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Abstract
As robotic systems such as autonomous cars and delivery drones assume greater roles and
responsibilities within society, the likelihood and impact of catastrophic software failure
within those systems is increased. To aid researchers in the development of new methods to
measure and assure the safety and quality of robotics software, we systematically curated
a dataset of 221 bugs across 7 popular and diverse software systems implemented via the
Robot Operating System (ROS). We produce historically accurate recreations of each of the
221 defective software versions in the form of Docker images, and use a grounded theory
approach to examine and categorize their corresponding faults, failures, and fixes. Finally,
we reflect on the implications of our findings and outline future research directions for the
community.
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1 Introduction

From assembling and manufacturing goods to driving us from place to place, robotic systems
constitute an increasingly large part of the computing ecosystem.However, these systems, and
the software that controls them, present new opportunities for cyberattacks and catastrophic
failures with the potential for enormous economic and human damage (O’Kane 2020; Wall
2017; Charette 2014; McCausland 2019). To fully realize the benefits of robotic systems, we
need effective quality assurance (QA) techniques for robotics software that allow developers
to build advanced applications without compromise to safety. In order to catalyze the devel-
opment of these QA techniques for robotics, it is important that we better understand the
nature of bugs within robotics software. By better understanding the nature of software bugs
in robotic systems, we can identify key challenges and promising avenues of research. To
that end, we have endeavoured to paint a detailed picture of challenges in the largest software
ecosystem for robotics, the Robot Operating System (ROS). We take the perspective of bugs,
previously documented and, mostly, fixed in the open source repositories of ROS code.

ROS, colloquially known as the “Linux of Robotics,” is a highly modular and distributed
open-source platform for building robotics systems with a rich ecosystem of thousands of
reusable software packages (Wyrobek 2017; Kolak et al. 2020). ROS runs on top of Linux
typically. It is widely used in teaching, research and engineering, and attracts major industrial
players including Amazon, Intel, and Microsoft: The ROS-Industrial Consortium counts
close to a hundred organizations including Bosch, Siemens, and Boeing (ROSIn 2022).
There is a growing belief that a shared open source platform will allow the industry to
exploit the economy of scope in robotics. High-quality hardware drivers, control modules,
AI components, and development tools shall benefit the entire ecosystem while the cost
of building them is carried by multiple organizations. Such benefits shall also be extended
to testing and quality assurance tools and methods, which are of paramount importance
for professional development of software in industry. This paper, devoted to the software
quality challenges in the ROS ecosystem, seeks to identify opportunities for research and
development that will benefit software development for robotics in general and for ROS in
particular.

We report the results of a collaboration between academic and industrial partners to doc-
ument, reproduce, and understand software bugs that occur in ROS software. Our method is
artifact-driven: we create a data set of ROS bugs and then study it. Thus the main outcome of
thework is the artifact.We systematically identified 221bugs across seven popular anddiverse
ROS subject systems, representing a variety of domains and layers of the ROS application
stack, by studying their respective version control histories and artifacts. We methodically
studied each bug to produce a structured forensic description of its causes, symptoms, and
fix, amongst other details. We then used a grounded theory to categorize and understand the
nature of faults and failures within ROS systems. To bolster research into effective quality
assurance techniques, we package each bug into a historically accurate Docker container
image, allowing it to be accurately studied by others for a variety of purposes (e.g., program
repair, testing, debugging).

Our analysis of the ROBUST dataset demonstrates the inherent difficulties of building
high-quality reusable robotics software components and the unintended consequences of
framework design tradeoffs, and identifies opportunities for the development of new lan-
guages and analysis tools to mitigate these difficulties. We find that ROS developers make
similar kinds of mistakes as other developers, and that certain bugs within the dataset could
have been detected by existing tools and practices (e.g., type checking, fuzzing, continuous
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integration). In line with previous research (Afzal et al. 2020), we find that very few bugs are
accompanied by regression tests, testing is generally lacking across each of the studied sys-
tems, and, consequently, developers tend to rely onmanual testing efforts. Finally, we observe
that, while failures typically span across multiple components, bug fixes are comparatively
simple and confined to a small number of lines within a single file.

The main contributions of this paper include:

– Adataset ofROSbugs,ROBUST, containing221bugs across sevenpopularROSsystems.
ROBUST is open source and free to use, and can be found at: https://github.io/robust-
rosin/robust,

– An analysis of the faults and failures of bugs represented within the ROBUST dataset
(Sections 3 and 4),

– A discussion of implications for practitioners and the research community (Section 5),
– A method and a toolchain for building a bug repository and accurately replicating bugs
in ROS systems and similar ecosystems (Section 6.)

Section 2 provides a basic characterization of ROS as a subject of study and discusses the
selection of ROS systems to harvest the bugs from.

Our intended audience are software engineering researchers that build new tools andmeth-
ods for robotics software developers. The ROBUST dataset aims to lower the barrier of entry
into research in software engineering for robotics, supporting, among others, further work
on testing, fuzzing, architectural analysis techniques, verification, program repair, etc. For
example, a fuzzing tool for robotics would have to work with multiple executables, multi-
ple input streams, multiple programming languages, and network communication. ROBUST
bugs that manifest themselves in crashes can be used to test effectiveness of such a fuzzer as
each of them can be easily re-established in a Docker container. Building a cross-language
program-repair tool for Python and C++ requires understanding any cross-language bugs in
such systems and of the API binding mechanisms in these languages. ROBUST can save a
lot of time in this process, as it contains more than twenty bugs on the Python/C++ boundary
that are ready to be reproduced and used in the tool design, evaluation, or regression testing.
ROBUST can also support building tools for domain-specific languages as it contains more
than a hundred documented bugs that have been repaired by developers in files written in
domain specific languages. These are just three examples of applications of ROBUST as a
research tool. We genuinely hope that it can also help in work on build systems, software
configuration, concurrency, and evolution.

2 Subject Ecosystem and Subject Systems

The Subject Platform: Robot Operating System The Robot Operating System originates from
Stanford University (Quigley et al. 2009). In 2007, the project had transferred to a robotics
start-up, Willow Garage, which in turn founded the Open Source Robotics Foundation, a
non-profit dedicated to promoting open source robotics and the present steward of the com-
munity. ROS started as a communication middleware allowing developers to create robot
systems using established architectures for distributed systems. It has quickly expanded with
numerous tools, hardware drivers, and software modules for robotics-specific tasks such as
planning, navigation, and perception. Today, the core modules are still developed by a tight
group of developers, however, the majority of components in the vast ecosystem are main-
tained by a large community of companies and research groups in a highly decentralized
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manner. Due to its size and proliferation, ROS is presently the most representative robot
software development framework.

ROS software is organized in packages, the basic build and release units. Packages can
be added to an official index and released in distributions, which are updated following a
well-defined life cycle pattern similar to that of Ubuntu Linux. For instance, ROS Indigo
Igloo, released in May 2014, was a Long Term Support (LTS) distribution, targeting Linux
Ubuntu Saucy (13.10) and Linux Ubuntu Trusty (14.04 LTS). Support for Indigo ended in
April 2019, at the same time that Ubuntu Trusty reached its end-of-life. Current distributions
have already surpassed themark of 4,000 packages. Besides these, there aremany community
packages that are not part of the official distributions.

A ROS-based system follows a distributed architecture, with independent runtime
resources connecting to each other. Every resource is named, using a hierarchical nam-
ing structure. Names can be remapped during system initialization without changing source
code. This mechanisms allows developers to compose systems from different packages with-
out modifying them.

ROS supports four types of resources: parameters, nodes, topics, and services. Param-
eters are variables holding shared data, stored in a central Parameter Server. Nodes are
programs that consume and produce data, and communicate with each other via message
passing channels—asynchronous topics and synchronous services. Topics and services are
both typed. All nodes are expected to obey types handled by services and topics, which is
enforced at runtime. Users can define custom messages adding to the available predefined
types representing primitive data, laser scans, 3D poses, etc.

Topics are the most common message-passing mechanism. They follow an asynchronous
publisher-subscriber model, with many-to-many connections. Publishers can send messages
at any time, regardless of the number of active subscribers, and subscribers are notified via a
callback function whenever a newmessage arrives. Services implement synchronous one-to-
one communication, using remote procedure calls. The node that provides a service is called
the server, and any nodes using the service are called clients. Messages are exchanged in

Fig. 1 Subject systems, not to scale. ∗Images: DinosoftLabs, photo3idea_studio

123

https://www.flaticon.com/authors/dinosoftlabs
https://www.flaticon.com/authors/photo3idea-studio


Empirical Software Engineering            (2024) 29:57 Page 5 of 41    57 

request-response transactions. Clients block while waiting for a response. Services shall be
used for fast tasks, such as querying the current state of a node.

Nodes should be specific and modular, rather than large monolithic components. A single
robot consists of many nodes, each accomplishing a task, such as localization, navigation, or
perception. Each sensor and actuator might have its individual node, too. Nodes are imple-
mented using a ROS client library. Many programming languages are supported but C++ and
Python are most used.

Subject Systems Conducting a meaningful analysis of software bugs requires considerable
domain expertise. Therefore, we deliberately set out to examine a diverse set of subject
systems for which we had expertise in our research team. In total, we examined seven quali-
tatively different subject systems consisting of three robotics systems, two robot drivers, and

Table 1 Descriptions of subject systems

TurtleBot is an iconic ROS robot (Fig. 1a), a
low-cost entry-level personal robot kit with
open-source software built with the origi-
nal authors of ROS. The software includes
example applications for automatic docking,
charging, navigation, and dynamic leader-
follower behaviors, written mostly in Python.

Kobuki is the mobile base on top of which
TurtleBot built, the black disk at the bottom
of the robot in Fig. 1a. The Kobuki soft-
ware repositories provide low-level packages
that integrate the base hardware (servomotors,
power systems) with ROS, as well as a safety
controller and a velocity multiplexer, mostly
written in C++.

MavRos implements a bridge between ROS
and the MAVLink protocol for communicat-
ing with the autopilot of unmanned vehi-
cles (air, ground, and water). The MAVROS
repository provides tools and plugins that
allow almost transparent bridging between a
MAVLink-enabled autopilot, such as ArduPi-
lot, and aROS application,making asmuch of
the data gathered and processed by these sys-
tems available to the ROS node graph. The
repository contains only the bridging nodes
(in C++/Python), and explicitly leaves the
modelling of vehicle geometry, kinematics,
and dynamics to other packages.

UniversalRobot and Motoman provide
packages for the integration of industrial
robots with ROS (Fig. 1c and d, both robots
are industrialmanipulators). Packages, imple-
mentedmostly inC++, Python, andC, include
low-level interfaces to the motion controllers
of the robot, sensors and I/O interfaces,
as well as higher-level declarative descrip-
tion packages that provide information on
robot geometry, kinematics, dynamics, and
motion planning configurations. Both repos-
itories also include programs that are to be
executed on the industrial robot controller
itself, and which will collaborate with their
ROS counterparts.

Care-O-bot is an autonomous service robot,
created by Fraunhofer IPA and commercial-
ized by Mojin Robotics (Fig. 1b). Nearly all
its behavior is implemented as ROS nodes (a
significant part open-source) including low-
level interfaces to motor controllers and sen-
sors, human-machine interfaces (speech, face,
emotion and gesture recognition), collision-
free path planning, manipulation planners,
object recognition, and localization. Packages
for simulation of the entire system are also
included, as well descriptions of its geometry,
kinematics, and dynamics. Most of the code
is written in C++ and Python. A rather large
amount of XML is used mostly to define the
many configurations enabled off-the-shelf.

