. O
Sl Design for a TCP/IP

SEe,. g, i, transparent FPGA-
e, h,g LUn o

T S R based network diode
.Q... - L/ Sngy

J. Kerkhof

Design for a TCP/IP transparent
FPGA-based network diode

by

J. Kerkhof

to obtain the degree of Master of Science
in Copmuter Engineering
at the Delft University of Technology,

to be defended publicly on January 27, 2020 at 10:00 AM.

Student number: 4232461

Project duration: Sept 2, 2019 —Jan 27, 2021

Thesis committee: Dr. Ir. J.S.S.M. Wong, TU Delft, supervisor
Ir. A.D. Wiersma, Technolution, daily supervisor
Dr. Ir. A.J. van Genderen TU Delft
Dr. Ir. T.G.R.M. van Leuken TU Delft

This thesis is confidential and cannot be made public until January 27, 2022.

An electronic version of this thesis is available at http: //repository.tudelft.nl/.

1(';U Delft Technolution
———y

http://repository.tudelft.nl/

Acknowledgements

This thesis contains my final project of the Computer Engineering master at the faculty of EEMCS, Delft Uni-
versity of Technology. This marks the end of my time as a student at the TU Delft. During this period, I met
new friends and gained valuable experiences along the path.

I would like to thank Technolution, for providing me the opportunity to work on my graduate research
project under their guidance. I am grateful for the advice and feedback from my daily supervisor, Ard Wiersma.
Even during the lockdown, I was welcome to have personal meetings.

From Delft University of Technology, I would like to show my appreciation to my supervisor, Dr.ir. Stephan
Wong, for all the time and effort he put in our meetings. His insights and feedback helped me keep the thesis
project progressing and guided me in determining the final direction of this thesis.

Finally, I would like to thank all my friends, roommates and family for their mental support and positive
words. It has been a long and rough year, and I would like to thank you for seeing through these tough times.
I would like to express my particular appreciation to Colin, for giving his clear-sighted view on my project.

Last, but certainly not least, I would like to show my gratitude to Judy, who helped me through my tough-
est times and was always able to put a smile on my face. Thank you for all your support this year and I hope
we have many, more beautiful, years to come.

J. Kerkhof
Delft, January 2021

iii

Abstract

The urgency for high-security products for industrial networks is increasing as malicious hackers are im-
proving their accessibility tools. A common practice for a company to protect its sensitive data is network
segmentation. The network is segmented in different domains with distinctive security levels. The sensitive
data is stored and managed within the domain of the highest security level. To access this domain from an-
other domain of a lower security level, a highly reliable connection is required. You want to have full control
over the incoming and outgoing data flow between these network segments. A variety of solutions provide a
highly-secured connection to link those segments which differ in range of features and control. An upcoming
trend is the network diode. This device will allow data flow in only one direction. All the flows going into the
opposite direction are being blocked. However, to feature an arbitrary flow between two network segments,
the diode should consist of a numerous amount of properties.

To narrow down the optional features a network diode should provide, this thesis will focus on TCP
streams. TCP is one of the most common protocols used in internet traffic. Furthermore, TCP is a chal-
lenging protocol as it is a connection-oriented bidirectional protocol, which is intrinsic controversial with
the concept of the data diode. To ensure the security of the data diode, this thesis will focus on a complete
hardware design of the data diode. Software inside the data diode is still a risk for a security breach. This
thesis will investigate the critical operations of TCP to implement them in the data diode. The aim is to utilise
TCP’s characteristic operations of the acknowledgement managing, the sliding window system, the conges-
tion control algorithm, and explores the advantage of existing TCP options.

To evaluate the feasibility of a high performance data diode featuring TCP, the system is broken down to
project the behaviour of a TCP stream on a one-way connection device. This results in two separate TCP
connections, with only the precious data as common shared information. This model requires a buffer at
one side of the diode to transmit data in a TCP stream. To analyse and examine the influence of the diode
configuration to the size of the buffer, a diode module is created to simulate in a OMNeT++ environment.
From this simulation tool, a minimal set of parameters can be extracted that are essential to configure the
data diode. With the assumption of having control on the network management at the trusted side of the
diode, a configuration without a congestion control algorithm and without adding radical TCP options is
recommended to minimise the required buffer size.

Thereafter, this thesis proposes a high-level hardware design to implement the data diode on a hardware
project. The design focuses on the high data rate which should be available to satisfy the data diode’s require-
ments. Finally, this thesis concludes with an elaboration on the assumptions of the limitations of the network
environments and recommends features to implement in future work.

Contents

Introduction 1
1.1 AsSIgnmento e e e e e e e e e e e e e e e e e e e 1
1.2 Problem Statement L e e e e e e e e e 3
1.3 Projectgoals L e e e e 3
1.4 Methodology e e e e e 4
1.5 Overviewofthethesis. e e e 5
Background 7
2.1 RelatedWork L 7
2.1.1 State-of-the-artdatadiodes L 8
2.1.2 Conclusion. e e e e e 11
2.2 Theoretical Background of the TCP/IPsuite 12
2.2.1 Transmission Control Protocol. L 12
222 TCPHeader i i ittt e e e 13
2.2.3 Oriented connection. L. o e e e e e 15
224 FlowControl. e e e e 16
225 Reliability L 17
226 CongestionAvoidance Lo e e e e 20
23 Conclusion oL e 25
System evaluation 27
3.1 SystemAnalysis. L L e e e e e e e e e 27
3.1.1 Functional Requirements Lo e 28
3.1.2 Throughputcalculation L L oo 29
3.1.3 BlackThroughput e 31
3.1.4 RedThroughput e e e 33
3.2 Simulations. L e e e e e e e e e 35
3.2.1 MiniNet L e e e e e e e 36
3.2.2 OMNeT++ o e e e e e e e e e e 37
3.2.3 NS-3 . . e e e e e e e e e 38
3.24 Softwareselection e e e e e e e e 39
33 Conclusion oL e 39
Simulation model 41
4.1 OVEIVIEW o v i ittt e e e e e e e e e e e e e 41
4.1.1 TCPdiodedesign i i e e e 42
4.2 Parameter study.ot e e e e e e e e e e e e e e e 45
4.2.1 Ratioofthroughput L 47
422 TCPSACK e e 47
4.2.3 Congestion avoidance algorithm. L L oL 47
424 Windowsize e e e 48
43 Conclusion oL e 49
Analysis and results 51
51 Results L e e e 51
5.1.1 Ratioofthroughput L e 51
5.1.2 TCPSACK e e e e e e e s 53
5.1.3 Congestion avoidance algorithm. L. L. 55
5.1.4 Windowsize e e e e e e e 57

vii

viii Contents

5.2 Configurationrecommendations L. L0 e e e e e 58
5.2.1 Blackconfiguration 59

5.2.2 Redconfiguration L. 59

53 Conclusion L e e e 60

6 High-level hardware design 61
6.1 OVEIVIEW oo e e e e e e e e 61
6.2 VerifyTCPsegment. 0 it e e 67

6.3 ProcessTCPSegment. o i i i i it e e 67

6.4 Transmission Control Block. L L 70

6.5 Segment tranSmMisSioON MANAZET.t v vttt e e e e e e e e e e 71

6.6 Dataandcontrolflow. L L 71

6.7 Conclusion e e e e e e e 72

7 Conclusion 75
7.1 Conclusions. L e e e e e e 75

7.2 Maincontributions L Lo L e e 77

7.3 Recommendations Lo Lo e e e e e 78
7.3.1 DiscussSion. e e e e e e e e e e e e 78

7.3.2 Futurework e e e e e e e e 79

A Selective Acknowledgement 81
B MiniNet scripts 85
C OMNeTH+ scripts 89
D Block diagram schematics 91

Bibliography 93

Introduction

1.1. Assignment

The dependency on reliable communication infrastructure has never been as strong as today. Cyber crim-
inality is rapidly growing and it is threatening our daily lives in more serious forms every day. Figure 1.1
depicts the number of cyber attacks on government agencies, defense, high tech companies, or economic
crimes with losses of more than a million dollars registered by the CSIS[18]. those are concerning numbers
and would explain the necessary attention for data security.

Cyber Attack Incidents with $1M+ in Reported Losses

120

100

104 105
66
60
a9
a0
a0 32
25 25

21 20 23
) I I I I I
0

2002

2010 2011 2012 2013 2014 2015 2016 2017 2018 20189
Figure 1.1: Number of cyber attacks over the past 10 years [18]

To protect their sensitive data, companies are segmenting their network into different domains. Each do-
main consists of systems and networks with the same functionality and the same security level. An example
of this is depicted in Figure 1.2. This is the first step to separate your company network from the World Wide
Web (www). Each domain is assigned to a different security level. Each security level has different permis-
sions and has a specific user group that can access this level. Most valuable data is located in the domain with
the highest security level. All data within each security level is in its own domain and the information can flow
freely between all devices known to share the same security level, but it cannot ever leave that domain with-
out verifying that the receiving user/device has permission to access that data. The communication between
the domains poses a risk in protecting the data from users and devices that do not have permission. Hackers
could get unintentional access or upload malicious software to sensitive databases or critical systems.

To properly control the access to a domain, each domain must be completely separated from each other,
in such a way that every in- and output flows through a single point of access. The information flow between
those domains has to be handled with extreme care. A typical method is placing a firewall between the do-
mains. Firewalls are in control of the data flowing between the domains. They can be configured to choose

2 1. Introduction

Figure 1.2: Example of network segmentation in different security domains

for each piece of data to go through or being blocked. In this way, firewalls are able to filter traffic based on
address, protocol, size, frequency, etc. Firewalls have the power to block very specific data flows. However,
firewalls are a common software solution to restrict access, which leaves them vulnerable to cyber attacks as
well. Simplified, a firewall is a set of rules which apply to all passing data. If configured correctly, all hazardous
traffic flows through the firewall and will be verified. The rules can be configured via a managing access point.
Via this method, an intruder can get access to this list of rules and permit access to his malicious content.

A different way to control access is by creating the separation between domains in hardware. Hardware is
not vulnerable to cyber attacks, but has difficulties processing more complex functions, like filtering on net-
work perimeters. A potential solution, however, is creating a one-way connection, established in hardware,
thereby eliminating the outflow of data from one domain entirely. Such a product would be called a data
diode. At Technolution, they are developing high-end security products for domain separation, including
data diodes and cross-domain solutions. By placing a data diode between two domains, a one-way connec-
tion is forced and makes it physically impossible to transmit information in both directions. A data diode
provides a highly secured connection by blocking all traffic from one side of the connection. This diode sep-
arates the two domains physically in one direction. An application example is depicted in Figure 1.3. The
domain on the left side represents the drilling side of an oil refinery. This is where the machines are running
and controlled by a workstation. You want to access information about the machines remotely at the head
office to check things like maintenance state, production value, etc. Only the network of the head office is
connected to the World Wide Web and thus accessible by anyone. Therefore, the machines should not be
able to be controlled remotely from the head office, because eventually hackers could access the head office’s
network. By placing a data diode between the drilling site and the head office, the drilling site can still send
their measurements to the head office, but the head office is unable to adjust any settings at the drilling site.

Internet traffic has a lot of mechanisms to transmit information from device A to device B. Most of those
mechanisms are standardised by protocols to agree on how data is sent. Currently, over 85% of all data world-
wide is transferred by TCP [42]. Nowadays, many applications cannot operate without using TCP. Therefore,
the data diode must comply with TCP. However, TCP is a connection-oriented problem and will have issues
with a data diode in between the connection link. TCP requires a bidirectional flow to operate, which is in-
trinsically not possible once a data diode is inserted.

A frequently used solution is to perform this conversion in proxy PC’s. At the incoming side of the diode,
the TCP stream is broken down to a unidirectional information stream that can be sent over the diode. At the
other side of the diode, another proxy PC will convert this back to a new TCP stream. However, this solution
requires a lot of maintenance on the proxy PC’s and is costly. Both proxies are installed at different locations
and need configuration updates. Moreover, during the conversion of the TCP flow, irredeemable data loss
occurs due to insufficient buffering or other software errors in the proxy PC.

Instead of having two proxy PC’s and a data diode, a single-board design is desired. This should improve
maintenance costs and time. A hardware solution is required to solve the data loss errors during buffering.

1.2. Problem Statement 3

CRITICAL (DRILLING) INFRASTRUCTURE ‘CORPORATE NETWORK

ONLY ONE WAY! ./‘-\‘\
™ F 9
Ii —
L ONSHO!

ENGINES / DERRICK /
THRUSTERS BOP / TOP DRIVE

=
DATADIODE WORKSTATION WORKSTATION
SOLUTION t ‘

WORKSTATION WORKSTATION WORKSTATIGN

HISTORIAN pROXY SERVER PROXY SERVER REPLICATOR
(DATABASE) DATADIODE HISTORIAN

Figure 1.3: Example application of data diode

FPGA technology allows to implement the complex functionality of the TCP stream conversion as well as
high-speed data handling in a secure environment. Embedded softcore CPUs can be combined with dedi-
cated hardware processes to achieve this.

1.2. Problem Statement
From the previous section, the following research question was derived:

To what extent is it possible to implement a network diode on an FPGA under realistic network environ-
ments, using the Transmission Control Protocol?

In order to work towards a solution, this main research question can be broken down into smaller parts.
The implementation of the network diode focuses on three main aspects:

1. The design should be convenient to implement on an FPGA
2. The network diode must support TCP

3. The implementation of the network diode should be verified to operate under realistic network envi-
ronments

First of all, the possibility to implement the diode on an FPGA should be explored. The main focus is to
minimise resources because those are expensive. There will be an examination of the resources and research
should be done to what extent those could be minimised. Second, to ensure the network diode supports the
use of TCP it is of great importance to investigate what modifications should be done to convert the bidi-
rectional data flow to a one-directional one. Consequently, TCP supports features to improve the Quality of
Service, such as flow control and congestion avoidance. There will be examined which of those features can
be implemented, and how they can be implemented. Third, the diode must operate under realistic network
environments while still achieving high performance. Therefore, it is vital to define what high performance of
the diode is, how this could be analysed, and what the bottlenecks are in terms of high performance. Fourth
and last, the diode must be able to maintain multiple connections. The diode should be able to select chan-
nels for the specific connections and identify the addresses on both sides.

1.3. Project goals

The goal of this thesis is to present a high-level hardware design for quick implementation of a network diode
on an FPGA, supporting the network features of TCP, providing high performance and minimising resource
utilisation. To achieve this goal, sequential subgoals are defined.

Goal 1: Define design requirements To work towards a solution, the requirements for a design determine
the focus during development. This will assist in selecting the significant parameters of the system. In the

4 1. Introduction

previous section, four main aspects are described. The first is to minimise resource utilisation. Second, TCP
should be supported, so the goal is to maintain the reliability of the connection. Third, the diode should
achieve high data flow, and fourth, it should feature multiple channels, both as requested by Technolution.
Summarising, the design requirements are:

1. Requirement 1: Minimise resource utilisation

2. Requirement 2: Maintain a reliable connection

3. Requirement 3: Maximise data flow to 10 Gbps

4. Requirement 4: Manage multiple connections simultaneously

Goal 2: Develop a model for system evaluation
In the previous section, it is stated the question of how to investigate the high performance of the diode. What
the definition of high performance is depends on the requirements, which are stated in the previous goal. No
standard method exists to measure and analyse the performance. Our goal is to create a suitable testing and
developing environment for the network diode. This platform should support settings on the diode configu-
ration, changing TCP settings, and simulate realistic network traffic.

Goal 3: Design an accurate block diagram
Finally, this goal entails creating a high-level hardware design for quick implementation of the network diode.
Knowing the implementation will be done on an FPGA, this design should be simple to convert to a VHDL or
RTL project. A visual block diagram, assisted by an accurate functional description should outline a modular
design for effortless implementation.

1.4. Methodology

The methodology to formulate an answer to the problem statement of this thesis are described as a step-by-
step plan.

1. Research for background information
Look at related work on high-end security products for domain separations. Acquire information from
implementations which are already on the market. Find proposed methods for network diode imple-
mentations. For those solutions, check for their tasks to the distribution in software and hardware.
Research diodes implementing TCP and find what features are supported.

Further, research the theoretical background. Examine the basic operations of TCP and research its
typical features and characteristics are. Research what transmission units it uses, what part of the bidi-
rectional flow is essential and what opportunities TCP provides.

2. Create an analysis model
To develop the desired configuration for the implementation, a proper model is essential. With the
knowledge gained from the previous step, a simplified model can be formulated from a small set of
formulas. From the design requirements stated in the second goal of Section 1.3, it is possible to define
the important parameters of this model.

3. Research for parameter analysis
Look for research on those set of parameters and check if methods are determined to calculate and
predict on those values. Verify if those methods are applicable to this system or else if they could be
modified if necessary.

4. Simulation software selection
The results of aforementioned steps must be verified whether they are applicable in a real scenario.
Therefore, the parameters from previous steps must be tested in a simulation. Simulation software is
imperative to analyse those parameters. A suitable simulation software should be selected which is
capable to test all possible features of the diode and the network traffic.

1.5. Overview of the thesis 5

5.

1.5.

Configure a simulation module
Create a module in the simulation tool which is able to configure all possible features and settings of the
diode as well as the network environment. Set up a test plan for finding the optimal set of parameters.

Evaluate results

Gather all results from tests executed at the previous step. Analyse the results and reflect them to the
design requirements as well as the goals of this project. If analysis demands extra tests to be performed,
step 5 and 6 could be repeated.

Develop a high-level hardware design
Based on the results of the previous step, a high-level hardware design could be developed. Both sides
of the network are separate and thus require different configurations.

Overview of the thesis

This thesis is structured as follows:

Chapter 2

This chapter discusses the theoretical background of this thesis. In Section 2.1, the current develop-
ments in the industry regarding domain separation products, and especially data diodes, will be dis-
cussed . The most promising products will be highlighted and their features will be discussed. Sub-
sequently, in Section 2.2, the theoretical background of the design of our thesis will be explained. In
particular, all features and characteristics of TCP will be discussed with a particular focus on their fea-
sibility for implementation.

Chapter 3

Chapter 3 will explain the first approach to analyse the system. In Section 3.1, he behaviour of the
system will be analysed using a simplified model. From that model, the most important parameters are
selected for further analysis. To study the effect of those parameters on the behaviour of the system,
a suitable simulation tool is required. In Section 3.2, an extensive comparison between simulation
software is presented.

Chapter 4

After a selection of the most suitable software has been made, this chapter introduces new modules
representing the network diode. This models are verified and implemented in the selected software
package. From those modules, the system model as proposed in Chapter 3 will be built. For this sim-
ulation model, a sequential order for testing the set of parameters is proposed. This testing order is
based on priority and dependency.

Chapter 5

The results from the tests as described in the previous chapter will be analysed in this chapter. The
effects of the parameters on the performance will be discussed. Furthermore, the results will be re-
flected on the goals and design requirements as stated in Section 1.3. The results will be composed to a
recommended set of parameters, selected for each side of the diode.

Chapter 6

A high-level hardware design will be presented in Chapter 6, together with the parameter set gained
from the previous chapter and the functionality of TCP itself. The design will be explained in the form
of a block diagram. The results from previous chapters are used as the backbone of the configuration
of the discussed design.

Chapter 7
Finally, the last chapter contains the conclusion of this thesis. All contributions will be reflected on the
achievements of this project and a discussion about the future work is proposed.

Background

Before starting to develop a model or defining any important parameters, first the background of the project
must be researched. An overview of similar products available on the market will give some insight into the
bottlenecks of this project. Of course the operating mechanisms of the system as well as from the protocol will
be explored. Knowing these mechanisms will give a clear perspective how to develop the simulation model
and what features of TCP are worth researching in more detail.

In this chapter, at first the related work will be discussed in Section 2.1. We will look at current develop-
ments in the industry. From these solutions we are going to identify if they do solve the problems as stated
in Section 1.2. With this research we want to determine what features are missing or can be improved in my
solution. In Section 2.2 I am going to explain the transmission control protocol. The most important features
will be described. As TCP is a complex protocol with many operating mechanisms and available extensions,
I will highlight the feasible options regarding the capabilities of the network diode.

2.1. Related Work

As described in Chapter 1, the dependency on reliable communication infrastructure has never been as
strong as today. Many companies are investing in high-end security products to protect their networks from
intruders. The data diode is introduced to separate two domains physically in one direction.

The first data diodes were developed by governmental and national defence organisations. Because these
organisations work with classified information, they want to protect their network with the highest security.
Over the years, standardisation of this technology has occurred. Since 2010, regulators are encouraging the
use of unidirectional products in sectors working with critical information throughout the world. Industries
like oil refineries, railway systems, nuclear reactors, and energy suppliers should protect their vital systems
by such technology [11, 28, 63].

Because the data diode blocks one direction of the information flow, it has two use cases. The first is
when the flow is allowed from a high secure domain to a less secure domain. For example, when a power
plant needs to transfer measurement data from the power plant site to the head office. A second use case is
when the information flow is allowed from a less secure domain to a high security domain. An example of this
is when classified data has to be stored in a location which is not connected to the internet. Traditional way
was by separating this data server by an "air-gap". The data has then to be transferred by human interaction
with a USB-stick for example. A data diode fixes this problem and the data can be securely transferred to the
database. There are also a few cases where data flow in both ways is controlled. This is normally done by
placing two data diodes at the edge of the security domains.

Today, 4 different types are defined [14]:

1. One-Way cable assembly
Separating two network domains can be as simple as cutting the receive/transmit wire between the two
devices. This will only physically allow one computer that can transmit and one that the other can only
receive. This is still not entirely safe as the connections are not galvanically separated.

8 2. Background

2. Firewall-Enabled Policy
A firewall could be considered a data diode if it is configured in such a way. Firewalls are pieces software
running at the edge of a network controlling the data flow. They can be configured to only pass through
data in one direction only and block all incoming traffic.

3. Unidirectional Gateway
The unidirectional gateway is implemented by placing specific pieces of hardware at the sender and the
receiver side with a single one-way connection between them. At each side, a proxy PC is placed before
the gateway hardware. The proxies serve as converter from two-way protocols to one-way data transfer.
They assist in identifying packet information, negotiating one-way transfers, transmitting packets, re-
ceiving packets, and rebuilding the packets. Besides this, they take care of the expected confirmations
and handshakes of the original network.

[DowEme 1 mdw (=]
{ ZlPEEITEE
T T | MOBULE | e P L

NETWORK FBUR-BDXISDLUTIDN NETWORK

Figure 2.1: Graphical representation of the four-box solution of a data diode [14]

This solution does need four devices, two on both sides. The proxies configurations needs to be aligned.
Agreements on types of communication, protocols and data flow has to be configured at separate loca-
tions. For that reason it is difficult to make adjustments to the functionality of this system.

4. Intelligent Data Diode
The most advanced data diode implements all functionality inside one single device. The one-way con-
nection is realised by an electrical separated connection. It is completely impossible for the receiving
side to transfer information while the sending side is incapable of receiving any information.

P e === - pmeememeememe———- a

TX/SEND SIDE RX/RECEIVE SIDE

I

1

INTERNAL PROXY | PHOTO RX INTERNAL PROXY !
[—] Sl 7_—| [] !
> @} —> > — — > {§} !
g N —:J 1

I

1

]

I

I

PHOTO TX

i SINGLE-BOX SOLUTION:
SOURCE DESTINATION

1
Figure 2.2: Graphical representation of the single box solution of a data diode [14]

This solution is provided together with coupled proxy servers built-in the same device. The proxy
servers make it possible for supporting two-way protocols as well as multiple data flows and data types
simultaneously flowing through one device.

2.1.1. State-of-the-art data diodes

Securing data flows between network segments by placing one-way connections is becoming the dominant
solution. Providing a hardware solution has numerous advances comparing it to software solutions with re-
gards to security. However, software costs less effort to adapt to innovations in the network sector and is more
flexible in contrast to multiple protocols, data flow, and types. Many data diode implementations are avail-
able on the market today. Both unidirectional gateways and intelligent data diodes are being developed. We
will highlight the most promising designs.

2.1. Related Work 9

Unidirectional gateways

FOX-IT

Fox-IT’s crypto datadiode has been awarded with the highest grade of security products by the AIVD and the
NBV as well as received the EAL7+ certificate [26]. However, there are no specifications about the implemen-
tation and the features of this diode.

Rolloos

Rolloos implements the unidirectional gateway for large data transfers. A hardware device manages the one-
way connection using the technology of light emitters. Two proxy servers are placed at both sides to convert
the bidirectional flow to a unidirectional flow [56]. Copies of the databases are stored at both sides of the
diode where information is transferred from the construction site to the corporation’s office. This design can
be directly installed in any industry sector network.

Arbit

The Arbit Data Diode moves data from an inscure network to a secure network ensuring that no data is able to
flow back [7]. The one-way connection is established by a single fiber-optic cable. Two dedicated servers are
attached to this cable, which are responsible for the transmission. This diode supports multiple data channels
and most convenient protocols, including TCP. The light-emitting diode has a maximum transmission speed
of 690Mbps but is limited in maximum file size.

BAE

The BAE Systems Data Diode Solution has an EAL7+ certificate and is National Cross Domain Strategy Man-
agement baseline approved in the UK [31]. They promote a Raise-the-Bar compliant, one-way transfer which
is established by an optical fiber. The transmission is supported by utilising software predicated on Red Hat
Enterprise Linux software. It features multiple connections and protocols, including TCP. The data diode
datasheet promises a throughput up to 100 Gbps.

Siemens

The Siemens Data Capture Unit is a one-of-a-kind data diode solution [67]. The Data Capture Unit (DCU)
is able to monitor all passing traffic. Independent of the protocol, it can securely capture all bit streams and
set up a data flow from a critical network to the open network. The DCU is implemented in hardware and
uses technology used in the defence industry for many years. The DCU is assisted by two one-way gateways
implemented in software. They proclaim to be the most cost-effective and user-friendly solution for secure
cross-domain products today.

VADO

The VADO’s One Way Data Diode consists of two units, one containing a photo-diode emitter and the other
containing a photo-diode receiver. The distinction between this diode with the other solutions is the imple-
mentation of the proxy functionality. The physical device is a stand-alone machine. VADO Agents can be
installed on OS Virtual Machine, and no additional NIC needs to be attached to the OS[66]. Their solution
features speed up to 1Gbps and is focused on file transfer protocols, not including TCP. The solution is flexible
and should fit in every client’s network topology.

Waterfall

The Waterfall Unidirectional Security Gateways should replace firewalls in industrial network environments.
It enables safe IT/OT integration together with real-time monitoring from the industrial network. The Unidi-
rectional Gateway provides hardware-enforced network perimeter protection [60]. The one-way connection
is realised by two photo diodes and an optical fiber cable. The hardware is supported by software components
consisting of industrial application software connectors by Waterfall. These software connectors feature ap-
plications like historian databases, remote monitoring, file transfers, etc. Waterfall’s technology provides a
plug-and-play replacement for firewalls.

Filbico
The ZNO Data Diode is designed to protect critical information classified under NATO SECRET [19]. The
design consists of four components. The transmitting data flow controller, transmitting separator, receiving

10 2. Background

separator, and the receiving data flow controller. The transmitting and receiving separators are connected by
an one-way fibre-optic interface(SPS-1G). The data flow controllers provide hardware and software interfaces
and have integrated software. This software is dedicated for filtering and transferring permitted information
through the SPS-interface. The software runs on a Red HAt Enterprise Linux 7 system. The system supports
many transfer protocols, including TCP, and reach data rates of 1 Gbps.

DeepSecure

The Data Diode of DeepSecure is realised by a pair of servers and a uni-directional fibre optic link. The
system is very user-friendly with an intuitive GUI and simple setup. The diode supports multiple channels
and protocols, including (framed) TCP [59]. The device has a 1 Gb NIC interface, but the actual throughput
performance is not stated.

PrimeDiode 3010

The PrimeDiode of Technolution provides a high-security network device [64]. The diode is certified SE-
CRET by the dutch cyber-security authorities. The device is a uni-directional gateway, that allows data flow
in only one direction. There is no electrical connection between the in- and output sockets of the device.
To ensure the network separation, only the RX-connections are available at the receiver side, while only the
TX-connections are available at the transmission side. Both networks connected to the Primediode require a
proxy to transfer data. The proxies can be configured to the customer needs.

Intelligent data diodes

Owl cyber security

Owl cyber security implementation of the intelligent data diode includes an electrical isolated one-way com-
munication with the use of photo-diodes [14]. This single-box solution is provided with two additional proxy
servers at both sides of the diode. Each proxy is only accessible by the side it is located and both proxies are
configured and managed separately.

SOURCE DESTINATION
NETWORK INTELLIGENT DATA DIODE NETWORK
—] S m] -
= by, —
= rrlerTiaeMs @l =1
PROXY PROXY
I A I | — CONVERT CONVERT —r 1
TWO-WAY TWO-WAY
COMMUNICATION COMMUNICATION

Figure 2.3: Intelligent data diode by Owl Cyber Securtiy [14]

All functionality of the diode is designed to operate in a one-way fashion. The proxies around the photo-
diodes are creating packets to use the ATM (Asynchronous Transfer Mode) protocol [25]. ATM is designed by
telecommunication companies for digital transmission of multiple types of traffic using a one-way connec-
tion. This protocol is designed for sending data types of video and voice messages, which require low latency,
without retransmissions or bidirectional communication. The proxy servers convert packets from their orig-
inal protocol (TCP, UDP, etc.) to ATM packets. This method has the additional benefit that only payload is
transmitted over the one-way connection, not including any addressable information. This solution features
rates at up to 10 Gbps with a packet transfer latency of 2 milliseconds or less. The disadvantage of this design
is the fact that the proxies have to be configured and maintained.

InfoDas

The SDoT Diode is the fastest software-based Data Diode in the world with global classified SECRET accred-
itation proclaimed by InfoDas[30]. They do not use a fibre optic cable to enforce the physical separation of
the security domains. The SDoT diode ensures a logical separation of networks without a return channel due
to its unique security architecture. No details of this architecture are mentioned. The diode allows fast and
high-performance unidirectional data transfers via numerous protocols in a compact form factor. This diode
features data rates up to 9.1 Gbps and multiple protocols, including TCP.

2.1. Related Work 11

Wizlan

The VIT-400 by Wizlan features a network-to-network fibre-optic coupled diode and approved by the Israeli
National Information Security Authorisation (NISA)[70]. The device provides a complete isolation of the net-
works, including the fibre-optic connection as well as separated power supplies. The VIT-400 is a complete
hardware solution. VectorIT software applications need to run on the connected endpoints of the diode. This
software is dedicated to transfer data over the unidirectional link. VectorIT features link verification of the
incoming endpoint. The VIT-400 supports transfer protocols, including TCP and has 100Base-T ports for the
interfaces.

Rovenma

Rovenma’s Kindi Data Diode creates a fully closed unidirectional data transfer protocol that cannot be routed
between networks, enabling complete isolation of the two networks [58]. A receiver and sender device are
placed at the source and destination network. The devices are connected by a one-way SFP connection and
provide point-to-point or point-to-multipoint delivery. At the endpoints, a specialised Data Pump Applica-
tion is offered. The device features a maximum 2usec latency and a throughput of 10 Gbps. Extra security
can be implemented by integrated hardware encryption. The supported protocols are not stated.

