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An Innovative Visual Weighing Method:
Measuring Bulk Material Mass Flows via

Belt Deformation Field With Deep Learning
Wei Qiao, Xiaoyan Xiong , Chen Jie, Huijie Dong , Member, IEEE, Yusong Pang ,

and Junzhi Yu , Fellow, IEEE

Abstract—This article presents an innovative visual
method for measuring material mass online by quantified
conveyor belt deformation with deep learning, which offers
a noncontact and safe alternative to traditional pressure-
and radioactivity-based weighing techniques. The corre-
lation between the belt deformation and the carried ma-
terial mass is further investigated through finite element
simulations. Then, a visual weighing method by belt de-
formation is proposed, comprising a calibration algorithm
to construct a measurement model using a gated recurrent
unit-based network, and an online measurement algorithm
to calculate material mass with the trained network. Finally,
a case study is presented to analyze the effect of different
dimension configurations and networks. The results vali-
date that the proposed method attains a notable accuracy
and is suitable for high-velocity conveyor environments.
The demonstrated benefits signify an advancement in vi-
sual perception of materials, enabling a new approach for
intelligent operation and monitoring in material handling
field.

Index Terms—Belt conveyor, belt deformation, deep
learning, gated recurrent unit (GRU), mass estimation, ma-
terial mass flow measurement.
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I. INTRODUCTION

B ELT conveyors are essential for transporting bulk materials
and are widely used in mining, ports, power plants, met-

allurgical plants, and construction sites to enhance efficiency
and automation. Measuring the weight of material flow on a
conveyor belt is vital for ensuring operational efficiency, quality
control, cost management, and safety. The weighing method for
conveyor belts involves measuring the weight of bulk materials
as they are transported on a moving conveyor belt to provide con-
tinuous weight measurements without interrupting the material
flow. The real-time weighing of material flows contributes to the
reliability and safety of conveyor systems and is indispensable
for fault monitoring and implementing energy-saving control
schemes [1], [2] in industrial informatics.

Currently, real-time methods for real-time weighing material
flows can be categorized into pressure-based methods [3], [4]
and radioactivity-based methods [5], [6]. The primary equip-
ment employed in the former approach is an electronic belt scale,
which is typically installed beneath a roller. As materials pass
through the roller, they exert pressure on it, enabling the mass
flow to be calculated by measuring the pressure. However, this
contact-based measurement method requires extensive mainte-
nance efforts and is susceptible to factors such as belt tension
and vibration. Radioactivity-based weighing is currently the
sole noncontact method employed for weighing, wherein the
mass of a material is determined by evaluating the degrees of
γ-ray penetration and attenuation. However, the use of radioac-
tive substances poses significant security risks, and radioactive
sources naturally decay over time. Moreover, the accuracy of this
approach can be compromised when materials with markedly
different densities are present. The development of a new non-
contact and safe detection mechanism is an important research
direction for belt weighing.

Different with the aforementioned weighing methods, there
is an emerging type of material flow measurement method that
involves the direct measurement of the dynamic volume of the
target material. These methods are known as volumetric flow
measurement methods. Common volumetric flow measurement
methods include ultrasonic, laser [7], [8], and machine vi-
sion [9], [10], [11], [12] approaches. In these methods, the mass
flow is calculated based on the measured material volume, the
empirical stacking rate, and the average material density. Thus,
the approach of weighing by volumetric flow measurement
directly correlates volume and mass, while introducing personal
error through the determination of the empirical stacking rate
and the average material density. With the rapid development of
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vision acquisition technology and artificial intelligence theory,
research on intelligent visual perception has become a focal point
in the field of industrial intelligence [13]. Direct measurement
of material mass through visual methods, rather than volume,
represents an innovative weighing approach. Such approach can
offer seamless integration with various inspection parameters on
belt conveyors, including belt deviation, longitudinal tearing,
material volume, and distribution patterns, to form a compre-
hensive visual monitoring system. By doing so, it provides
richer operational state information, enhancing monitoring and
decision-making capabilities. It can promote the development
of cyber-physical systems in material handling field. To realize
this weighing method effectively, it is crucial to establish a
correlation between visual observations and material mass.

