of ultrafilters is in the construction of the
hyperreals. These are obtained when making an ultraproduct of the real numbers. The idea
here is that the universe of the real numbers is extended to a universe which contains sequences
of real numbers instead of real numbers. Each real number is identified with the corresponding
constant sequence. The model that is then obtained is the model of the non-standard analysis.
In this model many theorems of the standard analysis have a much simpler proof because of the
existence infinitely large and small numbers.

Next to that, the non-standard analysis has a very interesting property, namely that it is
ℵ1-saturated. Roughly speaking this means that if a statement holds for all finite subsets of a
countable set, then it holds for the whole set. For example if we look at the statement 0 ≤ x ≤ 1

n ,
then for each finite subset of the natural numbers we can find an x which satisfies the statement
for all n in that subset. It then follows that 0 ≤ x ≤ 1

n is true for every natural number, and
thus there exists an infinitely small element x in the model of the non-standard analysis.

The degree of saturation of a model tells us something about the number of statements
which we can realize. The ℵ1-saturation of the non-standard analysis can be achieved by using
countably incomplete ultrafilters. The question which then arises is how to achieve higher order
saturation for models.

In order to do this we will need a stronger filter than a countably incomplete ultrafilter, a
good ultrafilter. One of the main theorems of this thesis proves that this kind of ultrafilters
actually exists. After an introduction in model theory we show that good, countably incomplete
filters make ultraproducts α-saturated.
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1. Ultrafilters

This first section gives an introduction into the theory of ultrafilters. We will give the definition
of an ultrafilter and show that ultrafilters exist. Then we can move on to the definition of a
good ultrafilter, whose existence will be proven in section 2.

For a set I, P(I) is the set of all subsets of I and Sω(I) is the set of all finite subsets of I.
If I is a set of cardinality α, then |P(I)| = 2α and, if α is infinite, |Sω(I)| = α.

Definition 1.1. A filter F over a non-empty set I is a subset of P(I) such that:

(F1) ∅ /∈ F ;

(F2) If A,B ∈ F then A ∩B ∈ F ;

(F3) If A ∈ F and A ⊆ B ⊆ I then B ∈ F .

The following properties are a few simple consequences of this definition. Firstly, with a
simple induction argument it follows from (F2) that a filter is closed under finite intersections.
From (F3) we see that I ∈ F , since for any A ∈ F we have A ⊆ I ⊆ I. Moreover, note that
P(I) is not a filter but does satisfy (F2) and (F3). Finally, the following lemma follows easily
from the definition and will be useful in many proofs.

Lemma 1.2. Let F be a filter over a set I and A ⊆ I. Then I \A /∈ F iff for every F ∈ F the
intersection F ∩A is non-empty.

Proof. Let I \ A /∈ F and suppose that F ∩ A is empty for some F ∈ F . Then F ⊆ I \ A and
thus, by (F3), I \A ∈ F . This gives a contradiction, so F ∩A must be non-empty.

On the other hand let F ∩ A 6= ∅ for all F ∈ F . Suppose I \ A ∈ F . Then, by (F2),
F ∩ I \A ∈ F for any F ∈ F . But (F ∩ I \A)∩A = ∅ which contradicts our assumption. Hence,
I \A /∈ F .

We say that any subset A ⊂ P(I) has the finite intersection property iff every finite intersec-
tion of elements of A is non-empty. Note that any filter F has the finite intersection property
since it is closed under finite intersections and the empty set is not an element of F .

For A ⊂ P(I) having the finite intersection property, the filter 〈A〉 is the intersection of all
filters containing A, i.e.

〈A〉 =
⋂
{F : A ⊆ F ⊆ P(I) & F is a filter on I}.

We call 〈A〉 the filter generated by A.

Definition 1.3. Let U be a filter over a set I, then U is an ultrafilter iff for every A ⊆ I either
A ∈ U or I \A ∈ U .

Example. Any filter U on a set I generated by a singleton {x}, x ∈ I, is an ultrafilter. Namely,
let A be any subset of I. Suppose x ∈ A, then A ∈ U . On the other hand, if x /∈ A, then
x ∈ I \A and therefore I \A ∈ U .

An ultrafilter can also be defined as a maximal filter over I. In other words, if U is an
ultrafilter over I there is no filter F over I such that U ( F . This is proven in the following
proposition.

Proposition 1.4. A filter U is an ultrafilter over I iff it is a maximal filter over I.
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Proof. Let U be a maximal filter over I and A be any subset of I. If A ∈ U and I \A ∈ U , then
A ∩ (I \ A) = ∅ ∈ U . This contradicts the first property of a filter, so we can not have both
A ∈ U and I \ A ∈ U . We now show that if I \ A /∈ U then A ∈ U . This is sufficient since if
A = I \B /∈ U it would follow that I \A = B ∈ U .
Suppose I \ A /∈ U . Consider the set U ∪ {A}. Since U is a filter it has the finite intersection
property. Furthermore, by lemma 1.2, U ∩ A 6= ∅ for all U ∈ U since I \ A /∈ U . It follows that
U ∪ {A} also has the finite intersection property. Now let V be the filter generated by U ∪ {A},
so V = 〈U ∪ {A}〉. Then U ⊆ V, since U ⊆ U ∪ {A} and thus U ⊆ F for every filter F which
contains U ∪ {A}. Because U is a maximal filter it follows that U = V. Therefore A ∈ U .