Advenica

The SecuriCDS Data Diode allows for real-time, unidirectional information exchange between networks. The
diode provides the separation of the two networks by using optical transmitters and receivers, and even sepa-
rated power supplies [1]. The data diode is supplied with integrated proxy servers which will handle the trans-
fer via common communication protocols, including TCP. The SecuriCDS DD1000i is approved by multiple
national organisations to handle information classified TOP SECRET. The diode provides the opportunity to
customise the proxy services to your own needs. The software development kit lets two separate administra-
tors customise their side of the network diode. The diode is supplied with interfaces handling up to 1 Gbps
data transfers.

dataflowx

DataFlowX deploys a cross-domain security gateway solution, isolating networks from the physical layer. The
diode is not only an protocol-based or file-type-based one-way connection, but also features data analysis
and modifications before sending[20]. It is even possible to integrate third-party security solutions like in-
trusion preventing systems, sandboxes or threat intelligence feeds. The network administrator can do any
control, modification and verification over objects passing the diode.

Controlled Interfaces

Controlled Interfaces provide optical products, which can be installed as plug-and-play. They claim that
it can be attached to every device in your network and therefore supporting data rates up to 100G or even
more[17]. The device is adjustable to different optical hardware, software and applications. Therefore, it
supports many protocols (including TCP), many hardware architectures, and many device configurations.
No media conversion is applied, because their product is all-optical. You still need controlling devices to
transfer data.

Oakdoor

Oakdoor provides an all-in-one cyber security unit, including two data diodes and integrated processing
hardware to provide highly controlled unidirectional data flows [16]. The integrated hardware runs soft-
ware for safe browsing and safe data established by the Oakdoor Gateway platform. The diode does feature
throughput of 1 Gbps and does support protocol conversion, but they do not specify which protocols.

2.1.2. Conclusion

As the importance of digital information grows and even more systems are getting interconnected. Com-
panies have critical networks and want to protect these with high priority. Data diodes are replacing the
"air-gaps" to reduce the large latency. Firewalls are being replaced by data diodes to provide more security.
Two main data diode implementations are on the market. The unidirectional gateway, which provides a se-
cure one-way connection. Only this device needs two additional servers installed at the edges of the network
domains. The data diode transfers the data in between these devices. This provides the ability to let the con-
sumer configure the proxies at both sides and usually comes with an excellent user interface. This solution

12 2. Background

osi
repe
(Software)
-
Media Access Control (MAC) Ethernet scope of
(Hardware) IEEE 802
Standards

MEDIUM & TOPOLOGY

Figure 2.4: Common internet implementation of the OSI model for standard hosts [49]

often has a high throughput and is configurable to what protocols it supports. However, the proxy servers
need maintenance and installation is expensive. The other solution is denoted as the intelligent data diode,
because it is only one device to install. The one-way connection is preferably established by two photo diodes
and needs a specific controller for this. The conversion from a two-way connection to the one-way connec-
tion is handled by on-board software utilisation. It depends on the manufacturer if this is reconfigurable
by the end-user or pre-configured at installation. The advertisements of products are very promising with
high-speed data transfers. Not all presented solutions are supportive for using the TCP protocol. Only most
companies do not reveal many in-depth technical aspects. They promote with hardware-based solutions, yet
no solution was developed using only hardware in their implementation.

2.2. Theoretical Background of the TCP/IP suite

Before starting to design the TCP/IP diode, the functionality should be explored in all its aspects. The main
function is the assurance of a one-way connection. The more complex functionality is introduced by the re-
quirement for supporting network protocols. Network protocols provide rules, mechanisms, algorithms, and
specified frames to improve the quality of service of a connection. All standardised protocols are constructed
of multiple layers as described by the OSI-model.

The OSI model is a conceptual model used for all electronic telecommunications [21, 50]. This model
defines 7 specific layers to standardise communication protocols. Every layer is an abstraction of the func-
tionality of transmission. A graphical representation of all layers is presented in Figure 2.4. The physical layer
consists of hardware devices which are able to send and receive digital data flow. In our case, the physical
layer will be realised by the network component available on the FPGA. The data link layer defines methods
to connect these devices and identify them. This layer is Ethernet. Many devices form a network, and to find
aroute between all the device, the network layer consists of network protocols, which is IPv4 in our case. To
improve the reliability and define segments in chunks of data, protocols in the transport layer are defined.
The upper three layers define methods for interpreting and processing the data, which are not important for
the diode. To send information from host to host, applications will pack data and send them to the lower
layers. Each layer will add some information of the data, connection, communication, or information for the
other layers. A common partition of layers handled in hardware and layers handled in software is depicted in
Figure 2.4. In most standard network devices the physical and data link layers are implemented in hardware
(e.g., Network Interface Cards). The upper layers will be handled in software together with a suitable driver
for the lower layer. The focus of this thesis is on the Transmission Control Protocol.

2.2.1. Transmission Control Protocol

The key feature of the transmission control protocol is its ability to maintain a reliable bi-directional com-
munication. This protocol is most common in current internet applications [2, 42, 43]. A key factor for the
robustness of this protocol is that TCP acknowledges all transmitted data, so the sender will know the data
arrived. TCP is a connection-oriented protocol, which means that before any data is sent between two hosts,
a connection has to be set up. TCP uses segments as transmission units. Because of the wide variety of char-
acteristics of this protocol, we partitioned the operations of this protocol based on functionality. The protocol

2.2. Theoretical Background of the TCP/IP suite 13

0 4 513 1l2 16 2|0 214 2|8 32

Source Port Destination Port

Sequence Number

Acknowledgment Number

Data Offset Reserved ‘-‘". Conirol Bits Window

Checksqi:n;; ;'-‘_‘ Urgent Pointer

Option-Kind 1 Optionlength 1 Option-Data 1

=

Option-Kind N Optionlength N

dpfi'\?n-Da ta N

Padding

Acknowl
Urgent Bit | edgment | PushBit | Reset Bit
(URG) Bit (PSH) RST)
(ACK)

Synch-
ronize Bit

(SYN)

Finish Bit
FIN)

Figure 2.5: Overview of TCP segment [40] (fig. 48-1)

has a defined header which will be attached to the packets, further referred to as segments. These segment
contains information fields to improve the quality of the data flow. TCP is a connection-oriented protocol,
so it provides mechanisms to establish a reliable connection. The reliability of the protocol is supported by
mechanisms and algorithms to verify segments have arrived and what to do if packets get lost. To send pack-
ets at a rate that suits the receiver, TCP is able to manage the flow control in both directions. Along with
this, TCP takes into account other traffic using the same resources and provides methods and algorithms to
prevent congestion in the network.

2.2.2. TCP Header

Every TCP segment contains a header with information regarding the data or the connection. A overview of
this header can be seen in Figure 2.5. Each time a segment arrives, first all header fields will be processed
before processing the segment. The specifications for these header fields are described below.

1. Source/Destination Port
The first part of the TCP header contains the source and destinations ports. These ports define for
which application the data is. An example of this port is port 22, which is used for SSH.

2. Sequence / Acknowledgement number
The sequence number is used for identification of the TCP segments and is one of the key elements for
reliability of this protocol. Every segment has its own unique sequence number and are sequential to
the data stream. The sequence number is set by the sending host and the receiver will send an acknowl-
edgement with a corresponding acknowledgement number to let the sending host know the segment
arrived correctly. The acknowledgement process will be clarified in Section 2.2.5. The acknowledge-
ment number is only valid when the ACK-bit is set high in the control flags.

3. Data offset
This part of the segment tells how long the header of the TCP segment is in number of 32-bit words.
Therefor it also indicates by how many words the start of the data is offset from the start of the TCP
segment.

2. Background

4. Control flags
These flags or bits are determining the control flow of the connection. These control flags indicate the
kind of segment which is received. Currently there are 8 bits commonly used [43].

e ECE
The IP layer is able to notify for congestion events. The ECN (Explicit Congestion Notification)
Echo flag is used to negotiate the use of ECN during synchronisation phase. Also the flag will be
used as indication of a Congestion Event while connection is established.

* CWR
The Congestion Window Reduced flag will indicate a reduction of the congestion window in re-
sponse to a ECN flagged segment.

* URG
The Urgent flag indicates the Urgent field in the segment header is valid. The urgent field is a
pointer to the segment which needs priority.

¢ ACK
The Acknowledgement flag indicates that the acknowledgement number in the segment is valid.
This flag should always be set except for the first segment sent in a connection. Thereafter, each
segment should contain a valid acknowledgement number for an established connection.

e PSH
The Push flag indicates indicates the segment needs priority. Instead of buffering data before
sending them to the upper layer (e.g., an application), this flag indicates the segment should be
pushed as soon as possible.

e RST
A Reset flag indicates an error occurred and notifies the receiver to reset the connection. The reset
flag is set when an inappropriate segment is received or to terminate a connection abruptly.

* SYN
The Synchronisation flag is only set in the first segment. This indicates the start of the 3-way
handshake and starts the negotiation. This negotiation consists of exchanging sequence and ac-
knowledgement numbers as well as an agreement to what options are being used and not. The
3-way handshake will be discussed in Section 2.2.3.

* FIN
The Finish flag indicates the receiver that the sender has no more date to send and is ready to
terminate the connection. The receiver will acknowledge this and will also send a Finish flag when
it has received all data and has nothing left to send.

5. Window Size
This represents the number of bytes the sender of this segment is capable to receive. This is commonly
corresponding to the allocated buffer size of this connection. This is an essential parameter for the
sliding window, which will be explained in Section 2.2.4

6. Checksum
This is a 16 bit checksum for error detection. This is computed over the entire TCP segment (e.g. header
and data), plus a specific pseudo-header. This checksum adds reliability in regards to the transmission
as well as the delivery, which will be explained in Section 2.2.5.

7. Urgent Pointer
The urgent pointer is a used for controlling priority data transfer. This pointer refers to the last byte of
the urgent data.

8. Options
At the end of the TCP header there is room for options. Currently there are a lot of different TCP options
available. These options adds the opportunity to modify or extend the standard protocol. Each option
field has the same values. The first byte represents the kind of option. The second byte indicates the
length of the option (including the first two bytes). The other bytes are defined by the option itself. The
most common options are listed below sorted on kind.

2.2. Theoretical Background of the TCP/IP suite 15

¢ End of Option list
This option indicates the end of the option list and consists of one single byte with value 0. This
option is only used when the set of options ends before the end of a 32-bit word is reached.

* No Operation
This option is used to separate options if necessary and consists of one single byte with value 1.
The receiver knows there is at least one other option to process when it reads this option.

¢ Maximum Segment Size
This option consists of 4 bytes. First with value 4, second indicates the length is 4 bytes. The other
two bytes determine the maximum segment size to be sent. This option can only be used in the
negotiation phase. Default value for MSS is 536 bytes. The maximum transfer unit for IP is 576
and subtracting 20 bytes for both IP and TCP header will leave 536 for the segment.

* Window Scale
This option has kind number 3 and has a length of 3 bytes. This option allows devices to use much
larger windows than can be specified in the traditional TCP header window field. The value of this
options specifies a power of 2 to be multiplied with the value in the window field.

¢ Timestamp
This option has kind number 8 and has a length of 10 bytes. This option is designed for high-speed
communications. The sequence number field is limited in its size and with high speed commu-
nications there is a possibility to cycle through all the available numbers quickly. A timestamp
is added with this option to verify no old segment are being acknowledged. This timestamp has
another advantage as it helps improving the round trip time estimation.

¢ Selective Acknowledgement
This option is first negotiated by option kind number 4 and length 2. Which is the SACK permit
option. If both hosts are able to use this option, the selective acknowledgement will improve
reliability and flow control of the connection. Standard acknowledgements are cumulative. With
SACK the hosts are able to distinguish separate lost blocks of segment by communicating this in
the SACK option. This will be discussed in Section 2.2.5 and Appendix A.

2.2.3. Oriented connection

The key feature of TCP is its bi-directional controlled transmission flow. TCP requires two hosts which want
to communicate to establish a reliable connection first. This establishment is done by its typical 3-way hand-
shake [41]. This handshake is executed by the following steps:

1. When Host A wants to set up a connection to Host B it sends a TCP segment with the SYN-flag. This
is the only TCP segment without an ACK-flag, because it is the first of all messages. This message is a
request from host(A)| port(A) to open a session to host(B)| port(B)[43].

2. When this messages arrives at Host B it will sent an ACK to let Host A know the SYN is received correctly.
The connection is half-complete. Host B will also send an SYN to Host A for configuration negotiation.
This negotiation works like this: host A sends their values for parameters like the Maximum Segment
Size and Window Size, whereas host B responds with his own values for these parameters. The lowest
value will be chosen so both hosts can operate under these circumstances Also in this negotiation will
be agreed upon using TCP options like SACK. Both hosts sends their available options and the options
which match will be used. Usually the ACK and the SYN from host B to host A are sent in the same
segment.

3. When Host A receives the SYN from Host B it will sent a ACK to Host B and this is the third segment of
the 3-way handshake. Now a connection is established and data transfer can start.

Each "way" of the 3-way handshake represents a message sent from host A to B or vice versa. To keep
track of what control messages the device is expecting to receive (or has to send), the device maintains in a
particular state. Each message from the 3-way handshake will transit the device to a new state. Not only for
establishing the connection, but also for closing the connection, different states are defined. The best way

16 2. Background

CLOSED

Passive open | Application

= Active open
create Te 1| close P

create Tes
send SYN

Receive RsT Send SYN

SyN-Rewp ¢ SYN-SENT

~ Receive Syn -
~ A
~o send Ack pphc.auon
~ e close or time-out,

Vi < J e

Application Receive Ack ™~ ccdmxc SYN, ACK delete Tca
Close, send FiN ESTABLISHED MK
Application clos Sa Receive FIn

send FIN h \sgd Ack

™ (G

1 Application close
[. g
o Receive | send Fin

) Ack)
' (Lo - m oo~
£ Receive

2MSsL time-out AcK
Tive-Warr | Delete Tcs

Fin-Wair-1

Receive
AcK

Receive FIN
send ACK

FiN-Warr-

2

Figure 2.6: TCP State Diagram as stated in RFC 793. Bold and dashed lines shows the normal state trajectory for a client and server
respectively. [50]

to manage this states and transitions is by implementing a finite state machine (FSM). Figure 2.6 presents an
overview of all possible states and which control flags are triggers for changing state. The upper half of Fig-
ure 2.6 represents the 3-way handshake. The distinction between a passive open or an active open depends
on whether the TCP socket acts as a server or a client. The server will be commonly do a passive open to
start in the Listen state and then waits for the client to send a request. The client will initiate a connection by
sending a SYN first.

Each TCP connection is identified by the combination of the IP addresses of the source and destination
together with their port numbers. This combination is unique for every connection and this method allows
multiple TCP connections on the same host by multiplexing of the port numbers. These port numbers are as-
signed to specific applications. HTTP, for example, has port number 80 and SSH has port number 22 [41, 43].

The state and sockets of the connection are being tracked by the transmission control block (TCB). The
TCB contains information about source and destination addresses, status of the connection, buffers for send-
ing and receiving data, and additional information about the packets being exchanged. For each segment
coming by, the values stored in the TCB are being checked and will be updated with new values if necessary.

2.2.4. Flow Control

Once the connection is established, both hosts can transmit TCP segments back and forth to each other.
This is going perfectly if conditions of the network are optimal. The packets can be delayed, fragmented,
corrupted, or lost (or a combination of those) due to network anomalies. Because TCP is a reliable proto-
col, it specifies mechanisms to detect and recover such losses. However, most of all, TCP prevents error-
prone events. TCP is a reliable protocol mainly because every segment has to be acknowledged. This will
be described in Section 2.2.5 in more detail. First, the sender buffers all data before transmission. When the
amount of data reaches the maximum segment size, the segment will be sent. By this method, the amount
of overhead is minimised and thus contributes to a higher throughput. The only exception to this, is the use
of the urgent pointer or the PSH-flag. The push and urgent function determine a specific segment which
requires high priority to be sent as fast as possible. A good example for the PUSH function is when working
in a terminal through SSH. When a command is entered, you want it to be executed directly. The buffer is not
necessarily filled, because a command is likely to be a small number of bytes. Therefor, the PSH-flag is set

2.2. Theoretical Background of the TCP/IP suite 17

Sender’s output buffer ~ Receiver’s input buffer

8 free spaces (rwnd) Dm
o

it ransmission | | | /] /| | || [1]] faecn

Sender’s output buffer

5 new data packets (wnd)
{ BN

Transmitted packets —Packets prepared for P/‘

(the window) transmission T

\ T

After receipt of ‘ T —»
acknowledgements | ‘ | ‘ ‘ ‘ | ‘ ’ ‘ ‘ | l ond=1 ’/‘@E
gic'kr;;;'/e;ged packets

Receiver processed packet and slot
(a) Sliding window concept in the input buffer become available

(b) Receivers window concept

Figure 2.7: Graphical representation of the sliding window effect ([2]fig.1 and fig.2)

and the command is transmitted. Consequently, after the segment is sent, instead of waiting for the acknowl-
edgement of each segment before sending the next segment, the next segment will be sent. The number of
segments can be sent is defined by the window size. When the first segment is acknowledged, the window
slides and unlocks space for the next packets to be sent (see Figure 2.7a).

The size of the sliding window is directly determining the throughput of the TCP flow and depends on the
round trip time. Making the window larger, will increase the throughput. However, a large window results
in a higher probability of packet loss because the network and the receiver have resource limitations [62].
Therefore, the receiver advertises to the sender its resource availability by means of the receiver window as
described in Section 2.2.2. Figure 2.7b illustrates this simple concept. The sender receives the changed value
of the window and will not send more segments to prevent overflowing of the receiver’s buffer.

2.2.5. Reliability

The TCP sender is responsible for the proper delivery of the packets to the receiver. The TCP standard de-
fines the acknowledgements of segments by using sequence- and acknowledgement numbers [55]. Every
segment has a sequence number attached to it. The receiver will send an ACK together with an acknowledge-
ment number. This acknowledgement number does cumulatively acknowledge the segments. Therefore, this
number indicates that all segments having a smaller sequence number have been delivered. Both the client
and the server must keep track of the segments sent over the connection. To do this, the byte stream is cate-
gorised and assigned to pointers[40]. These pointers are stored in the TCB. Four categories are described to
define the transmission state of the stream at the sender side.

1. Bytes sent and acknowledged
2. Bytes sent but not yet acknowledged
3. Bytes not yet sent for which recipient is ready

4. Bytes not yet sent for which recipient is not ready
These categories are separated by the designated pointers. Three pointers are used for this.

1. Send Unacknowledged (SND.UNA)
This pointer contains the first sequence number of the byte which is already sent, but not yet acknowl-
edged. This corresponds to the first bye of category 2 as described above and is shown as the first blue
byte in Figure 2.8a.

2. Send Next (SND.NXT)
The sequence number of the next byte of data to be sent to the other device. This is the first byte of
category 3 and corresponds with creen from Figure 2.8a

18 2. Background

3. Send Window (SND.WND)
The sending window represents the total number of bytes which are allowed to be in-flight at any time.
Which means The sending window covers both category 2 and 3 from the transmission state. As can be
seen in Figure 2.8a, adding the sending window to SND.UNA will result in the first byte of category 4.

Usable Window Size

send Window = SND.UNA + SND.WND - SND.NXT
SND.WND = 20 =32+20-46=6
Left Edge of Right Edge of

Send Window Send Window

5

-"‘I
S0 |23|29I.'!»DI31IHIHIMI&SISBIS?IHIHIWI4|I42I43I44I45—46I4?I43I49I50|51|52 53| 54| 55| 56| 57| ===
I A

Category #1 Category #2 Category #3 Category #4

Sent and Not Sent, Not Sent, Recipient

Sent But Not Yet Acknowledged

Acknowledged) - ecipient Ready Not Ready To Receive
(31 bytes) (Sent and Still Qutstanding) T CREEE (44 bytes)
Send Unacknowledged Send Next
Pointer Pointer
SND.UNA = 32 SND.NXT = 46
(a) TCP send categories and pointers
Receive Window
RCV.WND = 20

Left Edge of Right Edge of

Receive Window Receive Window
A| |l

oo |23|29|30|31IHIBIMIJSIL‘»GIS?ISBIJQINIM|42|43|44|45|46|4?|48|49|50|51|52 53| b4| b5 56|57 ===
F

Category #1+2 Category #3 Category #4
Received and - ; ; Not Yet Received,
Acknowledged Mot Yet Received, Transmitter Permitted To Send Transmitter May Not

(31 bytes) EOGiEs) Send (44 byles)

Receive Next
Pointer
RCV.NXT= 32

(b) TCP receive categories and pointers

Figure 2.8: Graphical representation of the transmission categories and pointers. Complementary categories for sender and recipient
have the same colour. ([40]fig.219 and fig.220)

At thereceiver side, also a transmission state for all bytes is being tracked. The receiver should send proper
acknowledgements and should advertise its buffer space to the sender. The transmission states are divided
in three categories for the recipient.

1. Bytes received and acknowledged. This is the complement of category 1 and 2 of the sender’s side
2. Bytes not yet received for which recipient is ready

3. Bytes not yet received for which recipient is not yet ready.

These categories are separated using two pointers.

1. Receive Next (RCV.NXT)
This pointer contains the sequence number of the next byte that is expected to arrive. This also means
that the last acknowledgement number sent to the sender is RCV.NXT minus 1. RCV.NXt is inicated as
the first byte of (green) category 2 as can be seen in Figure 2.8b.

2.2. Theoretical Background of the TCP/IP suite 19

2. Receive Window (RCV.WND)
The receive window is used to let the sender know how many bytes this device is willing to accept. This
corresponds usually to the allocated buffer space of the receivin device. In Figure 2.8b you will see
addition of RCV.WND to RCV.NXT points to category 3.

Since the pointers of both the sender and receiver are complementary, both hosts know the state of trans-
mission and both are in control of the flow. The sender keeps track of a usable window as shown in Figure 2.8a,
which is used to prevent sending more bytes than the receiver is able to process. Conversely, the receiver can
advertise its buffer space to notify the sender to adjust the window size. The SND and RCV pointers are up-
dated each time data is exchanged. These values are extracted from and updated to the fields of the TCP
segments.

¢ Sequence Number should identify the first byte of data being transmitted first. Therefore, this value
should be equal to the SND.UNA pointer.

¢ Acknowledgement Number is set by the receiving side and identifies the next byte number to be ex-
pected. So the acknowledgement number is set to the value of the RCV.NXT at the receiver side. At
the sender’s side, receiving an acknowledgement number will update the SND.UNA pointer and the
window can slide to unlock new room for the next bytes to be sent.

¢ Window Size is sent in each TCP segment. The window size is advertised by the receiving side and
used by the receiving side. Therefore, the send window of one device is the receive window of the other
device and vice versa.

This is how TCP devices manage the sliding window effect and handle the acknowledgement concept.
However, this only works when every packet transmitted arrives correctly and in the right order. Due to any
number of internet environment conditions, packets can get lost or arrive in a wrong order. TCP would not
be a reliable protocol if it has no methods to detect and solve this issue.

Retransmissions
For each segment is sent, a retransmission timer is started for a predestined time. When the packet is not ac-
knowledged before the retransmission timer times out (called a Retransmission TimeOut (RTO), this segment
is retransmitted. Because the acknowledgements are cumulative, there is no knowledge if only this segment
is lost or all consecutive segments are also lost. So the TCP device does not know which segments are lost
after this segment (except when using Selective Acknowledgement, see Appendix A). Two methods can be
used for retransmission. First is to retransmit all segments after the lost segment. This is a more aggressive,
pessimistic method. All segments will be recovered, but probably a lot of unnecessary retransmissions are
being performed. Second method is to only retransmit the timed-out segments. This is a more conservative,
optimistic method. Considering the other segments arrived correctly, this method will retransmit all seg-
ments very effectively. However, this method will cost a lot of time quickly when more consecutive segments
are lost, because for each one a time of RTO passes. The RTO value should be chosen very precisely. A small
RTO means a loss can be detected quickly and thus be fast recovered. However, if the RTO is too small, a pre-
mature loss will be detected and an unnecessary packet will be retransmitted [2, 40, 43]. This will be a waste
of network resources and result in higher congestion. Ideally, the RTO is set to a slighter larger value than
the round-trip time (RTT). The RTT is, together with the window size, an important value for the throughput
of the connection[43]. This requires a good estimation of the RTT, which is not even a constant value. The
RTT depends on network parameters, like the distance between the hosts, other network traffic, hardware
resources, etc. Many researches are done (and still being done) for estimating the RTT value.

A natural way of calculating the RTT is by noting the time a segment is sent, noting the time the acknowl-
edgement receives and subtract those values. Because the RTT varies, an average value for RTT will neglect
large deviations. In RFC2988, a smoothing function is stated for this calculation [40, 54]:

NewRTT =(axOIldRTT)+ ((1—-a) x NewestRTTMeasurement) (2.1)

The a determines the aggressiveness of the smoothing function. Lower values can make change RTT more
quickly, but can also cause overreaction. High values provide better smoothing, but react slow to changes in
RTT measurements. However, using this method is still issued by the concept of acknowledgement ambi-
guity. When a segment is retransmitted, there is no distinction between the original and the retransmitted

20 2. Background

segment. The acknowledgement could still be acknowledging the original segment and not the retransmit-
ted one. Besides this, the acknowledging segment could also have been delayed. Phil Karn proposes a new
solution by changing the sampling method for taking the most recent RTT measurement [35]. When a re-
transmission for a segment has been sent, the measurements for this RTT will be ignored. In addition to this,
the Karn’s algorithm uses a RTO back-off for more accurate RTT measurements which are not contaminated
by acknowledgement ambiguity. The RTO will not change for a segment that has been sent more than once,
and this same RTO will be kept for the next segment. Only when an acknowledgement without any retrans-
missions in between is received, the RTO will be renewed from the recalculated smoothed RTT[33, 35]. This
allows a TCP device to respond with longer RTO’s to occasional circumstances that cause delays to persist for
a period of time on a connection, while eventually having the RTT settle back to a long-term average when
normal conditions resume [40].

2.2.6. Congestion Avoidance

In Section 2.2.4, the concept of the sliding window was explained. The window size is related to the amount
of data the receiver is able to process. The window will be reduced when the available buffer space is getting
smaller and will be increased when more buffer space gets accessible. This method by which TCP implements
flow control. Flow control is an essential part of TCP, as it is this method by which devices provide feedback of
their status to each other. In optimal conditions, the window size matches the space left in the buffer after a
segment is received and will not change over time. This will only work when the receiver can process the data
in the buffer at the same speed as the packets are arriving. In a realistic environment, this is definitely not the
case. The device might be dealing with a lot of other TCP connections at the same time and is very unlikely to
process the data immediately. Furthermore, the application might not be ready for the data and backs off the
data temporarily. When this happens, the receiver must notify the sender to transmit packets at a lower rate,
to prevent overflowing the buffer. The receiver will send a smaller window size in the next acknowledging
segment.

However, what happens when the receiver cannot process any more data. The window will be reduced
at every acknowledgement until there is no window left and has size zero. The sender will not be able to
send data anymore. When the receiver has processed some part of its buffer, it can reopen the connection
by increasing the window. However, opening with a window too small, the performance will be reduced due
to the large overhead. The adjustments of the window should be changed very carefully, otherwise serious
issues will occur in the operation of TCP. There is an important difference between reducing the window and
in shrinking the window for TCP operations. The window has two edges. The left edge is positioned at the
first unacknowledged byte (see Figure 2.7). The right edge of the window is positioned at a distance the size
of the window size away from the left edge. Reducing the window size is making this distance shorter, by
adjusting the window size in the header field. When the window size is reduced with the same size as the
segment received, this will result in the right edge "freezing". There is no room for extra bytes to be received.
It could be even worse when the window size is reduced more than bytes which are already in transit. Then
the right edge will move to the left and this is called shrinking the window. An example of this is shown in
Figure 2.9 [40]. This effect will not break down the TCP connection, but has a great impact on the efficiency.
Because this new window size will take back the usable window on the sender side to a value which is lower
than SND.NXT. In other words, this will force already sent data to be retransmitted unnecessary. This is very
inefficient and will take a worthless part of the network load. To prevent entering this state, TCP devices are
not allowed to shrink the window. The receiver has to be patient and reduce the window to a size that the
right edge is frozen.

Another problem concerning the window size is when the window is closed by the receiver. The win-
dow size is zero and the sender is not allowed to send any data. The sender cannot send anything until it
receives an acknowledgement from the receiver with an increased window size. The problem with this is that
the acknowledgement will only be sent as a reply to the sender, but the sender is not allowed to send any-
thing. When the sender does not receive anything it can conclude the connection is lost and to terminate
the session. To prevent this from happening, the sender will send probe segments regularly. These probes
are segments containing no bytes of data and prompts the current window size. The sender will continue
sending these probes until a segment containing a non-zero window size is received. When the receiver is
ready to receive the next segment, it decides to reopen the window. Then the next issue arises. When this
new window is chosen too small, this leads to the generation of many small segments, which will congest the
network with a lot of overhead.

The sizes of TCP segments are determined by the maximum segment size (MSS). The segments should

2.2. Theoretical Background of the TCP/IP suite 21

Client Server
= SHD.WND = 360
The= Usable = 360 HENET R
F 3
SND.NXT =1 RCV.HXT =1
- Request
1. Send 140-Byte Request |, Feduest
= SHD.VIND = 360 -
SND.I.I‘!I’A 1 Usable - 220 Seq Hum 1\
140 | 2. Receive Request; Send Ack,
| Reduce Window by 260 to

e | Shrink Buffer from 360 to 240
Acknowledgment
3. 5end 180-Byte Request N m:::‘;ﬂ =110‘t]1 RCV.WND = 100
_ Request =
= SHD.VIND = 360
Ege=d Usable - 40 Length=180 [140
Seq Num=141 LoJ
E
140 | 180 RCV.HXT = 144
kL
SND.NKT =321

4. Receive Request; Too Large

5. Receive Ack;|Try to Reduce To Fit Into Buffer

Window Size to 100, But Too

Much DaIE Already Sent RCV.WND = 100
SND.UNA =1 SHD.WND = 100 140 | 1 277
¥ Usable = -80 :
177 RCV.HXT = 141

=321

Right Edge of Send Window
Moves to Left

Figure 2.9: Graphical representation of shrinking window effect ([40] fig. 227)

not be too large or a risk of having them fragmented in the IP layer occurs. When the segments are too small,
the performance of the connection is greatly reduced. The MSS parameter ensures that TCP is not allowed to
send any segment larger than the MSS. But the sliding window mechanism does not provide any minimum
size of the segments. This could have problems when having a very small window size; a window size even
smaller than one MSS. Figure 2.10 shows an example of when this phenomenon happens. The receiver’s
speed of processing the incoming bytes is slower than the rate of the bytes being transmitted. The sender
has a huge amount of data to send and transmits all bytes as fast as possible. Each time the window size
is reduced by a small amount by the receiver and the sender will send a full window of data. This results
in getting a very small window size or even a temporary closure of the window. This is not a failure of the
connection, because the data is still transmitted properly. However, this is done with a very low transmission
rate. This phenomenon is called silly window syndrome (SWS). Several algorithms for SWS avoidance have
been developed [15, 40].

