
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Wrinkle direction
detection and its
application on robotic
cloth wrinkle removal
Master Thesis
Yulei Qiu



Wrinkle direction
detection and its

application on robotic
cloth wrinkle removal

by

Yulei Qiu
to obtain the degree of Master of Science

at the Delft University of Technology,
to be defended publicly on Thursday December 22, 2022 at 9:00 AM.

Student number: 5233178
Degree: MSc Robotics
Thesis committee: Dr. Jihong Zhu, University of York, daily supervisor

Dr. Jens Kober, TU Delft, supervisor, chair
Dr. Michael Gienger, Honda Research Institute Europe, supervisor
Dr. Michaël Wiertlewski, TU Delft, external committee member

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/


Acknowledgement

I would like to thank Dr. Jihong Zhu, my daily supervisor for his suggestions and patient guidance during
my master thesis. I am also grateful to Dr. Jens Kober and Dr. Michael Gienger, my supervisors at TU
Delft and Honda Research Institute Europe, whose regular advice and insightful feedback inspired me
a lot. The experience of working with you is very great. Finally, I would like to express my gratitude to
my family and friends for their constant support. They are always by my side no matter what happen.
That’s one of the reasons why I am here.

Yulei Qiu
Delft, December 2022

i



Wrinkle direction detection and its application on robotic cloth wrinkle
removal

Yulei Qiu

Abstract— Deformable Object Manipulation (DOM) is an
important field of research as it contributes to practical tasks
such as cloth handling, cable routing, surgical operation etc.
The sensing in DOM is now considered as one of the major
challenges in robotics due to the complex dynamics and high
degree of freedom of deformable objects. One challenge is
to find a suitable representation with low dimensionality and
reliable accuracy. The aim of this thesis to develop an algorithm
to represent the state of the deformable objects like cloth in low-
dimensional vectors, together with a framework based on visual
servoing to flatten cloth-like objects. We present a novel pipeline
for cloth flattening, which determines a stretching direction (in
2D vector) and an operation point for the robot to removes
the wrinkles. The performance of the perception algorithm are
validated in simulation and real-world experiment. The whole
framework is evaluated in the real-world experiment, which is
compared with a human operator. The results show that our
framework efficiently determines the direction of wrinkles on
the cloth in the simulation as well as the real robot experiment.
Besides, the proposed framework has a good performance close
to that of a human operator in terms of cloth flattening tasks.

I. INTRODUCTION

Despite significant progress made in recent years in object
manipulation, Deformable Object Manipulation (DOM) is
still considered as one of the major challenges in robotics
due to the complex dynamics and high degree of freedom of
deformable objects. The needs of DOM is also increasing,
since many manipulation tasks in our daily life involve
deformable objects, such as picking up fruits and folding
clothes.

Deformable objects manipulation (DOM) usually breaks
down into perception and control. Perception in robotics
means to make sense of the unstructured real world. For this
specific task, it is to obtain states to describe the object, while
control uses this information to guide robot motion. Humans
can handle the perception and control in an integrated way.
They can therefore efficiently infer the complex configuration
of a deformable object, determine an decent policy for
manipulation and perform a suitable manipulation. Althouhg
there exists end-to-end learning methods such as [1] that
model the entire process for a robot, we can still divide the
process into two modules and study them respectively.

Among various tasks in DOM, cloth manipulation is one of
the most common tasks in our daily life. And clothing is also
the most challenging deformable object for perception and
manipulation tasks [2]. With the development of computer
vision, we are beginning to see some results in both sim-
ulations and robot experiments on how to perceive clothes.
Early methods, for example, rely on extra markers [3] that
requires the cloth to be completely covered to infer the state,

or predefined visual features [4], [5] which approximates the
cloth with predefined polygon models. The use of markers
is usually not possible in practical cases, and predefined
geometric features are often not robust and introduce errors
in state estimation [6]. Actions, policies or strategies to
manipulate are usually learned from human demonstrations
since the human behavior during cloth manipulation process
is difficult to model. Common used methods in Learn-
ing from Demonstration (LfD) include Dynamic Movement
Primitives (DMPs) [7] and Gaussian Processes (GPs) [8].
Recent data-driven methods usually combine perception and
control stages, which does not infer the explicit states of the
cloth and output the policy directly. They learn the mapping
from the raw RGB(D) images to the robot actions [1], [9],
[10]. Like most learning-based methods, they requires a
large number of training data and additional requirements
of computational resources.