On the other hand let U be an ultrafilter and suppose that U is not a maximal filter. Let
V be a filter such that U ( V. Take A ∈ V \ U , then since A /∈ U we must have I \ A ∈ U .
But, since U ( V, we now find that ∅ = A ∩ (I \ A) ∈ V. This is in contradiction with the first
property of a filter, so U must be a maximal filter.

The existence of ultrafilters is proven in the Ultrafilter Theorem. This theorem states that
any A ⊆ P(I) which has the finite intersection property can be extended to an ultrafilter on I.
The proof uses the axiom of choice in the form of Zorn’s lemma (see Appendix A).

Theorem 1.5 (Ultrafilter Theorem). Let I be a set and A ∈ P(I). If A has the finite intersec-
tion property, then there is an ultrafilter U over I such that A ⊆ U .

Proof. Let B be the set of all filters containing A, i.e.

B = {F : A ⊆ F ,F is a filter },

B is not empty since 〈A〉 ∈ B. We will use Zorn’s lemma (A.1) to show that B has a maximal
element.

Let C be any chain in B. We have to show that
⋃
C is an element of B, this means that

⋃
C

is filter containing A. Since every C ∈ C contains A it follows that A ⊆
⋃
C. Furthermore, we

have:

(F1) For every C ∈ C, ∅ /∈ C, so ∅ /∈
⋃
C.

(F2) Let A,B ∈
⋃
C, then A ∈ C1 and B ∈ C2 for some C1, C2 ∈ C. Since C is a chain we have

C1 ⊆ C2 without loss of generality. It follows that A,B ∈ C2 and thus, since C2 is a filter,
A ∩B ∈ C2 ⊆

⋃
C.

(F3) Let A ∈
⋃
C and B ⊇ A. Then A ∈ C for some filter C ∈ C, so B ∈ C ⊆

⋃
C.

It follows from (F1)-(F3) that
⋃
C is a filter. Hence,

⋃
C ∈ B.

We have now found a chain C in B such that
⋃
C ∈ B, therefore we can apply Zorn’s lemma.

It follows that B has a maximal element, say U . Since U is an element of B, A ⊆ U and by the
maximality of U , if F is any filter containing U , then F = U . Therefore, by proposition 1.4, U is
an ultrafilter containing A.

Definition 1.6. An ultrafilter U is countably incomplete iff there is a countable A ⊂ U such
that

⋂
A = ∅.

An equivalent way to define a countably incomplete ultrafilter is given by the following
proposition.
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Proposition 1.7. An ultrafilter U over I is countably incomplete iff there is a countable de-
creasing chain

I = I0 ⊇ I1 ⊇ I2 ⊇ · · ·

of elements In ∈ U such that
⋂
n In = ∅.

Proof. Suppose U is a countably incomplete ultrafilter over I. Let A be a countable subset of U
such that

⋂
A = ∅. Let {X1, . . . , Xn, . . .} be an enumeration of the elements of A and define

Jn =

n⋂
i=1

Xi.

Since
⋂
nXn = ∅, we know that

⋂
n Jn = ∅. Every Jn is also an element of U since U is closed

under finite intersections. Furthermore, Jn ⊇ Jn+1 for every n ∈ N. It follows that for every n
there is an m > n such that Jn ) Jm. Otherwise we would find

⋂
n Jn = Jm for some m. Now

we can construct a decreasing chain of sets Jn ∈ U such that Jn ) Jn+1 for every n ∈ N. Then
the chain

I ⊃ J0 ⊃ J1 ⊃ J2 ⊃ · · ·

is a decreasing chain of elements of U such that its intersection is the empty set.
Conversely let I = I0 ⊃ I1 ⊃ · · · be a decreasing chain of elements of U such that

⋂
n In = ∅.

Then the set I = {I0, I1, I2, . . .} is a countable subset of U with
⋂
I = ∅. Therefore, U is

countably incomplete.

The focus of this thesis lies on a special kind of ultrafilter called a good ultrafilter. Before we
give the definition of a good ultrafilter we need some notations about functions.

Consider a set I and two functions p and q from Sω(I) into P(I).

• p is multiplicative iff for every X,Y ∈ Sω(I), p(X ∪ Y ) = p(X) ∩ p(Y ).

• p is monotone iff for every X ⊆ Y ∈ Sω(I), p(X) ⊇ p(Y ).

• q ≤ p iff for all X ∈ Sω(I), q(X) ⊆ p(X).

Definition 1.8. An ultrafilter U on I is good iff for every monotone p : Sω(I) → U there is a
multiplicative q : Sω(I)→ U such that q ≤ p.

Note that if I has cardinality α and U is a good ultrafilter over I, then for every β < α
and every monotone p : Sω(β) → U there is a multiplicative q : Sω(β) → U . To see this let
p : Sω(β) → U be a monotone function. Take f : Sω(I) → U such that f(A) = p(A ∩ β).
Then, since U is good, there is a multiplicative g : Sω(I) → U such that g ≤ f . If we take
q : Sω(β)→ U to be the restriction of g to Sω(β) we find that q is multiplicative and q ≤ p.
Example. Any ultrafilter on a set I of cardinality ℵ0 is good. It is sufficient to show that an
ultrafilter on N is good. So let U be an ultrafilter on N and let p : Sω(N) → U be a monotone
function. Let Xn = {i ∈ N : i ≤ n} for any n ∈ N. For any finite set F ⊆ N define

n(F ) =
⋂
n∈N
{Xn : F ⊆ Xn} ∈ Sω(N).