The mass of materials cannot be directly determined visually,
necessitating the utilization of an observable characteristic asso-
ciated with weight. When loading materials, a conveyor belt ex-
periences deformation and sagging due to its inherent resilience.
This phenomenon is influenced by various factors, including
the mass and distribution of the materials and the belt tension.
However, the trough shape of the conveyor belt, along with its
viscoelastic properties and material distribution uncertainties,
poses challenges in terms of directly characterizing the rela-
tionships between the overall deformation and other influencing
factors using mathematical formulas. Dynamic simulation meth-
ods, such as the finite element method (FEM) and the discrete
element method (DEM), have been widely employed by re-
searchers to analyze belt sag in conveyor belts due to their ability
to overcome the limitations of static methods [14]. Ilic et al. [15]
utilized the DEM to measure and simulate the loads acting on
a conveyor belt during the transportation process in cases with
various solid bulk materials and different belt sag ratios. Shen et
al. [16], [17] proposed numerical methods that couple the FEM
and DEM for dynamic belt deflection prediction. Bolat et al. [18]
investigated the effects of different conveyor angles on conveyor
capacities and belt sags using the FEM and DEM. These studies
have collectively demonstrated the substantial impact of material
quantity on belt deformation. However, they focused primarily
on the monodirectional influences of materials on belt deforma-
tion and lacked numerical models for online calculations of the
masses of materials from belt deformations. It is a potential solu-
tion to model the corresponding correlation between belt defor-
mation and material mass for real-time weighing. The primary
challenge in such a solution lies in establishing a measurement
model that captures the inherent correlation between belt defor-
mation and material mass, enabling real-time measurements.

This article presents an innovative visual weighing method for
measuring material mass by quantified belt deformation and a
deep learning (DL) algorithm, in which a weighing principle by
belt deformation is, to the best of our knowledge, implemented
and validated for the first time internationally. This research
makes the following main three contributions.

1) The correlation between the belt deformation and the
carried material mass is further investigated through an
FEM simulation. The concepts of the belt deformation
field and the deformation matrix are defined, in which the
former serves as a standardized mathematical represen-
tation of the belt deformation while the latter represents
a discretized sample of the former.

2) An innovative online visual weighing method by belt
deformation is proposed. A measurement scheme is de-
signed based on the FEM analysis. Then, a calibration

Fig. 1. Deformation and sag of a conveyor belt within the idler spacing.

method is proposed to construct a measurement model
to calculate corresponding material mass by a specific
belt deformation matrix. Due to the complexity of the
model, a gated recurrent unit (GRU)-based network is
designed to serve as the measurement model by regression
training. Subsequently, an online measurement method is
presented to calculate total material mass using the trained
measurement model.

3) Systematic experimentation and comparison with other
common DL networks are performed in a case study.
Several datasets have been constructed for deformation
matrices with different dimensions, and suitable dimen-
sion configurations are determined based on the experi-
mental results to give a value reference for the practical
employment of the proposed measurement method. The
results also validate the feasible and effectiveness of our
proposed measurement method.

The compatibility between the proposed method and volume
measurement method also stands out, facilitating simultaneous
mass and volume flow monitoring within a unified system, which
provides technical support for improving online monitoring
capabilities in the field of material handling and for digital twin
applications in material handling.

The rest of this article is organized as follows. Section II
analyzes the relationship between the material load and belt
deformation by FEM simulations. Section III illustrates the
concepts of the belt deformation field and deformation matrix.
The measurement method including calibration and online mea-
surement is described in Section IV. Section V presents the
case study and experimental verification. Finally, Section VI
concludes this article.

II. BELT DEFORMATION ANALYSIS

When loading materials, a conveyor belt experiences defor-
mation, which is a visually observable characteristic directly
caused by the mass of the materials. Belt sag occurs within
the idler spacing, which refers to the distance between two
consecutive idlers of the conveyor. As illustrated in Fig. 1, in
areas lacking support from idler sets, the distribution of materials
influences the deformation trend of the belt. However, it is
difficult to measure the deformation on the whole belt surface in
real time. It is essential to quantitatively analyze the influence
of material mass and distribution on belt deformation for the
determination of a vision-based weighing scheme.
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TABLE I
SPECIFICATIONS OF THE BELT CONVEYOR APPLIED IN THE FINITE ELEMENT

SIMULATIONS
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D2
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D4

D5

D6

E1

E2

E3

E4

E5

E6

Position 1 Position 3Position 2

Fig. 2. Segmentation of the material loading zones in the finite-
element simulations.

To systematically examine the deformation responses of con-
veyor belts under material-induced loads, finite element simu-
lations are employed to elucidate their interactions. The param-
eters characterizing the employed conveyor belt are presented
in detail in Table I. While the velocity of the belt may affect
its interaction with the conveyed bulk material, its influence
on the dynamic deformation process of the belt is considered
negligible for the purpose of this analysis [17]. Consequently,
the simulations are restricted to a static scenario within the idler
spacing to facilitate a focused analysis.