We would like to develop a sensing algorithm that does
not rely on markers or geometry shapes, following by a
control module to make use of the sensing information.
To this end, we present a pipeline to complete the cloth
flattening task. For perception, our method uses a 2D vector
to represent the direction and magnitude of wrinkles on the
cloth. The directions are then used to determine the stretching
direction that removes the wrinkles. The magnitude reflects
how “wrinkled” the area is, which helps determine the oper-
ation point. For control, the proposed framework determines
the stretching direction and operation point based on the
magnitude of the wrinkle. An Image-Based Visual Servoing
(IBVS) system is designed to control the manipulator using
the direction and point.

The main contributions of this thesis are:

1) A framework for cloth flattening tasks combining
computer vision and IBVS system.

2) An algorithm adapted from Wrinkle cOntaction De-
tection (WORD) [11] in cloth flattening tasks that
successfully applies on cloth flattening tasks

3) Experiments demonstrating that the proposed vision-
based architectures are close to the baseline. We eval-
uate the performance of this framework and compare it
with a human operator that flattens the same cloth. The
result shows that our framework can reach a similar
level for this task with respect to a human operator.

The whole pipeline is tested using Intel RealSense D435
camera and Franka Emika Robot. We also discuss the
shortcomings of the system, which points to interesting areas
for future research.



II. RELATED WORK

Besides aforementioned perception methods [3]–[5], other
work on cloth perception use wrinkle as a feature [12], [13].
It is intuitive that wrinkle is an obvious feature for clothes
placed on a flat surface like table. These two methods both
compute a heat map from visual information and determine
the state of the wrinkles or the grasping policies based on the
heat map. Prior to them, Gabor filter is applied on images
to extract wrinkle features [14]. The wrinkled area of the
cloth can be detected by the Gabor filter with caerful design
of the kernel. Inspired by [14], Word cOntraction Detection
(WORD) is designed to represent the state of the cloth that
infers the main direction of all the wrinkles on the cloth
using Gabor filter [11]. We notice that WORD uses only a
2D vector to represent the state of the cloth, which shows
potential to be applied to other cloth manipulation tasks. Our
algorithm is therefore developed based on WORD.

Robot actions can be either determined from the percep-
tion information or learned directly from the raw image input
[15], [16]. Learning-based methods that learn the trajectory
of robot motion [17]–[19] have a better performance in
learning the movement policies. These methods encode skills
by extracting trajectory patterns from demonstrations. Visual
servoing, a combination of robot vision and robot control, is
also a promising method directly making use of perception
information. The main advantage of visual servo system is its
strong robustness [20] but requires calibration. We would like
to make good use of the result from perception to investigate
the possibility to generalize WORD. Hence, we choose to
design a visual servo system for the cloth flattening task.

III. METHODS

In perception part, our method can determine the stretch-
ing direction and the operation point of a cloth on the table
from the top-down visual observation. The wrinkle direction
represents the state of the cloth, indicating toward which
direction the robot shall pull. The magnitude shows how
wrinkled the area is, which is a criteria when determining
the operation point. Next, we determine the operation point
based on the magnitude distribution of. Finally, the visual
servo system executes the corresponding action with the
calculated direction and operation point. The algorithm will
work until the cloth is flatten. The main components of our
proposed method – visual feature extraction and visual servo
system – are described respectively in the two subsections
below.

A. Visual Feature Extraction

WORD has been validated in both simulation and real
robot experiment by its author [11]. Figure 1 shows the
results of WORD in simulation and real world. Although
WORD looks promising that it can calculate the main
wrinkle direction on the cloth, it has some limitations. For
example, it is designed for a cloth placing task, where the
cloth is firstly picked at the two corners handing in the
air vertical to the table. Therefore, the original WORD can
only output direction towards right. Therefore, we develop

an variant of WORD for our scenario. The modified WORD
has three outputs:

1) Stretching direction. The direction is first calculated in
a bit different way from original WORD, see below.

2) Operation point. The algorithm determines a point in
the image where the end-effector should move, i.e. the
pixel coordinate will be given.

