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THIS DOCTORAL THESIS IS ABOUT

The behaviour of the widely used mean-squared-error skill score with the initial 
bed as the reference, which goes by the name Brier skill score.

The development of novel validation methods and corresponding error metrics 
that take the spatial structure of morphological patterns into account:

1. A field deformation or warping method, which deforms the predictions as to
minimize the misfit with observations;

2. An optimal transport method, which moves misplaced sediment from the
predicted to the observed morphology through an optimal, rotation-free
sediment transport field;

3. A scale-selective validation approach, which allows any metric to selectively
address multiple spatial scales.

AND CONTAINS THE FINDINGS

The use of a single performance metric leads to an inadequate interpretation of 
quality.

A set of performance metrics for morphological models must include a metric—
such as the root-mean-squared transport error (RMSTE)—that takes the spatial 
structure of morphological patterns into account.

Optimizing the mean-squared error (MSE) or derived skill score (MSESS or BSS) 
of a morphological prediction leads to undesired underprediction of the variance 
of bed changes.

The MSE-based skill score using the initial bed as the reference (a.k.a. the BSS) 
fails at making predictions comparable, whether across different prediction 
situations or across different times in a simulation.
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Summary

The quality of morphodynamic predictions is often indicated by a skill score that
measures the relative accuracy of a morphological prediction over a prediction of
zero morphological change, using the mean-squared error (MSE) as the accuracy
measure. Through a generic classification based on skill levels, predictions receive
a quality label. As simple as this Brier skill score (BSS) or MSESSini1 may seem, it
is not well understood and, hence, sometimes misinterpreted. Further, as a point-
wise accuracy metric, the MSE heavily penalizes small misplacements of coastal
features such as scour holes, bars or channels—a phenomenon referred to as the
“double penalty effect”. From the perspective of a coastal morphologist, this may
lead to wrong decisions as to which of two predictions is better. Motivated by the
above, this thesis investigates the behaviour of the MSESSini as well as explores
and develops validationmethods and corresponding errormetrics that, as opposed
to point-wise metrics, take the spatial structure of morphological patterns into
account.

Formulations and classifications forMSESSini—with andwithout accounting for
measurement error—are examined by using synthetic examples, examples from lit-
erature and a long-yearly Delft3D model simulation compared to measurements.
It is shown that the common reference of zero change fails tomakemodel perform-
ance comparable across different prediction situations (geographical locations, for-
cing conditions, time periods, internal dynamics). Also, it is demonstrated that the
combined presence of larger, persistent scales and smaller, intermittent scales in
the cumulative bed changes may lead to an apparent increase of skill with time,
without the prediction on either of these scales becoming more skilful with time.
Further, the MSESSini is shown to have the tendency to favour model results that
underestimate the variance of cumulative bed changes, a feature inherited from
theMSE. As a consequence of these limitations, theMSESSini may report a relative
ranking of predictions not matching the intuitive judgement of experts. Further, it
is shown theoretically and through an artificial case of rip channel formation, that
the existing methods to correct for measurement error are inconsistent in either
their skill formulation or their suggested classification scheme.

In order to overcome the inherent limitations of point-wise metrics, three novel
diagnostic tools for the spatial validation of 2D morphological predictions are de-
veloped. The first method deforms the predictions towards the observations, min-
imizing the point-wise squared error. Error measures are then formulated based
on both the smooth displacement field between predictions and observations and
the residual point-wise error field after the deformation. This field deformation

1 Mean-squared-error skill score with the initial bed—denoted with the subscript “ini”—as the refer-
ence prediction or a reference prediction of zero change.
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method is shown to outperform the convential approach based on the point-wise
root-mean-squared error (RMSE) for a variety of morphological fields—generated
with Delft3D—for an idealized case of a tidal inlet. Since it optimizes the location
of individual depth values by (locally) stretching or compressing the predicted
morphological pattern, the method is seen to capture the visual closeness of mor-
phological patterns. Sediment mass continuity, however, is not guaranteed.

The second method defines the distance between predicted and observed mor-
phological fields in terms of an optimal sediment transport field that moves the
misplaced sediment from the predicted to the observed morphology. The optimal
corrective transport field has the lowest quadratic transportation cost and is rel-
atively easily found by solving an elliptic partial differential equation. The root-
mean-squared value of the optimal transport field—the root-mean-squared trans-
port error (RMSTE)—is proposed as a new error metric. It is put to the test for
simple 1D and 2D cases as well as for the more realistic morphological fields of
the above mentioned schematized tidal inlet. The results show that the RMSTE,
as opposed to the RMSE, is able to discriminate between predictions that differ
in the misplacement distance of predicted morphological features, and avoids the
consistent favouring of the underprediction of morphological variability that the
RMSE is prone to. As opposed to the field deformation method, the optimal trans-
port method is mass-conserving, parameter-free and symmetric.

The third method is a scale-selective validation approach that allows any met-
ric to selectively address multiple spatial scales. It employs a smoothing filter in
such a way that—in addition to the domain-averaged statistics—localized valida-
tion statistics and maps of prediction quality are obtained per scale. The term
“scale” as considered by this method refers to geographic extent or areal size of
focus. The employed skill score weights how well the morphological structure
and variability are simulated, while avoiding the double penalty effect by which
point-wise accuracy metrics tend to reward the underestimation of variability.
The scale-selective method is demonstrated by application to measured and com-
puted bathymetric fields.

Finally, it is recommended that a combination of metrics is used in the valida-
tion of morphological models and that the weighting is determined by the goal
of the simulation. In such a set of metrics, point-wise metrics should be sup-
plemented with an error decomposition, as to avoid undesired underestimation
of variability. Further, a set of performance metrics must include a metric—e.g.
the RMSTE—that accounts for the spatial structure of the observed and predicted
morphological fields. In future studies, the behaviour of the RMSTE in a range of
practical applications needs to be considered. In order to do so, an extension of its
implementation to arbitrary model domains is required. It may also be worthwile,
albeit nontrivial, to explore possibilities to solve the optimization problem with a
linear instead of with a quadratic cost function.
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Samenvatting

De kwaliteit van morfodynamische voorspellingen wordt vaak aangegeven met
een skill score die de relatieve nauwkeurigheid van een morfologische voorspel-
ling meet ten opzichte van een voorspelling zonder morfologische veranderingen,
waarbij de gemiddelde kwadratische fout of mean-squared error (MSE) als fout-
maat wordt gebruikt. Via een generieke classificatie op basis van skillwaarden krij-
gen voorspellingen een kwaliteitslabel. Deze Brier skill score (BSS) of MSESSini1

is minder eenvoudig dan hij wellicht lijkt en wordt daarom soms verkeerd geïnter-
preteerd. Omdat metingen en berekeningen puntsgewijs worden vergeleken, be-
straft de MSE kleine positiefouten van morfologische fenomenen zoals erosiekui-
len, zandbanken en geulen relatief zwaar, een fenomeen dat bekend staat als het
“double penalty effect”. Vanuit het perspectief van een kustmorfoloog, kan dit lei-
den tot verkeerde beslissingen ten aanzien van welke van twee voorspellingen
beter is. Ingegeven door het bovenstaande, onderzoekt dit proefschrift het gedrag
van de MSESSini en verkent en ontwikkelt het validatiemethoden en bijbehorende
foutmaten die, in tegenstelling tot puntsgewijze foutmaten, de ruimtelijke struc-
tuur van morfologische patronen in beschouwing nemen.

Formuleringen en classificaties voor MSESSini, met en zonder correcties voor
meetfouten, worden onderzocht aan de hand van kunstmatige voorbeelden, voor-
beelden uit de literatuur en een langjarige Delft3Dmodelsimulatie, die vergeleken
wordt met meetresultaten. Er wordt aangetoond dat het gebruikelijke referentie-
model (waarin er geen morfologische verandering optreedt) de kwaliteit van voor-
spellingen niet vergelijkbaar weet te maken voor uiteenlopende voorspellings-
situaties (geografische locaties, forcering, tijdsperioden, interne dynamiek). Ook
wordt gedemonstreerd dat de gecombineerde aanwezigheid van grotere, persis-
tente schalen en kleinere, intermitterende schalen in de cumulatieve bodemver-
anderingen kan leiden tot een schijnbare toename van skill met de tijd, zonder
dat voor (een van) deze schalen afzonderlijk de skill daadwerkelijk toeneemt. Het
onderzoek wijst verder uit dat de MSESSini de neiging heeft om de voorkeur te ge-
ven aan modelresultaten die de variantie van cumulatieve bodemveranderingen
onderschatten, een eigenschap die wordt doorgegeven door de MSE. Als gevolg
van deze beperkingen, is het mogelijk dat de MSESSini een rangorde van voorspel-
lingen rapporteert die niet overeenkomt met het intuïtieve oordeel van experts.
Verder wordt aangetoond, op basis van theoretische overwegingen en een kunst-
matige casus van muivorming, dat de bestaande methoden om te corrigeren voor
meetfouten inconsistent zijn in ofwel hun skillformulering ofwel hun voorgestel-
de classificatieschema.

1 Skill score gebaseerd op de MSE waarbij het subscript “ini” verwijst naar de initiële bodem als de
referentievoorspelling, ofwel een referentievoorspelling zonder morfologische veranderingen.
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Om een oplossing te vinden voor de inherente beperkingen van puntsgewij-
ze foutmaten, zijn drie innovatieve diagnostische methoden ontwikkeld voor de
ruimtelijke validatie van 2Dmorfologische voorspellingen. De eerste methode ver-
vormt de voorspellingen in de richting van dewaarnemingen om zo de puntsgewij-
ze kwadratische fout te minimaliseren. Foutmaten worden vervolgens gebaseerd
op het gladde verplaatsingsveld tussen voorspellingen enwaarnemingen en op het
resterende puntsgewijze foutveld na de vervorming. Deze veldvervormingsmetho-
de blijkt voor een verscheidenheid aan (met Delft3D gegenereerde) morfologische
velden voor een geïdealiseerd getijdenbekken beter te presteren dan de conven-
tionele aanpak op basis van de puntsgewijze root-mean-squared error (RMSE, de
vierkantswortel uit de MSE). Doordat de locatie van individuele dieptewaarden
geoptimaliseerd wordt door het voorspelde morfologische patroon (lokaal) uit te
rekken of te comprimeren, is deze methode in staat om de visuele nabijheid van
morfologische patronen vast te leggen. Massabehoud van het sediment is echter
niet gegarandeerd.

De tweede methode definieert de afstand tussen voorspelde en waargenomen
morfologische velden in termen van een optimaal sedimenttransportveld dat het
verkeerd gepositioneerde sediment van de voorspelde naar de waargenomen mor-
fologie beweegt. Het optimale corrigerende transportveld heeft de laagste kwa-
dratische transportkosten en is relatief eenvoudig te vinden door een elliptische
partiële differentiaalvergelijking op te lossen. De vierkantswortel van het gemid-
delde kwadratische optimale transport, ofwel de root-mean-squared transport error
(RMSTE), wordt voorgesteld als een nieuwe foutmaat. Deze wordt getest voor een-
voudige 1D- en 2D-voorbeelden, evenals voor de meer realistische morfologische
velden van het bovengenoemde schematische getijdenbekken. De resultaten laten
zien dat de RMSTE, in tegenstelling tot de RMSE, in staat is onderscheid te maken
tussen voorspellingen die verschillen in de mate waarin voorspelde morfologische
kenmerken verkeerd gepositioneerd zijn. Ook vermijdt de RMSTE de consistente
voorkeur voor onderschatting van morfologische variabiliteit, waar de RMSE de
neiging toe heeft. De optimale transportmethode is massabehoudend en symme-
trisch en kent geen parameters, in tegenstelling tot de veldvervormingsmethode.

De derde methode is een schaalselectieve validatiemethode die het een wille-
keurige prestatiemaat mogelijk maakt om selectief meerdere ruimtelijke schalen
te adresseren. De methode maakt daarbij gebruik van een ruimtelijk filter, op een
zodanige manier dat, naast de domeingemiddelde statistieken, ook gelokaliseerde
validatiestatistieken en ruimtelijke velden van voorspellingskwaliteit per schaal
worden verkregen. De term “schaal”, zoals die in deze methode wordt gebruikt,
verwijst naar de geografische omvang of grootte van het aandachtsgebied. De
gebruikte skill score weegt hoe goed de morfologische structuur en variabiliteit
worden gesimuleerd, waarbij het double penalty effect waardoor puntsgewijze
foutmaten vaak de onderschatting van variabiliteit belonen, wordt vermeden. De
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schaalselectieve methode wordt gedemonstreerd door deze toe te passen op geme-
ten en berekende bathymetrische velden.

Ten slotte wordt aanbevolen dat een combinatie van prestatiematen wordt ge-
bruikt bij de validatie vanmorfologischemodellen en dat de weging hiervanwordt
bepaald door het doel van de simulatie. In een dergelijke set van prestatiematen
worden puntsgewijze foutmaten bij voorkeur aangevuld met een ontleding van
de fout, om zo ongewenste onderschatting van variabiliteit te voorkomen. Ver-
der dient een set prestatiematen een maat zoals de RMSTE te bevatten, die de
ruimtelijke structuur van de waargenomen en voorspelde morfologische velden
in beschouwing neemt. In toekomstige studies zal het gedrag van de RMSTE in
een reeks praktische toepassingen moeten worden onderzocht. Om dit te kun-
nen doen, is een uitbreiding van de implementatie van de RMSTE naar willekeu-
rige modeldomeinen vereist. Het kan ook de moeite waard zijn, hoewel verre van
triviaal, om de mogelijkheden te verkennen om het optimalisatieprobleem op te
lossen met een lineaire in plaats van met een kwadratische kostenfunctie.
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1 Introduction

Coastalmorphological predictions typically are the 2D-gridded outcomes of coastal
area models consisting of bed levels at high resolution. This thesis is about quanti-
fying the quality of such predictions, which is an essential part of both calibration
and validation of morphodynamic models. Calibration is the common engineer-
ing practice to adjust the modelling parameters so that improved agreement with
the experimental data is obtained, whereas validation is the process of determin-
ing the degree to which a model is an accurate representation of the real world
from the perspective of the intended uses of the model (Oberkampf and Trucano,
2002). The quantification of the agreement between computational results and ex-
perimental data assumes that some appropriate measure of correspondence can be
established—a performance or validation metric. As every statistical measure con-
denses a large number of data into a single value, it only provides one projection
of the model errors emphasizing a certain aspect of the error characteristics of the
model performance (Chai and Draxler, 2014). Various metrics are thus required
to adequately represent the enormous amount of information—bed levels for each
grid point and the complex relationships between the grid points—contained in
morphological fields. The selection of the metrics and their weighting should be
driven by application requirements, with as primary considerationwhat themodel
must predict in conjunction with what data is available (Thacker et al., 2004b).

This introductory chapter is structured as follows. First, Sect. 1.1 describes the
current validation practice of morphological fields, which relies heavily on grid-
point based accuracy and skill metrics. Grid-point based accuracy metrics meas-
ure the averaged correspondence between individual pairs of model outcomes and
observations, whereas corresponding skill metrics determine the accuracy relative
to the accuracy of a prediction produced by a standard of reference (Murphy, 1993).
Next, Sect. 1.2 examines strategies for the development of innovative performance
metrics that, as opposed to point-wise metrics, are able to account for the spatial
interdependency of the observed and predicted fields. Finally, the objectives and
outline of this thesis are elaborated on in Sect. 1.3 and Sect. 1.4, respectively.

1.1 The MSE and BSS in morphodynamic model validation

The oldest method for evaluating the quality of 2D morphological predictions is
by eye-ball comparison of patterns of sedimentation and erosion between obser-
vations and simulations. The power of this qualitative validation technique lies in
the fact that the human brain is incredibly good at identifying patterns. The visual
inspection requires looking through the eye and filtering the output to identify po-
sition, magnitude and orientation of certain features of interest and using human
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judgement to discern the prediction errors. This makes eye-ball or visual valid-
ation prone to individual and subjective biases of interpretation. Besides, it is
increasingly difficult to apply if there are multiple predictions (as in a sensitivity
analysis or ensemble prediction).

Quantitative validationmethods are often grid-point based; they compare obser-
vations and predictions per grid point and compute various metrics for the entire
set or subset of grid points. Gallagher et al. (1998) and Sutherland et al. (2004)
introduced the concept of skill to morphodynamic model validation. A skill score
measures the relative accuracy of the prediction over some reference prediction.
For a prediction with accuracy 𝐸, a skill score can be formulated as follows:

ESS = 𝐸 − 𝐸𝑟
𝐸i − 𝐸𝑟

(1.1)

where 𝐸𝑟 is the accuracy of a baseline or reference prediction and 𝐸i the accuracy
of an impeccable (perfect) prediction. The ESS ranges from −∞ to 1, with negative
(positive) values indicating a prediction worse (better) than the reference predic-
tion. A value between 0 and 1 can be interpreted as the proportion of improvement
over the reference prediction.

For deterministic predictions of continuous variables, such as seabed elevation,
a common choice for the accuracy measure 𝐸 in Eq. 1.1 is the mean-squared error
(MSE). The resulting skill score is often referred to as mean-squared-error skill
score outside our field, e.g. Murphy (1988), but is named Brier skill score (BSS) by
coastal modellers following Sutherland et al. (2004)1. It reads:

MSESS = MSE −MSE𝑟
0 −MSE𝑟

= 1 − MSE

MSE𝑟
(1.2)

since theMSE of a perfect predictionMSEi = 0. In morphodynamic modelling, it is
common practice to use the initial observed bathymetry at the start of a simulation
as the reference. The MSESSini—the MSESS with the initial bed as the reference—
can be considered as the fraction of improvement of the model results compared
to a model that predicts that no morphodynamic change will occur. It is valued
through a generic classification for morphodynamic computations, which distin-
guishes between bad, poor, reasonable, good and excellent predictions depending
on the skill value (Sutherland et al., 2004). Through the Murphey–Epstein decom-
position of the MSE into phase, amplitude, and map-mean error, the MSESSini
can be decomposed into various error components (Murphy and Epstein, 1989;
Sutherland et al., 2004).

1 This thesis addresses this skill metric for nonprobabilistic variables as mean-squared-error skill score
(MSESS), consistent with Murphy (1988). Technically, the term Brier skill score (BSS) is reserved
for the relative accuracy of probabilistic forecasts with the Brier score (Brier, 1950) as the accuracy
measure, which is a mean-squared error for probabilistic forecasts with two mutually-exclusive
outcomes (e.g. rain or no rain).
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The MSESSini a.k.a. the BSS has quickly become widely accepted amongst
morphodynamic modellers as the preferred way of demonstrating model skill.
Conclusions about (relative) model performance and model sensitivities are not
seldom largely based on the MSESSini (see references in amongst others Sects. 2.1
and 5.1). Nonetheless, little attention has been paid to the interpretation of the
MSESSini and its values. Also, the Murphy–Epstein decomposition, which may
provide additional insight into the aspects of prediction quality measured by the
MSESSini, is not often used. Consequently, the use of the MSESSini carries the risk
of an implicit redefinition of quality through optimizing its scores, especiallywhen
used as the single validation metric and in automated calibration procedures.

In order to account for measurement error, adjusted MSESS formulations and
skill classifications have been suggested by van Rijn et al. (2003) and Sutherland
et al. (2004). Unfortunately, this has initiated an inconsistent use of skill definitions
and rankings in subsequent literature. Therefore, the establishment of the best
method to take measurement error into account is called for.

For the MSESSini to allow the intercomparison of quality across a range of pre-
diction situations, the zero change model must correctly reflect the intrinsic diffi-
culty of prediction situations (Winkler, 1994; Murphy, 1988;Wilks, 2011; Brier and
Allen, 1951) with a different morphological development prior to the evaluation
time—for instance trend-wise, cyclic or episodic. Since the accuracy of the zero
change model is given by the observed cumulative morphological development
away from the initial bed, the MSESSini normalizes the error in the bed levels by
the observed cumulative change. Therefore, it can be expected that the stringency
of the skill test depends on the state of the initial morhology, for instance whether
the chosen initial morphology is pre-storm or post-storm or whether simulations
are initialized from a smooth or a high-variability initial bottom. Similarly, the
MSESSini can be expected to develop differently in time for a trend than for a sea-
sonal system, due to the difference between gross and net change. This raises the
question whether the MSESSini can create the “level playing field” (Winkler et al.,
1996) required for an intercomparison of skill values.

Whether the MSESSini is the appropriate metric, given what a morphodynamic
model must predict, further depends on the characteristics of the MSE. There is a
consensus amongst morphologists that the generally high-variability predictions2

of high-resolution models are useful if they can reproduce features such as scour
holes and bar or channel generation and migration, even with small space and
timing errors. Unfortunately, as a point-wise accuracy metric, the MSE tends to
penalize, rather than reward, the model’s capability to provide information on
these features of interest, a phenomenon also referred to as the “double penalty

2 In general, the term high-variability prediction may refer to predictions exhibiting short-scale vari-
ability in space and/or time. In this thesis, the term variability is mostly used to refer to the spatial
variability of bed levels or sedimentation and erosion patterns, measured by the standard deviation
or variance at the scales of interest.
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effect” (see Sect. 4.1); inevitable location (and timing) errors in a high-variability
prediction will lead to a larger MSE than for smoother predictions of, for instance,
a lower-resolution model (Bougeault, 2003; van Rijn et al., 2003). It is therefore
difficult to demonstrate the quality of a high-variability morphodynamic predic-
tion.

1.2 Methods for spatial validation of coastal morphology

The validation of the small-scale morphological variability, usually found in high-
resolution coastal morphological predictions, brings about a range of new valida-
tion questions. Are there spatial displacement errors? Is the variability well rep-
resented at all scales? Is it necessary to accurately predict shorter-scale features
to make reliable longer-term predictions? At which spatial scales does the model
have sufficient skill? Does the skill vary within the model domain? These ques-
tions are not easily addressed with the traditional validation approach. First, any
single-number metric suffers from considerable loss of information. Moreover,
the essential quantities of interest in the patterns of morphology and morpholo-
gical change are not captured by point-wise validation metrics, such as the MSE
and MSESS. Indeed, point-wise metrics tend to penalize rather than reward the
prediction of features if these features are somewhat displaced in space (Sect. 1.1).
Clearly, there is a need for alternative validation methods that account for spatial
information contained in predicted and observed fields.

The need for spatial validation methods also stems from possible limits to prac-
tical predictability of morphological change. Accuracy measures or skill scores
are inappropriate when the small scales are unpredictable because the informa-
tion on those scales can be regarded as noise. However, a prediction with little
skill on small scales may still be useful over a larger area (e.g. an ebb-tidal delta).
Also, amplitude, shape and spacing of rhythmic features like sand bars may be pre-
dicted reasonably well, although a deterministic location may not be predictable.
Filtering high-resolution details by eye-ball validation implicitly acknowledges
that the practical predictability on small scales is limited, but may be better on the
larger scales of certain features of interest. Nevertheless, model output is mostly
presented at the scale of the computational grid. This may cause untrained users
of predictions to overestimate the model credibility on small spatial scales. On the
other hand, when comparing predictions and observations side-by-side the pres-
ence of information on unskilful scales may also lead to a false sense of model
failure.

In response to the undesirable properties of traditional point-wisemetrics when
applied to high-resolution predictions, researchers in various fields, amongst oth-
ers meteorology, have proposed numerous new methods to assess the model per-
formance, the majority of which can be grouped into two categories (Gilleland
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et al., 2009, 2010a): filtering methods and deformation methods. Filtering methods
apply a spatial filter to the predicted and observed fields or to the difference field,
and then calculate overall statistics on the filtered fields to evaluate performance
at various scales. Applied filters are either smoothing filters or bandpass spatial
filters (Fourier, wavelets, etc.). Deformation methods deform predicted features
or fields in order to obtain a better match with the observations and determine er-
ror statistics based on the required spatial manipulation (displacement, rotations,
scaling, etc.) and the residual errors after manipulation.

The ideas behind the deformation and filtering methods provide useful starting
points for the development of dedicated spatial validationmethods for coastal mor-
phology. With our usual 2D coastal morhological predictions in mind, a deforma-
tion method that directly targets fields is more practical than and, thus, preferable
over a feature-based approach. By (locally) stretching or compressing the mor-
phological pattern, a typical field deformation method would optimize the loca-
tion of pixels with given predicted intensities (depth values) in order to achieve
a better match with the observations. An advantage of such pattern matching by
shifting image pixels is that it may be relatively close to the visual validation by
morphologists. On the other hand, it could be disadvantageous that sediment is
not necessarily conserved, since pixels rather than sand are moved. Sediment con-
servation would be guaranteed if the optimal transformation from predictions to
observations is defined in terms of the physical quantity responsible for morpho-
dynamic development: sediment transport. The quest for such a transformation
would bring us to themathematical domain of optimalmass transport, which deals
with the transport of a distribution of mass to another distribution of mass on the
same space, in such a way as to keep the transportation cost to a minimum (San-
tambrogio, 2015; Villani, 2003). The transformation of predictions towards the
observations, whether by image matching or optimal transport, must then be sup-
plemented by the formulation of appropriate error metrics based on it.

Filtering approaches have the advantage of selectively addressingmultiple scales
of interest in the morphology or sedimentation/erosion patterns. For 2D morpho-
logy and arbitrarily shaped model domains, however, the application of band-pass
filters is far from trivial and the physical interpretation of the results is difficult,
since the scales are not easily linked to morphological features. Methods based
on smoothing filters—also called neighbourhood methods—are appealing due to
their simplicity of operation and interpretation; a filter is applied at progressively
coarser scales, yielding progressively smoother fields, and summary statistics are
applied to the filtered fields. Common smoothing methods, however, are limited
in the aspects of model performance that can be considered. For instance, no in-
formation on spatial variation of performance in the model domain is provided.
A useful validation framework for coastal morphology would employ a smooth-
ing filter in such a way that, in addition to domain-averaged statistics, localized
validation statistics are obtained. This could be achieved by the computation of
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validation statistics in a sliding window, similar to localized data analysis (Fother-
ingham et al., 2002). Appropriate validation statistics should take both similarity
in structure and amplitude of the patterns into account, while avoiding the double
penalty problem (Sect. 1.1).

1.3 Approach

The overarching aim of this thesis is to contribute to an improved validation as-
sessment of morphological predictions, in particular field predictions. It pursues
two main research objectives, which derive from Sects. 1.1 and 1.2, respectively.
These two objectives are formulated and elaborated in research questions and ob-
jectives as follows:

Objective 1 Investigate the behaviour of the commonly used MSESSini (Eq. 1.1
with the initial bed as the reference prediction) a.k.a. the Brier skill score (BSS).
This first objective is addressed in Chs. 2 and 3. Research questions are:

1.1. What is the effect on theMSESSini of the use of the point-wise mean-squared
error (MSE) as the accuracy measure? (Chs. 2 and 3)

1.2. What is the added value and correct interpretation of the Murphy–Epstein
decomposition of the MSESSini? (Chs. 2 and 3)

1.3. What is the rationale behind taking measurement error into account and
how should this translate to skill formulations and rankings? (Ch. 3)

1.4. To what extent does the zero change model underlying the MSESSini make
model performance comparable across different prediction situations (geo-
graphical locations, forcing conditions, time periods, internal dynamics)?
(Chs. 2 and 3)

Objective 2 Develop validation methods and corresponding performance metrics
that take the spatial structure of morphological patterns into account. This second
objective is addressed in Chs. 4 to 6. Specific research objectives and questions are:

2.1. Develop a field deformation method suited for the validation of morpholo-
gical patterns and formulate (an) appropriate error metric(s) to be used in
conjunction with this method. (Ch. 4)

2.2. What is the behaviour of the error metric(s) as referred to in Objective 2.1,
in comparison to the behaviour of point-wise metrics? (Ch. 4)

2.3. Develop an optimal transport method for the validation of morphological
patterns and derive (a) corresponding error metric(s). (Ch. 5)

2.4. What is the behaviour of the error metric(s) as referred to in Objective 2.3,
in comparison to the behaviour of point-wise metrics? (Ch. 5)
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2.5. Develop a scale-selective validation framework that resolves the spatial dis-
tribution of appropriate validation statistics for multiple scales. (Ch. 6)

2.6. What information is provided by the scale-selective framework asmentioned
in Objective 2.5 and what is the added value of addressing multiple scales?
(Ch. 6)

1.4 Thesis outline

The core of this thesis consists of four published papers (Chs. 2 to 4 and 6) and
one manuscript that is currently under review (Ch. 5). Even though the respective
chapters can therefore be read independently, they are strongly related. In order to
clarify their interrelationship as well as provide a quick overview of the highlights,
a brief introduction to the paper is given at the start of each chapter.

Chapters 2 and 3 pursue Objective 1 by evaluating the current validation prac-
tice of morphological fields and particularly the MSE-based skill metric with the
zero change model as the reference (the MSESSini a.k.a. the BSS). Next, in Ch. 4,
new error metrics are introduced based on an image matching or warping method,
which finds the smooth displacement field between predictions and observations
that minimizes the point-wise error (Objective 2.1 and Question 2.2). Chapter 5
then presents a diagnostic tool—including a novel error metric—that moves mis-
placed sediment from the predicted to the observed morphology through an op-
timal, rotation-free sediment transport field (Objective 2.3 and Question 2.4). Sub-
sequently, Objective 2.5 and Question 2.6 are addressed in Ch. 6, which introduces
a scale-selective validationmethod for 2Dmorphological predictions that provides
information on the variation of model skill with spatial scale and within the model
domain.

Finally, Ch. 7 is a concluding chapter providing a comprehensive overview of
the findings of this thesis as well as discussing recommendations for further re-
search.
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2 On the perception of morphodynamic
model skill

This chapter is republished with minor changes only from J. Bosboom, A.J.H.M.
Reniers and A.P. Luijendijk (2014). On the perception of morphodynamic model
skill. Coastal Engineering 94, pp. 112–125, doi:10.1016/j.coastaleng.2014.08.008.

It explores the behaviour of the mean-squared-error skill score (MSESS) a.k.a.
the Brier skill score (BSS), which is a widely used metric to evaluate and clas-
sify the performance of morphological models. Nonetheless, surprisingly little is
known about which aspects of quality are exactly measured by the BSS. Also, the
premise that its values can be used to compare predictions across different predic-
tion situations—geographical locations, forcing conditions, time periods, internal
dynamics—has not been critically evaluated. This chapter, in conjunction with
Ch. 3 (i.e. Bosboom and Reniers, 2018), attempts to fill these gaps. The highlights
of Ch. 2 are:

1. Synthetic examples, an example from literature and a long-yearly Delft 3D
simulation are used to evaluate the BSS.

2. Visual inspection by experts leads to a different perception of skill than the
BSS.

3. In the presence of inevitable location errors, the BSS favours predictions
that underestimate the variance of the bed changes.

4. The normalization with the cumulative bed change, which stems from the
initial bed as the reference, is not able to create a “level playing field”.

5. An increase in skill with time can result from the emerging of the more
skilful larger scales, without the skill on these scales increasing in time.

6. A generic ranking, based on BSS values, has limited validity.
7. Multiple performance metrics are required in order to fully describe predic-

tion quality.

Abstract

The quality of morphodynamic predictions is generally expressed by an overall
grid-point based skill score, which measures the relative accuracy of a morpholo-
gical prediction over a prediction of zero morphological change, using the mean-
squared error (MSE) as the accuracy measure. Through a generic ranking for
morphodynamic model predictions, this MSE-based skill score (MSESS) aims at
makingmodel performance comparable across different prediction situations (geo-
graphical locations, forcing conditions, time periods, internal dynamics). The im-
plicit assumptions underlying this approach are that the MSE is an appropriate

23 On the perception of morphodynamic model skill

https://doi.org/10.1016/j.coastaleng.2014.08.008


measure of correspondence for morphological predictions and that the accuracy
of the initial bed as the reference correctly reflects the inherent difficulty or ease
of prediction situations. This paper presents a thorough analysis of the percep-
tion of model skill through the MSE skill score. Using synthetic examples, an
example from literature and a long-yearly Delft3D model simulation, we demon-
strate that unexpected skill may be reported due to a violation of either of the
above assumptions. It is shown that the accuracy of the reference fails to reflect
the relative difficulty of prediction situations with a different morphological devel-
opment prior to the evaluation time (for instance trend, cyclic/seasonal, episodic,
speed of the development). We further demonstrate that the MSESS tends to fa-
vour model results that underestimate the variance of cumulative bed changes, a
feature inherited from the MSE. As a consequence of these limitations, the MSESS
may report a relative ranking of predictions not matching the intuitive judgement
of experts. Guidelines are suggested for how to adjust calibration and validation
procedures to be more in line with a morphologist’s expert judgement.

2.1 Introduction

A commonly-used, single-number metric for judging the relative accuracy of mor-
phodynamic simulations is the mean-squared-error skill score (MSESS) that goes
by the name Brier skill score (BSS)1 amongmorphodynamicmodellers (Sutherland
et al., 2004). It measures the proportion of improvement in accuracy of a predic-
tion over a reference model prediction, using the mean-squared error (MSE) as the
accuracy measure. Generally, the initial bed is chosen as the reference prediction,
which implies a reference model of zeromorphological change. To our knowledge,
Gallagher et al. (1998) were the first to determine morphodynamic model skill as
the model accuracy relative to the accuracy of the initial bathymetry. They used
the root-mean-squared error (RMSE) as the accuracy measure. Several other re-
searchers and modellers have determined the MSESS with the measured initial
bathymetry as the reference for field and laboratory applications of both cross-
shore profile models (e.g. van Rijn et al., 2003; Sutherland et al., 2004; Henderson
et al., 2004; Pedrozo-Acuña et al., 2006; Ruessink et al., 2007; Roelvink et al., 2009;
Ruggiero et al., 2009; Walstra et al., 2012; Williams et al., 2012) and area models
(e.g. Sutherland et al., 2004; Scott and Mason, 2007; McCall et al., 2010; Ganju et al.,
2011; Orzech et al., 2011; van der Wegen et al., 2011; Dam et al., 2013; Fortunato
et al., 2014). The simulation duration for the field cases varied from days for bar
evolution to decades for large-scale tidal basin evolution. Alongside MSESS, its de-
composition according to Murphy and Epstein (1989) has been used to separately

1 We prefer to address this skill metric as MSESS, consistent with Murphy (1988). Technically, the
term Brier skill score (BSS) is reserved for the relative accuracy of probabilistic forecasts with the
Brier score (Brier, 1950) as the accuracy measure, which is a mean-squared error for probabilistic
forecasts with two mutually-exclusive outcomes (e.g. rain or no rain).
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assess phase and amplitude errors (Sutherland et al., 2004; Ruessink and Kuriyama,
2008; van der Wegen et al., 2011; van der Wegen and Roelvink, 2012).

Values for the MSESS are typically computed for the entire spatial array at a
particular time and valued through a generic ranking for morphodynamic compu-
tations (van Rijn et al., 2003; Sutherland et al., 2004). This approach, which aims
at making model performance comparable across different prediction situations
(geographical locations, forcing conditions, time periods, internal dynamics) has
become the standard in quantitative judgement of morphodynamic model skill
(Roelvink and Reniers, 2012). Gallagher et al. (1998) already pointed out that a
comparative analysis based on skill values requires a good understanding of the
statistics of predictive skill. Nonetheless, the behaviour of MSESS and the valid-
ity of a generic ranking based on its values have not been thoroughly explored.
Also, there have been accounts of skill scores not matching the researcher’s per-
ception of model performance. For instance, van der Wegen and Roelvink (2012)
suggested that their relatively high skill scores were a result of the use of a hori-
zontally uniform initial bed (and hence of a low accuracy of the reference model).
For bed profile predictions, Walstra et al. (2012) reported skill values to increase
in time to an unexpectedly similar level as previously found for weekly timescales
by Ruessink et al. (2007).

Clearly, a crucial element of skill is the proper selection of the reference; it estab-
lishes the zero point at the scale on which skill is measured and, hence, defines a
minimal level of acceptable performance. Therefore, a comparative analysis based
on skill scores is only effective to the extent that the intrinsic difficulty of different
prediction situations is correctly reflected in the level of accuracy of the reference
predictions (Brier and Allen, 1951; Winkler, 1994; Murphy, 1988; Wilks, 2011). In
weather forecasting, where skill scores have widely been used for over a century
(Murphy, 1996a), the reference is generally required to be an unskilful, yet not
unreasonable forecast as can be made with a naive forecasting method (Winkler,
1994). Examples are persistence, i.e. the observations at a given time are forecast
to persist, and long-term climatology, i.e. the average of historical data is used as
the baseline (Murphy, 1996b). The naive method that produces the most accurate
forecasts is considered the appropriate method in a particular context (Murphy,
1992). Hence, for short-term weather forecasts, persistence is generally the more
appropriate choice of reference, whereas climatology may be better for longer-
term predictions. The reference of zero morphological change is similar to the
concept of persistence in that it assumes the morphology to persist, i.e. remain
unchanged, in time. However, instead of using a recent state (e.g. the previously
observed value) as the reference, as is common practice in weather forecasting, the
zero change model is applied irrespective of the prediction horizon, by assuming
the initial bed to persist. Another marked difference is the cumulative nature of
morphology as the persisted parameter, as opposed to for instance precipitation.
Thus, the accuracy of the zero change model is given by the observed cumulative
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morphological development away from the initial bed, whichmust adequately rep-
resent the situation’s inherent difficulty for the MSESS to create a “level playing
field” (Winkler et al., 1996).

Not only the choice of reference, but also the choice of the accuracy measure
determines the reported skill. Unfortunately, grid-point based accuracy measures,
such as the MSE, are prone to reward predictions that underestimate variability
(Anthes, 1983; Taylor, 2001; Mass et al., 2002), a phenomenon also referred to as
the “double penalty effect” (Bougeault, 2003). As a consequence, such accuracy
measures may lead to wrong decisions as to which of two morphological predic-
tions is better (Bosboom and Reniers, 2014b, i.e. Ch. 4). If this undesirable property
is inherited by the MSESS, the diagnosis of model skill will similarly be affected.

The purpose of this paper is to investigate the potential impact of the choice
of the zero change reference model, in combination with the MSE as the accur-
acy measure, on the perception of morphodynamic model skill. First, Sect. 2.2
provides a review and discussion on the interpretation of the conventional skill
metrics used in morphodynamic skill assessment, viz. the MSESS and its Murphy–
Epstein decomposition. It includes examples, both synthetic and from literature,
which demonstrate how unexpected skill can be obtained by using the MSESS.
Next, in Sect. 2.3, a record of bathymetric data and Delft3D morphodynamic com-
putations, spanning 15 years, is used to illustrate that also for a real-life case, the
common skill metrics may lead to an interpretation of model performance incon-
sistent with expert judgement. In Sect. 2.4, the implications for morphological
model validation are discussed. Finally, Sect. 2.5 presents conclusions and dis-
cusses avenues for adaptation of validation strategies.

2.2 A critical review of the common skill metrics

This section reviews the skill metrics as commonly applied for morphodynamic
model validation. Possible pitfalls for the perception of model performance are
identified and illustrated with various examples. First, Sect. 2.2.1 summarizes the
MSESS and its Murphy–Epstein decomposition (Murphy and Epstein, 1989) for
arbitrary spatial fields and a yet undefined reference. Second, in Sect. 2.2.2, the
metrics are interpreted in the context of the validation of morphological fields, us-
ing the initial bed as the reference. Third, Sect. 2.2.3 discusses the impact of the
zero change reference model on the perception of morphodynamic model skill. Fi-
nally, Sect. 2.2.4 demonstrates that the MSESS tends to reward an underestimation
of the variance of bed changes.