The loading region of the belt is segmented into 30 discrete
zones (A1–E6) to model the distribution of the load, as illustrated
in Fig. 2. To effectively capture the deformation characteristics,
detection points are strategically located along the central lon-
gitudinal axes of zones A, B, and C.

Preliminary finite element simulations are performed to ex-
plore the conveyor belt deformation induced by uniformly
distributed loads at A3A4, B3B4, and C3C4. The resultant
deformation profiles are delineated in Fig. 3, which distinctly
illustrates the augmented effect of centrally positioned loads on
the deformation process of the belt.

Furthermore, the contour curves corresponding to the three
detection positions are exhibited in Fig. 4. From the simulation
results, we can infer the following: 1) the deformation trend is
more pronounced directly beneath the applied loads, underscor-
ing the localized influence of material weight; 2) the presence
of materials affects the deformation pattern of the belt even in
adjacent sections that are not in immediate contact with the load;

Fig. 3. Deformation profiles produced by loads on different area. (a)
Loads are situated at A3A4. (b) Loads are situated at B3B4. (c) Loads
are situated at C3C4.

Fig. 4. Belt contour curves corresponding to the three detection posi-
tions. (a) Loads situated at A3A4. (b) Loads situated at B3B4. (c) Loads
situated at C3C4. (d) Loads situated at corresponding detection zones.

3) central loading zones are subjected to greater degrees of defor-
mation than other areas are, indicating the significant sensitivity
of the midsection of the belt to load-induced distortions.

The responses of the conveyor belt to various loads and their
distributions are meticulously evaluated, and the results are sys-
tematically compiled in Fig. 5. For clarity, a notational system is
employed, e.g., “200C3C4” signifies a load of 200 N uniformly
allocated across zones C3 and C4; analogous nomenclature is
adopted for other loading scenarios.

Fig. 5(a) presents the transverse deformations of the belt under
heterogeneous load distributions with an invariant aggregate
load. The belt contours vary with the load distributions. Fig. 5(b)
illustrates how the deformation patterns vary with a shift in
the distribution of a constant total load. The belt deformation
trend is contingent on the load distribution under a fixed total
load, resulting in deformation nonuniformity. In the scenarios
depicted in Fig. 5(c), the load distributions are similar when
the total load is modulated, leading to observable disparities
in the resulting deformations. Intriguingly, in Fig. 5(d), despite
variations in both the magnitudes and distribution patterns of
the loads, the resulting deformation curves display remarkable
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Fig. 5. Transverse belt deformation induced under heterogeneous
load distributions. (a) The cases of heterogeneous load distributions with
a constant total load. (b) The cases of shifted load application area with
a constant total load. (c) The cases of different total load exerted on
the same area. (d) Some cases resulting in comparable deformation
patterns despite varying load conditions.

resemblance, suggesting a complex interplay between the load
parameters and belt deformation.

The above observation indicates that the conveyor belt at the
midpoint of the idler spacing is most sensitive to deformation due
to the material load. However, inferring the material mass solely
from the contour at the midpoint is unreasonable, as different
material masses with specific distributions can produce very
similar deformation profiles at this position. Limited detection
accuracy in practice can lead to these curves being indistin-
guishable, making it difficult to obtain a mapping from the
deformation curve to the material mass. Thus, it is necessary to
construct a variable that reflects the conveyor belt deformation,
which is significantly correlated with the material mass and has
a mapping relationship with it.

III. BELT DEFORMATION VARIABLE DEFINITION

A. Belt Deformation Field

For numerical description of belt deformation, we introduce a
scalar field concept called the conveyor belt deformation field to
characterize the vertical deflection of each point on the conveyor
belt. As shown in Fig. 6(a), each point on a contour line of the
conveyor belt theoretically corresponds to a point after defor-
mation, and this transformation relationship correlates with the
load. However, in practical detection, it is only possible to obtain
the contour curves before and after deformation, without the
ability to determine the point-to-point correspondence between
the predeformation and postdeformation states, as illustrated in
Fig. 6(b).

Therefore, we define the deformation field of the conveyor
belt as h(x, z) = y, which represents the height of a belt point
mapped onto the xoz plane at coordinates (x, z). Assuming
that the deformation field when unloaded is h0(x, z) and the
deformation field when loaded is h1(x, z), h1(x, z)− h0(x, z)
represents the vertical deflection at each point. Clearly, within
the idler space, there is a corresponding relationship between
the deformation field and the material distribution.