3) Stretching distance. This is the distance the end-
effector should move along the given direction.

With these three outputs, the robot should be able to move
to complete the cloth flattening task.

Figure 3 shows an overview of the modified WORD.
The raw RGB image from the camera is first processed by
HSV thresholding to remove the background and leave the
cloth part only. Then the image is split into small blocks.
Algorithm 1 shows the pre-process steps. After that, WORD
is applied on those blocks and now we have one direction
and one magnitude for each block. All the magnitude forms
a heat map over the image. The block with the highest
magnitude should be the block to start with, since it is the
most wrinkled part of the cloth. And the magnitude of this
block is the highest magnitude among all the blocks. For
direction, the output should be either the direction in the
block with the highest magnitude or its opposite one, which
is determined by considering the position of the current
block with respect to the center of mass (CoM) of the cloth.
The direction that is pointing outward with respect to the
center should be the direction of this block. We dot-product a
direction with the vector pointing from CoM to the center of
the current block to determine whether this direction is point
outward. By doing so, all the vector output by WORD are
pointing outwards, which is reasonable for a cloth flattening
task. The algorithm of the modified WORD is shown in
Algorithm 2.

For simplicity, the operation point in our method is one of
the center of the blocks. Although now we know the block
with highest magnitude (denoted by center block), it is not
suitable to make its center as the operation point since we
don’t want the robot operate right on the wrinkle, which
may create more wrinkles. The selection of the operation
point follows the steps below:

1) The candidate blocks are the eight blocks around the
center block.

2) Blocks that are closer to CoM are first sifted out of the
candidate blocks. Here we denote the vector pointing

Fig. 1: Original WORD output



Algorithm 1 Pre-process of the image

Input: image I
Output: small image list I list, the center of mass CoM

Apply HSV thresholding on the image to get an image
without background Icloth

Calculate the center of mass of the remaining cloth in the
image, CoM
Divide the image Icloth into small blocks and store in
I list

return I list, CoM

from CoM to center block by a. The criterion is the dot
product between a and the vector pointing from center
block to the rest candidates. Blocks with negative dot
product are sifted out of the candidate blocks. This
step filters out the blocks which are on the inner side
(with respect to center block) to avoid creating more
wrinkles when stretching.

3) The chosen block among the rest candidate blocks is
the one with lowest magnitude (denoted by operation
block). The idea is to select a block with less wrinkles
from the rest candidate blocks. The position of center
of the operation block (in pixel) is therefore the
operation point.

Figure 2 shows the visualization of the output of the Visual
Feature Extraction part. Note that the operation point is the
center of the operation block. To summarize, the stretching
direction w in Algorithm 2 and the operation point are
calculated by the perception algorithm discussed above.

B. Visual Servo System

Visual servoing is a well-known approach to guide robots
using visual information [21]. Particularly, Image-Based
Visual Servoing (IBVS) systems calculate the control law
using the visual information directly. In our task, the visual
information is the image captured by the camera mounted on
the end-effector of the manipulator, and the control law is
the information required for robot motion, which is stretching
distance, direction and the operation point here. Therefore,
we design an IBVS system to make good use of the visual
information from perception part. This system solves two
problems in the whole pipeline:

(a) (b)

Fig. 2: The red point is the operation point. Note that blue
point in the the left figure is the center of the block with the
highest magnitude.

Algorithm 2 Modified WORD (mWORD)

Input: image list I list, center of mass CoM , number of
orientations n

Output: WORD vector w
for I in image I list do

for i = 0, 1, ..., n− 1 do
θi ← i× π/n
Get Gabor kernel in direction θi
Apply the Gabor kernel on the image I to get

wrinkles in direction θi
Stack the summation of pixel values in an n-

dimensional vector L
end for
m← maxi∈{0,1,...,n−1} L(i)

▷ m: the magnitude of the current block
d← v(θi), where i = argmaxi∈{0,1,...,n−1} L(i)

▷ d: the direction of the current block
▷ v: unit vector perpendicular to θi direction

Calculate the pixel coordinate p of the center of the
current block I

Calculate the vector pointing from center of mass to
the current block, a← (p− CoM)

if a · d ≥ 0 then
d← d

else
d← −d

end if ▷ Make d point outwards the center
Add the direction and magnitude of the current image

block to two lists, dlist and mlist

end for
w ← dlist(i), i = argmaxI∈Ilist

mlist(I)
return w

1) How to calculate the world coordinate given the pixel
coordinate?