2.2.1 Mean-squared-error skill score

The concept of skill, according to Murphy (1996a) first proposed by Gilbert (1884),
refers to the relative accuracy of a prediction over some reference or baseline pre-
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diction. For a prediction with accuracy 𝐸, a generic skill score ESS with respect to
a reference prediction with accuracy 𝐸𝑟 is (e.g. Sutherland et al., 2004):

ESS = 𝐸 − 𝐸𝑟
𝐸i − 𝐸𝑟

(2.1)

where 𝐸i is the accuracy of an impeccable prediction. A prediction that is as good
as the reference prediction receives a score of 0 and an impeccable prediction
a score of 1. A value between 0 and 1 can be interpreted as the proportion of
improvement over the reference prediction. If the MSE is used as the accuracy
measure, Eq. 2.1 yields (Murphy, 1988):

MSESS = 1 − MSE

MSE𝑟
(2.2)

since MSEi = 0. The MSESS ranges from −∞ to 1, with negative (positive) values
indicating a prediction worse (better) than the reference prediction.

The MSE between the predicted and observed spatial fields is defined as:

MSE = ⟨(𝑝 − 𝑜)2⟩ = 1
𝑛

𝑛
∑
𝑖
𝑤𝑖(𝑝𝑖 − 𝑜𝑖)2 (2.3)

where the angle brackets denote spatially weighted averaging, (𝑝𝑖 , 𝑜𝑖) are the 𝑖th
pair of the gridded predicted and observed fields 𝑝 and 𝑜 respectively and 𝑛 is
the number of points in the spatial domain. Further, 𝑤𝑖 is a weighting factor by
grid-cell size, such that ∑𝑛

𝑖 𝑤𝑖 = 𝑛 and for regularly spaced grids 𝑤𝑖 = 1.
Skill metrics often are in terms of the differences (anomalies) with respect to the

reference prediction 𝑟 . With the anomalies of predictions and observations given
by 𝑝′ = 𝑝 − 𝑟 and 𝑜′ = 𝑜 − 𝑟 , respectively, we can rewrite Eq. 2.3 upon substitution
as:

MSE = ⟨(𝑝′ − 𝑜′)2⟩. (2.4)

Further, the accuracy of the reference prediction is given by:

MSE𝑟 = ⟨(𝑟 − 𝑜)2⟩ = ⟨𝑜′2⟩. (2.5)

An advantage of the mean-squared-error measure of accuracy and the corres-
ponding MSESS is that they can readily be decomposed into components that de-
scribe specific elements of prediction quality. The decomposition according to
Murphy and Epstein (1989) separates the MSE into correlation and conditional
and systematic bias terms (Appendix 2.A). Herewith, Eq. 2.4 can be written as (cf.
Eqs. 2.14 and 2.15):

MSE = 𝜎2𝑜′(1 − 𝛼′ + 𝛽′ + 𝛾 ′) (2.6)
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with

𝛼′ = 𝜌2𝑝′𝑜′ (2.7a)

𝛽′ = (𝜌𝑝′𝑜′ −
𝜎𝑝′
𝜎𝑜′

)
2

(2.7b)

𝛾 ′ =
(𝑝′ − 𝑜′)

2

𝜎2𝑜′
. (2.7c)

Here 𝑝′ and 𝑜′ are the weighted map means and 𝜎𝑝′ and 𝜎𝑜′ are the weighted
standard deviations of 𝑝′ and 𝑜′. Further, 𝜌𝑝′𝑜′ = 𝜎𝑝′𝑜′/(𝜎𝑝′𝜎𝑜′) is the weighted
Pearson correlation coefficient between 𝑝′ and 𝑜′, with 𝜎𝑝′𝑜′ representing the
weighted covariance. Note that the MSE can be considered as the summation
of MSEbias = 𝜎2𝑜′𝛾 ′ that expresses the systematic bias or map-mean error and
MSEfluct = 𝜎2𝑜′(1 − 𝛼′ + 𝛽′) that quantifies the mismatch between the fluctuating
parts in predictions and observations.

Equivalently, we can write for MSE𝑟 :

MSE𝑟 = 𝜎2𝑜′(1 + 𝜖′) (2.8)

where

𝜖′ = 𝑜′ 2

𝜎2𝑜′
(2.9)

is nonzero if the map mean of the observations differs from the map mean of the
reference prediction.

Finally, substitution of Eqs. 2.6 and 2.8 in Eq. 2.2 yields the Murphy–Epstein
decomposition of the skill score (Murphy and Epstein, 1989):

MSESS = 𝛼′ − 𝛽′ − 𝛾 ′ + 𝜖′
1 + 𝜖′ . (2.10)

Livezey et al. (1995) explained 1 − 𝛼′ as the phase error and 𝛼′ as the phase
association between predicted and observed anomalies, 𝛽′ as a penalty due to
conditional bias or amplitude error of the anomalies (with a penalty for both in-
sufficient and excessive predicted amplitudes) and 𝛾 ′ as the reduction of skill due
to map-mean errors. Hence, 𝛼′ can be regarded as the skill in the absence of biases.

2.2.2 Reference model of zero morphological change

In morphodynamic modelling, the predictand is the bathymetry, such that 𝑝 and
𝑜 in Eq. 2.3 are the predicted and observed bed levels 𝑧𝑝 and 𝑧𝑜 , respectively. In
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order to determine the relative accuracy of bed level predictions, it is a common
practice to use the initial observed bathymetry at the start of the simulation as
the reference prediction, which implies that the model to beat is a model of zero
morphological change. In that case, the anomalies are the cumulative sediment-
ation/erosion fields from the simulation start time 𝑡 = 0: 𝑝′ = Δ𝑧𝑝 and 𝑜′ = Δ𝑧𝑜 .
Herewith, from Eqs. 2.3 to 2.5 we have MSE = ⟨(𝑧𝑝 − 𝑧𝑜)2⟩ = ⟨(Δ𝑧𝑝 − Δ𝑧𝑜)2⟩ and
MSE𝑟 = ⟨Δ𝑧2𝑜 ⟩. Upon substitution, Eq. 2.2 leads to a skill score valid for the zero
change reference model:

MSESSini = 1 − ⟨(Δ𝑧𝑝 − Δ𝑧𝑜)2⟩
⟨Δ𝑧2𝑜 ⟩

(2.11)

with the angle brackets again indicating spatially weighted averaging.
The MSESSini expresses the proportion of improvement in the accuracy of bed

level predictions or, equivalently, of predictions of cumulative sedimentation/er-
osion over a model that predicts no morphological change. It is often interpreted
as the model added accuracy relative to a situation in which no modelling is done
(although technically the zero change model is a model as well, albeit a naive
one). The proportion of improvement is typically valued through a generic rank-
ing formorphodynamic computations (van Rijn et al., 2003; Sutherland et al., 2004).
Table 2.1 shows the ranking proposed by Sutherland et al. (2004) for the skill for-
mulation according to Eq. 2.11. Note that slightly different rankings have been
proposed in combination with skill formulations that include observation error
(van Rijn et al., 2003; Sutherland et al., 2004).

MSESSini

Excellent 1.0–0.5
Good 0.5–0.2
Reasonable/fair 0.2–0.1
Poor 0.1–0.0
Bad <0.0

Table 2.1: Classification according to Sutherland et al. (2004) for the MSE skill score as in Eq. 2.11.

With the anomalies equal to the cumulative sedimentation/erosion fields,
Eqs. 2.7 and 2.9 can be written as 𝛼′ = 𝜌2Δ𝑧𝑝Δ𝑧𝑜 , 𝛽′ = (𝜌Δ𝑧𝑝Δ𝑧𝑜 − 𝜎Δ𝑧𝑝 /𝜎Δ𝑧𝑜 )2,
𝛾 ′ = (Δ𝑧𝑝 − Δ𝑧𝑜)2/𝜎2Δ𝑧𝑜 and 𝜖′ = Δ𝑧𝑜

2/𝜎2Δ𝑧𝑜 . For the normalization term 𝜖′, nonzero
values are obtained in the case of an observed net sediment import or export from
the initial time to the evaluation time (Gerritsen et al., 2011). A nonzero 𝛾 ′ in-
dicates a misestimation of the amount of sediment that has been imported into
or exported from the model domain and, equivalently, of the mean bed levels.
Hence, 𝛾 ′ can be considered as a (normalized) sediment budget error (Gerritsen

29 On the perception of morphodynamic model skill



et al., 2011). Following Livezey et al. (1995), Sutherland et al. (2004) refer to 1 − 𝛼′
and 𝛽′ as measures of phase and amplitude errors, respectively, of the cumulative
sedimentation/erosion fields (see Sect. 2.2.1). Note that the phase and amplitude
errors of predicted bed levels are given by 1 − 𝛼 and 𝛽 (Eqs. 2.15a and 2.15b) rather
than 1 − 𝛼′ and 𝛽′. Only in the special case that the reference prediction is a ho-
rizontal bed (e.g. van der Wegen and Roelvink, 2012), we have 𝛼′ = 𝛼 , 𝛽′ = 𝛽 and
𝛾 ′ = 𝛾 .

The phase error 1 − 𝛼′ is often loosely interpreted as a position error, signi-
fying that “sand has been moved to the wrong position” (Sutherland et al., 2004).
Gerritsen et al. (2011) explain the phase association 𝛼′ as the degree of similarity
between the spatial patterns of sedimentation and erosion. Since the correlation
coefficient measures the tendency of the predictions and observations to vary to-
gether (Appendix 2.A), a nonperfect phase association (𝛼′ < 1) may result from
incorrect locations, shapes and relative magnitudes of the sedimentation/erosion
features. Predictions that are different by a constant or a constant proportion
(either positive or negative) receive the same 𝛼′. Therefore, we prefer to consider
𝛼′ as the extent to which the structure of the predicted and observed sediment-
ation/erosion fields is similar and recognize that overall magnitudes of predicted
and observed bed changes may not be close for 𝛼′ = 1. With 𝛼′ measuring the
structural similarity, its complement 1 − 𝛼′ measures the structural dissimilarity
between the predicted and observed sedimentation/erosion fields.

According to Sutherland et al. (2004), a nonzero amplitude error 𝛽′ indicates
that “the wrong volumes of sand have been moved”, whereas Gerritsen et al. (2011)
refer to 𝛽′ as a transport rate error. Section 2.2.4 demonstrates that these interpret-
ations should be used with care, but first the impact of the zero change reference
model on the perception of model skill is discussed.

2.2.3 Morphodynamic model skill as (mis)perceived using the zero change
model

In Eq. 2.11, the MSE is normalized with MSE𝑟 and hence with the observed mean-
squared cumulative bed changes ⟨Δ𝑧2𝑜 ⟩. This means that for the zero changemodel
to be an adequate reference model enabling cross-comparison and absolute rank-
ing of predictions, the net bed changes from the start time of the simulations must
represent an evaluator’s judgements about the difficulty of predictions for differ-
ent situations and simulation times. In this section, we reason that this require-
ment cannot be expected to hold and that consequently the perception of model
skill may be distorted.

Let us first consider two hypothetical regions characterized by an identical,
propagating morphological feature. During the considered time period, both fea-
tures have moved over the same net distance, such that the net displaced sediment
volumes are equal. However, one feature has propagated at a steady speed to its
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final position, while the other feature has first moved in the opposite direction
under the influence of an episodic event, and subsequently slowly moved back,
under milder conditions, to its final position. Although the latter situation would
generally be considered the more difficult prediction situation, cumulative (net)
changes cannot discern between the two.

As a second example, we consider a cross-shore profile development with a
summer–winter cycle and small, random variations between the same seasons
in consecutive years. Now, a cross-shore profile model is initialized from a pro-
file measured in winter and run for several years, covering a number of winter–
summer profile cycles. For all consecutive modelled winter profiles, the accuracy
of the reference is high, such that a similar, high accuracy is required to obtain
a certain level of skill. For the modelled summer profiles on the contrary, each
summer a similar, lesser accuracy is required, since the initial winter bed is not
a good estimate for the observed summer profile. Given a constant modelled ac-
curacy, the diagnosed temporal evolution of model skill would therefore show an
artificial seasonal trend with higher skill in summer, but with no changes between
the same seasons from year to year.

The above examples demonstrate that observed cumulative bed changes are not
likely to be a proper indicator of the inherent ease or difficulty of a morphological
prediction, since they do not reflect the nature of the morphological development
prior to the evaluation time, but only its cumulative effect. The MSESSini could
thus very well make the wrong decision as to which of two predictions is bet-
ter, by awarding a higher skill based merely on a lower accuracy of the initial
bed as the reference and not through any intrinsic higher prediction skill. Con-
sequently, the validity of judging morphodynamic model performance based on
MSESSini, through a ranking as in Table 2.1, may be less generic than often as-
sumed. Note that in weather forecasting, this complication is not encountered in
the same manner, since predictands such as precipitation, as opposed to morpho-
logy, are not cumulative. Also, persistence of the initial situation is only used for
a short enough lag, i.e. as long as persistence can still be considered a reasonable
prediction (e.g. at the scale of days for short-range forecasts).

For longer-range simulations of seasonal systems, a more appropriate naive pre-
diction could be the initial or last observed state for the same season (e.g. “next
July is like this July”, hence a one-year persistence model). By using a one-year
persistence model for inter-seasonal modelling of seasonal morphodynamics, ar-
tificial seasonal variation of skill due to the varying accuracy of the reference can
be avoided. The zero change model may only provide a fair reference as long as
the model-data comparison is performed yearly, at the same phase in the seasonal
cycle as the initial bed.

Still, even if the zero change reference model is only applied yearly, values of
MSESSini for a long-yearly simulation of a seasonal system and an equally long
simulation of a progressive development should not be compared. For the pro-
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gressive development, the use of the zero change reference model implies that
in time, the minimal level of acceptable performance is lowered at a rate determ-
ined by the cumulative (net) observed bed changes. Of course, it could be argued
that the progressive lowering of the (metaphorical) bar qualitatively agrees with
a modeller’s intuition that it is only fair that for a longer time in the simulation,
and hence a more difficult prediction situation, a lesser accuracy is required to
achieve a certain skill level. This interpretation, however, is not consistent with
the fact that the zero change reference model for seasonal systems does not ex-
hibit a similar relaxation of the stringency of the test over the course of multiple
years, regardless of the amount of gross change. As a consequence, the simulation
of the trend has an unfair advantage over the simulation of the seasonal system
and increasingly so further into the simulation.

In conclusion, observed mean-squared cumulative bed changes cannot be ex-
pected to accurately reflect and thus effectively neutralize the level of difficulty
among different prediction situations and times in a simulation. This places severe
limits on the general validity of a comparative analysis based on MSESSini. On
a case-by-case basis, MSESSini, notably its time-evolution for a trend, may still
provide useful information. Therefore, Sect. 2.3 thoroughly investigates how to
interpret the temporal variation of MSESSini for a real-life case that shows a con-
sistent bathymetric development away from the initial bed.

2.2.4 Underestimation of the variance of bed changes through the use of
MSESSini

In this section, we demonstrate that MSESSini is prone to reward predictions that
underestimate the overall magnitude of bed changes. To this end, we analyze the
Murphy–Epstein decomposition of MSESSini, notably the amplitude error 𝛽′.

The behaviour of 𝛽′, which is controlled by 𝜎𝑝′/𝜎𝑜′ and 𝜌𝑝′𝑜′ (Eq. 2.7b), is shown
in Fig. 2.1a for 𝜌𝑝′𝑜′ = 0, 0.6 and 1. The line for 𝜌𝑝′𝑜′ = 0.6 is characteristic of the
behaviour of 𝛽′ for a suboptimal correlation, for instance a situation of an erosion
hole that is slightly misplaced, such that 0 < 𝜌𝑝′𝑜′ < 1; even if the erosion hole
is predicted correctly with respect to size (𝜎𝑝′ = 𝜎𝑜′ ), the amplitude error 𝛽′ is
nonzero. In fact, the amplitude error 𝛽′ is minimized for 𝜎𝑝′/𝜎𝑜′ = 𝜌𝑝′𝑜′ . As a
result, the interpretation of a nonzero 𝛽′ reflecting that the wrong volumes of
sand have been moved is only strictly valid for 𝜌𝑝′𝑜′ = 1 (Sutherland et al., 2004).

The above also implies that for positive correlation, the skill score MSESSini is
maximized for 𝜎𝑝′/𝜎𝑜′ = 𝜌𝑝′𝑜′ (Eq. 2.10 and Fig. 2.1b). This shows an undesirable
property of the MSE skill score, namely that for the same suboptimal anomaly
correlation, a higher skill would have been reported for 𝜎𝑝′/𝜎𝑜′ = 𝜌𝑝′𝑜′ than for
𝜎𝑝′/𝜎𝑜′ = 1, such that sedimentation/erosion fields that underpredict the overall
amount of sedimentation and erosion may be favoured above predictions with the
correct variance of the bed changes. As can be seen from Eq. 2.15b, this feature is
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Figure 2.1: Amplitude error 𝛽′ and skill score MSESSini = 𝛼 ′ − 𝛽′ (assuming 𝛾 ′ = 𝜖′ = 0 in Eq. 2.10) versus 𝜎𝑝′ /𝜎𝑜′ for
𝜌𝑝′𝑜′ equal to 0, 0.6 and 1: (a) 𝛽′ has a minimum for 𝜎𝑝′ /𝜎𝑜′ = 𝜌𝑝′𝑜′ , (b) the skill 𝛼 ′−𝛽′ is maximized for 𝜎𝑝′ /𝜎𝑜′ = 𝜌𝑝′𝑜′ .

inherited from the MSE, which is known for its tendency to reward the underes-
timation of the variability (e.g. Arpe et al., 1985; Gupta et al., 2009; Bosboom and
Reniers, 2014b, i.e. Ch. 4).

Interestingly, a real-life illustration is provided by the comparison of observed
and predicted bathymetric changes for East Pole Sand, reported in Sutherland et al.
(2004). Since three predictions, which only differ with respect to the values of
the representative grain diameter, are compared for the same prediction situation
(their Fig. 4) and hence relative to the same initial bed, the ranking between them
is not affected by the normalization with the accuracy of the reference. Also, the
values of 𝜖′ are equal. From their Fig. 4 and Table 9, it can be seen that among the
three predictions that have the same positive, but nonperfect correlation between
predicted and measured bed changes (𝜌𝑝′𝑜′ = √0.38 = 0.62), the MSESSini favours
the prediction for which 𝜎𝑝′/𝜎𝑜′ is the closest to 𝜌𝑝′𝑜′ (and thus 𝛽′ is the smal-
lest, viz. 𝛽′ = 0.01). The values of 𝛾 ′ are small and do not differ significantly
for the three predictions. As a result, the prediction with the coarsest grain size,
for which the standard deviation of the bed changes deviates most from the ob-
servations (𝜎𝑝′/𝜎𝑜′ = 0.52 or 0.72, cf. Fig. 2.1a2), is diagnosed with the highest
skill (MSESSini = 0.34, 0.29, 0.15 for 𝐷50 = 0.5, 0.35, 0.25mm, respectively). It
is likely however, that an expert, asked to visually compare the quality of these
sedimentation/erosion fields, would not prefer this prediction, as for the coarsest
grain size the (maximum) magnitudes of sedimentation and erosion are clearly

2 For 𝐷50 = 0.5 mm, we have 𝜎𝑝′ /𝜎𝑜′ = 𝜌𝑝′𝑜′ − √𝛽′ = 0.62 ± 0.1. Observing from their Fig. 4 that
𝜎𝑝′ /𝜎𝑜′ increases with decreasing grain size, we deduce, using the values in their Table 9, that for
𝐷50 = 0.35mm and 0.25mm, 𝜎𝑝′ /𝜎𝑜′ = 0.88 and 1.07, respectively.
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underestimated. Apparently, even when predictions are compared relative to the
same initial bed, the characteristics of the MSESSini and its decomposition could
lead to a preference for a prediction that is not consistent with the evaluator’s
judgement.

In summary, for 0 < 𝜌𝑝′𝑜′ < 1, the amplitude error 𝛽′ is minimized and, unless
compensated by systematic bias 𝛾 ′, the MSESSini is maximized for 𝜎𝑝′/𝜎𝑜′ = 𝜌𝑝′𝑜′ ,
thus for predictions that underestimate the variance of the bed changes. Note that,
similarly, theMSE can beminimized through an underprediction of the variance of
bed levels3. Clearly, these findings have implications for (automated) calibration
as well as validation procedures that minimize MSE or maximize4 MSESSini.

2.3 Illustration for the real-life case of Bornrif

In this section, the conventional validation method, discussed in Sect. 2.2, is ap-
plied to 15 years of Delft3D (Lesser et al., 2004) morphodynamic computations for
the Bornrif, a dynamic attached bar at the North-Western edge of the Wadden
Sea barrier island of Ameland, the Netherlands. We specifically explore the cor-
respondence between predictive skill as perceived by the MSESSini and its decom-
position on the one hand, and by visual validation on the other hand. Here, visual
validation is considered as the diagnosis of prediction quality by visual inspec-
tion, which is a powerful yet qualitative and subjective validation method. First,
Sect. 2.3.1 briefly describes the available observations and model set-up. Next,
Sects. 2.3.2 and 2.3.3 evaluate the model results by visually inspecting the pre-
dicted and observed morphology and morphological change and by applying the
conventional error statistics, respectively. In Sect. 2.3.4, the effect of the validation
approach on the perception of model skill is further examined. Finally, the effect
of spatial scales on the skill trend, as perceived by the MSESSini, is examined in
Sect. 2.3.5.

2.3.1 Bornrif model and validation set-up

We have gratefully made use of available morphodynamic simulations from 1993
to 2008 (Achete et al., 2011), which were performed with the specific goal to hind-
cast the spit evolution at the Bornrif area and to project the findings to the Sand En-
gine pilot project at the Delfland coast (Stive et al., 2013). Only sediment transport
due to waves and wave-induced currents was considered. To this end, a set of 12
wave conditions, representing the yearly-averaged climate, was applied through-
out the simulation. While the horizontal tide and the dynamics of the adjacent ebb

3 i.e. for 𝜎𝑝/𝜎𝑜 = 𝜌𝑝𝑜 with 0 < 𝜌𝑝𝑜 < 1, or, equivalently, for predictions that underestimate the variance
of the bed changes, i.e. for 𝜎𝑝′ /𝜎𝑜′ = 𝜌𝑝′𝑜′ with 0 < 𝜌𝑝′𝑜′ < 1 (addendum to Bosboom et al., 2014).

4 The word “maximize” was erroneously omitted in Bosboom et al. (2014), which is corrected here.
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tidal delta were neglected, the vertical tide was taken into account. The morpho-
dynamic evolution was computed on a grid with a resolution of 50 × 50m2 near
the spit and 100 × 50m2 closer to the model boundaries. The initial bed for the
simulations (Fig. 2.2) was prepared from the Vaklodingen data set (Wiegman et al.,
2005).
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Figure 2.2: Initial bathymetry for the Bornrif simulation (1993) with the red polygon indicating the
analysis region.

For the present validation, yearly bathymetric data up to depths of about 16m
(JARKUS data; Minneboo, 1995) are available, interpolated to a 20 × 20m2 grid.
The JARKUSmeasurements aremore frequent than the Vaklodingen, but extend to
smaller water depths. Themeasurements for 1994were excluded from the analysis
because of a significant gap in the data in the considered domain. In order to retain
all observed scales, the comparison between the observed and computed fields is
performed on the 20 × 20m2 grid that the JARKUS data were presented on. To
that end, the computations were interpolated onto the observational grid. The
red polygon in Fig. 2.2 delineates the overlap of the computational domain and
the yearly observations during the entire period and defines the analysis region
for which the various statistics are computed (see Sect. 2.3.3).

2.3.2 Visual validation

The bathymetries and the yearly and cumulative sedimentation/erosion fields
within the bounding polygon are shown in Figs. 2.3 to 2.5, respectively. Visual
validation of bathymetries shows that the computed general migration direction,
the progressive attachment of the spit to the mainland and the subsequent infilling
of the bay qualitatively correspond to the observations (Fig. 2.3). From about 1998,
migrating sand bars are observed at water depths larger than 5m to the east of the
Bornrif, which are not reproduced by the model. The observations further differ
from the computations in that a stronger and faster development and flattening of
the overall shape takes place in reality. The rate between eastward and southward
propagation is smaller in the computations leading to a shorter spit and a faster
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Figure 2.3: Measured (left) and computed (right) Bornrif bathymetries for the years 1993, 1996, 1999, 2002 and 2005
for the analysis region.

land attachment (i.e. at a smaller alongshore distance) and a smaller bay. The
visual comparison of computed and observed bathymetries suggests a decreasing
correspondence in time.

The observed yearly sedimentation/erosion fields (Fig. 2.4) are very different
from the computed fields in that they show a strong, small-scale morphological
variability, not reproduced by the model, in the larger part of the domain. The
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Figure 2.4: Measured (left) and computed (right) Bornrif yearly bed changes for several years.

strength of this variability changes significantly from year to year. From 1998, the
sand bars are clearly visible, particularly at larger water depths to the east of the
Bornrif. In the inlet channel, alternating sedimentation and erosion is observed,
whereas the computations show consistent sedimentation. The visual agreement
between measured and computed yearly bed changes is limited in all years. The
magnitude of the changes is best represented at the start of the computations and
deteriorates with time, as the computed yearly changes strongly reduce towards
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Figure 2.5: Measured (left) and computed (right) Bornrif cumulative bed changes for 1996, 1999, 2002 and 2005 with
respect to the initial bed of 1993.

the end of the simulation.
The cumulative bed changes (Fig. 2.5) show that the model qualitatively repro-

duces the main nearshore feature of large-scale erosion and sedimentation in the
western and eastern parts of the domain, respectively. The spatial extent and the
overall magnitude of the cumulative changes, however, are significantly larger in
the observations, and increasingly so in time. Another marked difference between
observations and computations is that the observed pattern shifts eastward with
time, whereas the computed pattern remains more localized. The computations
further show net sedimentation in the inlet channel that is not found in reality.
The migrating sand bars are best recognized from the yearly changes, but are also
visible in the observed fields of cumulative change, where they are evident as a
smaller-scale variation to the larger-scale trend.

By definition, the point-wise error (𝑝 − 𝑜) = (𝑝′ − 𝑜′). Nonetheless, while it
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was easily concluded that the quality of the bathymetric fields (Fig. 2.3) deterior-
ates with time, it is much harder to visually judge the quality of the cumulative
sedimentation/erosion fields over time (Fig. 2.5). On the one hand, the underestim-
ation of the overall magnitude of the bed changes can be seen to rapidly increase
in time, at least until 2002. On the other hand, the centres of cumulative erosion,
which attract immediate attention, seem to be located closer together in for in-
stance 2002 than in 1996. This ambiguity (and its absence for bed levels) is further
explored in Sect. 2.3.4 by comparison with the conventional error statistics that
are discussed in the next section.

2.3.3 Conventional error statistics

The skill score MSESSini according to Eq. 2.11 is the lowest at the beginning of
the simulation and gradually increases over time from the start of the simulation
until 2002, after which the skill slightly decreases again (Fig. 2.6a). According to
Table 2.1, the score qualifies as “good” for all years. Based on MSESSini, we would
conclude that the quality of the predictions increases with time, at least for the
main part of the simulation until 2002. In contrast, the accuracy of the modelled
bed levels, or equivalently, of the sedimentation/erosion fields decreases with sim-
ulation time, evident from the increase in MSE (Fig. 2.6b)5. That nonetheless the
skill, viz. the relative accuracy, increases with time is due to MSEini, the MSE of
the reference prediction, increasing with time and, until 2002, at a faster rate than
the MSE of the predictions (Fig. 2.6b). With MSEini = ⟨Δ𝑧2𝑜 ⟩, its behaviour is gov-
erned by the increase of the mean-squared cumulative observed bed changes as a
result of the natural development away from the initial situation.

Figures 2.6a and 2.6b exemplify that, for a trend, the accuracy required for a
certain level of skill decreases further into the simulation (Sect. 2.2.3). In order to
better value MSESSini and its temporal variation, a detailed analysis is needed of
the terms that contribute to the absolute and relative accuracy. The decomposed
error terms as defined through Eqs. 2.6 and 2.7 and Eqs. 2.8 and 2.9, with 𝑝′ =
Δ𝑧𝑝 and 𝑜′ = Δ𝑧𝑜 , are shown in Fig. 2.6c and Fig. 2.6d, respectively. The MSE
normalized with the variance of the observed anomalies, shown in Fig. 2.6c, is
dominated by the phase error 1 − 𝛼′ of the anomalies. The normalized sediment
budget error 𝛾 ′ decreases with time and only plays a role in the first half of the
simulation, while the amplitude error 𝛽′ is negligible throughout the simulation.
Figure 2.6d illuminates that the bias part 𝜖′𝜎2𝑜′ of MSEini is negligible (𝜖′ ≪ 1),
such that MSEini ≈ 𝜎2𝑜′ . The skill score (Eq. 2.10) is thus given by MSESSini ≈
1−MSE/𝜎2𝑜′ ≈ 𝛼′−𝛾 ′ and from, say, 1999, MSESSini ≈ 𝛼′. Thus, the decrease of both
the phase error 1−𝛼′ and the sediment budget error 𝛾 ′ contributes to the increase

5 Note that the MSE is not exactly zero for the simulation start time due to the Delft3D algorithm
applied to interpolate the 1993 observed bathymetry to the water-depth points of the staggered
computational grid.
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Figure 2.6: Model performance for Bornrif: (a)MSE skill scorewith the zero changemodel as the reference, MSESSini,
(b) MSE of the computations and MSEini of the initial bed (zero change reference model), (c) MSE normalized with
the variance of the cumulative observed bed changes and its decomposition, Eqs. 2.6 and 2.7 and (d) MSEini and its
decomposition, Eqs. 2.8 and 2.9.

in skill until 2002, the year that exhibits most skill as well as the smallest phase
error. From 2002–2003 onwards, the phase error increases and, consequently, the
skill decreases. Below, we further explain these findings.

The sediment budget error 𝛾 ′ normalizes an absolutemap-mean errorMSEbias =
(𝑝 − 𝑜)2 = (𝑝′ − 𝑜′)2 with the variance of the cumulative observed bed changes 𝜎2𝑜′
(Eq. 2.7c). Analysis showed that the rapid decrease of 𝛾 ′ until 2000 is mainly due
to the strong increase of 𝜎2𝑜′ over time rather than through variation of MSEbias.

The negligible amplitude error 𝛽′ (Eq. 2.7b) is the direct result of 𝜌𝑝′𝑜′ and
𝜎𝑝′/𝜎𝑜′ being relatively close together in value (Fig. 2.7a) and is not to be inter-
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preted as an indicator that the correct volumes of sand are moved; pair-wise com-
parison of the observed and computed fields of cumulative change (Fig. 2.5) sug-
gests a consistent and over time increasing underprediction of the magnitude of
the cumulative bed changes, and, thus, of the volumes of sand moved, at least
in the first half of the simulation (see also Sect. 2.2.4). This is confirmed by the
behaviour of the ratio 𝜎𝑝′/𝜎𝑜′ between the standard deviations of computed and
measured cumulative bed changes, which has values consistently smaller than 1
and as low as about 0.6 from 2000 onwards (Fig. 2.7a).

The effect on the skill score is visualized in Fig. 2.7b, which shows the behaviour
of MSESSini = 𝛼′ − 𝛽′ (Eq. 2.10 assuming 𝛾 ′ = 𝜖′ = 0) as a function of 𝜌𝑝′𝑜′ and
𝜎𝑝′/𝜎𝑜′ . As expected, the values for the Bornrif simulation can be seen to lie close
to the green diagonal (𝜌𝑝′𝑜′ = 𝜎𝑝′/𝜎𝑜′ ) along which 𝛽′ is minimized. Consequently,
for the Bornrif, a much smaller underestimation of the variance of the cumulative
bed changes would, counter-intuitively, have raised MSE values and lowered the
diagnosed skill levels, as in the case of East Pole Sand (Sect. 2.2.4).
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Figure 2.7: Skill levels benefit from underestimation of bed changes: (a) correlation 𝜌𝑝′𝑜′ and ratio of the standard
deviations 𝜎𝑝′ /𝜎𝑜′ of the predicted and observed cumulative bed changes for the Bornrif simulation, (b) skill score
MSESSini = 𝛼 ′ − 𝛽′ (assuming 𝛾 ′ = 𝜖′ = 0) as a function of 𝜌𝑝′𝑜′ and 𝜎𝑝′ /𝜎𝑜′ with the Bornrif values for all years
indicated with “+”. Along the green diagonal (𝜌𝑝′𝑜′ = 𝜎𝑝′ /𝜎𝑜′ ), the amplitude error is minimized and, in the absence
of map-mean errors, the skill maximized at MSESSini ≈ 𝛼 ′.

With 𝛽′ negligible and 𝛾 ′ vanishing after the first years of the simulation, the
skill score MSESSini peaks simultaneously with the phase association 𝛼′ and the
maximum value of MSESSini, in 2002, is fully determined by 𝛼′ (Figs. 2.6a and 2.6c).
In Sect. 2.2.2, we interpreted 𝛼′ as the structural similarity between predicted and
observed cumulative sedimentation/erosion patterns. Since it is invariant to map-
mean error and changes in scale of observations and predictions (in other words:
the mean and variance of observed and predicted bed changes are irrelevant), 𝛼′
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does not provide information on the accuracy of predictions (Willmott, 1982).
In summary, it is inherent to the use of the initial bed as the reference that

while the morphology progressively develops away from the initial bed, larger
absolute errors (MSE, MSEbias) are allowed in order to obtain a certain level of
skill. Further, for the Bornrif simulation, the skill levels benefit from the consist-
ent underestimation of the magnitude of the bed changes (𝜎𝑝′/𝜎𝑜′ < 1). In fact,
the underestimation is largest in 2002, the year for which maximum skill is repor-
ted. This undesirable behaviour of MSESSini is inherited from the use of the MSE
as the accuracy measure (cf. Sect. 2.2.4). The skill maximum is due only to the
greatest similarity, in 2002, in the structure of the sedimentation/erosion patterns
(as measured by 𝜌𝑝′𝑜′ or 𝛼′).

2.3.4 Visual validation versus error statistics

Sections 2.3.2 and 2.3.3 illustrated that prediction quality, the degree of corres-
pondence between predictions and observations (Murphy, 1993), is a multidimen-
sional concept. Logically, as follows from Eq. 2.10, MSESSini and its components
describe aspects of prediction quality related to the cumulative sedimentation/er-
osion fields from the start of a simulation. While visually judging fields of cumu-
lative change, we tend to compare the structure as well as the magnitude of the
fluctuating parts of pairs of observations and predictions (Sect. 2.3.2). A small bias,
as in Fig. 2.5, will most likely go unnoticed. Our impression, from Fig. 2.5, of the
structure and magnitude of the anomalies over time qualitatively corresponds to
the behaviour of 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ (Fig. 2.7a), respectively. The opposite behaviour
of 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ explains the ambiguity that was found in visually judging,
based on Fig. 2.5, whether the predictions in 1996 or 2002 are of higher quality.
On the contrary, the development of MSESSini over the course of the simulation
was seen to merely report the correlation 𝜌𝑝′𝑜′ between cumulative sedimenta-
tion/erosion fields (Fig. 2.6c), such that the 2002 predictions are diagnosed with
maximum skill (Fig. 2.6a). A morphologist, however, asked to visual judge the
fields of cumulative change, will probably only reach a similar conclusion when
turning a blind eye to the differences in scale, both between observations and pre-
dictions at a particular time and between pairs of observations and predictions at
different times.

Prediction quality, as perceived by pair-wise visual comparison of bed levels
rather than cumulative change, was unambiguously found to deteriorate over time
(Sect. 2.3.2). Clearly, even though MSE = ⟨(𝑧𝑝 − 𝑧𝑜)2⟩ = ⟨(Δ𝑧𝑝 − Δ𝑧𝑜)2⟩, other as-
pects of prediction quality are highlighted when visually judging the closeness
of bed levels instead of cumulative sedimentation/erosion fields. This can be ex-
plained by considering the Murphy–Epstein decomposition of MSE in terms of
the bed levels (Eq. 2.14 and Fig. 2.8a), as opposed to of the anomalies (Eq. 2.6
and Fig. 2.6c). Although the variance of the observations 𝜎2𝑜 varies in time (Fig. 2.8b),
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Figure 2.8: Comparison of overall statistics for measured and computed Bornrif bathymetries: (a) MSE normalized
with the observation variance and its decomposition, (b) variance of observed and computed bed levels, (c) correl-
ation and ratio of standard deviations of the measured and predicted bed levels and (d) MSE skill score for yearly
bed changes with a zero change reference model (MSESSΔ𝑧,1). Note that, similar as for the MSE5, the 1993 measured
and computed parameters differ slightly.

it is relatively constant as compared to 𝜎2𝑜′ (Fig. 2.6d). Hence, where the MSE nor-
malized with 𝜎2𝑜′ behaves quite differently from the MSE itself, the MSE normal-
ized with 𝜎2𝑜 increases in time as the MSE does. From Fig. 2.8a, MSE/𝜎2𝑜 can be
seen to be dominated by the phase error 1 − 𝛼 , which increases with time as a res-
ult of the decreasing correlation 𝜌𝑝𝑜 between predicted and observed bed levels
(Fig. 2.8c). Analogously, the most obvious finding from the visual validation of
bed levels (Fig. 2.3) was the decreasing overall agreement in structural similarity
between the measured and predicted bathymetric fields. The slight increase in
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amplitude error 𝛽 is governed by the fact that 𝜌𝑝𝑜 decreases faster with time than
𝜎𝑝/𝜎𝑜 (Fig. 2.8c). Note further that, analogously to 𝛽′, 𝛽 would have been larger,
if only slightly, for 𝜎𝑝/𝜎𝑜 = 1.

The normalized metrics for the bed levels, 𝜌𝑝𝑜 and 𝜎𝑝/𝜎𝑜 , provide information
not contained in the anomalies. For instance, from Fig. 2.8b, it is apparent that the
computational variance develops towards a constant, too low level at which the
larger-scale modelled bathymetry appears to be in equilibrium with the applied
representative yearly-averaged wave climate. Further, without taking possible
compensation due to systematic bias into account, 𝜌𝑝𝑜 < 𝜎𝑝/𝜎𝑜 indicates that at
deeper water the predicted depths are overestimated (and at smaller depths under-
estimated), see Appendix 2.A. A regression demonstrated that this is most likely
the result of the large extent of sedimentation at deeper water that is not mimicked
by the model (Fig. 2.3).

In conclusion, MSESSini by itself sheds a limited light on themodel performance
for the Bornrif; it merely reports the development of the correlation 𝜌𝑝′𝑜′ between
cumulative sedimentation/erosion fields. A morphologist, asked to visually eval-
uate the time evolution of model performance on the basis of Figs. 2.3 and 2.5,
would most likely report his impression of the degree of overall correspondence
between the fields, the relative role of map-mean error and the extent to which
the magnitudes and structure of the fields of cumulative change and bed levels
are reproduced. These subjective notions can be quantified by e.g. MSE, MSEbias,
𝜎𝑝′/𝜎𝑜′ , 𝜌𝑝′𝑜′ , 𝜎𝑝/𝜎𝑜 and 𝜌𝑝𝑜 respectively.

2.3.5 The effect of various spatial scales

The various statistics, discussed in Sect. 2.3.4, inevitably combine information
across a range of spatial scales. Hence, it is nontrivial to relate 𝜌𝑝𝑜 and 𝜎𝑝/𝜎𝑜 or
𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ to particular features of interest in the morphology or the fields of
cumulative change, respectively. The range over which spatial scales are lumped
together is especially wide for the normalized bed level metrics, 𝜌𝑝𝑜 and 𝜎𝑝/𝜎𝑜 ,
in which scales up to the size of the model domain play a role (cf. Sect. 2.3.4).
By implication, the values of 𝜌𝑝𝑜 or 𝜎𝑝/𝜎𝑜 are sensitive to the inclusion of mor-
phologically inactive regions, which is not the case for 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ , and are
arguably dominated by the larger scales.