Geometry2, also known as tf2, offers a
set of services for keeping track of multiple
coordinate frames over time and for trans-
forming points and other geometric objects
between frames. The geometry2 libraries
are implemented in C++ and interfaced to
Python. They can be used to determine the
global position of the robot relative to the
world or the position of a gripper relative
to the robot base. Applications range from
localization and visualization to mapping and
multi-robot cooperation. Figure 1f shows a 3D
robotmodel annotatedwith coordinate frames
tracked by tf2 on the robot’s base, head,
arms and grippers (visualized as three colored
axes).

See also Table 2 and Fig. 1
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Table 2 Descriptive statistics for the subject systems

Subject # Bugs # Issues Category C++ C Python XML

Kobuki 57 325 application 23,555 18,073 4,207 2,325

TurtleBot 11 170 application 799 42 4,438 1,129

Care-O-bot 11 182 application 31,084 9,430 9,248 23,814

UniversalRobot 25 158 driver 1,071 331 1,741 738

Motoman 22 78 driver 4,129 5,337 0 1,272

MavRos 40 623 middleware 12,807 1,611 1,013 330

geometry2 42 264 library 6,267 4,311 1,074 273

Total 208 1800 79,712 39,135 21,721 29,881

The second and third columns show the number of identified bugs and issues that were studied, respectively.
The last four columns show the number of lines in main languages, counted with cloc v1.60

two very different specialized libraries. Figure 1 shows photographs and visualizations of the
subject systems, Table 1 summarizes their key descriptive properties, and Table 2 provides a
quantitative characterization in the last four columns.

3 Method

Subject Bugs and Data Gathering To identify historical bugs in each subject system, we
examined its issue tracker, pull requests, and commit history. For an initial screening, we
prioritized issues labeled as a Bug (or similar) and commit messages including keywords
such as fix. Issues clearly unrelated to bugs by their title or labels were discarded. All non-
obvious issues and pull requests were inspected in consensus meetings to determine whether
they describe additional bugs. In the meetings, we have asked whether the problem discussed
is a result of a deliberate prior design decision, or whether it is a result of an omission, a
mistake, a change in another system, etc. In any case, whenever developers used the term
bug, error, or mistake in the discussion, we assumed a bug is being discussed. Bad smells and
style issues were classified as not-bugs. In total, we identified 221 issues and pull requests
that qualified as bugs across the subject systems.

Figure 2 exemplifies the data available about the bugs. The issue creation date (1) deter-
mines the versions of ROS and other dependencies that might have been used by the reporter.
The community status of the reporter (2) distinguishes between issues found internally and
by the downstream users. The problem description (3) is the key source regarding whether an
issue is a bug andwhat is its nature. The labels (4) provide a diversity of information. Here the
issue has been labelled as software-related, which makes it a potential software bug report.
The existence of commits (5, 8) referencing the issue show that it is either fixed or being
worked on. Inspecting the commit (6, 8) we can understand the bug from the perspective of
its fix. The referencing pull requests (7) provide similar context. If the bug is fixed, we note
down the closing date (9) of the issue. This allows to estimate how long it took to resolve the
problem (14 days here).

Inspecting commits and pull requests that do not reference any issue requires additional
work, as they tend to describewhat changes are introduced, rather than the problemaddressed.
Despite this, from the commit in Fig. 3, we can sill harvest four relevant items: The commit
message (1) includes the keyword “fix”, implying there was an underlying issue. In this case,
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Fig. 2 Issue 331 in Kobuki, https://github.com/yujinrobot/kobuki/issues/331

the commit fixes warnings from the cppcheck code analyzer. The first release (2) of the
repository, which includes the commit. Together with the commit date (3) this determines the
versions of the involved software. The parent commit (4) is the last version of the code that
still contains the bug fixed.

Data Analysis For each of the bugs in the data set we produced a forensic description by
manually analyzing the available information. Each description follows a common schema.
The initial list of attributes in the schema has been identified in a discussion of the authors
based on their expertise in bug studies and in robotics software engineering. The list has
remained stable for most of the data collection period, but several fields have been added
in an exploratory fashion. These were usually derived either from the initial fields (using
thematic coding) or by automatically querying GitHub repositories. Each description has

Fig. 3 Commit 0e2ea0c4 of https://github.com/mavlink/mavros
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been initially written by a team member familiar with the associated subject system, before
being discussed extensively and cross-checked by multiple members of the research team.
We include all these descriptions as YAML documents, along with the schema in ROBUST
repository on GitHub.

Figure 4 shows an example of a description for a bug in the Kobuki project. It opens
with a unique identifier, a prefix of the hash of its fixing commit in a Git repository (e.g.,
e964bbb). The title summarizes the bug in general terms, and the description
elaborates on the bug itself, the software components affected, and the context in which
the bug occurred. We wrote the descriptions aiming to be as accessible as possible, without
presupposingdeep training in robotics. Thekeywords aid the search and retrieval of relevant
bug reports. (Unlike the codes discussed below, the keywords are not derived systematically.)
The system field records the name of the project in which the bug has been found.

Fig. 4 An example report for a bug (kobuki:e964bbb)
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We initially attempted to classify bugs using Common Weakness Enumeration, an
established taxonomy of software weaknesses independent of us.1 However, as CWE is
predominantly concerned with security, we were unable to adequately classify most of the
dataset. Motivated by this inadequacy, rather than re-using an existing taxonomy (e.g., IEEE
1044–2009; Seaman et al. 2008; Thung et al. 2012; Garcia et al. 2020; Wang et al. 2021;
Zampetti et al. 2022), we elected to use open coding and grounded theory building as an estab-
lished mechanism for structuring qualitative data, when no prior taxonomy is pre-supposed.
This allows us to better represent and fully describe the nature of software bugs in ROS with-
out being constrained by an existing categorization. Moreover, by allowing the taxonomy to
emerge from the data, our study provides a conceptual replication of prior work.

We systematically analyzed all bugs through a process of thematic coding by establishing
codes in two groups: failure descriptions and fault descriptions. We define failure as inability
of software to perform its function, with a special focus on the observable manifestation of
this inability (sometimes also referred to as error). The fault is the cause, or the reason for the
failure, within the software (so if the fault is repaired, the failure is eliminated). The results
of this analysis are stored under failure-codes and fault-codes respectively.

The thematic coding has been split among the five coauthors randomly; two coders per
each bug description. They performed the initial coding independently, introducing newcodes
as necessary. After the initial coding has been obtained, we held a consistency meeting which
produced a unified codebook. Afterwards all bug descriptions have been recoded according
to the codebook. Finally, for all code assignments where the two coders disagreed we held
a series of consensus meeting with all five coders—an agreement was achieved by a joint
discussion, analysis of the source material, and any necessary context information about
ROS. Two of the coders involved had extensive robotics engineering experience, and three
had extensive software quality engineering experience.

The rest of the record is broadly split into two sections: the bug description that elaborates
on the fault and failure, and the fix description that collects information on how the bug
has been fixed. The bug description specifies: the stage at which failure occurs (e.g., build,
deployment, runtime); the relationship of the person that reported the bug to the affected
system (e.g., guest user, contributor, maintainer, automatic, unreported); the URL of the
associated GitHub issue, and at what time the issue was reported; the task of the robot that is
directly affected by the bug (e.g., perception, localization, planning); a determination of how
the bug was detected (e.g., build system, static analysis, assertions, runtime detection, test
failure, developer); and whether the failure occurred in the application or in the ROS/ROSIn
platform itself (architectural-location). The fix description provides: a list of commits that
constitute the bug fix; the URL of the associated pull request, the date and time at which the
bug was fixed; the files that were changed as part of the fix, and the language of those files.
We only include the subset of files that were changed and which relate to the bug fix itself.
We do not include coincidental changes (e.g., refactorings).

In Section 4, we give clickable links to bugs in the repository. These lists of links are not
exhaustive, in the sense that they show a small number of examples, not all the examples
from the dataset in the given category.

Descriptive Statistics of the Obtained Dataset Table 2 lists how many bugs we collected
for each of the subject systems, and out of how many issues they have been selected (the
remaining issues did not report bugs, so the statistics paint a valid picture of the bug population
for this systems at the collection time).

1 https://cwe.mitre.org
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Fig. 5 The languages and file formats involved in bug fixes

Figure 5 breaks down the bugs by languages used in the fixed files, for the bugs that have
been fixed. Over half of the bug fixes involve C++ (112 of 219). The remaining 107 fixes use
a diversity of languages, many of which are domain-specific (e.g., Package XML, Launch
XML, URScript, etc.), which typically lack associated analysis tools. Figure 6 shows the
number of languages involved in each fix. We find that 200 fixes (91%) are limited to a single
language. That is, while failures may span components written in different languages, fixes
are usually restricted to a single language.

In the dataset, 118 failures occur at run-time and 38 at start-up time, so in total 156 bugs
that have been fixed also have execution-time failures. Only 15 of these are accompanied
by a test case. (We automatically identified bug fixes that add or modify tests by checking
the paths of the changed files. We consider that a fix commit is accompanied by a test case
if it adds or changes a file that contains the word test in its path, e.g., test/foo.py,

Fig. 6 The number of languages involved in bug fixes
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Fig. 7 The number of files involved in a bug fix

test_foo.py. We manually inspected the remaining fixes to confirm that they did not
include a test case.)

Figure 7 shows an overview of the number of files that were fixed for each bug. The number
is based on a manual removal of unrelated changes from bug-fixing commits. Almost two
thirds of bug fixes affect only a single file. Specifically, 64% of bug fixes are confined to a
single file (141 of 219), 19% span two files (41 of 219), and 17% (37 of 219) change three
or more files.

In order to approximate the size of each bug fix, we measure the number of lines in the
change differences across their fixing commits; see Fig. 8. As fixing commits may contain
unrelated changes (e.g., opportunistic refactoring), the size of the change difference is greater
than or equal to the size of the bug fix, and therefore represents a conservative upper bound.
Four bug fixes consist solely of file renamings and have an associated diff size of zero. We

Fig. 8 The diff size of a bugfix; we truncated 11 bugs with size above 200 lines
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find that more than 50% of bug fixes have diffs that consist of 12 lines or fewer, and 75%
have a change difference that is 50 lines or smaller.

Limitations TheCredibility (Shenton 2004; Sikolia et al. 2013) of this study has been ensured
by careful selection of the systems to be analyzed (Section 2), by depending on qualified
researchers for bug selection and analysis, by the use of establishedmethods for both archival
and coding of bugs (Section 3), by employing peer scrutiny, and by grounding the study in
existing work (Section 7). All authors were involved in bug gathering, selection, and analysis.
One author is a domain expert onROSwith considerable experience in this FOSS community,
the others have prior experiencewith ROS andwith the kind of studies presented in this paper.
All bugs were analyzed by at least two authors and the results were cross-referenced and
discussed among all. Corrections were made by consensus. The coding was done according
to established practices (Saldaña 2015; Linneberg and Korsgaard 2019) and by all authors
in parallel, in multiple sessions. The final classification of bugs and the resulting codebook
have been extensively discussed and checked for consistency by all authors. Finally, the
preliminary results of the study were presented at ROSCon, the main conference of the ROS
community (Timperley and Wasowski 2019). Received comments were taken into account
while further refining the study.