2) How to execute the robot given the stretching distance,
direction and the operation point?

The conversion of image pixel coordinates to world co-
ordinates is a multi-step process, as illustrated in Figure
5. We calculate the transformation from image coordinates
to camera coordinates first. We consider a pinhole camera
model here since most of commodity cameras are based
on this model. As shown in Figure 4, the pinhole camera
model gives us the relationship between the location of a
pixel in 2D image and the corresponding points in 3D space.
The camera coordinates and the pixel coordinates have the
following relationship:

Zc

uv
1

 =

fx 0 u0

0 fy v0
0 0 1

Xc

Yc

Zc

 = KPc (1)

where u and v are the pixel coordinates, fx and fy are focal
length of the image along pixel width and height, u0 and v0
are the principal point coordinates, Xc, Yc and Zc are the
camera coordinates, and K is called intrinsic matrix.



(a) Input image (b) CoM (c) Direction (d) Heat map

Fig. 3: An overview of important steps in the perception stage. Note that the zoomed-in part in Figure 3c indicates the
stretching direction of this block. The heatmap in Figure 3d shows the wrinkle distribution in Figure 3c.

The position in world coordinate system can be calculated
by the following equation:

baseP =base Ttool ×tool Tcam ×cam P (2)

where baseTtool is the for end-effector (tool) coordinate
system relative to world (robot base) coordinate system,
toolTcam is the for camera coordinate system relative to
end-effector coordinate system, and camP is the position in
camera coordinate system. Equation 1 gives the camera coor-
dinates, which means now we need to find the transformation
from world coordinate system to camera coordinate system.
Back to Equation 2, the transformation between world (robot
base) coordinate system and end-effector coordinate system
can be easily computed by directly reading the end-effector
pose from the robot. Therefore, we only need to determine
the transformation between camera and end-effector coordi-
nate system, which can be calculated by hand-eye calibration.

As mentioned before, the camera in our IBVS system is
mounted on the end-effector, where the configuration of the
robot end-effector (hand) and the camera is eye-in-hand. The
camera is attached to the moving hand and observing the
relative position of the target. Figure 6 shows the matrix
transformations among these four coordinate systems in
hand-eye calibration. For any two poses of manipulator
while keeping the calibration board at the same location,

Fig. 4: A pinhole camera model [22].

the following relationship holds:

baseTtool2 ×tool2 Tcam2 ×cam2 Tcal =
baseTtool1 ×tool1 Tcam1 ×cam1 Tcal (3)

Move some terms from one side to the other:

baseTtool
−1 ×base Ttool2 ×tool2 Tcam2 =

tool1Tcam1 ×cam1 Tcal × cam2Ttool
−1

(4)

Finally we have:

AX = XB (5)

where A = baseTtool
−1 ×base Ttool2, B =cam1 Tcal ×

cam2Ttool
−1 and X =tool1 Tcam1 =tool2 Tcam2 since the

relative position between robot base and the calibration
remains unchanged. toolTcam can therefore be computed by
solving Equation 5, which is a typical problem in 3D robot
hand/eye calibration. There are already solutions for this
problem such as [24], [25].

C. Summary

In this section, we describe our algorithm – modified
WORD – that calculates the stretching direction and op-
eration point (in pixel coordinate). The IBVS system can
further transform the pixel coordinate to world coordinate,
which can be used to guide the robot motion.

IV. EXPERIMENT

We first validate our perception method on cloth with
wrinkles in an open-source simulation environment, Soft-
Gym, and in the customized cloth flattening environment.
Besides the validation in a simulation environment, we also
perform robot experiments to test the performance of our
proposed methods.

Fig. 5: A schematic view of converting pixel coordinates to
world coordinates



Fig. 6: The transformation relationship between different
coordinate systems for eye-in-hand configuration [23].

