
Massivizing
Networked Virtual Environments

on Clouds

Siqi Shen

Massivizing
Networked Virtual Environments

on Clouds

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof.ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen op
woensdag 8 april 2015 om 15:00 uur

Door

Siqi SHEN

Master of Engineering in Computer Science and Technology
National University of Defense Technology, China

geboren te Zhaoan, China

This dissertation has been approved by the

promotor: Prof.dr.ir. D.H.J. Epema and
copromotor: Dr.ir. A. Iosup

Composition of the doctoral committee:

Rector Magnificus
Prof.dr.ir. D.H.J. Epema promotor
Dr.ir. A. Iosup copromotor
Dr.ir. F.A. Kuipers other, not independent member

Independent members:
Prof.dr.ir. H.J. Sips EWI, Technische Universiteit Delft
Dr. M. Abdallah Pierre and Marie Curie University, France
Prof.dr. Y. Dou National University of Defense Technology, China
Prof.dr. M.J. van Kreveld Universiteit Utrecht
Prof.dr. E. Visser Technische Universiteit Delft, reservelid

Published and distributed by: Siqi Shen. E-mail: siqishen@gmail.com

ISBN: 978-94-6203-815-8

Keywords: Networked virtual environments, Online games, Online social networks, Clouds, Re-
sources scheduling, Scalability, Consistency, Characterization, Modeling, Simulation, Implemen-
tation.

Copyright © 2015 by Siqi Shen.

Cover picture: some components of the cover are from 123RF.com, and used with permission.

Printed in The Netherlands by: CPI Wöhrmann Print Service.

The work described in this thesis has been carried out in the ASCI graduate school. ASCI disser-
tation series number 326.

This work was supported by the China Scholarship Council (CSC).

i

Acknowledgements

Since the first day I arrived in the Netherlands, it will have been 1,647 days till the day of
my defense. Albeit PhD study is a long and tough journey, it is the people who experi-
enced with me, shared with me, and helped me make the journey a pleasant one. I would
like to express my gratitude to them.

I would like to thank my supervisors Dick Epema and Alexandru Iosup. Dick, thanks
for being my promotor, thanks for your kindness, visions shared with me, your patience
with me, and your guidance which improves my technical English writing, my research,
and my thesis.

Alex, thanks for your guidance and help, during my PhD study. I remember many
times when I gave you my draft paper, and in return you gave me the same paper which
was full of red correction marks. Not only did I learn many research techniques from you,
but also I learned views of research and life from you. They are beneficial for me now
and in the future. You are my luckily golden boss :)

Henk, thanks for accepting me to become a part of the PDS group and the arrange-
ments when I arrived at PDS. Thanks for the interesting chats with you; they make me
more familiar with research, Delft, and Europe.

I would like to thank China Scholarship Council, for supporting my PhD study. I
would like to thank Fernando Kuipers, Yong Dou, Henk Sips, Maha Abdallah, Marc van
Kreveld for accepting to be part of my committee, and for their valuable time spent on
this thesis.

I would like to thanks my collaborators: Shun-Yun Hu on scaling networked virtual
environments, Yong Guo on analyzing game traces, Yunhua Deng on load-balancing and
scaling networked virtual environments, Niels Brouwers on analyzing the virtual-world
mobility, Adele Lu Jia, Ruud van de Bovenkamp, and Fernando Kuipers on analyzing
online social networks, Assaf Israel, Walfredo Cirne, and Danny Raz on datacenter avail-
ability, and Vincent van Beek on workload characterization.

Otto, thanks for sharing many stories about the Netherlands and PDS with me and
helping me with many different issues. Thanks for working with me in my PhD research.
Ana, thanks for giving me advices about research and others. Boxun, thanks for the
helpful discussions. I learned a lot of the differences between Europe and China from

ii

you. Jianbin, you and me arrived at PDS at approximately the same time, thanks for
experiencing the Netherlands and research with me. Adele, Yong, and Jie, thanks for
making Delft warmer for me. Wing, thanks for working late in the office with me and
helping me to improve my English. Sietse, it is nice to have you as my office-mate.

Nezih and Ozan, thanks for being my office-mate during the beginning of my PhD.
It is interesting to discuss with you about research and cultures. Bogdan, Lipu, Niels,
Alex (small), Mihai, Rahim, Johan, Jesse, Tim, Stefan, Marcin, Riccardo, Alexy, Paolo,
Elvan, Boudewijn, and Arno, thanks for the lunch times, the gaming nights, and the movie
nights. I enjoyed having pizza and playing games with you. Nitin, Ana, Lucia, Dimitra,
Rameez, and Tamás, thanks for sharing stories of PDS with me, it is nice to chat with you.

I would like to thanks the ICT support of Paulo, Stephen, and Munire. Your help
makes my research progress faster. I would like to thank Ilse, Rina, Shemara, Tamara,
Franca, and Jessica. Your support simplifies many paperwork and administrative issues.

I am lucky to have many friends in the Netherlands: Kefeng, Chao, Xian, Shanfei,
Ke, Jian, Yunhua, Chang, Zhang, Mingxin, Xiaoqin, Tiantian, Shanshan, Jian, Yue, Xian,
Yuan, Yongjia, Chang, Liu, Wenbo, Ruijun, Jing, Yihui, Xi, Weichen, Lilan, Lei, Zhijie,
Xinyu, Rongqing, Shuhong, Linfeng, Huayang, Nick, and Rodrigo. Thanks for your
friendships which make the PhD journey less lonely.

Furthermore, I want to express my thanks to my teachers and friends from NUDT: Ji,
Zhenbang, Liqian, Wangwei, Rui, Shengdong, Renjian, Zhaofei, Pei Fan, Jie, Longming,
Yufeng, Xianjin, Jingwen, Jiahong, Banghu, Jingde, Jianchao, Yuan, and Yao. Thanks
for your guidance, help, and hospitality when I went to NUDT. I also want to express my
thanks to my friends in my hometown: Xiaowei, Yixin, and Chenye. Thanks for making
the distance between China and the Netherlands shorter.

Last but not least, I would like express my appreciation to my parents; thanks for
always love, guide, and support me. I love you.

iii

Contents

1 Introduction 1
1.1 Networked Virtual Environments and Clouds 2
1.2 Problem Statement . 7
1.3 Contributions and Thesis Outline . 9

2 Benchmarking NVEs 13
2.1 Background . 14
2.2 The RTSenv Benchmarking System . 17
2.3 Experimental Results . 19
2.4 Related Work . 23
2.5 Summary . 24

3 Analyzing Implicit Social Networks in NVEs 25
3.1 Background . 26
3.2 A Method for Analyzing Implicit NVE Social Networks 27
3.3 Application to Other Game Genres . 31
3.4 Application to OSG Services . 32
3.5 Related Work . 35
3.6 Summary . 36

4 Analyzing Online Meta-Gaming Networks 39
4.1 Background . 40
4.2 A Method for Studying Online Meta-Gaming Networks 41
4.3 Datasets . 43
4.4 Characterization Results . 44
4.5 Related Work . 50
4.6 Summary . 50

5 Analyzing and Modeling in-NVE Mobility 53
5.1 Background . 55
5.2 Datasets . 56

iv

5.3 Characterization Results . 58
5.4 SAMOVAR: An NVE Mobility Model 66
5.5 Validation and Application to NVEs . 69
5.6 Related Work . 73
5.7 Summary . 75

6 Scaling NVEs through the Area-of-Simulation Mechanism and Architecture 77
6.1 Background . 79
6.2 The Area-of-Simulation Mechanism . 83
6.3 The Area-of-Simulation based System Architecture 86
6.4 Simulation Results . 91
6.5 Real-world Experimental Results . 101
6.6 Related Work . 103
6.7 Summary . 106

7 Scaling NVEs Efficiently through Cloud Scheduling 107
7.1 System Model . 108
7.2 A Scheduling Policy using On-Demand Instances 109
7.3 A Scheduling Policy using Reserved and On-Demand Instances 112
7.4 Experimental Results . 114
7.5 Related Work . 117
7.6 Summary . 118

8 Making NVEs Robust through the Availability-on-Demand Mechanism 119
8.1 System Model . 121
8.2 Availability On Demand . 124
8.3 Experimental Results . 129
8.4 Related work . 137
8.5 Summary . 138

9 Conclusion 139
9.1 Main Contributions . 139
9.2 Suggestions for Future Work . 141

Bibliography 143

A Datasets 163

Summary 167

Samenvatting 169

v

Biography 173

1

Chapter 1

Introduction

Networked Virtual Environments (NVEs) are providing service to overall hundreds of
millions users, and range from online games and enterprise training to disaster-scenario
analysis and education. The predominant industry approach to the design and operation of
NVEs is self-hosting, that is, to buy and operate large-scale infrastructures. This practice
cannot scale when the number of users per NVE surges, is too wasteful when the number
of users decreases, and is too restrictive for small companies due to up-front costs. To
massivize NVEs, that is, to scale their architecture to allow massive amounts of users,
various approaches have been proposed [137, 231]. In recent years, when many self-
hosted NVEs were shut down or not even deployed [113], a new approach has emerged:
cloud-based NVEs, that is, hosting NVEs on elastic sets of resources, provisioned flexibly,
when needed, only for as long as needed, and only paying for what is consumed, from
clouds. In this thesis, we analyze the workloads of NVEs and propose several mechanisms
and architectural approaches to scale NVEs on clouds.

NVEs have large numbers of users. The most popular types of NVEs are online games
that entertain about 700 million online users in a global market of tens of billions of
Euros per year [205]. Besides in entertainment, the techniques developed for NVEs are
increasingly used in enterprise training [152,235], for example using complex simulations
that require cooperation across multiple continents and advanced visualizations [86], in
disaster scenarios [225] such as fire-fighting in crowded neighborhoods and evacuation of
large-scale disaster areas, and in education [2] such as Massive Open Online Courses.

Designers of NVE systems are increasingly searching for ways to scale their NVEs,
thus being able to provide service to an ever-increasing user-base. In recent years, Cloud
computing has emerged as a new computing paradigm which enables the delivery of com-
puting resources (e.g., servers, storages, software) over networks [9, 34]. NVE designers
can easily access distributed computing resources in a pay-as-you-go manner through
the Internet. In addition, computing resources can be quickly provisioned, accessed on-
demand, and released. Thus, NVE designers can use the computing resources provided

2

by cloud computing with minimal management effort and at low cost.
NVEs are characterized by distributed real-time virtual world simulation and interac-

tions among users. Consequently, to allow tens of millions of users to participate in a sin-
gle NVE concurrently, large amounts of computing resources are needed. It is non-trivial
to manage the computing resources to serve NVE users with high quality of experience,
in a scalable and highly available way. Moreover, utilizing cloud resources to serve NVEs
efficiently is challenging.

In this thesis, we address several challenges such as scalability, cost-efficiency and
availability related to massivizing NVEs on clouds, with a focus on online games. Al-
though we validate our main contributions using only online gaming data, we believe
that the fundamental findings of our work also apply to other promising new areas of
NVE-technology applications.

The rest of this chapter is structured as follows. Section 1.1 presents a general
overview of NVEs and Clouds. Section 1.2 formulates the research questions we ad-
dress. Section 1.3 summarizes the research contributions and presents an outline of this
thesis.

1.1 Networked Virtual Environments and Clouds

Networked Virtual Environments (NVEs) [12] are virtual environments which are dis-
tributed across multiple physical hosts connected by networks. Figure 1.1 depicts an
architecture of a cloud-based NVE, in which users connected to the servers hosted in
clouds. The NVE creates a virtual world through which users can interact with others,
and forms a social network for users. In this section, we give a brief overview of NVE
classification in Section 1.1.1, of online games in Section 1.1.2, of clouds in Section 1.1.3,
and of the requirements for cloud-based NVEs in Section 1.1.4.

1.1.1 NVE classification

An NVE aims to generate a virtual world through which distributed users can interact
with each other. Based on the applications and characteristics of NVEs, we classify them
into three types: virtual conferencing, tele-operation, and shared virtual environments.
This classification is not exclusive, as some NVEs may belong to multiple types. For
example, Second Life belongs to both the virtual conferencing and the shared virtual
environment categories. Other classifications exist [12, 231]: for example, based on how
data and computations are distributed, NVEs can be classified into client-server NVEs,
peer-to-peer NVEs, and hybrid NVEs.

Virtual conferencing systems connect distributed users to attend virtual conferences,
thus the users can interact with each other in real-time. Usually, these systems make

3

…

Cloud
Dedicated
servers

Virtual world

Social network

…

Figure 1.1: An architecture of a cloud-based NVE.

use of videos and audios, and map the user inputs onto some avatar(s). Unlike video-
conferencing systems, virtual-conferencing systems focus on the quality of social inter-
actions that are improved by adding more real-life elements such as gaze direction.

Tele-operation systems allow a user to experience a sense of tele-presence while work-
ing at a remote location. Typically a user is equipped with a remote device such as a me-
chanical robot which acts according to the user’s actions. The remote device can provide
the user with force feedback, which is important for environments that require precise
control of objects such as in the case of tele-surgery.

Shared Virtual Environments (SVEs) allow multiple users to interact with each other
and with virtual world objects. The most popular SVEs are online games. Users can
cooperate to achieve certain goal in SVEs, e.g., painting or collaboratively editing shared
documents; or users may not have any specific goal in virtual worlds, such as in Second
Life.

1.1.2 Online Games

Online games, the most popular type of NVEs, are video games played online using
the Internet or a local area network as a communication channel. Online games may
feature interactions of globally distributed players in virtual worlds. Usually, the virtual
worlds are created with a very high degree of immersion with 3D graphics, and are shared
among players. The players can have real-time interactions with virtual world objects

4

(e.g., loots and non-playing-characters), and interact and socialize with other players,
thus entertaining themselves and others.

Players interact with objects of the virtual world and with the other players through
their in-game representation: avatars. Depending on the number of avatars each user can
control, we classify online games into Single Avatar Virtual Environments (SAVEs) and
Multi-Avatar Virtual Environments (MAVEs). For SAVEs, each user controls a single
avatar to explore/interact with the virtual world and socialize with the other players. For
MAVEs, each player can control multiple avatars simultaneously.

The most popular SAVEs are First Person Shooter (FPS) games [50] and Role-Playing
Games (RPG) [50]. Most FPS games center on weapon-based combat through a first
person perspective, such as Counter-Strike1 where players, grouped in teams, compete in
realistic battle scenarios. RPG center on role-playing: each player can choose different
roles, and controls an avatar to act following different rules assigned to the roles. As an
example of RPG, World of Warcraft (WoW)2 mimics a fictional medieval-like and magic
world in which the avatars of players can have different races, professions, and skills.
Players control their avatars to explore the landscape, completing different in-game tasks,
fighting monsters, and interacting with non-playing characters and the other players.

Real Time Strategy (RTS) games [32, 50] and Construction and Management (CM)
games [97] are the most popular MAVEs. RTS games such as Blizzard’s StarCraft3 and
Microsoft’s Age of Empires4 series are essentially Internet-based real-time world simula-
tions in which players control avatars to gather resources, to construct buildings, to train
combat avatars, to explore unknown territories, to trade, and to conquer. For CM games,
such as the SimCity5 series, each player acts as a manager to build and interact with the
virtual world.

Besides experiencing a virtual world with others in-game, the players communicate
with others off-game. To share in-game knowledge and ideas, and to socialize with others,
social networks around online games are formed, such as Xfire6 and Steam7, in which
like-minded players can discuss and share game-related media with the other players.
Social networks based on online games are an important aspect of online games, which
can boost their popularity and proliferation.

1www.counter-strike.net
2www.warcraft.com
3www.starcraft.com
4www.ageofempires3.com
5www.simcity.com
6www.xfire.com
7store.steampowered.com

www.counter-strike.net
www.warcraft.com
www.starcraft.com
www.ageofempires3.com
www.simcity.com
www.xfire.com
store.steampowered.com

5

1.1.3 Clouds

With the recent advance of virtualization and datacenter technologies, cloud computing
has emerged as a new distributed computing paradigm where infrastructure, platform, and
software are provided to users on a pay-as-you-go manner. Clouds offer users the illusion
that computing resources are “infinite”, and can be as easily accessed as electricity and
water. In addition, cloud users can focus on their main business, instead of addressing
infrastructure and other resource problems. Moreover, with the pay-as-you-go feature,
cloud customers can reduce the risk of investment in infrastructure; if a software product
does not succeed, the resources leased from a cloud for its operation and distribution can
simply be released.

Leading industry vendors provide various cloud computing services. For example,
Amazon offers Elastic Compute Cloud (EC2), Google provides App Engine, and Mi-
crosoft delivers Azure Cloud. In general, cloud providers offer their services in the fol-
lowing three models: Infrastructure as a Service (IaaS), Platform as a Service (PaaS), and
Software as a Service (SaaS). For IaaS, the cloud providers offer computing resources
such as server, storage, and network to users. For example, users can lease virtual ma-
chines (VMs) from Amazon EC2, and deploy their own applications on top of these VMs.
For PaaS, cloud providers deliver computing platforms such as programming language
execution environments, databases, and web servers to users. For example, users can de-
velop their own applications based on the computing platform without buying and manag-
ing the underlying computing platform using Google’s App Engine. For SaaS, the cloud
providers deliver software to users. The cloud providers manage infrastructures and plat-
forms that run the applications. Google’s gmail is an example of SaaS.

Clouds can be deployed as private, public, or hybrid. Private clouds are virtualized
computing infrastructures that are self-owned and operated for a single organization only.
Different from private clouds, public clouds offer services open to public use. In general,
private clouds have higher capital investment but better security than public clouds. Hy-
brid clouds are the composition of public and private clouds: an organization can run its
sensitive service inside its private clouds, and use public clouds to run its less-sensitive
service.

Due to the elasticity, flexibility, availability, and pay-as-you-go features of cloud,
cloud computing is gaining popularity as resource providers for NVEs. A few examples
of cloud-based NVEs are Zynga’s FarmVille8 that uses both Amazon’s EC2 and Zynga’s
private cloud, Cmune that builds the back-end platform of UberStrike on Amazon’s cloud
service [6], ROVIO that hosts its Angry Birds platform in Google’s App Engine [88], and
many MineCraft servers that are hosted on clouds [71].

8www.farmville.com

www.farmville.com

6

1.1.4 Requirements for Cloud-based NVEs

As a type of large-scale distributed applications, NVEs require such properties as scal-
ability, consistency, reliability, heterogeneity, and security [160, 186]. The requirements
this thesis focuses on are described in this section. Together, these requirements listed
below represent the ability of massivizing NVEs, and in particular online games.

Scalability is defined as the ability of an NVE to host a large number of users si-
multaneously. As some NVEs, such as MMOGs, may involve millions of users, making
the systems scalable is a key requirement. To achieve scalable NVEs, in-NVE scalability
techniques should be developed to accommodate a large amount of users. Beside in-NVE
scalability, efficient resource scheduling of computing resources is needed to make NVEs
scale ”by credit card”.

Consistency Due to the geographical spread of NVE users, concurrent or even con-
flicting updates may be executed in different sites, resulting in inconsistent NVE states.
These inconsistencies may dissatisfy users who are likely then to quit the game for an
alternative, thus, in NVEs there should be some form of consistency control. Achiev-
ing strong consistency usually leads to large latencies which could reduce the respon-
siveness of NVEs [144]. For NVEs, especially for online gaming, as interactivity is of
essence to the success of gaming, game designers usually trade off consistency for scala-
bility [17,144]. NVE designers need to determine which levels of consistency are needed,
and they have to design appropriate consistency-ensuring protocols, mechanisms, and ar-
chitectures.

Cost-efficiency refers to how efficiently monetary resources are used in an NVE sys-
tem to serve its users. The NVE market is very competitive, and so it is necessary for
NVEs to provide a high quality of experience to their users. However, NVEs are fashion-
driven, with the workloads of NVEs fluctuating over time. It is not wise to spend large
amounts on purchasing self-owned computing resources based on the peak workloads of
NVEs, because the self-owned computing resources are hardly ever fully utilized. Cloud
computing resources can be used to reduce the operational cost of hosting NVEs.

Availability Like many other Internet services, high availability is a desired property
for NVEs. Large-scale NVEs adopt large amounts of computing resources to serve their
users. Due to the sheer scale, resource failures are bound to happen. NVEs should be
designed to tolerate failures to achieve high availability.

Responsiveness is defined as the ability for the NVE systems to provide response to
the inputs of users in real-time. The speed with which a user can witness the interactions
with other users in a virtual environment is important. If an NVE is not responsive, the
users will not be satisfied and may quit the NVE. The responsiveness requirements vary
between different NVEs. For FPS, the time it takes between the input from a user and the
associated effect should be lower than 100 ms [50]. For RTS, the responsiveness can be

7

Table 1.1: The relationships among the requirements for cloud-based NVEs, the research
questions addressed in this thesis, and the chapters answering research questions. “Y”
indicates that the answer to the research question addresses a requirement.

Chapter(s) Scalability Consistency Cost-efficiency Availability Responsiveness
Q-1 2 Y Y Y Y Y
Q-2 3 & 4 Y Y Y
Q-3 5 Y Y
Q-4 6 Y Y Y
Q-5 7 Y
Q-6 8 Y Y

within the order of 200 to 1000 ms [50].
Other requirements that are important to NVEs exist, but are not the focus of this

thesis. Persistence is required to give NVE users a sense of familiarity. As a successful
NVE could operate for years, users expect their personal profiles, their virtual items, as
well as the places they visited to persist. Usually, persistence of NVEs is treated as a
subdomain of NVE consistency, in that an NVE’s persistence model determines when
and how data are stored [83]. Any system that is not designed to withstand malicious
behavior is likely to crash or fail easily, and NVEs are no exception to this empirical rule.

1.2 Problem Statement

To massivize NVEs using cloud computing, the workload characteristics of NVEs should
be well understood. Further, based on the observations of NVE characteristics, we de-
sign several mechanisms to achieve scalable, cost-efficient, highly-available, cloud-based
NVEs. In this thesis, we will address the following research questions. The relationships
among these research questions, the requirements for cloud-based NVEs, and the chapters
of this thesis are depicted in Table 1.1.