We used purposive sampling, so some negative impact on the Transferability is expected.
The subject repositories were selected based on the role the packages have in ROS-based
products. Care was taken to select a qualitatively diverse set. We do not claim that this set
of packages is representative of the entire ROS landscape, or of the wider robotics software.
The quantitative results are not directly generalizable to these wider contexts—they have a
been presented as descriptive statistics of the dataset, not as general conclusions. Even with
these restrictions however, the set of bugs described in ROBUST is diverse enough to be rep-
resentative of the types of systems that were analyzed. Conclusions can be made qualitatively
about the presence of particular kinds of bugs in other ROS packages. Furthermore, while the
selection of repositories was purposeful, the identification of bugs and fixes was not: bugs
and fixes were always reported and contributed by either developers, maintainers or users
of the systems under analysis, not by the authors. The developers were treated as historical
oracles and their assessments whether something is a bug, a fix or neither were taken at face
value.

To increaseDependability, we detail how we gathered the dataset (Sections 2 and 3), how
the historical images were build (Section 6), and how bug reports are structured, analyzed
(Section 3) and stored (Section 6). All bug reports link back to the source data for each bug:
affected source code repositories, the original issues, code contributions fixing the bug, and
the state of the involved repositories before and aftermerging the fix. Bug reports also include
timestamps for these events, whenever theywere present and identifiable, and the full analysis
as performed by the authors. All of the sourcematerial ismade available open-source, on-line.
Such traceability increases dependability, facilitating evaluation of the research methods and
results (Shenton 2004).

To warrant Confirmability, the dataset was built from issue reports written by developers,
maintainers, and users. Some of these reports are unambiguous and leave no margin for
researcher bias or interpretation, mostly because of the detail of the report and the language
used by the reporter. For instance, bugs related to the build phase of the software can hardly
be mistaken for runtime issues. Others contain little description of the fault or the manifested
failures. To minimize bias, we involved all authors in the analysis of such cases, relying on
the buggy source code and the fix, until a consensus was reached, often over several meetings.
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The commit history of the ROBUST repository, can be used to reconstruct how our bug reports
changed over time, as a result of repeated analysis and discussion.Other aspects of ourmethod
can also be audited, as it is fully explained and all source code is available online. Despite
this, we admit that a minimal set of bugs could be classified differently by another party for
two reasons. First, we did not interview issue reporters to confirm whether our judgement
matches theirs. Second, relying on the source code, especially on the changes introduced by
a bug fix, might not tell a clear story because some commits might affect code that is not
pertinent to fixing a particular bug. After completing our analysis, we estimate the accuracy
of our labels by sampling 30 bugs from the dataset and recoding them according to our final
taxonomy. Comparing the differences between the labels, we find that the original taxonomy
had missing labels for three bugs and incorrect labels for a further three bugs, yielding a bug-
level accuracy of 80% across our sample. Note that, only one label was incorrect or missing
for each of those bugs (out of an average of 3.47 labels), giving us a label-level accuracy of
97%.

4 Analysis

We analyze the collected data to understand what bugs developers experience in practice in
robotics systems. The discussion is organized along two questions:

RQ1:What software faults occur in robotics systems?
RQ2:What failures occur in robotics systems?

We ask RQ1 to determine the extent to which the faults in the data are specific to ROS
and robotics, identify common ROS development pitfalls, and provide valuable insights to
guide the construction of effective QA tools. We ask RQ2 to gauge the actual and potential
consequences of software failures in open-source robotics software, and to understand what
QA tools are needed to automatically detect such failures. By assessing the extent of potential
failures we hope to motivate further constructive research on robotics software quality. The
analysis follows the open thematic coding method described in Section 3. It gives a good
qualitative description of the contents of the ROBUST dataset.

4.1 RQ1:What Software Faults Occur in Robotics Systems?

Table 3 outlines the top-level themes that emerged from the thematic analysis of the software
faults in our dataset. We discuss them in detail below.

Build, Deployment, and Orchestration ROS software is structured in packages distributed
with a package manager (e.g., apt, pacman, dnf) and in a source form. Packages are
built using one of ROS’s generic build tools, such as catkin. Under the hood, packages
with C++ code are built with CMake using an accompanying CMakeLists.txt script
obeying several ROS-specific conventions. Faults can appear in all specifications and scripts
in the set up of packages, installation manifests, interface description languages (IDLs),
and build. We include static compilation and linking errors under this theme as part of
build [mavros:282c9be, universal_robot:39eb24f, motoman:ddc6f36]. In total, the ROBUST
dataset contains 77 entries of this kind. Interestingly, this is the second largest theme within
the dataset, suggesting that these robotics systems suffer from modularity, dependency, and
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Table 3 Top-level themes identified in fault analysis of ROBUST bugs

Theme Description N

Build, deployment, orchestration Faults in source code and build
infrastructure that ultimately lead to
failures at build, deployment and
composition-time. This theme cov-
ers syntax errors, bad imports, broken
dependencies, etc.

77

Run-time configuration Faults that occur in configuration files
that lead to a misconfiguration of the
system. Includes incorrect parame-
ters, arguments, constants, topics, and
namespaces.

28

Concurrency Faults related to the use of shared
resources, including missing or
flawed synchronisation, mistimings,
and incorrect signal handling.

20

Evolution Faults that are introduced by the
change of a component, whether that
be internal or external, that is not han-
dled by the rest of the code. This
include changes in programming lan-
guage, directory structure, internal
and external APIs, and underlying
hardware and firmware.

37

General programming Faults that typically occur during pro-
gramming that are not exclusive to
ROS or robotics. This includes incor-
rect logic and calculations, syntax
errors, broken contracts (e.g., API and
protocol misuses), and missing fea-
tures.

123

Models Faults affecting the accuracy and
consistency of the robot’s model of
the world. This includes inaccurate
robot and world models, missing or
faulty transformations (e.g., coordi-
nate frame transformations) and con-
versions (e.g., degrees to radians), and
incorrect physical units.

20

Systems Faults that either occur outside of the
source code and configuration files of
a system, or due to the interaction
between the software and the system
that it runs on. These faults may come
from hardware devices and firmware,
the system environment, or platform
incompatibilities.

8

ColumnN shows the number of bugs labeled with a given theme. Bugs may be labeled with more than one
theme
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Fig. 9 A Package XML file provides basic package metadata, including name, version, and dependencies
(source: wiki.ros.org/catkin/package.xml, 2020-08-10)

distribution issues significantly. In fact, these issues are more prevalent in these systems than
the robotics-specific issues. Below, we discuss the sub-categories within this theme.

– Problems with code generation: ROS automatically generates language bindings for
clients using custom messages, services, and actions, from so called .msg, .srv, and
.action files. The generators or the generated code need to be available for the client
and server code to build. Typically the errors relate to missing dependency of the build
on the generator or to missing imports of the generated files [kobuki:17560e9, care-
obot:105dc16].

– Dependency problems: A manifest package.xml2 specifies dependencies for build-
, test-, run-time, and documentation of a ROS package (Fig. 9). A dependency is
either another ROS package (e.g., std_msgs, roscpp) or a system dependency
installed via a package manager (apt on Ubuntu). The dataset contains numerous
dependency faults both for package [motoman:9df36cb, geometry:e12e723] and sys-
tem dependencies [careobot:c8091b6, careobot:ac6a181] that cause failures at build
and execution time. A missing run-time dependency on eigen_conversions in the
depth_image_proc package crashes the TurtleBot’s image processing node, caus-
ing no images to be received from the camera [turtlebot:f01d952]. Transitive dependency
faults arewhen apackagewrongly relies on its dependency to provide another one.Kobuki
developers expected that libusb-dev includes a required header file stdint.h,
which is only packaged with libusb-dev on some systems [kobuki:0027b57]. Circu-
lar dependencies, where two packages depend on one another, can also cause inconsistent
build outcomes and failures [kobuki:f95c384, turtlebot:3390789].

– Problemswithmeta-packages:Meta-packages simplify simultaneous installation ofmul-
tiple related packages. They solely contain dependency specifications. ROS packaging
standards do not allow proper packages to depend on meta-packages. The build tool,

2 http://wiki.ros.org/catkin/package.xml
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Fig. 10 A subtle fault in the specification of a joint led to an inaccurate robot model being used for planning,
visualization, and simulation [motoman:1ec8ca1]

catkin, enforces this rule by reporting an error3 [universal_robot:3a48064, univer-
sal_robot:a58f4b5].

– Problems at the ecosystem level: In rare cases, dependency problems appear outside the
artifacts of the individual packages. In the case of kobuki:e3c9bbc, the fault was placed
in the index of the ROS Distribution. A source version of a package was missing from
the index, preventing others from downloading and building the package from source
(Fig. 10).

Run-Time Configuration ROS supports developers to build complex robot systems by com-
posing reusable software components (nodes). To reduce spatial coupling (Eugster et al.
2003), and to facilitate rapid prototyping, the nodes API is unaware of the nodes responsible
for providing, reading from, or writing to a particular topic. Instead, nodes interact via topics
and their associated names. The use of strings to identify communication channels allows
nodes to be spatially decoupled, thereby facilitating rapid prototyping and dynamic archi-
tectural changes. However, such “stringly types” (Atwood 2012) prevent, for the most part,
misnamings and misconfigurations from being discovered until run-time [mavros:263650d].
The dynamic, stringly-typed nature of ROS’s run-time architecture forces nodes to rely heav-
ily on conventions and assumptions, which are typically neither enforced nor checked.

To allow nodes to be used in a variety of contexts, configuration files often use name
remapping and namespaces. Remappings (e.g., of topic names) are used to change names
for a particular node, allowing nodes with different naming assumptions to interoperate.
Unfortunately, incorrect remappings are easily introduced and sometimes difficult to identify
[turtlebot:3e32933]. Topic remappings are often used together with namespaces to provide
access to a group of related resources. Namespaces are typically used to safely manage
multiple instances of a particular component (e.g., a robot, sensor, algorithm) by creating a
scope. The use of hard-coded global names prevents multiple instances for a component and
is considered an anti-pattern [turtlebot:a482f82].

3 https://ros.org/reps/rep-0127.html
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Parameters are also used to tailor the behavior of a component for a particular application or
purpose. Failure canoccurwhen incorrect values are supplied to parameters [kobuki:d9aa656]
or when the wrong parameter name is used [kobuki:8a729db]. If a node attempts to read from
an undefined parameter (e.g., due to a typographical error), ROS may quietly use a default
value, leading to unexpected and difficult-to-debug behavior [mavros:e1a8005].

Concurrency ROS nodes can be implemented as either individual processes on the same or
different machines that intercommunicate via network protocols (e.g., XMLRPC, TCPROS,
UDPROS), or as threadswithin a single process that intercommunicate via zero-copymessag-
ing. Naturally, ROS’s distributed architecture leads to various concurrency and timing-related
issues.