A. Simulation environment

We setup the simulation environment for cloth flattening
task in a a soft-body simulator, Softgym [26]. It is the
state-of-the-art (SOTA) particle-based simulator for non-rigid
objects like rope, cloth and fluid. Example results are shown
in Figure 7. The observation is an RGB image of size of
720 × 720, taken from a top-down view. We can see from
the left part of Figure 7 that the directions are perpendicular
to the wrinkles in each block, which is the expected output
of our algorithm. The heatmap in Figure 7 indicates higher
value for blocks with more wrinkles, which matches the
wrinkle distribution on the left.

B. Real Robot Experiment

To make use of the direction and operation point, we
design and 3D print an end-effector for this task. Figure 9a
shows the self-made end-effector mounted on the end of the
manipulator. The end-effector has a finger-like shape, which
is a combination of a cylinder and a ball. The ball part will
contact the cloth during the manipulation. The other side is
a flange connected to the robot. Note that this end-effector
also limits the manipulation in a 2D surface.

We evaluate our method on a Franka Emika Robot. An
Intel RealSense D435 camera is mounted on the end-effector
of the robot looking down to the cloth on the table to get the
RGB image inputs from a top-down view. We also design a
finger-like end-effector for this task. For extrinsic calibration,
we use the chessboard downloaded from OpenCV [27] and

Fig. 7: The output direction and heatmap by applying our
algorithm.

Visual Servoing Platform (ViSP) [28] to calculate the trans-
formation matrix toolTcam. The workflow of the experiment
is:

1) Before the start of the experiment, put the cloth under
the camera in the middle of its field of view and flatten
the cloth manually.

2) Run the script to activate the camera. The camera will
take a snapshot of the current cloth and calculate the
initial coverage.

3) The algorithm computes the operation point and
stretching direction.

4) The robot execute the action by first moving the end-
effector to the operation point and pull towards the
stretching direction for a certain distance.

5) The robot moves back to the starting position, which
completes a step.

6) Return to 2 and execute until the coverage meets the
stopping criterion.

Baseline: We compare the performance of our method with
a human operator. During the task, the human operator can
see the observation from the camera from the screen. They
will determine the operation point and stretching direction by
clicking twice on the observation window. The position of
the first click will be the operation point, and the stretching
direction will be the direction from first click to second click
(see Figure 2b). To better compare the performance, we fix
the moving distance for both method. The human operator
is the author himself.

Evaluation metric: We evaluate the performance by the
relative coverage of the cloth. For the cloth flattening task,
we compute the coverage of the cloth, the number of pixels
of cloth divided by the total number of pixels in the image.
The relative coverage is computed by

rC =
FC

IC

where FC means final coverage, the coverage at the last step
and IC means initial coverage, the coverage at the beginning
of the task.

The stopping criterion is either the relative coverage is
greater than 99%, or the number of steps is greater than 8.

Tasks: We design two tasks with different difficulty. For
easy tasks, we create wrinkles on the cloth so that they can be
completely removed by 2D manipulation. This type of tasks
is to evaluate whether the direction and operation point given
by our algorithm works in a simple case. For hard tasks, one
corner of the cloth is folded up before making wrinkles. We
would like to see whether our algorithm can perform well
under this disturbance.

TABLE I: Real Robot Experiment Results

Method
Task Easy Hard

Step Final Coverage Step Final Coverage
WORD 5.33 0.335 0.286
Human 4.33 0.332 0.297



Results: The quantitative results of the real robot exper-
iments are given in Table I and the visualization of one
experiment is provided in Fig 9. Other results are shown in
Figure 10 and Figure 11, for easy and hard tasks respectively.
Note the the data in Table I is averaged for three experiments.

V. DISCUSSION

In this study, the aim is to develop an algorithm for cloth
flattening tasks. We propose a pipeline containing perception
and control parts, where we design the perception algorithm
(based on WORD) and the vision-based controller. The
perception algorithm is tested in the simulation environment.
The output is shown in 7, which gives correct directions
perpendicular to wrinkles in most blocks and in the heatmap
clearly reflects the distribution of wrinkles. The performance
of the perception algorithm in real robot experiment shown
in Figure 3c and 3d is also satisfying, indicating both the
direction and magnitude.