Q-1 How to benchmark NVEs? NVEs have hundreds of millions of users world-
wide. This growing population expects new NVE designs and more scalable NVEs every
year. However, few benchmarking tools and environments exist for NVE designers and
practitioners; of these, even fewer are available to NVE researchers and communities. A
benchmarking environment is needed to test the performance of NVEs automatically and
reliably. Moreover, the benchmarking environment should be able to configure various
aspects of NVEs to help the NVE designers gain in-depth knowledge of NVEs.

Q-2 What are the workload characteristics of the online social networks around
NVEs? Social networks can be an important aspect of an NVE, as it allows its users to
maintain friendships, to discover new friends, and to share their knowledge of the NVE.
NVEs may also lead to relationships that normally are not expressed or even do not exist
in regular online social networks, for example, winning together and competing with each

8

other. Moreover, online social networks may be formed around several NVEs, in which
users can socialize with each other on topics across multiple NVEs. Understanding the
social network structure of NVEs can help to create innovative services which benefit
both NVE operators and users.

Q-3 What are the characteristics of user mobility in NVEs? Much research effort
has been spent on scaling NVEs, to manage computing resources, and to reduce com-
munication overhead. The effectiveness of those approaches is affected heavily by the
movements, behaviors, and interactions of players. The mobility of the avatars of players
can have an important impact on the performance of NVEs such as load-balancing [60].
Despite recent efforts on the workload characterization of NVEs, the characteristics of
avatar mobility in NVEs are still not well understood. In-depth understanding of the mo-
bility patterns of users in NVEs can help the NVE designers to develop scalable and cost
efficient NVEs.

Q-4 What mechanisms and architectures can make NVEs scalable? Millions of
users may participate in one NVE simultaneously. To serve the massive amount of users,
various NVE techniques such as area of interest and zoning have been proposed. These
techniques have been proved to be efficient for single-avatar NVEs (SAVEs) to host tens
of thousands of users in one NVE instance. However, different from SAVEs, the design
of multi-avatar NVEs (MAVEs) does not scale using traditional techniques. At most
tens of users can join one MAVE instance simultaneously. The traditional techniques for
MAVEs are event-based lock-step simulation (EBLS), which ensures high consistency,
but low scalability and responsiveness. Developing an MAVE with high scalability, low
responsiveness, and good consistency is challenging.

Q-5 What mechanisms can make cloud resource use in NVEs cost efficient? To
serve millions of users world-wide, NVE operators need to use massive amounts of ma-
chines distributed globally. Although cloud computing techniques promise to reduce the
operational cost of NVEs, how to manage the cloud computing resources to maximize the
profit of NVE operators yet deliver the QoS required by players is still daunting for NVE
operators. Resource provisioning and allocation algorithms that are cost efficient and fast
are needed.

Q-6: How to provide a highly available yet cost-efficient NVE service using cloud
resources? The NVE operators lease large amounts of cloud computing resources from
datacenters to serve globally distributed users. Due to the scale of today’s datacenters,
failures of computing resources are bound to happen. The failure of cloud computing
resources may disrupt the availability of NVEs, leading to user dissatisfaction and revenue
loss. Managing the computing resources efficiently to provide a highly available NVE
service is needed.

9

1.3 Contributions and Thesis Outline

The contributions of this thesis are listed below. All the research questions (Q-1 to Q-
6) are addressed, one question per chapter, except for Q-2, which is addressed in both
Chapter 3 and 4. The relationships between research questions and chapters are described
in Table 1.1.

Benchmarking NVEs (Chapter 2) To address research question Q-1 about how to
benchmark NVEs, we introduce RTSenv, a benchmarking system for NVEs with a fo-
cus on RTS games. RTSenv can configure and manage the main aspects of RTS games,
such as maps, computer-controlled units, and game scenarios. RTSenv leverages multi-
cluster systems and reactive fault tolerance mechanisms to perform robust, multi-machine,
and multi-instance game experiments. Using our reference implementation of RTSenv in
DAS-4 (a Dutch multi-cluster system) and Amazon EC2, we show that RTSenv can be
used in a variety of scenarios. Our results give evidence that several common assump-
tions made by researchers about game workloads do not hold in general for RTS games
and thus warrant a more detailed investigation. The content of this chapter is based on the
following work:

• Siqi Shen, Otto Visser, and Alexandru Iosup, “RTSenv: An Experimental Environ-
ment for Real-Time Strategy Games,” Annual Workshop on Network and Systems
Support for Games (NetGames), 2011.

Analyzing Implicit Social Networks in NVEs (Chapter 3) To address research ques-
tion Q-2 about the social networks of NVEs, we propose a formalism consisting of various
ways to map the interactions of players to social structures, and apply this to real-world
data collected from three different game genres. We analyse the implications of these
mappings for in-game and gaming-related services, ranging from network and socially
aware matchmaking of players, to an investigation of social network robustness against
player departure. The author of this thesis has closely collaborated for this chapter with
Ruud van de Bovenkamp of the Network Architectures and Services group of TU Delft.
He has made a major contribution to the data processing and analysis, and to the devel-
opment of the model in this chapter. The content of this chapter is based on the following
work:

• Alexandru Iosup, Ruud van de Bovenkamp, Siqi Shen, Adele Lu Jia, and Fernando
Kuipers, “An Analysis of Implicit Social Networks in Multiplayer Online Games,”
IEEE Internet Computing 18(3), pp. 36-44, 2014.

• Ruud van de Bovenkamp, Siqi Shen, Alexandru Iosup, and Fernando Kuipers, “Un-
derstanding and Recommending Play Relationships in Online Social Gaming,” In-
ternational Conference on COMmunication Systems and NETworkS (COMSNETS),
2013.

10

Analyzing Online Meta-Gaming Networks (Chapter 4) To address research ques-
tion Q-2 about the social networks of NVEs, we analyze a long-term observation of XFire.
Using long-term, large-scale data that we have collected, we present a high-level, marginal
distribution- and time-based analysis of XFire: its global network, player activity, user-
generated content, and social structure. Ours is one of the first characterizations of a
MetaGaming network, with prior work [21] developed concurrently and independently
from our own work. We find that XFire is a slowly growing network whose players
spend collectively in-game over 100 years, every hour. We quantify the “hardcore”-ness
of XFire players, and find that a significant fraction of them have played over 10,000
in-game hours each. We also find that XFire community members are routinely engaged
in the creation and consumption of game-related media, such as screenshots and videos.
The content of this chapter is based on the following work:

• Siqi Shen and Alexandru Iosup, “The XFire Online Meta-Gaming Network: Obser-
vation and High-Level Analysis,” International Workshop on Massively Multiuser
Virtual Environments (MMVE), 2011.

Analyzing and Modeling in-NVE Mobility (Chapter 5) To address Q-3 about un-
derstanding in-NVE mobility patterns, we collect from World of Warcraft (WoW) mobil-
ity traces for over 30,000 virtual citizens, and compare these traces with traces collected
from Second Life (SL) where the environment is designed and changed significantly by
the citizens themselves. Furthermore, motivated by the existence of numerous studies and
models of real-world mobility, we systematically compare the characteristics of two NVE
and two real-world mobility traces. Our comparative study reveals that long-tail dis-
tributions characterize well various mobility characteristics such as pause-duration and
area-popularity, and that area-visitation shows personal preferences. We also find several
differences between NVE and real-world mobility characteristics.

Based on the observation of mobility in NVEs, we propose SAMOVAR, a Statistical
Area-based MObility model for VirtuAl enviRonments. SAMOVAR models four mo-
bility characteristics: pause duration, velocity, area popularity, and distinct visited areas
using empirical distributions. It then uses a map generation and a traveling procedure to
generate movement trajectories of avatars. We show through simulation that the traces
generated by our model can produce many mobility characteristics observed in the virtual
world. Moveover, the simulation results obtained from SAMOVAR on a client/server ar-
chitecture are similar to traces from WoW and SL. The content of this chapter is based on
the following work:

• Siqi Shen, Niels Brouwers, Alexandru Iosup, and Dick Epema, “Characterization
of Human Mobility in Networked Virtual Environments,” ACM Workshop on Net-
work and Operating Systems Support for Digital Audio and Video (NOSSDAV),
2014.

11

• Siqi Shen and Alexandru Iosup, “Modeling Avatar Mobility of Networked Virtual
Environments,” International Workshop on Massively Multiuser Virtual Environ-
ments (MMVE), 2014.

Scaling NVEs through the Area-of-Simulation Mechanism and Architecture
(Chapter 6) To address Q-4 about scaling NVEs, through empirical analysis, we show
that a single Area of Interest (AoI), which is a scalability mechanism that is sufficient for
SAVEs (such as Role-Playing Games), cannot meet the scalability demands of MAVEs.
To enable scalable MAVEs, we propose Area of Simulation (AoS), a new scalability
mechanism, which combines and extends the mechanisms of AoI and Event-Based Lock-
step Simulation (EBLS). Unlike traditional AoI approaches, which employ only update-
based operational models, our AoS mechanism uses both event-based and update-based
operational models to manage not single, but multiple areas of interest. Unlike EBLS,
which is traditionally used to synchronize the entire virtual world, our AoS mechanism
synchronizes only selected areas of the virtual world. We further design an AoS-based
architecture, which is able to use both our AoS and traditional AoI mechanisms simul-
taneously, dynamically trading-off consistency guarantees for scalability. We implement
and deploy this architecture, and we demonstrate that it can operate with an order of mag-
nitude more avatars and a larger virtual world without exceeding the resource capacity of
players’ computers. The content of this chapter is based on the following work:

• Siqi Shen, Shun-Yun Hu, Alexandru Iosup, and Dick Epema, “The Area of Simu-
lation Mechanism and Architecture for Multi-Avatar Virtual Environments,” ACM
Transactions on Multimedia Computing, Communications and Applications, under
minor revision.

Scaling NVEs Efficiently through Cloud Scheduling (Chapter 7) To address Q-
5 about cost-efficient NVEs, we investigate leasing strategies and their policies from a
brokers perspective. We propose CoH, a Cloud-based, online, Hybrid scheduling pol-
icy that minimizes rental cost by making use of both on-demand and reserved instances.
We formulate the resource provisioning and job allocation policies as integer program-
ming problems. As CoH needs to be executed online, we limit the time to explore the
optimal solution of the integer program, and compare the obtained solution with various
heuristics-based policies; then we pick the best one. We show, via simulation and using
multiple real-world traces, that the hybrid leasing policy can obtain significantly lower
cost than typical heuristics-based policies. The content of this chapter is based on the
following work:

• Siqi Shen, Kefeng Deng, Alexandru Iosup, and Dick Epema, “Scheduling Jobs in
the Cloud Using On-demand and Reserved Instances,” Euro-Par, 2013.

12

Making NVEs Robust through the Availability On-Demand Mechanism (Chap-
ter 8) To address Q-6 about highly available and cost-efficient NVEs, we propose
Availability-on-Demand (AoD), a mechanism consisting of an API that allows datacen-
ter users to specify availability requirements which can dynamically change, and an
availability-aware scheduler that dynamically manages computing resources based on
user-specified requirements. The API considers two levels of availability, normal and
high, and allows datacenter users to specify dynamic requirements through as little as one
API call. The scheduler considers user-specified availability requirements, and dynam-
ically provides high availability (HA) for applications. The mechanism operates at the
level of individual service instances, thus enabling fine-grained control of availability, for
example during sudden requirement changes and periodic operations. Through realistic,
trace-based simulations, we show that the AoD mechanism can achieve high availability
at low cost. The AoD approach can consume about the same number of CPU hours but
with higher availability than approaches which use HA techniques randomly. Moreover,
comparing to an ideal approach which has perfect predictions about failure, the AoD
approach consumes 13% to 31% more CPU hours but achieves similar availability for
critical parts of applications. The content of this chapter is based on the following work:

• Siqi Shen, Alexandru Iosup, Assaf Israel, Walfredo Cirne, Danny Raz, and Dick
Epema, “An Availability-on-Demand Mechanism for Datacenters,” IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2015, to
appear.

In Chapter 9, we summarize the conclusions of this thesis and we provide suggestions
for future research directions.

13

Chapter 2

Benchmarking NVEs

Among the different NVEs, Real Time Strategy (RTS) games such as StarCraft II (one
of the best-selling games of 2010 [22]) are played by millions of players daily. To ad-
dress the increasing requirements of the gamers and the increasing competitiveness of
the market, many new NVE technologies [19, 99] have appeared in the past five years,
and a new generation of massively multiplayer RTS games, such as Planetary Annihi-
lation [105], is currently under development. Although the development of a new RTS
game can take multiple years to develop [146], and the abundance of challenges in the de-
sign, implementation, and testing of RTS games makes experimental tools valuable, few
experimental tools are available for RTS game research and development. To address this
situation, in this chapter we introduce RTSenv, a benchmarking system for NVEs with a
focus on RTS games.

Even the casual players of online RTS games incur a specific near-real-time con-
straint that limits the acceptable response times for issued commands to 200-300 mil-
liseconds [193]. When this constraint is not met, players have poor gameplay experience,
and may quit in favor of other games. The near-real-time constraint is difficult to meet
continuously for most consumer-grade computers, even today. As a consequence, online
RTS games rely on complex technology that balances the computational, memory, and
bandwidth components of the workload on the different system components and players.

The limited availability of experimental tools makes it difficult to generalize or even
understand the results of previous studies. It is perhaps symptomatic for the state of
this research field that a recent study [150] argues against the practical viability of P2P-
based games as a conclusion of real-world experiments, thus contradicting several previ-
ous simulation-based studies that indicate otherwise [19,99]. Moreover, while some large
gaming companies perform extensive game studies, including comprehensive user stud-
ies [120,171], few others can afford building the tools necessary for such approaches; even
the few that do, have little expertise with large-scale experimental environments [146].
Despite recent interest in experimental tools [31, 132, 218], there currently exists no pub-

14

lic experimental RTS system. Although simulators may be appropriate for studying RTS
games, they represent simplifications of the real systems and games; when their simpli-
fying assumptions do not hold, their results fail to describe reality. Although many tools
already exist for testing distributed systems, RTS games have additional, idiosyncratic,
performance-affecting configuration parameters, such as the map size and the number of
units.

In this chapter we introduce RTSenv, which is designed for experimental RTS game
studies. RTSenv can be used to evaluate the performance of RTS games under a variety
of game configurations and scenarios, from traditional performance evaluation to game
design. Besides traditional system performance metrics such as CPU, memory, and net-
work consumption, RTSenv can assess RTS-specific operational metrics such as player
scores, and the number of active and profitable units. RTSenv can operate on a variety
of physical platforms, from multi-cluster wide-area environments such as DAS-4 [10],
to cloud computing machines and even single, multi-core desktop computers. Our main
contributions are:

1. We analyze the requirements of benchmarking systems for RTS games (Sec-
tion 2.1);

2. We design and implement RTSenv, a benchmarking system for RTS games (Sec-
tion 2.2);

3. We show through experiments with a popular RTS game in real multi-cluster and
cloud infrastructures how RTSenv supports various scenarios (Section 2.3).

2.1 Background

2.1.1 Use Case: OpenTTD, a Real-Time Strategy Game

As main use case for this chapter we focus on OpenTTD [167], which is an open-source,
popular RTS game. OpenTTD has been developed since 2004 by a community of vol-
unteer game developers lead by Remko Bijker as an extension to the commercial game
Transport Tycoon Deluxe by Chris Sawyer (MicroProse, 1994). OpenTTD is a business
simulation game with a wide appeal: it has been downloaded more than one million times
and the game is used as textbook companion for college-level business courses [102].

OpenTTD has the features of commercial RTS games. The game world, which may
be randomly generated or selected from the many community-created maps, emulates
the real world through a combination of realistic geography, economy, and demograph-
ics. The player has complete control over a transport company: buying transport vehicles

15

such as buses and trains; building transportation paths such as roads and train tracks; plan-
ning and managing the operation of the company; etc. Rival companies compete against
each other to achieve the highest profit by transporting passengers and goods. OpenTTD
game sessions (games) can be played against human and/or Artificial Intelligence (AI)-
controlled players.

OpenTTD follows the typical program structure of an online RTS game, in which the
game world is maintained on a server, and each player connects and interacts with the
game world through a client application running on the computer/device of the player.
One of the players often runs the server alongside a client; alternatively, the server is
placed on a “neutral” computer for ranked games and competitions. The game server
repeatedly executes a main game loop comprised of the sequence “get and process player
input”, “update the global game world”, and “send (small) updates about the game world
to each player”; based on the latter step, each client can reconstruct the state of the world,
effectively performing the same updates of the global game world as the server.

OpenTTD vs. other RTS games Although a variety of RTS games exist, the AAA
game market has focused since 2005 on games such as the Age of Empires and the Star-
craft series, each offering the player large worlds, the possibility to control large numbers
(tens or hundreds) of vehicles, and many options to build real-world-like cities. With
the exception of in-game combat, OpenTTD is similar to these games. OpenTTD also
employs a non-violent alternative to traditional combat, in that players may use advanced
tactical and micro-management skills to restrict the free movement of the vehicles of other
players. OpenTTD can also offer sufficient challenge to players of various abilities and
experience: from the over 30 AIs created and made public by the game’s community,
several can give a good challenge to the good human player, while others can win com-
fortably even against the expert human player. OpenTTD is highly configurable. Before
starting the game, the players can specify the map structure, the maximum number of
vehicles, the inflation rate of the economy, etc. Players can select the amount of water
(via the sea level), the “hilliness” of the map, and the density of economic resources (via
the industry and town density). This level of configuration detail, which is common for
RTS games [182], makes modeling such games a difficult and recurrent process.

2.1.2 Requirements

Starting from the use case, we synthesize three main requirements for a benchmarking
system for RTS games:

1. Control experiments: the system must have the ability to control experiments (start,
stop, monitor, use results) without input from a human experiment manager. The
test infrastructure may be any of desktop machine of the programmer/researcher,
local studio cluster, multi-cluster grid of computers shared by multiple studios, or

16

 Job

Generation

 Fault

Tolerance

 Job

Execution

 Resource

Management

Runtime

 Game

Configuration

Client

Server

 Game

Analysis

Graphics

RTS

Data CPU

Memory

Network

Analysis

ProfilerMachine Configuration
Utilities

Figure 2.1: The RTSenv architecture.

cloud computing infrastructure. The system must be able to perform experiments
when real users are present, but also when no real users are present; for the latter,
the system must support both the use of traces/replays and the use of AI-controlled
players. Last, the system must support RTS-specific configuration parameters, such
as map structure, unit count, number of players (including AIs), etc.

2. Evaluate and model RTS operation: the system must support traditional system
performance metrics; in particular, it should be able to report metrics concerning
resource consumption (CPU, network, disk, memory) over time.

Besides reacting to network conditions, in particular latency and throughput, play-
ers may respond to other sources of performance degradation, such as the server’s
processing (CPU) speed. The system must also support RTS-specific operation ab-
stractions and metrics, such as player scores, and the number of active and profitable
units.

3. Compare game design choices: the system must have support for comparing the
results obtained from different scenarios as support for game design decisions. For
example, it is common for game designers to package AI players with commercial
games; however, selecting a specific AI type or configuration for a specific (ran-
dom) map should be based on an in-depth analysis of the AI performance/resource
consumption trade-off.

We show in Section 2.3 that a system satisfying these three requirements can be used
in a variety of experimental scenarios, from performance evaluation to game design. We
conjecture that such a system can be used for unit testing and debugging (both impor-
tant parts of game development), and for systems research, for example for comparing
algorithms, methods, and techniques.

17

2.2 The RTSenv Benchmarking System

In this section we present the RTSenv benchmarking system in-turn, the architecture, the
RTS-specific features, and the implementation and adaptation details.

2.2.1 Architectural Overview

RTSenv consists of four modules (see Figure 2.1), Utilities, Analysis, RTS, and Run-
time. The Utilities and Analysis modules together automate the environment- and game-
specific configurations, and collect and analyze the environment- and game-specific re-
sults of the experiments. The RTS module is used to set up and monitor the gaming
environment. The Runtime module is responsible for provisioning machines for the sin-
gle node/cluster/multi-cluster grid/cloud computing environment used by RTSenv. This
module is also responsible for organizing, managing, and executing the experimental pro-
cess, which is based on jobs. Part of the Runtime module, the Resource Management
component is responsible for organizing the execution of experiments; for example, to
manage the execution of experimental jobs in multi-cluster environments, it operates an
FCFS queue that interfaces with the resource manager of the system. This component is
also responsible for acquiring and releasing resources, and for invoking the Job Execu-
tion component on each allocated machine. The Job Generation component parses the
experiment description, then generates configuration files and experiment jobs. Jobs can
be single-machine clients, single-machine servers, or multiple-machine instances com-
prising one server and multiple clients. The Fault Tolerance component uses a reactive,
retry-based fault tolerance mechanism in which failed jobs are re-submitted for execution
until they succeed or the number of failures exceeds a user-defined threshold; failures are
detected at the end of after the job execution by checking the output.

Experiment Control RTSenv allows users to run single and multi-machine experi-
ments using a variety of infrastructures, among them, desktop computers, clusters, multi-
clusters, and clouds. For confidence in experiment results, users may specify the num-
ber of repetitions for single and multiple-instance experiments. RTSenv also allows its
users to specify a maximum experiment runtime; it will stop overdue or user-selected
experiments. RTSenv assumes that the environment in which it runs achieves synchro-
nization between compute nodes; for example, time synchronization through the use of
the NTP protocol, machine start synchronization through multi-machine allocation and
co-allocation, etc.

2.2.2 RTS-Specific Features

Many RTS games, such as StarCraft II, provide a in-game recording mechanism (replay),
which saves all the game commands issued by players. If the game world simulation is

18

deterministic, replays can be used to reproduce the recorded game. Replays are commonly
used by game operators to debug games (replay-based testing), and by players to share
their gaming achievements and to learn from more skilled players. RTSenv supports
replay-based testing.

RTSenv already supports many of the abstractions present in modern RTS games.
First, RTSenv can control the virtual world’s geography by changing the map size and
structure (such as density of water or hills). Second, RTSenv can control the level of
challenge proposed by the virtual world through parameters such as the number of re-
sources present on the map, the amount of starting resources for each player, the types
of resource collectors, etc. Third, RTSenv can control the maximum allowed player pres-
ence, for example by limiting the number of units each player can control. Fourth, our
tool can control the in-game duration of a game session, for example one year. Besides
traditional performance metrics, RTSenv can measure various RTS-specific metrics, such
as the player scores, the number of (profitable) units, etc.