Considering the real-time requirements, capturing more
points in a single measurement consumes more computational

Fig. 6. Schematic diagram of the conveyor belt deformation field. (a)
Theoretical deformation vector. (b) Detectable deformation scalar. (c)
Defined deformation field represented by height.

resources and time, making real-time measurement infeasible.
By balancing the number of measurement points with the real-
time requirements, it is commonly used to capture the contour
line of the conveyor belt at a cross-section in a single mea-
surement for continuously moving conveyor belts. Thus, the de-
formation measurement is conducted on a single cross-section,
capturing only the conveyor belt contour at the measurement
plane. For such situation, we further define a modified deforma-
tion field to h′(x, z) = y′, in which y′ represents the height of
the belt point (x, z) as it passes through the measurement plane.

B. Deformation Matrix

In general, high-dimensional input features can make it diffi-
cult for a measurement model to calculate measured amount.
Therefore, the deformation field needs to be discretized for
subsequent calculation. We define the deformation matrix D,
which represents the deformation field sampled at rectangular
scatter points

D=

⎡
⎢⎢⎣

h′(x1, z1) h′(x2, z1) . . . h′(xn, z1)
h′(x1, z2) h′(x2, z2) . . . h′(xn, z2)

...
...

. . .
...

h′(x1, zm) h′(x2, zm) . . . h′(xn, zm)

⎤
⎥⎥⎦ (1)

where m is the number of rows, which indicates the number of

sampled cross-sections, and n is the number of columns, which
represents the number of sampled points on each cross-section.
Each row in the matrix is obtained from a single measurement.
Thus, for each deformation matrix calculated after acquiring
a real-time contour, the first row is derived from the current
contour line, while the others are historical data. Consequently,
this matrix can represent the deformation from cross-sections
z = z1 to z = zm on the conveyor belt.
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Fig. 7. Noncontact weighing scheme for material mass on conveyor
belt.

IV. VISUAL WEIGHING METHOD BY BELT DEFORMATION

A. Measurement Scheme

Following the analysis of belt deformation in Section II, we
develop a measurement scheme on the basis of a dual-field
material volume flow detection method described in [19]. This
scheme detects both the contours of the conveyor belt and the
materials at the center cross section of the idler spacing, as shown
in Fig. 7. The scheme employs two line laser sources to generate
contour lines on the material and belt surface, which are then
captured in real time by a pair of cameras. In addition, a standard
speed sensor is used to monitor the belt speed.

Importantly, only the lower camera is used to detect the
conveyor belt deformation. The upper camera captures material
distribution information, which is essential for calibrating the
relationship between the material mass and belt deformation.

B. Calibration Method

As belt scales require calibration during initial installation to
establish the relationship between pressure and material mass,
the method of measuring material mass through belt deformation
also necessitates a calibration process. This calibration aims
to determine the measurement model, which is the mapping
relationship from the deformation matrix to its corresponding
material mass. Therefore, quantitative experiments are neces-
sary to obtain data.

A single experiment for calibration is as shown in Fig. 8(b).
A known mass of material is placed in the loading area, and then
the conveyor belt is operated at a constant speed while recording
a stream of images as the loading area passes through the idler
space. The two cameras employ hardware-synchronized trig-
gering to simultaneously capture comprehensive video footage.
The video recording the material profile from the upper camera
is denoted as VM, while the video capturing the belt profile
from the lower camera is designated as VB. Through multiple
experiments with varying total masses and distributions, a set of
video pairs {(VMk,VBk)} is obtained. The total material mass
in the kth experiment is represented by Qk. The belt speed is
defined as vb and the frame rate of cameras is defined as f , so
that the frame-to-frame distance df = vb/f .

In a single experiment, only the total mass is known, whereas
the calibration requires segmented mass value corresponding to
the region of the deformation matrix. Placing material solely in
the region of deformation matrix would significantly increase
the number of required experiments, rendering the calibration
process exceptionally time-consuming. Therefore, we obtain

Moving direction

Idler spacingLoading area

Materials

Measurement position

Gravel

(a)

(b)

Upper Line Laser

Idler Group

Lower Line Laser

Upper Camera

Lower Camera

Fig. 8. Experimental scheme for calibrating the measurement model.
(a) Actual measurement system. (b) Process of a single experiment for
calibration.

segmented mass value through calculations of the material dis-
tribution to achieve data upsampling. Assuming that the material
used is homogeneous and relatively uniform, the required seg-
mented mass can be obtained by multiplying the proportion of
the segment’s volume to the total volume by the total mass.