The most common concurrency-related fault within our dataset is a lack of syn-
chronization [kobuki:62a38a9, geometry:15b2e3c, mavros:1f01916]. In some cases, syn-
chronization primitives are present but are either misused, leading to liveness failures
[geometry:74f0c66], or are incomplete, failing to provide synchronization generally
[roscomm:ca23e58]. We also observe a small number of timing-related issues within the
dataset [kobuki:f548cc7, kobuki:5a44ead]. For example, when reporting the states of the
robot’s joints to the joint_states topic, mavros:753226d failed to assign a timestamp
to the sensor_msgs/JointState message, leading recipients to ignore the message
as stale. Finally, faults may involve missing or incorrectly implemented signal handlers
[mavros:29af3a3]. For example, in kobuki:f548cc7, a lack of appropriate signal handlers pre-
vented the robot from safely and gracefully terminating its software processes upon receiving
a SIGTERM signal.

Evolution Failures may suddenly appear as a result of changes to the environment in which
the package is built and deployed, without any modification to its source code. Similarly,
internal changes in one part of a package may not be reflected in other areas of that package
leading to a variety of build issues and run-time failures [geometry:0481047,mavros:bdda1fa,
kobuki:8a729db]. Potentially disruptive changesmay occur through the introduction of newer
programming language versions and compilers [geometry:7677ca7], operating system dis-
tributions [turtlebot:928306b], and ROS distributions [universal_robot:56cf07f], which lead
to downstream issues in packages that rely on the older behavior. Changes to the robot’s
underlying hardware and its associated firmware that are not reflected in its software may
also lead to issues [kobuki:b18f559, mavros:de2cc36].

Most commonly, problems arise as a result of changes to a dependency. While ROS
packages may state their dependencies, there is no first-class mechanism for pinning those
dependencies down to a particular version or set of versions, cf. PyPI (Coghlan and Stufft
2013). A library may alter, remove or deprecate parts of its API or ABI, leading to
build failures [kobuki:5abe7d4, kobuki:9c8abeb] or unexpected behavior at runtime [turtle-
bot:61a75df, kobuki:55e84a6]. Issues are especially likely to occur when such changes
are not reflected in the documentation [kobuki:9682b9a]. Existing source code, configu-
ration, and data files may be changed [careobot:b826eae], moved to a different location
[motoman:6a7a506, mavros:101c09b, kobuki:5abe7d4], or disappear unexpectedly from a
dependency that provides them [kobuki:8c30446]. ROS names (e.g., topics, services, action
servers, parameters) and namespacesmay be inconsistently changed between source code and
configuration files [universal_robot:778c1ac, mavros:263650d, kobuki:8a729db], and partic-
ular publishers, subscribers, and services may be changed or removed [mavros:bdda1fa].
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General Programming Unsurprisingly, many faults within the ROS systems are general pro-
gramming mistakes that could occur in any software, including typo mistakes, using the
wrong logical or arithmetic operator [mavros:c172409], “copy-paste” or “clone-and-own”
mistakes [geometry:439e235], code smells [confidential:86cb680,], and issues stemming
from “stringly types” [mavros:dab1b8a].

We observe a variety of mathematical, logical, and control-flow issues. Several
bugs stem from incorrect loop invariants [mavros:86255ba], mishandled loop variables
[mavros:215010d], and missing loop break conditions [kobuki:e34428d]. A number of bugs
occur as a result of missing or incorrect input validation [geometry:d12b890] and robust-
ness measures [confidential:2688e7a], fail to adequately account for certain corner cases
and boundary conditions [kobuki:af7946f], or lack important features [motoman:b1b6fcb].
Faults may also occur in mathematical calculations [geometry:860b866 ]. Bugs also occur
as a result of API misuse and contract violation [universal_robot:b3c2c21], or, conversely,
when an implementation does not satify its API specification [mavros:599c588].

Weobserve anumber of issues specific toC++, for example: string length [mavros:2998e9f],
string formatting [geometry:164cfa3], namespaces [geometry:b206807], multiple definitions
[geometry:f19569c], and zero-copy messaging [kobuki:dbcdb12]. Uninitialized variables
[mavros:fcf9cd9] and incorrect type casts and conversions [motoman:292b5cc] can lead
to surprising failures at run-time. Numerous issues occur as a result of poor resource
and memory management including off-by-one errors [universal_robot:cda133d, geom-
etry:729a653], overreading buffers [universal_robot:359a2e9], and incorrectly calculated
indices [kobuki:9397c6b]. Similarly, we also notice issues related to the misuse of Python
features including missing or incorrect type conversions and checking [geometry:cec6208,
geometry:e4466f0, geometry:d12b890], and bad imports [turtlebot:61a75df].

Models All of these faults lead to the robot forming an inaccurate model of reality. They
may occur as semantic errors in the robot’s URDF, Xacro, STL, and DAE files, which
provide a physical and visual description of the robot for motion planning, visualization,
and simulation. For example, the 3D meshes used to describe the robot may be missing,
malformed, or incorrectly handled [motoman:0829607,motoman:6a7a506, kobuki:4ea5ea7].
Alternatively, the robot description files may incorrectly specify physical dimensions, mass,
and inertia of the robot [kobuki:493e3f9, universal_robot:21b86f6, motoman:1ec8ca1].

Inaccurate models of reality can also come about as a result of missing or incorrect
transformations and conversions [mavros:b96bf67]. For example, other:22e4e4f sees the
visual and depth data from a Kinect V2 camera and its associated Freenect2 driver presented
in a non-standard format, flipped around its vertical axis (“mirrored”), to an application that
is unaware of the transformation. Similarly, an error in a parameter name in mavros:ff581a0
sees the robot incorrectly report its (x, y, z) coordinates as (x, x, x). In bug mavros:b96bf67,
MAVROS, which operates in a different coordinate frame to MAVLink, fails to correctly
handle rotation when converting and sending coordinates to MAVLink.

Systems Faults occur as a result of an interaction between the software and the system to
which it is deployed. This includes the use of operating system and distribution-specific
code or file formatting, preventing the software from being deployed to some platforms
[kobuki:95b24e8, mavros:31ad11d, turtlebot:a4f35ee].

Alternatively, faults may occur due to interaction between the ROS software and an
underlying (faulty) hardware device and its associated firmware (e.g., kobuki:841720a,
kobuki:b18f559, mavros:de2cc36). For example, in kobuki:606b8b9, when the USB serial
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cable is disconnected from the robot, the ROS driver node will, following the udev rules for
the robot, attempt to read data from an unsupported bluetooth interface, leading the node to
crash under certain conditions.

ROS packages can also provide shell scripts known as environment hooks which are typi-
cally used to set up environment variables. Issuesmay arise from themisuse of environmment
hooks. For example, turtlebot:3ea2c30, introduced an environment hook that depended on a
package that was not stated as a dependency in the packagemanifest. In cases where the other
package was not coincidentally installed, error messages would be printed to the terminal.

4.2 RQ2:What Failures Occur in Robotics Systems?

We refine the research question RQ2 into the following sub-questions:

RQ2.1 What immediate failures occur in robotics systems?
RQ2.2 What ultimate failures occur in robotics systems?

Both questions address failures, but do so at different levels. Immediate failures, or the
software-level failures, are failures that are immediately noticeable when testing or using
software; for example, a ROS node crashes at startup or sends messages at a slower rate than
expected. The propagation of the immediate failure throughout the entire robotic system
might however result in a different kind of externally observable failure—the ultimate failure
manifestation, or a system-level failure. For instance, a node that publishes incorrect velocity
mightmake the robot turn to thewrongdirection or becomeunresponsive, if other components
detect and reject the incorrect values. Software-level failures rarely have no observable effect
at the system level.

RQ2.1: Software-Level Failures

Table 4 summarizes the high-level themes that resulted from the thematic analysis of imme-
diate software-level failures in ROBUST. For each theme, we list the relative frequency in
the dataset. We provide further details on each theme below.

Build Bugs that manifest at build- or install-time are most often a direct consequence of
faults under the Build, deployment and orchestration theme. Faults from other categories
can also manifest at build time, when detected by code scanning tools or compilers. As they
occur prior the system being able to run, they cannot result in a system-level failure.

Two main types of build bugs exist in this category: (i) bugs which cause immediate build
failures, and (ii) bugs which cause failures when packages are consumed as dependencies
by developers or users. Examples of the former include not linking against used libraries
[kobuki:ddc6f36], missing dependencies on code generator targets [careobot:105dc16], vio-
lating packaging policies [universal_robot:0c34123], exporting incorrect package metadata
[kobuki:45ee84a] and incorrectly specifying install targets [geometry:a723ecb]. Examples of
the latter includemissing declarations of transitive dependencies [geometry:4c160d3] and an
incomplete build environment setup [kobuki:fd6b589]. Examples of deployment related bugs
include kobuki:9de9690 and motoman:259b468, which both cause files expected by users to
be absent from the runtime environment. The failures manifesting in dependent projects are
particularly hard to diagnose, as they are observed by users in a completely different context
than the one containing the fault.
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Table 4 Top-level themes of software-level failures identified within the dataset

Code Theme description N

Build Failures that prevent the successful completion of the
build or installation process, such as compilation and link-
ing errors.

54

User Experience Failures that exclusively affect the user experience and
do not result in software crashes or undesired behavior,
nor affect the functional or non-functional performance
of the robot, unless one considers the operator providing
inputs to the robot via a user interface.

20

Performance Failures that manifest in the degradation of non-
functional performance of one or more software com-
ponents, but do not necessarily result in any observable
degradation of functional performance at the system
level.

2

Crashing Failures that lead to a software crash in an individual node
at startup or runtime, such as failing to locate runtime
dependencies, memory corruption or simple type errors
in dynamically-typed programming languages.

Liveness Failures that cause an individual software component to
become unresponsive due to, for example, a deadlock or
an infinite loop.

15

Network Failures that affect messaging behavior (between com-
ponents) of individual software components, resulting in
undesired functional behavior in either the sender, the
receiver or both.

7

Behavioral Failures that result in undesired functional behavior in
one or more software components, and which do not lead
to software crashes or liveness issues. Behavioral fail-
ures may be caused by, for example, miscalculations,
logical errors, and violating contracts, or under cer-
tain unpredictable circumstances, memory-related errors
(e.g., stack and heap corruption).

68

ColumnN shows the number of bugs labeled with a given theme. Bugs may be labeled with at most one theme;
no label is applied to bugs that do not result in software-level failure

User Experience Bugs in this category influence the efficiency and efficacy of a robot operator
affecting theway inwhich anoperator either receives information fromor provides commands
to the robot.

Examples include misreporting the status of hardware subsystems, such as battery state
[kobuki:841720a, kobuki:bb3c7ec], not showing information due to misconfiguration of the
interface [kobuki:8a729db], incorrect positioning of 3D data in the UI due to parameter
lookup falling back to defaults [mavros:84264f0], or because of updates to visualization
tools which are incompatible with used 3D models [turtlebot:9299530]. Other example
bugs include faulty data transformation causing wrong information to be shown to users
[mavros:a67d81d] and presenting the same data twice under different names due to use of
an outdated communication protocol [kobuki:b18f559].

Performance Failures observed as a reduction of performance of individual components, but
which do not influence the perceived performance of a complete system. Examples include
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not using language or framework features for efficiently passing data [mavros:0e2ea0c,
kobuki:dbcdb12] and misconfiguration of framework features resulting in less efficient pass-
ing of data [kobuki:dd40270, kobuki:5ee65b0].