Upon visual inspection, it was concluded that the simulations capture little of
the year-to-year variability, while the larger-scale fields of cumulative change are
reasonably well predicted (Sect. 2.3.2). This suggests that the relative contribution
of the smaller scales to 𝜌𝑝′𝑜′ , 𝜎𝑝′/𝜎𝑜′ andMSESSini decreases during the simulation.

The skill at smaller spatial scales can be quantified by taking a slightly different
approach to skill, which considers the bathymetric change rather than themorpho-
logy itself. Skill can now be defined as the relative accuracy of bed changes rather
than bed levels, using a reference of zero change and considering bed changes in
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a one-year period. Denoting the yearly predicted and measured bed changes with
Δ𝑧𝑝,1 and Δ𝑧𝑜,1, respectively, we now have 𝑝 = Δ𝑧𝑝,1 and 𝑜 = Δ𝑧𝑜,1 in Eq. 2.3 and
𝑟 = 0 in Eq. 2.5. Upon substitution, Eq. 2.2 yields:

MSESSΔ𝑧,1 = 1 − ⟨(Δ𝑧𝑝,1 − Δ𝑧𝑜,1)2⟩
⟨Δ𝑧2𝑜,1⟩

. (2.12)

Note that if the period of bed changes were taken as the simulation duration up
to the evaluation time, we obtain MSESSini (Eq. 2.11).

For all years of the Bornrif simulation, the relative accuracy of yearly change,
MSESSΔ𝑧,1, is low or negative (Fig. 2.8d) and tends to decrease further into the
simulation. Note that the relatively low value for 1996 is the result of the rather
small observed morphological change in 1995–1996 (Fig. 2.6d). Since Eq. 2.12 does
not consider any cumulative effect on timescales larger than one year, the cancel-
lation of errors over the course of multiple years (as can be expected specifically
for the smaller spatial scales) is not taken into account.

Based on the above, we hypothesize that the relatively low values of MSESSini
at the beginning of the Bornrif simulation (Fig. 2.6a) are mainly due to unskilful
smaller spatial scales. When, over time, the relative contribution of these smaller
scales to the cumulative change decreases, the larger scales are allowed a greater
opportunity to become correlated to the predictions, until at some point in the
simulation, the main part of the skill is attributable to the more skilful, persist-
ent large-scale trend. Hence, further into the simulation, on average higher skill
values are found. The same phenomenon may also, at least partly, explain the
period of negative to low skill that is referred to as spin-up time and often found
at the beginning of long-yearly morphodynamic simulations (Dam et al., 2013).
An increase in skill, for longer prediction horizons, is then to be interpreted as the
emerging of the more skilful larger scales. Clearly, the above demonstrates the
need for validation methods that distinguish between various spatial scales.

2.4 Summary and discussion

The use of MSESSini (Eq. 2.11) as (the main) indicator of morphodynamic model
performance has implications for the perception ofmodel skill. We summarize and
discuss these implications in this section. First, Sect. 2.4.1 focuses on the effect of
the choice of the zero change reference model. Second, Sect. 2.4.2 summarizes the
aspects of model performance captured byMSESSini as well as by visual validation.

2.4.1 The zero point at the scale of skill

The MSESSini is frequently used to compare morphodynamic model performance
across different prediction situations. We have demonstrated however, that the

45 On the perception of morphodynamic model skill



validity of the ranking based on MSESSini (Table 2.1) is limited and that absolute
values of skill levels for different geographical locations, time periods or forcing
conditions should not be compared. For the MSESSini to create a level playing
field, the cumulative observed bed changes from the initial bed must adequately
reflect the intrinsic difficulty levels across situations with a different morpholo-
gical development (for instance trend, cyclic/seasonal, episodic or combinations
thereof). Synthesized examples (Sect. 2.2.3) showed that this assumption cannot
be expected to hold.

In connection with the above, it was argued that MSESSini may also misreport
the temporal evolution of model skill. For inter-seasonal modelling of seasonal
systems, the normalization with the mean-squared cumulative bed changes may
result in an artificial seasonal variation of the accuracy of the initial bed and hence
of the reported model skill (Sect. 2.2.3). More in general, when predicting cyclic
morphodynamics, any single-state reference, whether a longer-term average or
an arbitrary moment’s actual bathymetry, unavoidably leads to a zero level on the
scale of skill that fluctuates with the observed deviation from the reference.

For prediction situations that include a trend, the use of the zero change refer-
ence model means that, in time, the minimal level of acceptable performance is
lowered at a rate determined by the cumulative observed bed changes (Sect. 2.2.3).
If the accuracy of the reference model decreases in time at a faster rate than the
accuracy of the predictions, the MSESSini may even increase with time, while the
agreement betweenmodelled and observed bathymetry strongly decreases, as was
seen for the Bornrif (Sect. 2.3.3). It is debatable whether the zero change reference
model sets an ambitious enough quality standard, especially for longer prediction
horizons. For instance, the 2008 Bornrif prediction obtains positive skill if it out-
performs the prediction “2008 is like 1993”, 1993 being the start of the simulation
(Sect. 2.3.3). This reference prediction, however, is not very likely in the eyes of a
morphologist, who expects the Bornrif to gradually diffuse eastward.

A slightly different normalization is applied by Ruessink and Kuriyama (2008),
who normalize with the expected value of the mean-squared difference between
two bathymetric profiles with a sampling interval equal to the time elapsed from
the start of the simulation. Although in this way the accuracy of the zero change
reference is determined in an averaged sense, the magnitude of the denominator
remains dependent on the cumulative morphological development.

Alternatives to the model of zero change, valid across different morphological
systems, are nontrivial. For inter-seasonal modelling of seasonal systems, a per-
sistencemodel could be adequate as long as the observations from the same season
are assumed to persist (as opposed to assuming that the initial bed persists). If for
the example of the summer–winter cycle in Sect. 2.2.3, the initial or last observed
state from the same seasonwere used, this would have eliminated the artificial sea-
sonal fluctuation of the accuracy of the reference and subjected the summer and
winter profiles to an equal test. Naturally, for a trend, a more appropriate naive
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model would be some estimate of the trend, producing more accurate reference
predictions than the zero change model. One of the rare examples in morphody-
namic modelling is due to Davidson et al. (2010) who make use of a linear trend
prediction as the benchmark for coastline modelling. Unfortunately, for area mod-
els the quantification of a naive trend prediction is far from trivial.

In conclusion, a comparative evaluation based on skill scores, however defined,
is unlikely to have general validity. Instead of through an absolute ranking of
predictions, skill levels should thus be valued on a case-by-case basis. In doing
so, when reporting the temporal variation of MSESSini, we recommend that at the
very least also values of MSE are reported, such that a broader view on model
performance can be obtained than by using MSESSini alone.

2.4.2 Multiple dimensions to prediction quality

Using the evaluation of the Bornrif model performance as an example, multiple as-
pects of prediction quality were identified, viz. the extent to which themagnitudes
and structure of the fields of cumulative change and bed levels are reproduced, the
degree of overall correspondence between the fields and the relative role of map-
mean error (Sect. 2.3.2). These notions can be quantified by e.g. 𝜎𝑝′/𝜎𝑜′ , 𝜌𝑝′𝑜′ ,
𝜎𝑝/𝜎𝑜 , 𝜌𝑝𝑜 , MSE and MSEbias, respectively (Sects. 2.3.3 and 2.3.4). Summary met-
rics, such as theMSE and theMSESSini, were seen to provide an implicit weighting
of systematic bias terms as well 𝜌𝑝𝑜 and 𝜎𝑝/𝜎𝑜 and 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ , respectively.
Unfortunately, in doing so, MSE and MSESSini tend to reward the underprediction
of the variance of bed levels and bed changes, respectively, as shown in Sect. 2.2.4.

This tendency of the mean-squared-error measure of accuracy, in combination
with the model of zero change, to favour predictions that underestimate the vari-
ance of the cumulative bed changes, was easiest appreciated in the absence of
systematic bias and sediment import or export (𝛾 ′ = 𝜖′ = 0). Then, 1 − MSESSini
differs from MSE by a factor 1/𝜎 ′𝑜 2 and is fully determined by the correlation 𝜌𝑝′𝑜′
and the ratio of the standard deviations 𝜎𝑝′/𝜎𝑜′ of the predicted and measured bed
changes. It was found that for the same map-mean errors and suboptimal 𝜌𝑝′𝑜′
(0 < 𝜌𝑝′𝑜′ < 1), the skill MSESSini is maximized for 𝜎𝑝′/𝜎𝑜′ = 𝜌𝑝′𝑜′ , hence for too
small overall bed changes (Sect. 2.2.4 and Fig. 2.7b). For a real-life case, taken from
literature, this was shown to have resulted in the ranking of predictions based on
MSESSini being inconsistent with expert judgement (Sect. 2.2.4). Similarly, since
for the Bornrif simulation 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ are close together in value (Fig. 2.7a),
the skill levels are dominated by 𝜌𝑝′𝑜′ . As a result, the development of MSESSini in
timewas seen tomerely report the correlation 𝜌𝑝′𝑜′ between cumulative sediment-
ation/erosion fields (Sect. 2.3.3) and the year with the largest underestimation of
the variance of cumulative change could be diagnosed with maximum skill.

Clearly, this finding has implications for (automated) calibration procedures
that minimize MSESSini; for positive, suboptimal correlation, reduction of the
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overall sizes of bed changes by, for instance, choosing an unrealistic transport
parameter is an effective, though undesirable method to obtain higher values of
MSESSini.

In morphodynamic model validation, the MSESSini is sometimes supplemented
with its Murphy–Epstein decomposition (Eq. 2.10). Although this may provide
some of the required extra information, a few warnings are warranted here. First,
the phase and amplitude errors according to the Murphy–Epstein decomposition,
1−𝛼′ and 𝛽′, respectively, are not necessarily in line with the morphologists’ intu-
itive definition. The phase association 𝛼′ (Eq. 2.7a) is best explained as a measure
of the structural similarity between the sedimentation/erosion fields, indicating
to what extent not only locations but also shapes and relative magnitudes of the
sedimentation/erosion features are correct (but note that 𝛼′ does not distinguish
between positive and negative correlations). Further, when neglecting systematic
bias, 𝜎𝑝′/𝜎𝑜′ rather than 𝛽′ (Eq. 2.7b) would be the more appropriate overall in-
dicator of agreement between the predicted and observed sizes of bed changes
and, therefore, cumulative volumes of sand moved. Finally, the interpretation of
the sediment budget error 𝛾 ′ (Eq. 2.7c) is also nontrivial, since it normalizes an
absolute sediment budget error with the variance of the cumulative observed bed
changes. This normalization, and the related complications for the interpretation
of 𝛾 ′, are inherited from the zero change reference model.

None of the above mentioned measures facilitates a distinction between the
multiple scales at which features of interest appear in bed levels and fields of cu-
mulative change. As a consequence, they do not provide guidance as to which
scales in the output can be considered of sufficient quality. Furthermore, their
temporal variation may carry the signature of a combination of small-scale vari-
ability and larger-scale trends. For instance, negative or low values of MSESSini
at the beginning of a simulation may be attributable to inadequately represented
small-scale variability, whereas larger values further into the simulation could be
due to larger-scale trends (Sect. 2.3.5).

In summary, although frequently used as the main indicator of morphodynamic
model skill, the use of MSESSini (or any other measure of quality) is not sufficient
to describe prediction quality in its full dimensionality. In order to capture the
various aspects of model performance contained in the fields of bed levels and
cumulative and yearly sedimentation/erosion, multiple accuracy/skill measures
must be reported (Sects. 2.3.3 and 2.3.4). In doing so, it is crucial, yet nontrivial,
to fully appreciate which aspect(s) of model quality is (are) exactly captured in a
particular score. A method that allows any metric to selectively address multiple
spatial scales could further broaden our view onmodel performance (see Bosboom
and Reniers, 2014a, i.e. Ch. 6). Finally, the tendency of MSE and MSESSini to re-
ward the underprediction of the variance of bed levels and bed changes, respect-
ively, calls for the development of alternative summary metrics (e.g. Taylor, 2001;
Koh et al., 2012; Bosboom and Reniers, 2014a,b, i.e. Chs. 4 and 6).
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2.5 Conclusions and future work

As demonstrated with synthetic examples, examples from literature and a long-
yearly Delft3D model simulation, the mean-squared-error skill score relative to a
prediction of zero change may produce a relative ranking of predictions that does
not match the intuitive judgement of experts. This is true for the comparison of
skill across different prediction situations, e.g. different forcing conditions or in-
ternal dynamics, as well for the temporal variation of skill within a simulation.
Two main causes of unexpected skill are identified. First, the zero change refer-
ence model assumes that the conditions at the start of the simulations persist in
time, such that the minimal level of acceptable performance varies with the mean-
squared observed cumulative change. The latter fails to reflect the relative diffi-
culty of prediction situations with a different morphological development prior to
the evaluation time (for instance trend, cyclic/seasonal, episodic or combinations
thereof). Second, since the MSE is prone to reward predictions that underestimate
variability, an underprediction of the variance of cumulative bed changes leads to
a higher diagnosed skill.

On a case-by-case basis, a balanced appreciation of model performance requires
that multiple accuracy and/or skill metrics are considered in concert. For instance,
the temporal evolution of skill as diagnosed through the mean-squared-error skill
score is best valued in combination with the MSE itself. In addition, we recom-
mend the use of separate measures for map-mean error and magnitude and struc-
ture of the fluctuating parts, for both morphology and bed changes, which are
more in line with the morphologists’ intuitive definition than the decomposed
error contributions according to the Murphy–Epstein decomposition.

Of course, the morphologist may sometimes still desire a single-number sum-
mary of the main aspects of model performance, especially if automated calibra-
tion routines are used. We are therefore exploring alternative summary metrics
that, unlike grid-point based accuracy measures, such as the MSE, and its derived
MSE skill score relative to the initial bed, penalize the underestimation of variabil-
ity. For instance, experimental work is undertaken to formulate error metrics that
take the spatial structure of 2D morphological fields into account (Bosboom and
Reniers, 2014b, i.e. Ch. 4). Further, since model predictions are not necessarily of
similar quality at different spatial scales, a method is being developed that allows
any metric to selectively address multiple scales (Bosboom and Reniers, 2014a, i.e.
Ch. 6). This scale-selective validation method for 2D morphological predictions
provides information on model skill and similarity in amplitude and structure per
spatial scale as well as aggregated over all scales.
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2.A Murphy–Epstein decomposition of MSE

Algebraic manipulation of the MSE, Eq. 2.3, leads to (Murphy, 1988):

MSE = 𝜎2𝑝 + 𝜎2𝑜 − 2𝜎𝑝𝜎𝑜𝜌𝑝𝑜 + (𝑝 − 𝑜)2 (2.13)

where 𝑝 and 𝑜 are the weighted map means and 𝜎𝑝 and 𝜎𝑜 the weighted stand-
ard deviations of the predictions 𝑝 and the observations 𝑜, respectively, and 𝜌𝑝𝑜 is
the weighted Pearson product-moment correlation between the predictions and
the observations. The latter is given by 𝜌𝑝𝑜 = 𝜎𝑝𝑜/(𝜎𝑝𝜎𝑜), with 𝜎𝑝𝑜 denoting the
weighted covariance between 𝑝 and 𝑜, and reflects the overall strength and dir-
ection of the linear correspondence between pairs of computations and observa-
tions; a deviation from −1 or 1 implies scatter around the best linear fit. We can
rearrange the terms in Eq. 2.13 to arrive at (Murphy and Epstein, 1989):

MSE = 𝜎2𝑜 (1 − 𝛼 + 𝛽 + 𝛾) (2.14)

where

𝛼 = 𝜌2𝑝𝑜 (2.15a)

𝛽 = (𝜌𝑝𝑜 −
𝜎𝑝
𝜎𝑜

)
2

(2.15b)

𝛾 = (𝑝 − 𝑜)2
𝜎2𝑜

. (2.15c)

Here, 𝛾 is a normalized map-mean error. The term 𝛽 is the conditional bias,
which is nonzero if the slope 𝑏 = 𝜌𝑝𝑜𝜎𝑜/𝜎𝑝 of the regression line of the observa-
tions 𝑜, given the predictions 𝑝, deviates from 1. Given a positive correlation and
unless compensated by systematic bias, 𝑏 > 1 indicates that smaller values are
overpredicted and larger values are underpredicted (and vice versa for 𝑏 < 1). The
term 𝛼 is the coefficient of determination defined as the proportion of the vari-
ation in the values of 𝑜 that can be linearly “explained” (in a statistical sense) by
𝑝, or vice versa (Taylor, 1990).

Since MSE = ⟨(𝑝 − 𝑜)2⟩ = ⟨(𝑝′ − 𝑜′)2⟩, Eqs. 2.13 to 2.15 are equally valid when 𝑝
and 𝑜 are replaced with 𝑝′ and 𝑜′, respectively.
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3 The deceptive simplicity of the Brier skill
score

This chapter is republished with minor changes only from J. Bosboom and A.
Reniers (2018). The deceptive simplicity of the Brier skill score. In: Y.C. Kim
(Ed.), Handbook of Coastal and Ocean Engineering, pp. 1639–1663, doi:10/c5tr.

The often used mean-squared-error skill score (MSESS), a.k.a. the Brier skill
score (BSS) is based on the assumptions that the mean-squared error (MSE) is an
appropriate measure of correspondence for morphological predictions and that
the accuracy of the initial bed as the reference correctly reflects the inherent dif-
ficulty or ease of prediction situations. In Ch. 2 (Bosboom et al., 2014), it was
demonstrated that unexpected skill may be reported due to a violation of either
of these assumptions.

The goal of Ch. 3 is to further investigate and illustrate the behaviour of the
BSS through numerous simple examples and examples from literature. Besides,
we pay due attention to the evaluation of the treatment of measurement error in
the skill scores and the skill rankings. In order to account for measurement error,
adjusted MSESS formulations and skill classifications have been suggested by van
Rijn et al. (2003) and Sutherland et al. (2004). Unfortunately, this has initiated an
inconsistent use of skill definitions and rankings in subsequent literature. This
chapter establishes the best method to take measurement error into account.

The highlights of this chapter are:

1. Simple examples demonstrate how the Murphy–Epstein decomposition of
the MSESS must be interpreted.

2. Existing methods to correct for measurement error are shown to be in-
consistent in either their skill formulation or their suggested classification
scheme.

3. It is illustrated through various examples that the initial bed as the reference
prediction does not succeed in making model performance comparable for
common morphological prediction situations.

4. Hypothetical examples and examples from literature illustrate that if max-
imizing the MSESS is the objective, underpredicting the variability of bed
changes is generally advantageous.

5. It is exemplified that the combination of larger, persistent and smaller, in-
termittent scales of cumulative change leads to an increase of the MSESS
with time, while the skill on either of these scales is kept constant in time.
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Abstract

The quality of morphodynamic predictions is often indicated by a skill score that
weights the mean-squared error (MSE) of the prediction by that of the initial bed
as the reference prediction. As simple as this Brier skill score (BSS) or mean-
squared-error skill score (MSESS) may seem, it is not well understood and, hence,
sometimes misinterpreted. This chapter aims at improving the understanding of
the MSESS. We review existing MSESS formulations and classifications, with and
without accounting for measurement error. Using simple examples, we illumin-
ate which aspects of prediction quality the MSESS actually measures. It is shown
that the MSESS tends to favour model results that underestimate the variance of
cumulative bed changes. We further demonstrate that the normalization by the
observed cumulative change, which follows from the choice of the initial bed as
the reference, is not effective in creating a level playing field over a wide range of
prediction situations (trend, episodic event, different seasons). Also, it is shown
that the combined presence of larger, persistent scales and smaller, intermittent
scales in the cumulative bed changes may lead to an apparent increase of skill
with time, while the prediction of neither of these scales becomes more skilful
with time. Finally, in order to obtain a balanced appreciation of model perform-
ance, the use and development of a more extensive suite of validation measures is
advocated.

3.1 Introduction

The introduction of the Brier skill score (BSS) for coastal morphology (Sutherland
et al., 2004) was an important step in the further maturing of morphodynamic
modelling practice (Roelvink and Reniers, 2012). This BSS essentially is a mean-
squared-error skill score (MSESS) measuring the accuracy of a prediction relat-
ive to a reference, often the initial bed. Prior to its introduction, the evaluation
of the quality of 2D morphological predictions was largely by visual comparison
of patterns of sedimentation and erosion between observations and simulations.
This is a powerful method, but prone to individual and subjective biases of inter-
pretation. Besides, it is increasingly difficult to apply if there are multiple predic-
tions, as in a sensitivity analysis or ensemble prediction. By yielding a normalized
single-number score, the MSESS objectifies the assessment of model performance
and allows the intercomparison of quality across a range of prediction situations.
Through a generic classification based on its values, predictions receive a quality
label. Unsurprisingly, the MSESS has become widely accepted amongst morpho-
dynamic modellers as the preferred way of demonstrating model skill (see also
Bosboom et al., 2014, i.e. Ch. 2, and references therein).

A comparative analysis based on skill scores requires a good understanding of
the statistics of predictive skill (Gallagher et al., 1998). Along with the MSESS,
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Sutherland et al. (2004) introduced the Murphey–Epstein decomposition (Murphy
and Epstein, 1989) into phase, amplitude, and map-mean error. Although this
decomposition can provide valuable insight into specific aspects of prediction
quality, it has only been used in a limited number of morphological applications
(e.g. van der Wegen et al., 2011; van der Wegen and Roelvink, 2012; Ruessink and
Kuriyama, 2008) and seems to be not well understood (Bosboom et al., 2014, i.e.
Ch. 2). Further, there have been some accounts of skill scores not matching the
researcher’s perception of model performance due to the use of the initial bed
as the reference (Bosboom et al., 2014; Gallagher et al., 1998; van der Wegen and
Roelvink, 2012) or the mean-squared error (MSE) as the accuracy measure (Guerin
et al., 2016). Nonetheless, surprisingly little attention has been paid to the inter-
pretation of the MSESS and its values. A recent analysis (Bosboom et al., 2014)
of the perception of morphodynamic model skill through the MSESS showed that
the apparent simplicity of the MSESS in the context of morphodynamic modelling
is deceptive and morphodynamic skill may be misinterpreted as a result.

The main purpose of this chapter is to illustrate the essence of the MSESS using
simple, hypothetical examples and examples from literature. We discuss to what
extent the MSESS is truly capable of comparing model results for different con-
ditions, regions, time periods et cetera. Further, the question is addressed as to
which aspects of prediction quality are exactly measured by the MSESS. In doing
so, we also pay attention to formulations and classifications for the MSESS that
are adjusted to take measurement errors into account (Sutherland et al., 2004; van
Rijn et al., 2003). Section 3.2 summarizes the concept of skill, both in general and
in the context of morphodynamic model validation. Next, in Sect. 3.3 due atten-
tion is paid to the Murphy–Epstein decomposition (Murphy and Epstein, 1989).
Section 3.4 reviews the adjustments to the MSESS (Sutherland et al., 2004; van
Rijn et al., 2003) that aim to account for measurement error. The classifications of
prediction quality, for the skill scores with and without corrections for measure-
ment error (Sutherland et al., 2004; van Rijn et al., 2003), are discussed in Sect. 3.5.
Section 3.6 specifically focusses on the aspects of the MSESS that tend to lead to
a misperception of skill. For the reader that is already familiar with the details of
the MSESS, this section provides a quick assessment of some common mistakes
made in its interpretation. Finally, Sect. 3.7 presents conclusions and discusses
strategies for improving model validation efforts.

3.2 What is the Brier skill score?

In this section, we describe the rationale behind the BSS. First, the concept of
skill is elaborated on in Sect. 3.2.1. Next, Sect. 3.2.2 presents the definition of the
skill score based on the MSE. It has become known amongst coastal modellers as
the Brier skill score (BSS), but would more accurately be named MSE skill score
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(MSESS) as explained in Sect. 3.2.3. Finally, Sect. 3.2.4 discusses the choice of
reference, which is a crucial element of skill.

3.2.1 The concept of skill

The concept of skill refers to the relative accuracy of a prediction compared to a
baseline or reference prediction. For a prediction with accuracy 𝐸, a skill score
ESS can be formulated as follows:

ESS = 𝐸 − 𝐸𝑟
𝐸i − 𝐸𝑟

(3.1)

where 𝐸𝑟 is the accuracy of a baseline or reference prediction and 𝐸i of an im-
peccable (perfect) prediction. Hence, skill is the difference in accuracy between a
prediction and an unskilled reference prediction normalized by the total possible
improvement that can be achieved (with respect to the reference prediction). A
prediction that is as good as the reference prediction obtains a score of 0 and a
perfect prediction a score of 1. A value between 0 and 1 can be interpreted as
the proportion of improvement over the unskilled reference prediction. Negative
values indicate a prediction worse than the reference prediction.

The concept of skill or relative accuracy aims at making model performance
comparable across a range of prediction situations. This allows the ranking of
predictions with different (numerical) models and for different geographical loca-
tions, forcing conditions, time periods or internal dynamics. A more difficult pre-
diction situation implies a lower accuracy of the reference prediction, such that
a lower accuracy is required to obtain a certain skill level. However, in various
fields, notably weather forecasting, skill scores were found to not be fully effect-
ive in neutralizing the situation’s inherent difficulty (Winkler, 1994; Winkler et al.,
1996). In Sect. 3.2.4, we will discuss the usual choices of reference, notably the zero
change model, for morphodynamic modelling.

3.2.2 Mean-squared-error skill score

For nonprobabilistic predictions of continuous variables, such as wave height or
seabed elevation, a common choice for the accuracy measure 𝐸 in Eq. 3.1 is the
MSE. The resulting skill score is often referred to as mean-squared-error skill
score outside our field, e.g. Murphy (1988), but is named Brier skill score by coastal
modellers following Sutherland et al. (2004)—see Sect. 3.2.3. It reads:

MSESS = MSE −MSE𝑟
0 −MSE𝑟

= 1 − MSE

MSE𝑟
(3.2)

since the MSE of a perfect prediction MSEi = 0.
The MSE between predictions 𝑝 and observations 𝑜 is defined as:
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MSE = ⟨(𝑝 − 𝑜)2⟩ = 1
𝑛

𝑛
∑
𝑖=1

𝑤𝑖(𝑝𝑖 − 𝑜𝑖)2 (3.3)

where (𝑝𝑖 , 𝑜𝑖) are the 𝑖th pair of the predictions and observations, the angle brack-
ets denote averaging over the 𝑛 pairs of predictions and observations and 𝑤𝑖 are
weighting factors with ∑𝑤𝑖 = 1. In morphodynamic modelling, the predictand is
the bed level, such that 𝑝 and 𝑜 are the fields of predicted and observed bed levels
𝑧𝑝 and 𝑧𝑜 , respectively. Equation 3.2 then operates on the gridded predicted and
observed fields by spatially averaging the individual squared differences between
the two at each of the 𝑛 grid points. While for regularly spaced grids 𝑤𝑖 = 1, for
irregularly spaced grids the spatial averaging must be weighted by the grid-cell
size represented by 𝑤𝑖 . The MSE is known to be unduly sensitive to outliers (Jol-
liffe and Stephenson, 2012). A clear advantage, however, of using the MSE is that
the resulting skill score can readily be decomposed into components that describe
specific aspects of prediction quality (see Sect. 3.3). With the MSE according to
Eq. 3.3 and the analogous expression for MSE𝑟 , Eq. 3.2 yields:

MSESS = 1 − ⟨(𝑝 − 𝑜)2⟩
⟨(𝑟 − 𝑜)2⟩

. (3.4)

The MSESS ranges from −∞ to 1 with negative (positive) values indicating that
the prediction 𝑝 is worse (better) than the reference prediction 𝑟 .

Skill metrics are often formulated in terms of the anomalies (differences) with
respect to the reference prediction 𝑟 . Hence, the anomalies of the predictions and
observations are defined as 𝑝′ = 𝑝 − 𝑟 and 𝑜′ = 𝑜 − 𝑟 , respectively. In morphody-
namic modelling, the anomalies are the predicted and observed sedimentation/er-
osion differences relative to the reference prediction. In terms of the anomalies,
we have for Eq. 3.3:

MSE = ⟨(𝑝′ − 𝑜′)2⟩ (3.5)

and for the reference prediction 𝑟 :

MSE𝑟 = ⟨𝑜′2⟩. (3.6)

Substitution of Eqs. 3.5 and 3.6 in Eq. 3.2 gives for MSESS in terms of the anomalies
(cf. Eq. 3.4):

MSESS = 1 − ⟨(𝑝′ − 𝑜′)2⟩
⟨𝑜′2⟩ . (3.7)

The bed levels 𝑧𝑝 and 𝑧𝑜 are cumulative by nature; they are the sum of the
initial bathymetry 𝑧ini and the cumulative predicted and observed bed changes
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from the start of the simulation, Δ𝑧𝑝 and Δ𝑧𝑜 respectively. Consequently, both the
MSE and the MSE𝑟 reflect the cumulative errors from the start of the simulation
to the moment of skill evaluation. This is very different from predictands such as
wave heights or current magnitudes, which are instantaneous values rather than
accumulated quantities over the entire simulation duration. Upon substitution, in
Eq. 3.4, of 𝑝 = 𝑧ini + Δ𝑧𝑝 , 𝑜 = 𝑧ini + Δ𝑧𝑜 and 𝑟 = 𝑧ini + Δ𝑧𝑟 , with Δ𝑧𝑟 the cumulative
change of the reference prediction relative to the initial bed, we find:

MSESS = 1 − ⟨(Δ𝑧𝑝 − Δ𝑧𝑜)2⟩
⟨(Δ𝑧𝑟 − Δ𝑧𝑜)2⟩

. (3.8)

Evidently, Eq. 3.8 expresses the MSESS in terms of cumulative (net) changes relat-
ive to the initial bed, with the reference prediction yet undefined. Note that from
Eq. 3.8 it follows that the MSESS is not altered by the presence of a morphologic-
ally inactive region.

Section 3.2.4 deals with the choice of reference in general and the often used
reference of zero change in particular. In Sect. 3.6.2, we discuss the implications
of the cumulative nature of morphology for the interpretation of morphodynamic
model skill through the MSESS.

3.2.3 Naming conventions

The term Brier skill score was first introduced in the field of weather forecasting
as the skill of probabilistic dichotomous predictions, using the Brier score (BS) as
the accuracy measure (see e.g. Wilks, 2011). Dichotomous events, that is, events
that have two mutually exclusive outcomes (e.g. rain or no rain) are generally pre-
dicted in terms of probabilities of occurrence. The accuracy of such a probabilistic
prediction can be summarized in the Brier score1:

BS = 1
𝑛

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝑥𝑖)2 (3.9)

with 𝑦𝑖 the forecast probabilities and 𝑥𝑖 the observations, which are equal to 1 if
the event occurs and equal to 0 if the event does not occur. The BS is essentially
the mean-squared error of the probability predictions; it averages the squared dif-
ferences between pairs of forecast probabilities and binary observations. Hence,
the BS can be seen as a special case of the MSE. Like the MSE, a perfect prediction
yields BS = 0 and less accurate predictions receive higher scores. Unlike the MSE,
the score can only take on values in the range 0 ⩽ BS ⩽ 12.

1 What is now universally used as the Brier score (Eq. 3.9) is sometimes more correctly referred to as
the half Brier score (see e.g. Wilks, 2011) since it is only half of the score originally introduced by
Brier (Brier, 1950).

2 Corrected from Bosboom and Reniers (2018) where 0 < BS < 1 was written.
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Nowwe substitute BS for 𝐸 in Eq. 3.1, such that the Brier skill score (BSS) reads:

BSS = 1 − BS

BS𝑟
(3.10)

where BS is given by Eq. 3.9 and the subscript “r” again refers to the reference
prediction. “Our” BSS however—let us refer to it as BSScc with cc representing
the coastal community—is an MSE skill score representing the relative accuracy
of nonprobabilistic predictions. It is given by the MSESS of Eq. 3.2 rather than the
BSS of Eq. 3.10. Within our field, the implications of this misunderstanding upon
the introduction of the concept of skill in the coastal community (Sutherland et al.,
2004) are limited. However, validation is a generic topic not exclusive to our field
and cross-pollination of knowledge and methods between fields will be easier if
the naming of generic accuracy and skill measures is consistent. In this paper,
we will therefore use the name MSESS for the BSScc, well aware though of how
established the use of the name BSS in the coastal community is.

3.2.4 Choice of reference

A crucial aspect of skill is the proper selection of the reference. By establishing the
zero point at the scale of skill, the reference prediction defines a minimal level of
performance and is generally required to be an unskilful, yet not unrealistic fore-
cast as can be made with a naive forecasting method (Winkler, 1994). In weather
forecasting, the most appropriate baseline for short-term forecasts is generally as-
sumed to be a persistence forecast, which implies that observations at a certain
point are forecast to persist, that is, remain unchanged (Murphy, 1992). For longer-
term forecasts, climatology is often considered better, in which case the average
of historical data is used as a baseline, such that trends are taken into account
(Murphy, 1992).

In morphodynamic modelling, it is common practice to use the initial observed
bathymetry at the start of a simulation as the reference (𝑟 = 𝑧ini), which implies
that the model to beat is a model that predicts zero morphological change. The
reference of zero morphological change is similar to the concept of persistence in
that the initial bed is assumed to persist. However, whereas often a previous state
with a constant lag (e.g. the previously observed value) is taken as the persistence
reference, the model of zero change is applied irrespective of the prediction hori-
zon by assuming the initial bed to persist. By implication, longer-term trends are
not accounted for in the zero change model.

When the reference prediction is taken as the initial bed, such that Δ𝑧𝑟 = 0
in Eq. 3.8, the model to beat is a model of zero morphological change. Now the
anomalies in Eq. 3.7 are the cumulative sedimentation/erosion fields from the sim-
ulation start time 𝑡 = 0, i.e.: 𝑝′ = Δ𝑧𝑝 and 𝑜′ = Δ𝑧𝑜 . Hence, we find for the MSE
skill score through Eq. 3.7:
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MSESSini = 1 − ⟨(Δ𝑧𝑝 − Δ𝑧𝑜)2⟩
⟨Δ𝑧2𝑜 ⟩

(3.11)

with the subscript “ini” referring to the initial bed as the reference prediction. Of
course, Eq. 3.11 is also obtained from Eq. 3.8 using Δ𝑧𝑟 = 0. The MSESSini can
be considered as the fraction of improvement of the model results compared to a
model that predicts that no morphodynamic change will occur. It is often inter-
preted as the model added accuracy relative to a situation in which no modelling
is done, other than assuming that the morphology remains unchanged.

Equation 3.11 demonstrates that the use of the zero change model leads to nor-
malization of the error in the bed levels by the observed cumulative change. In
other words, at various times in a simulation, the skill is positive as long as the
error is bounded by the observed change from the start of the simulation. Hence,
in case of larger cumulative changes also larger errors are allowed. The under-
lying assumption is that the observed cumulative change correctly reflects the
intrinsic difficulty of prediction situations (Winkler, 1994; Murphy, 1988; Wilks,
2011; Brier and Allen, 1951) with a different morphological development prior to
the evaluation time (for instance trend, cyclic, episodic). In Sect. 3.6.2 we demon-
strate, using simple examples, that this cannot be expected to be generally valid,
leading to unexpected, counterintuitive results for the MSESSini.

The zero change model is not the only reference model that can be used. In the
presence of a trend, a more appropriate naive model could be some estimate of the
trend. For coastline modelling, Davidson et al. (2010) make use of a linear trend
prediction as the benchmark, which can be expected to provide a more stringent
test than the reference prediction that nothing will change. Especially further in
the simulation, the zero changemodel could become a quite unrealistic benchmark
and skill may be overestimated.

Another useful choice of reference is a benchmark prediction with the same
model or a different model (Lesser, 2009; Gerritsen et al., 2011)3. For such a ref-
erence, the issues addressed in Sect. 3.6 can be relevant as well. However, this
chapter focusses on the interpretation of the zero change model for morphody-
namic model skill.

3.3 Murphy–Epstein decomposition

In this section, we elaborate on the Murphy–Epstein decomposition (Murphy and
Epstein, 1989) of the MSESS. First, the equations for the decomposition are given
in Sect. 3.3.1. Next, Sect. 3.3.2 provides an overview of 10 hypothetical test cases.

3 The correct reference is Lesser (2009) rather than Lesser et al. (2004) as mentioned in Bosboom and
Reniers (2018).
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These are subsequently used, in Sects. 3.3.3 to 3.3.5, to discuss the specific aspects
of prediction quality as described by each of the error components.

3.3.1 Decomposition of the MSESS

First, we decompose the MSE, written in terms of the anomalies (Eq. 3.5), as fol-
lows (see Bosboom et al., 2014, i.e. Ch. 2, for more details):

MSE = 𝜎2𝑝′ + 𝜎2𝑜′ − 2𝜎𝑝′𝜎𝑜′𝜌𝑝′𝑜′⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
MSEfluct

+ (𝑝′ − 𝑜′)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
MSEbias

. (3.12)

Here 𝜎𝑝′ and 𝜎𝑜′ are the weighted standard deviations and 𝑝′ and 𝑜′ the weighted
map means of 𝑝′ and 𝑜′. Further, 𝜌𝑝′𝑜′ = 𝜎𝑝′𝑜′/(𝜎𝑝′𝜎𝑜′) is the weighted Pearson
correlation coefficient between 𝑝′ and 𝑜′, with 𝜎𝑝′𝑜′ representing the weighted
covariance. Note that the MSE consists of a part that expresses the mismatch
between the fluctuating parts in predictions and observations (MSEfluct) and a
bias part that quantifies the systematic error or map-mean error (MSEbias).

For the reference prediction, we deduce from Eq. 3.12 (cf. Eq. 3.6):

MSE𝑟 = 𝜎2𝑜′ + 𝑜′ 2 (3.13)

with on the right side first MSE𝑟 ,fluct, and then MSE𝑟 ,bias. Rearrangement of the
terms in Eqs. 3.12 and 3.13 gives:

MSE = 𝜎2𝑜′(1 − 𝛼′ + 𝛽′ + 𝛾 ′) with (3.14)

𝛼′ = 𝜌2𝑝′𝑜′ (3.15)

𝛽′ = (𝜌𝑝′𝑜′ −
𝜎𝑝′
𝜎𝑜′

)
2

(3.16)

𝛾 ′ =
(𝑝′ − 𝑜′)

2

𝜎2𝑜′
(3.17)

and

MSE𝑟 = 𝜎2𝑜′(1 + 𝜖′) with (3.18)

𝜖′ = 𝑜′ 2

𝜎2𝑜′
. (3.19)
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Finally, the substitution of Eqs. 3.14 and 3.18 in Eq. 3.2 yields the Murphy–Epstein
decomposition (Murphy and Epstein, 1989) of the MSE skill score:

MSESS = 𝛼′ − 𝛽′ − 𝛾 ′ + 𝜖′
1 + 𝜖′ . (3.20)

The terms 𝛼′, 𝛽′, 𝛾 ′ are often referred to as phase association, conditional bias
or amplitude error and systematic bias or map-mean error, respectively, whereas
𝜖′ has been explained as an adjustment due to the observed map-mean (Livezey
et al., 1995). In the next section, we investigate what exactly is measured by these
terms. In doing so, we will refer to the linear least-squares regression of 𝑜′ given
𝑝′:

𝑜′ = 𝑏0 + 𝑏1𝑝′ with 𝑏1 = 𝜌𝑝′𝑜′
𝜎𝑜′
𝜎𝑝′

and 𝑏0 = 𝑜′ − 𝑏1𝑝′ (3.21)

where 𝑏1 and 𝑏𝑜 are the slope and the 𝑜′-intercept of the regression line, respect-
ively. The correlation coefficient 𝜌𝑝′𝑜′ (−1 ⩽ 𝜌𝑝′𝑜′ ⩽ 1) reflects the overall strength
and direction of the linear correspondence; scatter around the best linear fit leads
to a magnitude smaller than 1, with the sign indicating positive or negative corres-
pondence and, hence, slope 𝑏1. With Eq. 3.21, we can relate 𝛽′, given by Eq. 3.16,
to the slope 𝑏1 as follows:

𝛽′ = 𝜎2𝑝′
𝜎2𝑜′

(𝑏1 − 1)2. (3.22)

3.3.2 Overview of test cases

In Sects. 3.3.3 to 3.3.5, the meaning of the error components 𝛼′, 𝛽′, 𝛾 ′ and 𝜖′ is
investigated using 10 cases (P1–P10; Table 3.1). For each of these cases, the ob-
servations 𝑜′ (solid lines in Figs. 3.1 to 3.3) consist of a distinct sedimentation and
erosion feature indicated by positive and negative values for 𝑜′, respectively. The
domain-averaged bed change 𝑜′ = 0. The error values of the predictions P1–P10,
which vary with respect to 𝜌𝑝′𝑜′ , 𝜎𝑝′/𝜎𝑜′ and/or map-mean error 𝑝′ − 𝑜′, are listed
in Table 3.1 and will be explained in the following sections.