The proposed calibration algorithm is presented in Algo-
rithm 1. The first step involves processing each video pair
(VMk,VBk) frame by frame to obtain the actual coordinate
sets A(i) = {(xm, ym, idf )} representing the material profile
and B(i) = {(xb, yb, idf )} representing the belt profile, where
i = 1, 2, . . .np denotes the frame number, and z = idf corre-
sponds to the cross-sectional position of that frame. The image
processing aims to extract the laser line contour and convert it to
world coordinates based on the camera’s intrinsic and extrinsic
parameters. This process has been extensively studied [19] and
will not be elaborated upon in this article. Subsequently, the
area enclosed by the two curves represented by A(i) and B(i)
is calculated, yielding the material cross-sectional area S(i) for
that frame. Multiplying by df gives the material volume for
that frame, V (i) = dfS(i). After completing calculations for
all frames in the video, the deformation field h′(xb, zb) = yb
can be obtained through the union of all B(i), where zb ∈
idf |i = 1, 2, . . ., np. The total volume in this trial is calculated
by Vs =

∑
V (i). The second step involves determining the

sampling points {(xs, zs)} based on m and n, where xs can
be uniformly selected according to the value of n and the actual
belt width, and zs can be set as zs = 0, d, . . ., (m− 1)d. For
convenience, d can be set as an integer multiple of df , i.e.,
d = ldf where l ∈ N. Starting from the first frame, the deforma-
tion matrix is sampled, and the corresponding segmented mass
is calculated. The deformation matrix D(j) is calculated using
(1) for all points at positions (x, z) = (xs, jdf + zs), with the
corresponding segmented mass given by

qj =
Qk

Vs

j+(m−1)l∑
i=j

V (i) (2)

This yields the input-output data pair (Dj , qj), which is stored in
the dataset. The loop process is performed until j+(m−1)l>np.
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Algorithm 1: Calibration algorithm for visual weighing.
1: for k = 1, 2, . . . do
2: Read experimental videos VMk,VBk

3: for i = 1, 2, . . ., np do �Step 1
4: Read i-th frame in VMk

5: Perform image processing, obtain coordinate set of
material contour A(i) = {(xm, ym, idf )}

6: Read i-th frame in VBk

7: Perform image processing, obtain coordinate set of
belt contour B(i) = {(xb, yb, idf )}

8: Calculate cross-sectional area S(i) enclosed by
A(i) and B(i)

9: Calculate single-frame volume V (i) = dfS(i)
10: Calculate total volume Vs =

∑
V (i)

11: Construct deformation field h′(xb, zb) = yb by union
of all B(i)

12: Determine sampling points Xs, Zs by m,n
13: for j = 1, 2, . . ., np − (m− 1)l do �Step 2
14: Sample deformation matrix Dj by Eq. (1) for all

(x, z) ∈ {(xs, jdf + zs)|xs ∈ Xs, zs ∈ Zs}
15: Calculate segmented mass qj by Eq. (2)
16: Store (Dj , qj) in dataset
17: Use D as input and q as output in the dataset for

network training until completion �Step 3

Through the two steps, a substantial amount of data pairs com-
prising deformation matrices and corresponding material masses
can be obtained. The relationship between the two variable is
relatively complex, making it challenging to perform regression
using traditional data fitting methods. However, the successful
application of DL in industrial informatics [20], [21] offers a
potential solution. For example, Zhang et al. [22] proposed a
dual-branch deep learning model for accurate fault diagnosis
under high-noise conditions. Zhang et al. [23] integrated elastic
net algorithm and multilayer perceptron to O2 concentration in
an air separation process. Furthermore, the abundance of data
from the two steps lays a solid foundation for the application
of deep learning techniques. Consequently, in the third step, we
employ a deep neural network architecture to satisfy the dual
objectives of achieving a high degree of fitting accuracy and
enabling real-time detection capabilities. Our designed model
architecture is composed of a GRU layer followed by a fully
connected layer. Specifically, the network integrates a GRU
layer equipped with 64 neurons. The GRUs in this layer use
gating mechanisms to control the flow of information. These
mechanisms, known as update and reset gates, are instrumental
in capturing temporal dependencies within time series data,
regardless of the input sequence length [24]. This characteristic
is particularly beneficial for handling the dynamics of conveyor
belt deformation data, which exhibit long-term temporal rela-
tionships due to the continuous movement of the belt and the
progression of material loads over time. Following the GRU
layer, the network topology includes a fully connected layer that
culminates in a single output neuron. The role of this layer is to
map the high-dimensional features learned by the GRU layer
onto a single continuous value that represents the measured
material mass. The network is trained using the constructed
dataset until convergence is achieved, then it can serve as the
measurement model for online measurement applications.