Crashing Failures observed as a crash of an individual node at either startup or run-
time. The faults causing these failures include missing runtime dependencies (ROS
nodes [turtlebot:891cb68], Python modules [careobot:c8091b6], shared libraries [turtle-
bot:f01d952]), incorrect linking of libraries [kobuki:3e88010], use of non-existent files
[kobuki:9682b9a, geometry:fc854e0], use of malformed files [motoman:90a9464, care-
obot:b826eae], incompatible firmware on external devices [kobuki:c04eae5], management
of resources [geometry:001fca6, geometry:6c13c78,mavros:215010d], out-of-bounds access
[geometry:729a653, mavros:4fb6e7e], incorrect or unsafe concurrency [roscomm:ca23e58,
geometry:12605ab] and hard-coding expectations about OS or runtime environment [turtle-
bot:a4f35ee].

Liveness These failures render an individual software component unresponsive due to, for
example, a deadlock or an infinite loop. Liveness failures are a formof denial-of-service. They
disturb the continued operation of a component or prevent the safe termination of the com-
ponent or its service. Deadlocks occur both internally to a component [mavros:1f01916,
geometry:74f0c66] and between an external system [universal_robot:bd1fce5]. Infinite
loops can be caused by incorrect handling of termination conditions [kobuki:38dce2a,
mavros:86255ba] or absence of such conditions [kobuki:6e748c1]. Other faults causing live-
ness failures include incorrect use of network functionality [roscomm:eab0d3c].

Network Network failures manifest by affecting messaging between individual components,
resulting in undesired functional behavior in either the sender, the receiver, or both. Examples
include incorrect handling of communication failures and protocol mismatches [confiden-
tial:2688e7a, confidential:332f09f, confidential:c5dc9de], failing to set message fields which
may lead to subsequent misinterpretation [mavros:594978d], missing publisher queue sizes
leading to inefficient and unintended blocking [kobuki:dd40270], and messages being lost
due to an incorrect implementation of IPv6 [roscomm:eab0d3c].

Behavioral This theme covers run-time failures that result in undesired functional behavior
other than software crashes or liveness issues. Behavioral failures are caused by, for example,
miscalculations [kobuki:af7946f], incorrect implicit assumptions about input [confiden-
tial:96e2c6c], logic errors [geometry:566092b, motoman:292b5cc, roscomm:ca23e58], con-
tract violations [mavros:599c588, mavros:de2cc36], misconfigured networking
[kobuki:dd40270, roscomm:eab0d3c], incorrect processing of network data
[mavros:594978d], or memory-related errors (e.g., stack and heap corruption). Some of these
are robotics-specific, but most are usual specification violations known from regular software
development.

RQ2.2: System-Level Failures

Many faults initially manifest in a component and then propagate to other components,
possibly affecting the system as a whole, giving rise to system-level failures. We analyzed
the repositories for drivers, controllers, and other components that are, ultimately, building
blocks for concrete robotic applications. But, given that there is no well-defined concept
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of system or application in ROS, what looks like a fully functional system (e.g., a robot
patrolling a known map) can either be the complete system, as envisioned by the users, or
simply a complex component of a larger system (e.g., multiple robots working in concert).
Thus for bug reports devoid of information at the system level, such as what was the robot’s
mission and how it went wrong, we resort to to our experience and make an educated guess
at how software-level failures manifest from a system perspective.

For RQ2.2, we performed a thematic analysis of the externally observable symptoms
of failure at the system level. Table 5 lists the five high-level themes that resulted from
this analysis. As we can see in the table, system-level failures are different from software-
level failures. First, the definitions are more open-ended, in the sense that many types of
observable symptoms fit under a given theme. Second, while the themes are distinct, there
are no clear boundaries between themes, or a logical sequence over them. It is possible for
a software failure to propagate and manifest in such a way that it fits multiple themes at the
system level. For example, consider a robot driver that receives velocity messages, updates its
estimated pose, and converts the velocity message into actuator commands for the hardware.
If the conversion is miscalculated (e.g., wrong sign), the driver would report a correct pose
estimation, as per the received messages, but would move in unintended ways (e.g., turning
right instead of left). While this is clearly a behavioral failure (the robot does not do what
it is told), it could also be perceived as a communication failure (the robot reporting a pose
estimate that diverges from its observed movement).

Not all faults propagate all the way up. It is possible for software-level failures to be
harmless at the system level, or to have no manifestation at all. For an obvious example, a

Table 5 Top-level themes of system-level failures identified within the dataset

Code Theme description N

Loss of Functionality Failures that make the functionality
offered by a group of system compo-
nents unavailable. User’s perspective:
“the camera stopped working!”

42

Unresponsive Failures that make the system become
unresponsive to a number of opera-
tor commands. User’s perspective: “it
does not move!”

26

Degraded Performance Failures that cause the system to miss
deadlines or perform one or more
tasks with reduced timeliness. User’s
perspective: “it moves too slowly!”

7

Behaving Incorrectly Failures that make the robot perform
unintended movements or actions, or
perform the intended commands but
with unexpected outcomes or side
effects. User’s perspective: “it turned
left instead of turning right!”

44

Monitoring Failures that result in inaccurate obser-
vation and diagnosis of the system’s
current state, via user interfaces of
various types. User’s perspective: “I
cannot see the battery levels!”

11

Column N shows the number of bugs labeled with a given theme. Bugs can be labeled with more than one
theme; no label is applied to bugs that do not result in system-level failure

123
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failure during the build process does not affect the system as a whole, because the system is
not yet deployed at this stage. The ROBUST dataset contains 106 bugs that had nomeaningful
manifestation at the system level. An example of this is kobuki:8163705, in which developers
handled a raised exception within the code, but reported the handled exception in the error
logging stream instead of the debug stream. This misled users into believing that an actual
error was occurring. Despite the faulty component, the system as a whole worked correctly.
We now provide further details on each of the identified failure themes.

Loss of Functionality This theme covers failures that bring down parts of the system. Partial
loss of functionality prevents the use of certain non-critical features under particular condi-
tions. This is typically something the system can recover from even though it might affect
its overall performance. Substantial losses, on the other hand, are more likely to result in
mission failure. For example, if a robot’s safety controller is unable to respond to bumper
events it would not hinder the robot’s ability to perform its mission, if it never bumps into an
obstacle, or if a redundant sensor is present. But losing the safety controller in its entirety,
would likely be considered too dangerous to keep the robot in operation.

The software-level failures that most likely escalate to a loss of functionality are crashing
and liveness failures. If a component, or group of components, crashes or becomes other-
wise unresponsive, the functionality it provides is lost to the system. Behavioral failures can
also result in a loss of functionality. When a component behaves incorrectly due to logical
mistakes, a functionality may be locked away due to the program never entering the appro-
priate execution path. User experience failures propagate in a similar fashion; a poor user
interface might omit features by missing buttons or using unclear language. Network failures
are more varied; loss of functionality, in this case, could be due to dropped messages in a
misconfigured system, where the channel that enables the functionality becomes unusable.
Performance failures are less likely to lead to loss of functionality, unless features are lost
when their response times become too slow.

In the ROBUST dataset, most software-level failures that escalate to a system-level loss of
functionality are crashes (20 out of 42). The remaining bugs are split between liveness (2),
network (8) and behavioral failures (12). There are examples of both partial and substantial
functionality loss. In mavros:86255ba an infinite loop prevents users from accessing and
manipulating parameter values at runtime, while in roscomm:eab0d3c the robot is unable to
communicate with a ground control station (both partial losses). Crashes in the robot driver
prevent interaction with the robot base [motoman:377d7be, universal_robot:359a2e9], and
a bad topic remapping causes velocity commands to be ignored, preventing all movement
[kobuki:35682ec] (critical functionality losses). Software crashes in the vision pipeline, an
essential part of localization and navigation, can also prevent autonomous movement of the
robot [turtlebot:f01d952, turtlebot:3e32933].

Unresponsive These dangerous failuresmake the system unresponsive from the user perspec-
tive. The human operator cannot control the robot, despite it being turned on and working.
The operatormight be unable tomake the robot perform its mission and to react to unintended
and potentially dangerous behaviors.

Any software-level runtime failure can escalate to unresponsiveness. A crash of a
node can prevent operator inputs from reaching the robot. A node that behaves incor-
rectly, say a velocity multiplexer, can prevent user input from reaching the robot due
to logical errors. The ROBUST dataset contains examples of unresponsiveness that occur
deterministically at startup [kobuki:fbe70c7,mavros:263650d], unexpectedly at runtime [uni-
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versal_robot:359a2e9, universal_robot:bd1fce5], or when the operator attempts to safely stop
the robot [kobuki:38dce2a, mavros:29af3a3]. In terms of the software-level failures, 20 out
of 26 records fall under one of two sources: crashing and liveness. In the former, robots
may become unresponsive due to missing runtime dependencies that crash core components
[universal_robot:58790ba]. As for the latter, robots may become unresponsive due to, e.g.,
infinite loops [mavros:86255ba]. In another example, the program ignores the termination
signal, preventing the user from safely terminating the robot with SIGTERM if the robot
begins to behave dangerously [kobuki:054c753].

DegradedPerformance Safe and effective robot operation often relies on the systembehaving
in a timely manner. Some computations are expected to complete periodically, with a given
frequency; others are expected as a timely reaction to a given stimulus. A system fails due to
lag (reduced timeliness) if it does not meet expected deadlines. For many robotic tasks, such
as detecting and avoiding obstacles or picking up parts from a conveyor belt, a delay means
failure.

Any software-level runtime failure may reduce system timeliness. A crash of a node that is
set to respawn (i.e., start again after sudden termination) is a failure from which the system
can recover, but likely with noticeable delays. Intermittent liveness failures can easily lead
to reduced timeliness, too. Still, performance-related software failures (e.g., CPU and GPU
load) are likely the main culprit of degraded non-functional performance for the system as a
whole.

The seven software failures in ROBUST that may affect the timeliness of the system are of
types crashing, liveness, and performance. For example, geometry:1b5fa94 leaks memory
at the component level, at a rate of about 15 megabytes per second. When running for long
enough, systems tend to slow down, due to the lack of resources, until they eventually crash.

Behaving IncorrectlyA robot’s observable behaviour is described not only in terms of digital
effects as in other software systems, but also in terms of physical effects, such asmoving from
one place to another. When the software produces unintended outcomes, such as moving in
the wrong direction or at a wrong velocity, we face a functional failure. This type of failure
can easily pose physical danger to humans, living beings, the robot itself, and surrounding
valuable objects.

Any software-level failure could end up escalating to incorrect functional behavior.
Crashes or liveness failures in runtime monitoring components, such as safety controllers,
could make the robot move into objects. Performance failures in components that issue
movement commands can prevent the robot from acting as intended. User experience fail-
ures can also lead to unintended movement. If a user interface assigns the wrong label to
a command button, the user would observe a robot movement that does not match their
expectations. Finally, behavioral failures (especially those stemming from miscalculations
or logical errors) are among the most likely causes for unintended movement.