Both the sender and receiver contribute to the SWS effect. First look at the receivers contributions. The
receiver is reducing the window size to smaller and smaller values, which causes the right edge of the window
to move with very small steps. To avoid SWS, it is not allowed to do such small reductions of the window size
at the receiver. The receiver is restricted from moving the right edge too small. The minimum is 1 MSS or one-
half the buffer size, whichever is less. Therefore, the window at the sender’s side will slide with at least this
value or else the window is closed. Secondly, the SWS avoidance is executed by adjusting when the sender is
allowed to send new bytes. The method is invented by John Nagle [52]. Two rules apply for when the sender
wants to transmit([2]:

1. Aslong as there is no unacknowledged data outstanding on the connection, the application can send
its data as soon as it wants.

2. While there is unacknowledged data on the connection, the sender will have to store the data in the
transmission buffer. Until all outstanding data is acknowledged, or if the transmission buffer reaches
the size of one MSS, the segment is transmitted. This even applies when a PSH-flag is set.

Algorithms
By adjusting the window size, both devices ensure a sending rate that matches the speed the recipient can

22 2. Background

Client Server
UNA = SND.WND = 360 -
SND.UNA =1 Usable = 360 RCV.WND = 360
F
SND.NXT=1 RCV.NXT =1
| Segment
1. Send 360-Byte Segment [Seomert
= SND.VND = 360 -
SHD.UBA =1 el Y=g Seq Num 1\)
2. Receive Segment; Send Ack,
360 Acknowledgment 1 Reduce Window To 120
Ack Num = 361
3 i = =
SHND.MAT = 361 Window =120 RCV.WND = 120
3. Reduce Send Window to 120; 2401360
Send 120-Byte Seament | LSegtmhe?;O }
ength= RCV.NXT =361
SHD.WHD =120 syp.uNA = 361 Seq Nuin=361
Usable = 0 ¥ i
4, Receive Segment; Send Ack,
360 120 Acknowledgment | Reduce Window To 80
Ack Num =431
SND.NACT = 481 / Window =80 RCV.VND =80
3. Reduce Send Window to 80; j
send 80-Byte Segment | Segment -
Length=30 RCV.NXT = 481
SND.WHD = &0 SHD.UNA = 481 Seq Hum=481
Usable =0)
] 4. Receive Segment; Send Ack,
“ m E Acknowledgment_| Reduce Window To 67
Ack Hum =561 RCV.VIND =80
Sl Window = 67
#]
RCV.NXT = 561

Figure 2.10: Graphical representation of Silly Window Syndrome ([40] fig. 228)

handle the packets. In optimal conditions the sender is transmitting packets at the maximum rate. The
capacity is limited by the transmission link. An schematic representation is shown in Figure 2.11 [34, 50]. The
link between the sender and receiver is denoted as the bottleneck. Vertical dimension is the transmission
rate (bit/s) and the horizontal dimension represents the time, such that the area presents the packet size
in bits. Pj represents the spacing between two packets on the bottleneck link if the sender is sending at
maximum capacity. At arrival at the receiver, the time between the packets does not change, hence Pj, = P;.
Assuming for each segment an acknowledgement is created at the same speed than the time between two
acknowledgements are sent is the same. Thus A, = P,, assuming each acknowledgement is smaller than
the segment it acknowledges. Therefore, the acknowledgements will reach the sender in the same interval.
Concluding that A;=A, =P, =P;. T

This concept explains why TCP is called a "self-clocking" protocol [50]. When enough packets are sent,
this self-clocking system will automatically adjust to the available capacity and the connection will be in a
transmission state equilibrium. However, the only problem is to start this system, because data gets flowing if
acknowledgements are received to clock the packets, while the acknowledgements for their turn need packets
to flow already. Jacobson developed an algorithm to start the "clock"[34].

TCP’s sliding window system manages the flow control for a connection, only taking in account the set-
tings of the devices. It lacks the opportunity to adjust the transmission rate based on fluctuations inside the
network. It is common knowledge for flow-control systems that if an offered load in an uncontrolled dis-
tributed sharing system exceeds the total system capacity, the effectiveness decreases (even at times to zero)
[27]. When this effect occurs for TCP it is known as a congestion collapse|2, 23, 34, 51]. The slow start is intro-
duced in one of the first adoptions, developed by Jacobson. To tackle the problem of congestion avoidance,
a congestion window (cwnd) is used at the sender side. The usable window is determined by the minimum of
the congestion window and the advertised window. The slow-start algorithm starts by setting the congestion
window to a minimum of 1 MSS. At each acknowledgment received at sender’s side, the congestion window is
increased with one MSS. This results in doubling the size of the congestion window at each RTT. This method
lets the sender explore the transmission rate limit of the network with exponential speed. In addition to this
a congestion avoidance algorithm is applied. This algorithm will approach the network limit with a linear
speed. Each time an acknowledgement is received the congestion window is increased by 1/cwnd (in units
of MSS), resulting in an increase of exactly one MSS every RTT. The sender sends each RTT an amount of one

2.2. Theoretical Background of the TCP/IP suite 23

Sender Receiver
ack. flow
- . A'b
<+ A

As

Figure 2.11: Explanation of TCP self clocking property [50](fig.5.8)

cwnd, so increasing the congestion window by 1/cwnd results in a linear increase. The slow-start algorithm
continues until the congestion window reaches the value of the slow-start treshold (ssthresh). The value of the
ssthresh depends on the congestion of the network. After a loss is detected, the congestion window is set
back to 1 MSS and will restart the slow-start phase.

TCP Tahoe implements both the slow-start and the congestion avoidance algorithm([44]. Also Jacobsen
added a fast retransmit algorithm to TCP Tahoe [34]. The fast retransmit enhances the packet loss detection.
When a packet is lost, no acknowledgement will be received. But the segments which are transmitted cor-
rectly after the lost segment will send a acknowledgement. Because of the cumulative acknowledgements,
these acknowledgement has the same number as from the previous acknowledgement. It misses some se-
quence numbers in between, which means only it can only acknowledge the last cumulative received num-
ber. So receiving duplicate acknowlegdements (double acknowledgement numbers from consecutive seg-
ments) is an indication to a packet being lost. After three duplicate acknowledgements, the sender decides
the packet is lost. Now when this happens, the congestion window is reduced to 1 MSS and the lost segment
is retransmitted. Only costs too much of the performance of the TCP connection. TCP Reno proposes a new
solution when a segment is retransmitted after a triple acknowledgement is detected [2, 3]. The fast recovery
algorithm is introduced. Instead of going into slow-start phase, the congestion window is halved. Having
received multiple acknowledgements is an indication some of the segments after the lost segment did ar-
rived. So the transmission rate should not be broken down to a bare minimum and can be recovered more
quickly. In Figure 2.12 an overview is of the different phases the algorithm goes through. The efficiency of an
algorithm is denoted by the ratio of the gray area and the area under the network limit.

The fast recovery algorithm enhanced the efficiency of the TCP connection. But still some minor issues
occur when in a small period more than one segment are lost. For each lost segment the congestion window
is halved. So when a new lost segment is detected, before the connection was recovered the windowsize is
reducing exponentially. Floyd et al. added a simple refinement to TCP reno’s fast recovery, transforming it
into TCP NewReno’s algorithm [24]. A distinction is made for a partial acknowledgement and a new data ac-
knowledgement. Before retransmitting the lost segment, which is discovered after three duplicate acknowl-
edgements, the highest sequence number which is already sent is noted. A new data acknowledgement is
received for the the highest sequence number transmitted. A partial acknowledgement acknowledges only
the recovery of the first error and indicates more segments are lost. The congestion window is halved after
first transmission. For each duplicate acknowledgement the congestion window is increased by 1 MSS, be-
cause this indicates a segment has arrived correctly. A partial acknowledgement reduces the window by 1
MSS and retranmsits the newly detected lost segment (so usable window does not change). An overview of
the operations of the TCP NewReno’s fast recovery is shown in Figure 2.13. Over the years many algorithms
have been developed. Mainly focusing on three problems to tackle:

24 2. Background

Loss detection

2 o
Qf @ Network limit
©
£
2
c
2 L el A _____.ssthresh
7]
()
(®)]
c
Q
O
Time
Ss FR CA
H—A
Figure 2.12: Congestion window dynamics of TCP Reno ([2]fig.15)
Pl d A 7T T
ACKed Sent data, Buffered
data waiting for ACK data
P cwnd ! Initial congestion window before
State 1 \/ loss detection

' cwnd/2 Just after the loss

i
]
State 2 i detection
]
]
]

! #dup+cwnd/2 Retransmission of the lost packet.
State 3 ’:_\1/—\|/ Each dup ACK “inflates” the cwnd
hd #dup+cwnd/2 -AC[(Partial ACK “deflates” the cwnd, packets
State 4 i before @ are received
“#dup+cwnd/2 -ACK Retransmission of the lost packet (Q).
State 5 \) : The cwnd remains unchanged
Ad
! #dup+cwnd/2-ACK All dup ACKs only “inflates”
State 6 | ; \l/ \I/ the cwnd
! i cwnd/2 Exit recovery and deflate cwnd when
State 7 ; i

non-duplicate ACK is received

X Packet losses due to the minor congestion event
o Non-duplicate ACK

Detected packet loss (e.g., 3 dup ACKs)
Packet retransmission

(@)
I:] Amount of successful delivered }

The congestion window size is a

data inferred from dup ACKs
sum of these two elements

.\, Amount of packets in transit

Figure 2.13: Explanation of TCP NewReno’s Fast Recovery ([2] fig. 18.)

1. Improving RTO estimates
2. Enhancing detection of packets losses

3. Improving congestion avoidance algorithms

Currently the most-used congestion algorithms for TCP are NewReno and CUBIC [2]. TCP CUBIC orig-
inates from NewReno, with many iterations and other algorithms in between. CUBIC is designed for high-
speed networks and improves fairness which is described below. Both algorithms progressed in improving
packet loss detection and congestion avoidance. Other types of algorithms responds on changing RTT values,
while NewReno reacts on (detection of) losing packets in the network.

Congestion algorithms are not only to find an transmission equilibrium for one connection on the net-
work. A lot of traffic is using the same network resources. So the algorithm should take a fair share of the
network load. It should not be expelled by the other network, but it should also not be the dominant connec-
tion and taking all resources. Chiu and Jain [13] developed an fairness index for this:

F_(Z?ﬁﬁ

= =i 2.2)
n-yif}

2.3. Conclusion 25

W(o)
1\ (] awey=24W)
WZ(tO) I~ — Z
/4 5

74 oy) VJ ’

/ o, Ve
t

W (to) W, h b ty

Figure 2.14: The trajectories of two congestion windows converging to the same share of network load ([50] fig.5.19

where 7 is the number of users and f; is the part share of the i’" user. This index indicates the fairness
or friendliness of an TCP algorithm. The range is from 0 to 1, where 1 is the highest achievable where ev-
ery flow has the exact same share of the network. This is due to the additive increase an multiplicative
(AIMD) behaviour of this method. The AIMD method is one of the most effective ways to approach this
equilibrium[27, 69]. An example of the trajectory of this is shown in Figure 2.14. Two data flows are compet-
ing for their share of the network. Over time the congestion windows of both flows converge to almost the
same size, which means they will use an equal share of the network resources.

2.3. Conclusion

Based on the problem statement of this thesis: "To what extent is it possible to implement a network diode
on an FPGA under realistic network environments, using the Transmission Control Protocol", we researched
the current diode products on the market, which was described in Section 2.1. From the developments in this
industry, we learned the bottleneck of this project. TCP is a bidirectional flow, which has to be converted to
a unidirectional flow. The standard solutions use PC’s, which run proxy software to solve this issue. The only
hardware implementation is the one-way diode connection, which does not cover the features of the TCP. The
data flow is converted from bidirectional to unidirectional at the sending side of the diode. The information is
sent using a custom-made protocol designed for the user. At the receiving side, the information is converted
back to the bidirectional TCP flow. This has the advantage of an adjustable diode protocol. The functionality
can be modified by updating the proxy PC’s. Although the disadvantage of this is the costs of the diode and
the maintenance of those proxy PC's.

From the operating mechanisms of TCP described in Section 2.2 we can conclude it is a very reliable
protocol. It has many features to establish the connection, manage the connection while taking in account
other traffic and has enough room to implement new features for improvement. But those characteristics for
TCP are only valid when communication is available both ways. A bi-directional connection is vital to the
TCP methodology. The sending side of the connection requires feedback from the receiving side to operate.
There is no adaption of TCP with only one-way traffic allowed. TCP implements algorithms to adept to the
current state of the network, which is mainly detected by packets loss or fluctuations. those algorithms pro-
vide heuristic solutions to recover the connection, while achieving high efficiency and taking in account a
fair share of the network resources. With this knowledge we continue to find a method to define a simplified
model of our system as described in Section 1.4 for analysis.

System evaluation

With the knowledge described in Chapter 2 we gained more insights to develop a model for evaluation of
the system. From Section 2.1 we know the bottleneck of designing the network diode for using TCP is the
conversion from bidirectional flow to unidirectional flow. The common solution is to process this in a proxy
PC. The goal is to perform this conversion in hardware on the same device where the diode is implemented.
A new method should be developed for this conversion and, therefore, the concepts of TCP was researched
in Section 2.2. The TCP protocol was designed to provide feedback of the status of the hosts and network.
The protocol can change settings to adapt to these anomalies. It can manage and control data flow and has
features to improve reliability. Not only does it manage the traffic of the connection but it also distributes the
network load for other traffic. To design a method for converting TCP data flow, first the behaviour of these
kind of traffic has to be analysed.

In this chapter, a method for evaluation of the system is developed. In Section 3.1, an approach for a
simplified model of the system is presented. To satisfy goal 1 (Section 1.3; Design requirements: minimise
resource utilisation, maintain a reliable connection and maximise data flow), the most important factors are
determined. To determine the influence of these factors, we will investigate the relationship between the
throughput of both networks and the buffer size of the diode. To find a solution for this relationship, the
methods for calculations on throughput prediction are discussed. This results in Equation (3.6), a general
formula for determining a throughput of a connection using TCP. Thereafter, a division is created for settings
which can be controlled and to what parameters will affect the network on both sides.

To analyse this set of a parameters, a conventional simulation software is selected in Section 3.2. Research
shows three common used programs for these kind of simulations: MiniNet, OmNet++ and NS3. For each of
these programs, the suitable features for our system are evaluated and presented in a clear trade-off table.
Finally, a selection is made which will be discussed in more detail in Chapter 4.

3.1. System Analysis

The data diode will be inserted in the connection link between two domains. One domain is a trusted, highly
secured domain. The other is a less secure domain. Under no circumstances there should be any kind of flow
from the high-secured domain to the low-secured domain. For simplification, the high-secured (trusted)
domain will be referred as the red domain and the low-secured domain will be referred as the black domain.
In Section 1.3, the second goal of this project is to develop a model for system evaluation. To start with
simplifying the system, we state that the system consists of two parts. The data diode splits the system in
two parts, the black network and the red network. The only common element is the information flow from
the black network to the red network, because all the other flows are blocked by the diode. In Section 2.2,
it was stated that TCP cannot operate with an unidirectional connection. Therefor, the TCP stream has to
be handled at both sides of the diode. It is up to this project to determine what parts of the TCP are being
kept when information is passed through the diode. Consequently, a protocol for the data transferred by
the diode should be defined. The TCP streams on each side are operating independently of each other as
there is no method to supply feedback about the status of each network to the other side. This rule must

27

28 3. System evaluation

C‘ Red Througput [Byles/second] :

"

L

Buffer in Diode

Red
Network

Black
Network

l:‘ Black Througput [Bytes/second]

Figure 3.1: Simplified overview of system

apply, otherwise the data diode does not satisfy its primary function: establishing a one-direction gateway
and blocking all kinds of traffic the reverse way.

To this extent, a simplified model can be formed as is depicted in Figure 3.1. The information transferred
through the diode is the only piece of shared data. This data has to be temporarily stored in a buffer. The data
diode should be established on an FPGA, which does not have an unlimited buffer size. Resources on FPGA’s
are expensive and these should be minimised as was stated in Section 1.3. The TCP stream is going to flow
from the black network to the diode. The black part of the diode will handle the handshake and acknowl-
edgements to the sender from the black part as well as it transfers the payload over the diode. There will be
a stand-alone TCP stream between the source in the black network and the receiving side of the diode. The
imperative information will be added to the buffer inside the diode. The sending side of the diode, connected
on the red network, will empty this buffer by setting up a new TCP stream at the red side. The TCP stream at
the black side will fill the buffer and the red side will empty this buffer.

3.1.1. Functional Requirements

From the model as was described in the previous section and looking at the depicted overview in Figure 3.1,
the question arises: To what extent is the buffer size affected by the throughput of both networks? And what
minimum buffer space is necessary? The amount of data stored in the buffer depends on the behaviour of
both parts of the network. The black network will send data to the diode and can only negotiate with the
receiving side of the diode. There is no possible method for the black source to adjust its sending rate to
any anomalies at the red side of the network. Vice versa is it not possible of the red network to notify the
black network about the status of the TCP stream or the amount of buffered data. The sending rate of a TCP
stream is defined by its throughput. The size of the data in the buffer can be calculated by the difference of
the throughput of the black network and the throughput of the red network. Only this is not all of the data
to be stored in the buffer. TCP is a reliable protocol and has mechanisms to detect and recover lost packets
as was explained in Section 2.2. The sender in the TCP stream must be able to retransmit any lost segment.
The segment have to be stored until it is acknowledged by the receiver. All segments which are already sent
but not yet acknowledged (see category 2 of sending transmission state in Section 2.2.5), should be stored
in the buffer. The maximum amount of data to be sent, but not acknowledged, is the size of the sending
window in the red network. A comparison could be made with routers, which act as an in-between device of
a connection. Routers connect multiple devices and also have a temporary buffer to transfer data using TCP.
The rule-of-thumb for routers is to have a buffer of size B= RT T x C, where RT T is the average RTT and C is
the maximum capacity of the connection link [6]. This set of rules can be contracted to the following formula
for calculating the buffer size dependent on the throughput of both networks:

Buf fer = Windowgeq + (Throughputgigck — Throughputpeq) (3.1)

From Equation (3.1), we can conclude one relationship between the black and the red throughput of the
system. The buffer size does need a maximum value, it is not possible to keep increasing the amount of data
to be buffered. To prevent the buffer from overflowing and ever increasing, the system should apply to the
following rule:

Throughputgjgex < Throughputpeq (3.2)

3.1. System Analysis 29

The black network should at least process the segments at the same speed as the red network is supplying
new data, otherwise the buffered data keeps increasing. This sets two new goals for the system:

1. Determine the maximum capacity of the red network with regards to the throughput of the TCP stream

2. Define a method to control and set a limit to the maximum throughput of the black network

To determine what size of buffer space is required, the throughput of the black network should be limited
and the behaviour of the throughput of the red network should be predicted in advance. There is absolutely
no method to provide feedback of the status of the red network to the black network without breaking the
main function of the data diode. The black side is not even allowed to know the saturation level of the buffer
at any moment, as this could leak information of the red network. We must ensure to let the throughput of
the black stream not to exceed the red network. The black throughput should be limited to the maximum
value of the red throughput. We need to find out how the throughput of a TCP stream can be determined and
to what extend it can be controlled.

3.1.2. Throughput calculation

To determine the maximum throughput of the red network and to control the throughput of the black net-
work, we need to find a method to evaluate this. In Section 2.2 was explained, TCP has many mechanisms
to maintain its reliability and takes care of a smooth use of network resources. It implements a flow control
to prevent errors at the receiver side, while simultaneously it takes in account other traffic using the same
network resources to avoid congestion. That last part allows the most opportunities for improvement as this
has been kept changing over the years. The huge increase in internet traffic over the past decades did not
only introduce new problems regarding the amount of data to be transferred, but many more changes were
made to be taken in account. The type of data, the type of protocols, the network architecture, the physical
devices transporting internet traffic, the dependency on real-time data, the distance between devices, wire-
less and local networks and much more changed over time [2, 65]. This requires all-time changing new tactics
and strategies for the Transmission Control Protocol. As was stated in Section 2.2, TCP aims to the optimal
method to transfer data with the highest efficiency. The efficiency is improved by reducing the amount of
retransmits. To reduce retransmissions, lost segments should be detected and identified as soon as possible.
Consequently should these lost segments be sent in a method to recovery the TCP stream without losing as
less of data flow as possible. In addition, the loss of packets could be prevented by avoiding congestion, which
will improve the efficiency of the throughput.

These mechanisms are updated and renewed by proposing new congestion algorithms and adding fea-
tures to TCP in the options field. There is not a standard method to calculate or determine the expected
throughput of a TCP stream. To look at the effects of the congestion algorithm, we are going to evaluate the
algorithm TCP NewReno as an example. Congestion algorithms introduces a congestion window as explained
in Section 2.2.6. The used window is the minimum of the advertised window of the receiver and the conges-
tion window. The size of the congestion window is dependent on the algorithm. TCP NewReno has defined
four different phases for the congestion window: slow-start, congestion avoidance, fast retransmit and fast
recovery. Fast recovery is actually more of a modification to the fast retransmit as defined in the TCP Reno
algorithm. Plotting the theoretically congestion window over time for TCP NewReno would look something
like Figure 3.2.

The graph depicted in Figure 3.2, represents the congestion window over time for the TCP NewReno al-
gorithm [50]. Some simplifications and assumptions are considered for this representation. The maximum
window size is denoted by W and is represented in units of packets, assuming all packets have the same size.
Furthermore, RTT is assumed to remain constant and the window size will remain constant during one RTT.
The transmission rate would then be W/RT T [packets/s]. As is depicted in Figure 3.2, the transmission be-
haves periodically after the first retransmit triggered by an RTO. The window is reduced to half its size and
the algorithm starts the congestion avoidance (CA) phase. In the CA phase, the window size increases by one
packet size every RTT. The slope a, is a linear increase with value 1/T. During a periodic cycle D, the window
increases from W/2 to W. Therefore, the periodic cycle will take %RTT seconds. One cycle D is exactly %
number of RTT’s. The amount of packets during one cycle can be calculated by taking the area under one of
the saw-tooth’s depicted in Figure 3.2. The number of packets M will then be [50]:

w

—3W2 (3.3)
=3)

D W D%
RTT 2 RTT 2

30 3. System evaluation

RTO exceeded Fast retransmit
Congestion
4 window i
w
a
W/2 5
«—>
i i time
slow start congestion avoidance
«—

Figure 3.2: The congestion window as a function over time, assuming the RTT remains constant ([50] fig5.17)

This is, with the assumption only one packet is lost when the fast retransmit is triggered. Considering M
packets are being transferred during one periodic cycle D, the loss probability p equals p = 1/ M. Therefore,
the maximum window size becomes W = \/g . The average transmission rate, calculated over the periodic
cycles will now be [50]:

M 3w %
M _ (3.4)
D 4RTT RTT,/p

This simplified analysis led us to Equation (3.4). Evaluating this equation, will lead to some important
conclusions. First of all, the throughput of TCP stream is inverse proportional to the RTT of the connection.
TCP stream’s with a small RTT will react more aggressive to other traffic with regards to the network share.
As was explained in Section 2.2.6, TCP protocols are evaluated on their friendliness towards other streams.
TCP streams with smaller RTT will take a larger share of the network load as streams with a larger RTT. Sec-
ondly, the throughput of a TCP connection is inverse proportional to the square root of the loss probability.
Therefore, Equation (3.4) is termed the inverse square root law for TCP streams throughput [50].

Over the past decades the number TCP CA algorithms increased to satisfy the new infrastructures of mod-
ern networks. These evolutionary process of new algorithms could be categorised in three strategies [2]:

1. Reactive algorithms
These algorithms adjust the window size when packet loss is detected. Their focus is on improving
methods for detecting packet losses earlier and to recover the stream with highest efficiency.

2. Proactive algorithms
Proactive algorithms enhanced methods for RTT estimations. By detecting alterations in the RTT, de-
lays can be detected. Good delay estimations can predict the current maximum network capacity and
this algorithms uses this calculations to adjust the window size.

3. Reactive algorithms (inc. bandwidth estimation)
These algorithms are a slight modification to the standard reactive algorithms. The window size is still
only adjusted when a loss is detected. But the reduction value changes based on the current bandwidth
estimation. These algorithms are common to be used for wireless networks, where the network capacity
fluctuates wildly [2, 45].

The focus of most enhancements of these algorithms was to improve the performance for modern net-
works with high bandwidth. The main theme in this line of development is the inverse square root law. The
window size is controlled by the additive increase multiplicative decrease (AIMD) algorithm, which will cause
this relationship. New algorithms proposing methods using multiplicative increase multiplicative decrease
(MIMD) schemes, show better results with regards to proportional fairness [37]. Finally, algorithms could be
analysed by a general increase multiplicative decrease (GIMD) scheme. This results in a general relationship
between the throughput (w) and the loss rate (a) [48, 53]:

3.1. System Analysis 31

Black Network Red Network
I N r s

=]
(=

V| Packet Loss
Manager

Network

Server Simulator

Client

Client Simulator ! Server Simulator ! Network Simulator ' Client

Figure 3.3: Overview of the parameters affected by each device in their part of the network

w~KaP (3.5)

In Equation (3.5), K is a constant dependent on which TCP CA algorithm is used, but also on which testing
models are used [48]. K is dominantly dependent to the decrease rate of the window size in the algorithm and
b is strongly dependent on the increase rate of the window size. For TCP NewReno, the b is equal to 1/2, which
leads to the inverse square root law. Scalable TCP proposed the MIMD method and will change the value of b
to 1 [37]. Furthermore, in most studies, the rate at which losses occur are assumed to be linear proportional
with the rate window size changes [47]. In addition to this, other studies show much more situations where
the rate loss is independent on the algorithm [4]. Moreover, losses could occur in clumps or batches which
will have different behaviour for the throughput. Finally, researches also have shown that the loss rate is
dependent on the throughput, which means they are dependent on each other.

Concluding the findings from researches for throughput determination, the most important factor is the
algorithm for adjusting the window size. The packet loss probability is coherent dependent on the through-
put and vice versa. From Equation (3.5) we can conclude the algorithm affects the throughput directly and
determines the aggressiveness level of reaction to packet losses. When the TCP stream reacts to aggressive,
it comes at the expense of the TCP-friendliness and will take an unfair share of the network load. Because
we want to predict the throughput of the red network, but also want to limit the throughput of the black
network, we need a formula with parameters which can be verified or controlled. The general calculation
for the throughput, without using any algorithms, would be equal to W/RT T. Combining this together with
Equation (3.5) from Maulik and Zwart[48], we propose the following formula:

WindowSize

Throughput = x C x p_b [Bytes/s] (3.6

RoundTripTime

In Equation (3.6), C and b are dependent on the congestion algorithm and p is the packet loss rate. This
equation can figure as guide for determining the configurations for both networks. From each variable in
Equation (3.6) we are going to dissect if these are controllable or dependent for each side of the diode in the
next section.

3.1.3. Black Throughput
The system is separated in two networks. Each of them operates independent of the other, except the infor-
mation flow. The red network has to wait for the information coming from the other side of the diode. That
is why the red network can not send at a higher rate as the black network and also why the black network is
not allowed to send any faster than the red network is capable of as was explained in previous section. The
functionality of the system can be divided over 6 different devices as is depicted in Figure 3.3. Each side has
3 devices, mainly doing the same task. For the black network, there is a source available which transfers data
to the diode. At the diode a is process running, which accepts the packets from source and handles them by
sending acknowledgements and transfer them over the diode. In between the black network’s source and the
black part of the diode, a packet loss manager is installed for simulation purposes. The packet loss manager
will simulate packets getting lost due to errors in the network which is not really there. The red part is a copy
of the black part except the position of the source and destination are swapped. The red part of the diode is
responsible for transferring the data over a TCP stream.

From Figure 3.3 we can extract a set of parameters which will have an effect on the variables in Equa-
tion (3.6). We are going to discuss these parameters for each side of the diode. Starting with the black part

32 3. System evaluation

of the network, the parameters are being distinguished by means of the controllability or the dependency by
the diode part of that side. The diode part in the black network is the receiving side of the TCP stream. This
part should limit the throughput as was explained in Section 3.1.1.

Controllable parameters

The black part of the diode must function as the receiving side of the TCP stream. It should negotiate the
TCP options, acknowledge the incoming segments and transfer the data over the diode. To prevent the red
part from failing due to an overload, it should limit the throughput of the connection. The receiver of a TCP
stream has the following options to limit the throughput:

¢ Changing window size
The TCP stream uses the sliding window mechanism for flow control. Commonly this is based on a
buffer at the receiver’s side. Only in this system the receiver is not capable of knowing the size and
saturation of the buffer. Although the size could be fixed and be known to the black part of the diode,
the saturation over time can still not be known. From Equation (3.6), we can see the direct effect on the
throughput of the TCP stream. Reducing the window size will lower the sending rate of the source and
results in a lower throughput.

¢ Artificial delayed acknowledgements
The source of the TCP stream keeps track of which segments arrived successfully and which not. It
calculates how many segments can be send until the amount of packets sent but not yet acknowledged
is the same as the window size (see Section 2.2.5). Looking at Equation (3.6), what actually happens
when the acknowledgements are sent with a delay, is that the round trip time gets larger. A higher RTT
results in a lower throughput.

* Artificial packet loss
In addition to these options, the receiver can decide to not send an acknowledgement for the segment
and faking a loss of the packet. This will result in a higher loss rate and will lower the throughput
following Equation (3.6).

Depending parameters

The black part of the diode is passive with regards to sending segments. It waits and listen to incoming packets
and will react with a proper response. Therefore, this part of the diode is limited in its options to control the
throughput of the black TCP stream. It is dependent on the segments transmitted by the source and to what
happens to these segments during transmission. It is preferable if we could create an accurate prediction of
the behaviour of the TCP stream. To determine the throughput of the black side, the following parameters
should be considered:

* Sending rate of source
The source will send packets at a certain rate to the receiver. The source can not send faster than its
maximum capacity, but has to adept to the feedback about the network. The receiver can only notify
the source to slow down by means of the methods described before.

¢ Packet loss in black network
After the segments are transmitted by the sender, the segments are not guaranteed to arrive correctly.
The segments can get corrupted, fragmented incorrectly, lost, arrive in incorrect order, etc. The packet
loss rate is a deciding factor for the throughput, as we can conclude from Equation (3.6). An error in
transferring a segment can occur due to plenty of causes. We highlight the most important error-prone
network anomalies.

— Black network architecture
The architecture of the black network describes the infrastructure for the connected devices. The
infrastructure provides the connections and links between devices. Network architectures exists
in many shapes and feature many functionalities. All devices could be connected to each other, or
all connections are linked to one device. The architecture determines the complexity of the routes
and the saturation of the network resources. Consequently is the RTT affected by the architecture.