2.2.3 Qualitative Analysis of the RTSenv Design

Meeting the requirements RTSenv meets the three requirements formulated in Sec-
tion 2.1.2. For Requirement 1, RTSenv combines experiment control (described ear-
lier in this section) with replay-based testing abilities. For Requirement 2, RTSenv can
evaluate and create simple statistical models of traditional performance evaluation and
RTS-specific metrics. For Requirement 3, RTSenv can be used to test and compare the
performance of different AIs under various game settings (map structure, etc.)

Fit with the industry game development process Due to the high costs and risks
associated with game development processes, the industry has started to mature, and to-
day most games are developed through the same basic game development process [76,
Ch.2] [146], which includes steps such as concept discovery, prototyping, pre-production,
full production, quality assurance (QA), finaling, pre-launch demos, the launch, and post-
launch support. We find that RTSenv are particularly useful for the critical production,
QA, pre-launch, and post-launch support stages (see [201]).

2.2.4 Implementation

Our reference implementation of RTSenv, which is coded in Python and uses
wireshark to record the network traffic, is portable and extensible. We have tested
our implementation on various Windows, Ubuntu, Centos and Fedora systems; on single
desktops, on single and multiple clusters from the DAS-4 [10] multi-cluster/grid comput-
ing environment, and on the Amazon EC2 cloud computing environment.

Our implementation is extensible in the sense that a user can add more experiments,

19

more performance metrics, and more statistical tools by simply adding Python compo-
nents to the source directory. Adding in RTSenv support for OpenTTD required from
us several modifications to the game packaging, but no changes to the game design or
core implementation. First, we have modified the visualization of OpenTTD and add
a non-graphical client mode into OpenTTD; this is needed for experimenting in cluster
environments. Second, we have extended the original in-game limitation to the number
of companies (one player per company) from under 16 to 250. Third, we have changed
the operation of the OpenTTD’s AI module to allow AI-controlled players to operate
remotely from the game server; this effectively enables multi-machine game sessions
and various scalability tests. Fourth, we have made use of the original debug utilities
of OpenTTD to implement the replay functionality. Fifth, we have used the load map
function of OpenTTD to verify the correctness of completed games and to obtain game-
specific scores and data.

2.3 Experimental Results

In this section we present the experiments we have performed using a reference imple-
mentation of RTSenv. Our experiments show evidence that RTSenv can be used in a
variety of experimental scenarios and on a variety of computational platforms. Although
made possible by RTSenv, a comprehensive evaluation of OpenTTD or building a perfor-
mance model for RTS games are both outside the scope of this chapter. Overall, we have
conducted using RTSenv over 20,000 game sessions, which amount to over 30,000 in-
game years and over 7,000 real operational hours. For more results and detailed analysis
we refer to our technical report [201].

2.3.1 Experimental Setup

Experiment configuration We configure RTSenv to record the performance of CPU and
memory load twice per second. Except for the experiments done for measuring network
traffic, each experiment is repeated at least 30 times.

Experimental Environment Unless otherwise noted, we ran our multi-machine exper-
iments using the DAS-4 [10] six-cluster, wide-area system. A typical compute node of
DAS-4 has a dual quad-core 2.4GHz Intel E5620 CPU and 24GB memory; the intra-
cluster network is 1GBit Ethernet. To avoid interference effects, when possible each
game instance is allocated a single node of DAS-4; for example, when experiments do
not focus on the network performance of the game.

Game Configuration All the experiments use Artificial Intelligence (AI)-controlled
players; the AI algorithms (the AIs) are real, high quality, open-source, and community-
provided. Unless otherwise specified, the game sessions are configured as in typical

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Number of Remote AI Players

0

10

20

30

40

50

N
e
tw

o
rk

 r
e
ce

iv
e
d
 (
K
B
y
te

s/
s)

 0

 10

 20

 30

 40

 50

 100 200 300 400 500 600 700 800

N
e
tw

o
rk

 R
e
c
e
iv

e
d

 [
K

B
/s

] 25 AIs
 24 AIs
 23 AIs
 22 AIs
 21 AIs

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 100 200 300 400 500 600 700 800

N
e
tw

o
rk

 R
e
c
e
iv

e
d

 [
K

B
/s

]

Time(s)

 5 AIs
 4 AIs
 3 AIs
 2 AIs
 1 AIs

Figure 2.2: Download bandwidth of the OpenTTD server for various remote player
counts: (top) basic statistics, depicted as box-and-whiskers plots; (middle and bottom)
consumption over time for various number of AIs.

OpenTTD AI competitions [168]: default configuration of OpenTTD, except for the
starting in-game time (1998) and initial capital (high). Each game instance is sched-
uled to run one in-game year by default, which leads to a nominal execution time of about
825 seconds on a typical DAS-4 node. Longer execution times, which result from server
overloads, are noticeable to players only if they exceed 105% of the nominal execution
times (the playable execution time range).

21

0 10 20 30 40 50 60 70 80 90 100 150 200

Num ber of AIs

0

100

200

300

400

500

600

700

825
865

1000

1100

1200

1300

1400

1500

E
x

e
c
tu

io
n

 t
im

e
(s

e
c
o

n
d

)

Playable Execution Time

Reduced Gameplay Experience

0 10 20 30 40 50 60 70 80 90 100 150 200
Number of AIs

0

2

4

6

8

10

12

14

16

N
u
m
b
e
r
o
f
P
ro
fi
ta
b
le
 V
e
h
ic
le
s

third quartile
median
first quartile

Figure 2.3: System and in-game performance, respectively, for the OpenTTD server for
various player counts. (left) game execution time; (right) number of profitable vehicles.

2.3.2 Performance Evaluation Results

Network Measurements, System (Figure 2.2): We conduct multi-player game experi-
ments to assess network consumption. Each AI player connects to the server remotely,
first to download the game map, then to issue commands and to receive small updates
(for example, each command issued by the each other player)—this scenario emulates
real gamers competing through the services of a commercial game server. The server is
executed on desktop computer while the clients are executed on cluster’s computer node.
Figure 2.2 shows the latter type of network traffic, as observed for this scenario when
the number of remote players is varied from 1 to 25. The statistical properties of the
bandwidth consumption for server download (Figure 2.2 (top)) indicate that the median
download traffic size increases nearly linearly to the number of players (the linear model
commonly assumed for games [191, 228]), however, wide value ranges of the download
traffic size indicates that a linear model may be inappropriate. Players with limited band-
width may find that the real bandwidth consumption exceed significantly than the linear
model’s prediction. We now show that the wide value ranges also have long duration.
The traffic over time in Figure 2.2 (bottom)–the download bandwidth consumption is sta-
ble when the number of players(AIs) is low (up to 5 players), but increases and becomes
more variable as the number of players increases. Noticeably, minute-long periods of
much higher traffic than expected from the linear model occur even for 5 players (see
corresponding curve ”5 AIs” between 300 and 400 seconds). Periods of such length will
be noticed even by beginning players.

Scalability, System Performance and User Experience (Figure 2.3 (left) and (right),
respectively): We assess the scalability of the game server by increasing the number of
players from 1 to 200, that is, to an order of magnitude more players than in today’s
commercial games. All the AIs are running on the game server, thus consuming CPU

22

Table 2.1: Characteristics of the cloud resource (instance) types. The ECU is the CPU
performance unit defined by Amazon.

Cores RAM Archi. Disk Cost
Name (ECUs) [GB] [bit] [GB] [$/h]
m1.small 1 (1) 1.7 32 160 0.1
m1.large 2 (4) 7.5 64 850 0.4
c1.xlarge 8 (20) 7.0 64 1,690 0.8

and memory resources—this is the typical mode of operation for current commercial
games [160, 191]. The results are depicted in Figure 2.3 (left). When the number of
players is below 30, the game execution time is stable and very close to the nominal exe-
cution time (see Section 2.3.1). The playable execution time range is exceeded at about 60
players; afterwards, the game execution time increases quickly in both median value and
range, which results in reduced gameplay experience. The game execution time growth
is mainly due to CPU consumption; as shown in our technical report [201, Sec.4.2], the
maximum memory consumption is below 700MB (OpenTTD is not memory-bound). We
further analyze the results of the previous experiment from a gameplay experience per-
spective. Since in our tests we cannot ensure the presence and follow a group of human
testers that adhere to the standards of gameplay experience evaluation [120, 171], we use
instead a proxy metric for gameplay experience, the median number of profitable vehicles.
For scalable gameplay experience, the median number of (profitable) vehicles should be
scalable, that is, it should at least not decrease when the number of players increases.
When the number of vehicles is not scalable, that is, the number of profitable vehicles is
low regardless of the player ability, the players experience a reduced feeling of mastery.
A comprehensive user study focusing on the relationship between the number of vehicles
and the players’ enjoyment falls outside the scope of this chapter. Figure 2.3 (right) shows
the statistical properties of the number of profitable vehicles as a function of the number
of competing players. As the number of players increases, it becomes increasingly dif-
ficult for players to have profitable vehicles. Over 25 players, the median value of the
number of profitable vehicles is 0 and the maximum value drops quickly below 5. The
observed gameplay scalability limit (25 players) is below the system scalability limit (60
players for our platform) and does not depend on the platform; thus, Main Finding: for
(RTS) games, system scalability needs to be analyzed and improved in conjunction with
gameplay experience scalability.

2.3.3 Comparing Deployment Choices

Cloud resource performance Resources of various configurations can be now leased
from commercial cloud providers, such as Amazon, and used to deploy on them game
servers. Cloud resources have pre-agreed leasing costs and operational/performance guar-

23

1 2 4 8 16 32 64 128
Number of AIs

0

200

400

600

800

1000

1200

1400

1600

E
xe

ct
u
io
n
 t
im

e
(s
e
co

n
d
)

m1.small
m1.large
c1.xlarge

Figure 2.4: Execution time for identically-configured game instances on various cloud
resources.

antees, expressed in public Service Level Agreements. Through virtualization, that is, a
technology for emulating various computational machines on the same physical machine
with little performance loss, a game server can be run without re-implementation or even
re-compilation on a machine leased from a cloud. However, a game operator would still
have to decide, from the many offers available, which suits best the game to be deployed.
To emulate this situation, we ran performance experiments on various types of computing
nodes leased from the Amazon EC2 commercial cloud, with the characteristics summa-
rized in Table 2.1. Figure 2.4 depicts the performance (execution time) of identically-
configured game executed when run on three different cloud resources. The use of the
most expensive resource in this test, c1.xlarge, has an impact on performance only
for a large number of AIs (close to 128 and above). With this information, the game
operator can implement various deployment strategies, from “lease the best resources”
to “optimize the game performance/operational cost trade-off”. Main Finding: RTSenv
enables the selection of resources for deployment.

2.4 Related Work

We contrast RTSenv with previous experimental RTS/game studies, experimental
RTS/game platforms, and RTS/game simulators, and others in our technical report [201].
In comparison with this body of related work, RTSenv has different scope (system and
game-specific experiments), focus (RTS games), and application (a real game, OpenTTD,
and many high quality artificial players.)

24

Few experimental RTS game studies exist. Closest to the experimental part of our
work, a study on the prototype RTS game Rokkatan [157] tests scalability with about 400
clients, but the clients are controlled by prototype instead of production, that is, high-
quality and CPU-intensive, AIs.

Experimental game platforms exist [119,132,218], but they do not have RTS-specific
support and the studied resource is mainly the network.

Simulation-based studies of online games exist. Simulators developed using standard-
ized, industrial-grade simulation platforms such as HLA and the older DIS and FIPA, have
been used to investigate online game-like scenarios [155]. A simulator was used [159] to
study how data centers and cloud computing can support online gaming. A variety of
peer-to-peer online game simulators exist [19, 187, 228].

2.5 Summary

The increasing popularity of RTS games fosters demand for new designs and technical
solutions, which emphasizes the need for experimental environments. In this chapter, we
have introduced RTSenv, a benchmarking system for RTS games that is useful for both
researchers and developers. Our system can control and measure many RTS-specific as-
pects, and enables a variety of experimental scenarios–from performance evaluations to
taking game design decisions. RTSenv can operate in several types of computing environ-
ments, from single desktop computers to wide-area multi-clusters and commercial clouds,
and leverages reactive fault tolerance techniques to perform robust, multi-machine, multi-
instance RTS game experiments. We have used RTSenv in DAS-4, a multi-cluster envi-
ronment, and Amazon EC2, a commercial cloud provider, to conduct an extensive study
of the popular RTS game OpenTTD.

The experimental results show that RTSenv can help evaluate many RTS-specific fea-
tures and can help comparing different game design choices. They also show that RTSenv
can lead to new findings, such as: the scalability of an RTS game should be evaluated not
only from the performance but also from the gameplay experience perspective.

25

Chapter 3

Analyzing Implicit Social Networks in
NVEs

Online games are games that use advances in networking and a variety of socio-technical
elements to entertain hundreds of millions of people world-wide. Unsurprisingly, such
games naturally evolve into Online Social Games (OSGs): the many people involved or-
ganize, often spontaneously and without the help of in-game services, into gaming com-
munities. While typical online social networks revolve around friendship relations, new
classes of prosocial emotions appear in OSGs. For instance, adversaries motivate each
other and together may remain long-term customers in an OSG. Adversarial relationships
are one of the implicitly formed in-game relationships we study. Understanding in-game
communities and social relationships could help improve existing gaming services such
as team formation, planning and scheduling of networking resources, and even retaining
the game population.

Few games exhibit a greater need for socially-aware services than the relatively new
genre of multiplayer online battle arenas (MOBAs) considered in Section 3.1. Derived
from Real-Time Strategy (RTS) games, MOBAs are a class of advanced networked games
in which equally-sized teams confront each other on a map. In-game team-play, rather
than individual heroics, is required from any but the most amateur players. Outside the
game, social relationships and etiquette are required to be part of the successful clans
(self-organized groups of players). Players can find partners for a game instance through
the use of community websites, which may include services that matchmake players to a
game instance, yet are not affiliated with the game developer.

In the absense of explicitly expressed relationships, understanding the social networks
of current OSGs must rely on extracting the implicit social structure indicated by regular
player activity. However, in contrast to general social networks, a set of meaningful in-
teractions has not yet been defined for OSGs. Moreover, in MOBAs, activities are match-
and team-oriented, rather than individual. We address these challenges, in Section 3.2,

26

through a formalism for extracting implicit social structure from a set of OSG-related,
meaningful interactions. We apply this formalism to different game genres to extract
implicit social networks, study the extracted social networks, and then analyze whether
the extracted social networks can be used to improve gaming experience of players. Our
major contribution is four-fold:

1. We propose a formalism which can be used to extract implicit social networks in
OSGs.

2. We show that the implicit social structure of OSGs is strong, rather than the result of
chance encounters, and that, for MOBAs, the core of the network (the high-degree
nodes) is robust over time.

3. We apply our formalism to RTS and Massively Multiplayer Online First-Person
Shooter (MMOFPS) games, and, in Section 3.3, show evidence that RTS games ex-
hibit even stronger team structure than MOBAs and indicate that modern MMOF-
PSs may require operator-side mechanisms to spurn the formation of meaningful
social structure.

4. We also show how the extracted implicit social graphs can be useful for improving
gameplay experience, and for player and group retention (Section 3.4), for tuning
the technological platform on which the games operate, etc.

3.1 Background

Defense of the Ancients (DotA) is an archetypal MOBA game. For DotA, social re-
lationships, such as same-clan membership and friendship, can improve the gameplay
experience [68]. DotA is a 5v5-player game. Each player controls an in-game avatar, and
teams try to conquer the opposite side’s main building. Each game lasts about 40 minutes
and includes many strategic elements, ranging from team operation to micro-management
of resources.

To examine implicit relationships in DotA, we have collected data for the DotA com-
munities Dota-League and DotAlicious. Both communities, independently from the game
developer, run their own game servers, maintain lists of tournaments and results, and pub-
lish information such as player rankings. We have obtained from these communities, via
their websites, all the unique matches, and for each match the start time, the duration,
and the community identifiers of the participating players. After sanitizing the data, we
have obtained for Dota-League (DotAlicious) a dataset containing 1,470,786 (617,069)
matches that took place between Nov. 2008 and Jul. 2011 (Apr. 2010 and Feb. 2012).

27

3.2 A Method for Analyzing Implicit NVE Social
Networks

3.2.1 Social Relationships in OSGs

A mapping is a set of rules that define the nodes and links in a graph. Formally, a datasetD
is mapped onto a graph G via a mapping function M(D), which maps individual players
to nodes (graph vertices) and relationships between players to links (graph edges).

Instead of proposing a graph model, we focus on formalizing mappings that extract
graphs from real data. Because many metrics of social networks only apply to unweighted
graphs, relations are often considered as links only if their weight exceeds a threshold.
Thresholding, therefore, has an important impact on the resulting graph.

Related to our work, interaction graphs [229] map users of social applications to
nodes, and events involving pairs of users to links via a threshold-based rule.

3.2.2 Interaction Graphs in MOBAs

A mapping is meaningful if it leads to distinct yet reasonable views of implicit social
networks appearing in networked games. We identify five types of player-to-player inter-
actions:

SM: two players present in the Same Match.

SS: two players present on the Same Side of a match.

OS: two players present on Opposing Sides of a match.

MW: two players who Won a match together.

ML: two players who Lost a match together.

To extract the social networks corresponding to various types of relationships, we
extract for each mapping a graph by using a threshold n, which reflects the minimum
number of events that need to have occurred between two users for a relationship to exist;
e.g., for SM(n = 2), a link exists between a pair of players iff they were both present in
at least two matches in the input dataset. A second threshold, t, limiting the duration-of-
effect for any interaction, is less relevant, as explained in Section 3.2.4.

The set of mappings proposed here is not exhaustive. For example, this formalism can
support more complex mappings, such as “played against each other at least 10 times,
connected through ADSL2, while located in the same country”. The interactions in the
set are also not independent. For example, the SS mapping can be seen as a specialization
of the SM mapping.

28

3.2.3 Graph Metrics

To compare the graphs extracted using different mappings, we calculate a number of
network metrics for the largest component of each extracted graph. The selected metrics
all reflect properties related to the degrees and paths between players, and allow us to
study the social relations in the gaming community. The metrics used in this section are
explained below. For a more in-depth explanation we refer to [51, 163].

Size(s) of the connected component(s) (N,L): The size of the largest and other
connected components indicates how many fellow players a player can reach in the
network.
Link density (d): The link density is obtained by dividing the number of links in the
network by

(
N
2

)
and indicates how densely connected the network is.

Degree distribution: The degree distribution characterises the number of direct neigh-
bours of a node.
Diameter (D): The diameter is the longest shortest path, in terms of hops, in the network.
Average clustering coefficient (C̄): The average clustering coefficient is a measure for
how many neighbours of a node are also neighbours of each other.

3.2.4 Application to the Examples

We focus in this chapter on three methodological questions:
Q1. Are the relationships we identify the result of players being simultaneously online

by chance? To answer this question, we first create a reference model by randomizing,
for any window of length w minutes, the interactions observed in the MOBA datasets.
The randomization of, for example, the SM mapping is done by taking the players from
all matches that started within the current time window and randomly assigning them to
matches. Since the SM mapping does not take team information into account, the match
assignment comes down to forming random groups of 10 players from the entire list who
were active in the time window. A single player can be in the list multiple times and the
random groups have to consist of 10 different players.
We run the parameter w from 1 to ∞ and depict the results, together with the original
data, in Figure 3.1. Whereas the results for w = 1 leave little room for randomization, the
results for w = ∞ randomize the entire dataset. In Figure 3.1, the curves for w = 1 and
the original data have a powerlaw-like shape. The curves for various values of w follow
the w = 1 (original) curve for link weights of up to about 5 matches played together,
but take afterwards an exponential-like shape, which indicates they are more likely to be
the result of chance than of intended user behavior. The fact that curves are markedly

29

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

fr
eq

u
en

cy

10 100 1000

link weight

 original
 1 min
 5 min
 30 min
 180 min
 complete

Figure 3.1: Frequency of occurrence of
link weights in the reference model for
five different intervals and the original
data for DotA. The mapping is SM.

10
0

10
1

10
2

10
3

10
4

fr
eq

u
en

cy

2 3 4 5 6 7 8

10
2 3 4 5 6 7 8

100
2 3 4 5

link weight

 original
 1 min
 5 min
 30 min
 180 min
 complete

Figure 3.2: Frequency of occurrence of
link weights in the reference model for
five different intervals and the original
data for SC2. The mapping is SM.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

fr
eq

u
en

cy

2 3 4 5 6 7 8 9

10
2 3 4 5 6 7 8 9

100

link weight

 original
 1 min
 5 min
 30 min
 180 min
 complete

Figure 3.3: Frequency of occurrence of
link weights in the reference model for
five different intervals and the original
data for WoT. The mapping is SM.

1

2

4

6

10

2

4

6

100

2

4

6

1000

av
er

ag
e

d
eg

re
e

in
 t

es
t

d
at

as
et

1
2 3 4 5 6

10
2 3 4 5 6

100
2 3 4 5 6

1000

Node degree in the trainnig dataset

Pearson CC = 0.6233

Figure 3.4: Continued activity for gaming
relationships in Dota-League (SM with
n = 10).

different for small time windows shows that it is very unlikely that players play together
often simply because they happen to be online at the same time.
The results for the other game genres (genres introduced in Section 3.3, results depicted
in Figures 3.2 and 3.3) show similar, yet not so pronounced behavior. Although players
do not play nearly as often together in other genres’ datasets as in the MOBA datasets,
randomization within only small time windows lowers the link weights. We conclude
that it is unlikely that the relationships we identify are the result of chance encounters be-
tween players and, instead, indicate conscious, possibly out-of-game agreements between
players.

Q2. Are players (nodes) preserving their high-degree property over time? If so, then
the networks these players form may be robust against natural degradation, with implica-

30

Table 3.1: Results for methodological question Q3. Metrics for n = 10: (top) Data for
MOBA games: the Dota-League and DotAlicious datasets. (bottom) Data for other game
genres: StarCraft II (RTS) and World of Tanks (MMOFPS). The metrics we present:
number of nodes N , number of nodes in largest connected component Nlc, number of
links L, number of links in largest connected component Llc, link density d, link density
of largest connected component dlc, diameter D, average clustering coefficient C̄.