Many functional failures in the ROBUST dataset originate from behavioral software
failures (36 out of 44). Failures may be caused by incorrect or imprecise calculations [geom-
etry:439e235, kobuki:f7946f], missing frame conversions [mavros:248cb38], and the use of
absolute rather than relative time [universal_robot:b3c2c21]. In kobuki:af7946f, a calculation
error causes the robot to move slowly and turn in wrong direction when dealing with low
negative linear velocities and rotation commands. Unintended movement may also occur as
a result of rounding errors and numerical imprecision [motoman:9bf25ea, kobuki:1c141a5].
For example, in kobuki:1c141a5, a loss of precision while converting a float to a short
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https://github.com/robust-rosin/robust/blob/master/geometry2/1b5fa94/1b5fa94.bug
https://github.com/robust-rosin/robust/blob/master/geometry2/439e235/439e235.bug
https://github.com/robust-rosin/robust/blob/master/kobuki/af7946f/af7946f.bug
https://github.com/robust-rosin/robust/blob/master/mavros/248cb38/248cb38.bug
https://github.com/robust-rosin/robust/blob/master/universal_robot/b3c2c21/b3c2c21.bug
https://github.com/robust-rosin/robust/blob/master/kobuki/af7946f/af7946f.bug
https://github.com/robust-rosin/robust/blob/master/motoman/9bf25ea/9bf25ea.bug
https://github.com/robust-rosin/robust/blob/master/kobuki/1c141a5/1c141a5.bug
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during a repeated calculation caused the robot to move in the opposite direction in special
cases.Missing or incorrectly implemented safety features can also lead to unintendedmotion,
such as in motoman:b1b6fcb, where the robot is able to immediately resume motion from a
paused state. In kobuki:ad906f0, a lack of acceleration smoothing causes the robot to abruptly
perform wheelies when instructed to move from an idle position. Lastly, hard-coded speeds
in kobuki:0416c81 prevent heavier-than-anticipated robots from being able to move, and
inaccurate joint limits in universal_robot:89145c4 and motoman:2d42582 cause the robot
arm to collide with itself or attempt to reach physically unreachable positions.

Monitoring These failures hide or misrepresent the robot’s internal state from a user perspec-
tive. They prevent the human operator from accurately observing or diagnosing the robot.
Being able to observe the state of the robot is crucial to ensure an additional layer of safety
and emergency responses from the human operator (explainability). Accurate monitoring
may help prevent a robot from hitting an obstacle or overloading hardware components.

Almost any failure can lead to divergence between the actual state of the robot andwhat the
operator observes. Incorrect calculations in a sensor node can manifest in incorrect behavior
(publishingwrong data),which could cause the system to build and display an incorrectmodel
of the world. Node crashes, node liveness issues, or degraded non-functional performance
likely result in stale data and a model that lags behind the actual state of the robot and its
environment.

Our dataset contains mostly examples of incorrect behaviour that escalate to monitor-
ing failures (9 out of 11). For instance, in geometry:860b866 incorrect vector translations
end up producing wrong pose values, which ends up producing incorrect visualizations. In
mavros:fcf9cd9 and mavros:753226d issues with visualization are caused by uninitialized
variables carrying wrong default values.

5 Findings

In this section, we interpret the results of our study in light of the existing literature and
discuss the implications for both practitioners and researchers. Table 6 summarizes the key
findings and their impact on future work.

Building high-quality reusable robotics software components is difficult ROS’s modular
design, rich package ecosystem, and spatially decoupled run-time architecture allow its users
to quickly and easily build diverse robots using off-the-shelf hardware and software compo-
nents without being an expert in all areas of robotics (Kolak et al. 2020).However, those same
characteristics make it difficult or impossible to anticipate incorrect or unintended interac-
tions between that ROSmodule and its application, firmware, operating system, and hardware
context. Sources of variability include: hardware components, models, and firmware; oper-
ating system distributions; language and compiler versions; ROS parameters and launch
arguments; and package versions. Even if the source code for aROSnode remains unchanged,
its environment will continue to evolve, creating opportunity for unexpected failures.

Exhaustively testing all possible variations to find potential failures is both technically
challenging and prohibitively expensive. Instead, the risk of an unexpected failure due to
unexpected interactions can be mitigated by identifying, minimizing, and testing sources of
variability within a process of continuous integration and deployment. Most software-related
sources of variability (e.g., OS distributions, language and compiler versions, package ver-
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Table 6 A summary of the key findings from building the ROBUST dataset

Finding Impact / Action / Future Work

Many late-stage failures are caused
by misconfiguration, feature interac-
tions, and co-evolution of compo-
nents, platforms, and hardware.

There is need for better tools to detect
and address potential incompatibili-
ties between hardware and software
components ahead of deployment.
Our dataset provides many case stud-
ies for researchers willing to address
this challenge.

Many of the problems contained in the
ROBUST are similar to those experi-
enced by other software engineers.

This calls for prioritization of research
and innovation. Consider whether it
is more beneficial to focus on gen-
eral software technologyor on specific
tools aiming at narrower problems.

Many of the general programming
mistakes within ROBUST could, in
theory, be caught by existing, general-
purpose QA tools and practices.

More action research combining soft-
ware engineering researchers and
robot programmers is needed to bet-
ter understand this gap, to increase
awareness of QA methods & tools
within robotics, and to make software
engineering methods more accessible
to programmers from non-computing
backgrounds.

Detecting system-level failures relies
heavily on human oracles; Specifying
and monitoring intended behaviour is
fundamentally difficult.

ROBUST provides 115 examples of
such bugs that can be used to drive
research into oracle specification and
inference and automated testing for
robotics software more broadly.

Many bugs are detected during sys-
tems integration. ROBUST bugs were
reported against software compo-
nents, thus, in principle, they should
be detectable in earlier life-cycle
stages.

ROBUSTprovides a dataset to experi-
mentally assess whether, indeed, unit
testing, fuzzing, combinatorial test-
ing, or other automated techniques
could have detected these faults early,
and if so, at what cost.

Failures are complex but fixes are
often simple. However, they are heav-
ily domain- and project-specific.

We recommend developing generic
methods for building lightweight pro-
gram analysis and program fixing
tools, in the spirit of language work-
benches (lightweight tools for devel-
oping languages).

sions) can be controlled effectively by using containers (e.g., Docker) to package, distribute,
and deploy specific versions of individual nodes. Indeed, the use of Docker containers has
gained popularity within the ROS community (White 2019). Hardware-related sources of
variability (e.g., differing models, revisions, firmware) are harder to minimize and must be
tested via the slow, expensive, and complicated process of software–hardware (SW/HW)
integration testing (Afzal et al. 2020). This testing is often performed in an ad-hoc manner by
taking a joystick and manually running the robot through several scenarios, chosen based on
intuition. However, more sophisticated setups have been used to perform continuous integra-
tion of hardware and software by deploying new software releases to a fleet of robots within
a controlled testing facility outfitted extensively with a variety of sensors (Henning 2016).
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Given the inherent costs and associated challenges of dynamically detecting errors due
to misconfiguration, there is a need for tools that can reliably detect the presence of such
errors ahead of testing and deployment. One approach is to require or allow additional
specification from users (Bardaro et al. 2018; Martinez et al. 2021; Bozhinoski et al. 2021).
Indeed, ROS 2 is moving in this direction. For example, ROS 2 requires that parameters be
declared and allows users to specify expected types and value ranges that are checked at
run-time (ROS2 2021; The Robotics Back-End 2021; Foote 2021). Care needs to be taken
however, as increasing the specification burden upon users can be both heavyweight (i.e.,
writing programs takes longer) and constraining (i.e., not all programs are covered). As
an alternative to relying on increased specification, a number of papers have proposed the
greater use of inference (Witte and Tichy 2018; Santos et al. 2016, 2021, 2019; Timperley
et al. 2022). For example, tools such as HAROS and ROSDiscover combine the coarse-
grained architectural information provided in ROS configuration files with static analysis of
source code to approximate run-time architectures.Whether inference tools canbe sufficiently
powerful to produce accurate results and eliminate the specification burden remains an open
question. Instead, the most effective approach may be in building inference techniques that
exploit lightweight specification that is quick and easy for developers to provide, such as that
required by ROS 2 parameters.

ROS developers make the same mistakes as other developers Most ROS software is written
in C++ and Python. Naturally, it inherits the same set of general programming mistakes that
are observed in those languages. Given the potentially catastrophic consequences of failure
within the domain of robotic systems, it is vital that we reduce the space of possible failures
by eliminating the possibility for common programmermistakes (e.g., memorymanagement,
unhandled exceptions, missing synchronization). This may be achieved either through the
use of safe languages (e.g., Rust (Matsakis and Klock 2014), Erlang (Virding et al. 1996)),
the introduction of new safety features and programming abstractions into existing languages
(e.g., RxROS (Larsen et al. 2021)), or the development of easy-to-use analysis tools that reli-
ably detect certain classes of error (e.g., PhrikyUnits (Ore et al. 2017), Phys (Kate et al. 2018),
PhysFrame (Kate et al. 2021)). Solutions need to be accessible to ROS’s broad demographic
of users, without compromising run-time performance or entirely sacrificing the lightweight,
prototypical aspects of ROS. Advanced computer science knowledge should not be assumed
(Alami et al. 2018). It is a crucial finding of this study that, in fact, most software develop-
ment problems faced by robotics developers, as documented in issues and pull requests in
ROBUST, are similar to those experienced by other software engineers. The robotics-specific
issues do not dominate the landscape.

Many problems are in classes addressed by existing tools Just as ROS developers make the
same mistakes as other developers, we observe that many of those mistakes could be caught
by existing, general-purpose QA tools and practices. For example, incorrect or missing build
and run-time dependencies can be quickly detected by automatically building and fuzzing
as part of a continuous integration pipeline. Certain runtime errors bugs caused by, e.g., out-
of-bounds memory access, data races, and resource mismanagement, may also be detected
statically via analysis tools (e.g., Infer (Facebook 2022), Footpatch (van Tonder and LeGoues
2018)) or at runtime viamonitoring instrumentation (e.g., AddressSanitizer (Serebryany et al.
2012), MemorySanitizer (Stepanov and Serebryany 2015), ThreadSanitizer (Serebryany and
Iskhodzhanov 2009)). A key challenge lies in identifying and eliminating the barriers to
adoption for these tools and techniques within the open source robotics community.
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Bug detection relies heavily on human-in-the-loop testing Many software failures in the
dataset (106of221) have no noticeable effect at the system level. As many as 63 of the 106
occur at build time, are easily detected, and, by definition, have no effect on system behavior.
The remaining 43 failures, however, are difficult to detect, lacking immediately noticeable
effects on system-level behavior.

The 115 bugs that lead to externally observable symptoms vary considerably in terms
consequences, ranging from mild annoyance to potential catastrophe depending on the oper-
ational environment. A common theme among these bugs is that their detection relies heavily
on human oracles: It is hard to specify expected behaviour at the system level, especially
in terms of observable physical effects, and it is harder still to automatically observe and
analyze such behaviour. The 115 bugs mentioned above are by themselves a research agenda
for the testing community.

Indeed, the challenges ofwriting tests are reflected in ROBUST: fewer than 10%of relevant
bug fixes (15 of 156) are accompanied by a test case (Section 3). Other studies have made
a similar observation. In a sociocultural study of the ROS community, Alami et al. (2018)
found that the ROS community values the creation of new features and functionality, QA
tasks are perceived as difficult and time consuming, are often undervalued and neglected. In
a series of semi-structured interviews of robotics practitioners, Afzal et al. (2020) find that
field testing is the predominant means of QA within robotics, and that the challenges prevent
or dissuade developers from writing automated tests.