— Number of devices in black network
When more devices in are connected to a network, the complexity for routability increases and

3.1. System Analysis 33

consequently, requires a decent architecture. These devices will, presumably, be a heavier load to
the current network resources and the risk for congestion increases.

— Number of hops from source to diode
Transferring segments from host A to host B is commonly routed via other devices. Each device
a segment passes, is called a hop for internet packets. For example, a hop could be executed in a
router, a switch or a hub. Each hop the segment uses, is an extra risk to an error in the segment.

— Other traffic on black network
Internet packets will share many (inter-)connections between devices. If a lot of devices are using
the same resources, the risk on congestion increases. Packets can get delayed, lost or corrupted
due to network congestion.

¢ The congestion algorithm

The source is configured to use a congestion avoidance algorithm. From Equation (3.6) we can see
this will directly affect the throughput. Not only the sending rate is affected by a factor but the used
CA algorithm is strongly influential to the packet loss rate. A lot of CA algorithms already exist and the
amount keeps expanding. To know what algorithms could be expected, we researched the most used
algorithms for common network environments. TCP NewReno has been the default CA algorithm for
many years since its introduction. Today, TCP Cubic is one of the most used algorithms for standard
hosts. Three main OS distributors have adopted this algorithm in their network interfaces. TCP Cubic
is the default in Linux kernels (since 2006, version 2.6.19)[8], MacOS (since 2014, OS X Yosemite)[22]
and Windows (since 2017, version 10.1709) [9]. TCP Cubic is designed for high-speed networks with
a high bandwidth-delay product. It focuses on heterogeneous networks, where the RTT and packet
loss rate vary significantly. The algorithm shows good performance and great fairness properties when
measured in real-world environments [2]. TCP Cubic is able to switch the increase for the congestion
window from logarithmic to linear, based on a packet loss rate profile. The algorithm uses a formula
with a constant C and a coefficient 5. TCP Cubic is not able use the maximum available network capac-
ity. Research on the steady state throughput of TCP Cubic shows the maximum is approaching 90%[10].
This number is strongly determining the factor C of Equation (3.6). The value b of this equation is de-
pendent on the coefficient of the TCP Cubic algorithm.

3.1.4. Red Throughput

The red part of the diode acts as the sender of the TCP stream. It will start to negotiate with the receiver and
will establish the connection. This process is in control of sending segments and responsible for detecting
packet losses and retransmit those. The red part of the diode is only dependent on the supply of data from the
red network. Nevertheless, this does not cause any issues, because the red TCP stream does not get loaded
when there is no data to transfer. Instead, it would ease the red network to perform some retransmissions
when such thing happens. Taking this in account, the parameters for the red network can be distinguished as
follows:

Controllable parameters

The red part of the diode is active process. It initialises the TCP stream and is responsible for the data flow. It
should maintain a reliable and fast connection, while featuring the TCP characteristics. The process has the
task of transferring the data from the diode to the receiver, hence, it is in control of the following configuration
parameters:

e Window size
The red source transfers segments from the buffer of the diode to the red receiver. It maintains flow
control by the sliding window mechanism. The window size is managed by the CA algorithm as de-
scribed below. Commonly, the window size is chosen between two values: the congestion window and
the receiving window. The red part of the diode is able to increase the window size to increase the
throughput if necessary.

* Congestion avoidance algorithm
Congestion avoidance algorithms should prevent the connection to break down too quickly and drop
the throughput to a minimum level. The algorithm does also provide a method to take a fair share of

34 3. System evaluation

the network resources for the connection. From Equation (3.6) can be concluded the algorithm has
a significant impact on the throughput. The CA algorithm is most dominant for the C value of the
throughput determination.

* Recovery algorithm
The recovery algorithm is a part of the CA algorithm, but can be enabled separately. The recovery
algorithm determines the b value of Equation (3.6). This represents to what extent the alogrithm is
able to recover a connection on time. If packet losses are detected early and recovered efficiently, the
throughput should be recovered in a short time and the amount of data in the buffer should not have
increased much.

¢ TCP options
The options available in the TCP header provide the protocol to extend its features. The protocol
can be enhanced on its reliability, packet loss detection, RTT estimation, bandwidth estimation, TCP-
friendliness, throughput performance, recovery or any combination of those. For example. TCP SACK
should improve the packet loss detection and recovery and will improve the value of the b in Equa-
tion (3.6).

Dependable parameters

The red part of the diode is responsible for transferring data from the diode buffer to the receiver in the
network. Transmitted packets are not guaranteed to receive correctly. Packets can get lost due to network
anomalies and the sender has to negotiate the TCP configuration with the receiver. Therefore, the red part of
the diode is dependent on the following parameters:

¢ Round-trip time red network
As can be concluded from Equation (3.6), the RTT is a significant value for the throughput. The sender
is able to compensate for variations in the RTT to maintain the steady throughput. Unfortunately, it is
difficult to estimate the RTT and this requires complex calculations. The RTT is dependent on network
architecture, including distance between the devices. It is almost impossible to predict the exact RTT
in advance and furthermore, the RTT will vary over time.

¢ Availability of TCP configurations on receiver side
During the 3-way handshake of the transmission control protocol, the devices negotiate on which set-
tings and TCP options are going to be used. The red part of the diode could desire advanced settings,
but if these are not in compliance with the receiver, these settings are unnecessarily implemented in
the design. The following parameters are required to work in compliance:

— Window size
The sliding window system establishes the data flow for the TCP stream. The size of this window
is dependent on two independent windows: the congestion window of the receiver (which is de-
termined by the CA algorithm), and the receiver’s window. The receivers window is determined by
the receiver and commonly linked to the available buffer space for that connection. The minimum
value of these two windows will be chosen as the operational window size. If the receivers window
is the smallest one, will that be the limiting factor for the throughput for the red connection.

— Segment size
The maximum segment size (MSS) is negotiated, and the smallest value will be chosen. When the
algorithm of Naglé is applied (which is common since the introduction of default TCP NewReno),
the TCP sender will almost only send segments with the size of one MSS. Because the data being
send has its origin from another TCP stream (from the black network), these segments are likely to
have the size of one MSS from the black network. If the receiver on the red side has a smaller MSS,
the segments have to be fragmented at the red sender’s side. This will introduce extra overhead
and comes at the expense of the efficiency of the connection and will slow down the throughput.

— TCP options
Today, more than 30 TCP-header options are standardised and registered by the IANA [29]. These
options are improvements for specific features of the TCP protocol. Options could enhance relia-
bility, packet loss detection, RTT estimation, bandwidth estimation, TCP-friendliness, throughput
performance, recovery or any combination of those. Nevertheless, TCP options can only be used

3.2. Simulations 35

for a connection if both devices are capable to handle these and agreed upon this during the ne-
gotiation. TCP options like TCP SACK could provide promising performance improvements as is
explained in Appendix A.

* Packet loss red network

Packets lost in the red network will have the same causes as for the black network as described above.
The consequences are almost equal for both networks. Packets will get lost and the throughput will slow
down. If this happens at the black network, than the black source should detect the loss and recover the
connection. This will result in a drop of the throughput, potentially lower than the red throughput. This
will create time for the red network to empty the buffer. If a packet is lost at the red network, the same
will happen for the throughput of the red network. It will slow down. However, the black network will
keep transmitting data and this will stack up in the buffer, while the red part of the diode is recovering
the connection and trying to increase the throughput. If the connection is not recovered quick enough,
the buffer will overflow and data will get lost, forever.

3.2. Simulations

In previous section, the evaluation model for the system was discussed. The operations of the network diode
could be separated in two networks. The black (untrusted) network will act as the source and will transfer
data from the transmitting device to the buffer of the diode. The red (trusted) network has the responsibility
to empty the buffer and transfer data from the diode to the authentic receiver. Consequently, because the
transfer protocol is TCP, two separate TCP streams are active. The black stream is the supplier of the data and
will stack information in the buffer of the diode, while the red stream acts as the consumer and will unload the
buffer. This resulted in Equations (3.1) and (3.2) as was discussed in previous section. From Equation (3.2), we
concluded to find a method to determine the throughput, because there is no standardised method for this.
A formula was proposed, which could be simply implemented in our system. This resulted in Equation (3.6),
which contains only variables that are straightforward to be controlled by the parameters of our system, or
to what variables it is dependent on from the network. The wide range of varieties available from this model
motivated us to analyse this system by simulations rather than solving it by mathematics.

Therefore, a suitable simulation software should be chosen for our system. The simulation model imple-
mentation is depicted in Figure 3.3. Each part of the network is partitioned in three processes to simulate.
Each part has a sending process, receiving process and a process that simulates the network anomalies. In
addition to this, the simulator needs a unidirectional connection and a matching buffer to simulate the diode
functionality. Therefore, this simulation software should satisfy the following list of requirements:

¢ Implement infinite data source and sink
The simulation should be able to analyse the diode performance under realistic network environments.
The worst-case is a never-ending data stream, which will utilise maximum resources and requires the
maximum available capacity of the network. Therefore, the black source must be able to generate a
TCP stream of an infinite amount of data, which is transferred at the maximum available sending rate.
Finally, this stream will be received at the end-point of the red network. This process should receive all
incoming segments and handle them by sending proper acknowledgements.

¢ Implement data-diode
The main function of this system is providing a one-way gateway for TCP streams. Since this is a new
concept, this functionality should be able to be implemented in the simulation software and must com-
ply to our system’s configurations. This includes the buffer we want to analyse. From Equation (3.1),
we want to know the necessary size of the buffer to use in our design. The simulation should give some
insight on the appropriate size for the buffer.

¢ Adjustable network resources
Our system will be designed to operate under realistic network environments. Therefore, the simu-
lation software should be able the simulate the behaviour of the network environments. In previous
section was explained what parameters are of significant order for each network. The behaviour of the
packets inside the network must be able to be manipulated. The following list of parameters should be
configurable:

36 3. System evaluation

Packet loss probability
— RTT variations

— Other traffic streams

— Packet reordering

— Packet corruptions

— Network congestion

¢ Configure TCP parameters
TCP has many parameters, options, algorithms, settings, etc. to be configured as was explained in
Section 2.2. The simulation software should allow us to explore the consequences of the set of configu-
rations. Therefore the following parameters should be adjustable:

— Header segments The TCP header contains three different types of information: control signals
and status signals and some fields to verify the correctness of the message. The status signals are
used for the basic mechanism of TCP, acknowledging packets and notifying the status of the con-
nection. These consists of the flags, the matching sequence acknowledgement numbers, address
fields. These simulation software must allow us to control these manually. The control signals
consist of data which will change the current flow. The window size and the TCP options. The
window size is significant to be in charge of the sliding window system.

— Window size The window size is a significant factor for determining the throughput (Equation (3.6)).
The simulation should verify the influence of the window size with regards to the buffer space
required (Equation (3.1)). The congestion window is managed by the congestion avoidance algo-
rithm, while the minimum window size will be used. The simulator should be able to setlimitation
value to the window size for analysis purposes.

— TCP options The simulation software will be used to explore the available configurations. There
are more than 30 approved TCP options available [29], which will be discussed to test and find out
whether they will improve the data diode’s performance. Special attention is to the availability of
TCP SACK as is explained in Appendix A. The simulation software should allow us to implement
the TCP options.

— Algorithms As was discussed in previous section and concluding from Equation (3.6), the algo-
rithm has a significant factor in the determination for the throughput. Both CA algorithm and
recovery algorithm can be adjusted to optimise the performance. The CA algorithms we want to
analyse are NewReno and Cubic as was discussed in previous section. The recovery algorithm we
want to analyse is fast recovery and TCP FACK (see Appendix A. The simulation software should
allow us to configure these settings and algorithms.

The network simulator should satisfy the above list of requirements. Numerous network simulators are
on the market, all featuring unique selling points. Network simulators provide the possibility to test network
modules under realistic network environments. These include physical and software units. The simulation
is software and every piece should be modelled in the simulation. Simulation solutions can be distinguished
in level of abstraction, complexity, architecture and configurations. A very common type of network simula-
tor, is a Discrete Event Simulator (DES) [57]. Computer network traffic is in general simulated as a series of
discrete events. A DES simulates a number of events that occur at discrete time steps. Furthermore, network
emulators are being used for simulation purposes. An emulator imitates the behaviour of pieces of hardware
devices operating in a network. The emulator itself is a piece of software or dedicated hardware to simulate
the behaviour of the device it imitates. The input of the emulator should have the same output as if it was
on the real device. From the long list of available network simulators, three different network simulators are
picked, based on features, costs and academic recommendations by Dr.ir. EA. Kuipers from the TU Delft. In
the section below the following simulation software methods are considered: MiniNet, OmNet++ and NS3.

3.2.1. MiniNet

MiniNet is an emulator of network and network devices. It provides a platform to deploy large networks on
limited resources of a single computing machine or it can run on a Virtual Machine. "Mininet provides conve-
nience and realism at a very low cost" [36]. It allows creating topologies of large network architectures, includ-
ing a numerous amount of nodes, and perform tests on them very easily. MiniNet is an open source software

3.2. Simulations 37

project that emulates OpenFlow devices and software defined network controllers. OpenFlow is a standard
communication protocol that allows network devices to control the path of network packets across a network
of switches or routers. MiniNet has an user-friendly interface by providing simple command line tools and
an API. Consequently, does MiniNet allow the user to create custom topologies using Python. Python has a
MiniNet module which defines topology classes and functions to add network devices. The simulation model
can create a virtual network controlled by the main controller. After the network is deployed, the user can ac-
cess all network devices to execute processes and applications. We chose to experiment with the Scapy and .
Scapy is packet manipulation and sniffing tool written in python. Scapy is provide with an interface with the
raw sockets and allows the application to send and capture packets. The TCP/IP suite is available in Scapy
and it is capable to create TCP segments, including all header fields. It provides functions to capture packets
and structure them as TCP segments and vice versa can it build packets with provided information blocks.

3.2.2. OMNeT++

OMNeT++ provides a simulation tool for multiple purposes. It can be used to model different architectures,
protocols, networks, multiprocessors and also hardware validation [68]. The basic of OMNeT++ is a very
generic architecture for designing network components and devices. The models are created from small uni-
versal modules called a simple module. Gates can be attached to a simple module, which allow them to con-
nect to other gates from other modules. Simple modules can pass messages over a route which is connected
to gates. Simple modules can also send timed messages to itself to schedule events. Simple modules can be
combined to create a compound module. This method can be used to create complex structures. The TCP/IP
suite can be created by designing every layer from OSI-model and combining them to a compound module.
The INET framework, included in OMNeT++ version 5 or higher, has most of the internet modules already
designed. The structure of simple modules are written in a NED file, while the behaviour of the modules are
written in C++. This abstraction level allows the user to use all features of object oriented programming to-
gether with complex designs with many nested modules. Each module, written in a NED file, may contain
any of the following sections.

* Types
Types define local variables used within the NED file. This could be settings for connections in between
sub-modules.

¢ Parameters
Parameters are variable that belong to the module. They can be used to set attributes and are accessible
outside the module. This could specify attributes such as protocol, packet length, window size, etc.

* Gates
Gates are connection ports to interact with other modules. Connections are assigned to gates specified
by the modules.

¢ Submodules
Combining multiple simple modules will create a compound module. The simple modules inside the
compound module are referred as submodules.

¢ Connections
Connection specify the characteristics of the connection channels between gates. A connection has
attributes such as direction, bandwidth, type, delay, etc.

The topology and data used for the simulation is specified in a configuration file. Multiple configurations
could be scripted here. The file is a list of key-value pairs. The keys are the parameters of the module or
settings for the simulation, like number of runs and run-time. This is where settings are configured like what
type of protocol is used or how many data will be send. Data collection is managed by setting recordings
messages. These recordings are stored as vector or scalar, based on the signal it records. Signals are emitted
by modules and registered in the C++ files. Besides using signals as statistical records, they can be used to
interact between appropriate modules. The structure of the signal can be chosen by the developer. This
allows the user to track messages in the format of TCP segment for example, by the use of pointers to the TCP
segment class. In this way, messages can be structured to have usable fields for the protocols and modules
can react to them if properly coded in the C++ file of the module. OMNeT++ provides a tool to analyse the
recordings. It features options to show graphs or statistics to quick get the count or maximum value of a

38 3. System evaluation

signal. The recordings can be extracted to CSV-files for further analysis by third-party software. The INET
framework provide features to extract the data in the form of PCAP-files. The OMNeT++ package is provided
with an IDE, which allows the user to analyse the recorded statistics. This is an user interface that makes
it possible to show the modules in a graphical presentation, providing a clear overview of sub-modules and
connections. The IDE can switch easily between source code and graphical design view.

3.2.3.NS-3

Network Simulator 3 is a new simulator based on the NS-2 simulator, developed in 2005 [68]. The goal of
NS-3 was to improve realistic modelling. To achieve a good abstraction level, C++ has been chosen as the
programming language. Most protocol stack implementations are implemented in C, which makes it easier
to implement these in the NS-3 simulator [57]. NS-3 is an open-source platform, which allows a lot of different
people to contribute to the NS-3 library. To create real-world simulations, instances of network models are
defined in NS3:

* Node
A node represents an end-point in the network. A network consists of multiple nodes and commu-
nication channels will connect the nodes. A node does not specify anything about functionality or
hardware.

¢ Device
A device can be installed on a node and represents the physical device. This could be a switch, router,
hub, etc.

¢ Communication channels
The communication channels connect network devices installed on the nodes. These channels repre-
sent the medium on which the data is going to be transferred. This could represent a physical cable or
a wireless communication.

¢ Communication protocols
A communication protocol has to be configured on a communication channel. The protocols can be
selected from the internet protocols and thus represents protocols like Ethernet, TCP, UDP etc.

* Network packets
Network packets represent the packets transferring from device to device over a communication chan-
nel. The format of the packets is defined by the selected devices and communication channels and
protocols.

¢ Applications
An application is installed on a network device. The application is programmed to send or receive
network. Traffic is generated by the applications.

To assist the user in creating and analysing models, NS-3 includes practical solutions: attributes, helper
objects and trace sources.

¢ All models are provided with attributes, which the user can change to values required for their simula-
tion. The behaviour and configurations of class instances can be set by provide functions.

¢ To save the user some time and complexities, helper objects are included in NS-3. Common tasks are
assisted by this. A typical operations to set up a network can be handled by the helper objects. Instead
of creating many nodes with the same device and scripting all the connections, the helper object can
do this for you.

¢ The goal of any network simulation is to generate a data flow that can be analysed. Trace sources canlog
(meta-) data of the network packets. The trace sources have to be assigned to other pieces of the code
and will provide traffic generation. The data flow is consumed by trace sinks. Both source and sink will
log information which can be analysed later on. The trace sinks can be presented in realistic formats,
like PCAP for example, if the right package is installed.

The NS-3 is a discrete event simulator (DES) and provides C++ instances to create a simulation model.
The classes as defined above has attributes to be configured to your own requirements. Helper objects let’s
you create simulation models more quick and easier. The analysis of the data flow can be extracted from
generated standard formats like PCAP.

3.3. Conclusion 39

DES/Emulator | High Speed | TCP features | Modular | Friendly UI | Rank
MiniNet Emulator - 0 0 + 3
OMNeT++ DES ++ + + ++ 1
NS-3 DES + ++ 0 - 2

Table 3.1: Trade-off overview of simulation software

3.2.4. Software selection

In previous section, the basic concept of three simulation methods was explained. As was described in Sec-
tion 3.2, two main solutions for network simulations are commonly used: network emulators or Discrete
Event Simulators.

First, we explored the possibilities of using MiniNet in combination with Scapy. We created a topology of
the network, as is depicted in Figure 3.3. This script can be found in Appendix B. Four hosts are configured,
two for each network. Ethernet links are attached to connect the hosts. This does not represent an actual
diode. Hence, since we can control the traffic, there will only be a one-directional flow simulated. The black
network was simulated by a source and sink which will copy the data over the "diode". The basics of TCP
were handled by the python script. Scapy does not provide automatic processing of TCP segments, therefore
all TCP mechanism were implemented in the script. At the red side, when a packets was received it will set
up a TCP stream to the last host and will initiate the transfer. Small segments could be sent by using the
netcat command of linux. However, the process speed was limited by the hardware resources of the running
machine. No high sending rates could be achieved.

Second, OMNeT++ was researched. The INET framework provides all instruments to create our system.
A standard host is a module in the INET framework, representing a network device. This standard consists
of modules stacked as is in the OSI-model. Every layer of abstraction adds an extension to the header of the
packet. Most functionality of TCP can be configured. A correct operating TCP stream could be achieved from
the black source to the red receiver. The output of the records could be extracted to an CSV file and easily be
processed and analysed.

Third and last, NS-3 was tested. NS-3 simulation consist of a large C++ project. To compile the source
code of your project and make use of the make tool, the build system Wafis used on NS-3. In NS-3, the model
is created by calling the helper objects. Our system consist of multiple sockets, which needed to be configured
with the TCP protocol. The complex nested C++ modules were difficult to modify to a operating data diode
in a timely fashion. A bulk send application was used to generate traffic and most TCP protocols could be
configured. The results were stored in a large PCAP file, which was heavy to process for our machines.

All three simulation tools were researched and tested as discussed above. The emulator was too depen-
dent on the resources of the computing machine to achieve consequent and high performance. NS-3 pro-
vides a broad range of possibilities to create models and modules. However, the interface is complicated and
requires valuable time to learn. OMNeT++ has a friendly graphical interface and a well documentation on
the framework. It has less integrated TCP features built-in, but lets the user create modules for this at more
ease. Therefore, OMNeT++ is the favourite simulation software and will be used for our system, which we will
elaborate in Chapter 4.

3.3. Conclusion

In Chapter 3, a suitable model was proposed for system evaluation purposes. The conversion of TCP to one-
way traffic (and reversed) will be processed on the same device as the diode is implemented. Together with
the basic operations of TCP described in Chapter 2, and taking in account goal 1 (Section 1.3), a simplified
model is presented in Section 3.1. This model consists of two separate TCP streams on both sides of the diode.
The unsafe network is referred to as the black network and the trusted network is referred to as the red net-
work. Because no feedback is possible, the two networks would operate separated. The only shared resource
is the buffer. This buffer is filled with segments from the black network and emptied by the red network.
To amount of data inside the buffer is almost equal to the window size of the red network and difference in
throughput of both networks as stated in Section 3.1.1. Therefore, the throughput from the black network is
not allowed to exceed the red network. To determine the throughput for a TCP stream, a formula is proposed
in Section 3.1.2, which consist of four parameters. In Sections 3.1.3 and 3.1.4 is discussed which parameters
can be controlled on the diode for each side and to which parameters it depends on from the network.

40 3. System evaluation

To evaluate those set of parameters, a network simulation will be used. To select the most suitable simu-
lation software, several network simulation solutions were discussed in Section 3.2. Commonly, two different
types of simulators are considered: A Discrete Event Simulator (DES) or a network emulator. We tested three
potential simulators: 1) Mininet 2) NS-3 3) OMNeT++. The emulator provided by MiniNet, lacked the capacity
to simulate high-speed transfers or process packets in a short time, because an emulator simulates real-time
network traffic and requires sufficient resources to do the calculations, which our computers lacked. Both
NS-3 and OMNeT++ are DESs and have implemented options to simulate TCP streams. NS-3 models net-
works by creating a network of nodes and corresponding connections. Network devices can be installed on
those nodes to create a real network. Applications can be assigned to the network devices, which includes
TCP sockets. The project needs to be compiled by an build system called Waf. OMNeT++ uses simpler block
structures to design a model. It makes use of simple modules, which could be used for sending any kind
of message. It is provided with an user-friendly GUI, which makes designing more comfortable for a begin-
ner. OMNeT++ version 5 or higher is provided with the INET framework, which consist of common network
components, including TCP. In addition to this, OMNeT++ IDE has an integrated analysis tool for the output
statistics. Therefore, Omnet++ is selected as best simulation tool.

Simulation model

In Chapter 3, a simplified model is developed for system evaluation. From this model, Equation (3.6) could be
formulated. In Sections 3.1.3 and 3.1.4 the set of parameters for each side of the network are selected based on
dependency and controllability. To create a testing environment for these parameters, a suitable simulation
software is selected in Section 3.2. OMNeT++ is selected because of its ability to develop specific modules in
an user-friendly interface and the existing TCP features available in the INET framework (Section 3.2.4).

First, the model of the network diode must be implemented in the simulation software. The INET frame-
work from OMNeT++ will be used for this as was discussed in Section 4.1. The modules of the INET library has
a similar structure as the OSI-model, which can be modified to the simplified model described in Section 3.1.
The new module features the functionalities of the network diode and is able to configure the parameters as
defined in Sections 3.1.3 and 3.1.4. The testing order of the simulation parameters will be selected on priority
and dependency and is discussed in Section 4.2. Each parameter is discussed in high detail and is reflected
on goal 1 of this thesis (Section 1.3).

4.1. Overview

To examine the behaviour of the TCP streams through the diode, at first the diode must be implemented in
the OMNeT++ tool. The INET-framework is provided with the standard host, representing a general network
device. The standard host can be configured to send and/or receive messages, using multiple protocols over
multiple media. For our system, we are only interested in the TCP/IP suite transferred over an Ethernet cable.
OMNeT++ uses simple modules to create and manage messages. Combining multiple simple modules cre-
ates module compound. This is exactly how the standard host is modelled. In Figure 4.1 a graphical overview
is depicted of the standard host as defined by OMNeT++.

The OSI-model (Figure 2.4) and Figure 4.1 show many similarities. At the bottom of Figure 4.1, the phys-
ical and datalink layer is represented. Here are sub-modules for Ethernet, WLAN and point-to-point devices
implemented. These sub-modules allows standard hosts to be connected to each other. For our system, only
the Ethernet module will be used. This module receives packets structured as Ethernet segments. It will ex-
tract the MAC-address and the protocol to pass this to the next layer. This process also works the other way.
The Ethernet module can receive a message from the upper layer and will parse this into an Ethernet packet
to send. The small purple bars in Figure 4.1 represent a message dispatching interface. They function as the
gateway between two layers. The lowest bar dispatches messages from the data-link module to the network
link modules. It checks for protocols, which should be registered by the developer, to pass the message to the
correct sub-module. The second layer represents the network layer. In the standard host ipv4 and ipv6 are
implemented. This is where the MAC-addresses are linked to an IP-address. The interfaces are being stored
in the interface table. The network-layer devices will extract the transport protocol and pass the messages to
the upper layer. Three protocols are in the standard host of the INET-framework: UDP, TCP an SCTP. For our
system, we will only look at the TCP module. The TCP module processes TCP segments according to RFC 793.
The module implements the following features of TCP:

41

42 4. Simulation model

package inet.node.inet

@ StandardHost

status app[numApps]

mobility

interfaceTable

energyStorage

energyManagement

energyGenerator

[sizeaf(pppa)] .
ecorder[mumPcapR%’zgrders pp

umWiAninterfaces]

wlanf

Figure 4.1: Graphical representation of the standard host defined by OMNeT++

¢ RFC 793 Transmission Control Protocol

* RFC 896 Congestion Control in IP/TCP Internetworks

¢ RFC 1122 Requirements for Internet Hosts —- Communication Layers

* RFC 1323 TCP Extensions for High Performance

¢ RFC 2018 TCP Selective Acknowledgment Options

e RFC 2581 TCP Congestion Control

* RFC 2883 An Extension to the Selective Acknowledgement (SACK) Option for TCP

* RFC 3042 Enhancing TCP’s Loss Recovery Using Limited Transmit

* RFC 3390 Increasing TCP’s Initial Window

¢ RFC 3517 A Conservative Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for TCP

¢ RFC 3782 The NewReno Modification to TCP’s Fast Recovery Algorithm

The TCP module is able to pass payload to the upper-layer for processing by an application or it can
receive data from an application to be transferred. Multiple applications and protocols can be set active on
the same host. The unmentioned sub-modules at the left are not of significance in our system. Except for the
recorder, this module is able to create PCAP-files of the simulation runs, which can be used for analysis. All
behaviour of the modules are written in C++. The topology of the network and all parameters are defined in
the OMNeT++ project files (NED or the configuration file). A common topology of a network featuring a TCP
stream, could exist of two standard hosts. One acting as a client, sending requests to the other host, acting as
a server. The first host has a TCP-client application configured. The set of parameters and the settings used
for the simulation are scripted in the configuration file (.ini files).

4.1.1. TCP diode design

The module of the standard host allows us to create a model such as described in Figure 3.3. Three standard
hosts will be used for this. The first host will be the black source, the second host serves as the data diode
and the last host will be the red receiver. To create the black source and the red receiver, the existing standard
host can be used without any modifications. The lower sub-modules (Ethernet, IPv4, TCP) provide the inter-
face to let an application send unlimited data. The black source should be able to simulate the dependable

4.1. Overview 43

package inet.node.inet

@ StandardHost
=

status applnumApps]

mobility

interfaceTable

energyStorage

energyManagement

energyGenerator

[sizegf(pppal] ,
Ecorder[numpcapR%Egrders pp

wlanlhumWiAninterfaces

Figure 4.2: Available options to implement the data diode

parameters of the black network as was discussed in Section 3.1.3. The sending rate and the amount of data
to be send, can be configured by the TCPSessionApp of the INET-framework. The TCPSessionApp can create
a single-connection TCP application. It will establish a connection and will send a pre-defined number of
bytes. The congestion avoidance algorithm, as well as the TCP options, can be set in the configuration file
of the simulation. In addition to this, the packet loss can be configured by setting the packet error rate in the
connection between the hosts by a channel module. A channel has configurable data-rate, delay and packet
error rate. The red receiver should be able to simulate the dependable parameters of the red network as was
discussed in Section 3.1.4. The receiver host will be simulated with the TCPSinkApp. This application accepts
any number of incoming TCP connections and will respond to them properly. The TCP configurations will
be set in the configuration file of the simulation. The RTT and the packet error rate can be configured by the
channel, which connects the diode host to the receiver host. The host featuring the diode, should simulate
the controlling parameters of both the black and the red network (see Sections 5.2.1 and 5.2.2), and should
simulate the management of the buffer. The segments received from the black source should be stored in a
buffer and the other process in the diode host should empty the buffer by transmitting the data to the red
receiver. We propose two suitable modifications to the standard host module as implementation method for
the diode.

Option 1: Create diode application at upper level

The first option is to create a new TCP application to run. The application can be configured to run on the
standard host. TCP applications are connected to a TCP socket from the lower level. The TCP port number
and IP address of the host can be configured. If source and destination information match the settings of the
application on the host, the messages will be passed to the application. A TCP application is also able to start
a connection from a connected socket. The payload and destination information can be set in the parameters
of the application. From the application level it is not possible to adjust parameters for the TCP sockets. The
parameters for the TCP sockets can be set in the configuration file of the simulation. However, the application
can only interact with TCP sockets with regards to the payload of the messages. It can define to what socket
it should listen or to send to, but the application can not interact what happens to the TCP segment when it
arrives. All the TCP mechanisms are handled by the TCP module. These mechanism process the segments,
send the acknowledgements, manage the state of the connection, etc.