DotA-League DotAlicious
SM OS SS ML MW SM OS SS ML MW

N 31,834 26,373 24,119 18,047 18,301 31,702 11,198 29,377 22,813 21,783
Nlc 27,720 19,814 16,256 6,976 8,078 26,810 10,262 20,971 10,795 13,382
L 202,576 85,581 62,292 30,680 33,289 327,464 92,010 108,176 43,240 54,009
Llc 199,316 79,523 54,186 17,686 21,569 323,064 91,354 99,063 29,072 44,129
d (×10−4) 4.00 2.46 2.14 1.88 1.99 6.52 14.7 0.49 1.66 2.28
dlc (×10−4) 5.19 4.05 4.10 7.27 6.61 8.99 17.4 2.51 4.99 4.93
D 14 21 24 28 26 17 12 19 20 22
C̄ 0.37 0.40 0.41 0.41 0.41 0.43 0.27 0.47 0.47 0.49

StarCraft II World of Tanks
SM OS SS ML MW SM OS SS ML MW

N 907 611 314 95 212 4,340 477 4,251 561 1,824
Nlc 31 22 24 9 14 129 118 122 66 57
L 748 404 327 85 200 9,895 3,253 6,543 1,564 2,923
Llc 58 21 44 13 24 2,329 1,243 1,160 519 473
d (×10−4) 18 22 67 190 89 10.51 286.54 7.24 99.57 17.58
dlc (×10−4) 1,247 909.10 1,594 3,611 2,637 2,821 1,801 1,572 2,420 2,964
D 2 8 3 2 2 6 3 5 4 3
C̄ 0.58 0 0.70 0.65 0.65 0.79 0.10 0.78 0.88 0.87

tions for the long-term retention of the most active players. For each MOBA-community,
we first divide its last-year’s gaming relationships into two parts: the first half year as
training data and the second half year as testing data. We only use players who appear in
both datasets—about 60% of the training-data players. Then, we plot in Figure 3.4, for
different degrees of players in the training dataset, the average number of links formed
by these players in the testing dataset. From the high-value and positive correlation-
coefficient (0.6233 for Dota-League), we derive that players with higher degrees in the
training dataset robustly establish more new links in the testing dataset than the other
players.

Q3. Are the mappings we propose meaningful for MOBAs? To answer this question,
we first extract the interaction graphs for each of our mappings, compute for each a variety
of graph metrics, and summarize the results in Table 3.1. We find that:

• Side-specific interactions (SS and OS) are meaningful. For example, playing on
the opposing side (OS) is more likely than playing on the same side (SS), in Dota-
League (for example, higher N and L in Table 3.1); for DotAlicious, the reverse
is true. Game designers could enable OS links by allowing players to explicitly
identify their foes.

• Outcome-specific interactions (MW and ML) are meaningful. For example, only

31

for DotAlicious, MW leads to more relationships being formed. Game operators
could exploit this in matchmaking services. Identifying the players who play almost
exclusively together can be key to player retention.

3.3 Application to Other Game Genres

Among the most popular genres today, RTS games ask players to balance strategic and
tactical decisions, often every second, while competing for resources with other players.
Although faster-paced, MMOFPS games test the tactical team-work of players disputing
a territory. We could expect RTS and MMOFPS games to lead to similar interaction
graphs as MOBAs: naturally emerging social structures centered around highly active
players. However, these game genres also have different match-scales and team-vs-team
balance than MOBAs. Moreover, RTS games can stimulate individualistic gameplay,
while MMOFPS games may have teams that are too large to be robust.

We collect then analyze two additional datasets: for the RTS game StarCraft II (SC2)
from Mar. 2012 to Aug. 2013, and for the MMOFPS game World of Tanks (WoT) from
Aug. 2010 to Jul. 2013. For each of these popular games, we have collected over 75,000
matches, played by over 80,000 SC2 and over 900,000 WoT players. SC2 matches are
not generally played in equally-sized teams, and 92% of our dataset’s matches are 1v1-
player. In contrast, 98% of WoT matches are 15v15-player, but such large teams can
be much harder to maintain over time than the teams found in typical MOBAs, due to
inevitable player-churn.

Alone or together? For SC2, the mappings lead to small graphs, with many small con-
nected components. The majority of players participate in 1v1-player matches, but the 8%
of players who do play in larger groups tend to play against each other more than together
(N = 611 for the OS mapping, versus 314 for SS). When players do play on the same
side, winning tends to strengthen the teams (N = 212 for the MW mapping, versus 95 for
ML), just as we saw for the DotaLicious dataset. The connected components are strongly
connected, yet small. The connected components of the mappings extracting same-team
graphs are highly clustered, whereas the largest component for the OS mapping is even
a tree. The clustering coefficients observed in the various RTS networks indicate much
stronger team relationships in RTS games than in MOBAs. Because RTS games have not
shown a trend of greatly increasing the number of players in the same instance, over the
last decade, we hypothesize that RTS games will continue to spawn tightly-coupled teams
that always play together; such teams are naturally vulnerable to player departures.

For WoT, the large team-size makes it difficult to organize teams well: the largest
connected components for all mappings are not very large. Similarly to SC2 and DotaLi-
cious, in WoT the players who do play often together do so on the same team and, again,
players who play together are more likely to win rather than lose together. As modern

32

FPS games tend to be played in increasingly larger teams, with 32v32-player games now
not uncommon, we conclude that MMOFPS games will require additional mechanisms
if they are to develop any form of robust social structure. Moreover, even more so than
in the SC2 datasets, many players play only one or a few games: 69% of the more than
900,000 players played only once or twice. This is another area where developers could
use the emerging social structures among their players to increase the number of players
who keep on playing the game.

We conclude that our formalism can be applied to other game-genres, for which it
leads to new findings vs MOBAs, and suggest that even communities of popular net-
worked games could benefit from new mechanisms that foster denser interaction graphs.

3.4 Application to OSG Services

“How can social-networking elements be leveraged to improve gaming services?” We
present in this section two exemplary answers.

3.4.1 Socially and Network-Aware Matchmaking

Matchmaking players at the start of a game can significantly impact the gameplay ex-
perience. Gaming services that perform matchmaking while taking into consideration
network latency are already deployed by game operators. In contrast, a socially-aware
matchmaking service assigns players to matches, trying to ensure that players in the
same social, rather than latency-based, cluster play together. We propose a socially-aware
matchmaking service which is described in the following.

Socially-aware matchmaking algorithm First, for each sliding window (τ = 10 min.
interval), the algorithm builds a list of all the players who are online. Second, from the
social graph the algorithm computes the cluster membership for each player. Third, from
the largest online players’ cluster to the smallest, all online players from the same cluster
are assigned to new matches if size permits; otherwise, the cluster will be divided into
two parts and players from one part will be assigned into new scheduled matches.

Figure 3.5 sketches the algorithm for computing the score for an exemplary match.
Team 1 consists of players ‘a’ to ‘e’, as can be seen in the column labeled ‘Player’; team
2 consists of players ‘f’ to ‘j’. The column labeled ‘Cluster’ records the cluster identifier
for each player. A match receives one point for every same-cluster player present in the
match, when at least 2 same-cluster players are present. In this example, 2 points are
given for player ‘a’ and ‘c’ (cluster 1), and for players ‘b’ and ‘f’ (cluster 2); 3 points are
given for players ‘d’,‘h’, and ‘j’ (cluster 3). Players ‘e’,‘g’, and ‘i’ have no fellow cluster-
members in the match and will be assigned 0 points. In total, this match is assigned 7

33

Figure 3.5: Example of scoring for a match.

OS SS SM ML MW

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
c
o
r
e

Random

Original

O-latency

Matchmaking

M-latency

Figure 3.6: Average match scores for various matchmaking approaches.

points. To favour small clusters, which can lead to novel human emotions [148], our
scoring system does not consider the largest cluster when assigning points.

We compare our matchmaking algorithm with the algorithms observed in practice in
MOBAs in terms of average scores (utility), and show selected results in Figure 3.6. When
considering network latency, matches with players on several continents score 0 points;
the others use the scoring exemplified in Figure 3.5. “Random” denotes matches obtained
via randomly matching players who are online during each time interval. “Original”/“O-
latency” denote matches observed in the real (raw) datasets without/with network latency
considerations. “Matchmaking”/“M-latency” denote matches obtained with our proposed
matchmaking algorithm without/with network latency considerations.

Expectedly, random matchmaking, which is still employed by many gaming commu-
nities, leads to very low utility. Surprisingly, our simple socially-aware matchmaking
algorithm also exceeds the performance of the matchmaking algorithm employed by the
operators of DotAlicious; this is because the limited community tools available in practice
do not make all players aware that some of their friends are online and thus allow them to
join other, lower-utility, matches.

Including network characteristics We use the geographical location gleaned from

34

MOBA datasets to estimate possible latency conflicts, e.g., same-match players located
in Germany and Asia. We analyze the impact of network latency on the score of our
matchmaking algorithm and depict the resulting score in Figure 3.6. In this scenario, a
significant part of the matchmaking score is lost due to recommendations not taking into
account network latency (yet our matchmaking algorithm still outperforms the original
matchmaking). We conclude that combining social and network awareness is important
for networked gaming services.

3.4.2 Assessing Social Network Robustness

Because social relationships are important in player retention [148], the strength of the so-
cial structure may be indicative for the survival chances of the community. If the network
starts dismantling, people might lose interest in the game and stop playing. Operators
need to assess both the strengths and weaknesses of their games’ social structure, to be
able to stimulate growth or to prevent a collapse. Conversely, competitors could try to
lure away key players (hubs), who in turn could sway others.

0 200 400 600 800 1000
0

0.5

1

1.5

2
x 10

4

Number of removed players

S
iz

e
of

 n
et

w
or

k

SS
OS
SM
ML
MW

0 200 400 600 800 1000
0

2000

4000

6000

8000

10000

Number of removed players

S
iz

e
of

 la
rg

es
t c

om
po

ne
nt

SS
OS
SM
ML
MW

Figure 3.7: Effect of lost players on network-size, during a match attack, for DotAlicious:
(left) size of remaining network; (right) size of the largest connected component in the
remaining network.

The anatomy of an attack: To assess the social-network robustness, we conduct a
threshold-based degree attack on the network: for each mapping, we iteratively remove
the top-K players, according to their degrees in the extracted graph, in decreasing order.
Removing a player either also removes their matches (match-attack) or also removes their
entire connected component (hub-attack). Then, we re-apply the mapping to the remain-
ing matches to get a new network, and output the size of the new network and largest
component. We perform match and hub-attacks on DotAlicious and DotA-League and
depict selected results in Figure 3.7 and 3.8. (We do not conduct experiments in which

35

0 200 400 600 800 1000
0

20

40

60

80

100

Number of top K players and their component removed

R
em

ai
ni

ng
 m

at
ch

es
 [%

]

SS
OS
SM
ML
MW

0 200 400 600 800 1000
0

20

40

60

80

100

Number of top K players and their component removed

R
em

ai
ni

ng
 m

at
ch

es
 [%

]

SS
OS
SM
ML
MW

Figure 3.8: Effect of lost players on match count, during a hub attack, for DotAlicious
(left) and Dota-League (right).

players form new clans (network rewiring), which represents the opposite of our scenario;
in our experience as gamers, when a member of a strongly connected group leaves (for
another game), the whole group departs as well.)

The aftermath of an attack: We find that both match and hub-attacks on MOBAs are
very efficient. For match-attacks (Figure 3.7), removing the top-1,000 players (1.5%) can
reduce the size of the network by 15% up to 60% of its initial size, and the size of largest
component to below 10. For hub-attacks (Figure 3.8), removing only the top-100 players
can cause the network to implode. A social-network collapse also implies the collapse of
network traffic, which may lead to waste of pre-provisioned networked resources.

We conclude that understanding the social relationships between players can help a
game operator improve the social-network robustness, by identifying and motivating the
key players. Our formalism provides important tools for the former, but the latter remains
open.

3.5 Related Work

Social network analysis and complex networks theory have received increasing attention
in the past few years, which has readily resulted in a significant body of related research
papers. We refer to [67, 207] for an overview of research on complex networks and to
[25, 190] for some excellent overviews of the developments and state of the art in social
network analysis. Most research on social network analysis, however, only considers or
defines one network for one type of link. Instead, we consider the influence of different
(social) link definitions and combinations of link definitions on the emerging (complex)
network.

Within the application domain of online social games, few studies use network met-

36

rics to divide players into different classes. In [122], for example, the authors extract a
network from an online game by creating unweighted and undirected links between play-
ers that ever exchanged information in the game. They define three types of players based
on the successive removal of the highest-degree nodes until the largest connected compo-
nent falls apart. In [202], an implicitly defined network is used to predict future player
performance based on the relationship between mentors and apprentices. This analysis
could be extended by looking at network-wide properties instead of only local properties.
The prediction of the success in games can also be applied to real-world games as is done
in [55], where a complex network approach is used to predict the performance of basket-
ball teams. The authors propose a network-based ranking of players as a replacement for
current statistics such as assists and points scored to predict the future success of a team.

Other studies use different definitions of links to create different networks from
the same dataset. In [211], the authors study a detailed dataset of interactions and
friend/enemy relations spanning three years in the online game Pardus. They use the
game as a substitute of the real-world and test several hypotheses in the field of social
dynamics such as social balancing, network densification and triadic closure. They study
three different networks extracted from the dataset: the network of communication be-
tween players, the network of friends as indicated by players in the game, and the network
of enemies as indicated by players in the game. Although the authors present a detailed
analysis of the networks for each type of interaction, and especially contribute to existing
work by analysing the network of enemy relations, their links are either interaction based
or explicitly indicated by the players.

A related study on guild members in World of Warcraft [7] also studies the differ-
ences between networks formed based on different types of interaction. In this chapter
social network analysis is used to explore the network structure of interactions between
guild members in the online game World of Warcraft. The authors studied 76 players
that formed a single guild and extracted networks by creating links between players that
communicate amongst each other. Different types of interaction were classified into seven
different categories such as asking for help or group management to form seven different
networks. An analysis of these networks in terms of reciprocity and topological structure
indicates that the different types of interaction lead to different networks.

3.6 Summary

Many current online games provide limited social-networking features, yet rely on their
players to self-organize. For example, games in the popular class of MOBA-networked
games have fostered the creation of many communities of players. In this chapter, we have
shown how a general formalism can be used to extract social relationships from the inter-
actions that occur between networked-game players. We have investigated their implicit

37

social structures based on five types of interactions, using community traces that char-
acterize the operation of four popular MOBA, RTS, and MMOFPS games, and provided
hints on improving gaming-experience through two socially-aware services.

38

39

Chapter 4

Analyzing Online Meta-Gaming
Networks

Online Meta-Gaming Networks (OMGNs) such as Valve’s Steam, Sony’s PlayStation
Network, and Xfire are for tens of millions of players an important way of integrating in
a like-minded, game-oriented society. For example, the almost 20 million gamers par-
ticipating in the XFire online meta-gaming network may discuss and share game-related
media related to over 2,000 different computer games. Understanding the characteristics
of meta-gaming networks can lend important help to the design and tuning of OMGNs.
However, despite an increase in these network’s popularity over the past two decades—
one of the first meta-gaming networks was built by America Online (AOL) in the early
1990s—, the characteristics of meta-gaming networks remain relatively unknown. In
contrast, much previous work has focused on observing and analyzing other platforms for
community-creation [123,134] and media-sharing [37,133,153,176]. To address this gap,
in this chapter we report on the long-term observation and resulting high-level analysis of
XFire.

Characterizing OMGNs is important for the design and operation of OMGNs. The
need for timely and adequate OMGN deployments pressures system designers and oper-
ators into taking, on short notice, important decisions about system scalability, security,
and usability. Such decisions can greatly benefit from a good understanding of the com-
munity size, structure, and activity. For example, provisioning the resources needed for
the operation of an OMGN can benefit from an understanding of the evolution of the num-
ber of OMGN users, coupled with statistical information about the resource consumption
incurred by each user. Inadequate designs can have disastrous consequences, such as the
forced shut-down of the Sony PlayStation Network, following a security breach [212].

OMGNs may differ significantly from other (Internet-based) communities and social
networks. Meta-gaming networks may add to the study of human communities [84, 90]
a new dimension, which stems from their competitive (even adversarial) context—most

40

participants in OMGNs are gamers. Due to their multi-game coverage, OMGNs such
as XFire may also be different from the communities that form around individual game
titles, for example Massively Multiplayer Role-Playing Game World of Warcraft [66] or
the casual online social game Fighters Club [162]. Similarly, studies of OMGNs may
complement earlier studies of in-game player activity and behavior [40, 74] with an out-
of-game component.

Our long-term objective is to create a theoretical and practical foundation for study of
analyzing meta-gaming networks. Much work needs to be done to achieve this objective,
among which observing and analyzing OMGNs raise important challenges. The quanti-
tative assessment of OMGNs is made more difficult by the decentralized system designs
and by the confidential nature of the data. Often, observing without the cooperation of
the OMGN operators is the only way to obtain data. Since human communities are sub-
ject to attrition and evolution, data need to be obtained over long periods of time to be
conclusive. Even when data are obtained, the problem of extracting useful information
from them may require new models and algorithms. As a first step toward our long-term
objective, our main research question is, in this chapter, What are the characteristics of
an Online Meta-Gaming Network? To answer this question, we focus on the observation
and high-level analysis of the XFire network, where by “high-level analysis” we mean
the analysis of marginal distributions for a number of important characteristics. Our main
contribution is threefold:

1. We propose a method for the study of OMGNs, which is based on repeated obser-
vation and high-level analysis (Section 4.2).

2. We collect a long-term dataset from XFire (Section 4.3).

3. We present a high-level analysis of the XFire dataset, which focuses on the global
network (Section 4.4.1), on gaming activity (Section 4.4.2), on user-generated con-
tent (Section 4.4.3), and on social structure (Section 4.4.4).

4.1 Background

In this section we present the context required to understand OMGNs. Context is par-
ticularly important for large-scale quantitative studies such as ours, increasing familiarity
with the subject (needed to plan observational studies) and allowing for an understand-
ing of potential measurement biases. We first introduce meta-gaming and OMGNs, then
discuss the focus of this chapter on a particular OMGN, XFire.

Meta-gaming, defined as “the game beyond the game” [81], refers to game-related (but
mostly not in-game) connections between people. The meta-game connections can affect
both positively and negatively the way players think about and act within the game. A

41

large number of players may be persuaded by the social pressure of their game-friends and
game-peers to continue playing a game or a game genre over many years. A community
of players may exchange information and educate its weaker members about the best
strategies of a game. A group of players may collude to influence the outcome of a
tournament [156]. A poker player may purposely lose a hand to better understand the
bidding behavior of an opponent [81].

An Online Meta-Gaming Network is an online social network [90, 123, 134] that al-
lows its participants to manage their metagame connections, through the following set
of core features: (instant) messaging; file sharing; screenshooting (capturing and pub-
lishing screenshots), videoshooting (capturing and publishing videos); screencasting (live
streams of image as seen on the computer); approx like broadcast; etc.

One of the earliest metagaming networks was built for Neverwinter Nights, an early
MMORPG hosted by AOL since 1991. For this game, the emergence of in-game guilds of
like-minded players triggered support from AOL, with installed and operated forums [33,
p.160]. One of the first metagames launched simultaneously with the online social game
Animal Crossing (Dōbutsu no Mori), Nintendo, in 2002 (2001). In Animal Crossing,
players use the metagame network to exchange messages and to send in-game objects
as gifts; socialization, both in-game and through the metagame, is the key feature of the
game [116, Ch.6].

Tens of millions1 of players have joined recently online metagaming networks such as
XFire (http://xfire.com), Valve’s Steam, Sony’s PlayStation Network, Microsoft’s
XBox and Games for Windows Live, and Zynga’s integration with multiple social net-
works (a distributed OMGN). All of these networks offer all the core OMGN features,
with different implementations.

4.2 A Method for Studying Online Meta-Gaming
Networks

In this section we propose a method for the study of OMGNs that is based on repeated
environment observation and its high-level analysis. Our method addresses two main
problems, the collection of data from OMGNs and the focus of analysis.

Our method is based on the principles of observational studies [184] [166, Ch.6.5],
that is, that the study does not involve the intervention of the investigator; instead, the
investigator can only observe (record and analyze) the environment. The alternative of
using intervention studies, that is, studies in which the investigator can alter one or more
factors affecting the environment to later study the effects of the alteration, is often uneth-

1We will show in Section 4.4.1 that XFire is a community of about 20 million players. The Sony
PlayStation Network had at least 77 million accounts [212].

http://xfire.com

42

ical and rarely feasible. The negative impact of this (forced) choice is that the root causes
of the observed situations cannot be established rigorously.

We further base our method on a repeated cross-sectional design. Among several types
of designs for observational studies, cross-sectional designs focus on the observation of
a part of the environment at a single moment of time. A repeated cross-sectional design
uses the data and/or results of several cross-sectional studies of the same environment;
to improve the statistical relevance of the results, the repetition is periodic. The cross-
sectional design can capture net effect changes, such as overall increases and decreases of
the population, trends in the population taste and activity, etc., and can support the eval-
uation of marginal distributions (such as the probability and the cumulative distribution
function, or the PDF and the CDF, respectively) for a wide range of OMGN character-
istics. Alternatively, longitudinal designs would sample over time the same population,
sometimes of the same age, which could lead to improved statistical power for the study
but is impractical for OMGNs due to attrition; surveying and case studies are impractical
for OMGNs, where demongraphic information is unavailable before the study.

Bootstrapping the data collection process Because the members of the OMGN are
not known before the study (the bootstrapping problem), the data collection part of our
method needs an adaptation to the context of OMGNs. We propose an approach for the
bootstrapping problem, based on participant self-selection, where we first observe the
participants to the discussions and media-sharing activities of the network for a period,
then use them to bootstrap the traversal of the network; exploiting the high-connectivity
of social graphs, by traversing only one further connection in the social graph, informa-
tion may be obtained about a significant fraction of the OMGN members. If incomplete,
the traversal should use a random selection of connection traversal. As a possible alter-
native, unbiased sampling methods are difficult to develop and depend on the properties
of the network, which may be unknown before the study, to reduce the bias introduced by
bootstrapping [208].