We now show that there is a multiplicative function q : Sω(N)→ U such that q ≤ p.
Define q : Sω(N)→ U by q(F ) = p(n(F )). Then since F ⊆ n(F ) and p is monotone we find

q(F ) = p(n(F )) ⊆ p(F ), for all F ∈ Sω(N),
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so q ≤ p. Finally, to show that q is multiplicative, take F,G ∈ Sω(N). Then we have n(F ∪G) =
n(F ) ∪ n(G). Without loss of generality we may assume that n(F ) ∪ n(G) = n(F ), hence
p(n(F ) ∪ n(G)) = p(n(F )). Since n(G) ⊆ n(F ) ∪ n(G) and p is monotone, p(n(F ) ∪ n(G) ⊆
p(n(G)). Hence we find that p(n(F ) ∪ n(G)) = p(n(F )) ∩ p(n(G)). This gives us

q(F ∪G) = p(n(F ∪G)) = p(n(F )) ∩ p(n(G)) = q(F ) ∩ q(G).

Therefore, q is multiplicative and it follows that U is a good ultrafilter.
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2. Existence of good ultrafilters

In the previous section we have seen that ultrafilters on sets exists. We will now prove the
existence of good ultrafilters. The proof we give is from Kunen [3].

Theorem 2.1. Let I be a set of cardinality α ≥ ℵ0. Then there exists a good, countably
incomplete ultrafilter over I.

Before we give the proof of this theorem we need some more definitions and theorems. First
of all the proof from Kunen uses the notion of an independent set of functions.

Definition 2.2. Let F be a filter over a set I and S ⊆ II . S is independent from F iff for any
distinct f1, . . . , fn ∈ S and i1, . . . , in ∈ I,

F ∩ {j ∈ I : fk(j) = ik for all 1 ≤ k ≤ n} 6= ∅, for all F ∈ F .

S is independent iff S is independent from {I}, i.e. {j ∈ I : fk(j) = ik for all 1 ≤ k ≤ n} is not
empty.

We see that if S is independent from F then, by lemma 1.2, I\{j : fk(j) = ik, 1 ≤ k ≤ n} /∈ F .
To prove theorem 2.1 we will construct a sequence of filters and independent sets of functions
such that every filter and every set satisfies a list of conditions. These independent sets of
functions will be constructed such that each set has cardinality 2α. The following theorem
proves that this is possible.

Theorem 2.3. If |I| = α ≥ ℵ0, then there is an independent S ⊆ II such that |S| = 2α.

Proof. Consider the set {〈S, r〉 : S ∈ Sω(I) and r ∈ IP(S)}. We know that |Sω(I)| = α and
|IP(S)| = α2n = α. Hence, we can enumerate the set as 〈Si, ri〉i∈I . For a set A ⊆ I let fA ∈ II
be the function defined by fA(i) = ri(A ∩ Si). Then S = {fA : A ⊆ I} is a set which satisfies
our conditions. Firstly, since |P(I)| = 2α, we see that

|S| = |{fA : A ⊆ I}| = |{fA : A ∈ P(I)}| = |P(I)| = 2α.

Moreover, let fA1 , . . . , fAn be distinct members of S, where A1, . . . , An are distinct sets, and
i1, . . . , in ∈ I. Take S ∈ Sω(I) such that S ∩ Ak 6= S ∩ Al if k 6= l. Then we can construct a
function r : P(S)→ I such that r(Ak ∩S) = ik. Now let j ∈ I such that 〈S, r〉 = 〈Sj , rj〉. Then
we find

fAk(j) = rj(Ak ∩ Sj) = r(Ak ∩ S) = ik.

It follows that {j : fAk(j) = ik, 1 ≤ k ≤ n} is non-empty. Thus, S is an independent set of
cardinality 2α.

Finally, to make sure that our construction in the proof of theorem 2.1 is correct, we will
need the following two lemmas.

Lemma 2.4. Let I be a set, S ⊆ II a set independent from the filter F over I and A ⊆ I. Then
there are S′ ⊆ S and F ′ ⊇ F such that

(i) S′ is independent from F ′,

(ii) S \ S′ is finite, and

(iii) A or I \A is an element of F ′.
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Proof. We distinguish two cases in our proof.
Case 1. Suppose S is independent from 〈F ∪ {A}〉. Take S′ = S and F ′ = 〈F ∪ {A}〉. Then S′

is independent from F ′ by assumption, S \ S′ = ∅ is finite, and A ∈ F ′ by definition of F ′.
Case 2. S is not independent from 〈F ∪ {A}〉. Let f1, . . . , fn be distinct members of S and
i1, . . . , in ∈ I such that

G ∩A ∩B = ∅, for some G ∈ F

where B = {j ∈ I : fk(j) = ik, 1 ≤ k ≤ n}. By independence we know that F ∩ B 6= ∅ for all
F ∈ F . So the set F ∪ {B} has the finite intersection property and thus we can define the filter
F ′ = 〈F ∪ {B}〉. Since G ∩B ⊆ I \A it follows that I \A ∈ F ′ , thus condition (iii) holds.

Now define S′ = S \ {f1, . . . , fn}, then S \ S′ = {f1, . . . , fn} is finite and condition (ii) is
satisfied.

Let g1, . . . , gm be any distinct functions in S′, ι1, . . . , ιn ∈ I and C = {j ∈ I : gk(j) = ιk, 1 ≤
k ≤ m}. Then for every F ∈ F we have F ∩ (B ∩ C) 6= ∅ since S is independent from F and
S′ ⊆ S. For any F ′ ∈ F ′ we have that F ′ ⊇ F ∩B for some F ∈ F , hence the intersection F ′∩C
is non-empty. Thus we find that S′ is independent from F ′ satisfying condition (i).