3.3.3 Structural similarity 𝛼 ′

The term 𝛼′ (Eq. 3.15) indicates the tendency of 𝑜′ and 𝑝′ to vary together and
hence expresses the similarity in the structure of the sedimentation/erosion fields
(0 ⩽ 𝛼′ ⩽ 1). In terms of a regression model, 𝛼′ is the proportion of the variation
in the values of 𝑜′ that can be linearly explained by 𝑝′ (and vice versa). Similarly,
the term 1 − 𝛼′ is the unexplained proportion of the variance (cf. Eq. 3.14). A
deviation of 𝛼′ from 1 indicates scatter around the best linear fit, which could be
indicative of incorrect positions (Fig. 3.1, left panel), relative magnitudes (Fig. 3.1,
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Error values

Case 𝜌𝑝′𝑜′ 𝜎𝑝′ /𝜎𝑜′ 𝑏1 𝛼 ′ 𝛽′ 𝛾 ′ 𝜖′ MSESS

P1 0.60 1.00 0.60 0.37 0.16 0.00 0.00 0.21
P2 0.82 0.67 1.23 0.68 0.02 0.06 0.00 0.60
P3 0.93 0.74 1.25 0.86 0.03 0.00 0.00 0.82
P4 1.00 1.00 1.00 1.00 0.00 0.44 0.00 0.56
P5 1.00 1.00 1.00 1.00 0.00 0.44 0.00 0.56
P6 1.00 0.60 1.67 1.00 0.16 0.00 0.00 0.84
P7 −1.00 1.00 −1.00 1.00 4.00 0.00 0.00 −3.00
P8 0.50 1.00 0.50 0.25 0.25 0.00 0.00 0.00
P9 0.50 1.00 0.50 0.25 0.25 0.00 0.00 0.00
P10 0.60 0.60 1.00 0.37 0.00 0.00 0.00 0.37

Table 3.1: Ten predicted anomalies 𝑝′ compared to the same observed anomaly 𝑜′ (solid lines in
Figs. 3.1 to 3.3).

Figure 3.1: The structural similarity 𝛼 ′ deviates from 1 in the case of errors in position (left), relative
magnitudes (middle) or shape (right) of the sedimentation/erosion features. Solid lines: observa-
tions; dashed lines: predictions (prediction numbers in accord with Table 3.1).

Figure 3.2: Systematic bias (left) and conditional bias (right) do not influence 𝛼 ′. Solid lines: obser-
vations; dashed lines: predictions (prediction numbers in accord with Table 3.1).
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Figure 3.3: Conditional bias 𝛽′ for pairs of observations (solid lines) and predictions (dashed lines,
numbers in accord with Table 3.1). Left: P1 and P6 have the same 𝛽′, but the predicted standard
deviation 𝜎𝑝′ is different; middle: P8 and P9 have the same 𝛽′, but the transport distance between
𝑜′ and 𝑝′ is different; right: P10 is perfect in terms of 𝛽′, but 𝜎𝑝′ is too small.

middle panel) or shapes (Fig. 3.1, right panel) of features in the (de-meaned) sed-
imentation/erosion fields. Structural dissimilarity is therefore a more inclusive
description of 1−𝛼′ than the names phase error, suggested in Livezey et al. (1995),
or position error, as employed in Gerritsen et al. (2011). Likewise, the explanation
of Sutherland et al. (2004) that a deviation of 𝛼′ from 1 means that sand is moved
to the wrong position may be too restrictive; erosion and sedimentation features
that are at the right location but have, for instance, incorrect relative magnitudes
also give 𝛼′ < 1 (Fig. 3.1, middle panel).

The value of 𝛼′ is not sensitive to biases that may be present in the predictions,
that is, when the predictions are changed with a (positive or negative) constant
(Fig. 3.2, left panel) or constant factor (Fig. 3.2, right panel), the value of 𝛼′ remains
the same. As a consequence, 𝛼′ = 1 could mean that the fields are opposite in
sign (P7; see Table 3.1 and Fig. 3.2, right panel). Hence, the direction of the linear
correspondence can only be determined by evaluating 𝜌𝑝′𝑜′ instead of 𝛼′.

3.3.4 Scale error 𝛽′

The error term 𝛽′ (Eq. 3.16) is the penalty due to conditional bias (0 ⩽ 𝛽′ < ∞)with
𝛽′ = 0 indicating no bias. Following Livezey et al. (1995), Sutherland et al. (2004)
have explained the conditional bias 𝛽′ as an amplitude error indicating that “the
wrong volumes of sand have been moved.” This interpretation must be used with
care, as demonstrated by Fig. 3.3 (left panel). Here, case P6, which has a perfect
correlation (𝜌𝑝′𝑜′ = 1), receives a nonperfect 𝛽′ = 0.16, due to an underestimation
of the variation in bed changes (𝜎𝑝′/𝜎𝑜′ = 0.6; see Table 3.1). For case P1, however,
the same value of 𝛽′ = 0.16 is obtained, even though the amplitudes of the bed
changes are perfectly modelled, viz. 𝜎𝑝′/𝜎𝑜′ = 1. Now, the nonperfect value of 𝛽′
is due to a deviation of the correlation from 1 (𝜌𝑝′𝑜′ = 0.6; see Table 3.1). Clearly,
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𝛽′ is not a proper indicator of the extent to which the amplitudes of bed changes
are correctly modelled.

The interpretation of Gerritsen et al. (2011), who explain 𝛽′ as a transport er-
ror, should be treated with similar care. This can be seen from P8 and P9 (Fig. 3.3,
middle panel), which both have 𝛽′ = 0.25 (see Table 3.1). Nonetheless, the domain-
integrated transport errors are different, as can be deduced from the distance
between the predicted and observed location of erosion being larger for P9 than
for P8. Other examples are provided by P4 and P5 (Fig. 3.2, left panel). These
predictions obtain 𝛽′ = 0, even though the errors in bed levels throughout the
domain indicate incorrect sediment transport rate gradients.

How, then, should 𝛽′ be interpreted? From Eq. 3.22, it follows that, for nonzero
𝜎𝑝′ , 𝛽′ = 0 implies 𝑏1 = 𝜌𝑝′𝑜′𝜎𝑜′/𝜎𝑝′ = 1, i.e. a 1:1 slope of the regression line
(Eq. 3.21). A nonzero value for 𝛽′ indicates that 𝑏1 deviates from 1. In the absence
of map-mean errors, a slope 𝑏1 > 1 is equivalent to an underprediction, by the
regression model, of the larger values and an overprediction of the smaller values.
For 𝑏1 < 1, the regression model underestimates the smaller values and overes-
timates the larger values. Deviations of 𝑏1 from 1 can occur due to a deviation of
𝜎𝑜′/𝜎𝑝′ and/or 𝜌𝑝′𝑜′ from 1 (see Table 3.1).

In terms of a regression analysis, it is desirable to have 𝑏1 = 1, which for positive,
nonperfect correlation (0 < 𝜌𝑝′𝑜′ < 1) can be achieved by scaling the magnitude of
the predicted anomalies to 𝜎𝑝′ = 𝜌𝑝′𝑜′𝜎 ′𝑜 (P10 in Fig. 3.3, right panel). For negative
correlation, the conditional bias is minimized for 𝜎𝑝′ = 0. Optimizing 𝛽′ thus
implies an underestimation of the variance of the anomalies. Compare for instance
cases P1 (Fig. 3.1, left panel) and P10 (Fig. 3.3, right panel), which have the same
suboptimal anomaly correlation (𝜌𝑝′𝑜′ = 0.6; Table 3.1). A lower 𝛽′ and a higher
MSESS are found for P10 (with 𝜎𝑝′/𝜎𝑜′ = 0.6) than for P1 (with 𝜎𝑝′/𝜎𝑜′ = 1).

In conclusion, a nonzero value of 𝛽′ indicates a suboptimal scaling of the mag-
nitude of the anomalies to account for the value of the correlation. “Optimal” is
defined here in terms of the smallest overall least-squares error and skill score and
not in terms of the variance of the bed changes, which must be judged separately
(see Sect. 3.6.1). Sutherland et al. (2004) implicitly acknowledge the ambiguity
about the term amplitude error for 𝛽′ by stating that perfect modelling of phase
(represented by 𝜌𝑝′𝑜′ ) and amplitude (represented by 𝜎𝑝′/𝜎𝑜′ ) gives 𝛽′ = 0. The
opposite however is not true: 𝛽′ = 0 does not imply that 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ are
modelled perfectly. In Sect. 3.6.1, we will further investigate the consequences for
morphodynamic modelling.

3.3.5 Bias terms 𝛾 ′ and 𝜖′
The error term 𝛾 ′ (Eq. 3.17) is a normalized map-mean error or sediment budget
error (0 ⩽ 𝛾 ′ < ∞). A nonzero value indicates a misestimation of the amount
of sediment imported into or exported from the model domain and hence of the
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average bed level (Gerritsen et al., 2011). Such a systematic bias, as for P4 and P5
(Fig. 3.2, left panel) offsets the intercept of the regression line of 𝑜′ given 𝑝′ without
changing the slope of the line (Eq. 3.21). In order to establish the direction of the
misestimation, (the sign of) 𝑝′ − 𝑜′ must be considered.

Similarly, 𝜖′ (Eq. 3.19) is the normalized map-mean error of the reference pre-
diction referred to by Livezey et al. (1995) as a normalization error (0 ⩽ 𝜖′ < ∞).
A nonzero value indicates a map-mean sediment budget (and hence bed level) dif-
ference between the reference prediction and the observations. For larger 𝜖′, the
reference becomes a worse prediction with respect to the mean.

For the interpretation of 𝛾 ′ and 𝜖′ for morphological models, it is important
to realize that both error terms are normalized by the variance of the observed
cumulative change away from the reference prediction. Compare for instance case
P5 (Fig. 3.2, left panel) and case R1, the latter differing from P5 only in that 𝑜′ and
𝑝′ are reversed. In both cases, the same absolute inaccuracy develops (𝛼′, 𝛽′, 𝛾 ′
being identical; Table 3.2). However, for R1, the mean of the observations shows
a trend that is not followed by the predictions, whereas for P5, the predictions
have a trend that is not observed. The latter situation gives a lower skill due to
the smaller normalization error 𝜖′. The higher skill in the first case is due to the
reference prediction being a worse predictor when the observations develop away
from the reference. The implications are further analyzed in Sect. 3.6.2.

Error values

Case Description 𝜌𝑝′𝑜′ 𝜎𝑝′ /𝜎𝑜′ 𝑏1 𝛼 ′ 𝛽′ 𝛾 ′ 𝜖′ MSESS

P5 Systematic bias 1.00 1.00 1.00 1.00 0.00 0.44 0.00 0.56
R1 𝑜′ and 𝑝′ reversed 1.00 1.00 1.00 1.00 0.00 0.44 0.44 0.69

Table 3.2: Effect of systematic bias for P5 and the same case with 𝑜′ and 𝑝′ reversed.

3.4 Adjusted formulations with measurement error

Equation 3.2 assumes that the MSE of a perfect prediction is zero, which means
that the presence of errors in the data is not taken into account. In reality, data
errors will occur due to errors in the bathymetric surveys as well as in the sub-
sequent interpolation procedure to a common grid. As a consequence, the devi-
ation from 1 of the skill value according to Eq. 3.2 is not purely due to prediction
error, but can partly be attributed to data errors. Two methods have been pro-
posed to take the effect of the latter out of the equation.

The first method (Sutherland et al., 2004) assumes that the initial and final
measured bathymetries consist of an actual bathymetry and independent, random
measurement errors 𝛿 with the same 𝛿rms = √⟨𝛿2⟩. The MSEi of the perfect predic-
tion is assumed to be equal to MSEi = 2⟨𝛿2⟩made up of a part ⟨𝛿2⟩ due to the error
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in the final bathymetry to which the perfect prediction is compared and another
part ⟨𝛿2⟩ that is present in the initial bathymetry. This initial error is assumed to
persist throughout the simulation. Now Eq. 3.1 leads to:

MSESSini, P = MSE𝑟 −MSE

MSE𝑟 − 2⟨𝛿2⟩ (3.23)

such that a prediction already obtains perfect skill with MSE = 2⟨𝛿2⟩ instead of
MSE = 0. Also, for the same MSE and MSE𝑟 , positive skill scores increase but
negative ones decrease. The denominator of Eq. 3.23 can be seen as the actual
MSE of the reference prediction, MSE𝑟 ,a, after correction for measurement errors
in both the final bathymetry and the initial bathymetry: MSE𝑟 − 2⟨𝛿2⟩ = MSE𝑟 ,a.

To demonstrate the effect of measurement error, we elaborate on an example for
East Pole Sand, reported in Sutherland et al. (2004). Three predictions, which only
differ with respect to the values of the median grain diameter 𝑑50, are compared
relative to the same initial bed as the reference (see Table 3.34). As a consequence,
the MSE𝑟 is the same across the simulations, but the MSE varies, being smaller
for larger 𝑑50. For each of the simulations, the MSESSini is computed for 𝛿rms =
√⟨𝛿2⟩ = 0, 0.026 and 0.1m, respectively. The table shows that for larger 𝛿rms, the
denominator MSE𝑟 − 2⟨𝛿2⟩ decreases and the (positive) skill increases, since the
distance from the reference to a perfect prediction is 2⟨𝛿2⟩ shorter.

𝑑50 MSE MSE𝑟 𝛿rms MSE𝑟 − 2⟨𝛿2⟩ MSESSini,P MSESSini,vR
(mm) (m2) (m2) (m) (m2)

0.25 0.0317 0.037 0.000 0.0375 0.15 0.15
0.25 0.0317 0.037 0.026 0.036 0.15 0.30
0.25 0.0317 0.037 0.100 0.017 0.31 0.59
0.35 0.0266 0.037 0.000 0.037 0.29 0.29
0.35 0.0266 0.037 0.026 0.036 0.30 0.42
0.35 0.0266 0.037 0.100 0.017 0.61 0.68
0.50 0.0246 0.037 0.000 0.037 0.34 0.34
0.50 0.0246 0.037 0.026 0.036 0.35 0.47
0.50 0.0246 0.037 0.100 0.017 0.74 0.71

Table 3.3: Skill scores for East Pole Sand accounting for measurement error according to Eqs. 3.23
and 3.25. These reduce to Eq. 3.2 for 𝛿rms = 0.

4 Values in Table 3.3 are partly taken directly (columns 1, 4, 6 and 7) and partly deduced (columns 2,
3 and 5) from Sutherland et al. (2004). In Bosboom and Reniers (2018) on the contrary, column 6
listed MSESSini,P values for 𝛿rms ≠ 0 that were computed from Eq. 3.23, leading to minor roundoff
differences compared to the here reported values.

5 Values in this column are corrected from Bosboom and Reniers (2018) where by mistake values were
reported corresponding toMSE𝑟−⟨𝛿2⟩ rather thanMSE𝑟−2⟨𝛿2⟩. This is without further consequences
since the correct values were used to compute MSESSini,P.
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Using Eq. 3.23 to compute skill values is equivalent to using Eq. 3.2 with actual
MSEa values, which are 2⟨𝛿2⟩ lower than the full MSE values due to the presence
of errors in the initial and final bathymetries. This can be verified by substitution
of MSE = MSEa + 2⟨𝛿2⟩ and MSE𝑟 = MSE𝑟 ,a + 2⟨𝛿2⟩ in Eq. 3.23. We find:

MSESSini,P = MSE𝑟 ,a −MSEa

MSE𝑟 ,a
= 1 − MSEa

MSEr,𝑎
(3.24)

or the “normal” skill formulation Eq. 3.2 applied to that part of the MSE errors
that can be attributed to the predictions. Hence, as long as the actual errors of the
reference prediction and prediction remain unchanged, also the skill values remain
unchanged. This is further illustrated by an example described in Sect. 3.5.2 (see
Fig. 3.4).

Van Rijn et al. (2003) use a different approach by adjusting Eq. 3.2 only with
respect to MSE in the numerator of the second term to the right:

MSESSini,vR = 1 − ⟨(max (|𝑝′ − 𝑜′| − 𝛿, 0))2⟩
MSE𝑟

. (3.25)

In other words, per grid point only the part of the error is considered that is larger
than an error 𝛿 for which we assume, based on Sutherland et al. (2004), that 𝛿rms
must be taken. If the error is smaller than 𝛿rms, the error is set to zero. Comparison
with Eq. 3.24 shows that the error term in the numerator may be seen as van Rijn’s
formulation for MSEa. Thus, according to van Rijn MSE − MSEa ⩽ ⟨𝛿2⟩. However,
since the reference prediction in the denominator is not corrected, the skill values
increase in the presence of measurement error, even if the actual errors of the ref-
erence prediction and prediction remain unchanged (see Fig. 3.4). Consequently,
the method of van Rijn et al. (2003) generally gives the larger improvement in skill
score for the same error (Table 3.3 and Sutherland et al., 2004).

As already advocated by Sutherland et al. (2004), Eq. 3.23 is the recommended
formulation to take measurement error into account, since as opposed to Eq. 3.25
it is consistent with the definition of skill. Note, however, that alongside these
adjusted formulations for measurement error, adjusted rankings have been pro-
posed. Their validity is discussed in Sect. 3.5.2.

3.5 Generic ranking of model results

A prediction’s skill score indicates the proportion of improvement over a baseline
or reference prediction. Let us suppose that the normalization by the change re-
lative to the reference prediction is able to create a level playing field. We can
now directly compare skill scores from different prediction situations as well as
classify predictions based on their skill score. In this section, we discuss the clas-
sifications as have been suggested in morphodynamic modelling for the MSE skill
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score (Sect. 3.5.1) and the variations hereon to account for measurement error
(Sect. 3.5.2). These classifications aim to provide a qualitative judgement of model
quality. We will show that the skill score formulations and classifications are not
independent and that in literature the rankings are often used inconsistently.

3.5.1 Ranking in absence of measurement error

Sutherland et al. (2004) propose a classification of model quality based on the
scores of the MSESSini as given by Eq. 3.2 using the initial bed as the reference
prediction (see Table 3.4). As a lower limit of a useful (i.e. good) prediction, a
value of MSESSini = 0.2 is suggested. Sutherland et al. (2004) refer to a practice in
atmospheric sciences of considering an anomaly correlation coefficient of 0.6 as
a lower limit of a useful medium range forecast (e.g. Hollingsworth et al., 1980).
With 𝛾 ′ = 𝜖′ = 0 and 𝜎𝑝′/𝜎𝑜′ = 1, this leads to MSESSini = 2𝜌𝑝′𝑜′ − 1 = 0.2.

Nonetheless, in atmospheric sciences a skill of 0.2 is not generally considered a
(lower limit of a) good skill score. For instance, Murphy and Epstein (1989) note
that a 60% level for the correlation coefficient means that only 36% of the vari-
ation in observations is explained by the variation in the computations and that
when errors in biases and scale (ignored in the correlation coefficient) are taken
into account, the MSE skill value will be lower, for example, 20% as above. They
rightfully point out that this is only 20% rather than 60% on the way of a perfect
forecast, which is a quite low value to be labelled as “good”. Of course, there is
no fixed rule for determining what skill is considered excellent, good, moderate,
poor or bad and one can imagine that this is also dependent on the (state of the
modelling in) the field under consideration. In the interpretation of Table 3.4, it is
good to keep in mind that the labelling is quite forgiving, probably in line with the
present state of morphodynamic modelling. In morphodynamic modelling, values
for the anomaly correlation coefficient, the correlation coefficient between com-
puted and measured cumulative sedimentation/erosion patterns, rarely exceed 0.6.
This can be different for hydrodynamic model skill (Baart et al., 2016).

MSESSini MSESSini,P MSESSini,vR

Excellent 1.0–0.5 1.0–0.8 1.0–0.8
Good 0.5–0.2 0.8–0.3 0.8–0.6
Reasonable/fair 0.2–0.1 0.3–0.15 0.6–0.3
Poor 0.1–0.0 0.15–0.0 0.3–0.0
Bad <0.0 <0.0 <0.0

Table 3.4: Classification according to Sutherland et al. (2004) for the MSE skill score as in Eqs. 3.2,
3.23 and 3.25.

Sutherland et al. (2004) noted that as skill scores are used more and more, it
would become apparent what value of skill score is needed before a model res-
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ult can be considered good. However, such a fine-tuning has hardly taken place
and, instead, skill scores are sometimes combined with alternative classifications
without further discussion. For instance, MSESSini according to Eq. 3.2 is some-
times judged (see e.g. Baart et al., 2016; El kadi Abderrezzak and Paquier, 2009)
based on the classification proposed by van Rijn et al. (2003), see Table 3.4, which
raises the bar for a good morphological prediction from MSESSini = 0.2 to 0.6.
Baart et al. (2016) consider the volume of intertidal change as the persisted vari-
able, instead of fields of bathymetric change, such that a lower limit of 0.6 for
a good forecast may certainly be defendable. Nonetheless, the reference to van
Rijn’s classification (van Rijn et al., 2003) seems less appropriate, it being specific-
ally intended to match the skill score MSESSini,vR (Eq. 3.25) for fields of bathymet-
ric change in the presence of measurement error (see Sect. 3.5.2).

3.5.2 Ranking in case of measurement error

The alternative skill formulations presented in Sect. 3.4 aim to correct for the in-
fluence of measurement error, such that only prediction error is penalized. In
addition, Sutherland et al. (2004) and van Rijn et al. (2003) suggest that these ad-
justed skill formulations should be evaluated using alternative classifications for
the skill scores, as found in the third and fourth columns of Table 3.4 for the skill
defined by Eqs. 3.23 and 3.25, respectively. Conceptually, however, a skill formu-
lation that is effective in removing measurement error should yield values that
can be directly compared to the classification valid in the absence of data errors
(Sect. 3.4). We will illuminate the above using an artificial case of the formation
of a rip channel.

First, recall that the measured initial and final bathymetries are assumed to be
the sum of an actual bathymetry and fields of random measurement error. Hence,
for the zero change reference, we have 𝑟 = 𝑟a + 𝛿ini and for the observations
𝑜 = 𝑜a + 𝛿final with √⟨𝛿2ini⟩ = √⟨𝛿2final⟩ = 𝛿rms (Sect. 3.4). Also, equivalent to the
perfect prediction according to Sutherland et al. (2004), we assume 𝑝 = 𝑝a + 𝛿ini
(Sect. 3.4). In our example, a planar beach serves as the initial bathymetry 𝑟a. Next,
the beach is modified with two artificial rip channels, slightly different in shape
and position. The one morphology serves as the observations (𝑜a) and the other
as the predictions (𝑝a). The corresponding mean-squared errors for 𝛿rms = 0 are
MSEa = 0.051m2 and MSE𝑟 ,a = 0.073m2 and the corresponding MSESSini = 0.31.
Next, we add noise fields to the fields of 𝑟 , 𝑜 and 𝑝 and compute the skill values
according to Eq. 3.2 and Eqs. 3.23 and 3.25 as a function of 𝛿rms (Fig. 3.4). The fig-
ure shows both the expected values of the skill scores and the standard deviation
bands. SinceMSE andMSE𝑟 are now larger thanMSEa andMSE𝑟 ,a, respectively, by
2⟨𝛿2⟩, the skill according to Eq. 3.2 decreases with increasing measurement error,
such that the predictions are unjustly penalized for the presence of measurement
error. The adjusted skill formulation according to Sutherland et al. (2004), Eq. 3.23,
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shows a constant skill of 0.31, in line with the fact that the actual predicted and
measured bathymetries are unchanged. Now the addition of measurement error
does not change the skill score, showing that Eq. 3.23 is effective in removing the
influence of the measurement error. This was also demonstrated by the analysis
in Sect. 3.4 leading to Eq. 3.24. The constant skill irrespective of the measurement
error indicates that an adjusted classification of the skill score is not appropriate;
skill scores according to Eq. 3.23 should be judged using the same classification
as for Eq. 3.2 valid without measurement error. This is further underlined by the
fact that Eq. 3.23—as well as Eq. 3.25—reduces to Eq. 3.2 for 𝛿rms = 0.
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Figure 3.4: Effect of the addition of measurement error on the skill scores according to Eqs. 3.2, 3.23
and 3.25; expected values of the skill scores and standard deviation bands.

Van Rijn’s adjusted formulation (van Rijn et al., 2003), Eq. 3.25, gives a strong
increase of the skill score (Fig. 3.4), due to the fact that there is no correction for
measurement error in the denominator of the second term of the right-hand-side
of Eq. 3.25. In addition, the adjusted MSE in the numerator does not consistently
remove the effect of measurement error from the MSE, but was seen to vary with
𝛿rms. The suggestion to adjust the skill ranking can be understood from the infla-
tion of the skill scores by adding measurement error. However, the mapping of
the skill formulations and their rankings was performed for the specific situation
of East Pole Sand (Table 3.3) and for 𝛿rms = 0.1m only (Sutherland et al., 2004). A
universal mapping cannot be made since the required adjustment depends on the
measurement error and the situation.

In conclusion, when a correction for measurement error is called for, we advise
the use of the skill formulation according to Sutherland et al. (2004), i.e. Eq. 3.23,
rather than van Rijn et al. (2003), i.e. Eq. 3.25, in combination with a classification
that is not adjusted for measurement error.
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3.6 Three common misinterpretations of skill

The use of the MSESS for morphodynamic predictions requires that the MSE is
an appropriate measure of correspondence and that the cumulative change away
from the reference correctly reflects the inherent ease or difficulty of the prediction
situation. Therefore, we will first discuss, in Sect. 3.6.1, the consequences of the
use of the MSE. Subsequently, Sect. 3.6.2 pays attention to the normalization by
the cumulative change away from the reference. The effect of the presence of
multiple spatial scales is addressed in Sect. 3.6.3.

3.6.1 Smooth is better

The MSE and other overall point-wise metrics are prone to penalize rather than
reward the correct prediction of variability6 (Anthes, 1983; Taylor, 2001). As a con-
sequence, featureless predictions are sometimes favoured over predictions whose
features are misplaced, a characteristic that is referred to as “double penalty effect”
(Bougeault, 2003). From the perspective of coastal morphologists, this may lead
to wrong conclusions concerning the ranking of predictions.

The double penalty effect is inherited by the MSESS resulting in a tendency
to reward the underestimation of the variance of morphodynamic change. As
a consequence, predictions of sedimentation/erosion features that are correct in
terms of magnitude but are misplaced in space may not outperform even the refer-
ence prediction of zero change. This is nicely illustrated by a numerical hindcast
of morphological changes of a wide estuary mouth sandbank located along the
French Atlantic Coast (Guerin et al., 2016). Of two morphodynamic simulations,
the simulation that captures several of the main morphological changes receives a
lower score (MSESSini = −0.18) than the simulation that predicted almost no mor-
phological change (MSESSini = 0.01). Evidently, the latter prediction is close to
the reference prediction of zero change and, thus, MSE ≈ MSE𝑟 and MSESSini ≈ 0.
The prediction that reproduced some important features receives a larger MSE
and hence a negative skill.

The tendency to underestimate the magnitude of bed changes7 is easily demon-
strated through the behaviour of 𝛽′ (Sect. 3.3.4). For positive anomaly correla-
tion, 𝛽′ is minimized and hence the skill is maximized for 𝜎𝑝′/𝜎𝑜′ = 𝜌𝑝′𝑜′ (P10;
Fig. 3.3, right panel). If the variance of the bed changes is predicted correctly,
i.e. 𝜎𝑝′/𝜎𝑜′ = 1 (P1; Fig. 3.1, left panel), a lower skill would be reported (see
Table 3.1). This runs contrary to the intuitive idea of having optimal performance
when 𝜎𝑝′ = 𝜎𝑜′ .

6 Here, we implicitly assume that location errors are inevitable and define variability as the standard
deviation or variance of the bed levels or bed changes at the scales of interest (addendum to Bosboom
and Reniers, 2018).

7 Or, rather, the tendency of the MSESSini to reward the underestimation of the magnitude of bed
changes (addendum to Bosboom and Reniers, 2018).
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A real-life illustration is provided for by the comparison of observed and pre-
dicted bathymetric changes for East Pole Sand (Sutherland et al., 2004), which
was already referred to in Sect. 3.4. From Table 3.5, it can be seen that increasing
the 𝑑50 does not affect the values for the anomaly correlation 𝜌𝑝′𝑜′ (and hence
𝛼′). Also, 𝛾 ′ and 𝜖′ do not differ significantly for the three predictions. A larger
𝑑50, however, strongly reduces 𝜎𝑝′/𝜎𝑜′ . The smallest MSE and largest MSESSini are
achieved by the prediction that shows the most severe underprediction of the vari-
ance of the bed changes. Clearly, when maximizing the MSESS is the objective,
underpredicting the variability of the bed changes would be advantageous.

𝑑50 (mm) MSE (m2) MSESSini 𝛼 ′ 𝛽′ 𝛾 ′ 𝜖′ 𝜌𝑝′𝑜′ 𝜎𝑝′ /𝜎𝑜′
0.25 0.0317 0.15 0.38 0.20 0.04 0.01 0.62 1.06
0.35 0.0266 0.29 0.38 0.07 0.03 0.01 0.62 0.88
0.50 0.0246 0.34 0.38 0.01 0.03 0.01 0.62 0.52/0.72

Table 3.5: Error values for East Pole sand (partly taken and partly deduced from Sutherland et al.,
2004).

As a last example, we refer to the morphodynamic simulations of the Bornrif
(Achete et al., 2011), a dynamic attached bar at the Wadden Sea island of Ameland,
which we analyzed in Bosboom et al. (2014), i.e. Ch. 2. Throughout the 15 years
of simulation 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ are close together in value with in the last year
(2008) 𝜌𝑝′𝑜′ ≈ 𝜎𝑝′/𝜎𝑜′ ≈ 0.66. Since 𝛾 ′ and 𝜖′ decrease towards zero during the
simulations, the skill in 2008 is equal to the so-called potential skill in the absence
of biases 𝛼′ = 𝜌2𝑝′𝑜′ = 0.45. For 𝜎𝑝′/𝜎𝑜′ = 1, however, the skill would have been
lower with 𝛽′ = (0.66 − 1)2 = 0.12 at 0.33.

In modelling practice, a reduction of the overall size of bed changes is easier to
achieve, for instance by changing the grain size or a transport parameter, than an
improvement of the anomaly correlation coefficient. It may therefore well be that
in many modelling studies, without the modeller necessarily being aware of this,
the ratio of predicted over observed anomaly standard deviation is lowered to-
wards the level of the correlation. Although this certainly optimizes the MSESSini,
another aspect of model quality, the variance of bed changes, is less well pre-
dicted. We therefore advocate that values of 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ are explicitly re-
ported and a deliberate choice is made for the “optimal” simulation. Clearly, this
finding also has implications for (automated) calibration procedures that minimize
MSE or MSESSini.

3.6.2 Cumulative versus absolute change

The essential assumption underlying the concept of skill is that the reference pre-
diction provides a fair normalization of the accuracy across a range of prediction
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situations (choice of model, length of the simulation, geographical locations, for-
cing conditions, internal dynamics). When the MSESS is applied to morphological
predictions, the normalization is achieved by the mean-squared bed changes from
the reference prediction, often the initial bed, which must adequately neutralize
the inherent ease or difficulty of the prediction situation. In the remainder of this
section we will challenge the efficacy of the normalization.

Let us consider a natural morphological development in time with a mean-
squared difference MSE𝑟 with the start situation that increases linearly in time. A
prediction of this development obtains a constant skill throughout the simulation
if the MSE of the model is a constant fraction of the MSE𝑟 (left panel of Fig. 3.5). In
other words, larger errors are allowed for larger cumulative (net) change, probably
in agreement with a modeller’s first intuition that the difficulty of the prediction
increases with the larger changes associated with longer lead times. In this way,
the cumulative nature of morphology as the persisted variable in combination
with the zero change model provides a built-in, progressive lowering of the (meta-
phorical) bar. Below, we demonstrate using hypothetical examples that it is not
generally fair that the cumulative, net change from the reference determines the
zero point at the scale of skill.
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Figure 3.5: Effect of normalization by net bed changes. Left: for a steady increase of MSE𝑟 in time,
a constant skill of 0.5 is obtained when the MSE increases at half the speed of the MSE𝑟 . Right: two
pathways 𝑥 of morphological features with a different prediction difficulty. The net changes from
𝑡 = 0 to 𝑡 = 𝑡end are equal and cannot discern between the two.

First, consider case P5 described in Sect. 3.3.5, which has a nonzero sediment
budget error 𝛾 ′ due to a change of the mean of the prediction that is not present in
the observations. Upon reversal of 𝑜′ and 𝑝′ (case R1), the sediment budget error
also counts towards MSE𝑟 (since now 𝜖′ = 𝛾 ′). As a consequence, a higher skill
score was obtained, showing the lack of symmetry of the MSESSini. Apparently,
there is a reward (in terms of a higher skill score) if the observations show a mean
trend.

Next, we refer to and illustrate two hypothetical examples first described in Bos-
boom et al. (2014), i.e. Ch. 2. The first example concerns two different morpholo-
gical developments, illustrated in the right panel of Fig. 3.5. Either development
consists of a feature that has propagated to the same final position, such that also
the net displaced sediment volumes are identical. Feature 1 has propagated at a
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steady speed to its final position, whereas feature 2 has first moved in the opposite
direction under the influence of an episodic event, and, subsequently, moved back,
under milder conditions. The latter is most likely considered a more difficulty pre-
diction situation by a modeller. Nonetheless, cumulative (net) changes from the
reference cannot discern between the two situations: the MSE𝑟 is the same.

The second example is of a summer–winter profile cycle over the course of five
years, with small, random variations between the same seasons in consecutive
years (Fig. 3.6, left panel). Assume that a model aimed at mimicking this behaviour
is initialized from a winter profile, such that MSE𝑟 is smaller in the winter seasons
than in summer seasons. For constant MSE, the diagnosed temporal evolution of
model skill (Fig. 3.6, right panel) will demonstrate an artificial seasonal cycle with
higher skill in summer, but with small changes between the same seasons over
time from year to year. Clearly, a higher accuracy is required to obtain a certain
skill level if the net observed changes are small. This may explain the low skill
scores in van Rijn et al. (2003) for the seasonal morphology at Egmond for periods
in which the breaker bar is relatively stable.
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Figure 3.6: Skill for a hypothetical seasonal system. Left: the MSE for the prediction 𝑝 is constant
in time and the MSE𝑟 of the zero change reference prediction 𝑟 fluctuates. Right: the MSESSini also
fluctuates.

In both examples, the net change from the initial bed is not a proper indicator
of the difficulty of the predictions; it lacks information on the nature of the mor-
phological development prior to the evaluation time. For seasonal systems, an
alternative choice of reference, for example the initial state for the same season,
could have resulted in a more appropriate skill trend. However, even then, the
progressive development is put to a less stringent test than the seasonal system,
and increasingly so in time; the increase of MSE𝑟 with time provides the progress-
ive development with an unfair advantage over the seasonal system for which the
variation of MSE𝑟 is bounded, regardless of the amount of absolute change. In
real-life situations, the behaviour of MSE𝑟 will be affected by a combination of
trends and fluctuations. For instance, Walstra et al. (2012) presented predictions
of cyclic net offshore bar migration that increase in skill from 0.38 after 1 year to
0.65 after 3 years as a consequence of an increase of MSE𝑟 .
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3.6.3 Large, persistent scales versus smaller scales

Several authors have reported skill scores of process-based morphodynamic mod-
els to increase with time. For a hindcast of the Western Scheldt from 1860 to
1970, skill scores steadily increase during the simulation from negative scores after
about 20 years to MSESSini ≈ 0.5 in 1970 (Dam et al., 2013, 2015). A hindcast of the
morphological response of the Sand Engine during the first year of its existence
showed negative values in the first two months (MSESSini = −2 in September and
−0.03 in October, respectively), partly attributed to interpolation errors of the ini-
tial bathymetry, increasing to MSESSini = 0.4 in January and 0.59 in August (Luij-
endijk et al., 2017). A similar time-variation of skill was noticed for the 15 year
hindcast of the evolution of the Bornrif, already mentioned in Sect. 3.6.1. Upon
comparison of the Bornrif’s yearly bed changes with the cumulative bed changes
from the start of the simulation, Bosboom et al. (2014), see Ch. 2, noticed that
the simulations capture little of the year-to-year variability while the larger-scale
fields of cumulative change are reasonably well predicted. This was confirmed by
an alternative skill computation that resulted in significantly lower skill values by
considering bed changes in a one-year period rather than cumulative change over
multiple years. Based on these findings, it was hypothesized that the relatively low
values of MSESSini at the beginning of the Bornrif simulation are mainly due to un-
skilful smaller scales. Over time, the relative contribution of these smaller scales
to the cumulative change, and thus to MSESSini, decreases and, consequently, the
contribution of the more skilful, persistent larger-scale trend increases.

To demonstrate this effect, a simple example is used. Assume the observed and
predicted anomalies to consist of two spatial scales 𝑜′ = 𝑜′high + 𝑜′low and 𝑝′ =
𝑝′high+𝑝′low, respectively, with the subscripts high and low referring to a small and
a large scale respectively. On the smaller scale, the anomalies are modelled by a
sinusoidal variation in the entire model domain with 𝜌𝑝′𝑜′ = −0.28 and 𝜎𝑝′/𝜎𝑜′ =
0.5. Systematic biases are neglected, such that the skill for the small scale only is
MSESSini = −0.53 throughout the simulation. For the larger scale, we have chosen
a localized sedimentation and mirrored erosion feature, which steadily develop in
size throughout the simulation, with 𝜌𝑝′𝑜′ = 0.71 and 𝜎𝑝′/𝜎𝑜′ = 0.5 leading to a
constant skill of MSESSini = 0.5. The combined signals 𝑜′ and 𝑝′ are shown in
Fig. 3.7 at the beginning, half-way and at the end of the simulation. Fig. 3.8 shows
that the skill of the combined signal increases with time from MSESSini = −0.08
to 0.46. Hence, even when the skill of both the smaller and longer scales alone is
constant with time, the combined skill increases from low scores at the beginning,
dictated by the unskilful small scales, to higher scores towards the end, dictated
by the more skilful longer scales.

In conclusion, an increase in skill for longer prediction horizons may well be in-
dicative of the emerging of the more skilful larger scales, without the skill on these
scales necessarily increasing in time. By implication, larger skill scores could be
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Figure 3.7: Measured (solid lines) and predicted anomalies at three moments (𝑡 = 1, 5 and 10) in the
simulation, consisting of a constant high-frequent part and a low-frequent part that increases in
magnitude in time.
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Figure 3.8: Variation of MSESSini in time for the low-frequent (low) and high-frequent (high) part as
well as for the combined signal (tot).

achieved from the beginning of the simulation by low-pass filtering of the sed-
imentation/erosion fields. The above not only challenges the comparability of
skill scores at different times in a simulation but between different simulations as
well. Clearly, there is a need to develop validation tools that distinguish between
various spatial scales (see e.g. Bosboom and Reniers, 2014a, i.e. Ch. 6).