Several key considerations should be observed during the
calibration process as follows.

Algorithm 2: Online material mass measurement algorithm.
1: while Online measurement is performing do
2: Read current frame from the lower camera �Step 1
3: Calculate inter-frame conveying distance dc = vkfk
4: Calculate current cross-sectional position

zc = zl + dc
5: Perform image processing, obtain coordinate set of

belt contour B = {(xb, yb, zc)}
6: Sample specific n points in B, obtain vector

z=zcBs = {(xb, yb)|xb ∈ Xs}
7: Store z=zcBs in a queue QB

8: if Measurement time is reached then �Step 2
9: Record current measurement position as

pk = zc
10: Read specific n vectors z=zcBs, z=zc−dBs,

...,z=zc−(m−1)dBs in history QB

11: Construct deformation matrix Dk with the n
vectors by Eq. (1)

12: Input Dk into the trained network, output qk
13: Qσ(k) = Qσ(k − 1) + qk(pk − pk−1)/(md)

1) The calibration should be conducted using the actual
transport material with similar size.

2) The loading area should be slightly shorter than the idler
spacing.

3) The range of total masses should encompass scenarios
from empty to full load conditions.

4) For a given material mass, multiple calibration videos can
be recorded with altered distributions to enrich the data
amount.

C. Online Measurement Method

After obtaining the measurement model represented by a
DL network through calibration, it can be applied for online
measurement. The online weighing algorithm for material mass
is illustrated in Algorithm 2. The process can be divided into
two steps.

The first step involves online reading of frames captured by
the lower camera, extracting the belt contour, and obtaining
the coordinate set of contour points B = (xb, yb, zc). Here,
zc represents the cross-sectional position captured by current
frame, determined by the current belt speed vk, frame rate fk,
and the position of the previous frame zl: zc = zl + vk/fk. The
specific n points are extracted according to the deformation
matrix, forming the vector z=zcBs = (xb, yb)|xb ∈ Xs, which
is then stored in the queue QB . The left superscript indicates
the cross-sectional position of this vector. This step is executed
cyclically at the camera’s frame rate.

The second step is only performed when a measurement mo-
ment is reached. The current measurement position is recorded
as pk = zc, where k is the current measurement instance. From
the queue QB , z=zcBs, z=zc−dBs,..., z=zc−(m−1)dBs are read,
and the deformation matrix Dk is constructed. Dk is input into
the trained network obtained through calibration, calculating the
corresponding segmented mass qk. Since qk corresponds to the
region represented by Dk, it is converted to the detection area
and accumulated. Then, the total material mass measured up to
the current moment can be calculated as Qσ(k) =

∑
qk(pk −

pk−1)/(md).
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V. CASE STUDY

In the proposed measurement method, the optimal dimensions
of the deformation matrix need to be determined based on the ac-
tual parameters and operational conditions of the belt conveyor.
This study conducts tests of the proposed measurement method
on an experimental belt conveyor and compares deformation ma-
trices of various dimensions to analyze what kind of dimension
configurations is better. First, calibration tests are performed,
comparing the application results of multiple DL methods.
Subsequently, measurement experiments are conducted using
the calibrated network to validate the measurement accuracy.
Furthermore, the real-time performance of the measurement
system is also evaluated.

The actual measurement system is shown in Fig. 8(a). The
loading area is 780 mm in length. The conveyed material is
gravel with particle sizes between 1 and 2 cm and a density
of approximately 2,864 kg/m3. The total mass of the material
varies from 0 to 70 kg. These recordings are made at a frame
rate of 60 fps with a resolution of 1280×720 pixels. The belt
speed is maintained at approximately 0.12 m/s, resulting in a
frame-to-frame conveying distance of 2 mm.

We design various dimensions of the deformation matrix
and construct a dataset for each dimension. Considering that
the longitudinal deformation of the belt is relatively smooth,
cross-sections are sampled at intervals of d = 80 mm. For each
cross-section, points are selected at intervals of 10 mm within
the range x ∈ [−300, 300] mm, resulting in 61 points. Under the
constraints m ≤ 11 and n ≤ 61, the following configurations
are chosen: m ∈ {4, 6, 8, 11} and n ∈ {1, 7, 13, 31, 61}. When
n = 1, the point at x = 0 is chosen. When n �= 1, points are
selected based on equal division, and the set of points is given by

x ∈
{

10

⌊
60i
n− 1

⌋
− 300

∣∣∣∣ i = 0, 1, . . . , n− 1

}

z ∈ {z0 + jd| j = 0, 1, . . . ,m− 1} (3)

where �·� denotes the floor function and z0 is the longitudinal po-
sition of the conveyor belt currently in the detection plane. Based
on these combinations, datasets with different input dimensions
were constructed. A total of 109 experiments were conducted,
resulting in 46 340 samples for each dataset by Algorithm 1.