Lemma 2.5. Let I be a set, S ⊆ II a set independent from the filter F over I and p : Sω(I)→ F
a monotone function. Then there are S′ ⊆ S, F ′ ⊇ F and a multiplicative q : Sω(I) → F ′ such
that

(i) S′ is independent from F ′,

(ii) S \ S′ is finite, and

(iii) q ≤ p.

Proof. Fix g ∈ S. Let S′ = S \ {g}, then S \ S′ = {g} is finite. For each T ∈ Sω(I) define
qT : Sω(I)→ F by

qT (S) =

{
∅ S * T

p(T ) S ⊆ T
.

Let {Ti}i∈I enumerate Sω(I) and define q : Sω(I)→ F ′ by

q(S) =
⋃
i∈I

qTi(S) ∩ g−1({i}),

where F ′ = 〈F ∪ range q〉. Then q is multiplicative and q ≤ p. Before proving this, we show
that F ∪ range q has the finite intersection property and thus that F ′ is well-defined.

Let S ∈ Sω(I) and i ∈ I such that S ⊆ Ti. Then, since p(Ti) ∈ F and S is independent
from F , F ∩ p(Ti) ∩ g−1({i}) 6= ∅ for all F ∈ F . It follows that F ∩ q(S) is non-empty. By the
multiplicativity of q we now find for any S1, . . . , Sk ∈ Sω(I) and F ∈ F ,

F ∩ q(S1) ∩ . . . ∩ q(Sk) = F ∩ q(S1 ∪ . . . ∪ Sk) 6= ∅,

since S1∪ . . .∪Sk ∈ Sω(I). Hence it follows that F ∪ range q has the finite intersection property.
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Now to show that q is indeed multiplicative let X,Y ∈ Sω(I), then

q(X ∪ Y ) =
⋃
i∈I

qTi(X ∪ Y ) ∩ g−1({i})

=
⋃

i∈I:X∪Y⊆Ti

p(Ti) ∩ g−1({i})

=

 ⋃
i∈I:X⊆Ti

p(Ti) ∩ g−1({i})

 ∩
 ⋃
i∈I:Y⊆Ti

p(Ti) ∩ g−1({i})


=

[⋃
i∈I

qTi(X) ∩ g−1({i})

]
∩

[⋃
i∈I

qTi(Y ) ∩ g−1({i})

]
= q(X) ∩ q(Y ).

Furthermore, let S ∈ Sω(I). Notice that, since p is a monotone function, p(T ) ⊆ p(S) for all
T ⊇ S. It follows that

q(S) =
⋃
i∈I

{
qTi(S) ∩ g−1({i})

}
=

⋃
i∈I:S⊆Ti

{
p(Ti) ∩ g−1({i})

}
⊆

⋃
i∈I:S⊆Ti

p(Ti)

⊆ p(S),

and thus q ≤ p.
Finally we show that S′ is independent from F ′. Let f1, . . . fn ∈ S, i1, . . . , in ∈ I and

A = {j ∈ I : fk(j) = ik, 1 ≤ k ≤ n}. Let S ∈ Sω(I), then

F ∩ q(S) ∩A = F ∩

[⋃
i∈I

qTi(S) ∩ g−1({i})

]
∩A

= F ∩
⋃

i∈I:S⊆Ti

p(Ti) ∩ g−1({i}) ∩A

=
⋃

i∈I:S⊆Ti

F ∩ p(Ti) ∩ {j ∈ I : g(j) = i, fk(j) = ik, 1 ≤ k ≤ n}

6= ∅,

where the last step follows from the independence of S from F . Hence we find that F ′ ∩ A 6= ∅
for any F ′ ∈ F ′, since F ∩ q(S) ⊆ F ′ for some F ∈ F and S ∈ Sω(I).

This gives us all the necessary definitions and theorems to prove that good, countably in-
complete ultrafilters exist.

Proof of 2.1. Let {Aη}η<2α enumerate P(I). Let {pη}η<2α enumerate all monotone functions
from Sω(I) into P(I), such that each monotone p : Sω(I) → P(I) is listed 2α times. We will
construct sequences {Fη}η<2α and {Sη}η<2α , such that for all η < 2α the following hold:

(1) Fη is a filter over I and Sη ⊆ II is independent from Fη;
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(2) For ξ < η < 2α, Fξ ⊆ Fη and Sξ ⊇ Sη;

(3) |Sη| = 2α;

(4) If η is a limit ordinal, Fη =
⋃
ξ<η Fξ and Sη =

⋂
ξ<η Sξ;

(5) F0 is generated by sets {Bn}n<ℵ0 such that
⋂
n<ℵ0 Bn = ∅;

(6) Sη \ Sη+1 is finite;

(7) Either Aη or I \Aη is an element of Fη+1;

(8) If pη : Sω(I)→ Fη, then there is a multiplicative q : Sω(I)→ Fη+1 such that q ≤ pη.

The first four conditions will take care of themselves. Condition (7) will ensure that U =⋃
η<2α Fη is an ultrafilter since either Aη or I \Aη will be an element of U for all η < 2α.

By (5), U will have a countable subset B = {Bn : n < ℵ0} such that
⋂
B = ∅, hence U will

be countably incomplete. To make this condition hold, take S0 ∪ {f} independent of power 2α.
Define for n < ℵ0 the set Bn = {i ∈ I : n < f(i) < ℵ0} and let F0 = 〈{Bn : n < ℵ0}〉. Then⋂
n<ℵ0 Bn = ∅.

Now let p : Sω(I)→ U =
⋃
η<2α Fη be a monotone function. Define range p = {pξ : ξ < α}.