3.7 The BSS and beyond

As an easy-to-compute, normalized summary statistic, the BSS, or more appropri-
ately MSESS, has become widely accepted for classification of morphodynamic
model quality. A score of 0.5 means that the prediction is half-way an unskil-
ful reference prediction and a perfect prediction, as measured by the cumulative
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mean-squared bed difference. Variations to the MSESS exist that aim to correct
for measurement error, but these are inconsistent in either their skill formulation
or their suggested classification scheme (Sect. 3.5.2).

However attractive the concept of skill, a comparative analysis based on skill
scores lacks general validity. This is because cumulative bed change cannot ad-
equately discern between the inherent ease or difficulty of predictions that have
a different morphological development prior to the evaluation time—for instance
trend, cyclic, episodic or different seasons in a seasonal system (Sect. 3.6.2). Also,
due to the cumulative nature of morphology as the persisted variable, skill values
are affected by an increasing dominance of persistent larger scales as simulations
progress (Sect. 3.6.3). Hence, skill scores must be judged on a case-by-case basis.

When model calibration is aimed at maximizing the MSE skill score, the vari-
ance of the bed changes tends to be underestimated (Sect. 3.6.1). This is the direct
consequence of the choice for a point-wise accuracy measure. It is advised to
not only consider MSE and the MSE skill score, but also the error terms of the
Murphy– Epstein decomposition (Murphy and Epstein, 1989), the anomaly correl-
ation and ratio of the standard deviation of the predicted and observed anomalies.
With this additional information, a more informed choice is possible for the most
appropriate prediction given the goal at hand.

More in general, by using a single or a few accuracy or skill measures, only cer-
tain aspects of model quality are emphasized. In order to capture the various di-
mensions of morphodynamic model quality, multiple performance measures must
be used. Welcome additions to existing performance measures would be methods
that selectively address multiple spatial scales as well quantify the agreement in
patterns and features rather than the point-wise agreement (see Bosboom and Ren-
iers, 2014b, i.e. Ch. 4, and references therein). This requires an investment from
the modelling community in the development of a more extensive model valida-
tion suite. The introduction of the BSS was a first step showing the maturing of
the field of morphodynamic modelling (Roelvink and Reniers, 2012). The develop-
ment of a set of performancemeasures in combinationwith a set of internationally
agreed validation cases, as also advocated in Mosselman and Le (2016), would be
an important next step in raising the level of morphodynamic model validation.
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4 Displacement-based error metrics for
morphodynamic models

This chapter is republishedwithminor changes only from J. Bosboom andA.J.H.M.
Reniers (2014). Displacement-based errormetrics formorphodynamicmodels. Ad-
vances in Geosciences 39, 37–43, doi:10.5194/adgeo-39-37-2014.

Chapter 2 (Bosboom et al., 2014) and Ch. 3 (Bosboom and Reniers, 2018) identi-
fied the need for performance measures that quantify the agreement in patterns
and features rather than the point-wise agreement as well as the need for per-
formance measures that selectively address multiple spatial scales. While the lat-
ter is addressed in Ch. 6 (Bosboom and Reniers, 2014a), the first point has led us
to develop various error metrics that take the spatial structure of 2D morpholo-
gical fields into account through a transformation of the computed towards the
observed field (Ch. 4, this chapter, and Ch. 5). The patternmatching in this chapter
optimizes the location of pixels with given intensities (i.e. depth values) in an im-
age and is therefore probably closest to the visual validation by morphologists. By
implication, the method is not sediment-conserving, as opposed to the optimiza-
tion method of Ch. 5 (Bosboom et al., 2019), which moves sediment rather than
depth values. The highlights of Ch. 4 are:

1. A novel diagnostic tool for the spatial validation of morphological fields is
presented.

2. The method deforms the predictions such as to minimize the misfit with
observations.

3. Errors are formulated based on the smooth displacement field between pre-
dictions and observations and on the residual point-wise error field.

4. Two new error metrics are introduced: a mean location error 𝐷 and the
RMSEw, which combines location and intensity errors.

5. The tool is tested against Delft3D model outcomes of the development of a
idealized tidal inlet.

6. The new validation approach outperforms the convential approach based
on the point-wise root-mean-squared error (RMSE)

Abstract

The accuracy of morphological predictions is generally measured by an overall
point-wise metric, such as themean-squared difference between pairs of predicted
and observed bed levels. Unfortunately, point-wise accuracy metrics tend to fa-
vour featureless predictions over predictions whose features are (slightly) mis-
placed. From the perspective of a coastal morphologist, this may lead to wrong de-
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cisions as to which of two predictions is better. In order to overcome this inherent
limitation of point-wise metrics, we propose a new diagnostic tool for 2Dmorpho-
logical predictions, which explicitly takes (dis)agreement in spatial patterns into
account. Our approach is to formulate errors based on a smooth displacement field
between predictions and observations that minimizes the point-wise error. We il-
lustrate the advantages of this approach using a variety of morphological fields,
generated with Delft3D, for an idealized case of a tidal inlet developing from an
initially highly schematized geometry. The quantification of model performance
by the new diagnostic tool is found to better reflect the qualitative judgement of
experts than traditional point-wise metrics do.

4.1 Introduction

Quantitative validation methods for morphodynamic models are often grid-point
based; they compare observations and predictions per grid point and compute
various metrics for the entire set or subset of grid points (e.g. Sutherland et al.,
2004). Unfortunately, point-wise accuracy metrics, such as the commonly used
MSE (mean-squared error) and RMSE (root-mean-squared error), tend to penalize,
rather than reward, the model’s capability to provide information on features of
interest, such as scour holes, accumulation zones andmigrating tidal channels. For
instance, a prediction of a morphological feature that is correct in terms of timing
and size, but is misplaced in space, may not outperform even a flat bed, which is
inconsistent with the common judgement of morphologists (Fig. 4.1). This “double
penalty effect” (Bougeault, 2003), which applies in full when a feature is misplaced
over a distance equal or larger than its size, makes it difficult to demonstrate the
quality of a high-variability prediction (Anthes, 1983; Mass et al., 2002). Clearly,
a high-quality validation process requires alternative validation techniques that
account for the spatial structure of 2D morphological fields.

For the verification of weather variables (e.g. precipitation), methods are being
actively developed to quantify forecast performance based on spatial structure;
see for instance Casati et al. (2008) and Gilleland et al. (2009) for an overview.
One of the approaches in meteorology, now also pioneered in other fields (e.g.
Haben et al., 2014; Ziegeler et al., 2012), is to find an optimal deformation of the
predictions that minimizes themisfit with observations. This optimal deformation
can be obtained by employing one of many existing image matching methods, of
which optical flow techniques, designed to estimate motion, are probably most
well-known in the coastal community. The result of the image matching or warp-
ing is a vector field of displacements, which can be regarded as a displacement
error field. In addition, an intensity or amplitude error field may be defined as the
difference between the deformed prediction and the observations (e.g. Marzban
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Figure 4.1: The “double penalty effect”. Top panels: the featureless prediction A has a nonzero
difference 𝑑A between predicted and observed depth values at the location of the observed feature
only. Lower panels: prediction B, which reproduces the feature at the wrong location, is penalized
twice (𝑑B is nonzero bothwhere the predicted feature is andwhere it should be) and is thus diagnosed
with a twice as large MSE1.

and Sandgathe, 2010), which can be seen as the point-wise error if no penalty
applies for misplacements.

Existing verification methods, based on field deformation of meteorological
fields, not only differ in the applied image matching method, but also in the ap-
proach to the subsequent extraction of map-mean errors. Keil and Craig (2009) de-
termine RMS (root-mean-squared) intensity and mean displacement errors within
the boundaries of precipitation features, which they then combine into a single er-
ror metric. The latter requires the normalization of the two errors to put each
term on equal footing, which introduces two parameters to the formulation. In
contrast, Gilleland et al. (2010b) propose a combined error metric that besides the
post-warp RMS intensity error and the mean displacement error also takes the ori-
ginal RMS intensity error into account, enabling a more fair comparison of fore-
cast performance. Their metric, however, is not easily applicable since it requires
three user-chosen weights that are dependent on the error terms themselves.

The goal of this paper is to quantify morphodynamic model performance, while
taking the spatial characteristics of 2D morphology into account. Using a field de-
formation technique, we have developed and tested a new diagnostic tool for the
validation of 2D morphological predictions. It includes a location (displacement)
error metric and a robust and physically intuitive combined error metric that in-
corporates both location and intensity error. The combined metric rewards pre-
dictions to the degree that a larger error reduction can be obtained with smaller
displacements. As a reference, we use the subjective but very powerful method of
visual inspection of morphological patterns by experts.

1 Corrected from Bosboom and Reniers (2014b) where (R)MSE was written.
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Our method is outlined in Sect. 4.2, along with a brief description of the image
warping method that we have adopted to calculate the optimal deformation. Next,
in Sect. 4.3, we put the new diagnostic tool to the test, using morphological fields
generated with Delft3D for an idealized case of a tidal inlet developing from an
initially highly schematized geometry. Section 4.4 concludes with a summary of
our findings and the implications for morphodynamic model validation.

4.2 Method

This section outlines our two-step approach in order to quantify the (dis)agreement
between 2D morphological patterns. Section 4.2.1 describes the first step of de-
forming (or warping) the predicted morphology to minimize the point-wise error
with observations. Next, Sect. 4.2.2 formulates two new error metrics, a mean loca-
tion error that is distilled from the displacement vector fields and a single-number
error metric that measures both the correspondence with respect to location and
intensity (i.e. depth values).

4.2.1 Warping method

The measure of closeness between images or spatial fields is encountered in many
fields from radiography to meteorology. This has led to the development of a mul-
titude of image matching methods that, depending on the scientific field, are also
named registration or warping methods. The goal of such methods is to find the
optimal transformation that maps each point of a static image to a correspond-
ing point (with the same intensity) in the moving image. Within the context of
morphodynamic model validation, the static image represents the observed depth
field 𝑜 and the moving image the predicted depth field 𝑝.

Of all the available techniques, the class of optical flow techniques, designed
to estimate small displacements in temporal image sequences, is probably the
most well-known in our field. The basic assumption of optical flow is that the
intensity of a moving object does not change appreciably in the considered time
interval. We employ the efficient, nonrigid (i.e. allowing for free-form deforma-
tions) registration technique named Demon’s registration (Thirion, 1998), which
bears similarities to optical flow, in an implementation by Kroon and Slump (2009).
The Demon’s approach can be considered as similar to a minimization of the sum
of square image intensities between the deformed predictions and observations
(Pennec et al., 1999). It is therefore consistent with our quest to find the optimal
deformation of the predictions that minimizes the point-wise (R)MSE.

The estimated backward pixel displacements B∗ = (𝐵∗𝑥 , 𝐵∗𝑦) that are required
for a given point in a static image (the observations in our validation context) to
match the corresponding point in a moving image (the predictions) are given by
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Thirion (1998):

B∗ = (𝐼𝑝 − 𝐼𝑜)∇𝐼𝑜
|∇𝐼𝑜 |2 + 𝛼2(𝐼𝑝 − 𝐼𝑜)2

(4.1)

in which 𝛼 is a normalization factor that is equal to 1 in the original method and
𝐼𝑜 and 𝐼𝑝 are the intensities of the static and moving image, respectively. The lat-
ter are taken as the observed and predicted depth fields, normalized by scaling
between 0 and 1. Since Eq. 4.1 is based on local information, it is solved iteratively
while including Gaussian smoothing as a regularization criterion. This ensures
that a realistic, smooth displacement field is found instead of an irregular field that
nonetheless minimizes the sum of squares. The normalization factor is chosen as
𝛼 = 2.5 in line with Kroon and Slump (2009) and the standard deviation of the
Gaussian smoothing window as 𝜎 = 4. These parameters are kept constant for
all registrations presented in Sect. 4.3. The forward displacements F∗ = (𝐹 ∗𝑥 , 𝐹 ∗𝑦)
from the moving to the static image can be determined from B∗ after the registra-
tion. Note that when in the following the subscript ∗ is dropped, we refer to the
displacement fields transferred to a physical distance.

For the purpose of model validation, we interpret 𝑑0 = 𝑝0 − 𝑜, with 𝑝0 the pre-
diction prior to warp, as the total point-wise error and 𝑑1 = 𝑝1 − 𝑜, with 𝑝1 the
deformed prediction as follows from the registration, as the point-wise error if no
penalty is imposed for location disagreement. Next, we use this perspective in the
formulation of map-mean errors.

4.2.2 Formulation of new error metrics

From the Demon’s registration (see Sect. 4.2.1), we obtain the optimal displace-
ment vector field between predictions and observations as well as the optimal
deformation of the predictions. “Optimal” in this context means that the sum of
squares between the deformed predictions and observations is minimized, such
that 0 ⩽ RMSE1 ⩽ RMSE0, where RMSE0 and RMSE1 are the root-mean-squared
errors before and after the warp, respectively. Note that we have preferred the
RMSE over the MSE, since the first is measured in the same units as the data. Out
of two predictions that have the same RMSE0, a prediction that has similar mor-
phological features as the measurements, albeit displaced, may receive a lower
RMSE1 than a prediction that is not able to reproduce the observed morphological
features at all. Thus, the RMSE1 is expected to diagnose the agreement between
morphological fields if a zero penalty is imposed for misplacements of features.
However, which of the two predictions is valued the better prediction by morpho-
logists not only depends on RMSE0 and RMSE1, but also on the magnitude of the
displacements required to obtain the error reduction. Therefore, we expect that
the similarity in both location and intensity between morphological patterns can
be fully assessed using three error metrics in concert: RMSE0, RMSE1 and a mean
location error 𝐷 that we will formulate next from the displacement vector fields.
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It is tempting to define 𝐷 as the arithmetic mean of 𝐷 = √(𝐵𝑥2 + 𝐵𝑦2), the
field of displacement magnitudes. However, it should be realized that the optical
flow problem is underconstrained; for a single grid point, we only have inform-
ation on the displacements normal to the contour lines, whereas along the con-
tour lines the displacements are ambiguous (the so-called aperture problem). In
the Demon’s approach, the Gaussian smoothing acts as the necessary additional
constraint, requiring that nearby grid points have similar displacements. As a
consequence, nonzero displacements may be found along depth contours in mor-
phologically inactive regions (see Sect. 4.3), whereas these displacements do not
improve the match between the deformed prediction and the observations. There-
fore, we propose a weighted mean location error that weights the local backward
displacement magnitudes 𝐷 with their effect on the reduction of the local squared
error. In this way, displacements are only taken into account to the extent that
they contribute to the minimization of the sum of squares. This yields:

𝐷 = ∑𝑛
𝑖=1 𝑤𝑖𝐷𝑖
∑𝑛

𝑖=1 𝑤𝑖
; 𝑤𝑖 =

SE0,𝑖 − SE1,𝑖
∑𝑛

𝑖=1(SE0,𝑖 − SE1,𝑖)
. (4.2)

Here SE0 = (𝑝0 − 𝑜)2 and SE1 = (𝑝1 − 𝑜)2 are the local squared errors before and
after the warp, respectively, 𝑛 is the number of equidistant points in the spatial

domain and ∑𝑛
𝑖=1 𝑤𝑖 = 1. Note that RMSE𝑗 = √𝑛−1∑

𝑛
𝑖=1 SE𝑗,𝑖 , with 𝑗 = [0, 1].

Whereas model performance is usually diagnosed based on RMSE0 only, we
now have two additional metrics RMSE1 and 𝐷. In Sect. 4.3, it is demonstrated
that considering these three metrics in concert allows a full assessment of model
quality, avoiding the double penalty effect for misplaced features. In practice,
guidance may be required on how to weight these three metrics. Besides, the
morphologist may sometimes desire a single-number summary of model perform-
ance, especially if automated calibration routines are used. To serve these needs,
we propose an adjusted RMS error measure, RMSEw, that is computed from a field
of weighted squared errors SEw. The latter are determined by locally weighting
SE0 and SE1. The purpose of the weighting procedure is to locally relax the re-
quirement of an exact match to an extent determined by the local displacement
magnitude. Figure 4.2 illuminates the weighting procedure for the ith grid point;
an error reduction is awarded that is a fraction 1 − 𝛿𝑖 of the full error reduction
potential (SE0,𝑖 − SE1,𝑖). Here, 𝛿𝑖 = 𝐷𝑖/𝐷max and 𝐷max is a maximum displacement
length above which no relaxation is allowed. A larger fraction 1 − 𝛿𝑖 is allowed
for smaller displacement magnitudes 𝐷𝑖 , with a maximum of 1 − 𝛿𝑖 = 1 and thus
SEw,𝑖 = SE1,𝑖 for 𝐷𝑖 = 0 m. For 𝐷𝑖 ⩾ 𝐷max, we have 1 − 𝛿𝑖 = 0 and thus SEw,𝑖 = SE0,𝑖 .
Note that 𝐷max is a user-defined, physically intuitive parameter that is dependent
on the prediction situation and the goal of the simulation. It can be seen as the
maximum distance over which morphological features may be displaced for the
prediction to still get (some) credit for predicting these features. We now have for
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Figure 4.2: Weighted squared error for the ith grid point SEw,𝑖 , which is the sum of the local squared
error after the warp SE1,𝑖 and a penalty for misplacements 𝛿(SE0,𝑖 − SE1,𝑖)with 𝛿 = 𝐷𝑖/𝐷max. The pen-
alty ranges from 0 for 𝐷𝑖 → 0 to (SE0,𝑖 − SE1,𝑖) for 𝐷𝑖 = 𝐷max, a user-defined maximum displacement
length. For 𝐷𝑖 ⩾ 𝐷max the full point-wise error applies and SEw,𝑖 = SE0,𝑖 .

RMSEw:

RMSEw = √
∑𝑛

𝑖=1 SEw,𝑖
𝑛 (4.3)

where

SEw = SE1 + 𝛿(SE0 − SE1) (4.4)

𝛿𝑖 =
𝐷𝑖

𝐷max
for 𝐷𝑖 ⩽ 𝐷max; 𝛿𝑖 = 1 for 𝐷𝑖 > 𝐷max. (4.5)

In conclusion, RMSEw as an error metric rewards forecasts to the degree that
a larger error reduction can be obtained by smaller displacements. By definition,
RMSE1 ⩽ RMSEw ⩽ RMSE0. If the error reduction due to the image deformation is
negligible or can only be obtainedwith displacements equal to or larger than𝐷max,
the diagnosed error is equal to the original error prior to the deformation RMSE0.
If, on the other hand, the displacements required to minimize the point-wise er-
ror are very small relative to 𝐷max, we have RMSEw ≈ RMSE1. The justification
for this approach lies in the tendency of coastal morphologists to credit a predic-
tion for the reproduction of features, albeit displaced, while imposing a relatively
small penalty for misplacement. The intuitive weighting of these two aspects is
mimicked by the user-defined parameter 𝐷max.

4.3 Application

Below, the new error metrics are used to diagnose the correspondence between
model-generated pairs of morphological patterns for an idealized tidal inlet as well
as the relative ranking between the pairs. The fields have been generated for the
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idealized case of a tidal inlet developing from an initially highly schematized geo-
metry (Roelvink, 2006). First, Sect. 4.3.1 demonstrates that the location error 𝐷
is able to capture the overall misplacement of the morphological patterns. Next,
in Sect. 4.3.2, the combined error metric RMSEw is put to the test. Two examples
are shown where the RMSEw makes the right the decision as to which of two pre-
dictions is the better prediction while the conventional, purely point-wise RMSE0
fails to do so.

4.3.1 Location error

In this subsection, we consider a subset of the model-generated depth fields which
only differ with respect to the latitude, and hence Coriolis parameter, used in the
model. Of four depth fields, we label the field generated at 53°N as the “observa-
tions” (Fig. 4.3a) and consider the other fields, for latitudes 90°N, 0° and 90° S, as
three competing predictions. Even though the predictions are not shown here, it
will not come as a surprise that the point-wise error RMSE0 is smallest for 90°N
and largest for 90° S (Table 4.1).
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Figure 4.3: Example of the imagewarp: (a) the “observations”, calculated using Delft3Dwith Coriolis
at 53°N, (b) the predictions, calculated at 0°, (c) the backward displacement vector field B of the
observations towards the predictions, shown on top of the observations, and (d) the predictions
deformed to more closely match the observations.

In order to determine RMSE1 and 𝐷, the image warping method is applied, fol-
lowing the procedure outlined in Sect. 4.2, and illustrated here for the prediction at
0° (Fig. 4.3b). The deformed prediction that matches the observations most closely
is shown in Fig. 4.3d and the corresponding backward vector displacement field
B in Fig. 4.3c. As explained in Sect. 4.2.1, in the inactive outer regions, physic-
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Latitude RMSE0 (m) RMSE1 (m) 𝐷 (m)

90°N 0.29 0.12 180
0° 0.52 0.26 350

90° S 0.73 0.35 710

Table 4.1: Errors for competing predictions that differ with respect to the latitude, and thus the
Coriolis parameter, used in Delft3D. The model results for 53°N are regarded as the “observations”.

ally unrealistic displacements are found along depth contours, since no penalty is
imposed in the minimization for displacements along depth contours. As will be
illustrated next, this is solved for in the formulation of 𝐷 (Eq. 4.2).

The difference 𝑑0 between the predictions prior to the warp and the observa-
tions is shown in Fig. 4.4a, whereas Fig. 4.4b shows the difference 𝑑1 after the warp.
Note that taking the root-mean-square of 𝑑0 and 𝑑1 yields RMSE0 and RMSE1, re-
spectively. From 𝑑0, the double penalty problem is clearly observed; for instance
at the edges of the ebb-tidal delta, an error is diagnosed both where the delta is
present in the observations but absent from the predictions and vice versa. After
the warp, both errors have practically disappeared, such that they will not count
towards RMSE1, demonstrating again that RMSE1 should be regarded as the point-
wise error if no penalty for misplacement is taken into account. For the prediction
at 0°, RMSE1/RMSE0 = 0.5, and slightly smaller ratios are found for the other two
predictions (Table 4.1).
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Figure 4.4: Point-wise error fields for the predicted depth field at 0°: (a) the total error 𝑑0 = 𝑝0 − 𝑜
before the warp, (b) the error 𝑑1 = 𝑝1 − 𝑜 after the warp, to be regarded as the remaining point-wise
error if no penalty applies for location disagreement.

The weighted dispacements 𝑤𝐷, with 𝐷 = √(𝐵𝑥2 + 𝐵𝑦2) and 𝑤 according to
Eq. 4.2, are shown in Fig. 4.5. Inherent to the use of the squared error to determine
𝑤 is that larger error reductions are heavily weighted. Here, we have nevertheless
chosen this weighting since squared errors are consistent with the minimization
as performed by the registration method as well as with the use of the (R)MSE
as the point-wise metric, which is common in morphodynamic model validation.
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Note that for the computation of 𝐷 (Eq. 4.2), we require the backward (from the
observations to the predictions) rather than the forward displacements; for each
point in the observational domain, these provide the distance at which the point
in the predictions is located that is shifted to the considered location in the obser-
vations. Summing 𝑤𝐷 for the entire domain yields a location error 𝐷 = 350m at
0° (Table 4.1).
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Figure 4.5: Weighted displacements 𝑤𝐷 for the prediction at 0°. Here 𝐷 = √(𝐵𝑥
2 + 𝐵𝑦

2) is the field
of displacement magnitudes computed from the backward displacement vector field B (see Eq. 4.1)
and 𝑤 is determined according to Eq. 4.2.

The values for 𝐷 for the three predictions demonstrate a qualitative behaviour
consistent with the error in latitude and hence Coriolis effect in the various pre-
dictions (Table 4.1). In fact, all three error metrics, RMSE0, RMSE1 and 𝐷 diagnose
the predictions for 90°N and 90° S as the best and worst predictions, respectively.
Next, we will consider situations in which a ranking consistent with expert judge-
ment is only obtained by considering these three metrics in concert, using an
appropriate weighting, or from RMSEw.

4.3.2 Ranking according to the combined error metric

In this subsection, we present an example, again using depth fields generated with
the Delft3D model of the schematized tidal inlet, that demonstrates that RMSEw
outperforms the traditional score RMSE0. Now, the model results at a latitude of
0° (see Sect. 4.3.1) are assumed to be the “truth”. Four competing predictions are
considered that are generated at 0° with various changes to the model boundary
conditions (w.r.t. tidal amplitude and flow direction). Figure 4.6 shows the four
predictions, the “observations” and the deformed predictions that minimize the
point-wise error.

We have labelled the predictions according to a subjective ranking based on
visual inspection, with A the prediction with the closest match with the observa-
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A B C D "Observed"

A warped B warped C warped D warped "Observed"

Figure 4.6: Predictions A, B, C and D, the “observations” (taken as the model results for 0°) and the corresponding
deformed predictions that minimize the point-wise mismatch between predictions and observations. The labels are
chosen such that the lower the label in the alphabet, the higher the quality that the prediction is probably diagnosed
with upon visual inspection. The axes are as in Fig. 4.3.

tions and D, the worst prediction. We have a slight preference for prediction B
over C, but it is possible that other morphologists would tend to regard C as the
better prediction. Not surprisingly, the relative ranking as diagnosed by RMSE0
deviates from the expert ranking (Table 4.2); based on RMSE0 one would wrong-
fully conclude that predictions A and B perform equally well and that prediction
D outperforms prediction C.

Prediction Ranking RMSE0 RMSE1 𝐷 RMSEw
(m) (m) (m) (m)

A 1 0.78 0.38 610 0.49
B 2 0.77 0.53 770 0.60
C 3 1.16 0.56 860 0.78
D 4 0.952 0.77 1230 0.84

Table 4.2: Subjective ranking (with 1 being the best prediction) and errors for competing predictions,
generated with Delft3D for various boundary conditions. The “observations” are taken as the model
outcome at 0° (cf. Sect. 4.3.1). The values for RMSEw hold for 𝐷max = 3000m.

The values of RMSE1, 𝐷 and RMSEw for the respective predictions provide the
necessary additional information on model performance (Table 4.2). The smaller
RMSE1 for prediction A than for prediction B shows that if no penalty is imposed
for misplacements, prediction A receives a lower error than B. Moreover, a smal-
ler average displacement 𝐷 is required to minimize the point-wise error. Thus,
even though no distinction can be made based on RMSE0, we can conclude that

2 Corrected from Bosboom and Reniers (2014b) where 0.96 was listed.

87 Displacement-based error metrics for morphodynamic models



pattern A more closely corresponds to the observations than pattern B. Clearly,
considering the values of RMSE0, RMSE1 and 𝐷 in concert leads to a diagnosis of
relative model performance of A and B in line with visual inspection.

To determine RMSEw, a value for 𝐷max must be chosen. A defendable choice
would be to limit 𝐷max to the scale of the morphological features of interest. For
this particular case, 𝐷max = 3000m is considered appropriate, being in the order
of magnitude of the seaward extent of the ebb-tidal delta. In general, of course,
𝐷max must be chosen in accordance with the goal of the simulation.

Figure 4.7 shows that with 𝐷max = 3000m, RMSEw reports a higher quality
for prediction A than for prediction B, regardless of the exact choice for 𝐷max.
Only if one decides to not allow any relaxation of the requirement of an exact
match (𝐷max = 0 m), RMSEw is identical to the full point-wise error RMSE0 and
no distinction can be made between A and B. If one wishes to allow the full error
reduction potential (𝐷max → ∞), we have RMSEw = RMSE1.
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Figure 4.7: The combined error metric RMSEw as a function of 𝐷max for predictions A, B, C and D.
The larger 𝐷max, the more the requirement of an exact match is relaxed; for 𝐷max → 0, we have
RMSEw → RMSE0 and for 𝐷max → ∞, we have RMSEw → RMSE1.

Table 4.2 illuminates that prediction C, the prediction with the largest RMSE0,
has a much larger potential for error reduction by warping than prediction D;
notwithstanding the larger RMSE0, RMSE1 is smaller for prediction C than for
D and at a smaller mean displacement 𝐷. The relatively small error reduction
potential for D is a result of the fact that features not present in the predictions
remain absent after the warping procedure, as evident in the deformed predictions
in Fig. 4.6. As a result, RMSE1 remains relatively high for D, rightfully penalizing
the prediction for the absence of the observed features. A conclusive answer as
to whether C or D is the better prediction now requires a (subjective) weighting
of RMSE0, RMSE1 and 𝐷. Conveniently, the weighting between location errors,
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pre-warp and post-warp intensity errors is already provided by the formulation of
RMSEw, allowing a quantitative single-number comparison between predictions
C and D. For 𝐷max = 3000m, the values for RMSEw indicate that prediction C
outperforms D (Fig. 4.7), consistent with the ranking based on visual inspection.
Naturally, the occurence of this ranking reversal, as compared to the ranking based
on RMSE0, depends on the chosen value of 𝐷max.

4.4 Conclusions

We have developed a new diagnostic tool for morphodynamic model validation.
It employs an image warping method that finds the smooth displacement field
between predictions and observations that minimizes the point-wise error. Two
new metrics are proposed: (1) a location error 𝐷 that is determined as a weighted
mean distance between morphological fields; and (2) a combined error metric
RMSEw that takes both location and intensity errors into account.

A full appreciation of the quality of a prediction can be obtained when consid-
ering 𝐷 in concert with both the original point-wise error RMSE0 and the point-
wise error of the deformed predictions, RMSE1. In order to quantify the relative
performance between predictions, a (subjective) weighting of these three metrics
must be carried out. Alternatively, the weighting is already provided by RMSEw,
which combines all relevant information on location errors and pre- and post-
warp intensity errors.

The combined error metric credits predictions to the degree that a larger er-
ror reduction can be obtained with smaller displacements. It reduces to RMSE0 if
all displacements are larger than a user-defined 𝐷max and to RMSE1 for displace-
ments that are negligible relative to 𝐷max. The latter can be seen as the maximum
distance over which morphological features may be displaced for the prediction
to still get (some) credit for predicting these features. The appropriate choice for
𝐷max depends on the prediction situation and the goal of the simulation. Since it
only requires a single, physically intuitive parameter, RMSEw provides a robust
basis for comparison.

An example of a schematized tidal inlet has demonstrated that RMSEw outper-
forms the conventional validation approach based on a strictly point-wise metric
such as RMSE0. In situations where morphological features are misplaced, point-
wise accuracy metrics tend to favour predictions that underestimate variability.
For the schematized tidal inlet, it was shown that, as opposed to RMSE0, the new
combined error metric RMSEw makes choices as to which of two predictions is
better, which are consistent with visual validation by experts.
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5 Optimal sediment transport for
morphodynamic model validation

This chapter has been submitted for publication as J. Bosboom, M. Mol, A.J.H.M.
Reniers, M.J.F. Stive and C.F. de Valk (2019). Optimal sediment transport for mor-
phodynamic model validation.

The combined error metric RMSEw as presented in Ch. 4 (Bosboom and Ren-
iers, 2014b) was seen to capture the visual closeness of morphological patterns,
therewith highlighting aspects of model quality that are not reflected in point-
wise metrics, such as the root-mean-squared error (RMSE). The underlying image
warp minimizes the point-wise squared error by freely deforming the computa-
tions towards the observations. Since it essentially shifts individual depth values
by (locally) stretching or compressing the morphological pattern, sediment mass
continuity is not guaranteed. Formorphodynamicmodel validation, it seemsmore
natural to define the mismatch between predictions and observations in terms
of the physical quantity responsible for morphodynamic development: sediment
transport. This idea is at the heart of the here presented effective transport differ-
ence (ETD) method leading to a novel error metric, the root-mean-squared trans-
port error (RMSTE). The ETD method, like the image warp, takes the spatial or-
dering of grid points and therewith the morphological pattern into account. It
results in a perfect transformation of the predicted to the observed morphological
field, whereas, due to bed level differences between corresponding features in the
two fields, the image warp does not allow an exact match. As opposed to the warp,
the ETD method is mass-conserving, parameter-free and symmetric, the optimal
transport from observations to predictions being the inverse of the optimal trans-
port from predictions to observations.

The highlights of this chapter are :

1. A novel diagnostic tool for morphodynamic model validation is presented
that moves misplaced sediment from the predicted to the observed morpho-
logy through an optimal, rotation-free sediment transport field.

2. The optimal transport field is relatively easily found through a parameter-
free procedure solving a Poisson equation.

3. A new error metric, the RMSTE, is defined as the root-mean-square of the
optimal transport field.

4. The RMSTE, as opposed to the RMSE, is able to discriminate between pre-
dictions that differ in the misplacement distance of predicted morphological
features.

5. The RMSTE avoids the consistent favouring of the underprediction of mor-
phological variability that the RMSE is susceptible to.
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Abstract

Although commonly used for the validation of morphological predictions, point-
wise accuracy metrics, such as the root-mean-squared error (RMSE), are not well
suited to demonstrate the quality of a high-variability prediction; in the presence
of (often inevitable) location errors, the comparison of depth values per grid point
tends to favour predictions that underestimate variability. In order to overcome
this limitation, this paper presents a novel diagnostic tool that defines the dis-
tance between predicted and observed morphological fields in terms of an op-
timal sediment transport field, which moves the misplaced sediment from the
predicted to the observed morphology. This optimal corrective transport field has
the “cheapest” quadratic transportation cost and is relatively easily found through
a parameter-free and symmetric procedure solving an elliptic partial differential
equation. Our method, which we named effective transport difference (ETD), is
a variation to a partial differential equation approach to the Monge–Kantorovich
𝐿2 optimal transport problem. As a new error metric, we propose the root-mean-
squared transport error (RMSTE) as the root-mean-squared value of the optimal
transport field. We illustrate the advantages of the RMSTE for simple 1D and 2D
cases as well as for more realistic morphological fields, generated with Delft3D,
for an idealized case of a tidal inlet developing from an initially highly schemat-
ized geometry. The results show that by accounting for the spatial structure of
morphological fields, the RMSTE, as opposed to the RMSE, is able to discriminate
between predictions that differ in the misplacement distance of predicted mor-
phological features, and avoids the consistent favouring of the underprediction of
morphological variability that the RMSE is prone to.

5.1 Introduction

Quantitative validationmethods formorphological predictions are often grid-point
based: they compare observations and predictions per grid point and compute
various metrics for the entire set or subset of grid points. Accuracy metrics, e.g.
the root-mean-squared error (RMSE) or the mean absolute error (MAE) measure
the averaged correspondence between individual pairs of model outcomes and ob-
servations, whereas skill metrics determine the accuracy, using an accuracymetric
of choice, relative to the accuracy of a prediction produced by a standard of refer-
ence (Gallagher et al., 1998). Several morphological studies rely solely on a skill
score, most notably a mean-squared-error skill score (MSESS or BSS, Sutherland
et al., 2004; Bosboom et al., 2014, i.e. Ch. 2) as a performance metric (e.g. van Rijn
et al., 2003; Plant et al., 2004; Henderson et al., 2004; Pedrozo-Acuña et al., 2006;
Scott andMason, 2007; Ruggiero et al., 2009; Orzech et al., 2011;Walstra et al., 2012;
Williams et al., 2012; Simmons et al., 2017; Monge-Ganuzas et al., 2017; Luijendijk
et al., 2017; Luijendijk et al., 2019). In other cross-shore, longshore and area mod-
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elling studies, skill scores and accuracy metrics are used in concert (e.g. Ruessink
et al., 2007; Dam et al., 2016; Fortunato et al., 2014; Simmons et al., 2019). These
procedures are sometimes supplemented with bias- and correlation-based meas-
ures, either directly (e.g. Gallagher et al., 1998; Roelvink et al., 2009; McCall et al.,
2010, 2015; Ganju et al., 2011; Davidson et al., 2013; Dodet et al., 2019; Hallin et al.,
2019) or through the Murphy-Epstein decomposition of the MSESS (Sutherland
et al., 2004; Bosboom and Reniers, 2018, i.e. Ch. 3), which additionally employs an
amplitude error (e.g. Sutherland et al., 2004; Ruessink and Kuriyama, 2008; van der
Wegen et al., 2011; van der Wegen and Roelvink, 2012; Elmilady et al., 2019).

The various statistical measures condense a large number of data into a single
value, inevitably emphasizing only certain aspects of the quality of the model
results. Morphodynamic modellers are inclined to judge model results on the
reproduction of patterns. Unfortunately, point-wise accuracy and derived skill
metrics tend to penalize, rather than reward, the model’s capability to provide
information on features of interest, such as scour holes, accumulation zones and
migrating bars or tidal channels (Bosboom et al., 2014; Bosboom and Reniers, 2018,
i.e. Chs. 2 and 3, respectively). This tendency to reward the underestimation of
variability (Anthes, 1983; Arpe et al., 1985; Taylor, 2001) is easily illustrated by
the classical example of the “double penalty effect” (Bougeault, 2003): a predic-
tion, which reproduces a feature at the wrong location, is penalized twice, both
where the predicted feature is and where it should be, and is thus diagnosed with
a twice as large mean-squared error (MSE) as a flat bed prediction. More in gen-
eral, for a nonperfect correlation, as would be the case in the presence of location
errors, accuracy as well as skill values can be “improved” by underestimation of
the variability (Bosboom et al., 2014; Bosboom and Reniers, 2018, i.e. Chs. 2 and 3,
respectively). Clearly, this is inconsistent with the common judgement of mor-
phologists. In order to avoid the underestimation of bed changes, an indicator
should be added to determine whether the predicted variance is close to the ob-
served variance. Further, since point-wise metrics do not take the spatial ordering
of grid points into account, they are not sensitive to misplacement distance. The
simplest demonstration of the latter is a prediction of a feature on a otherwise flat
bed that has been misplaced over a distance larger than its size. For this situation,
metrics that impose a penalty on point-wise bed level differences yield identical
values irrespective of the misplacement distance.

The above illustrates the need for new validation metrics that account for the
spatial structure of morphological fields. Pioneering techniques in the field of
weather forecasting comprise field deformation methods, which give information
about how much the predicted field needs to be manipulated spatially (displace-
ment, rotations, scaling, etc.) and quantify the residual errors (Gilleland et al.,
2009). Bosboom and Reniers (2014b), i.e. Ch. 4, developed a field deformation or
image warping approach for morphological model validation that determines a
smooth displacement field between morphological predictions and observations
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minimizing the residual point-wise error and computes domain-averaged errors
based on the displacement as well as residual error fields. The method includes a
robust and physically intuitive combined error metric, the RMSEw, which rewards
predictions to the degree that a larger error reduction can be obtained with smal-
ler displacements. This error metric for morphological model validation results in
choices as to which of two predictions is better that are consistent with visual val-
idation, demonstrating the potential of field deformationmethods to overcome the
limitations of point-wise metrics. However, the so-determined optimal smooth
transformation merely relocates predicted bed levels in the two-dimensional do-
main. As a result, horizontal dimensions of features may get distorted, such that
sediment is not necessarily conserved.

For morphodynamic model validation, it seems more natural to base a valid-
ation metric on a transformation between predictions and observations defined
in terms of the physical quantity responsible for morphodynamic development:
sediment transport. Therefore, we have developed a method that determines the
distance between morphological fields in terms of the minimal sediment trans-
port required to change the one field into the other. Since the transformation is
defined in terms of sediment transport, mass will now be conserved, but features
may not. The optimal transformation or effective transport difference (ETD) has
the “cheapest” transportation cost and is relatively easily found by solving an el-
liptic partial differential equation. The solution procedure is parameter-free and
symmetric, the optimal transport field from observations to predictions being the
inverse of the optimal transport field from predictions to observations. The new
domain-averaged error metric that we propose is a multiple of the minimum trans-
portation cost.