Given the importance and difficulty of writing tests for robotics software, there is an
urgent and growing need for new tools, techniques, and infrastructure to allow developers
to easily and effectively test their robotics software. To that end, researchers have proposed
test input generation techniques for individual components (e.g., Santos et al. 2022) and
entire systems (e.g., Kim et al. 2019), methods for inferring and monitoring intended robot
behavior (e.g., Aliabadi et al. 2017; He et al. 2019; Inoue et al. 2017; Afzal et al. 2021b),
and domain-specific languages for describing simulated testing environments (e.g., Fremont
et al. 2019; Majumdar et al. 2019; Klück et al. 2018; Afzal et al. 2021a).

From a software quality point of view, employing a variety of techniques (possibly in a
dependability case argument) is likely the best approach. In general, it might be easier to
simply detect the underlying software faults with automatic or semi-automatic tools, than it
is to detect the failure at the system level. At the very least, all the bugs collected in ROBUST
have been reported to issue trackers of software components, which indicates that a regression
tests for them might be possible. These further reinforces our view that failures should be
shifted to the left as far as possible, closer to build time, and ideally contained in single
components.

Failures are complex; fixes are often simple While failures can be complex, unpredictable,
and affect multiple components in several languages, over 90% of bug fixes are limited to a
single language, almost two thirds of bugs are fixed in a single file, and most bug fixes are
relatively small in terms of their number of lines added, modified, and deleted (Section 3).
Program repair techniques are most effective when the necessary syntactic changes are both
small (i.e., require changes to few lines of code) and isolated to a particular region of the
program (e.g., a single file or method). Thus, our findings are encouraging for existing APR
techniques whose success is likely to be bound by the lack of sufficient tests rather than the
complexity of the necessary repairs.

That most bugs are fixed in a single language is encouraging for development of analysis
and automated repair tools, which are typically limited to a single language. However, many
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bug fixes occur in domain-specific languages or dialects that lack analysis tools, or else
involve interactions with external components that are difficult to deal with using existing
techniques. While research on domain-specific languages resulted in many efficient and
generic techniques for their implementation (Lämmel 2018; Wąsowski and Berger 2023),
static analysis tools and testing methods for domain-specific models have hardly received
the same attention, even though, as our data indicates, they would be potentially useful in
robotics software engineering practice.

We list ROS-specific analysis tools and techniques that help to tackle some of these
challenges. Techniques have been proposed for both statically and dynamically determining
and verifying interactions (e.g., over topics and services) between ROS components (Witte
and Tichy 2018; Santos et al. 2019). Purandare et al. (2012) implement an analysis that
helps to explain changes in conditional message flows (i.e., the conditions under which
messages are published) between program versions to aid in debugging. Fischer-Nielsen et al.
(2020) provide an approach for automatically identifying and fixing missing ROS package
dependencies. HAROS (Santos et al. 2016) provides a graphical front-end for presenting and
integrating the results of various analyses on ROS systems.

6 Benchmark Infrastructure

To allow our dataset to be used to assess new QA tools and techniques, it is vital that we
provide access to accurate recreations of the build and run-time environments in which each
of the identified bugs took place. Reproducing historical software environments is never
trivial, but ROS, its tools, and the operating systems it runs on proved to be an exceptionally
volatile mix in this project. The interdependence between tools and the required versions
of software libraries complicated building up the infrastructure needed to allow restoration
of the bugs in ROBUST. While we recognise this infrastructure is specific to the context of
ROS, the challenges it addresses are not specific to ROS, and would be experienced when
restoring historical snapshots in any ecosystem depending on heterogeneous, independently
evolving components.

Identification andRetrieval of Historical SourceCode Ahistorical bug is embedded in source
code with many static and dynamic dependencies. In order to build the system with the bug,
one needs the exact version of the buggy source codewith all its build and run-time dependen-
cies as they were at the point in time where the bug was identified—a contextual restoration
snapshot. The following properties of historical ROS bugs necessitate the recreation of a
snapshot of more than just the buggy component:

1. The bug has likely been fixed since it was reported which means it can no longer be found
in up-to-date versions of the source code.

2. The code containing the bug, along with its dependencies and dependants, have evolved,
which precludes compilation of that code on current systems.

3. ROS is an evolving platform, which prevents reproduction with new versions; even
properties other than source-code-level compatibility change, e.g., run-time behavior
of components and semantics of message exchanges.

The possibility of creating a contextual restoration snapshot depends entirely on our ability
to identify the exact version of the source code which caused the bug. For ROBUST, this
information has been extracted from issue reports, pull requests, and by inspection of the
revision log of the version control systems used by the authors andmaintainers of the analyzed
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Fig. 11 Diagram of the rosinstall generator time machine workflow

components. For each bug, we establish the contextual reproduction snapshot as either: (a)
the parent commit of the bug-fixing commit, if the bug has been fixed, or (b) the last commit
preceding the date and time at which the bug was reported. The snapshot does not contain
the fix, but the buggy code.

Recreation of the ROS Distribution Figure 11 shows a visual representation of our approach.
Once we have identified the contextual reproduction snapshot and its associated time, we
reproduce the ROS distribution as it was “back then,” by computing the transitive closure of
all dependencies of the subject package. For a typical bug, this set can range from three to a
hundred packages, bothROSand standardOSpackages (called systemdependencies inROS).
We gratefully make use of the index of all released packages in a distribution, centrally main-
tained in aGitHub repository knownasrosdistro.4 Afile calleddistribution.yaml
in this repository lists all packages released into a specific ROS distribution including
their source repositories and the commit hashes and branches used for a particular release.
Figure 12 shows an entry for the kobuki_core package for a particular ROS distribution
(Kinetic) at a specific point in time. We revert the rosdistro database back to the right
point in time and then use a ROS tool called the rosinstall_generator to compute
the previously mentioned closure of dependencies. The result of this, a rosinstall file,
describes the locations and versions of all required dependencies along with a pointer to
the repository containing the reproduction snapshot of the package which contains the bug.
Figure13 shows an excerpt from such a rosinstall file for the kobuki:45ee84a bug.

We then use this file to clone all the required repositories at the right commit and build them
using their original (CMake) build scripts. (Of course, for non-ROS packages this procedure
will be slightly different as theymay use a different build-system, however the process largely
remains the same.)

Admittedly, this restoration procedure does not capture the versions of all dependencies
as they were exactly at the snapshot time on the particular computer when and where the bug
was identified and potentially fixed, but rather, it selects the versions that were released at
that point in time. We assumed this to be sufficient for most cases as developers typically
work with the latest available releases of packages. Of course, this procedure also will not
capture cases where a developer had either a really old, really new, or unreleased version of
a particular dependency installed and the bug depends intimately on that particular version.
For the bugs described in ROBUST, however, we determine that this is seldom the case, and

4 https://github.com/ros/rosdistro
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Fig. 12 ros/rosdistro entry for Kobuki, showing several released packages and the location of the
repository containing the source code (ROS Kinetic, ros/rosdistro@cdfe60d2)

where it was discovered this played a role in reproduction of the bug, manual changes to the
output of the rosinstall_generator were made to account for this.

Reproducing the historical version of a ROS distribution is one of the hardest steps in the
process. The existence of tools in ROS, such as the generator and the dependency modelling
and introspection tools, has facilitated this greatly. In projects where seeding of development
environments is less structured and automated or is not using explicit package management
and metadata, along with the corresponding tools, this would have been much harder.

Restoration of the Non-ROS Environment Even if we have successfully identified and copied
the historical versions of the source code and computed and cloned all the correct dependen-
cies of packages, compilation often fails on machines with up-to-date build environments.

Fig. 13 rosinstall file listing the dependencies of kobuki_ftdi in the ROS Indigo distribution (bug:
kobuki:45ee84a). Note: uri entries have been shortened
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This is caused by the fact that operating systems, system libraries, run-time environments,
compilers, interpreters and build tools are continuously evolving and the subject package
may depend on particular versions of any of these. Such dependencies may even be only
implicitly embedded in the package, as explicitly stating versions of system dependencies
is not often done in ROS packages. Furthermore, dependencies may become unavailable
on newer systems. For example, code repositories could disappear, operating system dis-
tros could become unavailable, or the compiler or other toolchain elements could have been
discontinued entirely.

In the period covered byROBUST, between 2010 and 2018,Canonical released 10 different
Ubuntu versions (and still supported three older LTS releases,GCCsaw36 releases (including
patch releases), Boost (a main dependency of ROS and thus all ROS packages) released
20 versions and Python supported a range of both 2.x and 3.x versions at the same time,
spanning from version 2.6 on Ubuntu Lucid to version 3.5 on Ubuntu Bionic. ROS itself
saw 12 releases in the same period, with multiple ROS versions supporting multiple Ubuntu
versions (Table 7).

We use containerization tomanage the historical contexts required by the bugs inROBUST.
Each entry is accompanied by a Docker image containing the appropriate historical code
snapshot accompanied by the correct versions of tools and the right build and run-time
environment needed for reproduction. Containers also allow for relatively easy and efficient
distribution of pre-built environments, which reduce the time it takes researchers to start
working with these bugs, as sessions can be started after a download of the pre-built context,
instead of having to wait for one to be built on demand.

To avoid having to handcraft images for each bug in ROBUST, we make use of Bug-
Zoo (Timperley et al. 2018b), which simplifies the specification of parameters and build file
generation. BugZoo takes care of building and launching Docker containers for specific bugs
byusing information from theROBUSTbugdescriptionfile combinedwith therosinstall
files. As many bugs share the same basic container structure, a template Dockerfile is
used by BugZoo to generate the recipes for specific bugs.

Extensibility By following the process described in Section 2 more bugs could be added,
and not just for the packages already analysed by the authors. The same procedure could be
used for any ROS package, the only requirement being that the package has been released
at some point in its lifetime. This is due to limitations in the tooling used to compute the
transitive closure of dependencies for a specific package, which depends on rosdistro

Table 7 Versions of ROS supported on various Ubuntu versions (Long Term Support releases only) and the
versions of core dependencies of ROS on those platforms

Ubuntu ROS GCC Boost Python 2 Python 3

Lucid (10.04) C, D, E, F 4.4 1.40 2.6.5 3.1.2

Precise (12.04) F, G, H 4.6 1.48 2.7.3 3.2.3

Trusty (14.04) I, J 4.8 1.54 2.7.5 3.4

Xenial (16.04) K, L 5.3 1.58 2.7.12 3.5.1

Bionic (18.04) M 7.4 1.65 2.7.15 3.6.7

Focal (20.04) N 9.3 1.71 2.7.17 3.8.2

Ubuntu versions listed by their codenames. ROS versions listed only by the first character of the codename:
C-Turtle, Diamondback, Electric, Fuerte, Groovy, Hydro, Indigo, Jade, Kinetic, Lunar, Melodic and Noetic
respectively
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for information about those dependencies and the state of other ROS packages part of the
historical snapshot.

Researchers from both the software repair and the ROS community could submit new
bugs for inclusion into the database by submitting pull requests against the ROBUSTGitHub
repository.

Durability While using container technology allows us to safeguard reproduction snapshots
against decay and becoming incompatible with ever evolving OS and run-time environments,
by itself, this technology does not solve the problem of persistence of the dataset. Container
technology itself will most likely evolve, and the implementation which today enjoys the
greatest popularity may not exist in the future, which would reduce all our containers to
static data archives instead of packaged, executable environments. While we cannot prevent
this from happening, we have employed several different tactics to mitigate the impact of
these types of bitrot, to the point where recreation of the snapshot itself should at least be
possible if direct reuse of the containers themselves turns out to be difficult.

First, the process of container creation is as much as possible captured in code, and
documented in natural language. These plain-text artifacts are all committed to an open-
source Git repository.