Then pξ ∈ Fηξ for all ξ < α. Furthermore ηξ < 2α for all ξ < α, hence by König (appendix A),∑
ξ<α

ηξ <
∏
ξ<α

2α = (2α)α = 2α.

So we find that there is an η < 2α such that ηξ < η for all ξ < α. This means that pξ ∈ Fη for
all ξ < α, so p : Sω(I) → Fη. By applying (8) for some η′ > η such that pη′ = p, we find that
there is a multiplicative q : Sω(I)→ Fη′+1. Thus it follows that U will be a good ultrafilter.

By applying lemma 2.4 and 2.5 at each stage η < 2α we see that the last three conditions
hold. This concludes our proof.
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3. Saturated ultraproducts

Good ultrafilters are of great interest in model theory. This is because they make ultraproducts
saturated, which will be the main conclusion of this section. We will start with an introduction
to model theory, where we discuss all the necessary definitions.

3.1. Model theory

In model theory we look at the relation between a formal language and the interpretations of
this language. In this interpretation a sentence can be given a truth value, true or false. A
model can then be defined on the basis of these truth values.

Definition 3.1. A language L = {g1, g2, . . . , P1, P2, . . . , c1, c2, . . .} is a collection of (n-placed)
function symbols, (m-placed) relation symbols and constant symbols.

If a language L′ contains all of the symbols of L and some additional symbols, we say
that L′ is an expansion of L and write L ⊂ L′. We define the power of L, denoted by ||L||,
as ||L|| = ω ∪ |L|. An interpretation A of L consists of a non-empty set A, called the domain,
and an interpretation function. This interpretation function maps each function symbol g to an
n-placed function f : An → A on A, each relation symbol P to an n-placed relation R ⊆ An on
A and each constant symbol c to a constant a ∈ A.

Example 3.2. Let L = {g, P, c} be a language. Then the following could be an interpretation
of L:

• The domain A is the set of positive integers;

• x+ y is the interpretation of g(x, y);

• x ≤ y is the interpretation of P (x, y);

• c is interpreted as 1.

In a language L there are different kind of strings of symbols. One of these are the terms
of L. A term is defined as follows:

(i) A variable or a constant symbol is a term;

(ii) For a function symbol g and terms t1, . . . , tn, g(t1, . . . , tn) is a term;

(iii) t is a term iff it can be shown to be a term on the basis of the conditions above.

The next string of symbols is an atomic formula of L. To define atomic formulas we need the
identity symbol ≡, this symbol denotes a binary relation. For any two terms t1 and t2 of L,
t1 ≡ t2 is an atomic formula, and P (t1, . . . , tm) is an atomic formula, where P is a relation
symbol of L and t1, . . . , tm are terms of L. Lastly L has formulas, which are defined as follows:

(i) Atomic formulas are formulas;

(ii) For any formulas ϕ and ψ of L, (ϕ ∧ ψ) and (¬ϕ) are formulas;

(iii) For a variable v and a formula ϕ, (∀v)ϕ is a formula;

(iv) A string of symbols is a formula iff it can be shown to be a formula on the basis of the
conditions above.
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A variable in a formula ϕ is said to be free iff it is not quantified in ϕ. For example,
in the formula (∀x)ϕ(x, y), the variable x is not free but y is. We will write t(v0, . . . , vn),
respectively ϕ(v0, . . . , vn), for a term, respectively a formula, whose free variables form a subset
of {v0, . . . , vn}. If a formula contains no free variables, then it is called a sentence. Each sentence
in a language L is either true or false in an interpretation of L. A formula with free variables, on
the other hand, may be satisfied by some elements in the domain A and not satisfied by others.

Let ϕ(v0, . . . , vn) be a formula of a language L and A an interpretation of L. If ϕ(a0, . . . , an)
is true for some collection of elements a0, . . . , an ∈ A, then we say that ϕ is satisfied in A by
a0, . . . , an, and we write

A |= ϕ(a0, . . . , an).

We say that A satisfies, or realizes, some formula ψ iff ψ is satisfied in A by some sequence
a0, . . . , an. Notation: A |= ψ. If Σ(v0, . . . , vn) is a set of formulas in the variables v0, . . . , vn,
then we say that A satisfies Σ iff every σ ∈ Σ is satisfied in A by some sequence a0, . . . , an.

Example 3.3. Let L be the language with interpretation as in example 3.2. The formula
(∀y)P (x, y) has one free variable, this variable is x, and thus it is not a sentence. The ele-
ment 1 ∈ A satisfies this formula, since 1 ≤ y for every y ∈ A.

Now look at the formula (∃x)(∀y)P (x, y). This formula does not have any free variables and
is thus a sentence. This sentence states that the positive integers have a smallest element. As
we have seen above this element exists, so the sentence is true in our interpretation of L.

Definition 3.4. A theory T of a language L is a collection of sentences of L. We call these
sentences the axioms of T .

From the axioms of a theory T we can derive all other sentences which hold in T . This leads
us to the definition of a model.

Definition 3.5. A model A of a theory T is an interpretation of L for which all axioms of T
are true.

The power of a model A is the cardinal |A|. If X ⊂ A, then (A, x)x∈X is a model in the
expanded language L ∪X where each x ∈ X is interpreted as a constant symbol.

A set of formulas Σ = Σ(v0, . . . , vn) is consistent with a theory T iff there is a model of T
which realizes every σ(v0, . . . , vn) ∈ Σ. If Σ(v0, . . . , vn) is a maximal consistent set of formulas,
we call Σ(v0, . . . , vn) a type. For example, if A is a model and Σ(v0, . . . , vn) is the set of all
formulas satisfied by a0, . . . , an ∈ A, then Σ is a type.