Advantages
 Easy to implement

¢ Most common TCP features available

44 4. Simulation model

Disadvantages
¢ Modifications to TCP features not possible

Option 2: Create new diode module in OSI-layer 4

The other option is to create a complete new diode module on the transport level. The modules on this level
receive messages from the lower layer if the packets are registered as a TCP message. Creating a complete
new module on this abstraction level, allows us to have complete control of the TCP parameters. All TCP
mechanisms can be designed in this module. However, most of the TCP segment handling that our system
requires, is already implemented in the TCP module of the INET-framework. This mechanisms includes pro-
cessing TCP segments and create proper responses for this. When a segment arrives in a TCP socket, the
packet will be verified, the ACK number is checked, the TCB is updated, the window size is recalculated, the
congestion window is updated, the flags are checked (except URG and PSH), the state of the connection is
updated (Figure 2.6). Any modification for our system, e.g. delayed acknowledgements or artificial packet
loss, can be implemented by using this method. However, the current implementation of the TCP module
is complex network of nested sub-modules and call-back functions. While the segments are processed, fun-
cions are called from the socket they are assigned to. Implementing a new socket to the process (to simulate
the one-way gateway), requires a numerous amount of additive lines of code. Therefore, it will take a large
amount of time to append new features in the existing solution. Creating a new protocol next to the existing
TCP module does not compile or run. The segments send by the black source will get the TCP-tag by the
layer-3 modules (IPv4). The message dispatcher will send these to modules which are registered on the TCP-
tag. Nevertheless, only one module can be registered.

Advantages
* Possibility to implement new TCP features
Disadvantages

e Difficult and time-consuming to implement

New Diode Application Module

Our goal of the simulation is to analyse the effects of the TCP streams on the required buffer space in the
diode. Both options are a suitable solution for this. Since the TCP module of the INET-framework is provided
with most common TCP features, there is no need for extra features. Creating an application module to sim-
ulate the diode application is not an exact implementation of a hardware diode. Nonetheless, the simulation
is already software simulating hardware, and the functionality will be very similar. Therefore, we will choose
for option 1 and create a new diode module application.

The complete simulation model is depicted in Figure 4.3 and the source code is presented in Appendix C.
The model consist of three standard hosts and two Ethernet connections. This, as mentioned before, does
not represent a real data diode, since data can still flow in both directions. However, the simulation will only
transmit data from the black source to the diode, and the diode will only copy these messages and transmit
them to the red receiver. This is sufficient to analyse the behaviour of the system. The TCP diode application
binds two sockets for its purpose. One socket is the receiving socket (black network), and the other will
be the sending socket (red network). Every message received from the black network socket will be sent to
the red network socket. The TCP socket is operated by the TCP module. The TCP module will queue this
message and processes the transmission (and even retransmission) of this segment. The parameters of the
TCP sockets can be set in the configuration file of the simulation. The list of configurable parameters in
the TCP module almost match the list of desired parameters as was discussed in Section 3.2. Only the header
fields are not complete accessible via this method. The header segments are created by the TCP module, while
some of the options can be configured. A small set of TCP options and congestion avoidance algorithms can
be established for the TCP sockets. Unfortunately, the TCP socket parameters are set for the TCP module of
each host. The standard host implementation of OMNeT++ allows only one TCP module to be integrated in
a host. However, this does not cause any issues to our system. To use TCP options, both the sender and the
receiver should agree to the use of this. Therefore, the TCP options can be configured at the black source and
red receiver. The advertised window size is active for the receiving socket. Therefore, configured window size
will set the limit for the receiving side of the diode (the black TCP socket).

4.2. Parameter study 45

tH package inet.examples.inet.diode

@ITchiodeMOdule

—» A

—R
| . N o
configurator =2 =2

black_source red_receiver

datadiode

Figure 4.3: Graphical view of TcpDiodeModule.ned

4.2, Parameter study

The goal of the simulation is to analyse the relationship between the network parameters and the required
buffer size. Our model of the data diode application does not have a buffer implementation. Instead, the
received segments are immediately passed to the red socket. The TCP sockets have an "unlimited" amount of
buffer space to manage the transmission of the data. Therefore, we could use the standard recordings of the
sockets to calculate the data inside the buffer at a specific time. When the data is received at the black socket
of the diode, an acknowledgement will be sent to the black source. This will change the RCV.NXT (Figure 2.8)
value of the TCB of the black socket. This segment will be passed to the buffer. The red socket tries to empty
to the buffer by transmitting the segment to the red receiver. The segment must be kept in the buffer until the
red socket receives an acknowledgement that the segment is arrived correctly. This will update the SND.UNA
of the TCB of the red socket. The RCV.NXT and the SND.UNA pointers can be extracted from the simulation
recordings. when the initial value for the sequence numbers (ISN) is set to 1, these values does represent the
actual number of bytes. The difference in between these two pointers indicates the amount of data which
should be in the buffer. An example of this is depicted in Figure 4.4. The amount of data in the buffer will
measured over time. The maximum value should give us an indication to what minimum buffer space is
required.

Our final design consists of five configurable units. An overview with the parameters for each unit are de-
picted in Figure 4.5. Only the parameters we are going to use, are shown. Two of the TCP module parameters
are being set equal for all units:

¢ The Maximum Segment Size (MSS) will be set equal for units. This value determines the maximum size
a segment can have for a TCP stream (see Section 2.2). If the MSS of the black TCP stream is larger than
the MSS of the red stream, the segment has to be fragmented and separated over multiple segments.
This introduce extra complexity and could be an extra reduction of the red throughput, because this
introduces extra overhead. In the worst case, the same payload now does need two headers. The value
of the MSS is set to 536 bytes. This is the default value, which is based on the maximum transition unit
of the Internet Protocol, which is 576 bytes. Subtracting the length of the IP header and the TCP header
(both 20 bytes), leaves 536 bytes for the segment.

e The WindowScaleSupport is enabled for all devices. The Standard window size has a maximum of
65.535 bytes, because this is indicated by the 16-bit value in the segment header. This is a small win-
dow for achieving high data rates. To achieve a data rate of 1 Gbps with a window size of 65.535, the
round-trip time should roughly be 500us. Therefore, setting this boolean value to true, allows the TCP
module to enlarge the window. The maximum window size will then be 1.073.725.440 bytes.

46 4. Simulation model

Size of data in buffer over time

600 T
Sent bytes
500 F Received bytes
Buffered bytes
o
s 400 -
[%2]
4]
=
2 300
o
o}
o
g 200 -
z
100 -
0 Il Il Il Il Il
0 10 20 30 40 50 60

Time [s]

Figure 4.4: An example of the buffered data over time. The green line represents the data segments received in the black socket. The
purple line represents the sent and acknowledged data segments at the red network. The blue line is the difference and represents the
amount of data in the buffer

Black Source Data diode Red receiver
TCPSessionApp TCP DiodeApp TCPSessionApp
. localAddress . localAddress « serverThreadModuleType
. localPort - localPort
. aclive . localRcvAddress
. connectAddress; . sendPort
. connectPort . active TGP Module
. dataTransferMode . connectAddress; . advertisedVVindow
. tOpen . connectPort . delayedAcksEnabled
. tSend Channel A . dataTransferMode Channel B . nagI;Enabled
. sencBytes - tOpen . increasedWEnabled
. sendScript - tSend - sackSupport
. iClose » Datarate . sendByltes » Datarate . windowScalingSupport
Delay . ndScript » Delay . windowScalingFactor
l» Packet Error Rate . tClose = Packet Error Rate . timestampSupport
TCP Module - mes
tepAlgorithmClass
advertisedWindow TCP Module ' P
delayedAcksEnabled

nagleEnabled
increasedWEnabled
sackSupport
windowScalingSupport
windowScalingFactor
timestampSupport
mss

tcpAlgorithmClass

advertisedWindow
delayedAcksEnabled
nagleEnabled
increased!WEnabled
sackSupport
windowScalingSupport
windowScalingFactor
timestampSupport

mss
tcpAlgorithmClass

Figure 4.5: Overview of configurable parameters in our design

4.2. Parameter study 47

The other parameters will be set for each simulation run differently. We want to explore the significance
and the influence of the parameters to the amount of buffered data. We use Equations (3.1), (3.2) and (3.6)
as the backbone for the test-setups. In Section 3.1.1 we formulated Equation (3.2). First, we are going to
research this relationship by simulating different throughput at the black and the red network. The black
network will be limited to a particular percentage of the red throughput. Secondly, we war going to research
the TCP option SACK, which should improve the TCP stream as well as it should reduce buffer space as is
discussed in Appendix A. Third, we are looking at the effects of a congestion avoidance algorithm for our
system. Furthermore, we will research if our formulated equation about the the buffer size (Equation (3.1)),
can be validated and will analyse the relationship between window sizes of the black and red TCP stream.

4.2.1. Ratio of throughput

From Equation (3.2), we want to investigate the relationship between the black throughput and the red
throughput. We are testing the effect of the black throughput as a percentage of the red throughput. For
example, what amount of data is buffered when the throughput of the black network is 80% of the red net-
work? This will be done for different percentages with steps of 5%. To change the throughput we set the
maximum throughput of the red network at a fixed rate of about 80 Mbps. The maximum window size is
fixed at 100 KiB (i.e. 102400 bytes). To reduce the throughput of the black network, we will increase the de-
lay of the channel, which will increase the RTT and thus decrease the throughput (see Equation (3.6). The
configuration parameters are presented in Table 4.1.

Black source Channel A Data diode Channel B Red Receiver
Window 102400 Datarate | 1 Gbps Window 102400 Datarate | 1 Gbps Window 102400
SACK false Delay 10to20 ms | SACK false Delay 10 ms SACK false
timestamp | false PER 00r0.0001 | timestamp | false PER 00r0.0001 | timestamp | false
Algorithm | NewReno Algorithm | NewReno Algorithm | NewReno

Table 4.1: Configuration of the parameters for the ratio test

In the situation no packets are getting lost, we expect the amount of buffered data to be equal to the win-
dow size of the red network (i.e, 100 KiB). The ratio difference in throughput will be tested by introducing
packet losses. Therefore, the packet error rate of the channels will be set to induce packet losses to the sys-
tem. Therefore, a small error rate (0.01%) is tested to check at what ratio the red network is still able to operate
without a buffer overflow.

4.,2.2, TCP SACK

The TCP option SACK is able to improve the TCP’s recovery as is explained in Appendix A. The additional
information provided by the TCP SACK option (which consists of maximum 40 bytes), could feature three
improvements in reducing buffer space: 1) Specific reporting on correctly received segments, even if this is
not cumulative 2) Reduce risk on congestion, which allows the sender to have a larger congestion window 3)
Reduce recovery time, allowing the throughput being restored more quickly. The simulation will only enable
SACK on the red side. Disabling this on the black side, unloads the red network, by having more time to
restore. The configuration for this test is presented in Table 4.2.

Black source Channel A Data diode Channel B Red Receiver

Window 102400 Datarate | 1 Gbps Window 102400 Datarate | 1 Gbps | Window 102400
SACK false Delay 10to 20 ms | SACK true Delay 10ms | SACK true
timestamp | false PER 00r0.0001 | timestamp | false PER 0.0001 | timestamp | false
Algorithm | NewReno Algorithm | NewReno Algorithm | NewReno

Table 4.2: Configuration of the parameters for the SACK test

4.2.3. Congestion avoidance algorithm

During testing, we noticed the phenomenon of the sliding window system, dictated by the congestion avoid-
ance algorithm, to cause high peaks during buffering of data. In Figure 4.6, the results are depicted for a
test which simulated a black throughput at 50% of the red throughput and packet loss enabled. This figure

48 4. Simulation model

Acknowledged Bytenumbers Over Time

4 Sent bytes /_/J'/ 7

Received bytes v

39r /_,—/'/J i

w
@O
= /_/'/
m
c38r 1
w0
@
£,
53Tt /” 1
5 3.
I
]
=z 38 o
j_/
/
3.5 —/JJ/J .
12 12.2 12.4 12.6 12.8 13

Time [s]

Figure 4.6: Peak buffering induced by the congestion avoidance algorithm

shows the recovery of one packet loss, which costs the red network roughly one second to restore. The bulge
between the two lines is caused by the congestion algorithm.

The algorithms reacts to the lost of a packet and reduces the congestion window to prevent more losses.
The algorithm is designed to operate in an unknown network, with no knowledge about the connection net-
work and other traffic. The red network is in a trusted domain and in control of the user of the network diode.
Therefore, we will test the effect if no congestion control is active. This allows the the window to utilise the
maximum window of the receiver, after a lost packet is recovered. This still requires the algorithm to change
the congestion window during recovery, to increase recovery time. Therefore, only the C will be affected from
Equation (3.6), because the fast recovery is still determining the b value. A test will be performed with the
configuration of Table 4.3.

Black source Channel A Data diode Channel B Red Receiver

Window 102400 Datarate | 1 Gbps Window 102400 | Datarate | 1 Gbps | Window 102400

SACK false Delay 10to20 ms | SACK false Delay 10ms | SACK false

timestamp | false PER 00r0.0001 | timestamp false PER 0.0001 | timestamp | false

Algorithm | NewReno Algorithm NoCA Algorithm | NoCA
FastRecovery | Yes

Table 4.3: Configuration of the parameters for the no congestion avoidance algorithm test

4.2.4. Window size

The effect of the ratio between throughput of the red and the black network is discussed above. For this test
we want to research whether the ratio of the windowsize has influence on the buffer when the throughput is
equal. In the framework to create a VHDL implementation of the data diode, the window size will be a static
value. The windowsizes are set to match the round trip time and always will be able to have a throughput of
100 Mbps. Therefore, a test will be executed with a configuration following Table 4.4

Black source Channel A Data diode Channel B Red Receiver

Window 819200 Datarate | 1 Gbps Window 12.5KiB to 800 KiB | Datarate | 1 Gbps Window 12.5 KiB to 800 KiB

SACK false Delay 2.5t020ms | SACK false Delay 2.5t020ms | SACK false

timestamp | false PER 0.0001 timestamp false PER 0.0001 timestamp | false

Algorithm | NewReno Algorithm NoCA Algorithm | NoCA
FastRecovery | Yes

Table 4.4: Configuration of the parameters for the no window size comparison test

4.3. Conclusion 49

4.3. Conclusion

The set of parameters in Equation (3.6), which was discussed in Chapter 3, has to be simulated in OMNeT++.
Therefore, the model described in Chapter 3 should be implemented in the simulation software. In Chapter 4,
the TCP diode module for system simulation was developed. The model can enable all potential features of
the network diode as well as the properties of a TCP connection. The network diode module is implemented
using the INET framework of Omnet++ as described in Section 4.1. The standard host module, which is a
module provided by the INET framework, will run the TCP Diode Application. This application is bound to
two TCP sockets: one socket in the black network and one socket in the red network. The application copies
all messages from the black socket to the red network. From the statistic records from the sockets, the value
of buffered data is acquired. This value will be investigated during the simulations, according to the equa-
tions formulated in Chapter 3 (Equations (3.1), (3.2) and (3.6)). The parameters, as discussed in Sections 3.1.3
and 3.1.4, can all be configured in the simulator. First of all, Equation (3.2) has been tested, by researching
the relationship between the throughput of the black and the red network with regards to the utilised buffer
space. Thereafter, the TCP SACK option will be analysed, after our hypothesis of the improvements for the
buffer of the data diode (Appendix A). The influence of a congestion algorithm is questioned to be of a neg-
ative impact on the required buffer space. Therefore, tests without a congestion algorithm are performed.
Finally, a relationship between the window sizes of the red and black network has been researched to validate
Equation (3.1). To summarise, the following aspects of the network diode will be investigated:

¢ From Equation (3.2), we want to know the relationship between the throughput of the black and the
red network. What is the impact of the difference in throughput of both networks on the amount of
buffered data?

* Does TCP SACK (Appendix A) improve the network diode, by reducing the amount of buffered data?

* Is the congestion avoidance algorithm improving the throughput in a controlled network? Or does
congestion window management introduce avoidable buffering?

¢ What is impact of the difference in window size of both networks on the amount of buffered data?

Analysis and results

The most important value to analyse is the behaviour of the throughput for each network side of the diode
as is explained in Chapter 3. Especially the relation of the throughput of both networks to the amount of
buffered data should be found, because the buffer size should be minimised following the project goals (Sec-
tion 1.3). Following Equation (3.6) the throughput is determined by several factors. A method to find suitable
parameter sets for these factors is described in Chapter 4.

In this chapter the analysis of the results of the tests performed in Chapter 4 will be discussed. Each indi-
vidual test will be analysed and reflected on the project goals (Section 1.3) . Evaluating over these parameters,
this analysis will result in a recommending setting configuration for the network diode. These are separately
discussed for each side of the diode in Sections 5.2.1 and 5.2.2.

5.1. Results

The test set-ups of the simulator are discussed in Chapter 4. In this chapter, the results will be analysed and
reflected on the project goals (Section 1.3).

5.1.1. Ratio of throughput

The ratio of the throughput evaluates Equation (3.2), which we proposed in Section 3.1.1. This equation
states that the throughput of the black network should be less, or at most equal to, the throughput of the red
network. If the throughput of the black network exceeds the red network, the amount of buffered data will
increase limitless. The window size of is set to 100 KiB and a throughput of 100% is about 80 Mbps. The first
test simulates two situations: one situation where there is no data loss in both networks, and one situation
where there occurs data loss only at the black network. The maximum amount of buffered data is depicted in
Figure 5.1. The results show the amount of data buffered is almost equal to the window size, as we expected
according to Equation (3.1). The yellow line indicates a slightly larger required buffer for a situation with
packet loss in the black network. This is probably due to the bulks of new segments after the connection
is restored at the black network. The situation without losses, decreases for a lower throughput of the red
network. The red network can process segments faster than the black network. Therefore it runs in advance
and even no full window size is available in the diode’s buffer.

51

52 5. Analysis and results

100 Maximum amount of data stored in buffer
T T T T

Black: 0% | Red: 0%
Black: 0.01% | Red: 0%

99.9

©
©
e

Number of bytes [KiB]
© [{e]
© ©
(2] ~

99.5

99.4 : : : :
50 60 70 80 90

Ratio of throughput of Black relative to Red

100

Figure 5.1: The maximum amount of data stored in buffer for different throughput ratio’s, when packet error rate was 0% at the red
network

Another situation is simulated when there is no packet loss in the black network, but there is only packet
losses in the red network at a 0.01%. The amount of buffered data is presented over time in Figure 5.2. Within
a one-minute simulation, only tests with 50% and 60% throughput at the black network will have an limited
amount of buffered data. The other runs were not able to restore the connection quick enough to empty the
peak of buffered data. There, again, is a flat line at about 0.1 MiB, which confirms Equation (3.1).

Size of data in buffer over time

102 £
o /” { f
S 10%¢ / ‘ 3
= i (h 1]
o L
4 -2 L
2 10
>
= 100%
90%
80%
104 £ 70% |3
60%
50%
1 1 1 1 1
0 10 20 30 40 50 60

Time [s]

Figure 5.2: Amount of buffered data over time for different ratio throughput of black and red network. Black network has no packet loss,
red network has 0.01% packet loss

To simulate a somewhat more realistic scenario, packet losses are induced at both sides of the network.
The buffered data over time is depicted in Figure 5.3. For this situation, only the run where the black network
was equal to the red network, the buffer would keep increasing. For the runs with a smaller throughput at the
black network, the red network is able to restore the connection and reduce the buffered data.

5.1. Results 53

Size of data in buffer over time

25 T T T
100%
90%
20 80% “«A
70% 5’
o 60% /
S 15F 50% i
[72]
Q
=
Ie)
5 10 B
9]
o
5
Zz 57 X
M\
0 A A N bRV,
5 I I I I I
0 10 20 30 40 50 60

Time [s]

Figure 5.3: Amount of buffered data over time for different ratio throughput of black and red network. Black network and red network
has 0.01% packet loss

The maximum values of the buffered data for both situations with packet loss at the red network is de-
picted in Figure 5.4. From the purple line, looking at the values from the 50% to the 90% ratio, the maximum
buffered data is roughly 10 MiB. This is approximately ten times the congestion window.

Maximum amount of data stored in buffer
T T T T

/
_—
Black: 0% | Red: 0.01%

102 L Black: 0.01% | Red: 0.01% 4
o
=3
[%2]
Q
2
o]
5
o}
Qo
£
=]
T]

1 1 1 1
50 60 70 80 90 100

Ratio of throughput of Black relative to Red

Figure 5.4: The maximum amount of data stored in buffer for different throughput ratio’s, when packet error rate was 0.01% at the red
network

5.1.2. TCP SACK

The TCP SACK option should reduce the amount of data stored in the buffer, by providing additional infor-
mation of the correctly received packets. The options is used by defining blocks of correctly received packets.
All packets between the edges (indicated by sequence numbers), are correctly received and can be removed
from the buffer (Appendix A). Furthermore, this option should reduce recovery time and increase throughput
efficiency, which will unload the buffer as well. Two situations are simuluations with the same throughput
settings as in the previous test, only now TCP SACK is enabled for the red TCP stream. First situation there is
no packet loss in the black network and for the other there simulation there is. The results of these tests are
compared to the previous results are depicted in Figures 5.5 and 5.6. The results with SACK being enabled

does not show significant improvements with regards to reduction of required buffer space. The amount of
buffered data is quite similar.

54

5. Analysis and results

Number of bytes [MiB]

250

Maximum number of bytes stored in buffer

200 -

150 |-

100 -

No SACK
SACK

90 100

Ratio [%]

Figure 5.5: Comparison of test with and without sack, without packet loss at the black network

Number of bytes [MiB]

25

Maximum number of bytes stored in buffer
T T T T

20

No SACK
SACK

7

50

60 70 80 90
Ratio [%]

100

Figure 5.6: Comparison of test with and without sack, with additional packet loss in the black network

A piece of the buffered data over at time at the occurrence of packet loss, is depicted in Figure 5.7. This
is from a simulation with a 50% throughput at the black network and packet losses enabled at both sides. At
around 11.7s a packet is lost, which is recovered at around 12s. The high arc in the buffer is created due to the
congestion window being reduced by the congestion algorithm (Figure 4.6. Therefore, the SACK option does
recover the stream in a timely fashion, but does not reduce the required buffer space in the long-term.

5.1. Results 55

x10° Data stored in buffer
T T T

6 i
@ 5F i
=
@
f
£ 41]
jol
=
o
S 3r i
[
Ke)
Eat |
z

1r i

O Il Il Il Il Il Il Il

11 11.5 12 12.5 13 13.5 14
Time [s]

Figure 5.7: The amount of buffered data at a packet loss. Situation of 50% throughput at black side, both networks have packet losses

5.1.3. Congestion avoidance algorithm

The peak in the buffered data, exposed in Figures 4.6 and 5.7, is caused by the congestion avoidance algo-
rithm. For these situations, TCP NewReno. This is the most common used algorithm from the available
algorithms implemented by the INET-framework. All the reactive algorithms will reduce the congestion win-
dow after a lost segment. The algorithms prevent network congestion and improves the TCP-friendliness of
the TCP stream. The sending part of the diode is in the red network. The red network is a trusted domain and
in control of the user of the diode. Therefore, the priority of the network diode stream can be given high pri-
ority, which allows to disable the congestion algorithm. The congestion algorithm always assumes the packet
loss is due to a resource error and therefore reducing the congestion window to sense the network available
capacity for that TCP stream. Disabling the congestion algorithm results in disabling the congestion window
and only use the advertised window by the receiver. Then still, the congestion window should be adjusted
during recovery. Otherwise the sender has to wait one RTT period for each lost packet, which will reduce the
efficiency of the throughput drastically and results in a high amount of buffered data (Section 2.2.6).

Acknowledged bytenumbers over time

1475 F T T 3
Sent bytes
Received bytes
147 - b
o
= 1465
12}
o)
=
ie)
S 146
@
ko)
€
>
b4

1455

145 .

Il Il Il Il
16.06 16.08 16.1 16.12 16.14 16.16 16.18 16.2
Time [s]

Figure 5.8: The sending window will be restored to the advertised window after the recovery of a lost segment

The recovery of a lost segment, with TCP SACK enabled, is depicted in Figure 5.8. In this example, two
packets are lost. The blue line represents the packets correctly transferred to the red receiver, which are cu-
mulatively acknowledged. The line goes flat when a packet islost. Thanks to the SACK block, multiple packets

56 5. Analysis and results

can be acknowledged when the the lost packet is recovered. That is the reason for the jump in the blue line.
All the blocks acknowledged by the SACK block, can be cumulatively acknowledged when the lost packet is
retransmitted. Comparing Figure 5.8 with Figure 4.6, shows there is no peak in the buffer due to the lack of
reduction in the congestion window. In addition to this, the connection is recovery more quickly with regards
to the available buffer space. The next packet loss will restart the recovery process from the same starting
value as the previous packet loss. This is contrary to the situation which is using a CA algorithm. If a con-
secutive packet loss happens there, the peak of the buffer will even increase more, because the congestion
window will be reduced again.

Tests are performed where the CA algorithm is disabled, but the fast recovery algorithm is still active. The
congestion window is only adjusted when a packet loss is detected. These test are performed both with SACK
disabled and enabled in a situation with packet losses induced in the red network. One test has no packet loss
in the black network, the other test has induced packet losses in the black network. The results are depicted
in Figures 5.9 and 5.10. The maximum amount of buffered data for both simulation runs, approaches to 0.2
MiB. This is a promising result with a required buffer space of nearly two times the window size. Furthermore,
the TCP SACK option does still show no significant improvement of the required buffer space.

03 Maximum number of bytes stored in buffer

SACK
noSACK

0.25

0.2

0.15

Number of Bytes [MiB]

0.05 [8

O Il Il Il Il
50 60 70 80 90 100

Ratio [%]

Figure 5.9: Comparison of test with and without sack, without packet loss in the black network and congestion avoidance algorithm
disabled

5.1. Results 57

Maximum number of bytes stored in buffer

SACK
No SACK

o
-
fee]
T
I

_—]

o

o

[}
T

/

Number of bytes [MiB]
54
=

012 1

0.1 1

008 Il Il Il Il
50 60 70 80 90 100

Ratio [%]

Figure 5.10: Comparison of test with and without sack, with packet loss in the black network and congestion avoidance algorithm dis-
abled

5.1.4. Window size

This simulation will research the influence of the window size when the throughput is not altered. Therefore,
asituation is simulated that both networks will have an equal throughput (100 Mbps). Different window sizes
will be tested, but at an equal throughput. This is compensated by matching the correct RTT value. There will
be no congestion avoidance algorithm configured, as this should be beneficial for the amount of buffered
data. The packet loss is enabled on both networks. The results of this are depicted in Figure 5.11. Each
different line represent the tests where the window size of the black network is fixed. The x-axis represents
the window size of the red network. The amount of buffered data is inverse proportional with the window size
of the black network. A larger window size will take more time to detect a packet loss. From the time between
a packet gets lost, detected and recovery of the TCP stream at the black network, will allow more time for the
red part of the diode to empty the buffer. This works conversely for the red network. A smaller window size
result in a lower amount of buffered data.

Maximum number of bytes stored in buffer

3000
— Windowsize Black 62500
— Windowsize Black 125000
2500 Windowsize Black 187500 .
— Windowsize Black 250000
— Windowsize Black 312500
o
g 2000]
%)
Q
5
+ 1500 1
o
o]
E
> 1000 -]
) J
0 Il Il Il Il Il
0.5 1 1.5 2 2.5 3 3.5

Windowsize Red %10°

Figure 5.11: Comparison of different window sizes

The window size for the red TCP stream can not be controlled by the diode. However, the black window

58 5. Analysis and results

size can be controlled by the diode. Therefore, the relationship between the round trip time and the window
size of the black network will be researched. The simulation tests a situation where the red throughput is fixed
and the window size and the round trip time will vary at the black network. The results of this are depicted
in Figures 5.12 and 5.13. These figures present a clear linear correlation between the window sizes and the
round trip time. From a RTT of at least 20ms (and a throughput of 100 Mbps), the maximum amount of data
buffered is almost equal to the window size. This RTT allows the red network to discover a packet loss within
one RTT, allowing the TCP stream to recover within a full window. Figure 5.12 will serve as recommendation
for selecting a window size based on a known RTT.

Maximum number of bytes stored in buffer

Ws 12800
Ws 25600
Ws 51200
Ws 102400
— Ws 204800
Ws 409600
Ws 819200

Number of bytes [KiB]

101 I I I ! ! !
5 10 15 20 25 30 35 40

Round Trip Time [ms]

Figure 5.12: Maximum buffered data values for different window sizes

Maximum numbers of bytes stored in buffer
T

RTT 5ms
RTT 10ms
RTT 15ms
RTT 20ms
RTT 25ms
RTT 30ms
RTT 35ms
RTT 40ms

10°

Number of bytes [KiB]

101 L P S SR R R S | L P S S Y
10% 10° 108

Window Size [bytes]

Figure 5.13: Maximum buffered data values for different round trip times

5.2. Configuration recommendations

The simulation allowed us to analyse the behaviour of the TCP stream under particular circumstances. The
goal of the simulator is to find a set of configuration parameters to achieve the goals of the project (Sec-
tion 1.3): minimise the buffer with a maximal performance. The list of configurable parameters for the TCP
sockets in the data diode is presented in Figure 4.5. From the results of the simulations, a set of parameters
can be constructed. We will discuss the parameters for each side of the network separately.

5.2. Configuration recommendations 59

5.2.1. Black configuration

The diode is the receiver of the black TCP stream. The connection is initiated by the black source and the
diode runs a passive process. The received packets should be properly acknowledged and passed through
the diode to the buffer. In addition to this, should this part prevent the black throughput to exceed the red
throughput. From the simulations we can conclude to not add features for recovery improvement. When
an error happens at the black connection, the red connection gets some extra time to unload the buffer.
Consecutive to the simulation results, we recommend the following configuration parameters:

¢ No throughput limitation
The black part of the diode is not required to limit the throughput as a ratio of the red throughput. The
average RTT of the red network is known to the network administrator. Adding throughput limitations
adds complexity to the design of the diode and is not necessary.

¢ No TCP Options

No TCP options will be implemented at the black part of the diode, except for the Window scale option.
This window scale option allows the TCP socket to use a window size larger than can be defined by the
standard field. The TCP SACK option has been tested and did not show any improvements. Comparing
simulations with and without the use of the TCP SACK option, had similar results. Therefore, using
the TCP SACK option does only add extra complexity to the implementation. The black TCP stream
does not need any improvements with regards to the recovery time. A long recovery time in the black
network does give some extra time for the red network to unload the buffer.

¢ Simple acknowledgements
The TCP diode will use simple acknowledgements, instead of using delayed acknowledgements (RFC1122
[12]). Sending an acknowledgement for each received segment, will be executed simultaneously with
passing the segment through the buffer. The black TCP stream could probably not achieve the most
efficiency by this method, which is a good scenario for our system. The black part knows exactly what
segment is passed to the diode and what not, as this variable is stored in the TCB. Furthermore, does
this decrease the complexity of the implementation method.

¢ Large window size
The black network will be configured with a relatively large window size. This will ensure the capability
for a high throughput and is simple to implement, using the window scale option. Furthermore, a large
window size is inherent to increasing packet loss detection time. If the black source does need more
time to detect an error, the recovery time will also take more time. As discussed before, this is beneficial
for the red TCP stream to unload the buffer.