Observed environment variables With the specific goal of building in the future
systems that can better and more efficiently support OMGNs, we focus on four main
components of the operation of OMGNs: on the global network, on gaming activity, on
user-generated content, and on social structure. For the global network, we focus on the
size of the community and on the time spent collectively by the OMGN members in-
game. At the level of individual players, we focus for the gaming activity on the number
of games played, of the time spent in-game (both for all games and for each game, individ-
ually). The user-generated content analysis focuses on the production and consumption
of content, where content may be any multi-media product that an OMGN member may
share with other members. The analysis of production follows the counts of produced
items per player and further per game. The analysis of consumption follows the counts
of views or other types of uses of produced items. Last, the social structure follows the

43

Table 4.1: The XFire community datasets.
Bootstrap Global Network Player

Period May 2008 to Sep 2010 to Sep 14–16
Sep 2010 Jun 2011 2010

Samples 1/hour 1/hour 1
Size [GB] 9.2 6.5 15.7
Players 65,908 not applicable 544,902
Game genres 25 25 not applicable
Games 1,100+ 1,400+ not applicable

creation of connections in two types of communities: structured (guilds, clans, etc.) and
free-form (friends, buddies, etc.)

Application We describe in Section 4.4 the application of our method on XFire, which
we select as an exemplar of OMGN. Among the OMGNs introduced in Section 4.1, XFire
is the only popular network that is not affiliated with any individual game producer and
does not include direct game sale as part of its business model. As a consequence, XFire
reveals more information per player than the other OMGNs and does not have a visible
incentive to bias recommendations for popular games and derivative multi-media, such as
screenshots and videos.

4.3 Datasets

In this section we present the procedure used for collecting data from XFire. The data
were acquired without the cooperation of the XFire operator, which is similar to our pre-
vious experience with many large-scale communities. The acquisition process is periodic,
and consists from a combination between crawling and parsing web data. Our data col-
lection process contains three parts: data collection for solving the bootstrap problem (see
previous section), followed by separate data collection for the global network and for the
individual players. We have written in Python custom tools for each part.

Data summary XFire offers rich information concerning members, games, and game
genres. A summary of the collected datasets is presented in Table 4.1. Overall, we have
collected data over a period of more than 3 years, out of which the last 10 months have
produced the data analyzed in Section 4.4. The Global Network dataset does not include
detailed player information; the Player dataset does not include detailed game and game
genre information. Over the period covered by these datasets, we have suffered an infras-
tructure downtime that affects under 1% of the samples in non-adjacent short periods.

The Bootstrap dataset Our collected XFire data includes member identifiers in the
pages related to game genres and individual games; the included members have published
game-related content or have been part of a popular community or event. (We intend
to investigate the correlation between members and games in a future analysis of this

44

dataset.) We have collected in the Bootstrap dataset (Table 4.1, column “Bootstrap”)
information about all the 25 game genres and an evolving number of games tracked by
XFire over a period of over 2 years. We have identified in this dataset over 65,000 players.

The Global Network dataset Our collected XFire data includes information about
in-game use for each game (in hours, updated every day) and for the most played four
games (in minutes, updated at every access), the number of registered and online players
(updated at every access), a grouping of games by genre, etc. (We intend to further analyze
this rich dataset in the future.) The duration of in-game presence is recorded by the
tools provided by XFire, which are installed by each player’s gaming system. For this
dataset, there are no missing data: when taken, samples are complete. Although cheating
is possible, we believe that the closed-source nature of the official tool and the openness
of the community prevent wide-spread mis-reporting.

The Player dataset For this dataset we have followed the two-step procedure detailed
in Section 4.2: we first collected information from the over 65,000 members identified in
the Bootstrap dataset, then collected information about all their recorded friends. For the
former, we were able to retrieve information only about 61,229 members; for the later,
we were able to collect information about 483,673 more, randomly selected out of the
1,393,090 friends identified in the first step. In total, we have collected detailed, recently-
updated information about over 500,000 XFire members: the number of friends (limited
by XFire at 1,000), the list of joined communities and their sizes, the list of played games
and time spent in them, etc. The total time spent for each game is measured from the
date of the player registration, which may be as early as 2003, when XFire was launched.
(We intend to further analyze this rich dataset in the future.) The reporting of time spent
in-game is done with the same XFire tools as for the data present in our Global Network
dataset.

Members or players? A member of XFire does not necessarily need to play games.
We have analyzed the Player dataset and found that only 25,208 members (5.01%) have
not played at least one game or at least one total hour over all played games. As a conse-
quence, we will use in this chapter the terms “member” (“user”) and “player” (“gamer”)
interchangeably.

4.4 Characterization Results

In this section, we perform a high-level analysis of the XFire dataset.

4.4.1 Analysis of the Global Network

Registered and online players: XFire is a slowly growing community, with a slowly
decreasing online presence of about 1% of its registered users. Figure 4.1 depicts the

45

 0

 5000000

 10000000

 15000000

 20000000

01-10
2010

01-11
2010

01-12
2010

01-01
2011

01-02
2011

01-03
2011

01-04
2011

01-05
2011

01-06
2011

 0

 50000

 100000

 150000

 200000

N
u

m
b

e
r

o
f

u
s
e

rs

Date/Time

Registered users (left axis)
Online users, weekly average (right axis)

Figure 4.1: Number of players registered and online, over time.

 0

 50

 100

 150

 200

 250

01-07
2010

01-08
2010

01-09
2010

01-10
2010

01-11
2010

01-12
2010

01-01
2011

01-02
2011

01-03
2011

01-04
2011

01-05
2011

01-06
2011

01-07
2011

P
l
a
y
e
d

y
e
a
r
s

Date/Time

Total played years per day

Figure 4.2: Time spent collectively in games by the XFire community, per hour, over time.
Curves represent weekly averages; error bars represent weekly minima and maxima.

number of players registered and online, over time. There are about 20 million registered
players in XFire. The number of registered users keep a steady increasing rate (330,000
or about 2% more users per month) during the observed period. The number of online
players has an average of about 150,000 or 0.8% registered players, with a peak around
165,000 near the Christmas holiday; the online presence seems to be slowly decreasing
(about 2% per month). For comparison, RuneScape, which is a free MMORPG that
maintains an OMGN, has a much lower ratio of online players, about 200,000 out of over
135 million registrations (0.15%).

Collective in-game time: XFire members spend collectively over 100 years playing,
every hour. Figure 4.2 depicts the time spent collectively in games by the XFire commu-
nity, per hour, over time. The total time spent on games shows monthly effects: players
play longer during the August and December vacations. In August, the total time spent
on games per hour exceeds 200 years.

46

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5
x 10

4

N
um

be
r

of
 u

se
rs

 (
P

D
F

)

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

C
D

F
[%

]

Number of games played

PDF
CDF

Figure 4.3: Number of games played in total, per player.

4.4.2 Analysis of Gaming Activity

Player activity, played games: The average XFire gamer has played over 20 games.
Figure 4.3 depicts the number of games played in total, per player. (In Figure 4.3, the
Cumulative Distribution Function (CDF) is depicted against the right vertical axis, while
the Probability Distribution Function (PDF) uses the number of recorded observations in-
stead of relative frequency and is depicted against the left axis; we use this graph structure
for each subsequent depiction of a Pareto (combined PDF and CDF) graph.) The number
of games played by player is rather heterogeneous. The average number of games played
by player is 21 while the maximum value is 1,989. Less than 5% of registered users did
not play at least one game (see also the discussion at the end of Section 4.3). More than
50% of the registered users played at least 10 games. The graph indicates that the player
activity (played games) is very heterogeneous, active players who play more games than
the other players may have important effects of the popularity of games.

Player activity, total play time: The average XFire player has spent over a month in-
game. Figure 4.4 depicts the amount of time played in total, total per player—computed
over all games played by the player, for each player. On average, each player spends in
total about 875 hours (over 36 days) in-game. The distribution of amount of time played
in total is long-tailed. About 15% of the XFire users played for less than 10 hours; at
the other extreme, over 25% of them played for over 1,000 hours. Surprisingly, we found
1,241 (2,977) players who spent over 10,000 (8,000, or about the duration for obtaining a
PhD!) hours online; the fraction of 0.228% (0.546%) is significant for a player population
that nears 20 millions. The maximum total played time is 33,392 hours (3.8 years). Such
long total play time may be explained by the “hardcore”-ness of some of the players
(although it exceeds by far previously reported numbers [80]), or by the ability of players

47

0 1000 2000 3000 4000 5000 6000 7000 8000
10

0

10
1

10
3

10
4

N
um

be
r

of
 u

se
rs

 (
P

D
F

)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

C
D

F
[%

]

Amount of time played [h], per player

PDF
CDF

Figure 4.4: Amount of time played in total, total per player (over all games played by one
player).

0 500 1000 1500 2000 2500 3000 3500 4000
10

0

10
1

10
3

10
4

10
5

N
um

be
r

of
 u

se
rs

 (
P

D
F

)

0 1000 2000 3000 4000
0

100

C
D

F
[%

]

Amount of time played in total [h], per game

PDF
CDF

Figure 4.5: Amount of time played in total, per game.

to multi-clock, that is, to play simultaneously several games that count towards the total
played time (for example, two or more browser-based games such as Zynga’s FarmVille
and Mafia Wars).

Player activity, play time per game: The average time spent with a game by a player
is below one week, assuming 8 hours of play per day. Figure 4.5 depicts the amount of
time played in total, per game. The popularity of games is highly skewed. Although the
average time played per game is 43 hours, the median time played per game is 3 hours
and about 90% of the items represent games played for less than 48 hours. At the other
extreme, a player spent about 3.7 years in only one game.

48

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000

1500

2000

2500

3000

N
um

be
r

of
 u

se
rs

 (
P

D
F

)

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

C
D

F
[%

]

Total number of screenshots, per player

PDF
CDF

Figure 4.6: Total number of published screenshots, per player.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
10

0

10
1

10
2

10
3

10
4

N
um

be
r

of
 u

se
rs

 (
P

D
F

)

0 1000 2000 3000 4000 5000
0

20

40

60

80

100

C
D

F
[%

]

Total number of views per video

PDF
CDF

Figure 4.7: Number of views of published videos, per player.

4.4.3 Analysis of User-Generated Content

Content production, screenshots and videos: Screenshot production has a highly
skewed distribution, with the top producer having over 8,000 publications. Figure 4.6
depicts the total number of published screenshots, per player. About 60% of players did
not publish any screenshots; 80% of the players published less than 45 screenshots. The
large imbalance between the maximum of 8,000 screenshots and the other values indi-
cates that a Power-law distribution may be a good fit for the production of screenshots.
We have found a similar distribution for the production of videos, but with much lower
produced units. About 90% of players did not publish any videos. On average, each
player produces only about 1.25 videos, with a maximum number of published videos of
only 222.

49

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

N
um

be
r

of
 u

se
rs

 (
P

D
F

)

0 10 20 30 40 50
0

20

40

60

80

100

C
D

F
[%

]

Number of communities joined

PDF
CDF

Figure 4.8: Number of communities joined, per player.

Content consumption, videos: Video consumption (viewing) has a highly skewed
distribution, with the highest viewed content item totaling over 130,000 views. Figure 4.7
depicts the number of views of published videos, per player. On average, each video was
viewed by 53 times. The popularity of videos is highly skewed: 60% of videos were only
viewed less than 20 times, while the most popular video was viewed by 131,641 times.

4.4.4 Analysis of Social Structure

Belonging to structured communities (player guilds): Most players do not join a struc-
tured community; when they do, they usually join only one community. Figure 4.8 de-
picts the number of communities joined, per player. About 60% of players did not join
any community. Most of the players only join less than 10 communities. The average
player joins 1 community, while the maximum communities joined by a single player is
246 communities.

Belonging to free-form communities (player-to-player friendships): XFire players
are “social creatures”—the average player has over 60 friends, and about 15% of the play-
ers have more than 100 friends. Figure 4.9 depicts the number of friends, per player. On
average, each players have 63 friends, which is smaller than average friends number of
Facebook (130 friends per person) [72] but still indicates a large social circle. Less than
0.06 % of players have no friends. About 15% of players have more than 100 friends.
Because the maximum allowed number of friends in XFire is 1,000, we do not find ex-
tremely long friend lists. When the figure is plotted in logarithmic-scale both in horizonal
and vertical axis, we observe a power-law-like tail of the distribution number of friends,
which is similar with social network research of friendships within a game club [162].

50

0 100 200 300 400 500 600 700 800 900 1000
0

2000

4000

6000

8000

10000

N
um

be
r

of
 u

se
rs

 (
P

D
F

)

0 1000
0

20

40

60

80

100

C
D

F
[%

]

Number of friends

PDF
CDF

Figure 4.9: Number of friends, per player.

4.5 Related Work

Our work complements the large body of work on the characteristics of human com-
munities and social networks [84, 90], of in-game player activity and behavior [40, 74],
and of observing and analyzing platforms for community-creation [123, 134] and media-
sharing [37, 133, 153, 176].

The analysis of large-scale online social networks is closest to our work. Previous
work in this area has investigated social networks such as FaceBook, Orkut, Flickr [134,
153] and BBO [13, 175]; the systems and social networks underlying media publishing
sites such as Youtube and LiveJournal [37, 134, 153]; the loose community built around
the the instant messaging network Microsoft Messenger [133]; etc. The social structure of
the online game World of Warcraft [66] and the online casual game Fighters Club [162]
have also been investigated. We have compared our results with selected results from
these previous studies throughout this chapter.

4.6 Summary

The emergence of Online Meta-Gaming Networks pressures system developers and op-
erators to answer questions that require a timely and comprehensive study of their char-
acteristics. In this chapter we have proposed a method for studying the characteristics
of OMGNs. Our method is based on the theory of observational studies and employs a
repeated cross-sectional design that we have adapted to the specific problems of OMGNs,
such as bootstrapping the data collection process and selecting appropriate environment
variables to observe. Our method focuses on four classes of environment variables, all
of which are important for the design and operation of OMGNs and underlying infras-

51

tructure: the global network, on gaming activity, on user-generated content, and on social
structure. Our method further proposes a high-level, marginal-distribution-based analysis
of the observed variables.

We use an implementation of our method to study, that is, observe and analyze, XFire,
which is a popular OMGN that services about 20 million users playing over 1,500 games.
Our study reveals several interesting observations:

1. OMGN players spend collectively in-game over 100 years hourly;

2. A significant fraction of the players are “hardcore”, having played over 10,000 in-
game hours;

3. OMGN members are routinely engaged in the creation and consumption of game-
related media, such as screenshots and videos;

4. OMGN members are “social creatures”, having on average over 60 friends.

52

53

Chapter 5

Analyzing and Modeling in-NVE
Mobility

Networked virtual environments (NVEs), including Massively Multiplayer Online Games
(MMOGs) such as World of Warcraft (WoW), already serve tens of millions of users
world-wide. Making the current and future NVEs more appealing to their citizens, more
scalable to unexpected surges in temporal and spatial popularity, and more efficient in
their resource use, depends on understanding user behavioral patterns. Complementing
much previous research in the design and tuning of NVE systems, and in particular in
collecting, characterizing, and modeling NVE workloads [39, 121, 135], we focus in this
chapter on the mobility of NVE citizens. To facilitate the design, validation, and compari-
son of mobility models and mobility-aware systems, and further motivated by the scarcity
of public mobility datasets, we collect for this chapter a large-scale dataset from WoW
and share it through the Game Trace Archive [92]. We also conduct a comprehensive,
comparative characterization of the mobility of citizens in WoW and other, conceptually
different NVE. Furthermore, we also do a high-risk, high-return investigation: motivated
by the existence of datasets from networked real-world environments (NREs) and by the
similarity between some NVEs (e.g., WoW) and NREs, we conduct a comparative anal-
ysis of mobility in NVEs and NREs. Based on the observed characteristics of NVEs
mobility, we propose a mobility model to generate mobility inputs for NVEs.

Understanding in-NVE mobility can be useful to tune existing designs of NVEs and
to innovate in the design of future NVEs. For example, recent advances in server cluster
architectures [60] and peer-to-peer overlays [99] need to be validated against mobility
workloads and, perhaps, tuned further to specific characteristics, e.g., their structure may
need to be tuned to the area visitation characteristics, etc. For cloud-based NVEs such
as [101], the load of various servers is strongly correlated with player mobility, due to
player interaction [4, 160], cell visitation [60], etc. As has been shown in preliminary
work on this topic [131], cloud-based workloads can be much more efficiently supported

54

if the leasing of resources is in-tune with the workload.

NVE mobility is difficult to understand not only because public datasets are scarce,
but also because NVEs cover a broad spectrum of applications. Among the most popu-
lar NVEs are MMOGs such as World of Warcraft and user-created NVEs such as Second
Life (SL). For WoW, the game developer designs the virtual world to resemble a medieval,
albeit fantasy-based, real-world environment. The citizens of WoW need to be highly mo-
bile, to be able to finish quests of the storyline, trade goods, and socialize with the other
players. Different from WoW, the virtual world of SL is created by the users themselves;
this user-generated content should primarily foster socialization, collaboration, and even
supervised learning. We pose and investigate the following research question: How sim-
ilar are WoW and SL avatar mobility patterns? To answer it, we collect a new dataset of
WoW mobility traces, and conduct a comprehensive and comparative study across multi-
ple NVE datasets.

The scarcity of NVE mobility datasets is not paralleled by the existence of NRE mo-
bility data. Although few NRE datasets are public, large-scale studies of millions of
real-world citizens have appeared in the last decade [87, 177]. A high-risk, high-return
idea would be to use these traces in NVE scenarios or even create NVE mobility models
based on real world models, for example, when the NVE is by design similar to an NRE
for which mobility is well understood, either spatially or w.r.t. the activities that users
mostly engage in. WoW and many other NVEs have been designed starting from real-
world cities (e.g., medieval cities), and equipped with traditional city-center functions
such as meeting and trading. To immerse users, the movement of users in virtual worlds
is designed to be as similar as possible to movement in the real world, albeit faster. The
high-risk with using NRE traces in NVE scenarios is that the characteristics of NVE and
NRE mobility may never match, in spite of the intents of the NVE designers. For exam-
ple, real-world users do feel the physical effects of movement, including tiredness, legal
restrictions, sometimes even cost, etc. The high-return is that the known NRE mobility
traces are orders-of-magnitude larger than any of the NVE mobility traces previously re-
ported, and there are many NRE mobility models already developed [118]. Thus, in this
chapter we also set to answer the research question How similar are the characteristics of
mobility in NVEs and NREs? In this chapter, we compare two NVE and two NRE mobil-
ity traces, and show evidence that their characteristics share many common patterns. We
also point out their main differences, which need future research before NRE mobility
related research can be used in NVE studies.

Despite a significant amount of research dedicated for designing NVEs [83,137,231],
there is little research that validates their approaches against NVEs mobility traces [26,70]
or realistic mobility models. The most commonly used mobility models in NVEs are Ran-
dom Waypoint mobility model (RWP) and HotSpot model. Although these models can
serve as inputs for NVEs architectures, the simulation obtained from NVEs traces and

55

those simple models can be significantly different [135, 180]. Thus, a realistic mobility
model for NVEs is needed to evaluate the performance of NVE designs. In this chapter,
we develop SAMOVAR, a Statistical Area-based MObility model for VirtuAl enviRon-
ments. We show through extensive evaluations that SAMOVAR can produce many of
the mobility patterns observed in NVEs. Further we show that SAMOVAR can produce
similar simulation results compared to traces from WoW and SL.

In summary, our main contributions are listed as follows.

1. We collect a detailed and large-scale mobility dataset from the NVE World of War-
craft (Section 5.2), and share the dataset via the Game Trace Archive [92].

2. We conduct a comprehensive study of human mobility characteristics in both
virtual- and real-world environments (Section 5.3). The analysis in this chapter
can help NVEs designers better planning resources and provide a base for building
a mobility model for simulation.

3. We propose an NVEs mobility model which can model four mobility character-
istics: pause duration, velocity, area popularity, and distinct visited areas (Sec-
tion 5.4).

4. We perform a large amount of simulations to show that the proposed mobility model
can reproduce many mobility patterns observed in NVE traces (Section 5.5). We
show that the simulation results obtained from our model on a client/server archi-
tecture are similar to traces from World of Warcraft and Second Life.

5.1 Background

In this section, we describe the terminology used and the mobility characteristics studied
in this chapter.

5.1.1 Terminology

• Avatars (players, persons) are the moving entities.

• Map in which movement takes place is well modeled by a grid of rectangular, non-
overlapping areas.

• Flight is a straight-line trip without pause or significant directional change. The
“angle model” of Rhee et al. [179] allows for several consecutive straight line trips
to be connected into a single flight if the angle between consecutive trips does not
change the general direction of the flight.

56

• Waypoints are the positions on a map. An avatar can only pause (stay in a position
without movement) in waypoints.

• Pause duration is the time spent by an avatar in a waypoint.

• Velocity (or movement speed [130], or speed) is the rate of change of position; the
average speed is the ratio between the flight length and the time elapsed between
the start and the end times of the flight.

• Visit, we define a visit to a waypoint only if an avatar pauses in that waypoint.

• Area popularity is the popularity of an area defined as the total number of distinct
persons visited that area for a specific time duration.

• Distinct visited areas is the set of areas that an avatar visits.

5.1.2 Mobility Characteristics

In this chapter, we focus on six mobility characteristics which have been investigated in
the past and shown to significantly affect the performance and reliability of NREs. Some
of the characteristics have been also shown to have an impact of the performance of NVEs
too. These characteristics are:

• (C1) Long-tail distribution of flight lengths [87]: human usually travel short dis-
tances and occasionally travel long distance.

• (C2) Long-tail distribution of pause durations [179].

• (C3) Heterogenous movement speed [130]

• (C4) Skewed popularity of areas [174, 177]; for example, certain areas of cities
are very popular, while others are rarely visited.

• (C5) Invisible boundary of human movement [87]: most of the time, people only
travel between home and workspace, and around a few preferred locations.

• (C6) Different personal preferences for areas [203].

5.2 Datasets

In this section, we introduce the data collection processes and the four datasets used in
this chapter.