Proposition 3.6 gives a useful method to show if a set of formulas is consistent. The proof of
this proposition uses the compactness theorem which states that a set of sentences Σ is satisfiable
iff every finite subset of Σ is satisfiable. The theorem and the proof can be found in Chang &
Keisler [1].

Proposition 3.6. Let T be a theory and let Σ = Σ(v0, . . . , vn) be a set of formulas. Then Σ is
consistent with T iff every finite subset of Σ is realized in some model of T .

Proof. Suppose Σ is consistent with T . Then by definition T has a model A which satisfies Σ,
so

A |= σ, for all σ ∈ Σ.

It follows that for any finite subset {σ1, . . . , σn} ⊂ Σ, A satisfies every σi, i = 1, . . . , n, and thus

A |= {σ1, . . . , σn}.

On the other hand, suppose that every finite subset of Σ is realized in some model of T . Then
by the compactness theorem there is a model which satisfies every σ ∈ Σ. So it follows that Σ
is consistent with T .
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3.2. Ultraproducts

Now that we have discussed the necessary introduction on model theory we can define the
ultraproducts. We will first discuss the construction of an ultraproduct on sets and then define
the ultraproduct for models.

For an ultrafilter U over a set I and {Ai}i∈I a collection of non-empty sets let C be the
Cartesian product over these sets, that is

C =
∏
i∈I

Ai =

{
f : I →

⋃
i∈I

Ai | f(i) ∈ Ai

}
.

We say that two functions f, g ∈ C are U-equivalent, f =U g, iff

{i ∈ I : f(i) = g(i)} ∈ U .

The relation =U is an equivalence relation and we denote the equivalence class of a function f
as fU = {g ∈ C : f =U g}.

Definition 3.7. The set
∏
U Ai of all equivalence classes of =U is the ultraproduct of Ai mod-

ulo U , i.e. ∏
U
Ai = {fU : f ∈

∏
i∈I

Ai}.

Now, to define the ultraproduct of models let Ai be a model for a language L for every i ∈ I.
The ultraproduct

∏
U Ai is the model for L with universe

∏
U Ai where each symbol in L is

interpreted in the following way:

(i) For a constant symbol c of L let ai be the interpretation of c in Ai for each i ∈ I. Then
the interpretation of c in

∏
U Ai is the element b ∈

∏
U Ai such that b = 〈ai : i ∈ I〉U .

(ii) For a relation symbol P of L let Ri be the interpretation of P in Ai for every i ∈ I. Then
the interpretation of P in

∏
U Ai is the relation S such that

S(f1U , . . . , f
n
U ) iff {i ∈ I : Ri(f

1(i), . . . , fn(i))} ∈ U

(iii) For a function symbol G of L let Fi be the interpretation of G in Ai for every i ∈ I. Then
the interpretation of G in

∏
U Ai is the function H given by

H(f1U , . . . , f
n
U ) = 〈Fi(f1(i), . . . , fn(i)) : i ∈ I〉U .

If Ai = A for all i ∈ Iand a certain model A , then we call
∏
U A the ultrapower of A.

We now give an important theorem about ultraproducts. This theorem will be useful in the
proofs of the next section.

Theorem 3.8 (The Fundamental Theorem of Ultraproducts). Let I be a set and let B be the
ultraproduct

∏
U Ai. Then:

(i) For any term t(x1, . . . , xn) of L and elements f1U , . . . , f
n
U ∈ B, we have

tB
(
f1U , . . . , f

n
U
)

=
〈
tAi
(
f1(i), . . . , fn(i)

)
: i ∈ I

〉
U .

(ii) For any formula ϕ(x1, . . . , xn) of L and f1U , . . . f
n
U ∈ B, we have

B |= ϕ
(
f1U , . . . , f

n
U
)

iff
{
i ∈ I : Ai |= ϕ

(
f1(i), . . . , fn(i)

)}
∈ U .

The proof of this theorem can be found in Chang & Keisler [1].
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3.3. Saturated models

We are now able to show that good ultrafilters make ultraproducts saturated. An α-saturated
model is a model which realizes a maximum number of types. This makes it possible to realize
a large amount of formulas with only one element.

Definition 3.9. Let α be a cardinal and A a model. Then A is α-saturated iff for any X ⊆ A,
|X| < α, (A, x)x∈X realizes every type Σ(v) of the language L ∪X which is consistent with the
theory of (A, x)x∈X .

Note that by 3.6 we know that if (A, x)x∈X realizes every subset of Σ(v) then Σ(v) is con-
sistent with the theory of (A, x)x∈X . So if we want to show that a model A is α-saturated it
suffices to prove that if (A, x)x∈X realizes every finite subset of every set of formulas Σ(v), then
(A, x)x∈X realizes Σ(v).

Before coming to the main result of this section we first prove a similar weaker theorem. The
structure of this proof will be similar to the proof of our main theorem.

Theorem 3.10. Let L be a countable language, and let U be a countably incomplete ultrafilter
over a set I. Then the ultraproduct

∏
U Ai is ℵ1-saturated for every family Ai, i ∈ I, of models

for L.

Proof. Let X be any countable subset of
∏
U Ai and Σ(v) be any set of formulas of L ∪ X.

We must show that if every finite subset of Σ(v) is satisfiable in (
∏
U Ai, x)x∈X , then Σ(v) is

satisfiable in (
∏
U Ai, x)x∈X .