5.2.2. Red configuration

The red part of the diode is responsible for transferring the segments out of the buffer, towards the red re-
ceiver. The diode should initiate and establish the TCP connection. It will manage the buffer and requires a
segment-transfer managing process. The TCP stream needs a high efficiency, a high throughput and a small
recovery time. Furthermore, the diode is should process the incoming acknowledgements for the receiver.
This process should check if all segments arrived correctly, or if some packets are lost and need to be re-
transmitted. Proper acknowledged segments can be removed from the buffer, which should be notified to
the segment-transfer manager. The transfer manager is also responsible for keeping track of the segments in
transit and the current congestion window. The simulation results will recommend the following configura-
tion for the red part of the diode:

* No congestion avoidance algorithm

A congestion avoidance algorithm prevents congestion on the network and improves the TCP-friendliness
of a TCP stream by distributing the network resources fairly. The algorithm is responsible for the size of
the congestion window. It will "sense" the current available capacity of the network by approaching a
fitting window size. If a packet loss occurs, the window will be reduced and the sensing will start again.
The simulation results showed a peak in the buffer occurred due to this phenomenon. The red network

is a trusted domain and in control of the administrator of the diode. Therefore, the congestion control
could be disabled to solve the peak problem in the buffer. This will also decrease the complexity as no
algorithm for congestion control needs be implemented.

60 5. Analysis and results

¢ Fast Recovery
By disabling the congestion control, the congestion window is also disabled. This will pose issues to the
recovery of a lost packet. The congestion window should be reduced during the recovery period (Sec-
tion 2.2.6). Otherwise, each lost packet will delay the recovery with a full RTT period and will decrease
the efficiency of the throughput drastically. The TCP NewReno algorithm will be used to detect packet
losses and improve recovery time.

¢ No TCP options
The TCP SACK option is tested by the simulation and does not show improvements with regards to the
amount of buffered data. Additional features requires more complexity for implementation. The tested
TCP options did not provide significant benefits. Therefore, no TCP options will be implemented at the
red part of the diode.

¢ Small window size
A relative small window size is preferred at the red part the diode. Lost packets could be detected
earlier and recovery time will be reduced. The red part aims to achieve a high performance with high
efficiency. The simulation results shows a small window size will contribute to a higher efficiency.

5.3. Conclusion

To interpret the output from the tests performed in the previous chapter, we converted the data to values ap-
plicable to the parameters of Equation (3.6). In Chapter 5, we analysed the behaviour of the parameters to the
amount of buffered data. The goal of the simulation was to find an optimal set of parameters to minimise the
buffer space, while achieving high performance of the diode. We learned the negative effect of the conges-
tion avoidance algorithm to the required buffer space. The algorithm can be neglected due to the controlled
environment of the sending part of the diode. Furthermore, the window sizes on the black network should
be relatively large to the red window size, if possible. The TCP SACK option, seemed very promising with re-
gards to reducing the required buffer size (Appendix A). However, this option does improve the recovery time.
Unfortunately, the peak of the buffer is not caused by the recovery of the lost packet. Instead, the recovery of
a full throttle connection speed is much more determining. Without the need of sensing the capacity of the
network resources, the TCP stream should be allowed to use the maximum after the lost packets is recovered.
To summarise the simulation results:

e The TCP SACK option does not reduce the amount of buffered data in the long-term. The simulation
runs with TCP SACK enabled did not show improvement when compared to the simulation runs with
TCP SACK disabled.

* Any congestion avoidance algorithm will reduce the congestion window after a packet loss is detected.
This will result in a peak in the buffered data. This part of the congestion algorithm can be disabled to
avoid the peak in the buffer.

* With TCP disabled and the sensing part of the congestion avoidance algorithm disabled, Equation (3.2)
still holds. However, the window size of the black TCP stream is preferred to be relatively large and the
window size of the red TCP stream is preferred to be relatively small. A larger window size will increase
the error detection time slightly. The black network will be temporarily delayed, which will save the red
TCP stream some time to empty the buffer.

High-level hardware design

Goal 3 of this project is to develop a high-level hardware design which can be used to implement the proposed
system in a hardware environment (Section 1.3). Implementing a network diode featuring TCP requires some
challenges to be solved as was discussed in Chapter 2. When a network diode is installed between two net-
work domains, the domains are completely separated. Only transfers in one direction can pass through the
diode. TCP is a transmission protocol and is one of the most common protocols, used in many of current
data transfers [42]. However, TCP requires an established two-way connection to transmit data. To ensure
our design will be implemented in hardware and the data diode only allows traffic in one direction, the origi-
nal TCP stream will be "duplicated". The original source will send the data, using TCP, to the part of the diode
in the unsafe (black) network. The diode will transfer the payload from the unsafe part to the part of the diode
which is connected to the trusted (red) network. At the red part of the diode, the original TCP stream will be
reproduced to transfer the payload to the original receiver. To ensure no data is lost, the reliability of TCP will
be used to ensure all packets will be sent correctly. TCP will retransmit packets when necessary. Therefore,
the packets need to be available until they are acknowledged. The packets will be temporarily stored in a
buffer. We want to know the minimum required size of this buffer, because the network diode (including the
buffer) will be implemented in hardware.

In Chapter 3, we proposed a method to determine the required buffer size of the diode. This resulted in
egs. (3.1), (3.2) and (3.6). We defined a model of the system such that the amount of data in the buffer is
determined by the data flow of both TCP streams, expressed in throughput. To avoid an infinite amount of
buffered data, the throughput of the black TCP stream should be at most equal to the throughput of the red
TCP stream. Consequently, we required a method to limit the black throughput, and therefore, we required
a method to determine the red throughput. We formulated eq. (3.6) to find the significant factors for a TCP
throughput. The behaviour of these variables is evaluated in Chapter 4. The analysis, based on simulation re-
sults, was discussed in Chapter 5. From the results, a set of recommended configuration parameters for each
part of the network followed. The parameters configure the settings of the TCP stream to limit or improve the
connection. The throughput, recovery time and required buffer space was taken in account.

In this chapter we will discuss the implementation of the functionality of the network diode. The design
will have duplicate implementations for similar functions at both sides of the network, as well as unique
implementations for side-specific processes. The hardware design will be presented as an accurate functional
block diagram. The configuration recommendations from Sections 5.2.1 and 5.2.2 were taken into account
during the development of the hardware design.

6.1. Overview

The high-level hardware design presented in this chapter, should function as the backbone of an implemen-
tation at hardware level. The design can be effortless converted to a VHDL project. The implementation is
presented as a functional block diagram, in which each block represents a function or process and the lines
represent a data- or control flow. The design will include the complete data- and control flow of packets
handled by the data diode. Every process from the incoming packets to the transmission packets will be dis-

61

62 6. High-level hardware design

Network Diode Module
4 I

L1l L1l
st n:{>§ =>

FpcAl > FpcAl
SFP-10G IEECEI I_REd_.I SFP-10G

il il
- J

Figure 6.1: Top-level overview of the implementation of the data diode

cussed. The hardware design will present a modular design, allowing for more extensions or improvements
in the future. All possible TCP features are considered based on the simulation results.

A top-level overview of the design implementation of the network diode is depicted in Figure 6.1. The
network diode will have two network interfaces: one SFP-module at each side of the network. The transfer is
started by the black source, and the packets will be received at the black side of the diode. The FPGA-black will
process the incoming segments. It will respond with proper acknowledgements and transmits the segment
via an electrical connection to the FPGA-red. The red FPGA will receive packets from the FPGA-black. It will
store a copy of the segments in its buffer and will initiate the transfer to the red receiver. The red FPGA will
manage the red TCP stream, including buffer management and packet retransmission.

A comprehensive description of the functional block diagram is depicted in Appendix D. The black hatched
part includes all processes with packets in the the black network, the red hatched part is for the red network.
The buffer is the only part connected to both parts of the diode and therefore not colour coded. The input
connection is from the black part and the output is connected to the red part. With this implementation, the
black part is not capable of knowing the saturation of the buffer. This is necessary to satisfy the diode’s main
function: full separation of network domains. By this method, the black part is not capable of getting any
feedback of the status of the red network. The general processes for each side of the network are depicted
in Figure 6.1 and separated for each side of the network. The black arrows represent the the data flow of the
packets in the black network and the red arrows indicate the red data flow. The blue arrows represent the
control flow in each side of the network. The yellow blocks indicate a hardware implementation, realised
by combinational logic and registers. The purple blocks indicate a soft-core implementation, realised on a
RISC-V core. The data flow of the TCP stream passes through only hardware blocks, to ensure the high data
rate. Other processes will be implemented in soft-core. The RISC-V soft-core allows less complicated designs
for more complex functions. However, this requires overhead from transferring the data to the soft-core, and
vice versa, which will introduce extra delays. The buffer receives input from the black network and the output
is connected to the red network. The network diode will have two Ethernet interfaces: one connected to the
black network and one connected to the red network. The black interface will receive packets from the origi-
nal source and will transmit acknowledgements over this interface. The red Ethernet interface will be used to
transmit segments from the diode’s buffer and receive acknowledgements. The processes in the diode will be
discussed below.

The packets will enter the diode as a stream of bytes. To interpret the bytes, the stream is converted to an
AXI4-Stream [5]. The AXI4-Stream protocol is a convenient interface to exchange data between components.
The interface allows communication between a master, that generates data, to a slave, that receives data. The
protocol allows both master and slave to agree when data can be transferred. The slave will notify the master
it is ready to receive. When the data is marked valid by the master, the data will be transferred to the slave.

To explain the implementations of the functionality on the FPGA’s, we will start to discuss the global op-
erations of each side of the diode. Thereafter, we will elaborate the main function blocks in more detail.

6.1. Overview 63

/ Network Diode Module \

/ FPGA Black \ / FPGA Red \

Datalink Network Tcp Network Datalink
== azﬁ:: = Laver = Laver = podule [SeneElizer Deserializer = Buffer MTquZ\e = Layer /= Layer = SMEEJSE
Module Module Module Module

SFP-10G SFP-10G

- / o /

- /

Figure 6.2: Top-level overview of the processes in the FPGA

Black FPGA processes

The black part of the network diode is the receiving TCP socket. The main function of this part is basically:
receiving packets, passing segments through the diode (adding segments to the buffer), and replying with
proper acknowledgements. The packets will enter the diode on an optical Ethernet interface. The optical
interface represents the physical layer of the OSI-model. The SFP-module will convert the optical signal to
electrical data. The serial data will be converted to parallel data (AXI-4 stream) by the SerDes module. The
data will then flow through several functional blocks implemented in the FPGA. Each block executes some
operations on the data and will pass it through to the next block. The direction of the data flow is is depicted
in Figures 6.1 and 6.2. The explanation of the functional blocks will follow the direction of the data.

¢ Data link layer module

The first process is handled by the data link layer (Ethernet). The packet will be checked for the Ethernet
fields. The CRC will be calculated to detect any errors. The MAC addresses will be verified to ensure the
source and destination devices are correct. Thereafter, the Ethertype will be checked, and the packet
will be passed to the corresponding block. Our diode will be designed for the TCP/IP suite. Therefore,
the packets from Ethertype IP will be passed to the next block. The other Ethertypes, ARP-requests for
example, will be passed to an embedded soft-core processor. These packets do not contain critical data,
but require complex functionality. However, transferring these packets to a softcore could introduce
additional delay, but this does not effect the performance of the diode. The softcore will handle network
packets and manage a network interface table.

The data-link module processes packets the other direction likewise. It receives a packet from the net-
work layer module or the softcore, and will attach an Ethernet header to it. The module creates an
Ethernet frame, including the MAC addresses, and prepares the packet to be transmitted by the net-
work interface.

— Input signals
o Ethernet-packet [AXI-4 stream]
— Output signals

o "Ethernet payload" [AXI-4 stream]
The Ehternet payload contains the payload of the packet including the headers of IP and TCP.

* Network layer module
The data diode will be designed to perform transfers using the TCP/IP suite. Therefore, the network
layer module in our design only processes the Internet Protocol (IP). The incoming packets will be
received from the data link module. The other protocols will not be passed to this module, but will be
handled by a soft-core module instead. The IP module will process the incoming packets. The process
will acquire the address fields from the IP-header to verify the source and destination of the packet.
The header checksum will be verified to ensure the packet does not contain any errors. Furthermore,
the protocol will be checked. All packets containing an other protocol than TCP will be dropped. At

64 6. High-level hardware design

his layer in the OSI-model only packets containing data payload will enter. Therefor, every packet not
using TCP should not be handled by our diode. The network layer module will create the IP-header
when transmitting packets. The header fields will be completed and the stream will be passed to the
data link module.

— Input signals
o Ethernet-payload [AXI-4 stream]
— Output signals

o IPv4 header [logic vector]
The IPv4 header contains data for the control flow of TCP

o "IPv4 payload" [AXI-4 stream]
The IPv4 payload contains the payload of the packet including the header of TCP.

¢ Transport layer module

The transport layer module is the essential module of the the diode. The black FPGA will only contain a
passive module. This side of the diode only needs to send replies to the black source. So the module will
only process incoming packets. The packets will be received from the network module, which already
stripped the IPv4 header of the packet. This header contains information that is required for validating
the checksum of the TCP segment. The processes of the TCP module can be broken down to smaller
functional blocks. First, the fields of the segment header will acquired, which is functionally almost the
same as the other modules do. Thereafter, the information will be passed to a block that verifies the
TCP segment. This block will checks the segment and validate whether segment is correct and checks
if the diode is available to receive such a segment. Therefore, it requires information about the con-
nection state and transmission state. These are acquired by the TCB. If the segment is not correct, the
segment will be dropped and a corresponding segment will be prepared to reply if necessary. If the seg-
ment is correct, it will be passed to a block called: process TCP segment. This block will check all other
fields of the segment according the RFC rules applied. These processes include verifying sequence and
acknowledge numbers, update the FSM, update the transmission state values, prepare responds, etc.
Furthermore, this block will transfer the data over the diode, via the serializer module. This is where
the packet leaves the black network, and enters the diode connection.

Signals TCP module Black ,
Signals
Source and Transmizsion

destination L-L state varisbles
nformation . o L+ Control signals
Input \ Transmission fram TCP
* L3 — segment
= |Pvd Header Conirol
= |Pv4 Payload Block
Qutput
Verify Process TCP D » TCF meta
Segment] Segment * TCF payload
]
Signals
= TCF Hazader
= TCP Payload
Signals
Qutput
= TCP Hzader
s TCP header <I-". -«

Figure 6.3: Overview of the red TCP module

6.1. Overview 65

The functional blocks of TCP verification, segment processing and TCB will be discussed in more detail
later. The transport layer module creates acknowledging segments as a reply to the received segment.
The segment header fields will be completed by information provided by the TCB. The segment will
then be transmitted to the network layer module.

— Input signals
o IPv4-payload [AXI-4 stream]
o IPv4-header [logic vector]

— Output signals

o TCP-header (to diode connection) [logic vector]
o TCP-payload (to diode connection) [AXI-4 stream]

Red network processes

The red FPGA process packets in the red network. Actually two processes will be executed in this FPGA as
the FPGA will have two incoming connections. The first process will receive TCP segments from the black
FPGA via the diode link. These segments will be de-serialised into a parallel signal and will then be appended
to the buffer. The FPGA will process the packet to finally transmit the packet to the SerDes module. The
SerDes module will convert the parallel data into serial data for the SFP-module to transfer the packet to
the original receiver. The second process will receive packets from the SFP-module, via the SerDes module.
The packets will contain no data, but only control signals. These packets contain status information about the
connection and will mostly consist of acknowledgements. The data flow in the red FPGA will start at the diode
side. The packet will enter the the FPGA from there to the buffer. It will be processed by some blocks before
it is transmitted. The segment will be removed from the buffer during the processing of the corresponding
acknowledgement. Therefore, the red FPGA will contain the following functional blocks:

¢ Buffer

The packet will be stripped down before it leaves the black FPGA. Only the TCP segment will enter the
buffer. The buffer is only accessible in the red network. After the black FPGA has transferred the TCP
segment over the diode, it does not need to store the segment. In the worst-case scenario, the acknowl-
edgement did not receive the black source and the black source will retransmit the segment. The red
FPGA, on the other side, does need to store the segment. This FPGA is responsible for transferring the
segment to the red receiver. Until the segment is acknowledged by the receiver, the red FPGA is required
to have a copy of the segment. Therefore, the buffer will be implemented on the red FPGA.

— Input signals
o TCP metadata (from diode connection) [logic vector]
o TCP payload (from diode connection) [AXI-4 stream]
o Transmission state variables (Red) [logic vector]

— Output signals

o TCP metadata [logic vector]
o TCP payload [AXI-4-stream]

e TCP Module

The TCP module on the red FPGA is responsible for transferring the packets from the buffer to the orig-
inal receiver. Therefore, it has to process packets coming from two directions. First it has to retrieve the
segment from the buffer and prepare it to transfer. Secondly, it has to process incoming packets, mainly
consisting of acknowledgements. The incoming packets will be handled by the block: process TCP seg-
ment. This block will handle the control signals and connection information provided by the received
segments. The acknowledgements will notify the buffer to remove the acknowledged segments. This
information is also stored inside the TCB of the module. After a segment is removed from the buffer,
the module will be able to send new data, as there is new room inside the transfer window. This window
is managed by the segment transmission manager. The segment transmission manager is responsible
for transferring the correct TCP segments. This includes processes like retransmissions and managing
the connection.

66 6. High-level hardware design

TCP module Red

Input Qutput
Segment
» TCP meta H -...[:) * TCF metz
» TCP payload » Transfer 7 » TCP payload
Manager
Signals
[Transmission
state variables
"""""" Cantrol signalg
from TGP
segment
Output o
Transmission
b Transmission <|-(—)- Control
state varizbles Block -
Signals
_SIQHE.”S Source and
! ransmisson)] desfination f---------
state variables nformation
Controd signals|
from TCP
sagment Y Y
Input
Process TCP |, Verify ¢ ﬂ » |Pv4 Header
Segment ' Segment * IPv4 Payload
Signals
= TCF Header

= TCP Payload

Figure 6.4: Overview of the red TCP module

The functional blocks of TCP segment processing, the TCB and segment transmission manager will be
discussed in more detail in following sections. The transport layer module creates acknowledging seg-
ments as a reply to the received segment.The segment header fields will be completed by information
provided by the TCB. The segment willthen be transmitted to the network layer module

— Input signals
¢ Transmission flow
- TCP metadata [logic vector]
- TCP payload [AXI-4 stream]
o Recipient flow
- IPv4-payload [AXI-4 stream]
- IPv4-header [logic vector]
— Output signals
o Transmision flow
- TCP Segment [AXI-4 stream]
The TCP Segment does contain the TCP header and the TCP payload
o Recipient flow
- Transmission state variables [logic vector]

* Network layer and datalink layer module
The network layer module and the datalink layer module for the black and the red FPGA will be the
same. There will be no discrepancy between the functionality of these blocks. These modules will strip
or add the header of the corresponding layer. The addresses of the recipient packets will be validated.
Furthermore, a verification or calculation of the checksum of the packets will be executed, dependent
on the direction of its current flow.

6.2. Verify TCP segment 67

6.2. Verify TCP segment

The first field of the TCP header that will be checked is the checksum. The checksum is calculated using
the TCP header and the pseudo-header from the IP-layer as was discussed in Section 2.2.2. Therefore, the
information of the IPv4 header is required for this module. If the checksum is not correct, the packet will be
dropped. Consequently the source and destination addresses and ports will be verified, which identify the
connection. Furthermore, the connection state (see Figure 2.6) will be checked, whether the diode is able
to receive packets for this connection. This information is acquired from the TCB. If the connection is in
the Closed state, the packet is dropped and a proper respond will be prepared. The responding packet will
contain a RST signal and is created conform RFC 793 [55]. The module will send the created TCP segment to
the network layer module. If the connection is in another state than Closed, the TCP header and payload will
be forwarded to the process TCP segment block.

¢ Input signals

IPv4-header [logic vector]

TCP-header [logic vector]
— TCP-payload [logic vector]

Source/destination data [logic vector]

FSM-state [logic vector]
¢ Output signals

— TCP-header [logic vector]
— TCP-payload [logic vector]

6.3. Process TCP Segment

After the segment is verified by the previous block, the segment is ready to be processed. The control bits and
signals are extracted from the header field and the current state of the connection. This process determines
the response, if applicable, to the received segment. If an acknowledgement or a reset signal is required, this
process creates the proper segment to send. The payload of the segment will only be processed if all of the
other fields of the segment are correct. Multiple checks will be executed to verify the acceptability of the
segment. First, the state of the connection will be checked, again.

If the connection is in the Listen state, an appropriate SYN segment conform the rules of RFC793 is ex-
pected. Otherwise, the packet should be dropped and a RST segment will be sent. If a correct SYN segment
is received, then the black source is establishing the connection and this is the first message of the 3-way
handshake. The module will extract the important values and will send the values to the TCB to update the
transmission state variables. These contain values for the transmission state pointers, TCP options and a no-
tification for the FSM to move to the next state: SYN received. This state will only apply for the black FPGA,
because the black part will wait for the original source to initiate a connection.

If the connection is in the SYN send state, the module is expecting a SYN for the negotiation of the 3-
way handshake. This will only occur in the red FPGA, because this state is reached by the sender of the TCP
session. After the segment arrives, first the acknowledgement number is verified. The acknowledgement
number should be in between the initial sequence number and the next-to-send sequence number. If this is
not the case, the segment should be dropped and a RST should be send where appropriate. The same check
applies for the sequence number if the segment does include a SYN. This is the moment of the negotiation.
Therefore, the TCP options are being exchanged to agree on the TCP session configurations. The available
TCP options configurations for our design are discussed in Section 5.1. After the SYN is processed, the TCB
should be notified to go the next state, dependent on the presence of the ACK bit: SYN received or Established.

If the connection is not in the Closed, Listen or SYN send state. The segment is processed in a 6-step
cycle. This cycle is extracted from the 8-step cycle from RFC793 with two steps removed: the security and
precedence check and the URG-bit check are removed. Both will not be used in our design. The security and
precedence values should be provided by the IP layer and the URG bit is used for other applications than just
raw data transfers. Each step in the cycle is a check on one of the control bits or fields of the segment. The
control signals determine the next process for the segment and will manage the connection state.

68

6. High-level hardware design

Segment length | Receive window | Check

0 0 SEG.SEQ = RCV.NXT
0 >0 RCV.NXT =<SEG.SEQ <RCV.NXT + RCV.WND
>0 0 not acceptable

RCV.INXT =<SEG.SEQ <RCV.NXT + RCVWND

>0 >0 or RCV.NXT =<SEG.SEQ + SEG.LEN-1 <RCV.NXT + RCV.WND

Table 6.1: The possible conditions for the TCP segment to be acceptable

1. Verify segment’s acceptability

The first check is to validate whether the incoming segment is acceptable based on the sequence num-
ber and the current size of the receiving window of the module. The valid conditions for a segment to
be acceptable is presented in Table 6.1.

If the receive window is zero, no segments will be accepted. Only exceptions are segments contain-
ing a valid ACK or RST bit. Unacceptable segments should be answered with an acknowledgement,
unless the RST bit is set. After a acknowledgement is transmitted, the unacceptable segment should
be dropped. If the RST bit is set, no acknowledgement should be sent and the unacceptable segment
should be dropped immediately. Only segments with a sequence number equal to the RCV.NXT pointer
value will be accepted at the black FGPA. The black FPGA will have no buffer and therefore it is unable
to reorder received segments. If the set of rules for this step applies to the segment, the following check
will be done.

. Check the RST bit

A RST bit indicates that the receiver should delete the connection without furthermore communica-
tion. An error has occurred somewhere in the connection and the sender of the RST bit will break
down the connection. If the RST bit is valid, the TCB values of this connection will be emptied and
the connection will be terminated. Whether the RST bit is valid, depends on the current state of the
connection.

If the connection is in the SYN received state, the TCP module expects an ACK to establish the connec-
tion. In this state, the black FPGA will just drop the segment and will return to the Listen state. If the red
FPGA receives a RST bit in this state, the connection is refused by the red receiver. Therefore, the TCB
values should be emptied and a hard reset for the connection is required. The red FPGA should transit
to the Closed state.

If the segment reached this point and the connection is in another state then the SYN received state,
each outstanding segment should receive a reset signal. Therefore, all segment queues and all TCB
values should be emptied. The connection should transit to the Closed state.

. Check SYN bit

If the segment reached this step and there is a SYN bit in the segment, than the segment is an error.
The connection should be reset. The segment queues and the TCB values should be emptied and the
connection should transit to the Closed state.

. Check acknowledgement fields

First, the segment should be checked if the ACK bit is present. If the ACK bit is absent, the segment
should be dropped. If the ACK bit is present, check the state. If the connection is in the SYN received
state, the acknowledgement number of the segment will be checked. The acknowledgement number
should be in between SND.UNA and SND.NXT to be valid. If the segment is valid, than the connection
should transition to the Established state and the segment should be processed the same as in the other
states. If the segment’s acknowledgement number is not valid, a RST should be sent instead. Conse-
quently the segments acknowledgement number is validated. When the acknowledgement number is
larger (or equal) to the highest unacknowledged yet transmitted segment, the received segment indi-
cates a duplicate acknowledgement. This should be notified to the TCB and add up to the duplicate
ACK counter. Furthermore, the acknowledgement number should be in between SND.UNA and the
largest sequence number transmitted. Otherwise the acknowledgement is invalid. If there were unac-
knowledged segments in the buffer, the segments with a sequence number smaller or equal than the
received segment’s acknowledgement number can be removed from the buffer and the transmission

6.3. Process TCP Segment 69

state variables should be updated in the TCB. Furthermore, if this was a new acknowledgement, values
from the window size and TCP options are updated. The next state is determined by the TCB and is
dependent on the current state of the connection. On the black FPGA, if a FIN bit is acknowledged, the
connection should close. On the red FPGA, if a FIN bit of our module is acknowledged, the connection
should transition to the FIN-wait-2 or Time-wait state.

5. Process segment payload

If the segment contains a payload with size larger than zero, the connection should be in the Estab-
lished or a FIN-wait state. If the connection is in another state the payload should be ignored. The
transmission state variables will be updated to the TCB. the RCV.NXT pointer is set to the value of the
lenght of the segment added to the segment’s sequence number. Normally the window size should be
recalculated at this moment. In our design, the window sizes are of a fixed size and no recalculation
will be executed. The black FPGA will also transmit the payload together with the TCP header to the
diode connection. If this is done, the segment will continue to be processed by the last step.

6. Check the FIN bit

This step can only be executed when the connection is not in the Closed, Listen or SYN sent state, be-
cause the sequence number of the segment can not be validate in these states. The segment should be
ignored and dropped. If the FIN bit is present in the segment, verify the sequence number. An invalid
FIN should be dropped. A valid FIN bit should update the RCV.NXT pointer value and an acknowledge-
ment should be sent. Depending on the current, should the TCB transit the state of the connection.
The black FPGA can prepare to terminate the connection and empty the TCB. The red FPGA should be
finished and this FIN is the indication that the receiver is also finished.

Difference between red and black

Both FPGA’s will include this model, because both will receive TCP segments from the external connection.
The black FPGA is the receiving side of the TCP connection. Therefore, only the black FPGA should receive
segments containing a payload. The payload contains the data the user wants to transfer over the diode. The
other segments that will arrive at the black FPGA are control signals to negotiate, initiate or terminate the
connection (parameters). The black TCP module will execute a passive open and therefore start in the Listen
state. During the connection, it will only accept segments that are consecutive. The black FPGA does not
include a buffer, therefore it is unable to reorder any segments. It is able to pass the out-of-order segment
over the diode connection already, which we will discuss in Chapter 7. If a valid segment arrived in the right
order, the black FPGA will prepare an acknowledgement and will simultaneously send the data over the diode.
The connection is terminated if the black source has finished sending all the data and transmitted a TCP FIN
segment. The black FPGA will not acknowledge the FIN segment until it received all segments. Therefore,
when acknowledging the FIN signal, it is finished with its tasks and the FIN-wait-1 state can be omitted.

The red part on the other hand is the initiator of the TCP stream. The red FPGA will start the connection
in the Closed state. When the first segment arrives at the buffer, the TCP module will do an active open and
should transmit the first SYN segment. The other control signal will arrive from the red receiver. The red
FPGA should only receive controlling signals without a payload. It represents the sending side of the diode
and has only data to send. Payload received from the red receiver will be dropped immediately. The process-
TCP-segment module will mainly accept acknowledgements to update the TCB values transmission state
variables. The red FPGA does include the buffer of the diode. Therefore, this module will notify the buffer to
remove data which corresponds with the valid acknowledgements received from the original receiver.

¢ Input signals

— IPv4-header [logic vector]

TCP-header [logic vector]
— TCP-payload [logic vector]

Source/destination data [logic vector]

FSM-state [logic vector]
¢ Output signals

— TCP-header [logic vector]
— TCP-payload [logic vector]
— Transmission state variables [logic vector]

70 6. High-level hardware design

6.4. Transmission Control Block

The Transmission Control Block (TCB) keeps track of all values for the connection. The TCB manages the
values for the transmission state pointers and execute the TCP-state FSM based on the control flags supplied.
These values are used in the protocol for many processes. These processes include verifying if a segment
is valid and/or acceptable based on the control fields in the segment and processes that keeps track of the
current state of the connection. If a module requires the value of specific transmission state values, it retrieves
these from the TCB. Only the TCB is allowed to adjust the values. It will modify the values based on the signals
retrieved from the TCP segments. It will also cycle between the TCP states when notified by a module. It will
only send a value if it is valid. Therefore it is necessary only one module has the right to adjust these and
keeps track of them. The values maintained by the TCB contribute to the mechanisms of TCP. Therefore, the
following parameters will be stored in the TCB:

¢ Source information data, consisting of the IPv4 address and the TCP port

* Destination information data, consisting of the IPv4 address and the TCP port

¢ RCV.WND representing the most current advertised window size of the receiving device
¢ RCV.UP representing the urgent pointer of received segments

¢ RCV.NXT, the receive next pointer. The first expected segment should have a sequence number equal
to this value.

¢ IRS, the Intial Receive Sequence number. This value will be used as reference value for the first received
segment of the connection.

¢ SND.WND, representing the window size of this device.
¢ SND.UP, representing the urgent pointer of segments in the sending queue.

e SND.WLI], representing the sequence number of the segment which is used for the last window (SND.WND)
update.

¢ SND.WL2, representing the acknowledgement number of the segment which is used for the last window
(SND.WND) update

¢ SND.MSS, representing the value of the Maximum Segment Size used for this connection. This value is
negotiated during the 3-way handshake

¢ SND.WND_SCALE, representing the value of the Window Scale from the last update (SND.WL2)

¢ ISS, the Initial Send Sequence number. The first sent segment will have this value and will be used as
reference value.