57

Dataset World Citizens Space Time Granularity
WoW (ours) Virt. 31,290 4 cites 2w 1s
SL [135] Virt. 26,714 4 zones days 10s
GPS [24] Real 1,366 3 cities 1w 6s

GPS-2 [179] Real 52 2 campuses days 30s

Table 5.1: Dataset overview.

5.2.1 Data Collection

We have collected a very large and detailed dataset from a popular virtual world, World of
Warcraft (WoW). WoW adopts a sharding architecture with multiple independent realms
with same starting scenario. Each realm may have different types of interaction styles:
normal, role-playing and player versus player (PVP). We collected 17,583 users’ trace
from 3 capital cities (Ironforge, Orgrimmar, and Stormwind) of the popular Sil-
vermoon server (normal realm in Europe) and 13,707 users from Stormwind (we call it
Stormwind-2 from now on) of the popular Argent-Dawn server (role-playing realm in
Europe).

Each virtual citizen of WoW can observe the presence and activity of any other virtual
citizen within a radius of about 100 in-game meters. Unlike the real world, the observation
range in WoW is not affected by interposing objects such as buildings or other citizens.
To collect the WoW dataset, we have developed a tracing script and used it to observe
selected cities. Our script logs-in several regular WoW clients and coordinates them to
observe a large part of a city. To observe mobility in a city, our client deploys virtual
citizens such that their observation areas cumulatively cover a major part of the city. The
client uses 6 machines per measurement, each running several WoW clients and collecting
their observed data. Due to the availability of machines, which are regular PCs used for
coursework at our university, during week days we can only collect data during the night.
In total, we have obtained data for 3 complete weekends and about 20 week-day evenings
during April and September 2011, resulting in mobility traces for over 30,000 anonymous
virtual citizens.

5.2.2 Dataset Description

We use the mobility dataset collected from WoW, and use three other datasets that are
collected by others from virtual and real worlds. The characteristics of the datasets are
summarized in Table 5.1.

Our dataset, WoW, is large-scale (over 30,000 citizens) and multi-location (4 cities); it
was also collected using fine-grained sampling (1 sample every second) over a significant
period (several weeks). We have performed typical data sanitation on our datasets by
removing un-realistic movements if the movement speed is higher than 100m/s (probably

58

caused by avatar teleportation or GPS miscalculation), overall removing less than 1%
of the raw data. The SL dataset is collected and released by Liang et al. [135] from
Second Life, and includes about 25,000 citizens from 4 zones: Isis, Ross, Pharm and
Freebies. The GPS dataset is collected by Bohte and Maat [24] by distributing GPS
devices to over 1,300 persons live in 3 cities for transportation research. The GPS-2
dataset is collected by Rhee et al. [179], and contains traces of about 50 persons from two
campuses: KAIST and NCSU.

5.3 Characterization Results

In this section, we answer the question How similar are WoW and SL avatar mobility
traces? and How similar are virtual and real-world human mobility traces? To answer
this question, we investigate the characteristics (C1)–(C6) (see Section 5.1.2) for WoW,
SL and GPS (Section 5.2). We only investigate (C1)–(C3) for GPS-2 due to the relative
small sample sizes and the mobility of citizens are limited to campus scenarios.

Where the datasets comprise multiple locations, we analyze both the entire dataset
and each location, in turn. Unless otherwise noted, we have obtained similar results for
each investigated dataset. To study characteristics among different traces, we look at
the basic descriptive statistics, and then use the distribution fitting method (described in
Section 5.3.1) to look at the trend and distribution of data. We present here only a selection
of representative results.

Our main finding is that the mobility characteristics for the two virtual world (WoW,
SL) traces have many similarities. The flight length (C1), pause duration (C2), and area
popularity (C4) follow long-tail distributions; avatars’ moving velocities are heterogenous
(C3), avatars only visit a small portion of virtual cities (C5); and preference to visit only a
few, preferred areas does exists (C6). In comparison, for GPS, the flight length is longer;
moving speed is less heterogeneous and the personal preference to some areas is higher.

5.3.1 Method for Distribution Fitting

Because virtual worlds may distort the sizes of buildings and the speed of avatars, in
comparison with real-world environments, we are interested in study the general trends
and distributions of mobility characteristics, besides basic statistics values. For each trace
considered in this chapter, we attempt to fit the empirical data corresponding to all the
characteristics studied in this chapter with a set of well-known probability distributions
that are available in most simulation and experimental toolboxes, namely the the Expo-
nential, the Weibull, the LogNormal, the Gamma, the Normal, and the General Pareto
distributions.

59

10
0

10
1

10
2

10
3

0

20

40

60

80

100

AoI range

100 meters

Flight Length [meter]

C
D

F
 [%

]

Ironforge
Orgrimmar
Stormwind
Stormwind−2

10
0

10
1

10
2

0

20

40

60

80

100

Flight Length [meter]

C
D

F
 [%

]

AoI range

64 meters

Isis
Ross
Pharm
Freebies

Figure 5.1: Flight length distribution of (left) the WoW dataset, and (right) the SL dataset
(horizontal logscale).

The fitting is performed using maximum likelihood estimation (MLE), which deter-
mines for a distribution the parameters that lead to the best fit with given empirical data.
Then, we use a method for assessing the goodness-of-fit (GoF) that has been shown to
have good results for large datasets in distributed systems studies [125]. In this method,
the results of MLE fitting are tested using a goodness-of-fit (GoF) procedure that com-
bines the Kolmogorov-Smirnov (KS) and the Anderson-Darling (AD) GoF tests. Using
both of these tests provides a more robust GoF test than using any of the KS and AD tests
individually, since the KS test is more sensitive to the center of distributions and the AD
test is more sensitive to the tail. The method uses 0.05 as the significance level for the
p-value, below which the null hypothesis that the fitted distribution represents the empir-
ical data is rejected. The p-value used by this method is the average of 1,000 p-values,
each of which is calculated by randomly selecting 30 samples from the empirical data and
applying the GoF tests to the selected data. The distribution which passes the GoF test
and has the lowest D value, the largest gap between the empirical cumulative distribution
function (CDF) and fitted CDF, is selected as the best fit. We call the probability distribu-
tion of data is “long-tail” if the tail of the probability distribution is longer than the fitted
exponential distribution of data.

5.3.2 Flight Length (C1)

Figure 5.1 shows the cumulative distribution function (CDF) of the flight lengths of WoW
(left) and SL (right). The flight lengths of WoW traces are long-tail distributed and the
flight lengths for all four cities are similar. The mean values of flight lengths in the four
virtual cities are around 20 to 25 meters. Most (about 85% to 90%) of the flights are
shorter than the area of interest (AoI) range (100 meters) of WoW. For the SL traces, the

60

10
1

10
2

10
3

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Flight Lengths [meter]

C
C

D
F

 P
(X

>
x)

Data
Exponential
Lognormal
Weibull
Normal

10
1

10
2

10
3

10
4

10
5

10
6

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Flight Lengths [meter]

C
C

D
F

 P
(X

>
x)

Data
Exponential
Lognormal
Weibull
Normal

Figure 5.2: Distribution fitting of (left) WoW dataset, and (right) the GPS dataset (all axes
logscale).

mean values of flight lengths in the four zones are around 19 to 29 meters. Most (80% to
90%) of the flight lengths are shorter than the AoI range (64 meters). This may suggest
that when avatars travel in virtual worlds, most of them travel within the boundary of AoI,
and occasionally avatars travel long distances.

For the two real world datasets: the mean value of flight lengths of GPS is 215m,
while the mean values of flight lengths for KAIST and NCSU are 61m and 71m, re-
spectively. The flight lengths of the two real world datasets have longer tail than the
two virtual world datasets: the 99% percentiles for the two virtual world datasets are
about 150m to 230m, while the 99% percentiles for the two real world datasets are about
600m to 4, 000m.

Figure 5.2 depicts the results of fitting for Stormwind, WoW and GPS. The verti-
cal axis shows the complementary cumulative distribution function (CCDF) of the flight
lengths, in logarithmic scale (Note that the scales of the two figures are different). We
find that the best fit for Stormwind is LogNormal distribution (mean µ = 2.4 deviation
σ = 1). For the GPS data, the best fit is a LogNormal distribution (µ = 3.4 σ = 1.65)
(the distribution fitting diverge a bit when the flight lengths are higher than 1, 000m). The
flight lengths distributions for the two virtual world datasets (WoW and SL) and the two
real world datasets (GPS and GPS-2) follow long-tail distributions, and all of them can
be best fitted using the LogNormal distribution.

5.3.3 Pause Duration (C2)

Figure 5.3 shows the pause durations distribution of the WoW and the SL datasets. Overall,
the pause durations of both datasets are long-tail, about 80% of the pause durations of WoW
is shorter than 30 seconds. The pause duration of Stormwind is slightly lower than

61

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Pause Duration [second]

C
D

F
 [%

]

Ironforge
Orgrimmar
Stormwind
Stormwind−2

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Pause Duration [second]

C
D

F
 [%

]

Isis
Ross
Pharm
Freebies

Figure 5.3: Pause duration distribution of (left) the WoW dataset, and (right) the SL dataset
(horizontal logscale).

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Pause Duration [second]

C
C

D
F

 P
(X

>
x)

Data
Exponential
Lognormal
Weibull
Normal

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Pause Durations [second]

C
C

D
F

 P
(X

>
x)

Data
Exponential
Lognormal
Weibull
Normal

Figure 5.4: Distribution fitting of (left) WoW dataset, and (right) the GPS dataset. (all axes
logscale.)

the other three cities, while the other three have very similar distributions. For the SL
dataset, about 70% to 80% of the pause durations is shorter than 100 seconds. The pause
durations for the Pharm zone is higher than the other because the main activities of that
zone is camping (staying in the same location). The pause durations of the WoW datasets
are significantly shorter than the SL datasets. The difference of the pause durations for the
two datasets may be caused by the design of the two NVEs: SL focuses more on social
aspects, while WoW is more task-oriented and the interactivity between players is more
frequent.

For the real-world datasets, the pause durations for those datasets are long-tail too.
The average pause duration of the GPS dataset is about 2.5 minutes, and the 99% per-
centile of pause durations is about 40 minutes. For the GPS-2 dataset, the mean values

62

0 10 20 30 40
0

20

40

60

80

100

Velocity [m/s]

C
D

F
 [%

]

Ironforge
Orgrimmar
Stormwind
Stormwind−2

0 5 10 15 20
0

20

40

60

80

100

Velocity [m/s]

C
D

F
 [%

]

Isis
Ross
Pharm
Freebies

Figure 5.5: Velocity distribution of (left) the WoW dataset, and (right) the SL dataset.

0 5 10 15 20 25 30
0

20

40

60

80

100

Velocity [m/s]

C
D

F
 [%

]

GPS

0 5 10 15 20 25 30
0

20

40

60

80

100

Velocity [m/s]

C
D

F
 [%

]

KAIST
NCSU

Figure 5.6: Velocity distribution of (left) the GPS dataset, and (right) the GPS-2 dataset.

range from 5.5 to 6 minutes, and the 99% percentiles are around 1.5 hours.
Figure 5.4 depicts the results of distribution fitting for the Stormwind, WoW and

GPS. The pause durations observed in Stormwind can be best modeled using the Log-
Normal distribution (µ = 1.63 σ = 1.45). The fitting result for the GPS dataset is the
LogNormal distribution (µ = 3.41 σ = 1.44). In summary, the pause durations distri-
butions for the two virtual world datasets: WoW and SL and the two real world datasets:
GPS and GPS-2 follow long-tail distributions, and all of them can be best fitted using the
LogNormal distribution.

5.3.4 Velocity (C3)

Figure 5.5 shows the velocity distributions for the WoW (left) and the SL (right) dataset.
Overall, the speed distributions of the two virtual worlds are heterogeneous. For the WoW

63

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Number of area visits

C
D

F
 [%

]

10 x 10
20 x 20
50 x 50

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Number of area visits

C
D

F
 [%

]

Isis
Ross
Pharm
Freebies

Figure 5.7: Number of area visits of (left) the WoW dataset, and (right) the SL dataset
(horizontal logscale).

dataset, the average velocities are about 7 to 8 m/s, and the 99% percentiles are about
27 to 29. For the SL dataset, most of the movement speeds are lower than 1.5 m/s. The
velocities across different virtual cities are different: the speeds for Isis and Pharm are
slightly slower than that of Ross and Freebies,

Figure 5.6 shows the velocity distributions for the GPS and GPS-2 dataset. The
movement speeds are heterogeneous. For the GPS dataset, the mean and median velocities
are 1.3 m/s and 3.1 m/s, respectively. For the GPS2 dataset, the movement speeds for
NCSU are higher than that of KAIST.

5.3.5 Area Popularity (C4)

To investigate area popularity, we first split the environments into rectangular grids, where
each cell is an area. Rectangular grids are convenient for setting up simulation scenarios
and may enable fair comparison between different city scenarios. We explore different
values for the size of each area, which is the parameter of the splitting procedure; we
split maps into areas of 10m× 10m up to 50m× 50m. For each area size, we quantify
the popularity of the resulting areas using two main indicators: the number of area visits,
defined for each area as the number of pauses observed in that area; and the number of
area visitors, defined for each area as the number of unique visitors paused in that area.
Intuitively, the former indicator quantifies the total traffic through an area well, whereas
the latter does not account for returning visitors.

Number of area visits: Figure 5.7 (left) shows the number of area visits of a 1 day
trace from Ironforge, by splitting the map into areas of 10m × 10m, 20m × 20m,
and 50m × 50m. The visitation count increases with the increasing size of the areas.
Large portions of the map are not visited at all, about 75% of the 10m × 10m areas are

64

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Number of area visitors

C
D

F
 [%

]

10 x 10
20 x 20
50 x 50

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Number of area visitors

C
D

F
 [%

]

Isis
Ross
Pharm
Freebies

Figure 5.8: Number of area visitors of (left) the WoW dataset, and (right) the SL dataset.

not visited once, and about 40% of the 50m × 50m areas are not visited. The visitation
count is long-tail; for 10m × 10m areas, the 85% percentile is 10 while the maximal
value is about 1,921. Figure 5.7 (right) shows the results for SL, when splitting the map
into areas of 10m × 10m size. Similarly to WoW, large parts of the map are not visited,
3 out of 4 zones have 80% unvisited areas; and the distribution of the number of area
visits of SL is long-tail. The number of area visits for GPS is long-tail too, when it is
partitioned into areas of 10m× 10m, over 99% of the areas is not visited at all, while the
most popular area is visited about 900 times.

Number of area visitors: Figure 5.8 shows the number of area visitors of a 1 day
trace from Ironforge and SL. The number of area visitors is smaller than the number
of area visits, but it is long-tail too. Figure 5.8 (left) shows the number of visitors for
Ironforge, by splitting the map into areas of 10m× 10m, 20m× 20m, and 50m×
50m. For 10m×10m areas, the 85% percentile is 6 while the maximal value is about 453.
Figure 5.8 (right) shows the results for SL, when splitting the map into areas of 10m ×
10m size. Similar to WoW, large parts of the maps are not visited, and the distributions of
the number of area visitors for SL are long-tail. For the GPS dataset, when it is partitioned
into areas of 10m × 10m, the most popular areas is visited by 80 persons, and when it
is partitioned into areas of 50m× 50m, the most popular area is visited by 173 persons.
The distributions of the number of area visitors for the WoW, SL, and GPS datasets are
long-tail.

5.3.6 Invisible Movement Boundary (C5)

We now look at the invisible movement boundary, that is, the phenomenon that humans
tend to travel mostly within a fixed and reduced set of locations around home and office
(see Section 5.1.2). We find that the invisible movement boundary is present in both real

65

0 2 4 6 8 10 12
0

20

40

60

80

100

Normalized number of distinct visited areas [%]

C
D

F
 [%

]

Ironforge
Orgrimmar
Stormwind
Stormwind−2

0 5 10 15 20
0

20

40

60

80

100

Normalized number of distinct visited areas [%]

C
D

F
 [%

]

Isis
Ross
Pharm
Freebies

Figure 5.9: Normalized number of distinct visited areas of (left) the WoW dataset, and
(right) the SL dataset.

and virtual worlds. To quantify the boundary, we use the proxy metric normalized number
of distinct visited areas, measured per person. Figure 5.9 shows the number of distinct
areas, normalized by the total number of visited areas per map. The higher this value is,
the higher the probability of avatars meeting each other. This metric can be useful for
modeling mobility: when generating waypoints on maps, the model can limit the avatar
to visit only a small subset of waypoints. As Figure 5.9 shows, for WoW and SL, the
normalized number of distinctive areas is low. Most (about 95%) of the avatars visit less
than 5% of the visited areas; only a few persons visit more than 10% of the visited areas.
In average, each avatar visits about 0.4 to 1% of the areas in the WoW dataset; and in SL,
each avatar visits about 1.2 to 2% of the areas.

For the GPS dataset, most (about 95%) of the avatars visit less than 0.5% percent of
the visited areas. We attribute the significantly lower values for the GPS data to the fact
that the real world cities are much bigger than the virtual world cities: the GPS dataset
cover a map about 30 km × 30 km, while the largest virtual cities in the WoW and SL is
smaller than 2 km × 2 km. For the empirical distributions: the normalized number of
distinct visited areas for Ironforge can be fitted best by the Weibull distribution (scale
a = 2.34, shape b = 1.99), and the best fit for the GPS dataset is the Weibull distribution
(a = 0.12, b = 2). However, the SL traces can be better modeled using the LogNormal
distribution.

5.3.7 Personal Preference in Area Visitation (C6)

In SL, some avatars like to visit the same group of persons [221]; and real-world citizens
have strong preferences for different areas [24]. We study the personal preferences of
virtual and real- world in this section. For each of the area the avatars visited, we count

66

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

Gini coefficient

C
D

F
 [%

]

Ironforge
Orgrimmar
Stormwind
Stormwind−2

0 0.2 0.4 0.6 0.8
0

20

40

60

80

100

Gini coefficient

C
D

F
 [%

]

Isis
Ross
Pharm
Freebies
GPS

Figure 5.10: Gini coefficient of personal preference weight (left) the WoW dataset, and
(right) the SL dataset and GPS dataset.

the number of time the avatar visited that area as personal preference weight. Then for
each person, we calculate the Gini coefficient (also called Gini index) of the personal
preference weight. It is used to quantify the inequality of personal preference (a value of
1 means very unequal, whereas 0 means perfectly equal).

Figure 5.10 shows the Gini coefficient distribution of each person for WoW, SL, and
GPS. For this figure, we remove the persons that visit less than 5 areas (the result is similar
without removal). In general, the two virtual world datasets have similar Gini coefficient
distributions: most (80% to 95%) of the Gini coefficients are lower than 0.4. For the
GPS dataset, about 40% are higher than 0.4. The probability distribution functions of the
Gini coefficients for all datasets are bell-shape curves, can be modeled using the Weibull
distribution.

The Gini coefficients of the personal weights in GPS dataset is higher than in the two
virtual world datasets. This may suggest that the personal preference for areas is stronger
in real-world environments than in virtual worlds, and has higher predictability in real-
world human mobility than in virtual-world avatar mobility. As possible explanations,
we point to the higher rate of movement, to the less restrictive of movement, and to
other lower penalties for movement (legal restrictions, cost, etc.) in virtual vs real-world
mobility.

5.4 SAMOVAR: An NVE Mobility Model

In this section we introduce SAMOVAR, the Statistical Area-based MObility model for
VirtuAl enviRonments. SAMOVAR models microscopic, individual mobility in virtual
environments, but can be used to generate macroscopic, population-wide mobility traces.
The core of our model is a generative process, in the sense that the model incorporates

67

the notion of time and predicts what sequence of movements would be taken by each
individual, so that movement traces are generated.

SAMOVAR consists of three parts, the Characteristics modeling, the Map generation,
and the Walking. The characteristics modeling models each characteristic of an NVE
trace using empirical modeling, the procedure is described in Section 5.3.1. The Map
generation procedure generates a map with waypoints and paths between waypoints. The
Walking part of SAMOVAR determines how avatars walk between waypoints.

5.4.1 Map Generation in SAMOVAR

In SAMOVAR, a map consists of waypoints and paths. Avatars only travel along the
generated paths. The generation of SAMOVAR mimics the traffic network path of virtual
world that some places of interest are well connected, in order to trave from a less popular
zone to a popular zone far away, it is common to go to a nearby popular zone first and
then using the transportation service of that popular zone to go to zones far away. The
map is generated in SAMOVAR in six steps:

1. Partition the map into 10m×10m areas. Randomly select n area distributed across
the map. The center point of each selected area is used as a waypoint.

2. Assign a Popularity weight (p) according the LogNormal distribution to each way-
point obtained in last step, then classify each waypoint to one of m levels according
to p. Each waypoint is classified by a level, the level of a waypoint is determined
by p. We use logarithmic binning to determine the level of a waypoint, that is, each
waypoint level contains a fixed multiple of the number of waypoints included in the
previous level.

3. Connect the heaviest waypoint with each other.

4. Connect each waypoint with its closest waypoint of higher level.

5. Connect same-level waypoints with each other, if they are connected to the same
higher level waypoint.

6. Connect waypoints with each other if their distance is lower than a threshold value
r.

We illustrate the map operation in SAMOVAR in Figure 5.11. Each waypoint has a
level between 1 (highest) and 3 (lowest). To travel from waypoint A to waypoint E, an
avatar would first go from waypoint A to waypoint B, then to C, etc. Waypoints F and
G subordinate to different waypoints but are directly connected, because their distance is
smaller than r. The generation of map of SAMOVAR is inspired by HTM [96]. Different

68

Figure 5.11: A generated map.

from HTM, which assigns a same weight for waypoints of the same level, SAMOVAR
assigns LogNormal distributed weighs to waypoints. SAMOVAR connects waypoints
with each other if their distance is lower than r while HTM does not. The traffic network
of SAMOVAR is more realistic.

5.4.2 Walking Paths Generation in SAMOVAR

Walking paths in SAMOVAR are generated via simulation. The generation process in-
cludes the path generation and the path traveling processes. The generation process as-
signs to each avatar a limited number of waypoints to visit during the simulation. And
each avatar will have different visitation frequencies to different waypoints. The traveling
process determines how an avatar will travel to the assigned waypoints. We describe path
generation and path traveling, in turn.