Our ETD method is related to the Monge–Kantorovich theory of optimal mass
transport, which deals with the transport of a distribution of mass to another dis-
tribution of mass on the same space, in such a way as to keep the transportation
cost to a minimum. The first formulation of the optimal mass transport problem
was due to Monge in 1781, who considered the most economical way of transport-
ing a pile of soil for construction works from one site to another. Monge used a
cost function equal to the norm of the distance, based on the argument that the
cost of transportation of an individual mass is proportional to its weight times
the travelled distance (Rachev and Rüschendorf, 1998). This leads to the physical
interpretation of the 𝐿1 optimization, which minimizes the norm, in terms of the
minimization of work, assuming that the work of transporting a mass element Δ𝑚
over a distance Δ𝑑 is Δ𝑚Δ𝑑 (Bogachev and Kolesnikov, 2012).

The work of Kantorovich in 1948 gave the optimal mass transport problem its
modern, generalized formulation, which is today known as the 𝐿𝑝 Monge–Kanto-
rovich problem (Villani, 2003). Here one is allowed to “divide grains”, whereas in
Monge’s formulation grains that share the same initial location must also share
the same final location (Rachev and Rüschendorf, 1998). Especially the 𝐿2 Monge–
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Kantorovich problem, whichminimizes the squared norm of the distance, has been
researched intensively by theoretical mathematicians (Villani, 2003), since, as op-
posed to the 𝐿1 problem, it allows for relatively simple solutions. The search for
efficient numerical solvers has only recently become a lively research domain (San-
tambrogio, 2015). Benamou and Brenier (2000) and Benamou et al. (2002) were
the first to construct a robust and efficient numerical solver for the 𝐿2 Monge–
Kantorovich problem by introducing a partial differential equation approach. In a
fluid mechanics framework, they showed that the 𝐿2 optimal transport is equival-
ent to minimizing a kinetic energy functional among solutions of the continuity
equation, with the optimal solution given as the gradient of a potential and, thus,
being irrotational.

Our ETDmethod also employs an irrotationality condition for the optimal trans-
port in order to reformulate a transport optimization problem in terms of a par-
tial differential equation that is easily solved. However, whereas the 𝐿2 Monge–
Kantorovich problem penalizes the quadratic distance the transformation moves
each bit of material, weighted by the material’s mass, our quadratic cost function
penalizes the squared sediment transport, i.e. mass times distance, herewith re-
taining the original physical Monge’s interpretation in terms of work, albeit in a
quadratic sense. New aspects are further that our model boundaries are open to
sediment, which allows a bias to exist between the two bathymetric fields.

This paper presents a novel error metric, the root-mean-squared transport er-
ror (RMSTE) as a multiple of the “cheapest” quadratic cost for the transportation
of sediment from predictions to observations and establishes its applicability for
morphodynamic model validation. In doing so, for fairness of comparison, the
behaviour of the RMSTE as an error metric is evaluated in comparison to the be-
haviour of its point-wise counterpart, the RMSE. First, in Sect. 5.2, we describe
our ETD method of finding the optimal transport difference between two mor-
phological fields, leading to the formulation of the RMSTE. Section 5.3 shows in
1D how the RMSTE and RMSE behave for both misplaced features and features
that are underestimated in size. Further, it compares the RMSTE and RMSE for
a 2D example, in which the latter of these two metrics suffers from the double
penalty effect. Next, in Sect. 5.4, we put the RMSTE to a more realistic test us-
ing morphological fields, generated with Delft3D, for an idealized case of a tidal
inlet developing from an initially highly schematized geometry. This section not
only compares the RMSTE to the RMSE but to the RMSEw as well. The implica-
tions of the results for morphodynamic model validation are discussed in Sect. 5.5.
Section 5.6 concludes with a summary of our findings and identifies future work.
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5.2 A new method

In this section, we present a new error metric, the RMSTE, which measures the
mismatch between two morphological fields in terms of sediment transport. First,
Sect. 5.2.1 describes common error metrics, such as the RMSE, that penalize bed
level differences between predictions and observations. Second, in Sect. 5.2.2, we
define the RMSTE as (amultiple of) the optimal (i.e. minimum) quadratic transport
cost required to transform the predictions into the observations. Third, Sect. 5.2.3
demonstrates that the optimal transport, on which RMSTE is based, can be found
by solving an elliptic partial differential equation. Finally, Sect. 5.2.4 briefly de-
scribes the numerical implementation.

5.2.1 Penalty on bed level differences

More traditional errormetrics are based on a point-wise comparison of predictions
and observations. Let ℎ1 and ℎ2 be the predicted and observed bed levels above a
certain vertical reference level, respectively, for a set of points x over a domain Ω.
If 𝑒 = ℎ2 − ℎ1 is the point-wise bathymetric error, the 𝑝-norm bathymetric error is
defined as:

‖𝑒‖𝑝 = (∫
x∈Ω

|𝑒|𝑝dx)
1/𝑝

(5.1)

with 𝑝 = 1, 2, ∞ the usual choices for 𝑝 and the 𝑝 = 2 norm known as the Eu-
clidean norm. Often used point-wise accuracy metrics, the MAE and the RMSE
are constant multiples of the 1-norm and 2-norm errors, respectively. The RMSE
reads:

RMSE = 1
√𝐴Ω

(∫
x∈Ω

|ℎ2(x) − ℎ1(x)|2 dx)
1/2

= 1
√𝐴Ω

‖𝑒‖2 (5.2)

with 𝐴Ω the domain surface area. The MSE simply is the square of the RMSE.
Note that in Sects. 5.3 and 5.4, we have chosen to visually compare predictions

and observations by means of difference fields 𝛿 = ℎ1 − ℎ2 rather than error fields
𝑒. The advantage of defining the deviations as predicted values minus real, ob-
served values is that the observations are the reference point from which the pre-
dictions may differ, such that a positive deviation indicates an overprediction and
a negative deviation an underprediction. Of course, the RMSE is unaffected when
computed from difference fields 𝛿 rather than from 𝑒.
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5.2.2 Penalty on transport magnitude

Assume that q on Ω represents a cumulative, depth-integrated transport of sedi-
ment from ℎ1 to ℎ2, such that with a constant grain size and porosity, and, hence,
constant density, the sediment volume balance is satisfied:

∇ ⋅ q = ℎ1 − ℎ2 (5.3)

with ∇⋅ is the divergence operator and either known or unknown transports nor-
mal to the boundary 𝜕Ω of Ω at every point of 𝜕Ω. Note that q is to be interpreted
as a corrective transport field moving sediment from the predicted morphology
ℎ1 to the observed field ℎ2, and, hence, as a transport difference field between ℎ1
and ℎ2.

There may exist a multitude of transport fields satisfying Eq. 5.3. An optimal
field can be determined by minimizing the 𝑝-norm of the transport field:

minimize
q

‖𝑞‖𝑝 = (∫
x∈Ω

|q(x)|𝑝 dx)
1/𝑝

(5.4)

with 𝑞 = |q| is the magnitude of the transport field.
Equation 5.4 under the constraint Eq. 5.3 differs from the 𝐿𝑝 Monge–Kantoro-

vich mass transfer problem (Villani, 2003) in that it minimizes the cumulative
transport, and thus, assuming constant density, mass times distance, to the power
𝑝, rather than the travelled distance to the power 𝑝, weighted by the amount
of transferred mass. If the exponent 𝑝 = 1, the minimization problem of Eqs. 5.3
and 5.4 reduces to an 𝐿1 Monge–Kantorovich problemwith the Euclidean distance
as the cost function (Evans, 1997). Numerical methods for solving this problem
exist (Benamou and Carlier, 2015), but are considerably more complex than the
solution of Eqs. 5.3 and 5.4 with 𝑝 = 2. As we will see in Sect. 5.2.3, the case 𝑝 = 2
is relatively easily solved by rewriting the optimality condition Eq. 5.4 and will
therefore be the one used in this paper.

Summarizing, we will solve the following 𝐿2 problem minimizing a quadratic
transport cost:

minimize
q

‖𝑞‖2 = (∫
x∈Ω

|q(x)|2 dx)
1/2

subject to ∇ ⋅ q = ℎ1 − ℎ2.
(5.5)

By rewriting the cost functional, Eq. 5.5 can be reformulated as a an elliptic
partial differential equation from which the quadratic optimal transport field q𝐿2
is relatively easily solved (see Sect. 5.2.3). In analogy with Eq. 5.2, we can now
introduce the RMSTE as:
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RMSTE = ( 1
𝐴Ω ∫

x∈Ω
|q𝐿2(x)|2 dx)

1/2
= 1
√𝐴Ω

‖q𝐿2‖2. (5.6)

Note that since Eq. 5.6 is a constant multiple of the optimal quadratic transport
cost, the triangle inequality1 is satisfied; there is no other transport field satisfying
Eq. 5.3 and the boundary conditions that obtains a lower RMSTE than q𝐿2.

The RMSTE, Eq. 5.6, can be seen to penalize the transport itself, while the RMSE,
Eq. 5.2, penalizes the bed level changes and thus, according to Eq. 5.3, the diver-
gence of the transport. As a measure of volume times displacement per unit sur-
face area, the RMSTE has units m2, while the RMSE, which measures a volume
per unit surface area, has units m.

Redistributing sediment from ℎ1 to ℎ2 through q𝐿2 implies removing sediment
at locations for which 𝛿 = ℎ1 − ℎ2 > 0 and adding sediment at locations for which
𝛿 = ℎ1 − ℎ2 < 0. We can express the sediment surplus as an excess height2 given
by 𝛿1 = max (𝛿, 0) and the sediment shortage as a deficit height2 given by 𝛿2 =
max (−𝛿, 0). Of course, in Eq. 5.3, ℎ1 − ℎ2 = 𝛿1 − 𝛿2. With these definitions, RMSTE
can be seen to measure the smallest overall volume transport of sediment required
to excavate 𝛿1 and fill 𝛿2. For a zero bias between predictions and observations
and boundaries closed for sediment, 𝛿1 will be transported to 𝛿2. More in general,
sediment may also be added or removed through the boundaries depending on the
transportation cost.

5.2.3 Solving the Effective Transport Difference

The solution of Eq. 5.5 proves to be irrotational (see Appendix 5.A) and can there-
fore be represented as the gradient of a scalar field, the potential 𝜙:

q𝐿2 = ∇𝜙. (5.7)

With Eq. 5.7, Eq. 5.3 can be written as:

∇2𝜙 = ℎ1 − ℎ2. (5.8)

Equation 5.8 is a standard Poisson equation for which numerous efficient solvers
are available. With 𝜙 defined through Eq. 5.7, this Poisson equation is fully equi-
valent to Eq. 5.5. This realization is analoguous to the interpretation of Moser’s
coupling in terms of optimization theory in Brenier (2003, Section 2.6), where it is

1 A function 𝑚(𝐴, 𝐵) is a metric if it is symmetric 𝑚 (𝐴, 𝐵) = 𝑚 (𝐵, 𝐴), positive-definite 𝑚 (𝐴, 𝐵) ⩾ 0
and 𝑚 (𝐴, 𝐵) = 0 ⇔ 𝐴 = 𝐵, and satisfies the triangle inequality 𝑚 (𝐴, 𝐵) + 𝑚 (𝐵, 𝐶) ⩾ 𝑚 (𝐴, 𝐶). Both
the RMSE and the RMSTE satisfy these criteria.

2 Surplus or shortage volume (m3) per squared meter of domain area (m2), hence an excess or deficit
height (m).
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shown that the solution to a variant to the 𝐿2 Monge–Kantorovich problem can
be represented as a potential flow satisfying the Laplace equation.

The two typical boundary conditions for our application are:

1. Neumann-type boundary condition for a boundary closed for sediment:

q ⋅ n = ∇𝜙 ⋅ n = 0 (5.9)

for all points on the boundary 𝜕Ω. Here ⋅ denotes the inner product and the
normal vector n is the unit vector that is perpendicular to the surface 𝜕Ω
and points outwards from 𝜕Ω.

2. Dirichlet-type boundary condition for a free boundary that allows for sedi-
ment transport across the boundary:

𝜙 = 0 (5.10)

for all points on the boundary 𝜕Ω, which signifies that there is no constraint
on q on the boundary (see Appendix 5.A).

One can prove that for the case of Dirichlet boundary conditions the solution to
Poisson’s equation always exists and is unique. The same holds for combination
boundary conditions, which consist of Dirichlet boundary conditions on part of
the domain boundary and Neumann boundary conditions on the remainder of the
domain boundary. For the case of Neumann boundary conditions, a solution only
exists if the transport ∇𝜙 ⋅ n integrated over the boundary 𝜕Ω is consistent with
ℎ1 − ℎ2 integrated over Ω. Then the solution is unique up to an overall additive
constant. Clearly, it is sufficient to determine 𝜙 up to an arbitrary additive con-
stant, which has no impact on the value of the sediment transport q = ∇𝜙.

The above implies that if all boundaries are closed to sediment, the condition
for existence of a solution to Eq. 5.8 is that the domain-averaged value of the right-
hand-side ℎ1−ℎ2 equals zero. The term ℎ1−ℎ2 = 𝛿1−𝛿2 was seen to act as a source
and sink term, with 𝛿1 the excess height, which needs to be removed, and 𝛿2 the
deficit height, which needs to be supplied (see Sect. 5.2.2). If its domain-averaged
value is equal to zero, hence, in the absence of a bias, the excess sediment 𝛿1 suffices
to fill the sediment deficit 𝛿2, such that a solution can be found within the domain.
If its domain-averaged value is unequal to zero, i.e. in the case of a bias, a net
sediment import or export is required to obtain a match between predictions and
observations. Then, at least one free boundary condition should be applied.

In specifying the boundary conditions for a particular application, one must
bear in mind that q represents the optimal cumulative transport through which a
perfect match is obtained between predictions and observations, hence a transport
difference or error. This error is just as arbitrary on the boundary as within the
domain, such that in generalq⋅n on the boundary 𝜕Ω is unknown and there should
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be no constraint on q on the boundary. This means that from a physical point of
view, free boundaries, which are part of the transport optimization, are generally
the logical choice. Only in the special case of a boundary that is physically closed
for sediment, one may assume that the error q ⋅ n on the boundary is known and
zero. Land boundaries or boundaries beyond the depth of closure (Hallermeier,
1980) may typically be regarded as closed boundaries.

In general, with one or more free boundaries, sediment may be imported or
exported through the boundaries depending on the transportation cost. This may
be the case both with and without a bias between predictions and observations.
In this respect, our method differs from usual optimal transport methods that do
not allow a transport across the boundaries and assume that the total mass is
contained within the domain.

We refer to the above algorithm for computing an optimal sediment transport
as Effective Transport Difference (ETD), since we resolve a transport field that is
fully effective in causing morphodynamic change. An arbitrary transport field,
satisfying Eq. 5.3, can be decomposed into a rotation-free and divergence-free
part (Helmholtz decomposition). Only the rotation-free part, which contains the
information about the divergence, results in bed-level changes through Eq. 5.3.
Thus, the irrotational, optimal transport field from the least-squares optimization
(Eq. 5.5) only contains information that can unambiguously be derived from the
bed-level differences and boundary conditions.

5.2.4 Numerical treatment

Section 5.2.3 presented a partial differential equation approach to obtain the qua-
dratic optimal transport q𝐿2. We have implemented this approach using the func-
tions from the Matlab Partial Differential Equation (PDE) Toolbox, which employs
a Finite ElementMethod (FEM) solver for problems on an unstructured grid (Math-
works, 2015). For now, our implementation has been targeted to relatively simple
2D cases, such as shown in this paper (Sects. 5.3.2 and 5.4).

The complex geometry, as required by the PDE toolbox, is generated starting
with a rectangular domain fromwhich any “dry points”, representing, for instance,
barrier islands, are excluded (see Sect. 5.4). The boundary enclosing the complex
geometry, is subdivided into multiple segments, for which a choice between free
or closed boundary conditions is available. The Poisson equation is solved on a
triangular Delaunay mesh, which is step-wise refined until the solution converges.

5.3 Simple cases

In this section, we compare the behaviour of the RMSTE and RMSE for simple 1D
and 2D cases. First, the 1D cases in Sect. 5.3.1 show that the RMSTE does not suffer
from the limitations of the RMSE, viz. insensitivity to misplacement distance and
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the double penalty effect. Next, Sect. 5.3.2 confirms these conclusions based on
a simple 2D example. Section 5.3.2 also discusses the characteristics of the 2D
optimal transport field and potential for both free and closed boundaries.

5.3.1 Metric behaviour in 1D

The 1D predictions, ℎ1, and observations, ℎ2, are represented by equally wide,
Gaussian-shaped humps (𝜎 = 3) on an otherwise flat bed, with amplitudes and
centre points 𝑎1 and 𝑥1 and 𝑎2 and 𝑥2, respectively, such that the misplacement
distance is 𝑑 = |𝑥1 − 𝑥2| (Fig. 5.1a). Our aim is to compare the behaviour of the
RMSTE and RMSE for varying misplacement distance 𝑑 and amplitude ratio 𝑎1𝑎−12 .
For 𝑥2 = 0, 10, 20 and 35m, 𝑥1 was varied such that the predictions were positioned
everywhere in the domain. The observed amplitude 𝑎2 was fixed at 1.33 m, while
the amplitude of the predictions 𝑎1 varied as 0 ⩽ 𝑎1𝑎−12 ⩽ 2. When the misplace-
ment distance 𝑑 is larger than the feature width and 𝑎1𝑎−12 = 0, the classic double
penalty case is obtained.
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Figure 5.1: Lay-out of the 1D cases with an example solution: (a) predicted and observed bathymet-
ries, ℎ1 and ℎ2 respectively, consist of equally wide Gaussian shaped humps (𝜎 = 3) on a flat bed
with amplitudes and centre points 𝑎1 and 𝑥1 and 𝑎2 and 𝑥2, respectively and the distance between the
two bathymetries 𝑑 = |𝑥1 −𝑥2| (depicted is 𝑎1 = 0.67m, 𝑥1 = −10m, 𝑎2 = 1.33m and 𝑥2 = 20m), (b) the
corresponding optimal transport 𝑞(𝑥) and potential 𝜙(𝑥) with 𝜙 (−50) = 𝜙 (50) = 0 (free boundaries)
and, thus, the domain-averaged transport 𝑞 = 0.
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Obviously, in order to compute the RMSTE, first 𝑞(𝑥) needs to be solved. In 1D,
if the transport is known at one of the boundaries, for instance 𝑞 = 0, the volume
balance has no excess degrees of freedom and only one solution exists, which is
found by straightforward numerical integration. This is equivalent to solving the
1D Poisson equation with a closed boundary (𝑞 = 0) at one end of the domain
and an unconstrained boundary (𝜙 = 0) at the other end. Only if the transport
is unknown at the boundaries, there is (some) room for optimization in 1D. Con-
sidering that the optimal transport 𝑞𝐿2 is given by the gradient of the potential,
the unconstrained condition 𝜙 = 0 at either boundary of a 1D domain implies that
the transport integrated over the domain is zero, and, thus, the average transport
𝑞 = 0. The optimal solution is therefore easily found by integration of the volume
balance, while requiring 𝑞 = 0. The addition of any nonzero constant to the op-
timal transport, although still satisfying the volume balance, would increase the
transport cost without contributing to bed level changes.

In the presence of a bias, when ℎ1 ≠ ℎ2, at least one boundary should be free for
a solution to exist. For the examples in this section, we have used free boundary
conditions at both ends of the domain. Since the free boundary is less constrained
than the closed boundary, this will always result in the smallest transport cost.

Figure 5.1b depicts 𝜙(𝑥) and 𝑞(𝑥) corresponding to ℎ1 and ℎ2 as shown in Fig. 5.1a.
The transports are defined positive in positive 𝑥-direction and negative in negat-
ive 𝑥-direction. The potential 𝜙(𝑥) is zero at the boundaries and increases with 𝑥
for positive transports and decreases with 𝑥 for negative transports, its slope rep-
resenting the transport magnitude. Obviously, 𝑞 increases where sediment needs
to be eroded and decreases where it needs to be deposited, with the changes in 𝑞
equal to the volume changes. The average transport 𝑞 = 0. The bias requires sed-
iment to be imported, which is, because of the positon of the features relative to
the boundaries, most cost-efficiently done from the right boundary only, towards
the observed feature, such that 𝑞 (−50) = 0. All sediment contained in the excess
height 𝛿1 = max (ℎ1 − ℎ2, 0) of the predicted, left hump is moved to the right for
the benefit of the larger deficit height 𝛿2 = max (ℎ2 − ℎ1, 0) of the observed, right
hump.

Figures 5.2a and 5.2c show the RMSE and RMSTE, respectively, as a function of
feature misplacement 𝑑 . Figure 5.2a illustrates that for two equally sized features
(𝑎1 = 𝑎2), the RMSE rapidly increases with increasing 𝑑 , until, when 𝑑 is larger
than the feature width, the RMSE attains a constant value. This value is a factor
√2 larger than the RMSE for a flat bed, since the double penalty on the MSE trans-
lates to the RMSE as a factor √2. In contrast, the RMSTE shows an increase with
increasing misplacement distances 𝑑 , until at relatively large 𝑑 the proximity of
the boundaries forces RMSTE to decrease (Fig. 5.2c); at smaller feature spacings,
𝛿2 is almost fully replenished by 𝛿1, whereas at larger feature spacing, it becomes
more favourable to also export and import sediment in order to excavate 𝛿1 and
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Figure 5.2: Behaviour of RMSE and RMSTE, for free boundaries, for the 1D cases introduced in Fig. 5.1: (a) RMSE
as a function of misplacement distance 𝑑 for predictions with a correct amplitude and for a flat bed prediction,
(b) RMSE as a function of amplitude ratio 𝑎1𝑎−12 for various misplacement distances 𝑑 and the centre position of
the observations at 𝑥2 = 0m, (c) RMSTE as a function of 𝑑 for correctly predicted amplitudes as well as for flat
bed predictions compared to observations at various centre positions 𝑥2, and (d) RMSTE as a function of 𝑎1𝑎−12 for
various misplacement distances 𝑑 and the centre position of the observations at 𝑥2 = 0m. The red crosses in (b)
and (d) indicate the minima.

fill 𝛿2, respectively. Note that for closed boundaries RMSTE is strictly increasing
with 𝑑 (not shown).

For equally sized features, 𝑎1 = 𝑎2, we have 𝑞 (−50) = 𝑞 (50). As a consequence
the RMSTE depends on the misplacement distance 𝑑 only, regardless of the values
of 𝑥1 and 𝑥2. The RMSTE for the flat bed prediction strongly depends on the
position of the observed hump relative to the boundary and, hence, on 𝑥2, since
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the entire deficit height 𝛿2 must be imported. It follows from Fig. 5.2c that for
not too large 𝑥2 and 𝑑 , the RMSTE is larger for the missed feature than for the
misplaced feature.

Figure 5.2b confirms that the RMSE rewards an underprediction of the feature
amplitude. For a feature, misplaced over a distance smaller than its width, RMSE is
minimized for values of 0 < 𝑎1𝑎−12 ⩽ 1. For misplacements larger than the feature
size, the flat bed prediction, 𝑎1 = 0, receives the smallest RMSE. Although the
RMSTE also has minima at values of 𝑎1 < 𝑎2 for 𝑑 > 0, these minima appear at
values of 𝑎1𝑎−12 relatively close to 1 (Fig. 5.2d). Note that Figs. 5.2b and 5.2d are
valid for 𝑥2 = 0.

The above demonstrates that: (1) the RMSTE, as opposed to the RMSE, is able
to account for misplacement distance; and (2) that the double penalty effect is
specific to the RMSE. Whether or not the RMSTE is larger for a flat bed prediction
than for a correctly sized but misplaced feature depends strongly on the situation.

5.3.2 Demonstration for simple 2D case

In this section, we present a simple example to illustrate the behaviour of the
RMSTE in 2D and to provide insight in the characteristics of the 2D potential and
optimal transport fields, for various boundary conditions.

Figure 5.3 compares an observed 2D feature with three suboptimal predictions:
(1) a flat bed prediction, (2) a misplaced feature, and (3) a misplaced feature at a
larger misplacement distance. The (R)MSE and RMSTE error values are given in
Table 5.1. The RMSTE is computed with three different sets of boundary condi-
tions: free boundaries only, closed boundaries only (not applicable for a bias) and
a combination of a closed South boundary and free boundaries elsewhere (further
on referred to as combination boundaries). The different boundary conditions
result in the same ranking of the three predictions. However, fewer constraints
lead to lower transport costs, such that for all predictions the lowest RMSTE is
obtained for free boundaries.

Prediction MSE RMSE RMSTEfree RMSTEcombination RMSTEclosed
(×10−2m2) (×10−1m) (×10−2m2) (×10−2m2) (×10−2m2)

1 1.05 1.03 1.04 1.08 n.a.
2 2.11 1.45 0.87 0.90 0.94
3 2.11 1.45 1.11 1.23 1.32

Table 5.1: (R)MSE and RMSTE with free, combination (only South boundary closed) and closed
boundaries, for predictions 1, 2 and 3.

Of course, predictions 2 and 3 are diagnosed with an MSE and RMSE that are
larger by a factor 2 and √2, respectively, than for prediction 1; prediction 2 and 3
are penalized twice, both where the predicted feature is and where it should be,
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Figure 5.3: Three alternative predictions of the same observed feature. Top panels: the featureless
prediction 1 has a nonzero difference 𝛿 between predicted and observed depth values at the location
of the observed feature only. Middle panels: prediction 2, which reproduces the feature at the wrong
location, is penalized twice, since 𝛿 is nonzero both where the predicted feature is and where it
should be. Lower panels: prediction 3, with a larger misplacement distance, is also penalized twice.

whereas prediction 1 is penalized at the location of the observed feature only (see
Fig. 5.3). As opposed to the RMSE, the RMSTE distinguishes between prediction 2
and 3, the feature with the smaller misplacement distance (prediction 2) receiving
the lower RMSTE. Prediction 2 also outperforms the flat bed prediction (prediction
1), while the feature with the larger misplacement distance (prediction 3) obtains
the worst score.

Evidently, in line with the findings for the 1D cases (Sect. 5.3.1), for correctly
sized features, the RMSTE increases with misplacement distance, until, in the
extreme, sediment exchanged across the model boundaries may lead to a lower
RMSTE. As discussed in Sect. 5.3.1, whether or not a misplaced feature outper-
forms a missed feature is determined by the (optimal transport cost for) the con-
sidered morphological patterns and, hence, depends on the boundary conditions,
the size and shape of the observed and misplaced features and their position rel-
ative to each other and to the domain boundaries.

Figure 5.4 illustrates the characteristics of the potential and optimal transport
for prediction 3, using closed boundaries. The left panel shows the optimal trans-
port field moving sediment from the excess height 𝛿1 to the deficit height 𝛿2, hence
from the red to the blue patches, at minimum cost. The transport field q = ∇𝜙 is
fully determined by the potential 𝜙 (bottom right panel), given by Poisson’s Eq. 5.8.
Thus, the transport occurs everywhere at right angles to the equipotential lines,
i.e. the lines of constant 𝜙, and the spacing of the equipotential lines reflects the
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transport magnitude (top right panel), from which RMSTE is easily computed. At
the closed boundaries, the equipotential lines are perpendicular to the boundaries,
corresponding to zero transport through the boundaries. Naturally, the quadratic
cost function governs the transport pattern. The transport magnitudes at differ-
ent locations are weighted quadratically, so extremes are heavily penalized. This
leads to the observed somewhat diffuse transport pattern with curved transport
pathways.

Figure 5.4: Optimal solution, with closed boundaries, for prediction 3. Left panel: bed level difference
𝛿 = ℎ1 − ℎ2 with the arrows indicating the transport field (length and direction of arrows indicative
of the transport magnitude and direction, respectively). Right panels: transport field represented by
the transport magnitude (top) and potential 𝜙 (bottom).

Figure 5.5 shows the transport magnitude and potential for the situation of free
boundaries all around as well as for combination boundaries, which combine a
closed South boundary with free boundaries elsewhere. One can verify that the
potential is zero at free boundaries allowing transport across the boundaries. The
transport magnitudes are smallest when all boundaries are free, resulting in the
lowest RMSTE (see Table 5.1). Unless there is additional knowledge about the error
on the boundaries, for instance for a boundary physically closed to sediment, the
use of free boundaries is advised (see Sect. 5.2.3).

5.4 Example of a tidal inlet

In this section, we test and illustrate the RMSTE for a more realistic case of a
tidal inlet. We diagnose the correspondence between multiple pairs of morpho-
logical fields, generated by Delft3D, as well as the relative ranking between the
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Figure 5.5: Transport magnitudes and potential for predictions 1, 2 and 3 for free boundary condi-
tions and combination (South boundary closed, remainder free) boundary conditions.

pairs. First, an overview of the model runs and morphological fields is given in
Sect. 5.4.1. Next, in Sect. 5.4.2, we test the behaviour of the RMSTE for fields
with misplaced tidal channels due to incorrect Coriolis settings. Subsequently,
Sect. 5.4.3 presents a full comparison demonstrating the differential behaviour of
the RMSE and RMSTE.

5.4.1 Overview

Starting from an initially highly schematized tidal inlet (Fig. 5.6), we have gen-
erated ten morphological fields with Delft3D. The inlet geometry and boundary
forcing are chosen such as to resemble the Wadden Sea inlet of Ameland. The
tidal basin is rectangular with an area of 15×10 km2 and a uniform initial depth of
2m; the entrance has a width of 2 km, and the seabed initially slopes from −2m at
the barrier islands to −10m at the offshore (Northern) boundary (Roelvink, 2006).
The model has a uniform grid size of 100 × 100m2.

For the base run O (see Table 5.2), the latitude was set to 0° and a uniform, har-
monic water level variationwas applied along the offshore boundarywith a period
of 12 h and a water level amplitude 𝑎 of 1m. The standard sediment transport for-
mulations according to van Rijn were applied, with a multiplication factor for the
suspended sediment reference concentration 𝑓sus = 1 and a median sediment size
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Figure 5.6: Initial bathymetry with the free sea boundaries for Poisson’s Eq. 5.8 in green and the
closed land boundaries in red.

𝐷50 = 200 𝜇m. The other 9 runs listed in Table 5.2 are variations to the base run O
with respect to latitude, 𝑓sus, 𝐷50, tidal amplitude 𝑎 and tidal direction. The latter
was changed, for run A only, from cross-shore to alongshore by applying a phase
difference along the Northern boundary. The final bathymetries of the 10 runs are
shown in Fig. 5.7. For the computation of the ETD and, subsequently, the RMSTE
between pairs of depth fields (Sects. 5.4.2 and 5.4.3), we have considered the land
boundaries and sea boundaries as closed and free boundaries, respectively (see
Fig. 5.6).

Run Latitude Amplitude Direction 𝑓sus 𝐷50
(m) (𝜇m)

O 0° 1.0 C 1.0 200
A 0° 1.0 L 1.0 200
B 0° 0.67 C 1.0 200
C 0° 1.5 C 1.0 200
D 0° 0.5 C 1.0 200
F 90°N 1.0 C 1.0 200
G 90° S 1.0 C 1.0 200
L 53°N 1.0 C 1.0 200
M 53°N 1.0 C 1.5 200
N 0° 1.0 C 1.0 250

Table 5.2: Overview of the 10 runs used to generate the morphological fields of Fig. 5.7. O is the
base run, the others are variations with respect to latitude, tidal amplitude and direction [C(ross)-
or L(ongshore)], transport parameter 𝑓sus and 𝐷50. The labels are chosen such as to be consistent
with Bosboom and Reniers (2014b, i.e. Ch. 4) and Mol et al. (2015).
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Figure 5.7: Final bathymetries of the 10 runs with settings according to Table 5.2. The horizontal and vertical axes
and the color scaling are as in Fig. 5.6.

5.4.2 Variation in Coriolis

First, in this section, the model-generated depth fields O, F, G and L (see Table 5.2
and Fig. 5.7) are considered, which only differ with respect to the latitude, and,
hence, Coriolis parameter. We label depth field L, the one with 53°N, as the obser-
vations and regard the other three as three competing predictions. The pairs of
computations and observations are named by the label of the predictions followed
by the label of the “observations” (see Table 5.3).

Figures 5.8 and 5.9 show the bed level differences 𝛿 = ℎ1−ℎ2 and transport mag-
nitudes |q|, respectively. The required transport corrections are mostly confined
to the flood and ebb tidal delta areas, with zero or small transports outside these
delta regions. Sediment is relocated from the excess locations to the shortage loc-
ations, i.e. from the red to the blue patches in Fig. 5.8. On the ebb tidal delta,
this results in a transport between the delta flat and the outer edges in both direc-
tions. In the flood tidal delta, sediment is transported to locations where channels
are wrongly predicted and away from locations where they should have been pre-
dicted. The transport distances are limited, since the Coriolis errors require only
local corrections to feature locations.

Both the RMSE and RMSTE increasewith increasing latitude deviation (Table 5.3),
since both the misplaced volumes of sediment and the misplacement distances in-
crease with latitude error. Under these circumstances, the various error metrics,
including the metrics based on the field deformation or image warping method
(see Bosboom and Reniers, 2014b), demonstrate the same qualitative behaviour.
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Figure 5.8: Bed level differences and transport fields, with the length and direction of the arrows indicative of the
transport magnitude and direction, respectively, for cases FL, OL and GL (see Table 5.3).

Figure 5.9: Transport magnitudes for cases FL, OL and GL with closed land boundaries and free sea boundaries.

Case Latitude Latitude RMSE RMSTE
model observed (m) (×102m2)

FL 90°N 53°N 0.29 0.5
OL 0° 53°N 0.52 1.2
GL 90° S 53°N 0.73 2.0

Table 5.3: RMSE and RMSTE for three cases with errors in latitude and hence Coriolis parameter.
Case names consist of the label of the predictions followed by the label of the “observations”, which
are taken as the model outcome at 53°N.

5.4.3 Comparison of all fields

In this section, the predictions A to N are compared to the observations O by
means of the RMSE and the RMSTE (see Table 5.4). From Table 5.4, it is clear
that the RMSE and RMSTE lead to a different ranking amongst the predictions,
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with prediction L receiving the lowest RMSTE and prediction N the lowest RMSE.
Further, as opposed to the RMSE, the RMSTE is seen to discriminate between
predictions F (or its mirrored prediction G) and M as well as between A and B.
The distinctive behaviour of the two error metrics is a logical consequence of their
different definition. Below, we highlight and explain some of these differences on
the basis of the underlying fields of bed level differences and transports (Figs. 5.10
and 5.11).

Case RMSE RMSTE
(m) (×102m2)

AO 0.78 2.6
BO 0.77 5.5
CO 1.16 8.2
DO 0.953 7.8
FO 0.59 1.4
GO 0.59 1.4
LO 0.52 1.2
MO 0.59 2.2
NO 0.47 1.8

Table 5.4: RMSE and RMSTE for predictions A to N compared to “observations” O, the model out-
come at 0°, hence without the influence of Coriolis.

Prediction L, which has a modelled latitude of 53°N rather than the “real” 0°,
is awarded the lowest RMSTE. Predictions F and G, with a 90° modelled latitude,
receive the second best RMSTE. The wrongly predicted Coriolis deflection leads
to a distortion of the outer edges of the ebb tidal delta and a mispositioning of
the channels on the flood tidal delta and in the inlet gorge. The sediment trans-
port required to correct these Coriolis errors takes place over short distances only,
explaining that, measured by the RMSTE, predictions F, G and L outperform the
other predictions, including prediction N, which is the best prediction in terms of
RMSE. The too high grain size of the latter prediction results in an underdeveloped
delta, which must be corrected by transporting sediment from the channel loca-
tions to build the flats and extend the delta rims. The relatively large distances
over which this sediment is transported explains the larger RMSTE compared to
the predictions with Coriolis error, even though, based on the RMSE, the amount
of misplaced sediment is smaller. This underlines again that the RMSE measures
misplaced sediment volumes only, whereas the RMSTE takes misplacement dis-
tance into account as well.

Despite receiving the same values of RMSE, predictions F and M behave differ-
ently in terms of RMSTE. The erroneous Coriolis deflection that both predictions
suffer from, is stronger for prediction F than for prediction M. Prediction M, how-

3 Corrected from 0.96 as previously listed in Bosboom and Reniers (2014b).
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Figure 5.10: Bed level differences and transport fields, with the length and direction of the arrows indicative of the
transport magnitude and direction, respectively, for predictions A through N compared to the “observations” O.

ever, has an additional error source that requires a corrective transport over larger
distances; due to too large suspended sediment transports (𝑓sus = 1.5 instead of 1),
the inlet system is overdeveloped. The corrective transport pattern for prediction
M shows the two error sources operating at different spatial scales, of which the
longer scales weight heavier towards the RMSTE. The result is a domain-averaged
corrective sediment transport that is larger for prediction M than for F.

Predictions A to D were added to allow a comparison with the RMSEw, the
combined error metric based on the field deformation or image warping method
of Bosboom and Reniers (2014b). The RMSEw combines all relevant information
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Figure 5.11: Transport magnitudes for predictions A through N compared to the “observations” O.

on location errors and pre- and post-warp intensity (i.e. bed level) errors. It de-
pends on a user-defined parameter𝐷max, which represents the maximum distance
over which morphological features may be displaced for the prediction to still get
(some) credit for predicting these features. Both the RMSTE and the RMSEw dia-
gnose prediction A to be a better prediction than B, in spite of the similar values
for RMSE (Table 5.5). Whether prediction C or D is diagnosed the better predic-
tion by the RMSEw depends on the chosen value for𝐷max. In contrast, the RMSTE
does not allow such a parameter. Based on the RMSTE, and hence on the required
amount of corrective sediment transport, prediction D outperforms prediction C.
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Case RMSEw (m) RMSEw (m) RMSE RMSTE
𝐷max = 3000m 𝐷max = 1000m (m) (×102m2)

AO 0.49 0.63 0.78 2.6
BO 0.60 0.71 0.77 5.5
CO 0.78 1.02 1.16 8.2
DO 0.84 0.94 0.95 7.8

Table 5.5: The combined error metric RMSEw from the image warp (with 𝐷max = 3000m and 1000m)
for predictions A to D compared to “observations” O (values from Bosboom and Reniers, 2014b).
The values for RMSE and RMSTE are copied from Table 5.4 for ease of reference.

A final remark concerns the free boundary conditions. From Figs. 5.10 and 5.11,
it can be seen that for predictions A to D, with larger morphological change closer
to the North boundary, there is a small corrective sediment transport across this
boundary. Note that these predictions require a net sediment exchange with the
outside world due to the presence of a (small) bias. The contribution of the trans-
port across the North boundary to the RMSTE is limited, as can be verified from
Fig. 5.11.

5.5 Discussion

Sections 5.3 and 5.4 have shown that the newly introduced RMSTE is capable of
discriminating among model results, which is an important requirement of any er-
ror metric. We have seen that the RMSTE may lead to a different judgement as to
which of two predictions is better than the RMSE, since it highlights other aspects
of model performance. The RMSE measures the amount of misplaced sediment,
and, hence, penalizes small misplacements of features heavily. As a consequence,
it is difficult to demonstrate the quality of a high-variability prediction with the
RMSE. The RMSTE on the contrary, is based on the corrective sediment transport
from the predicted to the observed morphological field and, consequently, not
only takes the amount of misplaced sediment into account, but also the distance
over which this sediment is misplaced. Hence, larger spatial scales in the bathy-
metric error fields, requiring larger corrective transport distances, are penalized
heavier than shorter scales. For the simple cases in Sect. 5.3, this was reflected in
the RMSTE increasing with the misplacement distance of the considered features
and being free from the consistent favouring of flat bed predictions that the RMSE
suffers from. Similarly, Sect. 5.4 demonstrated, for more realistic bathymetric pat-
terns, that more localized sediment misplacements, due to, for instance, incorrect
Coriolis deflections, are diagnosed with better RMSTE scores than misplacements
similar in volume but over larger distances. Section 5.4 further indicates that in-
spection of the corrective transport fields, underlying the RMSTE, may provide
some guidance as to how the model should be improved. As an example, for case
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MO in Sect. 5.4.3, the transport pattern revealed two error sources operating on
different spatial scales, which, when isolated, may be separately addressed for the
improvement of the model.