A. Calibration Results

In this part, the GRU network representing the measurement
model is trained using datasets for each of the aforementioned 20
dimensional configurations. For comparison with the designed
GRU network, we design several other DL networks capable of
solving regression problems, including a fully connected net-
work (FCN), a convolutional neural network (CNN), and a long
short-term memory network (LSTM). The FCN is designed with
a hidden layer containing 100 nodes. The CNN employs a convo-
lutional layer with 64 nodes and a kernel length of 3. The LSTM
network uses a hidden layer with 64 neurons. All these networks
are connected to a fully connected layer with 50 nodes and a
single-node output layer to ensure consistency with the designed
GRU network. Tests are conducted on network training perfor-
mance, measurement accuracy, and real-time performance.

The training processes of the four networks are executed using
the Python programming language and the TensorFlow frame-
work, with the adaptive moment estimation optimizer employed
to dynamically tune the learning rates. The mean squared error
(MSE) loss function is utilized. Each dataset is split into training

and testing sets at an 8:2 ratio. After the training process, each
model is evaluated against a test set to ascertain its general-
izability. This evaluation is quantified using several statistical
indicators, namely, the root mean square error (RMSE), mean
absolute error (MAE), and coefficient of determination, which
is denoted as R-squared (R2).

The progression of the loss function during the training phase
over 1000 epochs is depicted in Fig. 9. The inset plots in the
figure show the loss values during 900 and 1000 iterations.
A rapid convergence of the loss values is noted, particularly
for configurations where n ≥ 7, with the convergence process
settling at a loss value below 0.05, which indicates that the
designed dataset enables all four models to converge through
training. Specifically, among the DL models, the loss values for
the LSTM and GRU are smaller. However, an oscillatory pattern
is observed when n is set to 61 for the GRU, indicating potential
overfitting at higher numbers of sampling points.

The final loss also varies with the dimensions of the de-
formation matrix. The smallest dimensions of the deformation
matrix (4,1) results in the highest final loss values across all
network training sessions, but the largest dimensions (11,61)
does not achieve a smaller final loss compared to the other
dimensions; this indicates that more deformation information
does not necessarily benefit network training. In addition, when
n = 1, the final loss decreases as m increases, but when n = 61,
the final loss increases as m increases. This phenomenon occurs
in the training of all four networks. The above results suggest
that by reasonably selecting the dimensions (m,n), the final loss
can be minimized to achieve better training results.

After completing 1000 training iterations, the performance
metrics are assessed on the test data, and the results are illustrated
in Fig. 10. The low values of RMSE and MAE indicate that the
predicted values of the models are close to the actual values. An
R2 value close to 1 indicates a strong explanatory power of the
model for the data. Except for the dimensions (4,1), the RMSE
and MAE values increase with increasingm, while the R2 values
do not differ significantly. This finding suggests that by selecting
m = 4, good training results can be obtained without requiring
a larger m. The smallest RMSE and the largest R2 are observed
in the GRU training with dimensions of (4,31), indicating that
the designed GRU-based weighing scheme has better training
performance than the other methods.

B. Accuracy Test

Additional experimental videos are used to evaluate the accu-
racy of the trained networks in quantitatively weighing materials.
These experimental videos are not used for model training.
The quantitative material masses range from 10 to 70 kg, in
increments of 5 kg, resulting in a total of 13 experiments. In each
experiment, all frames are used to calculate belt deformation
field as Algorithm 2. Since the interframe distance is 2 mm and
the cross-sectional spacing d of the deformation matrix is set to
80 mm, each total mass is measured 39 times through different
deformation matrices in the belt deformation field. The mean
and standard deviation of the measurements for each total mass
are calculated to determine the measurement accuracy, and the
average accuracy of these different masses is taken as the final
measurement accuracy.

The final accuracy results are shown in Fig. 11. The re-
sults show that different networks achieve the highest accuracy
at different (m,n). The FCN achieves its best accuracy of
92.38±2.00% at (8, 1). The CNN achieves its best accuracy
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Fig. 9. Progression of the loss function during the training phase under different dimensions (m,n) and different networks. (a) FCN. (b) CNN. (c)
LSTM. (d) GRU.