* FSM-state, the FSM state is managed by the TCB.
* DUPACK, represents the duplicate acknowledgement counter.
¢ Input signals
— Control signals [logic vector]
¢ Output signals

— Source/destination data [logic vector]
— Transmission state variables [logic vector]

— FSM-state [logic vector]

6.5. Segment transmission manager 71

6.5. Segment transmission manager

Only the red FPGA will have the segment transmission manager module as was discussed in Section 6.1.
This module is responsible for the transmission of the diode data. Only the the red FPGA will transmit actual
data. The black FPGA will only transmit TCP segments containing control signals, consisting of acknowledge-
ments in particular. The black FPGA will only transmit a segment in reply to an incoming segment. Before
any segment is transmitted, this module will check the current connection state. The red FPGA will start in
the Closed state. If the first segment arrived on the buffer and this segment contains a SYN bit, it will initi-
ate the TCP connection in the red network. Otherwise it will only send segments containing payload in the
Established state. If the last segment in the buffer contains a FIN segment, this will only be sent if all pre-
vious segments have been successfully transmitted. Therefore, all the previous segments should have been
acknowledged before the last segment containing the FIN bit will be sent. If this segment contains a payload,
the payload will be sent in a separate segment. The other states will be cycled through be control segments
received from the red receiver and the TCB will handle these. The red FPGA will active create TCP segments
to transfer the data. The payload of the segments is received from the buffer. To determine which packets it
will send, it uses the sliding window system of TCP. The segment transmission manager will cooperate with
the TCB. The SND.NXT value represent the sequence number of the segment that should be send next. If
SEG.SEQ+ SEG.LEN =< SND.UNA+ SND.WND, the segment is acceptable to send. In other words, if
the length of the segment added to the sequence number does not exceed the right edge of the window, the
segment is acceptable to send. There should be space left in the window to send a new segment. While the
segment is transmitted, the segment transmission manager will start the RTO timer. If a RTO occurs for a seg-
ment, this module will set the value of SND.NXT back to the segment that is retransmitted and notifies this to
the TCB. The fast recovery algorithm will adjust the congestion window until the connection is recovered. An
equivalent process will be executed when a triple duplicate acknowledgement is received. For each duplicate
acknowledgement the counter will be incremented. When three duplicate acknowledgements are received,
the SND.NXT value will be set back.

¢ Input signals

TCP-header [logic vector]

TCP-payload [logic vector]

Source and destination information [logic vector]
— Transmission state variables [logic vector]

— FSM-state [logic vector]
¢ Output signals

— TCP segment [AXI-4 Stream]

— Control signals [logic vector]

6.6. Data and control flow
The processes on the segments can be separated into two different flow: the data flow and the control flow.
The data flow is defined by the path which the data has to move along when it is transferred from the black
source to red receiver trough the data diode. The data will enter this path at the black FPGA. The data will
be structured as a stream. Each block the data stream passes, will execute a process on the stream. They will
extract, strip, analyse or copy some of the parts of the data stream. First the headers will be split and analyses
if the packet has the correct destination and protocol number. The checksum will be verified to ensure the
packet does not contain an error. Both data flows are depicted in Figures 6.5 and 6.6 Finally, in the black FPGA,
the control signals will be extracted from the TCP segment. These will be handled by the control the flow. The
data flow continues to send the segment to the red part of the diode and to create the acknowledgement.
This will go back through the modules which will add an extra header to the packet, which is similar to attach
extra data to the stream. Therefore, the black data flow is circular. The data will enter the FPGA and, inside
the black FPGA, the data flow will exit when the acknowledging segment is sent.

The red FPGA does have two data flows, because it has two input connections. The first data flow starts at
the buffer. The data will flow from the buffer to the SFP-module to be transferred to the red receiver. The data
from the buffer will be transformed into a data stream. Each block will add a header of the corresponding

72 6. High-level hardware design

Black FPGA \

Data link module Network layer module Transport layer module
Verify Segment
Extract Extract p——
»| header and | header and amén_nle
filter on IPv4 filter on TCP I
™ segments and Process segment
execute RET Exiract contro
Ssegments Eignals, pass ove .
‘—‘ diode and create -
cknoweldgement
Add i
Add IPv4
Ethernet |« header
header Rl

/

Figure 6.5: The data flow path of a packet in the black FPGA. The blocks annotate the action performed on the packet. The data flow is
circular on this side

layer to the packet. The other data flow contains the receiving segments of the red receiver. This data flow
is similar to the data flow of the black network. Only instead of sending an acknowledgement segment, this
flow receive acknowledgement segments. These are passed to the TCP module, if it has the appropriate meta
data, and will be analysed for control signals.

Each process acting on the data flow will be implemented in logic hardware. This should ensure the ca-
pacity to reach a high data rate. The data stream used in our design an AXI-4 stream. This protocol allows to
create packets which will process multiple bits in one clock cycle. To achieve a data rate of 10 Gbps, a packet
consisting of 64 bits could be used with a clock of 156.25 MHz.

All other processes not acting on the data will be defined as the control flow. These could be separated in
two different flows. One flow will handle all packets which does not directly contribute to the data transfer
over the diode. These are packets containing other protocols than IP/TCP. ARP or DHCP for example. There
is no requirement to process these packets fast or at a high data rate, because these are mainly packets for
networking. Therefore, these packets will be handled by a soft-core solution on the FPGA. When a packet with
a different protocol is detected (and validated to be required for the network link), it will be transmitted to the
soft-core which will process them. Therefore, the soft-core will maintain an ARP- and an interface table.

The other control flow is defined within the TCP module. The TCP module will extract and analyse the
control bits and fields in the TCP segment’s header. The signals will be transmitted to the TCB. The TCB
will use these to update the transmission state variables and to cycle through the FSM of the TCP. The black
FPGA requires the new values of the transmission state variables and the FSM state to determine what reply
segment should contain. The red FPGA requires the updated values to determine what segment to send next.
Furthermore, the buffer requires the values to remove the corresponding segments.

6.7. Conclusion

The last goal of this project is to develop a hardware design on a high-level. The results from previous chapter
will form the basis of the configuration of the hardware design. In Chapter 6, a high-level hardware design was
presented for implementing a network diode, featuring TCP, in hardware. The implementation will consist of
two FPGAs, one for each side of the diode. The black FPGA and the red FPGA are connected by an electrical
connection. This is connection is purposely used in one direction. This connection features the diode and
separates both networks.

The black FPGA executes a passive process. It waits until a packet arrives and will process it. The packet
will go through some functional blocks. Each block represents the processes of a different OSI-layer. The most
significant block in our design is the TCP block. The processes acting on the TCP segments are separated in
blocks. The TCP module on the black FPGA does contain the same blocks as the red FPGA. Only the red FPGA

6.7. Conclusion 73

/ Red FPGA

Transport layer Module Network layer module Data link module
Buffer Segment transmission
Receives manager
segment Select segment from Add 1Pv4 Add
»| from diode » buffer and create TCP » header » Ethernet
and store segment header
them -
Process segment Verify Segment
= reot comin Eilter on Extract Euxtract
Extract controd - " "
Lignais, pass over o scceptanle [© header and header and
Eignals, pass
diode and create | | segments and filter on TCP filter on IPv4
pcknoweldgemen execute RST
segments

o

Figure 6.6: The data flow path of a packet in the red FPGA. The blocks annotate the action performed on the packet. There are two
separate data flows on this side.

has one extra, because that is the active FPGA. If a packet arrives at the black FPGA, the control signals will
be analysed to maintain the connection. This is done inside the TCP module. Finally, the segment will be
transmitted over the diode connection, and an acknowledgement segment will be replied to the black source.

The red FPGA executes an active process. The red FPGA does have 2 main differences compared to the
black FPGA: 1) it has a buffer 2) the TCP module does contain an extra block. The buffer features, together
with the electrical connection between the FPGAs, the diode functionality. This is the border between the
black and the red network domain. When the segment is sent by the black FPGA to the buffer it is out of
control and it is up to the red FPGA to transfer the packet to the original receiver. The buffer is emptied by the
TCP module of the red FPGA. This module does contain an extra process block: the segment transfer manager.
This block determines when a segment is transmitted from the buffer. The segments will be removed from
the buffer by the process segment block. This block will process the acknowledgements received from the red
receiver. The black FPGA does contain the same block in the TCP module. Only there, the block will create an
acknowledgement and will transmit the segment over the diode connection.

The processes acting upon the data transfer will all be implemented in logic hardware. This will ensure
the capacity to achieve a high data rate. The AXI-4 stream protocol will be used. This allows 64 bits to be
processed in one clock cycle. A clock of 156.25 MHz should then realise a throughput of 10 Gbps. The TCP
module is designed modular. Therefore, the module allows a developer to implement extra features or TCP
options in the future.

Conclusion

This chapter describes the conclusions that have followed from each step of the methodology of this project,
represented by the chapters of this thesis. Furthermore, the considerations of this thesis are being discussed
and recommendations for future work will be presented.

7.1. Conclusions

Based on the problem statement of this thesis: "To what extent is it possible to implement a network diode
on an FPGA under realistic network environments, using the Transmission Control Protocol", we researched
the current diode products on the market, which was described in Section 2.1. From the developments in
the network security industry, we learned the bottleneck of this project, namely, TCP is a bidirectional flow,
which has to be converted to a unidirectional flow. The standard solutions use PC’s, which run proxy software
to solve this issue. The only hardware implementation is the one-way diode connection, which does not cover
the features of the TCP. The data flow is converted from bidirectional to unidirectional at the sending side of
the diode. The information is sent using a custom-made protocol designed for the user. At the receiving side,
the information is converted back to the bidirectional TCP flow. This has the advantage of an adjustable diode
protocol. The functionality can be modified by updating the proxy PC’s. Although the disadvantage of this is
the high cost of the diode and the maintenance of those proxy PC'’s.

From the operating mechanisms of TCP described in Section 2.2 we can conclude it is a very reliable
protocol. It has many features to establish the connection, manage the connection while taking in account
other traffic and has enough room to implement new features for improvement. But those characteristics for
TCP are only valid when communication is available both ways. A bi-directional connection is vital to the
TCP methodology. The sending side of the connection requires feedback from the receiving side to operate.
There is no adaption of TCP with only one-way traffic allowed. TCP implements algorithms to adapt to the
current state of the network, which is mainly detected by packets loss or fluctuations. Those algorithms pro-
vide heuristic solutions to recover the connection, while achieving high efficiency and taking in account a fair
share of the network resources.

With this knowledge, we continued to find a method to define a simplified model of our system for anal-
ysis purposes. In Chapter 3, a suitable model was proposed for system evaluation purposes. The conversion
of TCP to one-way traffic (and reversed) will be processed on the same device as the diode is implemented.
Together with the basic operations of TCP described in Chapter 2, and taking in account goal 1 (Section 1.3),
a simplified model is presented in Section 3.1. This model consists of two separate TCP streams on both sides
of the diode. The unsafe network is referred to as 'the black network’ and the trusted network is referred to
as 'the red network’. Because no feedback is possible, the two networks would operate separated. The only
shared resource is the buffer. This buffer is filled with segments from the black network and emptied by the
red network. The amount of data inside the buffer is almost equal to the window size of the red network
and difference in throughput of both networks, as stated in Section 3.1.1. Therefore, the throughput from
the black network must not exceed the red network. To determine the throughput for a TCP stream, a for-
mula is proposed in Section 3.1.2, which consist of four parameters. In Sections 3.1.3 and 3.1.4 is discussed
which parameters can be controlled on the diode for each side and to which parameters are determined by

75

76 7. Conclusion

the network.

To evaluate this set of parameters, a network simulation will be used. To select the most suitable simula-
tion software, several network simulation solutions were discussed in Section 3.2. Commonly, two different
types of simulators are considered: A Discrete Event Simulator (DES) or a network emulator. We tested three
potential simulators: Mininet; NS-3; OMNeT++. The emulator provided by MiniNet, lacked the capacity to
simulate high-speed transfers or process packets in a short time, because an emulator simulates real-time
network traffic and requires sufficient resources to do the calculations, which our computers lacked. Both
NS-3 and OMNeT++ are DESes and have implemented options to simulate TCP streams. NS-3 models net-
works by creating a network of nodes and corresponding connections. Network devices can be installed on
those nodes to create a real network. Applications can be assigned to the network devices, which includes
TCP sockets. The project needs to be compiled by an build system called Waf. OMNeT++ uses simpler block
structures to design a model. It makes use of simple modules, which could be used for sending any kind
of message. It is provided with an user-friendly GUI, which makes designing more comfortable for a begin-
ner. OMNeT++ version 5 or higher is provided with the INET framework, which consists of common network
components, including TCP. In addition to this, OMNeT++ IDE has an integrated analysis tool for the output
statistics. Therefore, Omnet++ is selected as best simulation tool.

The set of parameters in Equation (3.6), which was discussed in Chapter 3, has to be simulated in OM-
NeT++. Therefore, the model described in Chapter 3 should be implemented in the simulation software. In
Chapter 4, the TCP diode module for system simulation was developed. The model can enable all potential
features of the network diode as well as the properties of a TCP connection. The network diode module is
implemented using the INET framework of Omnet++ as described in Section 4.1. The standard host module,
which is a module provided by the INET framework, will run the TCP Diode Application. This application is
bound to two TCP sockets: one socket in the black network and one socket in the red network. The applica-
tion copies all messages from the black socket to the red network. From the statistic records of the sockets,
the value of buffered data is acquired. This value will be investigated during the simulations, according to
the equations formulated in Chapter 3 (Equations (3.1), (3.2) and (3.6)). The parameters, as discussed in Sec-
tions 3.1.3 and 3.1.4, can all be configured in the simulator. First of all, Equation (3.2) has been tested, by
researching the relationship between the throughput of the black and the red network with regards to the
utilised buffer space. Thereafter, the TCP SACK option was analysed, after our hypothesis of the improve-
ments for the buffer of the data diode (Appendix A). The influence of a congestion algorithm is questioned
to be of a negative impact on the required buffer space. Therefore, tests without a congestion algorithm
were performed. Finally, a relationship between the window sizes of the red and black network has been re-
searched to validate Equation (3.1).

To interpret the output from the tests performed in the previous chapter, we converted the data to values
applicable to the parameters of Equation (3.6). In Chapter 5, we analysed the behaviour of the parameters to
the amount of buffered data. The goal of the simulation was to find an optimal set of parameters to minimise
the buffer space, while achieving high performance of the diode. We learned the negative effect of the conges-
tion avoidance algorithm to the required buffer space. The algorithm can be neglected due to the controlled
environment of the sending part of the diode. Furthermore, the window sizes on the black network should
be relatively large compared to the red window size, if possible. The TCP SACK option, seemed very promis-
ing with regards to reducing the required buffer size (Appendix A). However, this option does improve the
recovery time. Unfortunately, the peak of the buffer is not caused by the recovery of the lost packet. Instead,
the recovery of a full throttle connection speed is much more determining. Without the need of sensing the
capacity of the network resources, the TCP stream should be allowed to use the maximum share of resources
after the lost packets is recovered.

The last goal of this project is to develop a hardware design on a high-level. The results from the previous
chapter will form the basis of the configuration of the hardware design. In Chapter 6, a high-level hardware
design was presented for implementing a network diode, featuring TCP, in hardware. The implementation
will consist of two FPGAs, one for each side of the diode. The black FPGA and the red FPGA are connected
by an electrical connection. This connection is purposely used in one direction. This connection features the
diode and separates both networks.

The black FPGA executes a passive process. It waits until a packet arrives and will process it. The packet
will go through some functional blocks. Each block represents the processes of a different OSI-layer. The

7.2. Main contributions 77

most significant block in our design is the TCP block. The processes acting on the TCP segments are broken
down in separate blocks. The TCP module on the black FPGA does contain the same blocks as the red FPGA.
Only the red FPGA has one extra block, because that is the active FPGA. If a packet arrives at the black FPGA,
the control signals will be analysed to maintain the connection. This is done inside the TCP module. Finally,
the segment will be transmitted over the diode connection, and an acknowledgement segment will be replied
to the black source.

The red FPGA executes an active process. The red FPGA does have two main differences compared to the
black FPGA: 1) it has a buffer 2) the TCP module does contain an extra block. The buffer features, together
with the electrical connection between the FPGAs, the diode functionality. This is the border between the
black and the red network domain. When the segment is sent by the black FPGA to the buffer it is out of
control and it is up to the red FPGA to transfer the packet to the original receiver. The buffer is emptied by the
TCP module of the red FPGA. This module does contain an extra process block: the segment transfer manager.
This block determines when a segment is transmitted from the buffer. The segments will be removed from
the buffer by the process segment block. This block will process the acknowledgements received from the red
receiver. The black FPGA does contain the same block in the TCP module. Only there, the block will create an
acknowledgement and will transmit the segment over the diode connection.

The processes acting upon the data transfer will all be implemented in logic hardware. This will ensure
the capacity to achieve a high data rate. The AXI-4 stream protocol will be used. This allows 64 bits to be
processed in one clock cycle. A clock of 156.25 MHz should then realise a throughput of 10 Gbps. The TCP
module is designed modular. Therefore, the module allows a developer to implement extra features or TCP
options in the future.

7.2. Main contributions
The models, simulation results and the high-level hardware design developed during this project contribute
to answer the main research question:

To what extent is it possible to implement a network diode on an FPGA under realistic network environ-
ments, using the Transmission Control Protocol?

The high-level hardware design presented in Chapter 6 answers this question. The design can be im-
plemented on two FPGAs to create a network diode featuring TCP. Furthermore, this project entails three
subgoals to have the design established and to be able to validate its performance.

1. Design requirements
The design requirements stated in the first goal of this project should be achieved as requested from the
original assignment provided by Technolution:

e Minimise resource utilisation

The final design presented in Chapter 6, is developed by minimising the amount of hardware resources.
The simulation tests performed in Chapter 4 were designed to uncover the parameters which could be
reduced. Therefore, the complexity of the design should be reduced. Each additional instruction to the
segments could introduce extra delay or require more computational power. The simulation results
from Chapter 5 show the maximum used buffer space for certain configurations. The test with the
minimal value is considered the best option for each run. Therefore, our design does not include a
congestion avoidance algorithm and no TCP SACK option. The buffer at the red FPGA can be of size 15
KB, when the throughput is 100 Mbps.

¢ Maintain a reliable connection
The connection is considered unreliable, when the diode is unable to transfer all the data from the
original source to the original receiver. In our design this can only be the case when the amount of
buffered data does not reach a maximum. By virtue of the TCP operations, all other errors are being
handled.

¢ Maximise data flow to 10 Gbps
The data rate for a FPGA is determined by the number of instructions which can be executed within a
clock cycle and the clock frequency. Hence, the complexity of the design is minimised to prevent extra
cycles are required for a segment to process. In Chapter 6, the data flow for both FPGAs is depicted

78 7. Conclusion

(Figures 6.5 and 6.6. The packets will arrive and be converted to a AXI-4 stream before processed. Every
module will pass (a part of the segment) to the next module, based on the values read from the header
fields. Processing 64 bits in a clock cycle with a clock frequecy of 156.25 MHz will feature a 10 Gbps data
rate.

¢ Manage multiple connections simultaneously
Our design does not include the option to distinguish different connections and manage them. How-
ever, our design does include room for this option to implement, which will be discussed in Section 7.3.

2. Develop a model for system evaluation

To validate the performance and to uncover the essential parameters for the design configuration, a model
was required to determine the behaviour of the system. The model in Chapter 3 describes the model as two
separate TCP streams, a black and a red stream. From this model the throughput of the system can be broken
down to a few crucial parameters. The results is Equation (3.6), which can be used to evaluate the system on
every aspect on TCP. To validate this equation and to evaluate the system, the simulation model presented in
Chapter 4 will be used. A TCP Diode module in OMNeT++ can simulate the behaviour of the network diode
in a realistic environment. This module allows to adjust the TCP configuration as well as the diode configu-
ration as well. Therefore, this simulation module can be used for further research.

3. Design an accurate block diagram

To implement the configuration on a FPGA, we developed a high-level hardware design presented as a block
diagram. The design is described in Chapter 6 and depicted in Appendix D. The design features a network
diode consisting two FPGAs. One FPGA for each side of the diode. The design is implemented with the rec-
ommended configurations following the results from Chapter 5. Therefore, there is no congestion avoidance
algorithm and no TCP SACK implementation. However, the design is modular, which allows to integrate new
features.

Other contributions

During the project, we invested a considerable amount of time in the understanding of the TCP mechanisms
and to simulate the network diode. Therefore, we developed scripts and programs to assist us, which are not
included in this thesis. The following methods are used to contribute to achieving the project goals:

¢ A python implementation of the TCP socket was developed, which was able to process every of the TCP
mechanisms. This socket was used to explore all possibilities that TCP provides. This allowed us to
quickly test additional TCP options.

* For the selection of the simulation software, multiple simulators were tested. The three most promising
simulators were used for further examination. For all three simulators (Mininet, NS-3, and OMNeT++),
a complete network diode module was developed to test their capabilities.

¢ To interpret the output of OMNeT++, the data had to be converted to convenient values. Therefore,
multiple scripts from Wireshark and Matlab were used to interpret the behaviour of the TCP streams.

7.3. Recommendations

The final result of the project is a proposed framework which should be used as the backbone of a VHDL
project. The framework is presented by functional blocks and corresponding signals. those implementations
could be easily extracted from the design parameters from our simulation model. The framework describes
the functionality of the blocks and allows room for additions without a need of redesigning the whole project.
However, the simulation model which was described in Chapter 4 allows a user to implement new or addi-
tional features for testing purposes. In this section, we will discuss the methodology performed during this
project and we will propose additional features to be implemented in the future.

7.3.1. Discussion

To narrow down the scope of parameters to be investigated, we developed simplifications during this project.
those simplifications neglect some rules or assumed some of the variables of the system. The simplifications
allows us to focus on specific components of the system, which are highlighted in this thesis. We will discuss
and elaborate the assumptions we used for our design.

7.3. Recommendations 79

¢ Error rate

During the simulation tests, the error rate was not varied between different values. In our simulations,
the error rate probability would lose one in 10.000 packets. The error rate is dependent on many other
components or settings in the network. Therefore, it is very hard to predict or determine the probable
error rate for a connection. An error could occur due to the network architecture. Each hop the packet
has to travel is an extra risk on losing or corrupting the packet. The configuration on each passing
device has an influence on the rate of lost packets. Even the priority setting for the connection is of
strong influence.

¢ Maximum segment size

In our simulation tests, the maximum segment size (MSS) is fixed to the same size on both devices.
The MSS has the default value, with the assumption this is the least amount all devices should be able
to cooperate with. If the size is not equal for the red and the black network, a new issue arises. The
segments should then be fragmented, which will introduce extra complexity in the sequence calcula-
tion of the design. If the black network has a larger MSS than the red network, this will also introduce
extra overhead at the red network segments. Extra overhead will result in a reduction of the maximum
throughput.

* Round-trip time
The round-trip time (RTT) in our simulation is set by a delay in the connection between two devices.
This has two anomalies compared to a "real-world" system. First, the RTT is fixed for the complete
simulation run. In a real-world system the RTT would vary over time and is not likely to be constant
during the complete session. It would be a convenient feature to implement a time-varying RTT in the
simulator. Secondly, the RTT is determined as twice the amount of the connection delay. The physical
link is likely to be realised by an asynchronous pathway.

* Datarate
The framework of our design should be able to achieve a data rate of 10 Gbps. However, our simulation
could not test an endurance run with this speed. The TCP module implementation in the INET frame-
work of OMNet++ is limited by the sequence number. A TCP segment has a 32-bit sequence number.
The INET implementation does not restart the counting if the maximum number is reached. This al-
lows the simulation to only run for 3.4 seconds.

* Re-ordering

Our design has no buffer implemented on the black FPGA. Therefore, that side is unable to re-order
packets. If a packet arrives with a larger sequence number than the module is expecting (SEG.SEQ >
RCV.NXT), than the module is not able to store the segment temporarily and wait for the missing
segment. Therefore, if a packet is received out-of-order, the module is not able to acknowledge the
packet and will not send it over the diode. This will result in a "detection" of a packet loss and does
require a recovery of the connection. This will slow down the black TCP stream and unloads the red
TCP stream to empty the buffer.

7.3.2. Future work

The design of the network diode features the basic mechanisms of the TCP functionality. The diode has the
capacity to establish a TCP data stream between two separated domains, ensuring unidirectional data flow.
The framework proposed in Chapter 6 allows to implement this functionality on a piece of hardware realised
by two FPGAs. The diode however, is not like the intelligent diodes as discussed in Chapter 2. All processes
and operations of the diode are being executed on hardware. Therefore, the diode is not re-configurable and
once installed, no extra features can be added to the design. To improve the performance or append new
features to the diode, the following options should be considered:

¢ Congestion algorithm
Our design does not implement a congestion avoidance algorithm at the red FPGA. The simulation re-
sults showed only an high increase in buffered data while a congestion algorithm was applied. The red
part of the network is connected to a trusted domain and in full control of the user. The network ad-
ministrator could configure the network to prioritise the stream coming from the diode, which should

80

7. Conclusion

negate the necessity of a CA algorithm. The CA algorithms provided in the INET-framework are not
up-to date. The common TCP cubic algorithm is not implemented. Although, a convenient implemen-
tation in OMnet++ for this is provided by Singh [61].The simulation did not run test scenarios with other
traffic. Allowing other traffic during the diode stream is likely to require a CA algorithm to maintain a
stable throughput.

e TCP timestamp

During high-speed data transfers, many segments are coming by in a short period. The limited amount
of available sequence numbers could arise an issue with ambiguity of equal sequences. A solution for
this is proposed by RFC 1323 [32]. This TCP options does add a timestamp value to the segment. By this
method, both devices are able to identify which sequence number was first and resolves the ambiguity
issue. The OMnet++ framework does include the timestamp option. However, OMnet++ is not able to
cylce through the sequence numbers. If the last sequence number is reached it does not restart from
the beginning, but rather end the connection. Therefore, it was unable to test the influence of this TCP
option in our design.

RTT estimation

Several algorithms include the calculation of the round trip time. Implementing a RTT estimation on
the black FPGA, does allow for extra control of the throughput. The window size is fixed, and by knowing
the current RTT the black FPGA is able to estimate the load on the red network. The black FPGA could
limit the throughput by denying packets from the black source. The black part of the diode should then
be in more control of unloading the red network.

Multiple connections

The current implementation does allow only one connection over the diode. Although, there is the
possibility to implement multiple connections. A networking interface should be managed by the soft-
core. The incoming packets should then be multiplexed and tagged to notify the red part of the diode
to what connection the packet belongs. The connection capacity should be managed by the diode and
should distribute balanced resources. The connections could be prioritised to give a larger share of the
resources to particular streams. This is done by throughput limitation at the black FPGA. The red FPGA
should segment parts of the buffer for the corresponding packets.

Queuing

Congestion avoidance algorithms are not the only management systems to prevent a congestion on the
network. Another popular procedure, is the queueing method. The queue represents the segments in
the buffer. With a simple drop-tail queue, a segment will only be added to the queue if there is space
left. An active queueu management can even predict a full queue and will drop packets on purpose
to prevent a congestion. However, the black FPGA is not aware of the saturation of the buffer at any
moment. But the black FPGA could predict the saturation of the buffer with the assumption of a fixed
throughput. If the buffer is approaching its full capacity considering the prediction, the black FPGA is
allowed to drop packets on purpose and unload the red FPGA eventually.

Diode protocol

The protocol used for the electrical connection between the two FPGAs (the diode connection), is rel-
atively simple. If a segment arrives in order at the black FPGA it will be sent over the diode. The black
FPGA does simultaneously transmit an acknowledgement the to black source and transmit the segment
over the diode. This protocol could be improved by some simple adjustments. First of all, the segment
size is equal for both FPGAs, which does allow them to keep the same sequence number, because they
do not need to be fragmented. The sequence number is attached to the segment and stored in the
buffer on the red side. This is an overhead which could be reduced. The black FPGA is not able to re-
order segments and therefore, it will transmit the segments sequentially over the diode. The sequence
number is unnecessary to store in the buffer if all segments arrive in-order. To improve the throughput,
the black FPGA could transmit an out-of order segment over the diode and not acknowledge it. The red
FPGA will then already be able to send this segment, while the black connection is still recovering. To
implement this, the black FPGA should have an register that keeps track to what segments are already
sent over the diode. Otherwise it will send duplicates to the buffer. In this case, the sequence number
should be attached or another method should be used to identify the order of the segments.

Selective Acknowledgement

The TCP NewReno'’s fast recovery algorithm gets issues when more than one consecutive packets are lost. The
acknowledgement method of TCP handles acknowledgements cumulative. This property limits the capability
to detect no more than one packet loss during one RTT. For example, when a second or a third packet get lost
after the first lost packet, the receiver would reply with a duplicate acknowledgement of the last received
packet. This process is illustrated in Figure A.1. Furthermore, only one packets is retransmitted after the loss
detection, Therefore, the recovery time for the fast recovery method of TCP NewReno is linear proportional
with the number of packets lost. The recovery time could be reduced when the sender retransmits more
than only one segment. Unfortunately the receiver can only notify one lost segment and not indicate any
more. Retransmitting extra packets is unlikely to send the lost packets and increases the risk of congesting
the network unnecessarily.

If the receiver could provide additional information about packet losses, the recovery time could be re-
duced. The sender is then allowed to retransmit several segments. The receiver should be able to notify the
sender in one single feedback message, what packets got lost. The TCP NewReno'’s implementation of the Fast
Recovery algorithm restricts the congestion window to be reduced only once per RTT period. This ensures
the detection of a lost packet is in the worst case an interval of exactly one RTT. All losses will be notified to
the sender within one RTT period. This process is depicted in Figure A.2

Mathis et al. proposed a solution to the limited information that cumulative acknowledgements could
provide [46]. They developed the Selective Acknowledgement (SACK) option, to extend the TCP protocol.
The SACK option allows the receiver to mark blocks of correctly received packets. The gaps in between the
defined blocks are the lost segments. To use the SACK option, both devices must agree during negotiation,
they are capable and willing to use this option. Therefore, SACK has two option kinds: one for negotiate
the use of SACK, and the other for reporting the SACK-blocks. This does require two different kind numbers,
because they have a different length and purpose. The maximum number of lost packets that can be reported
by the SACK option is limited by the maximum size of the TCP header. The maximum size of the option field

TCP Sender | Data packets | TCP Receiver

AEKEE -

|

N ACK packets |
| .
dup/?c/:ates

Figure A.1: Duplicate ACKs allow loss detection no sooner than after one RTT ([2] fig.19)

81

82 A. Selective Acknowledgement

2RTTs -
1 TCE’ Ser?deri

TCP Receiver RTT

Figure A.2: The interval between the first and the lat data packets before reception of any acknowledgement is two times the RTT period.
In the worst case, any lost packet is detectd after exactly one RTT ([2] fig.20)

is 40 bytes, which allows the SACK option to report up to 4 blocks of received data packets (1 byte for option
kind, 1 byte for option length and four blocks of 8 bytes, containing 2 sequence numbers). The concept of the
SACK blocks is depicted in Figure A.3

Although SACK provides extra information about out-of-order segments, it does not define any instruc-
tions for the congestion window. The rule of reducing the congestion window only once during one RTT pe-
riod, does already allow the sender to detect losses within one periode. The SACK option itself only prevents
unnecessary retransmits by reporting additional information about the lost packets. Mathis and Mahdavi
proposed a congestion control algorithm using the additional information retreived from the SACK blocks.
They define a recovery procedure called Forward Acknowledgements (FACK). The FACK algorithm provides
amethod to timely retransmit data. A lost packets is at least reported for one RTT period. Therefore, FACK re-
quires the time of the last retrasnmission in order to detect a loss. FACK does not define a congestion window,
instead it calculates the number of packets in transit. The algorithm keeps track of three state variables: 1) H,
the highest sequence number of all sent data; 2) F, the forward-most sequence number of all acknowledged
data (no sequence number higher than F, have been acknowledged); 3) R, the number of retransmitted data.
The number of outstanding packets would then be: H— F + R as is depicted in Figure A.4. This calculation
can be utilised by the sender to decide if a new segment is allowed to be transmitted. If the number of out-
standing segments is smaller than the current congestion window, the receiver should be able to accept more
data segments.