Based on the above described results, we expect that the RMSTE will enable a
more balanced comparison between morphodynamic model predictions. The cur-
rent validation practice of only using a point-wise accuracy metric—for example
the (R)MSE—or a skill score based on such a point-wise metric—for example the
mean-squared-error skill score known as Brier skill score (BSS)—tends to reward
predictions that underestimate the variability of morphodynamic change (see Bos-
boom et al. (2014), i.e. Ch. 2, and Bosboom and Reniers (2018), i.e. Ch. 3). This
undesirable effect can be counteracted by also taking the RMSTE into account. We
further anticipate that the RMSTE will be helpful in calibrating morphodynamic
models with respect to the morphodynamic timescale. In a first calibration step,
an automated calibration routine, which minimizes the RMSTE, may be able to de-
termine the optimal global model settings, such as certain transport parameters,
that merely affect the morphodynamic timescale. In a next step, a more detailed
calibration of other parameters can be undertaken using multiple error metrics,
amongst others the RMSE and the RMSTE.

In Sect. 5.3.1, we have seen that the proximity of the boundaries may restrict
the increase of the RMSTE with the misplacement distance between two features,
or even cause the RMSTE to decrease. This can occur when it is cheaper to (partly)
export the excess height 𝛿1 through the one boundary and (partly) import the de-
ficit height 𝛿2 through another boundary than to directly move 𝛿1 towards 𝛿2. It
may seem counterintuitive at first, that free boundaries could prevent a predicted
and observed feature on either side of the model domain to be (fully) associated
with each other. However, the transport error on the boundary is equally un-
known as within the domain, such that free boundaries, which are themselves
part of the optimization, are generally the logical choice. Only in the special case
of a boundary that is physically closed for sediment, such as land boundaries, one
may assume that the transport error on the boundary is known and zero. The
transport across free boundaries will be relatively small when the bias between
predictions and observations is small and the model boundaries are chosen far
away from the regions of morphodynamic change, as would generally be the case
in practical applications (see also Sect. 5.4). In these cases, also the effect of the
boundary conditions on the RMSTE will be small.

As opposed to the RMSE, the RMSTE requires fields to operate on, which com-
plicates its application in data-poor environments. A solution could be to interpol-
ate the data to the computational grid using straightforward interpolation meth-
ods. Alternatively, more advanced stochastic models may be used to generate
realistic realisations of the seabed, consistent with the available data (Novaczek
et al., 2019; Williams et al., 2017). The sensitivity of the RMSTE to data coverage
and resolution can be assessed in practice by evaluating the difference between

115 Optimal sediment transport for morphodynamic model validation



the RMSTE values computed using different methods to estimate missing data.
Note that both the RMSE and the RMSTE can be expected to be sensitive to the
spatial resolution of the data. In fact, the sensitivity of the RMSTE to spatial res-
olution is likely to be smaller than of the RMSE, since the first gives more weight
to larger spatial scales in the bathymetric error fields than to shorter scales. This
also raises the question of the validity of computing the RMSE based on the meas-
urement locations only, which could also be addressed by a sensitivity analysis
using multiple realisations of the seabed consistent with the measurements.

In principle, a skill score could readily be derived from the RMSTE, in the same
manner as skill scores have been derived from the (R)MSE (Gallagher et al., 1998;
Sutherland et al., 2004). Like any skill score, it would inherit the characteristics of
the error metric it is based on, in this case the RMSTE, and be critically dependent
on the choice of the reference prediction. We expect however that the common
choice of the initial morphology as the reference prediction will not be able to
create the required level playing field, as was previously demonstrated for the
MSESS/BSS (Bosboom et al., 2014; Bosboom and Reniers, 2018).

The ETD expresses themismatch between predictions and observations in terms
of a sediment transport field that is able to transform the predictions to perfectly
match the observations. This method, by definition, allows for the redistribution
of the excess sediment volume though splitting or coalescing and implies that bed
features are not necessarily kept intact. While bed forms are created or flattened
out, sediment is redistributed over the morphological scales. The transport dir-
ection of sediment contained in a misplaced feature is not necessarily the same
as the direction in which the predicted feature needs to be moved. In the ex-
amples of Sect. 5.3, the direction of feature movement, for instance from left to
right, coincided with the transport direction of the sediment contained in the pre-
dicted feature. If we would multiply the bed levels by −1, such that the features
were channels rather than humps, the required feature displacement would still
be from left to right, but the sediment, rather, would be moved towards the pre-
dicted feature, from right to left; the excess height 𝛿1 and deficit height 𝛿2 are now
found at the location of the observations and predictions, respectively, instead of
the other way around. This highlights one of the important differences between
the ETD, which moves sediment, and the image warp, such as employed in Ch. 4
(Bosboom and Reniers, 2014b), which, roughly speaking, moves features. This
warping method finds an optimal displacement field by minimizing a regular 𝐿2
distance (Eq. 5.1, with 𝑝 = 2). It essentially shifts pixels by (locally) stretching
or compressing the morphological pattern to better match the observations. Bed
level differences between corresponding features in the predictions and observa-
tions prevent an exact match. The combined error metric RMSEw as presented in
Ch. 4 (Bosboom and Reniers, 2014b) weights both the remaining RMSE after the
optimal transformation and the magnitude of the displacements required to ob-
tain this reduced error, according to a user-defined parameter. As a consequence,
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the RMSEw can be expected to capture the visual disagreement between morpho-
logical patterns, whereas the RMSTE represents the minimum cost, in terms of
(squared) sediment transport and, hence, work, to bridge the deviations between
the morphological patterns. Advantages of the ETD method over the image warp
are that the ETD is mass-conserving, parameter-free and symmetric, the optimal
transport from observations to predictions being the inverse of the optimal trans-
port from predictions to observations.

The transport fields q𝐿2, as found in Sects. 5.3 and 5.4, are cumulative, correct-
ive and net transport fields. Here, cumulative refers to the time-integration of the
transport and corrective signifies that the transport fields represent the transport
differences between predictions and observations, rather than observed or mod-
elled transports between consecutive moments in time. Further, net expresses
that they present the “cheapest” way, based on the 2-norm of the transport field,
to move the mispredicted sediment volumes to the right locations. Thus, from the
multitude of corrective transport fields satifying the volume balance Eq. 5.3, the
transport that minimizes the amount of squared work is thought to best represent
the mismatch between predictions and observations. Since the optimal transport
q𝐿2 is irrotational, it is fully effective in causing morphodynamic change and only
contains information that can unambiguously be derived from the bed-level dif-
ferences and boundary conditions, see Sect. 5.2.3. The physical justification of
q𝐿2 as the optimal transport is found in the choice of the cost function formulated
in terms of work, rather than in a connection to the usual transport descriptions
based on hydrodynamic drivers, which may lead to transport fields that are not
optimized with respect to the cost function. Obviously, the exponent 𝑝 in the cost
function can be expected to influence the transport pattern. With our pragmatic
choice of 𝑝 = 2, the transport magnitudes at different locations are weighted quad-
ratically, so extremes are heavily penalized. This leads to somewhat smeared out
transport patterns with curved transport pathways, as found in Sects. 5.3 and 5.4.
With 𝑝 = 1 on the other hand, the transport magnitudes at different locations are
weighted proportionally, so the cost function is likely to be less affected by local
large transports, which may lead to more pronounced transport patterns.

5.6 Conclusions and perspectives

In this paper, we have presented a novel diagnostic tool formorphodynamicmodel
validation. The employed ETD method solves an optimal transport problem that
moves sediment from the one bathmetry (the predictions) to the other bathymetry
(the observations) at minimumquadratic transport cost and, thus, work. The quad-
ratic cost function allows a reformulation of the problem in terms of a Poisson
partial differential equation, which is uniqely solvable, at least up to an additive
constant. A new error metric, the RMSTE, is defined as a constant multiple of the
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optimal quadratic cost. As such, it measures the error in terms of the net corrective
sediment transport volume required for a match with the observations. By penal-
izing the total sediment transport, the spatial structure of the error is taken into
account; the RMSTE is sensitive to the volumes of misplaced sediment as well as
to the distance over which this sediment must be transported. Advantages of the
ETD method over the image warp of Ch. 4 (Bosboom and Reniers, 2014b) are that
the ETD is mass-conserving, parameter-free and symmetric, the optimal transport
from observations to predictions being the inverse of the optimal transport from
predictions to observations.

The results have shown that the RMSTE, as opposed to the RMSE, is able to
discriminate between predictions that differ in the misplacement distance of pre-
dicted morphological features. Also, the RMSTE avoids the consistent favouring
of the underprediction of the variability of morphodynamic change that point-
wise accuracy metrics, such as the RMSE, and the mean-squared-error skill score
known as BSS are prone to.

By definition, each error metric condenses a large amount of data into a single
number, therewith highlighting certain aspects of morphological model perform-
ance only. Therefore, we recommend that a combination of metrics is used in the
validation of morphological models and that the weighting is determined by the
goal of the simulation. We expect that the addition of the RMSTE enables a fairer
comparison between morphodynamic model predictions, by avoiding some of the
pitfalls of point-wise metrics and by defining the error in terms of a quantity that
is at the heart of morphodynamic model validation.

In future studies, the behaviour of the RMSTE in a range of practical applica-
tions will need to be considered. In order to do so, a more robust implementation
of the ETD is required in order to deal with arbitrary model domains. Further, we
anticipate that valuable additional information can be extracted from the optimal
transport fields by isolating the various scales in the transport fields, for instance
using our scale-selective validation method of Ch. 6 (Bosboom and Reniers, 2014a).

The choice of 𝑝 = 2 in the optimization problem, leading to quadratic trans-
port costs, has enabled a relatively straightforward solution procedure resulting
in a rotation-free optimal transport. For 𝑝 = 1 and a domain boundary closed to
sediment, our formulation and the 𝐿𝑝 Monge–Kantorovich problem are equival-
ent and correspond to the original Monge mass transfer, which guarantees the
shortest possible weighted transport distance and smallest transport magnitude.
Numerical methods for solving the 𝐿1 problem exist (Benamou and Carlier, 2015),
but are considerably more complex than our 𝐿2 solution procedure. Nonetheless,
it may be worthwile to explore possibilities to solve the 𝐿1 optimization problem.
Such an approach would lead to the introduction of a new error metric, the mean
absolute transport error (MATE), which can be expected to behave differently than
the RMSTE. The MATE is to the RMSTE as the MAE is to RMSE, with that differ-
ence that MATE is based on q𝐿1 rather than q𝐿2.
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5.A Proof of irrotationality of transport field

Here we prove the claim in Sect. 5.2.3 that the minimizer of

|||∫x∈Ω
|q(x)|2 dx|||

1/2
(5.11)

under the constraint of the volume balance (Eq. 5.3) is irrotational. The corres-
ponding Lagrangean ℒ is

ℒ(q, 𝜆) ∶= ∫
x∈Ω

1
2 |q(x)|

2 dx + ∫
x∈Ω

𝜆(x) (∇ ⋅ q(x) + ℎ2(x) − ℎ1(x)) (5.12)

with 𝜆 the Lagrange multiplier for the constraint and ∇⋅ the divergence operator.
Note that the first term is equivalent to Eq. 5.11 as the cost function. At the min-
imum, the variation of the Lagrangian (𝛿ℒ ) with respect to q is zero, hence:

0 = 𝛿ℒ(q, 𝜆) = ∫
x∈Ω

(q(x) ⋅ 𝛿q(x) + 𝜆(x) ∇ ⋅ 𝛿q(x)) dx (5.13)

with ⋅ denoting the inner product. Using partial integration, Eq. 5.13 can be re-
written as:

0 = ∫
x∈Ω

(q(x) − ∇𝜆(x)) ⋅ 𝛿q(x) dx − ∫
x∈𝜕Ω

𝜆(x)(𝛿q(x) ⋅ n(x)) dx (5.14)

with n the inward normal to the boundary 𝜕Ω of Ω.
Typically, we either have that q ⋅ n on the boundary 𝜕Ω is known, and, thus,

𝛿q ⋅ n = 0 on 𝜕Ω or that q ⋅ n on the boundary 𝜕Ω is unknown, which, because
there is no constraint on q on the boundary, translates to 𝜆 = 0 on 𝜕Ω. The
latter, unconstrained boundary condition is referred to as free boundary in this
paper, whereas the first, specified boundary condition has the employed closed
boundary as a special example. With either 𝛿q ⋅n = 0 or 𝜆 = 0 on 𝜕Ω, the last term
of Eq. 5.14 equals zero, and Eq. 5.14 implies, since 𝛿q is arbitrary in the interior of
Ω, q(x) = ∇𝜆(x). Therefore, we have

q(x) = ∇𝜙(x) (5.15)

with 𝜙 = 𝜆 satisfying Eq. 5.8 in the interior of Ω and either ∇𝜙 ⋅ n = 0 or 𝜙 = 0 on
𝜕Ω.

This proves that the 2-norm of q is minimal if the vector field q is irrotational.
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6 Scale-selective validation of
morphodynamic models

This chapter is republished without noteworthy change from J. Bosboom and
A. Reniers (2014). Scale-selective validation of morphodynamic models. In: Pro-
ceedings 34th International Conference on Coastal Engineering, Seoul, South-Korea,
pp. 1911–1920, doi:10.9753/icce.v34.sediment.75.

Chapter 2 (Bosboom et al., 2014) and Ch. 3 (Bosboom and Reniers, 2018) identi-
fied the need for performance measures that quantify the agreement in patterns
and features rather than the point-wise agreement as well as the need for perform-
ance measures that selectively address multiple spatial scales. The first point has
led us to develop various error metrics that take the spatial structure of 2D mor-
phological fields into account through a transformation of the computed towards
the observed field, employing image warping (Bosboom and Reniers, 2014b, i.e.
Ch. 4) and optimal transport (Bosboom et al., 2019, i.e. Ch. 5). In order to address
the latter point, we developed a method that allows any metric to selectively ad-
dress multiple scales. Our approach of employing a smoothing filter to compute
localized statistics in a sliding window has a range of potential applications in our
field, evident from the fact that it was taken up by Radermacher et al. (2018) with
the aim of determining the sensitivity of modelled nearshore currents to errors in
remotely-sensed bathymetries.

The highlights of Ch. 6 are:

1. A scale-selective validation approach is introduced that allows any metric
to selectively address multiple spatial scales.

2. The method is relatively easy to implement and apply and yields results that
are relatively straightforward to interpret.

3. Normalizedmeasures for structural and amplitude simularity are introduced
and combined into a pattern skill score.

4. The employed point-wise metrics do not suffer from the double penalty ef-
fect.

5. Areal maps of statistics are computed locally within a sliding window of
progressively larger size.

6. A real-life application revealed strong spatial differences in structural and
amplitude similarity and pattern skill and a lower prediction quality at the
smaller scales.

7. Themethod can be used to determine the smallest scales with sufficient skill
and establish the resolution at which model-data comparisons are ideally
presented.
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Abstract

Although it is generally acknowledged that the practical predictability at smaller
scales may be limited, output of high-resolution morphodynamic area models is
mostly presented at the resolution of the computational grid. The so-presented
fields typically are realistic looking, but not necessarily of similar quality at all
spatial scales. Unfortunately, commonly used single-number validation measures
do not provide the necessary guidance as to which scales in the output can be
considered skilful. Also, differences in skill throughout the model domain cannot
be discerned. Here, we present a new, scale-selective validation method for 2D
morphological predictions that provides information on the variation of model
skill with spatial scale and within the model domain. The employed skill score
weights howwell the morphological structure and variability are simulated, while
avoiding the double penalty effect by which point-wise accuracy metrics tend to
reward the underestimation of variability. The method enables us to tailor model
validation to the study objectives and scales of interest, establish the resolution at
which results are ideally presented and target model development specifically at
certain morphological scales.

6.1 Introduction

The traditional approach to morphodynamic model validation is to compute a
single-number validation metric, such as the mean-squared error (MSE) or an
MSE-based skill score (MSESS), for the entire 2D model domain or a limited num-
ber of subdomains (e.g. Sutherland et al., 2004). The validation of high-resolution
morphodynamic models, however, brings about a range of new validation ques-
tions. Are there spatial displacement errors? Is the variability well represented
at all scales? Is it necessary to accurately predict shorter-scale features to make
reliable longer-term predictions? At which spatial scales does the model have suf-
ficient skill? Does the skill vary within the model domain? These questions are
not easily addressed with the traditional validation approach. Clearly, new tech-
niques must be developed, which separately assess the various scales of interest in
the morphology and patterns of bed change and take both similarity in structure
and amplitude into account.

In other fields, notablymeteorology, scale-dependent verificationmethods have
been proposed that are able to describe the scale at which a forecast attains a par-
ticular level of skill (e.g. Roberts and Lean, 2008); for an overview, see Gilleland
et al. (2010a). Also, in the field of image processing, Wang et al. (2003) determ-
ine the closeness of images using a multi-scale method, which incorporates image
details at different resolutions. These methods typically utilize band-pass filters
(Fourier, wavelets, etc.) or smoothing filters for the separation of scales. For 2D
morphology and arbitrarily shaped model domains, the application of such band-
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pass filters and the physical interpretation of the results is far from trivial. Meth-
ods based on smoothing filters are appealing due to their simplicity, but often
limited in the aspects of model performance that can be considered. For instance,
no information on spatial variation of skill in the model domain is provided.

Fotheringham et al. (2002) analyze spatially varying relationships betweenmeas-
ured variables by local regression modelling (i.e. in a neighbourhood around a re-
gression point) and generalize this method to the computation of local weighted
statistics in a sliding window. Our expectation is that such a conceptual frame-
work, which allows the computation of a whole range of localized statistics, may
not only be useful for data analysis but for model validation purposes as well.

The choice of validation metrics must be close to the intuitive judgement of
morphologists. Point-wise accuracy metrics, such as the MSE, are useful, but tend
to penalize, rather than reward, the model’s capability to provide information on
morphological features of interest (Bosboom and Reniers, 2014b; Bosboom et al.,
2014, i.e. Ch. 4 and Ch. 2, respectively). Bosboom et al. (2014, Ch. 2) showed
that this behaviour is also inherited by the MSESS and can be traced back to the
implicit weighting in the MSE of the similarity in structure and amplitude of the
fluctuations. To circumvent these issues, Taylor (2001) suggests an alternative
weighting of these aspects.

In this paper, we present a new, scale-selective method for 2D morphological
predictions that provides maps of prediction quality at various spatial scales. It
bears similarities to localized data analysis (Fotheringham et al., 2002) in that it
computes local validation metrics in a sliding window. The validation metrics are
chosen to be close to the intuitive judgement of morphologists, viz. metrics per-
taining to the structure and amplitude of the pattern and combined in a measure
of pattern skill, in line with the skill score proposed by Taylor (2001). The various
statistics are calculated for a range of window sizes, leading to maps of amplitude
similarity, structural similarity and skill per scale. Note that the term “scale” is
thus defined as geographical extent or areal size of focus. Aggregation of the res-
ults enables the determination of the smallest scale with useful domain-averaged
skill. Attractive aspects of the method are the simplicity of implementation, ap-
plication and interpretation of the results.

This paper is organized as follows: first our method of scaled skill is explained.
Next, we demonstrate the method by comparing model predictions and data for
the Bornrif, a dynamic attached bar at the Wadden Sea island of Ameland. Finally,
the main conclusions are summarized.

6.2 Scaled skill

This section outlines our approach to quantify the skill and similarity in struc-
ture and amplitude per spatial scale as well as aggregated over all scales. First,
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we define normalized measures of amplitude and structural similarity and demon-
strate that these can be expected to depend on the considered spatial scale, viz.
geographical extent or areal size of focus. Next, we describe the method for de-
riving localized versions of these statistics. Finally, the approach is outlined to
combine the maps of amplitude and structural similarity into a skill map per spa-
tial scale and aggregate these maps for the entire model domain.

6.2.1 Aspects of model performance: structural and amplitude similarity per
scale

A skilful model should be able to accurately simulate both the structure and the
variance of fluctuating signals. These notions can be represented by the correla-
tion 𝜌𝑝𝑜 and the ratio of the standard deviations of predictions and observations
�̂� = 𝜎𝑝/𝜎𝑜 (Bosboom et al., 2014, i.e. Ch. 2). The correlation 𝜌𝑝𝑜 (with −1 ⩽ 𝜌𝑝𝑜 ⩽ 1)
measures the tendency of observations and predictions to vary together. A non-
perfect correlation, i.e. smaller than unity, may result from incorrect locations,
shapes and relative magnitudes of features. A value of �̂� = 𝜎𝑝/𝜎𝑜 larger or smaller
than 1 indicates an overestimation or underestimation, respectively, of the vari-
ance of the signal.

In the following, we use the correlation as a normalized measure of the struc-
tural similarity between predictions and observations. We further define a nor-
malized measure for amplitude similarity:

𝜂 = ( 2
�̂� + �̂�−1 )

𝑞
, 0 ⩽ 𝜂 ⩽ 1 (6.1)

with 𝑞 a coefficient (set to 2 in this paper). Perfect agreement is indicated by 𝜂 = 1.
As opposed to �̂� , the parameter 𝜂 is bounded and invariant under the exchange
of predictions and observations. Hence, overprediction and underprediction are
now equally penalized. When it is important to distinguish between over- and
underprediction, �̂� can be used. Note that Eq. 6.1 can be rewritten as:

𝜂 = ( 2𝜎𝑝𝜎𝑜
𝜎2𝑝 + 𝜎2𝑜

)
𝑞

(6.2)

which, with 𝑞 = 1, is the form as used by Wang et al. (2003) and Koh et al. (2012)
and named contrast measure and variance similarity, respectively.

In morphodynamic modelling, where the predictand is the bathymetry, the in-
terpretation of 𝜌𝑝𝑜 and �̂� = 𝜎𝑝/𝜎𝑜 in terms of bed features is far from trivial, since
multiple scales are generally present in the observed and computed bathymetry
(Fig. 6.1) and larger scales may overwhelm the smaller scales. Figure 6.1 (middle
panel) indicates that the overall correlation can be negative, whilst the correlation
can be positive if we zoom in to a smaller area. This situation can of course also
be reversed, with positive correlation for larger scales and negative correlation for
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smaller scales (Fig. 6.1, top panel). The latter situation may be closer to what we
expect from a typical morphodynamic simulation. Not only the correlation but
also the ratio of the standard deviations between predictions and observations
may vary with spatial scale. For example, Fig. 6.1 (bottom panel) shows an over-
estimation of the variability for the larger scale and an underestimation for the
smaller scale.
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Figure 6.1: Scale-dependency of comparisons between observations 𝑜 and predictions 𝑝. Top panel:
the correlation is higher at the larger scale; middle panel: the correlation is higher at the smaller
scale; and bottom panel: the amplitude similarity is also dependent on the scale.

6.2.2 Localized statistics

In order to generate maps of localized statistics, the structural and amplitude simil-
arity are computed locally within a sliding window that moves across the domain.
Herewith, we obtain fields of localized statistics for a particular window size. In
order to account for various spatial scales, viz. areas of different geographical
extent, we repeat this process for multiple window sizes.

For the ith grid point the local weighted means 𝑜𝑖 and 𝑝𝑖 of the observations 𝑜
and predictions 𝑝, respectively, are given by:
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𝑜𝑖 = ∑𝑗 𝑤𝑖𝑗𝑜𝑗 (6.3)

𝑝𝑖 = ∑𝑗 𝑤𝑖𝑗𝑝𝑗 (6.4)

with 𝑤𝑖𝑗 is a weighting factor dependent on the proximity to the location 𝑖 and
∑𝑗 𝑤𝑖𝑗 = 1. All results shown in this paper are obtained with a very simple (and
fast) window, viz. a rectangular window with a widthW, uniform weights within
thewindow and𝑤𝑖𝑗 = 0 elsewhere in the domain (Fig. 6.2). Hence, 𝑤𝑖𝑗 = 𝑤𝑖𝑗 (𝑊 ). A
more sophisticated approach uses a distance decay function given by for instance
a bi-square kernel with a variable bandwidth (see e.g. Fotheringham et al., 2002).

Figure 6.2: The rectangular window, around grid point 𝑖, with window width 𝑊 and weights 𝑤𝑖𝑗 .

Of course, Eqs. 6.3 and 6.4 simply compute a (weighted) moving average. How-
ever, we can now extend the concept to arbitrary statistics, for instance the stand-
ard deviations 𝜎𝑜,𝑖 and 𝜎𝑝,𝑖 of observations and predictions, respectively:

𝜎𝑜,𝑖 = [∑𝑗 𝑤𝑖𝑗 (𝑜𝑗 − 𝑜𝑖)2]
1/2

(6.5)

𝜎𝑝,𝑖 = [∑𝑗 𝑤𝑖𝑗 (𝑝𝑗 − 𝑝𝑖)
2]

1/2
. (6.6)

Similarly, the local correlation 𝜌𝑝𝑜,𝑖 between predictions and observations is de-
termined by:

𝜌𝑝𝑜,𝑖 = (𝜎𝑜,𝑖𝜎𝑝,𝑖)−1∑𝑗 𝑤𝑖𝑗 (𝑜𝑗 − 𝑜𝑖) (𝑝𝑗 − 𝑝𝑖) , −1 ⩽ 𝜌𝑝𝑜,𝑖 ⩽ 1. (6.7)

Note that in Eqs. 6.6 and 6.7, the local rather than the global mean values are used.
Now, the local amplitude similarity is given by:

𝜂𝑖 = ( 2
�̂�𝑖 + �̂�−1𝑖

)
𝑞

with �̂�𝑖 = 𝜎𝑝,𝑖/𝜎𝑜,𝑖 , 0 ⩽ 𝜂𝑖 ⩽ 1. (6.8)

Note that all above statistics, which are formulated in terms of bed levels, could
also be formulated in terms of cumulative bed change.
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6.2.3 How to construct a skill score?

The correlation between predictions and observations and the ratio of the standard
deviations of predictions and observations are important ingredients of the often
used accuracy measure MSE. The fluctuating or pattern part of the MSE can be
written as (see e.g. Bosboom et al., 2014, i.e. Ch. 2):

MSEfluct = 𝜎2𝑜 [1 − 𝜌2𝑝𝑜 + (𝜌𝑝𝑜 − �̂�)2] . (6.9)

Between two predictions with the same positive correlation, MSEfluct is minimized
for �̂� = 𝜌𝑝𝑜 , hence for 𝜎𝑝 = 𝜌𝑝𝑜𝜎𝑜 . In the case of a negative correlation, MSEfluct
is minimized for �̂� = 0 and thus for 𝜎𝑝 = 0. As a consequence, the MSE tends to
reward the underestimation of the variability (Bosboom et al., 2014, i.e. Ch. 2).

Nonetheless, a morphologist may prefer features to be predicted at the right
amplitude albeit displaced above a featureless prediction (Bosboom and Reniers,
2014b, i.e. Ch. 4). Therefore, we use an alternative weighting with the following
behaviour: for any given variance, the skill score increases monotonically with
increasing correlation and for any given correlation the skill score increases as
the modelled variance approaches the observed variance (Taylor, 2001).

A general form for a local pattern skill score in terms of the normalized meas-
ures for structural similarity 𝜌𝑝𝑜,𝑖 and amplitude similarity 𝜂𝑖 then reads:

𝑆𝑖 =
1
2(1 + 𝜌𝑝𝑜,𝑖)𝑚𝜂 𝑛𝑖 , 0 ⩽ 𝑆𝑖 ⩽ 1. (6.10)

Note that 𝑆𝑖 is a function of the window width𝑊 . The weighting of structural and
amplitude similarity must, to a certain extent, be decided upon subjectively. The
coefficients 𝑚 and 𝑛 allow the user to define the most appropriate weighting for
the situation under consideration. In this paper, we have used 𝑚 = 1 and 𝑛 = 1 in
Eq. 6.10 and 𝑞 = 2 in Eq. 6.8. A domain-averaged skill score 𝑆 as a function of 𝑊
can be obtained by averaging 𝑆𝑖 (Eq. 6.10) over all grid points 𝑖.

We hypothesize that the smaller scales, down to the grid scale, are not as well
predicted as the larger scales up to the scale of the entire domain, and that there
is a minimum spatial scale above which the skill is sufficient, i.e. larger than a
user-defined target skill (Fig. 6.3). For a real-life case, this hypothesis is put to the
test in the next section.

6.3 Example

In this section, we demonstrate our method by applying it to measured and com-
puted bathymetric fields for the Bornrif, a dynamic attached bar at the North-
western edge of the Wadden Sea island of Ameland. First, we briefly describe
the measurements and computations. Next, we show the maps of local statistics,
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Figure 6.3: Hypothesized qualitative behaviour of the skill score 𝑆 versus the spatial scale, which
ranges from the grid scale to the entire domain. For larger spatial scales the skill value approaches
the whole-map skill value 𝑆 = 1/2(1 + 𝜌𝑝𝑜)𝜂 computed using the values at all grid points.

which are subsequently pooled into map-mean values per spatial scale. Finally,
we explore the relationship between information richness and skill.

6.3.1 Bornrif

The Bornrif morphodynamic evolution was computed with Delft 3D from 1993 to
2008, using a grid with a resolution of 50 × 50m2 in the central part of the model
domain and 100 × 50m2 closer to the model boundaries (Achete et al., 2011). A
detailed description of this Delft3D simulation and the available data is found in
(Bosboom et al., 2014, i.e. Ch. 2). Here, we focus on the results for 1998, hence five
years after the start of the simulation (Fig. 6.4).

Upon visual comparison of the 1998 computations and data, we can observe dif-
ferences at various locations and spatial scales. For instance, note the differences
in the position and extent of the overall shape of the Bornrif as well as of the spit
that has just attached to the mainland. Further, at relatively large water depths
to the east of the Bornrif, sand bars are clearly visible in the observations, but
largely absent in the computations. The area closest to the inlet, to the west of the
Bornrif is characterized by multiple channels that are not well represented in the
computations. Also of interest are the nearshore regions; east of the Bornrif, the
measurements show multiple bars, which are not reproduced by the model. Fur-
ther, differences can be observed in the slopes of the relatively steep near-shore
regions, especially along the west flank of the Bornrif, which are crucial for the
magnitude of the alongshore transport.

The analysis region, as shown in Fig. 6.4, covers only that part of the computa-
tional domain for which data are available during the entire simulation duration.
In order to retain all observed scales, the spatial validation analysis is performed
on the 20 × 20m2 grid that the data were presented on. To that end, the compu-
tations were first interpolated onto the observational grid. In the following we
demonstrate typical results of applying the method of scaled skill. The central
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Figure 6.4: Measured (top panel) and computed (middle panel) Bornrif bathymetries for 1998 and the
difference field 𝑝 − 𝑜 between predictions 𝑝 and observations 𝑜 (lower panel).

validation question is: how skilful is the model in the various regions and at the
various spatial scales that can be discerned?

6.3.2 Maps of local statistics

Areal maps of structural similarity 𝜌𝑝𝑜,𝑖 , amplitude similarity �̂�𝑖 and 𝜂𝑖 , and pattern
skill 𝑆𝑖 provide information on local differences in quality (Fig. 6.5). Suchmaps can
be produced for various spatial scales (i.e. areal sizes of focus). Figure 6.5 shows
the results at three window sizes W = 0.16, 0.4 and 0.8 km. There is a wealth of
information in these figures; here we will only point out some main aspects.

The negative correlation in the area west of the Bornrif clearly indicates the
lack of structural similarity between the two patterns, except close to the coastline
where the correlation is higher again. This dissimilarity is quite persistent as the
spatial scale increases. Another patch with negative correlations at all scales is
the result of the computed spit being present at the observed lagoon. In the spit
area, the largest dissimilarity in amplitude is found somewhat further offshore,
reflecting the fact that the computed slope is clearly off.

On the contrary, there are also small-scale patches of negative correlation that
are not present anymore at the larger scales, for instance in regions further off-
shore and in the nearshore region east of the Bornrif. In these areas, a low struc-
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Figure 6.5: Normalized maps of structural and amplitude similarity and pattern skill for three different window sizes
W = 0.16, 0.4 and 0.8 km. For all quality metrics a value of 1 represents perfect agreement.
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tural similarity 𝜌𝑝𝑜,𝑖 is combined with a low amplitude similarity 𝜂𝑖 , which can be
seen—from �̂�𝑖 being close to zero—to be due to an underestimation of the variab-
ility. This indicates small-scale, observed features that are not reproduced in the
predictions, namely the sand bars at deeper water and the nearshore bars.

As expected, the maps of pattern skill can be seen to combine the characteristics
of the maps of structural and amplitude similarity. At the smallest window width,
the skill areal maps show relatively large areas with low skill. At larger window
widths only the larger-scale deviations remain.

6.3.3 Pooled skill scores

Another way of looking at the quality variation is by making histograms of the
quality maps (Fig. 6.6). The first column clearly shows that grid points with negat-
ive correlation at small spatial scales obtain a positive correlation at larger scales.
A similar trend can be observed from the second column that shows the amplitude
similarity. The third column shows that, as a result, the percentage of the model
domain with low pattern skill scores decreases with spatial scale, as was apparent
from the pattern skill maps as well (Fig. 6.5).

The red lines in Fig. 6.6 show the domain-averaged values of the quality metrics
for the three window sizes that are considered. Not surprisingly given the above,
the quality according to each of these metrics increases with spatial scale. Appar-
ently, the Bornrif morphology can be thought to consist of smaller-scale features
that are not well represented by the model, on top of a larger-scale morphology
that is better predicted.

When extending this analysis to a range of window sizes, we obtain Fig. 6.7,
which shows the structural similarity, amplitude similarity and pattern skill versus
window size. At the scale of the entire domain, the skill is very high, since the
larger-scale morphology is reasonably well represented. However, at the smaller
scales of the spit and the sand bars the skill is lower. Based on this figure, we
can determine the smallest useful scale, viz. the smallest areal size with a certain
desired level of skill. If the target skill (see Fig. 6.3) is set to for instance 0.7, the
smallest scale with sufficient skill is about 0.6 km.

6.3.4 Information content versus skill

Output of high-resolution morphodynamic area models is generally presented at
the resolution of the computational grid. The previous findings suggest, however,
that the high-resolution detail may not be skilful. Consequently, a smoother ba-
thymetry (Fig. 6.8) may be more skilful than the original, computed bathymetry
(Fig. 6.4). The bathymetries in the left and right columns of Fig. 6.8 are obtained
by applying a moving average to the original bathymetries, using window sizes
of 𝑊 = 0.4 and 1.6 km, respectively (using Eqs. 6.3 and 6.4).
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Figure 6.6: Histograms of the correlation, amplitude similarity and pattern skill for the three window
sizesW = 0.16, 0.4 and 0.8 km. Note that the histograms correspond to the respective maps in Fig. 6.5.
The red lines indicate the domain-averaged values which can be seen to increase with spatial scale.
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Figure 6.7: Structural and amplitude similarity and pattern skill as a function of window size.
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Figure 6.8: Spatial means, obtained by Eqs. 6.3 and 6.4, of the original high-resolution bathymetries. Left: W =
0.4 km and right: W =1.6 km.

To determine the effect of leaving the high-resolution detail out, we apply the
same validation procedure as before, at a range of window sizes, but now not to the
full-resolution bathymetries, but to their smoothed counterparts. The aggregated
results are shown in Fig. 6.9. For clarity, the skill trend for the full-resolution
bathymetries (Fig. 6.7) is repeated in Fig. 6.9. The latter figure confirms that for
all scales the presented smoother bathymetries are more skilful. Note that for the
bathymetries smoothed with 𝑊 = 0.4 km, all scales have a skill around or above
the target skill of 0.7.
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Figure 6.9: Pattern skill versus window size for bathymetries with a different level of smoothening (a
moving average at window sizes ranging from 0.16 km to 1.6 km. The pattern skill at full resolution
(Fig. 6.7) is repeated here and indicated with “grid scale”.
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Evidently, the inclusion of smaller scales, up to the full model resolution, con-
tributes negatively to the skill at especially the smaller scales. Of course, the in-
crease in skill for smoother bathymetries comes at a loss of information richness;
the smoothed bathymetries are less realistic looking than the full resolution ba-
thymetries. Ideally, the computational results should be presented at a scale that
finds a balance between skill and information richness.

6.4 Conclusions

We have presented a scale-selective validation method for 2D morphological pre-
dictions that allows the computation of localized statistics at various spatial scales
and the generation of areal maps of these statistics. The term “scale” refers to geo-
graphic extent or areal size of focus. In this paper, we use normalized measures
of structural and amplitude similarity and combine these in a measure of morpho-
logical pattern skill, but other validation metrics can be used as well. Also, the
method could be supplemented with a bias term at the largest scale.

Application to the Bornrif showed strong spatial differences in structural and
amplitude similarity and pattern skill. Further, due to amongst others small-scale
observed features that are not (well) reproduced in the predictions, a lower domain-
averaged prediction quality was found at the smaller scales than at the larger
scales. In relation to this, it was found that smoothing out the high-resolution de-
tail increases the skill of the results especially at the smaller scales, even though
the smoothed bathymetries are less realistic looking than the full-resolution ba-
thymetries.

In summary, the method can be used to:

1. Determine local differences in structural and amplitude similarity and pat-
tern skill;

2. Determine the smallest scales with sufficient skill;
3. Establish the resolution atwhichmodel-data comparisons are ideally presen-

ted;
4. Target model development specifically at certain morphological scales.

Compared to possible alternative strategies to scale-selectivemodel validation, the
method is easy to implement and apply, and the results are relatively easy to in-
terpret. This makes it a tool that can be readily used for practical purposes.
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7 Conclusions and recommendations

The overarching aim of this thesis was to contribute to an improved validation
assessment of morphological predictions, in particular field predictions (Sect. 1.3).
To that end, Chs. 2 to 6 pursued two main research objectives, which were derived
from Sects. 1.1 and 1.2, respectively. Conclusions pertaining to these two object-
ives are discussed in Sects. 7.1 and 7.2, respectively. Sect. 7.3 discusses implications
for model validation as well as recommendations for further research.

7.1 The behaviour of the MSESSini a.k.a. the BSS

The first main research objective (Objective 1) was to investigate the behaviour of
the commonly used mean-squared-error skill score MSESSini a.k.a. the Brier skill
score (BSS)1 with the initial bed as the reference prediction. It was elaborated in
four research questions (1.1 to 1.4, see Sect. 1.3) and addressed in Ch. 2 (Bosboom
et al., 2014) and Ch. 3 (Bosboom and Reniers, 2018). The main findings pertaining
to each of these four research questions are summarized in Sects. 7.1.1 to 7.1.4.

7.1.1 Inheritance from the MSE: smooth is better

Question 1.1 was formulated as follows: what is the effect on the MSESSini of the
use of the point-wise mean-squared error (MSE) as the accuracy measure? This
research question was answered in Chs. 2 and 3 (Bosboom et al., 2014; Bosboom
and Reniers, 2018).

In the presence of inevitable location errors, the MSE and other overall point-
wise metrics are prone to penalize rather than reward the correct prediction of
variability (Anthes, 1983; Arpe et al., 1985; Taylor, 2001). As a consequence, fea-
tureless predictions are sometimes favoured over predictions whose features are
misplaced, a characteristic that is referred to as “double penalty effect” (Bougeault,
2003). In Chs. 2 and 3, it was demonstrated that the double penalty effect is in-
herited by the MSESS a.k.a. BSS, resulting in a tendency to reward the under-
estimation of the variance of morphodynamic change relative to the reference
prediction. In the case of MSESSini, hence using the initial bed as the reference

1 This thesis addresses the MSE-based skill metric for nonprobabilistic variables as mean-squared-
error skill score (MSESS), consistent with Murphy (1988). The subscript “ini” specifies that the
reference prediction used is the initial bed at the start of the simulation. In our field, the MSESSini

is known as the Brier skill score (BSS). Technically however, the term Brier skill score is reserved
for the relative accuracy of probabilistic forecasts with the Brier score (Brier, 1950) as the accuracy
measure, which is a mean-squared error for probabilistic forecasts with two mutually-exclusive
outcomes (e.g. rain or no rain).
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prediction, this implies an underestimation of the overall magnitude of the cu-
mulative bed changes from the start of the simulation. As a consequence, pre-
dictions of sedimentation/erosion features that are correct in terms of magnitude
but are misplaced in space may not outperform even the reference prediction of
zero change, as was nicely illustrated by a numerical hindcast of morphological
changes of a wide estuary mouth sandbank, located along the French Atlantic
Coast (Guerin et al., 2016)—out of two morphodynamic simulations, the simula-
tion that captures several of the main morphological changes receives a lower
score (MSESSini = −0.18) than the simulation that predicted almost no morpholo-
gical change (MSESSini = 0.01).