Generation process

The path generation process is based on an observation of the NVEs mobility traces
that many avatars only visit a small amount of areas of the whole city (see C5 in Sec-
tion 5.3.6). Besides, different avatars like to visit different areas of a virtual-world city:
auction houses, profession trainers etc. The generation process is described as follows:

1. Assign to each avatar the number of waypoints this avatar can visit, k, sampled
from a LogNormal distribution.

2. Assign to each person a start waypoint. We explore two ways to assign the start
waypoint for each avatar, SAMOVAR-U and SAMOVAR-W. SAMOVAR-U assigns
the start waypoint randomly while SAMOVAR-W assigns the start waypoint accord-
ing to the weight of waypoint established by the map generation part of SAMOVAR.
Higher weight waypoints have a higher number of avatars.

69

Characteristic Distribution (Parameters) D value KS AD
Pause duration ∆t LogNormal (1.82, 1.57) 0.12 0.322 0.613

Velocity v LogNormal (1.82, 0.67) 0.09 0.353 0.570
Popularity weight p LogNormal (1.65, 1.30) 0.14 0.310 0.672

Number of visited areas k LogNormal (2.27, 1.02) 0.06 0.416 0.688

Table 5.2: Fitting results for the Ironforge trace.

3. For each avatar, iteratively add the waypoints neighboring the already assigned
waypoints, until the number of assigned waypoints reaches k (step 1). The complete
set of waypoints assigned to an avatar is the visit set of that avatar.

4. For each avatar, assign a personal preference w for the waypoints in the visit set
of the avatar, as a per-waypoint personal weight. The personal preference weight
is sampled from Zipf distribution (θ = 1). The personal weights are randomly as-
signed to the waypoints in visit set. The reason why we assign a personal weight
to each waypoint lies that avatars do have different visitation frequencies to differ-
ent areas (see Section 5.3.7). Currently we model the personal weight to follow a
Zipf distribution (θ = 1), we plan to investigate more on the personal preference
modeling.

Path traveling process

Traveling occurs for an avatar only within the personal waypoint graph, that is, the sub-
graph of the map that spans only the waypoints in the visit set of the avatar, and includes
all the paths between them (generated in map generation part). The path traveling process
has the following steps:

1. Each avatar starts in the start waypoint assigned in generation process at time t = 0.

2. When not traveling or pausing, a person will change location by first selecting a
waypoint to visit, from the waypoints in the visit set and according to the personal
weight of each eligible waypoint. Then, the avatar travels using the shortest path in
the personal waypoint graph with a speed v sampled from a LogNormal distribu-
tion.

3. After reaching the selected waypoint, each person pauses for ∆t time units, which
is drawn from a LogNormal distribution.

5.5 Validation and Application to NVEs

In this section, we validate SAMOVAR (SAMOVAR-U and SAMOVAR-W) against
NVE traces using four mobility characteristics: pause duration, velocity, area popular-

70

Characteristic Distribution (Parameters) D value KS AD
Pause duration ∆t LogNormal (3.50, 1.22) 0.16 0.189 0.578

Velocity v LogNormal (0.82, 0.74) 0.14 0.220 0.323
Popularity weight p LogNormal (2.51, 1.47) 0.07 0.398 0.636

Number of visited areas k LogNormal (1.78, 0.88) 0.10 0.364 0.715

Table 5.3: Fitting results for the Freebies trace.

Name Ironforge Freebies
Map size 791m× 528m 256m× 256m

Number of avatars 1,302 3153
Number of waypoints n 1,378 651

Number of levels m 9 9
Connection range r 20m 20m

Area of Interest range R 100m 64m

Table 5.4: Parameters for simulation.

ity, and distinct visited areas. We show that SAMOVAR can reproduce all four char-
acteristics while random waypoint and HotSpot model fail. Then, to show the practi-
cality of SAMOVAR, we use the mobility traces produced by SAMOVAR, RWP, and
HotSpot to drive the simulation of NVEs architecture. The simulation results produced
by SAMOVAR are close to the results obtained by using traces from two NVEs: WoW
and SL, while the results obtained from RWP and HotSpot are significantly different. We
conclude that SAMOVAR is a valid human mobility model which can be used for NVE
evaluations.

5.5.1 Experimental setup

For this study, we use two NVE traces: Ironforge and Freebies. Ironforge

is a one day trace we collect from the popular city Ironforge of WoW (see Sec-
tion 5.2.1). In total, the Ironforge trace contains 1,302 avatars’ movement trajectories.
Freebies is a one day trace collected by [135] from the Freebies zone of SL, and
contains movement information of 3,153 avatars. The fitting results for the two traces are
listed in Table 5.2 and 5.3.

To compare with the Ironforge trace, the simulation is conducted in a 791m ×
528m map, this is the same map size as the Ironforge city. We set the number of
waypoints of SAMOVAR to be 1,378, because there are 1,378 areas are visited in
Ironforge. The comparison with Freebies traces is configured similarly. All the
default simulation parameters are listed in Table 5.4.

We describe the mobility models that we compare with in turn. In the random way-
point (RWP) model, each avatar will randomly select a destination in the simulation area
and goes to destination along the straight line connecting current waypoint and destina-
tion; upon arrival, the avatar will pause for ∆t which is uniformly distributed between
[1, 60]. The HotSpot models can be viewed as a weighted random waypoint model, in

71

10
0

10
1

10
2

10
3

10
4

0

20

40

60

80

100

Pause Duration [meter]

C
D

F
 [%

]

Ironforge
SAMOVAR−U
SAMOVAR−W
HotSpot
RWP

0 20 40 60 80
0

20

40

60

80

100

Velocity [meter/second]

C
D

F
 [%

]

Ironforge
SAMOVAR−U
SAMOVAR−W
HotSpot
RWP

Figure 5.12: SAMOVAR-U: Pause duration (Left) and Velocity (Right).

which the probability to go to a waypoint is proportional to its weight, we assigned a
popularity weight to each waypoint. The popularity weight is assigned using the same
distribution as SAMOVAR. For RWP and HotSpot models, the velocities for traveling is
1m/s.

5.5.2 Validation

For validation, we record all the traces generated by each mobility model, and extract
four characteristics from the generated traces: pause duration, velocity, popularity, and
number of distinct visited areas. After extracting the four characteristics, we compare
the distribution of generated characteristics against the distribution of characteristics of
Ironforge. For the three properties that are directly generated from empirical model,
pause durations, velocity, number of distinct visited areas: the generated properties of
SAMOVAR-U and SAMOVAR-W are very close to the original data; for pause durations,
the distributions generated by SAMOVAR are slightly higher (10%) than the real trace;
for area popularity, the distribution for both models is a bit lower (5% to 10%) than the
values in the Ironforge trace. For the Freebies trace, we obtain similar results that
the fitting to empirical data is much better than the alternatives.

Figure 5.12 (left) shows the pause duration for Ironforge, SAMOVAR-U,
SAMOVAR-W, RWP and HotSpot models. The distribution of pause durations gener-
ated by SAMOVAR is a bit (5% to 10%) higher than Ironforge when the pause du-
rations are lower than 20 seconds, after that SAMOVAR matches well with the trace.
As Figure 5.12 (right) shows, the velocities predicted by SAMOVAR matches closely
to real trace when the speed is lower than 8m/s, after that the velocities predicted by
SAMOVAR is slightly slower (about 5%) than real trace.

Figure 5.13 (left) shows the area popularity distributions for Ironforge,

72

10
0

10
1

10
2

10
3

0

20

40

60

80

100

Area popularity

C
D

F
 [%

]

Ironforge
SAMOVAR−U
SAMOVAR−W
HotSpot
RWP

0 50 100 150 200 250 300
0

20

40

60

80

100

Number of visited areas

C
D

F
 [%

]

Ironforge
SAMOVAR−U
SAMOVAR−W
HotSpot
RWP

Figure 5.13: SAMOVAR-U: Popularity (Left) and Number of Visited Areas (Right).

SAMOVAR-U, SAMOVAR-W, RWP and HotSpot models. The area popularity distri-
bution predicted by SAMOVAR is a bit (about 10%) higher than Ironforge trace
when the area popularity is lower than 20. After that the area popularity predicted by
SAMOVAR-U and SAMOVAR-W matches the trace well. Comparing to SAMOVAR-
U, SAMOVAR-W has a longer tail, this will lead to more avatars concentrate in popular
areas. The area popularity distribution predicted by SAMOVAR is much better than the
results obtained using RWP and HotSpot model. Figure 5.13 (right) shows the distribu-
tion of number of distinct visited areas per avatar, the distribution curve of SAMOVAR
is very close to the curve of Ironforge. Figure 5.12 and Figure 5.13 show that the
map generation and walking procedure of SAMOVAR does not distort the characteristics
which are modeled explicitly.

5.5.3 Application to NVEs

To show the practicality of SAMOVAR, we use the traces generated by SAMOVAR-U,
SAMOVAR-W, RWP, and HotSpot models to drive the simulation of NVEs, and compare
the results obtained using real traces: Ironforge from WoW and Freebies from SL.
As SAMOVAR, RWP and HotSpot are mobility models which does not model session
behaviors (when a player is online or not); to enable comparison with real traces, for
each of the simulated avatar with id i, we pick an avatar with the same id from the real
trace, and use the avatar’s session behavior as the behavior of the simulated avatar. The
SAMOVAR can be easily integrated with session behavior model such as [210], to enable
capturing both the mobility patterns and session behaviors of avatars.

We adopt client/server (C/S) architecture as the NVE architecture, because it is the
most commonly adopted architecture in industry, and it is also commonly used as a base-
line for comparison with different architectures. In C/S architecture, a central server is

73

responsible for the simulated virtual world, informing clients about events via network
communication. The server needs to inform all clients of any position change event within
the clients’ circular view of radius R (are of interest). We set the range R to be 100m for
Ironforge, as it is the area of interest (AoI) range of WoW. To mimic the environment
of SL, for Freebies trace, we set R to be 64m (the AoI range of SL) and the simulation
area to be 256m×256m (the size of that zone). The movement trajectories in Freebies
are sampled every 10 seconds. For each avatar in Freebies we interpolate the move-
ment trajectory to drive the simulation. For each experiment, we count the number of
messages sent by the server to clients and normalize the message count by dividing the
value by the message count obtained using real traces.

Figure 5.14 (left) shows the normalized message count (NMC) with increasing num-
ber of players for Ironforge, RWP, HotSpot, SAMOVAR-U and SAMOVAR-W. The
results obtained by using the RWP and the HotSpot models predict higher message counts
than the real trace, especially when the number of avatars is large (120% more mes-
sages when there are 1,000 avatars). For SAMOVAR, the message count predicted by
SAMOVAR-U and SAMOVAR-R is very close to Ironforge. The maximal gap be-
tween SAMOVAR-U and the real trace is only about 15%. As expected, SAMOVAR-U
predicts a lower message count than SAMOVAR-W, and the message count predicted by
SAMOVAR-U is closer to real trace than SAMOVAR-W.

For the Freebies trace, as Figure 5.14 (right) shows, for the HotSpot model, the
predicted message counts are about 4 to 5 times higher than the real trace. The RWP
model predict slightly lower messages count than the HotSpot model, but its predictions
are highly inaccurate too (about 4 to 5 times higher). For SAMOVAR-W, when the num-
ber of avatars is lower than 600, the NMC are about 1.8 to 1.4, but NMC quickly drops to
1.1 when the number of avatars is 800. For SAMOVAR-U, the simulation results made by
it are closer to real trace than the others. When the number of avatars is lower than 300,
the NMC ranges from 1.5 to 1.15. When the number of avatars is larger, SAMOVAR-U
matches the real trace well, especially when number of avatars is higher than 800, the
simulation results are only 5% different from real traces.

5.6 Related Work

In this section, we compare our work with research on workload characterization and
mobility model of NVEs.

Workload Characterization

Much of the prior work [39,44,74,121,173] has focused on network measurement, online
population, and session behavior. Since the late-2000s, several studies [128, 135, 221]

74

100 200 300 400 600 800 1000 1200 1300
0

0.5

1

1.5

2

Number of avatars

N
or

m
al

iz
ed

 M
es

sa
ge

 c
ou

nt

Ironforge

HotSpot
RWP
SAMOVAR−U
SAMOVAR−W

100 200 300 400 600 800 1000 1200 1300
0

1

2

3

4

5

6

Number of avatars

N
or

m
al

iz
ed

 M
es

sa
ge

 c
ou

nt

Freebies

HotSpot
RWP
SAMOVAR−U
SAMOVAR−W

Figure 5.14: Simulation results for C/S architecture.

collect and analyze mobility traces of NVEs. We compare our work with these, in the
following.

Closest to our work, Liang et al. [135] collect trace from SL, analyze the session be-
havior, contact patterns, and mobility patterns, in SL. For mobility patterns, they find that
the number of visits to different cells of a region is skewed (C4), accumulated pause du-
ration of avatars stay inside a cell is skewed (C2), and total travel distance of avatars is
skewed (similar to C1). Our studies complement each other. We study the five charac-
teristics (C1)–(C6) of two virtual world and two real world mobility traces, to find the
similarity and difference of mobility between virtual- and real- world.

Pittman and GauthierDickey [174] analyze traces of two NVEs: WoW and Warham-
mer; they find that the popularity of different areas is skewed (C4), which they model
using the Weibull distribution, and the durations each player stays in different zones vary.
Varvello et al. [221] find that in SL, the popularity of zones is skewed (C4), and about
half of the players form groups of good friends who meet frequently at the same lo-
cations (similar to C6). In contrast to [221], Miller and Crowcroft [149] find that, in
their observation scenario of WoW battleground, most movement is individual rather than
group-based. La and Michiardi [128] investigate (C4) and mobile communication related
metrics such as inter-contact time, using traces collected from SL, and use the traces to
evaluate the performance of wireless network protocols.

NVE Mobility Model

Mobility models for NVEs are rare [111, 135, 209]. The most commonly used mobility
models used in NVEs are the random walk (RW), the random waypoint (RWP), and the
HotSpot model. In the RW model, an avatar randomly chooses a direction and a speed to
travel, each movement in RW occurs in predefined time interval or movement distance. In

75

the random waypoint model, each avatar randomly chooses a waypoint in the simulated
map, and goes to the waypoint using a predefined speed. Different from RW, in RWP,
if an avatar has reached a waypoint, the avatar will pause for a duration that is sampled
from some distributions. The HotSpot model can be viewed as a weighted random way-
point model. In HotSpot model, a number of waypoints are randomly selected and each
waypoint is assigned a weight, and the probability to go to a waypoint is proportion to its
weight. Pittman and GauthierDickey [174] propose that the weight of waypoints follows
a Weibull distribution. SAMOVAR models pause duration, velocity, area popularity, and
distinct visited areas, while RW, RWP and HotSpots do not.

There are some workload models proposed for First Person Shooter (FPS) games. The
Networked Game Mobility Model (NGMM) [214] is a variation of the HotSpot model
which adds perturbations to movement paths and waypoints. Others [19, 220] use arti-
ficial intelligence (AI) players to generate workloads for FPS games. Using AI players
to drive simulation is computationally intensive; thus, it is difficult to conduct large-scale
experiments. Besides, the major user behaviors in NVEs are socializing, trading, finishing
quests etc; instead of constantly moving and shooting as in FPS games. SAMOVAR does
not model the mobility patterns in fighting scenarios, but in more real-life activities.

5.7 Summary

Understanding the characteristics of mobility is important for the design and tuning of
NVEs, but has been hampered until now by the lack of datasets and of comparative stud-
ies. In this chapter, we collect and characterize some mobility traces in NVEs; and we
have extended the comparison to also include networked real-world environment (NREs).
Further, we developed a NVEs mobility model which can generate realistic mobility
traces. We have collected detailed position information of virtual world mobility traces
from World of Warcraft (WoW). Using our traces, the public Second Life (SL) traces,
and two NRE traces collected by others and kindly shared with us, we have conducted
a comprehensive, comparative study of mobility characteristics. Our study has shown
evidence that long-tail distributions characterize well flight lengths, pause durations, and
area popularity; that the invisible boundary of human movement also appears for NVEs,
and that avatars do have preferences to different areas. We have also indicated several dif-
ferences between NVE and NRE mobility characteristics: the flight lengths distributions
have longer tail for NREs, the personal preference in area-visitation is more pronounced
for NREs. We propose SAMOVAR, a Statistical Area-based MObility model for VirtuAl
enviRonments. SAMOVAR models four mobility characteristics that are important to the
performance of networked virtual environments: pause duration, velocity, area popularity,
and distinct visited areas. Through simulation, we validate that SAMOVAR can produce
all four characteristics. Further, comparing to results of simulation using real world traces,

76

SAMOVAR can produce very close results, while the results for Random Waypoint and
HotSpot models are significantly different.

77

Chapter 6

Scaling NVEs through the
Area-of-Simulation Mechanism and
Architecture

Multi-Avatar Virtual Environments (MAVEs), such as Real-Time Strategy (RTS) [32]
games, have a large market, with millions of users [217]. Contrary to the trend of Internet-
based applications of allowing massive numbers of users to interact, the current generation
of MAVEs design technology is not scalable. As a typical example, the StarCraft series
limits the number of concurrent players in any gaming instance to 16; although hundreds
of thousands of instances may run concurrently, they are essentially not communicating.
This significant scalability limit stems from the difficulty of managing more than the
hundreds of avatars that even this small number of players control in each game instance.
Much previous work has focused on the scalability of Networked Virtual Environments
(NVEs) [83, 137, 231], leading to mechanisms such as Event-Based Lockstep Simulation
(EBLS) [172] [85] used in RTS games and military simulations, and the Area of Interest
(AoI) [3] used in Single-Avatar Virtual Environments (SAVEs). However, as we show
in this chapter, these mechanisms cannot be used to scale current MAVEs far beyond
their current limits. To address the problem of scaling MAVEs, we propose the Area of
Simulation scalability mechanism, we design an architecture around it, and we implement
and deploy this architecture to demonstrate its scalability.

In MAVEs, users can have and control simultaneously multiple avatars which are
their virtual world representations. We focus in this chapter on an important type of
MAVEs: RTS games, such as Blizzard’s StarCraft and Microsoft’s Age of Empires series,
are essentially Internet-based real-time world simulations in which players control avatars
to gather resources, to construct buildings, to train combat avatars, to explore unknown
territories, to trade, and to conquer.

Two main problems prevent MAVEs from scaling. First, the resource capabilities of

78

individual players may be exceeded: the bandwidth can become insufficient for transmit-
ting messages, the computers of the players can become overloaded in trying to update
the local copies of the game world status, etc. Second, MAVEs require strong consistency
among the players for important areas of the virtual world: deciding which vehicle to
move, where to build an important warehouse are decisions of precise location. Provid-
ing a consistent view to all players is challenging. When the scalability requirements are
not met, the consequences for the game operators can be significant: players may quit en
masse.

Two of the most commonly used scalability mechanisms: EBLS and AoI, do not work
for MAVEs. EBLS [83,85,172], the predominant event-based operational model for RTS
games, uses lockstep simulation [14] to ensure a globally consistent execution order of
events. EBLS trades off computation for bandwidth, by transmitting only events and by
having every player recompute the state from the received events. EBLS consumes lots of
computational power, and it cannot scale to hundreds of players on commodity computers,
as we have previously shown in our evaluation of RTS games [200]. AoI uses an update-
based operational model in which clients do not perform simulation of game states, but
receive state-updates for objects in close in-game proximity. AoI-based approaches can
scale to hundreds of concurrent avatars for single AoI. In this chapter, we analyze a large
number of game traces and show that single-AoI approaches are not suitable for RTS
games, which exhibit multiple, often-changing AoIs.

We propose, in this chapter, the Area of Simulation (AoS) scalability mechanism,
which combines and extends the EBLS and AoI mechanisms. The AoS mechanism allows
different areas of the virtual world to employ different operation models, from event-based
to update-based, depending on the recent interest shown by the player. The AoS mecha-
nism is the first mechanism to combine the event-based and the update-based operational
models for managing the areas that a player is interested in.

We further design a system architecture for MAVEs with as its main feature the sup-
port of multiple, dynamic AoIs managed using the AoS mechanism. This architecture
also includes two message dissemination mechanisms to reduce bandwidth consumption.
We demonstrate the viability of our architecture through realistic simulations and through
real-world experiments with a prototype game. By implementing and deploying a work-
ing system, we show that for a prototype yet realistic game, our architecture enables an
order of magnitude more users than the state-of-the-art while satisfying the overall re-
quirements of MAVEs.

In summary, our main contribution is five-fold:

1. We show that most MAVEs users have multiple areas of interest, which can change
often during gameplay. Thus, traditional approaches with a single AoI work poorly
(Section 6.1);

79

2. We propose a new scalability mechanism for MAVEs, the Area of Simulation (Sec-
tion 6.2).

3. We propose a system architecture for MAVEs based on Area of Simulation that
can scale to hundreds of concurrent players with tens of thousands of avatars (Sec-
tion 6.3).

4. We implement this architecture and evaluate the architecture in simulation (Sec-
tion 6.4) and with a real-world prototype RTS game (Section 6.5).

5. We compare our work with a large body of related approaches, both quantitatively
(Section 6.4 and 6.5) and qualitatively (Section 6.6).

6.1 Background

In this section, we discuss the characteristics and requirements of MAVEs in Section 6.1.1,
and we present a MAVE model in Section 6.1.2, we identify and discuss, in turn,
three main challenges in fulfilling the per-command and overall latency requirements
of MAVEs (Section 6.1.3). We also show that the traditional AoI mechanism, which
is widely used to scale NVEs, is not efficient for MAVEs (Section 6.1.4). Thus, a new
scalability mechanism and an accompanying architecture are needed to scale MAVEs.

6.1.1 Characteristics and requirements of MAVEs

MAVEs such as RTS games have unique characteristics and requirements among
NVEs [49]. Unlike other NVEs, such as First-Person Shooter (FPS) and Role-Playing
Games (RPG), in which the player controls one avatar and may encounter at any time at
most a few tens of other avatars (often not human-controlled characters), in RTS games
the players often need to control many tens or even hundreds of avatars and in-game
buildings, etc.

The control in RTS games combines long-term strategic decisions, including macro-
management of resources such as buildings and large groups of avatars; short-term strate-
gic decisions, including management of small groups of avatars; and quick tactical de-
cisions, including micro-management of individual units. Usually, players expect the
latencies not to exceed several seconds until the commands they issue are executed, or
even less [49, 151]. Moreover, even if individual commands take long to be executed,
the overall responsiveness of the game should not be compromised: players expect to see
their game visuals updated at a rate of over 24 frames per second [91].