Fig. 10. Performance metrics after completing 1000 training iterations
with different deformation matrix dimensions.

of 90.99 ±2.11% at (11, 1). The LSTM network achieves its
best accuracy of 91.85±0.77% at (11, 31). The GRU achieves
its best accuracy of 93.16±0.50% at (4, 31). Comparatively, the
proposed GRU-based weighing method not only achieves the

Fig. 11. Accuracy of the trained networks in terms of quantitatively
measuring material masses.

highest accuracy but also has the smallest standard deviation and
requires the fewest cross-sections m of the deformation matrix,
which is consistent with the network training results.

C. Real-Time Performance Tests

In this part, the performance of the trained networks is tested
in a real-time operating system, with a focus on computational
speed. Two threads are employed to visually detect the belt
contour to perform 3-D reconstruction and mass estimation with
the trained network. These tests are executed on an Intel i9 12700
K processor within a Python programming environment. The
results are depicted in Fig. 12. The runtime for image processing
is approximately 11 ms per frame. The average runtime for the
GRU is 51.53 ms, which is shorter than those of the other three
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Fig. 12. Average processing time required for image processing and
deep learning prediction.

networks (56.21 ms for the FCN, 55.48 ms for the CNN, and
56.04 ms for the LSTM network).

Using dimension (4, 31) as an example, the average prediction
time for the GRU-based model is 51.86 ms. Given that the corre-
sponding length of the conveyor belt for the deformation matrix
is 240 mm, real-time measurement is achieved at a maximum
belt speed of 4.62 m/s.

D. Discussion

The experimental results underscore the potential and feasi-
bility of using DL models to weigh a loaded belt through belt
deformation data. In this method, the selection of the dimensions
of the deformation matrix is pivotal for ensuring reliable network
training and high measurement accuracy. The use of a deforma-
tion matrix with too few dimensions risks model underfitting,
whereas an overabundance of dimension may diminish the gen-
eralizability of the model. At appropriate dimensions of (4, 31),
the proposed GRU-based weighing method outperforms other
methods in terms of training performance, detection accuracy,
and real-time capability.

The complexity of the GRU-based model stems primarily
from the GRU layer, which is designed to handle the tempo-
ral dependencies in the conveyor belt deformation data. The
fully connected layer adds minimal complexity but is crucial
for mapping the learned features to the material mass. The
dynamicity of the model is well addressed by the ability of
the GRU layer to capture long-term dependencies and adapt to
real-time data changes. In addition, the model’s architecture and
training mechanisms ensure that it can be updated to maintain
performance in dynamic environments.

This study identifies three primary factors that may constrain
the accuracy of the system. First, the current model does not
account for the impact of belt tension on deformation, which
is a limitation stemming from the absence of tension data in
the experimental setup. Belt tension variations associated with
the conveyance of different masses can introduce discrepancies
during dataset construction and model training, thereby affecting
the precision of the model. The integration of tension param-
eters could unveil a more complex relationship between belt
deformation and material mass, hinting at the need for a more
sophisticated DL architecture in future research. Second, the
reliance of the model on 3-D reconstruction data from image
processing implies that any inaccuracies in this step will be
propagated to the mass measurement procedure, highlighting
the importance of precisely capturing and processing images.

Finally, an observed belt deviation of approximately 5 cm in
the testing apparatus may have influenced the accuracy of the
measurements. Further research is needed to elucidate the extent
of the effect of this deviation on the material mass estimates
obtained based on belt deformation.

VI. CONCLUSION

This article presened an innovative visual weighing method
for estimating material mass based on belt deformation with a
DL algorithm. The method involves detecting the belt defor-
mation field visually, constructing a deformation matrix with
specific dimensions, and calculating the material mass via a
trained GRU network. By systematic experimentation, suitable
dimensions of the deformation matrix are determined, and the
proposed weighing method exhibited a better combination of
properties than other common DL networks. In this work, we
successfully established an accurate model reflecting the inher-
ent correlation between belt deformation and material mass via
a GRU network for real-time measurement and achieved intelli-
gent visual perception of material weight. Notably, the proposed
method attained an accuracy of 93.16% in experimental testing,
highlighting its effectiveness in high-velocity conveyor environ-
ments. The proposed method waas compatible with volume flow
measurement technologies, facilitating simultaneous mass and
volume flow monitoring within a unified system, which indicates
its strong potential for industrial adoption.

In future work, we aim to further refine the accuracy of
the measurement system. We will investigate the influences of
tension fluctuations and belt deviations on the resulting mea-
surement accuracy, to enhance the reliability and applicability
of the system in complex industrial environments.
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