The tendency of the MSESSini to reward the underestimation of the variance of
bed changes was demonstrated through the behaviour of the amplitude error or,
rather, scale error 𝛽′, which follows from the Murphy–Epstein decomposition of
the MSE-based skill score (Sect. 7.1.2). The scale error 𝛽′ depends on the correla-
tion 𝜌𝑝′𝑜′ between the predicted (𝑝′) and observed (𝑜′) cumulative bed changes re-
lative to the reference prediction, and on 𝜎𝑝′/𝜎𝑜′ , the ratio of the predicted over the
observed standard deviation of the bed changes. For positive, suboptimal anomaly
correlation (0 < 𝜌𝑝′𝑜′ < 1), 𝜎𝑝′/𝜎𝑜′ = 𝜌𝑝′𝑜′ minimizes 𝛽′ and—unless compensated
by systematic bias—maximizes the skill MSESSini, whereas for 𝜌𝑝′𝑜′ ⩽ 0, 𝜎𝑝′ = 0
maximizes the skill. In other words, for the same suboptimal anomaly correlation
and systematic bias, a higher skill value is found for sedimentation/erosion fields
that underpredict the overall amount of sedimentation and erosion than for pre-
dictions with the correct variance of the bed changes. This runs contrary to the
morphologists’ intuition of optimal performance requiring that 𝜎𝑝′ = 𝜎𝑜′ .

Clearly, these findings have implications for (automated) calibration procedures
that optimize the MSE or MSESSini (e.g. Briere et al., 2011; Simmons et al., 2017).
In modelling practice, a reduction of the overall size of bed changes is easier to
achieve, for instance by changing the grain size or a transport parameter, than
an improvement of the anomaly correlation coefficient. As a consequence, the
reduction of the overall sizes of bed changes is an effective, though undesirable
method to obtain higher values of MSESSini. This was illustrated by a real-life
example, taken from Sutherland et al. (2004), of the comparison of observed ba-
thymetric changes for East Pole Sand with three field predictions. The predictions
only differ with respect to the representative grain-size parameter and yield the
same positive, but nonperfect anomaly correlation coefficient. As a consequence,
the largest MSESSini (and the smallest MSE) are achieved by the prediction with
the coarsest grain size, which shows—with 𝜎𝑝′/𝜎𝑜′ ≈ 𝜌𝑝′𝑜′—the most severe under-
prediction of the variance of the bed changes. Another example was provided by
the morphodynamic simulations of the Bornrif (Achete et al., 2011), a dynamic at-
tached bar at the Wadden Sea island of Ameland, which was analyzed in depth in
Bosboom et al. (2014), i.e. Ch. 2. Throughout the 15 years of simulation, 𝜌𝑝′𝑜′ and
𝜎𝑝′/𝜎𝑜′ are close together in value with in the last year (2008) 𝜌𝑝′𝑜′ ≈ 𝜎𝑝′/𝜎𝑜′ ≈ 0.66
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and MSESSini = 0.45. For 𝜎𝑝′/𝜎𝑜′ = 1, however, the skill would have been lower at
MSESSini = 0.33.

It may therefore well be that in many modelling studies, without the model-
ler necessarily being aware of this, the ratio of predicted over observed anomaly
standard deviation is lowered towards the level of the correlation. Although this
certainly optimizes the MSE and MSESSini, another aspect of model quality, the
variance of bed changes, is less well predicted. We therefore advocate that values
of 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ are also explicitly reported and a deliberate choice is made for
the optimal simulation.

7.1.2 Additional insight through the Murphy–Epstein decomposition

Question 1.2 was formulated as follows: what is the added value and correct inter-
pretation of the Murphy–Epstein decomposition of the MSESSini? This research
question was answered in Chs. 2 and 3 (Bosboom et al., 2014; Bosboom and Ren-
iers, 2018).

An advantage of the mean-squared-error measure of accuracy and the corres-
ponding MSESS is that they can readily be decomposed into components that de-
scribe specific elements of prediction quality. The decomposition according to
Murphy and Epstein (1989) separates the MSE, either expressed in terms of bed
levels or in terms of bed changes relative to the reference (the anomalies), into cor-
relation and conditional bias terms, which quantify themismatch between the fluc-
tuating parts in predictions and observations, and systematic bias or map-mean
error (Appendix 2.A). Using the MSE decomposition in terms of the anomalies,
the MSESS can be decomposed into a correlation term or phase error 1−𝛼′, condi-
tional bias or amplitude error 𝛽′ and normalized systematic biases or map-mean
errors of the prediction 𝛾 ′ and the reference predition 𝜖′ (Eqs. 2.7, 2.9 and 2.10).
Although this decomposition can provide valuable insight into specific aspects of
prediction quality, it has only been used in a limited number of morphological ap-
plications and seems to be not well understood (see Chs. 2 and 3). In Chs. 2 and 3,
we have investigated what exactly is measured by the separate error terms, using
the real-life application of the Bornrif (Achete et al., 2011) and a series of simple,
hypothetical test cases, respectively.

Chapter 3 demonstrated that 𝛼′ and 𝛽′ are best explained from the linear least-
squares regression of 𝑜′ given 𝑝′ and are preferably referred to as structural sim-
ilarity and scale error, respectively. The term 𝛼′ is the square of the correlation
and indicates the tendency of 𝑜′ and 𝑝′ to vary together and, hence, expresses the
similarity in the structure of the sedimentation/erosion fields. To establish the dir-
ection of the linear correspondence 𝜌𝑝′𝑜′ must be evaluated instead of 𝛼′. A zero
value for 𝛽′, which is the squared difference between 𝜌𝑝′𝑜′ and 𝜎𝑝′/𝜎𝑜′ , indicates
an optimal scaling of the magnitude of the anomalies to account for a nonperfect,
nonnegative value of the correlation (0 ⩽ 𝜌𝑝′𝑜′ < 1). “Optimal” is defined here in
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terms of the smallest overall least-squares error and skill score and not in terms
of the variance of the bed changes, which must be judged separately and requires
that 𝜌𝑝′𝑜′ , 𝜎𝑝′/𝜎𝑜′ and 𝛽′ are reported (see Sect. 7.1.1).

For the interpretation of 𝛾 ′ and 𝜖′ for morphological models, it is important to
realize that 𝛾 ′ is a sediment budget error of the prediction and 𝜖′ of the reference
prediction, often a zero change prediction, and that both error terms are normal-
ized by the variance of the observed cumulative change away from the reference
prediction. Hence, in practice, we expect that both terms are generally small, es-
pecially towards the end of a simulation. For the Bornrif, for instance, 𝛾 ′ and 𝜖′
were found to be small and decrease towards zero during the 15 years of simula-
tion. Since also 𝛽′ is small throughout the simulation, with in the last year (2008)
𝛽′ ≈ 0, the skill in 2008 is equal to the so-called potential skill in the absence of
biases; MSESSini ≈ 𝛼′ = 𝜌2𝑝′𝑜′ = 0.45 (see Sect. 7.1.1). Similarly, the “optimal” pre-
diction for East Pole Sand yielded 𝛽′, 𝛾 ′ and 𝜖′ close to zero and, consequently,
MSESSini close to 𝜌2𝑝′𝑜′ .

These calibration examples may well be representative for many morphody-
namic model studies, elucidating that if MSESSini is used, it is best supplemented
with 𝜌𝑝′𝑜′ , 𝜎𝑝′/𝜎𝑜′ , 𝛼′, 𝛽′, 𝛾 ′ and 𝜖′ for a good interpretation of model performance.

7.1.3 How to correctly account for measurement error?

Question 1.3 was formulated as follows: what is the rationale behind taking meas-
urement error into account and how should this translate to skill formulations and
rankings? This research question was answered in Ch. 3 (Bosboom and Reniers,
2018).

Generally, MSE-based skill formulations assume that the MSE of a perfect pre-
diction is zero, which means that the presence of errors in the data is not taken
into account. In reality, data errors will occur due to errors in the bathymetric
surveys as well as in the subsequent interpolation procedure to a common grid.
As a consequence, a deviation from 1 of the value for MSESSini is not purely due
to prediction error, but can partly be attributed to data errors. This thesis has
evaluated the adjustments to the MSESS as proposed by Sutherland et al. (2004)
and van Rijn et al. (2003) with the aim to account for measurement error (Sect. 3.4)
as well as their proposed classifications of prediction quality, for the skill scores
with and without corrections for measurement error (Sect. 3.5). This has led to the
conclusion that the existing methods to correct for measurement error are incon-
sistent in either their skill formulation or their suggested classification scheme,
which will be briefly explained below.

The adjusted skill formulation by Sutherland et al. (2004), i.e. Eq. 3.23, is based
on the assumptions that the initial and final measured bathymetries consist of
an actual bathymetry and independent, random measurement errors 𝛿 with the
same 𝛿rms = √⟨𝛿2⟩ and that the initial error persists throughout the simulation.
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Consequently, perfect skill is already obtained for MSE = 2⟨𝛿2⟩ instead of for
MSE = 0 and positive skill values increase. We demonstrated that the adjusted
skill formulation by Sutherland et al. (2004) is equivalent to the original skill for-
mulation applied to that part of the mean-squared errors that can be attributed
to the predictions. Hence, as long as the actual errors of the reference prediction
and prediction remain unchanged, also the skill values remain unchanged. The
adjusted formulation of van Rijn et al. (2003), i.e. Eq. 3.25, was shown to partly
adjust for measurement error in the MSE of the prediction, but to fail to correct
for its effect on the MSE of the reference prediction. As a consequence, the skill
values increase in the presence of measurement error, even if the actual errors of
the reference prediction and prediction remain unchanged. Therefore, as already
advocated by Sutherland et al. (2004), Eq. 3.23 is the recommended formulation
to take measurement error into account, since, as opposed to Eq. 3.25 by van Rijn
et al. (2003), it is consistent with the definition of skill.

Both Sutherland et al. (2004) and van Rijn et al. (2003) propose an alternative
skill classification scheme, to be used in conjunction with their adjusted skill for-
mulation. We have argued, however, that a skill formulation that is effective in
removing measurement error yields values that can and should be directly com-
pared to the classification valid in the absence of data errors.

In order to further substantiate this claim, we designed an artificial case of the
formation of two rip channels, slightly different in shape and position. A planar
beach served as the initial bathymetry, while the beach modified with the one
rip channel served as the observations and with the other as the predictions. By
adding noise fields 𝛿 to these bathymetries, we could compute the skill values as
a function of measurement error 𝛿rms according to the original skill formulation
as well as the two previously described adjusted formulations. As expected, skill
scores according to the original skill formulation decrease with increasing 𝛿rms,
such that the predictions are unjustly penalized for the presence of measurement
error. The addition of measurement error, regardless of the magnitude of 𝛿rms,
does not change the skill scores according to the formulation of Sutherland et al.
(2004), which, thus, proves to be effective in removing the influence of the meas-
urement error. The constant skill irrespective of 𝛿rms confirms, however, that an
adjusted classification of the skill score is not appropriate. Van Rijn’s adjusted
formulation (van Rijn et al., 2003), on the contrary, gives a strong increase of the
skill scores with 𝛿rms. We expect that the suggestion to adjust the skill ranking
stems from this inflation of the skill scores when adding measurement error. A
universal adjusted ranking, however, cannot exist since the required adjustment
depends on the measurement error and the prediction situation.
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7.1.4 The ranking based on MSESSini a.k.a. the BSS is not generally valid

Question 1.4 was formulated as follows: to what extent does the zero change
model underlying the MSESSini make model performance comparable across dif-
ferent prediction situations—geographical locations, forcing conditions, time peri-
ods, internal dynamics? This research question was answered in Chs. 2 and 3
(Bosboom et al., 2014; Bosboom and Reniers, 2018).

Since the MSESSini uses the initial observed bathymetry at the start of a simula-
tion as the reference, the zero point at the scale of morphodynamic model skill is
set by a model that predicts zero morphological change. Therefore, a comparative
analysis based on MSESSini can only be effective if the intrinsic difficulty of com-
mon prediction situations is correctly reflected in the level of accuracy of the zero
change model. In Chs. 2 and 3, it is demonstrated through various simple and real-
life examples that the zero change model is not able to create the required “level
playing field”, and thus, that the quality label that predictions receive through a
generic classification based on values for MSESSini lacks general validity.

The mean-squared error MSE𝑟 of the zero change reference prediction is given
by the mean-squared difference between the observed bathymetries at the time
of skill evaluation and start of the simulation. Thus, MSESSini depends on the
normalization of the error in the bed levels by the observed cumulative change
away from the initial bed (Eq. 1.2). When MSE𝑟 is progessively increasing in time,
as can be expected for a trend, a constant skill throughout the simulation is ob-
tained if the MSE of the predictions is a constant fraction of the MSE𝑟 . In this
way, the cumulative nature of morphology in combination with the zero change
model provides a built-in, progressive lowering of the (metaphorical) bar. This is
very different for predictands such as wave heights or precipitation, which are in-
stantaneous values rather than accumulated quantities over the entire simulation
duration. One may argue that the progressive relaxation of the stringency of the
test qualitatively agrees with a modeller’s intuition that the difficulty of the pre-
diction situation increases with the prediction horizon. It is debatable, however,
whether for a long-yearly trend, the prediction that nothing will change sets an
ambitious enough quality standard.

Also, this interpretation, is not consistent with the fact that for seasonal sys-
tems, the zero change reference model does not exhibit a similar lowering of the
(metaphorical) bar over the course of multiple years, since now the variation of
MSE𝑟 is bounded, regardless of the amount of gross change. As a consequence, the
simulation of the progressive development has an unfair advantage over the simu-
lation of the seasonal system and increasingly so further in time. Likewise, of two
systems with the same net change, the system with larger gross changes—due to
for instance an episodic event and subsequent partial recovery—can be expected to
be the more difficult prediction situation, even though cumulative (net) changes
from the reference cannot discern between the two situations. Clearly, the net
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change from the initial bed lacks information on the nature of the morphological
development prior to the evaluation (trend, cyclic, episodic).

As a further consequence, the temporal evolution of model skill for seasonal
systems may demonstrate an undesirable seasonal cycle; when a model, aimed
at mimicking multiple summer–winter profile cycles, is initialized from a winter
profile, a higher accuracy is required to obtain a certain skill level in the winter
seasons, when the net observed changes and thus MSE𝑟 are smaller, than in the
summer seasons for which MSE𝑟 is larger. This may explain the low skill scores in
van Rijn et al. (2003) for the seasonal morphology at Egmond for periods in which
the breaker bar is relatively stable.

For long-yearly simulations with process-based morphodynamic area models,
there have been reports of skill scores steadily increasing with time (Dam et al.,
2013, 2015, 2016; Luijendijk et al., 2017). A similar time-variation of skill was
noticed in our analysis of a 15 year hindcast of the evolution of the Bornrif (Bos-
boom et al., 2014, i.e. Ch. 2). Upon comparison of the Bornrif’s yearly bed changes
with the cumulative bed changes from the start of the simulation, we noticed that
the simulations capture little of the year-to-year variability while the larger-scale
fields of cumulative change are reasonably well predicted. This was confirmed by
an alternative skill computation that resulted in significantly lower skill values by
considering bed changes in a one-year period rather than cumulative change over
multiple years. Based on these findings, it was hypothesized that the relatively low
values of MSESSini at the beginning of the Bornrif simulation are mainly due to un-
skilful smaller scales. Over time, the relative contribution of these smaller scales
to the cumulative change, and thus to MSESSini, decreases and, consequently, the
contribution of the more skilful, persistent larger-scale trend increases.

To exemplify this effect, we designed a simple example (Bosboom and Reniers,
2018, i.e. Ch. 3), which assumes the observed and predicted anomalies to consist
of two spatial scales of cumulative change: a larger, persistent and a smaller, in-
termittent scale. The skill of both the smaller and longer scales alone is constant
with time. Nonetheless, the skill of the combined signal increases from low scores
at the beginning, dictated by the unskilful small scales, to higher scores towards
the end, dictated by the more skilful longer scales. In conclusion, an increase in
skill for longer prediction horizons may well be indicative of the emerging of the
more skilful larger scales, without the skill on these scales necessarily increasing
in time.

In relation with the above, we found that MSESSini exhibits a lack of symmetry
in the case of sediment budget errors. In Ch. 3, a simple case was considered
with a nonzero sediment budget error 𝛾 ′, due to a change of the mean of the
prediction that is not present in the observations. Upon reversal of 𝑜′ and 𝑝′, the
sediment budget error also counts towards MSE𝑟 , leading to a a higher skill score.
Apparently, there is a reward (in terms of a higher skill score) if the observations
show a mean trend.
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The above findings not only challenge the comparability ofMSESSini at different
times in a simulation, but between different simulations as well. The skill values
merely indicate the fraction of improvement of model results compared to a model
that assumes the initial bed of a particular simulation to persist, but have only
limited meaning in a comparative analysis.

7.2 Spatial validation methods

The undesirable properties of traditional point-wise metrics when applied to high-
resolution predictions (Sects. 1.1 and 1.2) led us to formulate the second main
research objective (Objective 2): to develop validationmethods and corresponding
performance metrics that take the spatial structure of morphological patterns into
account. It was elaborated in six research questions and objectives (2.1 to 2.6, see
Sect. 1.3), which were addressed in Ch. 4 (Bosboom and Reniers, 2014b), Ch. 5
(Bosboom et al., 2019) and Ch. 6 (Bosboom and Reniers, 2014a). The main findings
pertaining to each of these six research questions and objectives are summarized
in the next sections (Sects. 7.2.1 to 7.2.6).

7.2.1 Development of a field deformation method

Objective 2.1 was formulated as follows: develop a field deformation method
suited for the validation of morphological patterns and formulate (an) appropriate
error metric(s) to be used in conjunction with this method. This objective was ad-
dressed in Ch. 4 (Bosboom and Reniers, 2014b), which presents a diagnostic tool
for morphodynamic model validation that explicitly takes the (dis)agreement in
spatial patterns into account. It classifies as a field deformation method, since it
deforms the predictions to fit the observations as well as possible. Our method
employs an efficient, nonrigid (i.e. allowing for free-form deformations) image
warping technique—in an implementation by Kroon and Slump (2009)—to find
the smooth displacement field between predictions and observations that minim-
izes the point-wise squared error. The technique, named Demon’s registration
(Thirion, 1998), bears similarities to optical flow and can be considered as similar
to a minimization of the sum of square image intensities between the deformed
predictions and observations (Pennec et al., 1999). The result of the image match-
ing or warping is a vector field of displacements, which can be regarded as a dis-
placement error field. The difference between the deformed predictions and the
observations can be considered as an intensity or amplitude error field.

Based on the displacement error field and the pre- and post-warp intensity error
fields, two new metrics are developed: (1) a mean location error 𝐷 that is distilled
from the displacement vector field; and (2) a combined error metric RMSEw that
takes both location and intensity errors into account. The location error𝐷weights
the local (backward) displacement magnitudes with their effect on the reduction
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of the local squared error and can be considered as a (weighted) mean distance
between the predicted and observed morphological fields. For a full appreciation
of the quality of a prediction, it should be considered in concert with both the
original point-wise error RMSE0 and the point-wise error of the deformed predic-
tions, RMSE1, which measures the agreement between predictions and observa-
tions if a zero penalty applies for misplacements of features. In order to quantify
the overall relative performance between predictions, a (subjective) weighting of
these three metrics must be carried out.

Alternatively, the weighting is already provided by RMSEw that combines all
relevant information on location errors and pre- and post-warp intensity errors.
The weighting procedure locally relaxes the requirement of an exact match to
an extent determined by the local displacement magnitude. To this end, a user-
defined, physically intuitive parameter 𝐷max is introduced, which is dependent
on the prediction situation and the goal of the simulation. It can be seen as the
maximum distance over which morphological features may be displaced for the
prediction to still get (some) credit for predicting these features. Since it only
requires a single, physically intuitive parameter, RMSEw provides a robust basis
for comparison.

The image matching optimizes the location of pixels with given predicted in-
tensities (i.e. depth values) in an image and is therefore probably closest to the
visual validation by morphologists. By implication, the method is not sediment-
conserving, as opposed to the optimization method of Ch. 5 (Bosboom et al., 2019),
which moves sediment rather than depth values.

7.2.2 Behaviour of displacement-based error metrics

Question 2.2 was formulated as follows: what is the behaviour of the error met-
ric(s) as referred to in Objective 2.1, in comparison to the behaviour of point-wise
metrics. This research question deals with the behaviour of the two metrics intro-
duced in Ch. 4 (Bosboom and Reniers, 2014b), viz. the location error 𝐷 and the
RMSEw, which takes both location and intensity errors into account. (Sect. 7.2.1).

Based on theoretical considerations, RMSEw was seen to credit predictions to
the degree that a larger error reduction can be obtained with smaller displace-
ments. By definition, RMSE1 ⩽ RMSEw ⩽ RMSE0. In fact, RMSEw reduces to the
pre-warp RMSE0 if all displacements are larger than a user-defined 𝐷max and to
the post-warp RMSE1 for displacements that are negligible relative to 𝐷max. This
aligns with the tendency of coastal morphologists to credit a prediction for the re-
production of features, albeit displaced, while imposing a relatively small penalty
for misplacement. The intuitive weighting of these two aspects is mimicked by
the user-defined parameter 𝐷max.

To further answer Question 2.2, the new errormetrics were used to diagnose the
correspondence betweenmodel-generated pairs of morphological patterns as well
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as the relative ranking between the pairs. The fields were generated for the ideal-
ized case of a tidal inlet developing from an initially highly schematized geometry
(Roelvink, 2006). First, we demonstrated, using a subset of the model-generated
depth fields, which only differ with respect to the latitude and, hence, Coriolis
parameter, that the location error 𝐷 is able to capture the overall misplacement of
the morphological patterns. Next, for a different series of depth-fields, the com-
bined error metric RMSEw was shown to outperform the conventional validation
approach based on a strictly point-wise metric such as RMSE0, by avoiding the
double penalty effect for misplaced features. The values for RMSE0, 𝐷 and RMSE1
served to explain and support the ranking based on RMSEw. It was shown that,
as opposed to the traditional RMSE0, RMSEw makes choices as to which of two
predictions is better, which are consistent with visual validation by experts.

7.2.3 An optimal transport method for morphological fields

Objective 2.3 was formulated as follows: develop an optimal transport method for
the validation of morphological patterns and derive (a) corresponding error met-
ric(s). This objective was addressed in Ch. 5 (Bosboom et al., 2019), which presents
a diagnostic tool for morphodynamic model validation that defines the mismatch
between predictions and observations in terms of a corrective sediment transport
field. This optimal sediment transport field moves the misplaced sediment from
the predicted to the observed morphology at the “cheapest” quadratic transport-
ation cost. It is relatively easily found by solving an elliptic partial differential
equation, viz. a Poisson equation, for which we have used the functions from the
Matlab Partial Differential Equation (PDE) Toolbox.

A new domain-averaged error metric, the root-mean-squared transport error
(RMSTE), is defined as the root-mean-square of the optimal transport field. By
penalizing the sediment transport required for a match with the observations, the
spatial structure of the error is taken into account; the RMSTE is sensitive to the
volumes of misplaced sediment as well as to the distance over which this sediment
must be transported.

The choice of a quadratic cost functionwas a pragmatic one: the exponent 𝑝 = 2
in the cost function allows a relatively easy solution, as opposed to 𝑝 = 1. With
𝑝 = 2, the transport magnitudes at different locations are weighted quadratically,
so extremes are heavily penalized. This leads to somewhat smeared out transport
patterns with curved transport pathways, as shown in Sects. 5.3 and 5.4.

Our method, which we named effective transport difference (ETD), is a vari-
ation to a partial differential equation approach to the Monge–Kantorovich 𝐿2
optimal transport problem. As such, it employs an irrotationality condition for
the optimal transport in order to reformulate a transport optimization problem
in terms of a partial differential equation. However, whereas the 𝐿2 Monge–
Kantorovich problem penalizes the quadratic distance the transformation moves
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each bit of material, weighted by the material’s mass, our quadratic cost function
penalizes the squared sediment transport, i.e. mass times distance, herewith re-
taining the original physical Monge’s interpretation in terms of work (see Rachev
and Rüschendorf, 1998), albeit in a quadratic sense. New aspects are further that
our model boundaries are, in principle, open to sediment, which allows a bias to
exist between the two bathymetric fields. Only in the special case of a boundary
that is physically closed for sediment, e.g. land boundaries, one may assume that
the transport error on the boundary is known and zero and replace one or more
of the free boundaries by a closed boundary.

The ETD method, which moves sediment rather than features, results in a per-
fect transformation of the predicted to the observed morphological field, whereas,
due to bed level differences between corresponding features in the two fields, the
image warp, which, roughly speaking, moves features, does not allow an exact
match. In line with this, the RMSTE represents the minimum (squared) sediment
transport or work required to bridge the deviations between the morphological
patterns, whereas the RMSEw (Sects. 7.2.1 and 7.2.2) captures the visual disagree-
ment between morphological patterns. Advantages of the ETD method over the
image warp are that the ETD is mass-conserving, parameter-free and symmetric,
the optimal transport from observations to predictions being the inverse of the
optimal transport from predictions to observations.

7.2.4 The behaviour of the RMSTE

Question 2.4 was formulated as follows: what is the behaviour of the error met-
ric(s) as referred to in Objective 2.3, in comparison to the behaviour of point-
wise metrics. In order to answer this question, the behaviour of the newly in-
troduced RMSTE and root-mean-squared error (RMSE) were compared, in Ch. 5
(Bosboom et al., 2019), for simple 1D and 2D cases as well as for more realistic
model-generated morphological fields for a tidal inlet. The latter included the
sets of “observed” and predicted fields that the image warp was tested against
(see Sect. 7.2.2). The RMSTE was found to be capable of discriminating among
model results, which is an important requirement of any error metric, and to lead
to a different judgement than the RMSE as to which of two predictions is better.
Whereas the RMSE only measures the amount of misplaced sediment, and, hence,
already penalizes small misplacements of features heavily, the RMSTE also takes
the distance over which this sediment is misplaced into account. Hence, larger
spatial scales in the bathymetric error fields, requiring larger corrective transport
distances, are penalized heavier than shorter scales. This makes the RMSTE more
suited to demonstrate the quality of a high-variability prediction than the RMSE.

For the simple 1D and 2D cases, this was reflected in the RMSTE increasing
with the misplacement distance of correctly sized features—until, in the extreme,
sediment exchanged across the model boundaries may lead to a lower RMSTE.
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Also, for the simple cases, the RMSTE was seen to avoid the consistent favouring
of flat bed predictions that the RMSE suffers from; whether or not the RMSTE
is larger for a flat bed prediction than for a correctly sized but misplaced feature
depends strongly on the situation. In line with this, it was shown that the RMSE
can be minimized by severely underpredicting feature amplitudes of misplaced
features, whereas the RMSTE is only mildly sensitive to this undesirable effect.

Similarly, for the tidal inlet, it was demonstrated that more localized sediment
misplacements, due to, for instance, incorrect Coriolis deflections, are diagnosed
with better RMSTE scores than misplacements similar in volume but over larger
distances. Predictions that require large corrective transports over large distances
obtain the largest RMSTE. For the cases considered, the RMSEw, based on the im-
age warp, and the RMSTE led to the same ranking amongst the predictions, albeit
for certain choices of the warp’s user-defined parameter that limits the distance
over which features may be displaced for the prediction to still get (some) credit
for predicting these features. In contrast, the RMSTE does not allow such a para-
meter. Further, it was concluded that inspection of the corrective transport fields,
underlying the RMSTE, may provide some guidance as to how the model should
be improved.

7.2.5 Validation statistics at multiple scales

Objective 2.5was formulated as follows: develop a scale-selective validation frame-
work that resolves the spatial distribution of appropriate validation statistics for
multiple scales. This objective was addressed in Ch. 6 (Bosboom and Reniers,
2014a), which presents a validation method for 2D morphological predictions that
allows any metric to selectively address multiple spatial scales. Herewith, inform-
ation is provided on the variation of model performance with spatial scale and
within the model domain. This information is not provided by the traditional
approach to morphodynamic model validation to compute a single-number valid-
ation metric, such as the MSE or an MSE-based skill score, for the entire 2D model
domain or a limited number of subdomains. Also, neighbourhood or smoothing
methods (Sect. 1.2), which compute summary statistics for progressively smoother
fields as obtained by smoothing filters, do not provide information on the spatial
variation of performance in the model domain.

Our scale-selective validation approach employs a smoothing filter in such a
way that, in addition to the domain-averaged statistics, localized validation stat-
istics and areal maps of prediction quality are obtained per scale. It bears similar-
ities to localized data analysis (Fotheringham et al., 2002) in that it computes local
validation metrics in a sliding window of progressively larger size, moving across
the domain. Hence, the term “scale” as considered by this method refers to geo-
graphic extent or areal size of focus. Compared to possible alternative strategies to
scale-selective model validation, e.g. using band-pass spatial filters, the method is
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easy to implement and apply, and the results are relatively easy to interpret. This
makes it a tool that can be readily used for practical purposes.

The applied validationmetrics—metrics pertaining to the structure and variance
of the morphological pattern—are close to the intuitive judgement of morpholo-
gists. The correlation 𝜌𝑝𝑜 between the predicted and observed bed levels is used
as a normalized measure of the structural similarity. Further, we defined a nor-
malized measure of the amplitude similarity 𝜂 as a function of the ratio of the
standard deviations of predictions and observations �̂� = 𝜎𝑝/𝜎𝑜 . The parameter 𝜂
is bounded and invariant under the exchange of predictions and observations, as
opposed to �̂� . Hence, over-prediction and under-prediction are equally penalized.
The structural and amplitude similarity are combined in a pattern skill score 𝑆, in
line with the skill score proposed by Taylor (2001).

The various statistics are calculated for a range of window sizes, leading tomaps
of amplitude similarity, structural similarity and pattern skill per scale. Other
validation metrics can be used as well; the method allows any metric to selectively
address multiple spatial scales. Also, the method could be supplemented with a
bias term at the largest scale. It is important to note that the employed metrics are
point-wise metrics, but do not suffer from the double penalty effect; neither 𝜂 nor
𝑆 rewards the underestimation of variability, as opposed to point-wise accuracy
metrics, such as the MSE, and derived skill metrics, such as the MSESS.

7.2.6 Information provided by the scale-selective approach

Question 2.6 was formulated as follows: what information is provided by the scale-
selective framework as mentioned in Objective 2.5 and what is the added value of
addressing multiple scales? This question was answered in Ch. 6 (Bosboom and
Reniers, 2014a) through application to measured and computed bathymetric fields
for the Bornrif—a dynamic attached bar at the North-western edge of the Wadden
Sea island of Ameland.

Strong spatial differences in structural and amplitude similarity and pattern skill
were found. Further, due to amongst others small-scale observed features that
are not (well) reproduced in the predictions, a lower domain-averaged prediction
quality was found at the smaller scales than at the larger scales. In relation to this,
it was found that smoothing out the high-resolution detail increases the skill of the
results especially at the smaller scales, even though the smoothed bathymetries
are less realistic looking than the full-resolution bathymetries.

Clearly, the scale-selective validation can be used to determine local differences
in structural and amplitude similarity and pattern skill. Further, it can be used
to determine the smallest scales with sufficient skill and establish the resolution
at which model-data comparisons are ideally presented. Finally, it may provide
direction for model development targeted specifically at certain morphological
scales.
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7.3 Recommendations

From the findings of this thesis, several recommendations for model validation
can be derived. First, Sect. 7.3.1 presents recommendations concerning the estab-
lishment of a set of performance measures. Next, in Sect. 7.3.2, recommendations
for further development of spatial validation metrics are discussed.

7.3.1 Towards a morphological model validation suite

Any error metric condenses a large amount of data into a single number, therewith
highlighting certain aspects of model performance only. By implication, multiple
metrics are generally required to provide an adequate picture of the quality of
morphological model results. Therefore, we recommend that a combination of
metrics is used in the validation of morphological models and that the weighting
is determined by the goal of the simulation. Such a procedure requires a good
understanding of the behaviour of the available error metrics.

The development of an established set of performance measures, in combina-
tion with a set of internationally agreed validation cases, would be an important
step in raising the level of morphodynamic model validation. This demands an
investment from the modelling community, starting with giving due attention to
model validation in morphological model studies.

A set of error metrics may include point-wise accuracy metrics such as theMSE,
RMSE or mean absolute error (MAE) and derived skill metrics. It must be realised
that in the presence of often inevitable location (and timing) errors, these accur-
acy and skill metrics tend to penalize rather than reward the correct prediction
of the variance of bed levels and bed changes. For the MSE and MSE-based skill
score (MSESS), this is easily monitored through the Murphy–Epstein decomposi-
tion. Therefore, it is advocated that for a good interpretation of model perform-
ance, the MSE and MSESS are supplemented with the anomaly error components
𝜌𝑝′𝑜′ , 𝜎𝑝′/𝜎𝑜′ , 𝛼′, 𝛽′, 𝛾 ′ and 𝜖′ (Sects. 7.1.1 and 7.1.2). Also, a decomposition of
the MSE in terms of bed levels, reporting at the minimum 𝜎𝑝/𝜎𝑜 , 𝜌𝑝𝑜 and MSEbias
(Ch. 2), is helpful.

If the MSESS is used and a correction for measurement error is called for, we
advise the use of the skill formulation according to Sutherland et al. (2004) rather
than van Rijn et al. (2003), in combination with a skill classification scheme that
is not adjusted for measurement error (Sect. 7.1.3).

Unfortunately, the commonly usedMSESSini a.k.a. the BSS, whichmeasures the
accuracy relative to a prediction of zero morphological change, cannot be used re-
liably to rankmorphodynamicmodel performance (Sect. 7.1.4). At best, skill levels
can be judged on a case-by-case basis, but even then the comparison of skill levels
at different times in a simulation has limited meaning. It is therefore discouraged
to rely heavily on the MSESSini for the determination of morphological model
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quality. If the MSESSini must be used, it is recommended that the temporal vari-
ation of not only the MSESSini is reported and analyzed, but also of the MSE, the
MSEini and the above mentioned error terms, following from theMurphy–Epstein
decomposition.

In order to reflect the intuitive judgement of morphologists, a set of perform-
ance metrics must include a metric that accounts for the spatial interdependency
of the observed and predicted fields (Sect. 7.2). The location error𝐷 and combined
error metric RMSEw, as determined with a field deformation method, are suit-
able to measure the visual closeness between morphological patterns (Sects. 7.2.1
and 7.2.2). Alternatively, the RMSTE can be used to project the error in terms of
an optimal transport from predictions to observations (Sects. 7.2.3 and 7.2.4). It
serves as a recommendation that the optimal transport method, as opposed to the
field deformation method, is mass-conserving, parameter-free and symmetric.

Further, the RMSTE may be helpful in calibrating morphodynamic models with
respect to the morphodynamic timescale. In a first calibration step, an automated
calibration routine, which minimizes the RMSTE, may be able to determine the
optimal global model settings, such as certain transport parameters, that merely
affect the morphodynamic timescale. In a next step, a more detailed calibration of
other parameters can be undertaken using multiple error metrics, amongst others
the RMSE and the RMSTE.

In addition to the computation of error metrics for the entire 2D domain or a
limited number of subdomains, the scale-selective approach can be used to provide
information on the variation of model performance with spatial scale and within
the model domain (Sects. 7.2.5 and 7.2.6). To this end, normalized measures for
structural similarity 𝜌𝑝𝑜 and amplitude similarity 𝜂 = 𝑓 (𝜎𝑝/𝜎𝑜), can be used and
combined into a pattern skill score 𝑆 (Ch. 6).

As mentioned, however attractive the concept of skill or relative accuracy, a
comparative analysis based on MSESSini, lacks general validity. Alternatives are
not self-evident. For longer-range simulations of seasonal systems, a more appro-
priate naive predictionmay be the initial or last observed state for the same season.
Also for a trend, an alternative skill score can be formulated by considering bed
changes in a certain time period (e.g. one year, see Sect. 2.3.5) rather than cumulat-
ive change over multiple years. Even though these alternative persistence models
may improve the comparability of skill values at different times in a simulation,
they do not provide the fair reference required for a comparison of predictions
across different prediction situations. In the presence of a trend, a more appropri-
ate naive model could be some estimate of the trend (e.g. Davidson et al., 2010, for
coastline modelling), which can be expected to provide a more stringent test than
the reference prediction that nothing will change. For 2D morphology, a similar
approach would be far from trivial. Finally, on a case-by-case basis, a quite useful
choice of reference is a benchmark prediction with a different model or different
model settings (Lesser, 2009; Gerritsen et al., 2011; Hallin et al., 2019).
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7.3.2 Further development of spatial validation metrics

In future studies, the behaviour of the RMSTE in a range of practical applications
will need to be considered. In order to do so, a more robust implementation of
the ETD is required in order to deal with arbitrary model domains. Further, we
anticipate that valuable additional information can be extracted from the optimal
transport fields by isolating the various scales in the transport fields, for instance
using our scale-selective validation method of Ch. 6 (Bosboom and Reniers, 2014a).

The choice of 𝑝 = 2 in the ETD optimization problem, leading to quadratic trans-
port costs, has enabled a relatively straightforward solution procedure resulting
in a rotation-free optimal transport. For 𝑝 = 1 and a domain boundary closed to
sediment, our formulation and the 𝐿𝑝 Monge–Kantorovich problem are equival-
ent and correspond to the original Monge mass transfer, which guarantees the
shortest possible weighted transport distance and smallest transport magnitude.
Numerical methods for solving the 𝐿1 problem exist (Benamou and Carlier, 2015),
but are considerably more complex than our 𝐿2 solution procedure. Nonetheless,
it may be worthwile to explore possibilities to solve the 𝐿1 optimization problem.
Such an approach would lead to the introduction of a new error metric, the mean
absolute transport error (MATE). The MATE is to the RMSTE as the MAE is to
RMSE, with that difference that MATE is based on q𝐿1 rather than q𝐿2.
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THIS DOCTORAL THESIS IS ABOUT

The behaviour of the widely used mean-squared-error skill score with the initial 
bed as the reference, which goes by the name Brier skill score.

The development of novel validation methods and corresponding error metrics 
that take the spatial structure of morphological patterns into account:

1. A field deformation or warping method, which deforms the predictions as to
minimize the misfit with observations;

2. An optimal transport method, which moves misplaced sediment from the
predicted to the observed morphology through an optimal, rotation-free
sediment transport field;

3. A scale-selective validation approach, which allows any metric to selectively
address multiple spatial scales.

AND CONTAINS THE FINDINGS

The use of a single performance metric leads to an inadequate interpretation of 
quality.

A set of performance metrics for morphological models must include a metric—
such as the root-mean-squared transport error (RMSTE)—that takes the spatial 
structure of morphological patterns into account.

Optimizing the mean-squared error (MSE) or derived skill score (MSESS or BSS) 
of a morphological prediction leads to undesired underprediction of the variance 
of bed changes.

The MSE-based skill score using the initial bed as the reference (a.k.a. the BSS) 
fails at making predictions comparable, whether across different prediction 
situations or across different times in a simulation.
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