Second, all technology used for the creation of the current containers is open-source,
without relying on any proprietary tools. Proprietary tools have a clear disadvantage when it
comes to reproducibility: without source code available, rebuilding them on future platforms
will be impossible and run-time support limited to platforms which are compatible today.
By comparison, open-source tools, while perhaps also not immediately usable, offer at least
the possibility of fixing any limitations which might prevent them from being used in newer
run-time environments.

Third, even though the source repositories which host the subject systems are all open-
source and available online, we create forks of those repositories and host them in the
robust-rosin organization on GitHub. Those forks are then used to build Docker container
images. This organization is under our control, and forking (i.e., copying with preservation
of provenance) creates a duplicate of the forked repository which prevents changes to the
source repository from tampering with the code history or structure.

Finally, every container includes a copy of the source code repositories which make up
the reproduction snapshot. These repositories were identified using the process and tools
described above and include both the subject package (containing the buggy code) as well
as its (transitive) dependencies. Should a container no longer be functioning, these sources
could be extracted from it and used to repopulate a new reproduction environment.

7 RelatedWork

Bug Datasets A variety of bug datasets have been proposed as benchmarks for evaluating
fault localization, fuzzing, test prioritization, bug diagnosis, and program repair techniques.
Datasets have been created for a variety of languages and platforms including JVM-based
languages (Benton et al. 2019), Java (Just et al. 2014; Madeiral et al. 2019; Saha et al. 2018;
Lin et al. 2017; Tomassi et al. 2019), Android Java (Tan et al. 2018), NodeJS (Gyimesi et al.
2019), Python (Hu et al. 2019; Lin et al. 2017; Tomassi et al. 2019; Widyasari et al. 2020),
and C (Böhme and Roychoudhury 2014; Le Goues et al. 2015; Böhme et al. 2017; Tan et al.
2017; Do et al. 2005).
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Some of the buggy programs within these datasets are provided exclusively as source
code, and do not come with a self-contained environment for accurately reproducing their
behavior. Over time, this can lead to programs that are unusable or that produce different
results, often due to unstated dependencies (e.g., libraries and compilers). Other datasets,
such as ManyBugs and IntroClass (Le Goues et al. 2015), are provided as a single virtual
machine (VM) image. While VMs provide a stable environment for conducting experiments,
they often lack transparency (i.e., it is unclear how they were produced), make it difficult to
use new software and tools inside old VMs, and have considerable performance overheads,
making them unsuitable for time-sensitive and resource-intensive systems such as those used
in robotics.

Most recently, datasets havemoved toward usingDocker containers as the preferredmeans
of distribution. BugSwarm is a relatively new benchmark that currently consists of over 3000
bug fixes in open-source Java and Python projects. BugSwarm is continually populated by
mining GitHub and TravisCI to find regression fixes. In our dataset, we observe that tests are
rarely providedwith bugfixes and that tests are lacking, generally, indicating thatBugSwarm’s
approach would be unable to find most of the run-time bugs of our dataset.

We build on top of BugZoo, which packages bugs as individual Docker container images
and a set of machine-readable instructions (e.g., for building and and testing the buggy
program), to allow reproducible interactions. We significantly advance the state of the art in
bug reproduction through the introduction of our “timemachine,” which obtains a historically
accurate context for each bug, and a genericDocker setup that can be used to recreate historical
versions of arbitrary ROS packages. Our machinery and methods can be reused by others to
study a greater portion of software within the ROS ecosystem.

Bug Studies Our methodology for analyzing and documenting bugs is inspired by Abal et al.
(2014, 2018) qualitative study of variability bugs in the Linux kernel. Their dataset provides
a natural language description, execution trace, CWE classification, location, presence con-
dition, and traceability information (e.g., repository URL, commit hash, associated issues)
for each bug. Our approach also includes these elements, where relevant, and goes further by
incorporating a qualitative analysis of faults and failures, and providing historically accurate
Docker images for each bug.

Numerous empirical studies have investigated the characteristics of bugs in various
contexts and of various nature: bugs in test code (Vahabzadeh et al. 2015), concurrency
bugs (Fonseca et al. 2010; Wang et al. 2017; Asadollah et al. 2017), configuration bugs (Yin
et al. 2011) performance-related issues (Jin et al. 2012; Han and Yu 2016; Yang et al. 2018),
how developers diagnose, debug, and fix bugs (Böhme et al. 2017). Others have examined
faults and failures within various domains including machine learning (Thung et al. 2012;
Islam et al. 2019; Humbatova et al. 2020), blockchain (Wan et al. 2017), Android (Bhat-
tacharya et al. 2013), and operating systems (Abal et al. 2014; Chou et al. 2001). In this
study, we construct and analyze a dataset of bugs in popular ROS software, to provide (a)
insight into the nature of software bugs in open-source robotics and (b) a testbed for building
and evaluating QA tools and techniques for ROS.

A smaller number of papers have examined faults and failures within robotics systems
software. Steinbauer (2012) conducts a quantitative survey of research groups that partici-
pated inRoboCup, an annual international robotics competition, to learnmore about software,
hardware, algorithmic, and human-interaction faults in robotic systems. Grottke et al. (2010)
identify and characterize 520 software faults in the on-board software for 18 JPL/NASA
space missions in terms of their ease of reproducibility by studying how they are triggered
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and their resulting error propagation. Timperley et al. (2018a) perform an empirical study
of 228 historical bugs in ArduPilot (ArduPilot 2023), a popular autopilot for a variety of
autonomous vehicles, to determine whether those bugs are reproducible in simulation. In
comparison to those studies, we restrict out attention to software bugs and curate, examine,
and document individual bugs across a diversity of ROS software.

Comparison to Existing Taxonomies Below, we present a comparison of our the results of our
study against those obtained fromother, recent studies of bugs in similar domains:Garcia et al.
(2020) study 499 bugs in two, popular autonomous vehicle software systems, Apollo (Baidu
2021) and Autoware (The Autoware Foundation 2021); Wang et al. (2021) examine 569
bugs across two well-known UAV software platforms: PX4 (Dronecode Foundation 2023)
and ArduPilot (ArduPilot 2023); and Zampetti et al. (2022) analyze 655 bugs across 14
projects related to cyberphysical systems, including Autoware, ArduPilot, and PX4. All
three approaches construct a dataset by identifying issues (Wang et al. 2021; Zampetti et al.
2022) or merged pull requests (Garcia et al. 2020) in GitHub projects.

In terms of faults, Garcia et al. use an open coding to adapt an existing taxonomy of root
causes Thung et al. and Zampetti et al. follow a similar approach to extend Garcia et al.’s
taxonomy. After identifying 569 bugs in their subject systems, Wang et al. use open coding
to devise a taxonomy for 168 of those bugs (29.5%) that they determine to be UAV-specific.5

Table 8 provides a mapping from those existing taxonomies to our own.6 Despite being
specific to UAVs, all of the bugs within each of Wang et al.’s taxonomy fit into one or
more of our categories. Most of Zampetti et al.’s taxonomy can be mapped onto our own
with the exception of “Documentation”, which we consider to be out of scope, “Network”,
which we consider as a software-level failure caused by an underlying fault (e.g., general
programming), and parts of their “Hardware” category (e.g., energy, hardware failure) since
we restrict our study to software issues.

Table 9 provides a mapping from our taxonomy to theirs. None of the taxonomies identify
“Evolution” as a fault, nor do they fully capture our “Models” category. While ArduPilot,
Autoware and PX4 are mostly self contained, our subjects exhibit the norms of ROS devel-
opment and represent either (a) reusable components that are used to build a larger system
(e.g., Geometry2, MAVROS) or (b) robot systems that are built from third-party components
(e.g., Care-o-Bot, Kobuki, TurtleBot). ROS’s component-based architecture and emphasis
on reusability with minimal assumptions makes ROS software more prone to “Evolution”
issues. Similarly, as components are often designed to be agnostic to the specifics of any par-
ticular robot (e.g., hardware, environment, application), inconsistencies are relatively easy
to introduce but difficult to check.

In terms of failures, neither Wang et al. nor Zampetti et al. study the failures associated
with the bugswithin their datasets. Garcia et al. derive a new taxonomy of bug symptoms (i.e.,
failures) through of a combination of examining previous taxonomies of bugs in machine
learning (Thung et al. 2012), deep learning (Zhang et al. 2018; Islam et al. 2019), and numer-
ical software (Di Franco et al. 2017) and following an open coding approach on their dataset.
They make no explicit distinction between software and system-level failures, but both levels
appear within their taxonomy. In terms of software-level failures, our “Performance” and

5 Note that they make a similar observation to our own study (see Section 5) that the majority of bugs that
they studied were not specific to UAVs.
6 We do not compare directly to Garcia et al. (2020) since Zampetti et al. (2022)’s taxonomy subsumes it.
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Table 8 A comparison of the root causes presented in Wang et al. (2021) and Zampetti et al. (2022) against
our fault taxonomy

Zampetti et al. Ours Wang et al. Ours

Algorithm Programming Limit Config, Models

Config BDO, Config Math Programming

Data Programming Inconsistency Models, Systems

Documentation Priority Concurrency

Hardware Systems Parameter Config

Interface Programming H/W Support Systems

Network Correction Models, Programming

Initialization Programming

indicates that all bugs in their category fall into one or more of our categories. indicates that some of
the bugs in their category fall into one or more of our categories. indicates that none of the bugs in their
category are represented by any of our categories

“Network” categories are not covered. Garcia et al.’s system-level failures are focused on the
outputs of AV subsystems (e.g., incorrect trajectory prediction, localization, lane positioning
and navigation). In constrast, our system-level failures provide a different perspective and are
focused on how the failure manifests (e.g., loss of functionality, unresponsiveness, degraded
functionality) as opposed to where it manifests.

In comparison to the prior studies, our dataset is application and architecture agnostic, and
we examine a diverse set of reusable libraries, components, and platforms that are used to
build robot applications. Our results highlight interesting differences in the bugs that affect
ROS software and provide further support for the findings of previous studies by performing
a conceptual replication (i.e., devising a taxonomy de novo). Crucially, we uniquely provide
detailed reports for every bug within our dataset (c.f. a URL and a list of labels), along with
Docker images and associated tooling, all of which allow researchers to study robotics bugs
in more depth and to use our dataset as a benchmark for assessing QA techniques.

Table 9 A comparison of the coverage of existing taxonomies vs. our own

Ours Zampetti et al. Wang et al.

BDO Config

Config Config Limit, Parameter

Concurrency Concurrency Priority

Evolution

Programming Algorithm, Data, Interface Correction, Initialization, Limit, Math

Models Correction

Systems Hardware H/W Support

indicates that our label is fully covered by a set of their labels. indicates partial coverage, and indicates
no coverage
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8 Conclusion

In this paper, we presented ROBUST, a study and accompanying dataset of 221 bugs in
Robot Operating System software. We systematically collected, documented, and analyzed
bugs across 7 popular ROS projects, and produced Docker images that allow researchers
building QA tools and techniques for robotics to interact those bugs. We classified faults and
failures within a taxonomy we constructed for this purpose, based on a qualitative analysis
of our dataset, highlighted findings of particular interest to the software engineering research
community, and discussed the ramifications of our results. The ROBUST dataset and more
information about the project can be found at our companion website: https://github.com/
robust-rosin/robust.
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