Let {an}n<ℵ0 enumerate X. Note that if an = 〈an(i) : i ∈ I〉U , then(∏
U

Ai, an

)
n<ℵ0

=
∏
U

((Ai, an(i))n<ℵ0) .

Now, since L is an arbitrary countable language and L∪X is also countable, it suffices to prove:

(i) For every set Σ(v) of formulas of L, if each finite subset of Σ(v) is satisfiable in
∏
U Ai,

then Σ(v) is satisfiable in
∏
U Ai.

Suppose
∏
U Ai realizes every finite subset of a set of formulas Σ(v) of L. The language L

is countable, so Σ(v) is also countable and we can write Σ(v) = {σ1(v), σ2(v), . . .}. Since U is
countably incomplete there is a descending chain I = I0 ⊇ I1 ⊇ I2 ⊇ · · · of elements of U such
that

⋂
n<ℵ0 In = ∅. Let X0 = I, n < ℵ0 and define

Xn = In ∩ {i ∈ I : Ai |= (∃x)(σ1(x) ∧ · · · ∧ σn(x))}.

We know that
∏
U Ai realizes every finite subset of Σ(v), hence by the fundamental theorem 3.8

{i ∈ I : Ai |= (∃x)(σ(x) ∧ . . . ∧ σn(x))} ∈ U for any n < ℵ0. Therefore, Xn ∈ U for all n < ℵ0.
Moreover,

⋂
n<ℵ0 Xn = ∅ and Xn ⊇ Xn+1 for all n < ℵ0. It follows that for each i ∈ I there is

a greatest ni < ℵ0 such that i ∈ Xni .
Now we choose a function f ∈

∏
i∈I Ai as follows:

(a) if ni = 0 let f(i) be an arbitrary element of Ai,

(b) if ni > 0, choose f(i) so that Ai |= σ1 ∧ . . . ∧ σni [f(i)].

Let n > 0. Then n ≤ ni for all i ∈ Xn. So it follows that Ai |= σn[f(i)] for every i ∈ Xn

and thus Xn ⊆ {i ∈ I : Ai |= σn[f(i)]}. This implies that {i ∈ I : Ai |= σn[f(i)]} ∈ U and thus,
by the fundamental theorem of ultraproducts (3.8),

∏
U Ai |= σn[fU ] for every n > 0. Hence, fU

satisfies Σ(v) in
∏
U Ai. This proves (i).
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Example. As an example for an ℵ1-saturated model we look at the non-standard model of the
natural numbers. Let N be the model of the natural numbers with domain N and U a countably
incomplete ultrafilter over N. Then the ultrapower

∏
U N is ℵ1-saturated.

Now look at the set of formulas Σ(v) given by Σ(v) = {v > n : n ∈ N}. Each finite subset of
Σ(v) can be realized since we can always find an m ∈ N such that m > n for a given n. By the
ℵ1-saturation it follows that Σ(v) is satisfiable in

∏
U N . This means that there is an element

in
∏
U N which is greater than every natural number.

The theorem which states that good ultrafilters make an ultraproduct saturated is a gener-
alization of theorem 3.10.

Theorem 3.11. Let U be a good, countably incomplete ultrafilter over a set I of cardinality
α ≥ ℵ0. Suppose ||L|| ≤ α. Then for any family Ai, i ∈ I, of models for L, the ultraproduct∏
U Ai is α+-saturated.

Proof. We see that in the same way as in the proof of theorem 3.10 it is sufficient to prove:

(i) For every set Σ(v) of formulas of L, if each finite subset of Σ(v) is satisfiable in
∏
U Ai,

then Σ(v) is satisfiable in
∏
U Ai.

In our proof we will first construct a monotone function p. Then we will use that U is a good
ultrafilter to find a multiplicative function q. To conclude our proof we will find an element hU
using our function q which satisfies Σ(v) in

∏
U Ai.

Let Σ(v) be a set of formulas of L and suppose that
∏
U Ai realizes every finite subset of Σ(v).

Since U is countably incomplete there is a descending chain I = I0 ⊇ I1 ⊇ I2 ⊇ · · · of elements
of U such that

⋂
n<ℵ0 In = ∅. Define p : Sω(Σ)→ U as follows:

p(σ) = I|σ| ∩ {i ∈ I : Ai |= (∃x)
∧
σ}, (1)

where p(∅) = I0. Each σ ∈ Sω(Σ) is finite and thus satisfiable in
∏
U Ai, so

∏
U Ai |= (∃x)

∧
σ.

By the fundamental theorem of ultraproducts it follows that {i ∈ I : Ai |= (∃x)
∧
σ} ∈ U .

Therefore, p(σ) ∈ U and p is well-defined.
The function p is monotone. To show this, let σ ⊆ τ ∈ Sω(Σ). Since |σ| ≤ |τ | we have

I|σ| ⊇ I|τ |. Moreover, if Ai realizes τ for any i ∈ I then Ai also realizes σ. Thus

{i ∈ I : Ai |= (∃x)
∧
τ} ⊆ {i ∈ I : Ai |= (∃x)

∧
σ}.

So we find p(σ) ⊇ p(τ).
Because ||L|| ≤ α we have that |Σ| ≤ α and thus |Sω(Σ)| ≤ α. So, since U is a good ultrafilter,

we can now find a multiplicative q : Sω(Σ)→ U such that q ≤ p. Define, for each i ∈ I,

σi = {θ ∈ Σ : i ∈ q({θ})}. (2)

Notice that σi is finite for all i ∈ I. To see this, note that if |σi| ≥ n, then i ∈ In. Because, if σi
has at least n distinct elements θ1, . . . , θn, then i ∈ q({θs}) for all s ≤ n. Using the multiplicity
of q and q ≤ p, we find

i ∈ q({θs}) ∩ . . . ∩ q({θs}) = q({θ1, . . . , θn}) ⊆ p({θ1, . . . , θn}) ⊆ In.