A. Easy Tasks

To evaluate the performance in manipulation, we conduct
experiments with different difficulty to compare the perfor-
mance of our method and that of a human operator. Both
methods can complete this task in no more than 5 steps.
Although we can observe that human generally outperforms
our algorithm, the direction and operation point given by it
can be used as a manipulation policy successfully. Human
operator can complete the tasks within 4 steps with their
decent policy, while our method tasks up to 5 steps to flatten
the cloth. Another point worth noting is that the policy from
human operator can always result in an increasing coverage.
Our method sometimes gives a sub-optimal policy which
slightly decreases the coverage, such as step 2-3 in Figure
10b and 10c. But generally we can see that the modified
WORD indicates a correct direction perpendicular to the
biggest wrinkle on the cloth and a proper operation point
that avoids operation on other wrinkles, and that it finally
leads to a successful completion of the task. Besides, the
final coverage of the two methods are very close, only with
a difference of 0.9%.

B. Hard Tasks

Since it is impossible for both methods to totally flatten the
cloth in hard tasks, the number of steps is not compared here.
Figure 11 and 12 shows again that both methods perform

(a) (b)

Fig. 8: Initial configuration of the cloth for easy and hard
task.

well in cloth flattening tasks. Figure 11 shows that the human
operator ends the manipulation earlier, since he can observe
the convergence of the coverage. Besides, human operator
always flatten the cloth more “quickly” than our proposed al-
gorithm. Human operator usually reaches a relative coverage
over 0.7 at step 2 or step 3 because human can make correct
decisions in cloth flattening task in most cases. Our proposed
method focuses on removing big wrinkles in the first few
stages, which results in a slower convergence in coverage.
This can also be seen in Figure 12 that the first few operations
point are selected around the most wrinkled area due to our
rules. The selected operation points by the human operator at
the beginning of the task are always at the corners no matter
how the wrinkles are distributed. Although the performance
of our algorithm cannot exceed the human operator for hard
tasks, the proposed method shows a good performance in
flattening the cloth in finite steps, the relative coverage of
which can reach up to 0.9 and the average relative coverage
is only 3.7% less than that of human operator.

C. Limitations

The first limitation is that the perception algorithm is not
so robust. WORD relies heavily on Gabor filter to identify
the wrinkles. The output of Gabor filter is easily influenced
by the environment such as illumination and the material
(color) of the cloth. Although this limitation can be alleviated
by fine-tuned the hyperparameters for new environments and
new clothes, it is not a complete solution to this problem.

Another limitation is that our method is not “flexible”.
Compared with human operators, the strategy of using mag-
nitude to determine policy is a bit far from the optimal
one. Besides the current method, it is also promising to use
learning-based methods for the policy. We can either learn
from human operator by providing demonstrations, or the
visual feedback. Other works such as [1] combine visual
feedback and learning method for deformable object manip-
ulation, which makes good use of the perception information.

D. Future work

In the future, we plan to use learning-based method in the
control module. The fact that human operator outperforms
the current methods means that a better-perform model can
be learned from human demonstration. We also want to try
to implement other learning frameworks utilizing the visual
feedback given the perception module. The current method
will be compared as the baseline method. We expect the
learning-based method to outperform the current method
and get closer to human operator. Besides, it is possible to
combine the current method with other cloth representation
methods like [6] create a more generalized and robust
framework for more types of DOM.

VI. CONCLUSIONS

This thesis presents promising pipeline for cloth flattening
task. We have shown that our perception algorithm can
successfully calculate a stretching direction of the most
wrinkle area, and and a corresponding operation point on



(a) (b)

Fig. 9: Robot experiment on cloth flattening. (a) We use a Franka Panda robot with the end-effector for manipulation and
an Intel RealSense D435 camera with a top-down view for sensing. (b) We show the execution of first four steps for our
algorithm and the human operator, and the change of the coverage with respect step.

(a) (b) (c)

Fig. 10: Experiments for easy task

(a) (b) (c)

Fig. 11: Experiments for hard task

the cloth. We have also presented the setup of an IBVS
system that can execute the policy using the information
from the perception part. Validation experiments in SoftGym
have shown that our algorithm works for simulated cloth.
The experiments on real robots have shown that the pipeline
performs well in removing wrinkles of crumpled cloth, with
a little gap between the performance of human operator.
With the validation in simulation and real robot experiments,
we have provided a novel pipeline for cloth flattening tasks
including perception and control module.



Fig. 12: All steps of WORD in hard task.
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