The SACK option provides additional information to improve the recovery of a TCP connection. FACK
features an extra mechanism to make more use of the provided information of SACK. Implementing SACK
solely does improve the reliability of the TCP connection. In our case, SACK could even be more effective.

Implementing SACK in the data diode should provide the following advantages:

1. Reduce buffer space
The buffer contains all the segments received from the black buffer, which are not yet sent to, or ac-
knowledged by, the red receiver. The segments are removed from the buffer when they are acknowl-
edged by the red receiver. The SACK option provides an additional method to acknowledge segments.
The information provided in the SACK-blocks, can already be removed from the buffer, which creates
extra space. Therefore, less buffer space is required.

2. Improve retransmit pattern
The sender is better informed about the lost segments. The gaps between the SACK blocks report the
lost segments in between correctly transmitted segments. The sender does not have to retransmit a
bunch of segments which are not lost. Less segments will be retransmitted, which increases the ef-
ficiency of the stream. Furthermore, the total transmitted segments (including retransmits) will be
reduced, which reduces potential congestion. The low risk on congestion, will increase the throughput
of the connection.

3. Reduce recovery time
The recovery time is reduces by using SACK and FACK. After recovery, the congestion control algorithms
will increase the window. When the connection is recovered within a smaller period, the congestion
window will be more quickly restored to the maximum value. Therefore, the throughput is restored in
faster fashion.

83

Client Server
_ " SHD.VIND = 560
RCV.VUND = 560 SHD.UNA= 1 o
z u:
RCV.NXT =1 SHD.UNA= 1
1. Send Part 1 g
File Part 1 80 Bytes (1 to 80)
Seq Num =1 2. Send Part 2 oY
File Part 2 120 Bytes (81 to 200) ; *-
Seq Num =81 3. Send Part 3 N
4. Receive First 2 Segments, ™ 180 Bytes (201 to 360)
Send Acknowledgment Son g0 :
RCV.VUND = 560
— \ 5. Send Part 4 N
80| 120 Ack 140 Bytes (361 to 500]
I I I, ack Hum = 201 s Fﬂ; Peﬁ;‘m ytes (!
eq Hum = - SHD.WND = 560
RCV.NXT = 201 Sl lisable - 60
6. Receive Part 4 of File; so] 120]
Send Ack with SACK for Part4 | Ack Y
Ack Num = 201 SHD.MXT = 501
RCV.VIND = 560 SACK = 361-500 *v . .
7. Receive Ack For Parts 1 & Z
pla] - Ge] | D
7A. Receive SACK For Part#4 .
RCV.NXT = 201 v

File Part3 =]

Seq Num = 201
9. Receive Part 3 of File, "

Send Acknowledgmentfor3 & 4 | Ack
Ack Num = 501,

RCV.WND = 560 ‘_*

[so] 120 160 | 140

RCW.NXT = 501

SHD.UNA= 201 SACK SHD.WHD - 560

Usable = 260
.
[so] 120]| 160] 140 1
SHD.AT - 501

8. Timeout For Part 3 -
Retransmit 3 (but not 4)

¥ ¥

10. Receive Ack for Parts 3 & 4

SHD.VIND = 560 -
lisable =500 SND.UNA=501

[so] 120] 160] 140

SND.NXT =501

Figure A.3: Graphical representation of the SACK-option ([40] fig. 49-3)

Retransmitted (R) Forward-most received (F)

/N

I,

Send
buffer

Highest sent (H)

@ Acknowledged data packets

|:| Sent and not yet ACKed data packets

|:| Lost data packets

Figure A.4: H— F + R is equal to the packets in transit (2] fig. 21)

XN U W -

MiniNet scripts

MiniNet was tested to verify whether it was a suitable simulation solution for our system. MiniNet allows
to create a complete network virtually. All hardware and connections will run as a "virtual machine" on
the Mininet host device. Therefore, the simple module (Figure 3.3) has been implemented in a topology for
MiniNet, which is listed below. The topology contains four hosts. The data diode is simulated by two hosts.
One host in the black network and one host in the red network. The black source is connected to the data
diode via a switch. At the red side, a switch connects the sender simulator and the red receiver. The diode
is formed by the border between the diode hosts. Finally, each host will start a small virtual machine. The
red diode host will run a python script that executes all the required steps for a receiving TCP socket. The
black host will run a python script that executes all the required steps for the sending TCP socket. The global
functions implemented in these sockets are presented in a tree graph in Figures B.1 and B.3. The source code
for the implemented Python sockets can be requested from my Github repository [38].

Listing B.1: topo-datadiode.py

"""Custom topology for simulation of network diode

The black and the red network are connected by the simulator hosts:

BLACK- | RED
Black_source (host) — Switch — Receiver_simulator (host) —— Source_simulator (host) —Switch— Red_receiver (host)

win

from mininet.topo import Topo

class MyTopo(Topo):
"Simple_topology, example."

def build(self):
"Create_custom_topo."

Add hosts and switches

Server = self.addHost('hl’)
Switch_black = self.addSwitch(’sl”)
Client_simulator = self.addHost('h2’)
Server_simulator = self.addHost("h3’)
Switch_red = self.addSwitch(’s2’)
Client = self.addHost('h4’)

Add links

self.addLink(Server, Switch_black)

self.addLink(Switch_black, Client_simulator)
self.addLink(Client_simulator, Server_simulator)
self.addLink(Server_simulator, Switch_red)
self.addLink(Switch_red, Client)

topos = { 'mytopo’: (lambda: MyTopo()) }

85

B. MiniNet scripts

jan7 11:02

x "host: h4"
Host 1: Black source Host 4: Red Receiver
4
0

Host 2: Host 3:
Black part of diode Red part of diode

"host: h2" "host: h3"

1 SNDL L

Figure B.2: Example of the Mininet set-up running in linux Ubuntu

Main Black part diode
L—Wait for packet
LFilter on address
If ARP
LfHandle ARP request

If TCP

+— If packet is of new comnection

Create new TCB

Notify red part to initiate connection

+— Check for correct ACK and SEQ, and update TCB

»— If connection is in Established-state
Check for FIN-flag and handle

Verify payload and send over diode

Run through TCP-fsm based on flags

Figure B.1: Functionality tree of the black data diode host

87

Main red part diode
+— Reactive Loop
L—Wait for packet
JFfFilter on address
If ARP
LfHandle ARP request

If TCP

4— If packet is of new connection

tCreate new TCB

Notify red part to initiate connection

+— Check for correct ACK and SEQ, and update TCB

— If connection is in Established-state

Check for FIN-flag and handle
Verify payload and send over diode

Run through TCP-fsm based on flags

+— Active Loop

tWait for packets coming from diode

Check if connection exists

If no
Lfsend ARP request, initiate TCP stream and create TCB

Add packets to buffer

+— Sending Loop

Send packets from buffer
Retransmit packets when RTO is triggered

Check if FIN is received and buffer is emtpy

L*Close connection

Figure B.3: Functionality tree of the black data diode host

OMNeT++ scripts

The testing module for the network diode is depicted in Figure C.1. All three the devices are a standardhost,
featuring all possibilities to implement network features. The black source will create an "unlimited" TCP
stream to send to the red receiver over the diode. The data diode node will transfer the payload from the
black to the red source. The data diode has two Ethernet connections implemented; one connection for a
TCP socket in each network. The black TCP socket will receive the packets, send acknowledgements and pass
the payload to the red socket. The red socket is responsible for transferring the packets to the "original" red
receiver. OMNeT++ provides a IDE that is able to fluently switch between source code and graphical design.
Therefore, the source code of the module design is listed below. In this listing you will find the parameters
used in the simulation. The module itself describes the "hardware" of the devices on a network level. The
other parameters are defined in the sub-modules like the application. The black source will run an applica-
tion to actually transmit data to the data diode. Likewise does the red receiver run an application that takes
care of incoming segments. The data diode application will execute the instructions of both red and black
TCP sockets. The parameters for the simulation are defined in the configuration file. The source code for the
application, including the configuration files, can be requested from my private Github repository [39].

H## package inet.examples.inet.diode

TchiGdeMGdule

—e A
—» PR

Eﬁ_] » - #
co nf&ator g gi]

black_source : red_receiver
= datadiode -

Figure C.1: Graphical overview of the TCPDiodeModule design in OMNeT++

89

0N WN -

90

C. OMNeT++ scripts

Listing C.1: TcpDiodeModule.ned

Copyright (C) 2000 Institut fuer Telematik, Universitaet Karlsruhe

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

/1 GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software

Foundation, Inc., 59 Temple Place — Suite 330, Boston, MA 02111-1307, USA.

package inet.examples.inet.diode;

import inet.common. misc.NetAnimTrace;

import inet.networklayer.configurator.ipv4.Ipv4NetworkConfigurator;
//import inet.node.inet.CopyStandardHost;

import inet.node.inet.StandardHost;

import ned.DatarateChannel;

import inet.node.base.DiodeNodeBase;

network TcpDiodeModule

{

parameters:
double datarateA @unit(bps) = default(1Gbps);
double datarateB @unit(bps) = default(1Gbps);

double delayA @unit(s) = default(5ms);
double delayB @unit(s) = default(5ms);

double perA = default(0); //Probability Packet Error Rate
double perB = default (0);

types:
channel A extends DatarateChannel
{
datarate = datarateA;
delay = delayA;
per = perA;
}
channel B extends DatarateChannel
{
datarate = datarateB;
delay = delayB;
per = perB;
}
submodules:
black_source: StandardHost {
parameters:
@display("p=239,115;i=device/pc3");
}
//DiodeNodeBase or StandardHost
datadiode: StandardHost {
parameters:
@display("p=344,115;i=jorden/datadiode");
}
red_receiver: StandardHost {
@display ("p=463,115;i=device/pc3");
}
configurator: Ipv4NetworkConfigurator {
parameters:
@display ("p=100,100;is=s");
}
connections:
black_source.ethg++ <——> A <——> datadiode.ethg++;
datadiode.ethg++ <——> B <——> red_receiver.ethg++;

Block diagram schematics

Black Network

Segment
> ><_,._-_,..<_Ma € Nofify To Send Packet
Closed
A
§ —
Ethemet Header o e H m If Mo Connection exists
5B
r—Ether payload> Lo Update Values gel
2w
&
[m
o o 3
2 8
=
3
o
If Connection exists
|Pv4 Header > IPv4 Header—» TCP Header * Process
-Ethemnet-packet Mﬁm_mm" —Ether Payload® >:_m_u_ﬁm_ ——1IPv4 payload—» TCP Splitter — TGP Header—» <Mm%=._m.m._u TCP Payload TCP
TP Payload—> segment
= A A A r'y
nﬂ_.u_.mam values consist Packet a
= *TCB Values m & Hexi state
g
port (protocol) Wi =
Sealhck number VHDL + RCVWND e
. « RCVUP =1 o
- Data offset = F
Soft- . IRS ol P [
(calculated w & &
W Core s RovNXT £g2gd
- Windowscale . Snd.UNA > qd B W
- Checksum Sub- . g4 - E
(calculated) wnam_m . ° m_ g g
- Urgent Pointer (NA) ju— ack Data g = ¥ g
~ i Flow . = 3
Options . -l E
- Padding (if » Red Data Flow B
neccessary) . » Black TCB < TCB Values* 2
- Payload » Control Flow . » & @
.. . . 7Y SEQIACK/WSize/FLAGS
ogzmm__c,z,ﬂmﬁm_\smw . FSM.state |
¥
- Current space left in
sending window Create
————FEthemet Packet fo black sender Etheret <« 1Pv4 Packet G R TCP Packet—] C'cate TCP
header Header
Header s

lv._l

TTCP Meta—»
'
—TCP Payload»

f black part of the network diode

iagram o

Top level overview of the functional block d

Figure D.1

91

D. Block diagram schematics

92

|!|

—TCP Meta—>

—TCP Payload

Buffer

F Y

TCP Meta

Red Network

€ TCP Metas sending —TCP Metz Create Create Creale
TCP Payloadyay aner TCP Payload TCP TCP packet—» IPv4 | —IPv4 Packet—Eih#r Ethernet io Red Receiver
Header | Header Header
A A
TCB Values* |SEQIACKASize/FLAGS
Yy
“Source Information I__ﬁ_u.,h
— > Red TCB <—Destination Info EilEr »
“—F3M-siate
TCB Values*
If Protocol is ARP
If Connection exists
L4 YYY
ProcessTCH 1P Meater——y, o yep€IPvé Header— yop € IPvé Header Ethernet
segment < TCP Payload .mmn_._,_m:ﬁ... TCP Header Splitter IPv4 Payload Analyzer < Ethemet Payload ...u._.._.“.._qwmﬁ “—Ethemeat Packet from red
*TCP Payload—
o e : 3 VHDL *TCE Values:
If No Connection exisis = = Frame ﬁm_cmm.no:m_mﬁ of.
T |g - moEnmEmﬂ_:m:o: port « RCVWND
T S {protocol) _‘ Soft- . moq.c_u
= 28 - Seq/Ack. number Care . IRS ’
g I W - Data offzet (calculated) Rev NXT
28 i - Windowscale * :
g5 Nolify to send packet | checksum (calculated) E Sub- “ m”mxuﬂ
g - Urgent Pointer (NA) Module and WND
g - Options _, BlackData . m:a._..._
- Padding (if neccessary) Flow : m”a.;.wﬂ
g - Payload _, RedDaia - Snd.wWi2
Flow .
mhqn:.qmmuﬁ **Connection state info _mw%o MSS
e - Current state in FSM > Control . o
While - Current space left in Flow * ww_?ﬁ._u....unw_,_mulmo}_.m
Closed sending window * =

v

receiver——

Figure D.2: Top level overview of the functional block diagram of red part of the network diode

Bibliography

[1] Advenica. Data diodes, n.d. URL https://www.advenica.com/en/cds/data-diodes. Accessed: 20-
10-2020.

[2] Alexander Afanasyev, Neil Tilley, Peter Reiher, and Leonard Kleinrock. Host-to-host congestion control
for tcp. IEEE Communications surveys & tutorials, 12(3):304-342, 2010.

[3] Mark Allman, Vern Paxson, and William Stevens. Rfc2581: Tcp congestion control, 1999.

[4] Eitan Altman, Konstantin Avrachenkov, Chadi Barakat, Arzad Alam Kherani, and BJ Prabhu. Analysis of
mimd congestion control algorithm for high speed networks. Computer Networks, 48(6):972-989, 2005.

[5] ARM AMBA. Axi4-stream protocol vl. 0, 4.

[6] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. Sizing router buffers. ACM SIGCOMM Computer
Communication Review, 34(4):281-292, 2004.

[7] Arbit. Arbit data diode & arbit trust gateway: Cross domain solutions: Cyber security, Mar 2020. URL
https://arbitcds.com/products/. Accessed: 20-10-2020.

[8] Guy AvrahamGuy. How to check the tcp congestion control algorithm flavour
in ubuntu, Jan 2018. URL https://superuser.com/questions/992919/
how-to-check-the-tcp-congestion-control-algorithm-flavour-in-ubuntu.

[9] Praveen Balasubramanian and Microsoft. Updates on windows tcp, n.d.

[10] Wei Bao, Vincent WS Wong, and Victor CM Leung. A model for steady state throughput of tcp cubic. In
2010 IEEE Global Telecommunications Conference GLOBECOM 2010, pages 1-6. IEEE, 2010.

[11] Wolfgang Bokdmper. Industrie 4.0 security guidelines: Recommendations for actions, 2016.
[12] Robert Braden. Rfc1122: Requirements for internet hosts-communication layers, 1989.

[13] Dah-Ming Chiu and Raj Jain. Analysis of the increase and decrease algorithms for congestion avoid-
ance in computer networks. Computer Networks and ISDN Systems, 17(1):1 — 14, 1989. ISSN 0169-
7552. doi: https://doi.org/10.1016/0169-7552(89)90019-6. URL http://www.sciencedirect.com/
science/article/pii/0169755289900196.

[14] Scott W. Coleman. The Definitive Guide to Data Diode Technologies. Owl Cyber Security, 2019.
[15] Douglas E Comer. Internetworking with tcp/ip. Addison-Wesley Professional, 2013.

[16] PA Consulting. Data diode, n.d. URL https://www.paconsulting.com/services/
product-design-and-engineering/data-diode/. Accessed: 20-10-2020.

[17] controlledinterfaces. Optical data diode solutions, n.d. URL https://www.controlledinterfaces.
com/. Accessed: 20-10-2020.

[18] Casey Crane. 42 cyber attack statistics by year: A look at the last decade, Jul 2020. URL https://
sectigostore.com/blog/42-cyber-attack-statistics-by-year-a-look-at-the-last-decade/.

[19] ZNO DATA-DIODE, n.d. URLhttps://www.filbico.pl/ZNO-EN.html. Accessed: 20-10-2020.

[20] DataFlowX. Next generation data diode solution, n.d. URL https://www.dataflowx.com/. Accessed:
20-10-2020.

[21] Gary Dickson and Alan Lloyd. Open systems interconnection. Prentice-Hall, 1992.

93

https://www.advenica.com/en/cds/data-diodes
https://arbitcds.com/products/
https://superuser.com/questions/992919/how-to-check-the-tcp-congestion-control-algorithm-flavour-in-ubuntu
https://superuser.com/questions/992919/how-to-check-the-tcp-congestion-control-algorithm-flavour-in-ubuntu
http://www.sciencedirect.com/science/article/pii/0169755289900196
http://www.sciencedirect.com/science/article/pii/0169755289900196
https://www.paconsulting.com/services/product-design-and-engineering/data-diode/
https://www.paconsulting.com/services/product-design-and-engineering/data-diode/
https://www.controlledinterfaces.com/
https://www.controlledinterfaces.com/
https://sectigostore.com/blog/42-cyber-attack-statistics-by-year-a-look-at-the-last-decade/
https://sectigostore.com/blog/42-cyber-attack-statistics-by-year-a-look-at-the-last-decade/
https://www.filbico.pl/ZNO-EN.html
https://www.dataflowx.com/

94 Bibliography
[22] donaldh. Which congestion control algorithm is wused by the tcp stack
in os x? Jul 2015. URL https://superuser.com/questions/865896/

(23]

(24]

(25]

(26]

(27]

(28]

(29]

[30]

(31]

(32]

[33]

[34]

(35]

(36]

[37]

(38]
(39]

(40]

(41]

(42]

(43]

which-congestion-control-algorithm-is-used-by-the-tcp-stack-in-os-x.

Sally Floyd and Kevin Fall. Promoting the use of end-to-end congestion control in the internet. IEEE/ACM
Transactions on networking, 7(4):458-472, 1999.

Sally Floyd, Tom Henderson, and Andrei Gurtov. Rfc3782: The newreno modification to tcp’s fast recov-
ery algorithm, 2004.

ATM Forum. ATM user-network interface (UNI) specification version 3.1. Prentice Hall, 1995.

Fox-IT. Beveiligingswaarde fox crypto datadiode bestempelt als ‘zeer geheim' - fox-
it, november 2019. URL https://www.fox-it.com/nl/actueel/persberichten/
beveiligingswaarde-fox-crypto-datadiode-bestempelt-als-zeer-geheim/.

Mario Gerla and Leonard Kleinrock. Flow control: A comparative survey. IEEE Transactions on Commu-
nications, 28(4):553-574, 1980.

James Graham, Jeffrey Hieb, and John Naber. Improving cybersecurity for industrial control systems. In
2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), pages 618-623. IEEE, 2016.

IANA. Transmission control protocol (tcp) parameters, Apr 2020. URL https://www.iana.org/
assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1.

infodas. Sdot diode, Jun 2020. URL https://www.infodas.de/en/products/sdot_cross_domain_
solutions/data_diode/. Accessed: 20-10-2020.

BAE Systems | International. Data diode solution™, n.d. URL https://www.baesystems.com/en/
product/data-diode-solution. Accessed: 20-10-2020.

V. Jacobsen. TCP Extensions for High Performance. RFC 1323, RFC Editor, May 1992. URL https:
//wuw.rfc-editor.org/rfc/rfc1654.txt.

Van Jacobson. Interpacket arrival variance and mean. Letter to the TCP-IP mailing list, 15, 1987.

Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM computer communication review,
volume 18, pages 314-329. ACM, 1988.

Phil Karn and Craig Partridge. Improving round-trip time estimates in reliable transport protocols. ACM
SIGCOMM Computer Communication Review, 25(1):66-74, 1995.

Karamjeet Kaur, Japinder Singh, and Navtej Singh Ghumman. Mininet as software defined networking
testing platform. In International Conference on Communication, Computing & Systems (ICCCS), pages
139-42, 2014.

Tom Kelly. Scalable tcp: Improving performance in highspeed wide area networks. ACM SIGCOMM
computer communication Review, 33(2):83-91, 2003.

J. Kerkhof. Tcp socket mininet, 2020. URL https://github.com/KerkhofJ/TCP-socket.
J. Kerkhof. Tcp diode project, 2020. URLhttps://github.com/KerkhofJ/TCP_Diode_Project.

Charles M. Kozierok. The TCP/IP-Guide: a comprehensive, illustrated Internet protocols reference. No
Starch Press, 2009.

J. Kurose and K. Ross. Computer Networking: A Top-Down Approach, Global Edition. Pearson Education
Limited, 2017. ISBN 9781292153605. URL https://books.google.nl/books?id=IUh1DQAAQBAJ.

D. Lee, B. E. Carpenter, and N. Brownlee. Observations of udp to tcp ratio and port numbers. In 2010
Fifth International Conference on Internet Monitoring and Protection, pages 99-104, 2010.

Peter Loshin. TCP/IP clearly explained. Morgan Kaufmann Publishers, 2003.

https://superuser.com/questions/865896/which-congestion-control-algorithm-is-used-by-the-tcp-stack-in-os-x
https://superuser.com/questions/865896/which-congestion-control-algorithm-is-used-by-the-tcp-stack-in-os-x
https://www.fox-it.com/nl/actueel/persberichten/beveiligingswaarde-fox-crypto-datadiode-bestempelt-als-zeer-geheim/
https://www.fox-it.com/nl/actueel/persberichten/beveiligingswaarde-fox-crypto-datadiode-bestempelt-als-zeer-geheim/
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
https://www.iana.org/assignments/tcp-parameters/tcp-parameters.xhtml#tcp-parameters-1
https://www.infodas.de/en/products/sdot_cross_domain_solutions/data_diode/
https://www.infodas.de/en/products/sdot_cross_domain_solutions/data_diode/
https://www.baesystems.com/en/product/data-diode-solution
https://www.baesystems.com/en/product/data-diode-solution
https://www.rfc-editor.org/rfc/rfc1654.txt
https://www.rfc-editor.org/rfc/rfc1654.txt
https://github.com/KerkhofJ/TCP-socket
https://github.com/KerkhofJ/TCP_Diode_Project
https://books.google.nl/books?id=IUh1DQAAQBAJ

Bibliography 95

(44]

(45]

[46]

(47]

(48]

(49]
(50]

(51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

(59]

[60]

(61]

(62]

(63]

(64]

et al. M. Allman. Tcp congestion control. RFC 5681, RFC Editor, 09 2009. URL https://tools.ietf.
org/html/rfc5681.

Saverio Mascolo, Claudio Casetti, Mario Gerla, Medy Y Sanadidi, and Ren Wang. Tcp westwood: Band-
width estimation for enhanced transport over wireless links. In Proceedings of the 7th annual interna-
tional conference on Mobile computing and networking, pages 287-297, 2001.

M Mathis,] Mahdavi, S Floyd, and A Romanov. Rfc2018 tcp selective acknowledgment options. internet
engineering task force, 1996.

Matthew Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The macroscopic behavior of the tcp
congestion avoidance algorithm. ACM SIGCOMM Computer Communication Review, 27(3):67-82, 1997.

Krishanu Maulik and Bert Zwart. An extension of the square root law of tcp. Annals of Operations Re-
search, 170(1):217-232, 2009.

Inc. Microchip Technology, 2020. URL https://microchipdeveloper.com/ethernet:overview.
Piet Mieghem. Data Communications Networking. Techne Press, 2006.

Jeffrey C Mogul and Christopher A Kantarjiev. Retrospective on" fragmentation considered harmful".
ACM SIGCOMM Computer Communication Review, 49(5):41-43, 2019.

John Nagle. Rfc0896: Congestion control in ip/tcp internetworks, 1984.

Teunis J Ott. Transport protocols in the tcp paradigm and their performance. Telecommunication Sys-
tems, 30(4):351, 2005.

V Paxson, M Allman, and Computing TCP’s Retransmission Timer. Rfc 2988. Computing TCP’s retrans-
mission Timer, 2000.

Jon Postel. Rfc793—transmission control protocol, darpa internet program, protocol specification. In-
formation Sciences Institute/Defense Advanced Research Projects Agency. Retrieved November, 19:2009,
1981.

RolloosSystems. Datadiode: Prevent your rig from being hacked, Apr 2018. URL https://wuw.
rolloos.com/en/solutions/cyber-security/datadiode/. Accessed: 20-10-2020.

Mats Holm Rosbach. Verification of network simulators: The good, the bad and the ugly. Master’s thesis,
University of Oslo, 2012.

Rovenma. Kindi data diode, n.d. URL https://www.rovenma.com/kindi-data-diode-devices/.
Accessed: 20-10-2020.

Deep Secure. Data diode, august 2016. URL https://www.deep-secure.com/data-diode.php. Ac-
cessed: 20-10-2020.

| Waterfall Security. Unidirectional security gateways: Waterfall security, May 2020. URL https://
waterfall-security.com/unidirectional-security-gateways/. Accessed: 20-10-2020.

Navdeep Singh and Rajesh Kumar. Tcp cubic implementation proposal using omnet+. Proceedings of
4th International Conference on Advancements in Engineering & Technology (ICAET-2016), 2016.

W. Richard. Stevens. TCP/IP illustrated, volume 1: the protocols. Addison-Wesley Pub., 1994.

US ICS Cyber Emergency Response Team. Recommended practice: Improving industrial control
systems cybersecurity with defense-in-depth strategies. Department of Homeland Security, Wash-
ington, DC, USA, www. ics-cert. us-cert. govisites/default/files/recommended _practicessNCCIC_ICS-
CERT_Defense_in_Depth_2016_S508C. pdf, 2016.

Technolution. Primediode 3010 data diode, Oct 2020. URL https://www.technolution.com/prime/
nl/primediode-3010-data-diode/.

https://tools.ietf.org/html/rfc5681
https://tools.ietf.org/html/rfc5681
https://microchipdeveloper.com/ethernet:overview
https://www.rolloos.com/en/solutions/cyber-security/datadiode/
https://www.rolloos.com/en/solutions/cyber-security/datadiode/
https://www.rovenma.com/kindi-data-diode-devices/
https://www.deep-secure.com/data-diode.php
https://waterfall-security.com/unidirectional-security-gateways/
https://waterfall-security.com/unidirectional-security-gateways/
https://www.technolution.com/prime/nl/primediode-3010-data-diode/
https://www.technolution.com/prime/nl/primediode-3010-data-diode/

96

Bibliography

[65]

(66]

(67]

[68]

[69]

[70]

Belma Turkovic, Fernando A Kuipers, and Steve Uhlig. Fifty shades of congestion control: A performance
and interactions evaluation. arXiv preprint arXiv:1903.03852, 2019.

vadosecurity. Vado security data didoe solution: Hardware & full agents vm support, n.d. URL https:
//wuw.vadosecurity.com/. Accessed: 20-10-2020.

Siemens Mobility Global Website. Firewalls are outdated - how to make your network secure with data
diodes, september 2019. URLhttps://www.mobility.siemens.com/global/en/portfolio/rail/
automation/reports/data-capture-unit.html. Accessed: 20-10-2020.

Klaus Wehrle, Mesut Giines, and James Gross. Modeling and tools for network simulation. Springer
Science & Business Media, 2010.

Jérg Widmer, Robert Denda, and Martin Mauve. A survey on tcp-friendly congestion control. IEEE
network, 15(3):28-37, 2001.

Minicy Catom Software Engineering Ltd. www.catom.com. Vit-400 cyber network security,
2017. URL http://www.wizlan.com/WizLan/Templates/showpage.asp?DBID=1&TMID=108&FID=
294&PID=8744&I1ID=881. Accessed: 20-10-2020.

https://www.vadosecurity.com/
https://www.vadosecurity.com/
https://www.mobility.siemens.com/global/en/portfolio/rail/automation/reports/data-capture-unit.html
https://www.mobility.siemens.com/global/en/portfolio/rail/automation/reports/data-capture-unit.html
http://www.wizlan.com/WizLan/Templates/showpage.asp?DBID=1&TMID=108&FID=294&PID=874&IID=881
http://www.wizlan.com/WizLan/Templates/showpage.asp?DBID=1&TMID=108&FID=294&PID=874&IID=881

	Introduction
	Assignment
	Problem Statement
	Project goals
	Methodology
	Overview of the thesis

	Background
	Related Work
	State-of-the-art data diodes
	Conclusion

	Theoretical Background of the TCP/IP suite
	Transmission Control Protocol
	TCP Header
	Oriented connection
	Flow Control
	Reliability
	Congestion Avoidance

	Conclusion

	System evaluation
	System Analysis
	Functional Requirements
	Throughput calculation
	Black Throughput
	Red Throughput

	Simulations
	MiniNet
	OMNeT++
	NS-3
	Software selection

	Conclusion

	Simulation model
	Overview
	TCP diode design

	Parameter study
	Ratio of throughput
	TCP SACK
	Congestion avoidance algorithm
	Window size

	Conclusion

	Analysis and results
	Results
	Ratio of throughput
	TCP SACK
	Congestion avoidance algorithm
	Window size

	Configuration recommendations
	Black configuration
	Red configuration

	Conclusion

	High-level hardware design
	Overview
	Verify TCP segment
	Process TCP Segment
	Transmission Control Block
	Segment transmission manager
	Data and control flow
	Conclusion

	Conclusion
	Conclusions
	Main contributions
	Recommendations
	Discussion
	Future work

	Selective Acknowledgement
	MiniNet scripts
	OMNeT++ scripts
	Block diagram schematics
	Bibliography