If σi would not be finite then, |σi| ≥ n for all n and thus i ∈ In for all n. But since
⋂
n<ℵ0 In = ∅

this i does not exists. It follows that σi is finite.
We now construct hU ∈

∏
i∈I Ai satisfying Σ(v) by specifying hi ∈ Ai for all i ∈ I. Let i ∈ I.

We will take hi such that it satisfies all θ ∈ σi in Ai.
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Now, by (1), (2) and multiplicity of q, for every i ∈ I,

i ∈
⋂
{q({θ}) : θ ∈ σi} = q

(⋃
{θ : θ ∈ σi}

)
= q(σi) ⊆ p(σi),

so i ∈ p(σi). By (1) for every i ∈ I there is an element hi ∈ Ai such that Ai |=
∧
σi(hi). Hence,

we have found our element hi ∈ Ai such that Ai |= θ(hi) for any θ ∈ σi and i ∈ I.
Finally, if {i ∈ I : Ai |= θ(hi)} ∈ U , then by the fundamental theorem of ultraproducts∏
U Ai |= θ(hU ). For every θ ∈ Σ we have that q({θ}) ⊆ {i ∈ I : Ai |= θ(hi)} and thus, since

q({θ}) ∈ U , {i ∈ I : Ai |= θ(hi)} ∈ U . It follows that
∏
U Ai |= θ(hU ) for all θ ∈ Σ. Therefore,

hU satisfies Σ in
∏
U Ai.
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A. Set theory

The subjects studied in this thesis require a certain knowledge of set theory. We especially
need to know about orderings on sets, ordinals and cardinals. This appendix contains a short
introduction into these subjects. For a more extensive documentation on set theory we refer
to [2]. The lemmas and theorems in this section will be left unproven.

A relation R is a set of ordered pairs 〈x, y〉. We write xRy instead of 〈x, y〉 ∈ R. A relation
can have the following properties over a set X:

(i) reflexive: xRx for all x ∈ X;

(ii) transitive: if xRy and yRz, then xRz for all x, y, z ∈ X;

(iii) antisymmetric: if xRy and yRx, then x = y for all x, y ∈ X;

(iv) connected : for all x, y ∈ X either xRy or yRx.

A partial ordering of a set X is a relation R over X which is reflexive, transitive and antisym-
metric. A connected partial ordering of X is called a simple ordering of X. Any set X of sets
is partially ordered by the inclusion relation ⊆. If X is simply ordered by ⊆, then we call X a
chain.

Lemma A.1 (Zorn’s Lemma). Let X be a non-empty set of sets and Y a chain in X. If⋃
Y ∈ X, then X has a maximal element.

The lemma of Zorn is equivalent to the axiom of choice. Two other theorems which are
equivalent to the axiom of choice are the well ordering principle and the enumeration principle.

We say that a simple ordering on a set X is a well ordering iff every non-empty subset Y of X
has a smallest element, that is an y ∈ Y such that yRz for all z ∈ Y . A strict well ordering is a
well ordering that is irreflexive, i.e. ¬(xRx) for all x ∈ X.

Theorem A.2 (Well Ordering Principle). Every set can be well ordered.

Before we can state the enumeration principle we need to define what an ordinal is. An
ordinal is a set α such that α is strictly well ordered by the relation ∈ and

⋃
α ⊆ α. The first

three ordinals are: 0 = ∅, 1 = {∅} and 2 = {∅, {∅}}. An ordinal β is a successor if there is an α
such that β = α ∪ {α}. If α is not the successor of any ordinal, then α is a limit ordinal. The
first limit ordinal after 0 is the ordinal ω, this ordinal represents the natural numbers.

An enumeration of a set X is a function whose domain is an ordinal α and whose range is
the set X. We use the notation {xβ}β<α to denote an enumeration of the set X.

Theorem A.3 (Enumeration Principle). Every set can be enumerated.

For a set X, |X| is the smallest ordinal α such that there is a bijection between X and α. An
ordinal α is called a cardinal iff α = |α|. The least cardinal greater than α is called the successor
of α and is denoted as α+. We write ℵ0 for the cardinal of the set of natural numbers N. The
successor of ℵ0 is ℵ1.

If {Xi : i ∈ I} is a collection of sets with cardinalities αi then we can define the sum of
cardinals as follows ∑

i∈I
αi =

∑
i∈I
|Xi| =

∣∣∣∣∣⋃
i∈I

Xi × {i}

∣∣∣∣∣ .
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The product is defined as ∏
i∈I

αi =

∣∣∣∣∣∏
i∈I

Xi

∣∣∣∣∣ ,
where

∏
i∈I Xi denotes the Cartesian product of the sets Xi, that is the set of all functions f

with domain I for which f(i) ∈ Xi.
For a set X of cardinality α and a set Y of cardinality β the set XY denotes the set of all

functions from Y into X. The power of the α with exponent β is defined as αβ = |XY |. If α is
infinite and n > 0, then αn = α and (2α)α = 2α.

Theorem A.4 (König’s Theorem). Let I be a set and let {αi : i ∈ I} and {βi : i ∈ I} be sets
of cardinals. If αi < βi for all i ∈ I, then∑

i∈I
αi <

∏
i∈I

βi.
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