80

turn
tick tick

sort, send events

and advance turn
tick tick

T = 100ms

25ms 25ms 25ms 25ms

Figure 6.1: Turn and tick.

6.1.2 A System Model for MAVEs

In MAVEs, each user can have multiple avatars and in-game buildings. Each avatar has
a pre-defined speed and range of vision. Typically each MAVE user has a base to pro-
duce/train the user’s avatars.

Many RTS games, such as StarCraft, Age of Empires, 0 A.D, OpenTTD, and Zero-k,
are EBLS-based systems [85, 172], for which events can be triggered not only by user
input (commands) but also by the (discrete) passage of time. Events are spatial and tem-
poral, that is, they have a well-defined area and duration of effect. In this chapter, we use
the terms “command” and “event” interchangeably.

In EBLS, the virtual world simulation is temporally divided into multiple simulation
turns. Each turn has a pre-defined real world length T ms; after T ms, a turn is cutoff and
a new turn is started. A turn is further divided into multiple simulation ticks. During each
tick, the virtual world will perform simulation logic and render virtual-world objects’
updates. In Figure 6.1, a turn’s duration is set to 100ms, and the turn is divided into 4
ticks, with each tick’s duration equal to 25ms. During a turn, each client will send events
to a server. At the end of a turn, the clients send turn advance messages to the server.
Upon receiving the turn advance messages, the server will sort all the events received
and send the sorted events to all clients, for execution. According to [172] and our own
experience, the time spend for sorting and sending (non-blocking) events is negligible. A
tick can be rendered using one or multiple frames; in this chapter, a tick is equivalent to
one frame and we use the terms “frame” and “tick” interchangeably.

In this section, we identify and discuss, in turn, three main challenges in fulfilling the
per-command and overall latency requirements of MAVEs (Section 6.1.3). We also show
that the traditional AoI mechanism, which is widely used to scale NVEs, is not efficient
for MAVEs (Section 6.1.4). Thus, a new scalability mechanism and an accompanying
architecture are needed to scale MAVEs.

6.1.3 Challenges in fulfilling MAVEs latency requirements

Resource challenge: Scaling MAVEs under tight latency requirements can be limited
by the lack of sufficient computational and networking resources. Although the average
upload-bandwidth required by RTS games is 2-8 KB/s for 8 players, it increases quadrat-
ically with the number of players [49], and for 100 players it can easily exceed 1 MB/s.
We have also shown in our previous evaluation of RTS games [200] that, as the number
of players increases, the computational resources required to update the game world can

81

exceed the local computing power of modern commodity computers.
Game-design scalability challenge: We have also shown [200] that to deliver good

gameplay experience when the number of players increases, a proportional increase in
the size of the virtual world needs to occur, making the simulation of the virtual world
even more computationally demanding than in today’s commercial games.

Consistency challenge: Current and future RTS games require good consistency
among players, especially for important areas of the game map (e.g, places of interest). It
has been noted [49] that RTS games do not require location consistency as accurate as for
FPS and RPG games, where the accuracy may make the difference between a player dy-
ing or living in the virtual world. However, avatar micro-management, which has recently
become very popular due to the release of games such as StarCraft and to the growth of
global competition networks [151], requires game-state consistency on-par with FPS and
RPG games among the players simultaneously moving avatars in tight areas. For exam-
ple, a trooper may be saved from disappearing by moving it in time just outside the fire
range of an opponent’s tank.

6.1.4 Presence of Areas of Interest in MAVEs

In this section, we show that the AoI mechanism cannot support MAVEs well. The AoI
mechanism, adopted by many NVEs, exploits the interest shown by users to specific
avatars or map areas, to reduce the traffic needed for progressing to the next simula-
tion tick. However, previous approaches use only a single AoI per user, the location of
which is defined as the area surrounding the virtual world location around the user’s single
avatar1. To study the potential use of AoI in MAVEs, we analyze the real use of StarCraft
II (SC), one of the most popular RTS games, as a representative MAVE. Through the
analysis of about 6,000 logs of SC matches, we show that most MAVEs users have each
not a single but multiple AoIs in game, and that players switch quickly among their set of
AoIs.

We collect 5,796 replays of SC from sc2rep.net, a popular repository of
community-rated game replays. The replays have been created and uploaded to the web-
site, for review by other players, by over 1,000 users. The replays are played between July
2010 and November 2010, and the average duration of the replays is about 13 minutes.
We use the publicly available tool SC2Gear to extract from each replay the complete set
of timestamped, location-aware commands.

The size of SC maps ranges from 64× 64 to 256× 256 tiles. The speed of the fastest
moving unit is about 7.5 tiles/s and the broadest range of vision of in-game units is
14 tiles. The actual size of the map area that is viewable on-screen depends on the aspect

1Some SAVE games such as World of Warcraft, allow players to level-up multiple avatars, but the avatars
cannot be controlled simultaneously in the same game instance

82

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number of high−interest areas

C
um

ul
at

iv
e

D
is

tr
ib

ut
io

n
F

un
ct

io
n

[%
]

h=2
h=3
h=4

0 50 100 150 200 250
0

1

2

3

4

5

6

Distance threshold [tile]

N
um

be
r

of
 c

om
m

an
ds

Figure 6.2: The presence of multiple, changing AoI in MAVEs: number of high-interest
areas per user (left) and dynamics of interest (right).

ratio of the user’s monitor, but we conservatively estimate that each screen can display
map areas of about 25 × 25 tiles. Thus, we divide for each replay the map into areas of
25 × 25 tiles and count the commands issued in each area. Because we are looking for
areas of much higher than average interest, which correspond to the intuition behind AoI,
we define a high-interest area as the area for which the number of issued commands is h
times higher than the average number of commands issued per area.

Most users have multiple AoIs. Figure 6.2 (left) depicts the distribution of the number
of high-interest areas per player when setting h = 2, 3, 4. As the figure shows, for h = 2,
only less than 5% of the players have one high-interest areas and about 90% of the players
have more than two high-interest areas. The maximal number of high-interest areas of a
player is 16. For h = 3, only 10% of the players have one high-interest areas and about
80% of the players have more than two high-interest areas. For h = 4, over 40% of the
users have 2 or more high-interest areas. Overall, we conclude that most of the players
have 2–6 high-interest areas. This can be explained by observing that advanced players
employ a mix of macro- and micro-management (see Section 6.1.1) in different areas of
the game map.

Users switch among their AoIs in the virtual world, often with high frequencies. We
look at the distance between the virtual world location of commands issued over short pe-
riods of time. For each replay, we split the duration in a series of 10-second time periods,
and analyze the commands issued in each period. We consider a distance threshold x, in
turn, from 25 (the screen size) to 225 (the maximum map size minus the screen size), in
increments of 25. For each distance threshold and each period, we count the number of
commands issued further than the threshold from the location of the first command in the
period; such a command would require an AoI switch. Figure 6.2 (right) depicts the mean
command-counts for various distance thresholds; the error-bar depicts the standard error.
A point (x, y) on the figure should be read as “users issued, on average, y commands

83

whose distance from the first command is larger than x over each 10-second period”. Val-
ues y ≥ 1 indicates that it is likely that users need an AoI switch every 10-second period.
The results indicate that players often issue commands that switch the current screen (the
current focus area), effectively switching their AoI.

This new phenomenon, of the presence of multiple, frequently changing AoIs per
MAVE user, is an important motivation for the mechanism and system architecture we
will introduce later. If we adopt the traditional AoI approach, which maintains only single
AoI per player, choosing the size of AoI as the size of the screen will lead to significant
AoI switching management overhead, and late delivery of states. Alternatively, the size
of the single-AoI area could be very large, to cover all the possible areas of interest, thus
leading to inefficient resource usage. We further show the inefficiency of the single-AoI
approach via simulation in Section 6.4.2.

6.2 The Area-of-Simulation Mechanism

In this section, we introduce a new scalability mechanism, the Area of Simulation (AoS).
The key characteristic of our mechanism is the combined use of the EBLS and AoI, to
efficiently maintain the areas of interest of each player.

The AoS mechanism adopts a distributed server architecture in which the virtual world
(map) is divided into non-overlapping sub-maps. Each sub-map is simulated by one server
and can also be simulated by clients. The AoS mechanism contains three parts: the
partitioning of the virtual world into different types of areas, the mapping of areas, and
the simulation of areas. We describe these three parts in the following, in turn.

6.2.1 Partitioning the Virtual World

From the user’s point of view, the virtual world is partitioned into a number of areas.
These areas can be areas of interest (AoI) or areas of non-interest (AoN). For each area of
interest, depending on the operational model adopted, an area can be either a simulation
area (SA) or an update area (UA).

For each SA, the game client receives events of that area, and then performs the sim-
ulation of that area (akin to EBLS-based operation). For virtual world objects and avatars
in SAs, users have the most up-to-date and precise information. Currently, each sub-map
can be operated as an SA. For each UA, the game client receives messages about the
state-updates of that area, and updates the state of that area accordingly (akin to AoI-
based operation). The visible area of a player’s avatar can be a UA. For each player, a UA
can overlap with the other UAs but not any SA. Users may receive different frequencies
and precisions of the state-updates. Thus, for UAs, the user may have less up-to-date and
lower-fidelity game-states than for SAs. For AoNs, the user will not receive any messages.

84

state

A

state & commands

A1

SAUA

A 43

virtual world

A1

B

A4

2

A2

shared-zone

Servers

avatar of B

avatar of A

4

rww

Figure 6.3: A game map and overlapping simulation areas (SA) and update areas (UA).
w is the width of the shared-zone.

6.2.2 Mapping of In-game Areas to Real-World Resources

The mapping of an area, to either SA, UA, or AoN, depends on the user’s interest, appli-
cation logic, and resource availability. When the game client decides, based on measured
or predicted interest, that the user should receive the most up-to-date information of an
area, it classifies it as an SA. Similarly, areas of little or no interest are classified as UA
and AoN, respectively. The lack of sufficient resources to manage SA or UA may force
the game client to re-classify an area to a lower class.

An example of the AoS is illustrated in Figure 6.3. The virtual world contains sub-
maps 1, 3, 4, and the other submaps. Player A has many avatars located in sub-maps 1
and 4, which are therefore classified as player A’s SAs (A1 and A4). Player A also has
an avatar exploring sub-map 3, the area visible to that avatar is a UA of user A (A2). UA
A2 of user A is a special situation: although user A is highly interested in this area, user
A already has two other SAs and, due to a lack of computational power, cannot afford
to fully simulate another SA; instead, player A will use excess bandwidth to get updates
from the server responsible for area 2. We will further describe the management of areas
in Section 6.3.2.

6.2.3 Simulation of In-game Areas

Because the virtual world is partitioned, events that can affect multiple areas raise a data
replication problem for the AoS mechanism. Processing such a shared-event may require
access to state information from all the areas the event affects. To provide users with
the illusion of a seamless un-partitioned virtual world, the AoS adopts a shared-zone
technique to manage data replication of areas. Areas that can be affected by shared-
events maintain shared-zones that overlap with other areas. As Figure 6.3 shows, the
shared-zones are the gray areas around each SA. We choose the width w of the shared-
zone to be larger than the maximum effect range (MER) of the shared event. The MER
can be pre-determined by application designers according to game logic. In all MAVEs
we have surveyed, the MER is small relative to the on-screen view (the maximal vision

85

Algorithm 1 Operation of the AoS mechanism.
1: while not end-of-game do
2: increment game tick
3: receive last turn’s events issued in SAs
4: receive last turn’s events issued in shared-zones surrounding SAs
5: receive last turn’s states from shared-zones
6: receive summary of state updates of UAs
7: update game states according to DVEs logic by applying events to states of SAs
8: interpolate game states, display current states, and receive user’s commands
9: advance simulation turn and send turn advance message, if all the events of a turn

have been received;

range of avatars in StarCraft is 14 tiles, while the screen width is 25 tiles). Each server
will exchange with the others the states of shared-zones it manages for processing shared-
events.

The state of the virtual world may be changed with the passage of time, and by differ-
ent events and by distributed clients multiple times, even inside a simulation tick. Thus,
knowing which is the correct state after the update has been made is the problem we
are facing. The CAP theorem [29] states that Consistency, Availability, and Partition-
tolerance cannot be simultaneously guaranteed in a distributed system. In AoS, different
parts (partitions) of the virtual world are hosted in the Internet where temporary parti-
tions of the network caused by latency or message loss are bound to happen. During the
period when the network is partitioned, we can either cancel the players’ operations and
thus decrease availability, or process the players’ commands but with the risk of inconsis-
tency. Following some previous work [18, 19, 147] which treat consistency as a non-first
requirement, we believe that the availability of DVEs (players receive responses for their
operations in time) is more important than the consistency of DVEs. Thus, we do not
ensure strong consistency as EBLS does. In AoS, we choose to partition the virtual world
for scalability but at the cost of some inconsistency. In other words, we trade off consis-
tency for scalability by allowing some game states to become inconsistent. By adopting
this approach, we allow by design that the states of some parts of the partitioned virtual
world may be different than the states that would have resulted from the same sequence
of player commands executed in an un-partitioned virtual world.

The simulation operation of the AoS mechanism is described in Algorithm 1. For
each simulation tick, each client receives the commands from the servers of SAs (line 3);
additionally, the client receives all the commands issued in the shared-zones of the SAs
(line 4). Each client also receives the states of the shared-zones (line 5), which enables
processing the events that require information from the neighboring areas. For UAs, each
client receives a summary of state-updates from the server managing each UA (line 6);
depending on the resource availability of the server and on the game logic, the client

86

Table 6.1: Summary of mechanisms used in the AoS architecture.
Problem Mechanism Novelty

Change of users’ interest dynamic area management (Section 6.3.2) new
Bandwidth consumption of UAs forwarding pool and level of detail (Section 6.3.3) adapted

Bandwidth consumption of shared-zones delta encoding (Section 6.3.4) re-used

may receive updates of various details and with various frequencies. After receiving all
the needed information, the client will perform simulation to update its local view of the
virtual world (line 7–8). During each tick, the server needs to read events from clients,
read events and states of shared-zones from the other servers, sort the events, perform the
simulation, and send the events and states to the clients.

For the simulation operation, as we trade off consistency for scalability, some in-
consistency may happen compared to the un-partitioned simulation. We rely on the ap-
plication developer to use additional techniques to mitigate this drawback [18, 42]. For
example, two avatars from different areas may collide unexpectedly. Application-specific
logic, such as using distributed collision detection [42], allowing the bounding boxes used
for collision detection to be slightly bigger than the actual size of the avatars, can be used.
In this chapter, we simply disable collision detection following the practice of World of
Warcraft (WoW) [147]. In Section 6.4.3, we will show that the AoS mechanism does not
introduce much inconsistency: most of the time, the inconsistency is unnoticeable.

6.3 The Area-of-Simulation based System Architecture

In this section, we integrate the AoS mechanism into an MAVE architecture. Table 6.1
summarizes the problems and the mechanisms (Section 6.3.2 to 6.3.4) adopted to solve
them. Last we discuss the implications and limitations of our mechanisms in Sec-
tion 6.3.5.

6.3.1 Architecture Overview

To operate the entire virtual world, our architecture comprises three types of logical nodes:
the registration server, the clients, and the area servers. The registration server is respon-
sible for the registration of the other types of logical nodes and to reply to queries to
locate an area server. We describe the functions of the clients and of the area servers in
the following.

Each client is responsible for managing the virtual world for a player. Clients can
connect to multiple area servers. If a client has an SA which is managed by an area
server, the client is a Simulation Area Client (SAC) for that area server. Similarly, if a
client has a UA which is managed by an area server, the client is an Update Area Client
(UAC) for that area server.

87

Each area server is responsible for managing an area and for communicating with
clients. Each area server is an SAC for itself. It is responsible for receiving the commands
issued by players in its area, for forwarding the commands in its area and the shared-
zones’ states to all its SACs, for forwarding its states to all its UACs, and for forwarding
the selected state of its shared-zones and commands to neighboring area servers. An
area server is neighboring to another area server only if the areas they manage are spatial
neighbors in the virtual world.

6.3.2 Dynamic Area-Management Mechanism

Users may change their interest at run time. We propose a dynamic area management
mechanism to adapt to the change of users’ interest. The mechanism allows each user to
have up to n SAs concurrently, where n can be predefined by the application developers
according to application logic. To select the SAs and UAs for each player, our mechanism
relies on a dynamic and automatic ranking of areas, using the level-of-attention (interest)
shown recently by the player. The top-ranked n sub-map candidates are marked to become
SAs, and the avatars’ visible areas which are outside the selected SAs are marked to be
UAs. In this chapter, the level-of-attention of a sub-map v is calculated as:

v = w1 ×
∑
i

(
si
st

) + w2 ×
ta
t

where, w1 and w2 are the weights whose sum is 1; si is the score (assigned by ap-
plication developer) of the player owning an avatar with id i located in one area, and st
is the total score of the avatars owned by the user; ta is the accumulated time that the
player has seen the area rendered on-screen. This mechanism is executed every t sec-
onds (i.e., t = 30). w1 is the relative weight of spatial metric while w2 is the relative
weight of temporal metric. MAVE designers can tune these weights according to their
designs, for example, by setting w2 higher, the MAVEs can respond to players recent ac-
tivities faster. The score si can be assigned by the application designer according to game
logic. For example, in Age of Empires, a swordsman needs to be trained using a certain
amount of in-game resources (e.g., 50 units of food, 20 units of gold), hence the score
of a swordsman can be assigned as 70 (50+20). To avoid the frequent changing of the
level-of-attention ranking, a sub-map is an SA candidate, only if its level-of-attention is
higher than a threshold th (i.e., th = 0.1). In our system there are two types of players,
human and artificial-intelligence (AI) players. For AI players, the time factor is not taken
into account (ta = t).

There could be many ways to calculate the level-of-attention values by using spatial,
temporal, social, and machine-performance metrics. For example, spatial metrics can

88

include the location of the player’s base, or the number of avatars present in the area, or the
total amount of in-game resources invested by the user in that area. Temporal metrics can
include the number of recently issued commands, or interaction history. Social metrics
can include a summation of the interest shown by in-game allies. Machine-performance
metrics can include a dynamic assessment of the computing and network capabilities of
the player’s machine. For example, a resource monitor can be integrated into each player’s
machine, once a machine cannot maintain the minimal simulation speed of a sub-map, the
level-of-attention of the sub-map can be calculated as zero, which leads to the demotion of
the sub-map to a UA. We leave further exploration of the calculation of level-of-attention
as future work.

The dynamic ranking of areas allows for the creation and destruction of areas for each
player. For example, in RTS games it is customary to build temporary bases with tens
of mobile and immobile avatars; such temporary bases can lead to a temporary SA being
created. As areas may be promoted to SA status, or demoted to UA or AoN status by
the area management module, the MAVEs operator can provision and allocate resources
adapted to the player’s needs, thus maintaining the quality of service.

For a client, upon losing interest in an SA, the area becomes first UA(s); further ne-
glect leads to the conversion into an AoN, which makes the area server stop communi-
cating with the client. Conversely, if the level-of-attention ranking of an area increases, a
new SA needs to be created from an existing UA. First, the area server pauses the simula-
tion procedure of the sub-map contains that area, and serializes the data for that sub-map.
Then, the area server sends to the client all the needed state information and pending
commands from the current simulation turn. Finally, the area server resumes the simula-
tion and the gaming procedure is as usual. During this procedure, the area server needs
to inform the neighboring area servers that the simulation of this sub-map is paused and
the other neighbor area servers will not need to wait for the states sent by this sub-map.
We plan to incorporate the well-known mechanism of live-migration [48] to make the
UA-to-SA transition without any pause.

When UA-to-SA or SA-to-UA transitions occur, depending on the current counts and
limits concerning each area type, other areas may be demoted to or promoted from the
status of SA and/or UA. Cascading occurrence of transitions of UA-to-SA or SA-to-UA is
unlikely to happen. However, to avoid such situations, AoS imposes a UA-to-SA rate on
each server of sub-map. For each sub-map i, at most ki (i.e., 100) clients can become SAC
of a sub-map within a t (i.e., 30 seconds) time window. System designers can configure t
and ki according to the computation power of servers, which is orthogonal to our work.

89

6.3.3 UA State Dissemination Mechanisms

During the process of simulation, an area server needs to send state-updates to all con-
nected clients, with high frequency. If an area is popular, the bandwidth consumption may
exceed the capacity of the server managing this area. To alleviate this situation, we build
a forwarding pool (FP) mechanism, in which the area server makes use of the idle upload
bandwidth of the SACs. By making use of a unique property of the AoS mechanism, that
all the SACs of an area have the same data as the area server, our FP can use some of the
resource-rich SACs to help disseminating the states. In our current design, all the SACs
(including the area server) of that area run a round-robin algorithm to select, in turn, an
SAC to send state-updates to one UAC.

By using the FP mechanism, the upload-bandwidth consumption of servers can be
greatly reduced. However, if there is no SAC or the aggregate upload bandwidth of the
SACs cannot meet the demand of all the UACs, some form of state-reduction technique is
needed, leading to less up-to-date states. We design a state-reduction mechanism, level of
detail (LoD), which effectively reduces network consumption by sending state-updates of
different avatars at different frequencies, instead of a single fixed frequency. Each avatar
i is assigned a score si which is determined using the same method in Section 6.3.2. The
higher si is, the higher fi is. Firstly, the avatars are sorted according to their scores in
decreasing order, top p% of the avatars’ state-updates will be sent every tick. Secondly,
for the other (100 − p)% avatars, each avatar i has its own update frequency fi; Thirdly,
when a user issues a command to an avatar whose id is k, the state of the avatars that
surrounds avatar k will be sent to the user at every tick. After tLoD ticks, if there are no
further commands from the user which affect avatar k, the update frequencies of avatars
around avatar k are restored to their normal update frequencies. p, fi, and tLoD can be as-
signed by application designers according to game logic. To obtain the optimal parameter
setting of the LoD mechanism, we recommend that for complex games, a combination
between game designer expertise and experimental tuning is needed. For all the avatars
whose state updates are not sent every simulation tick, our mechanism relies on tech-
niques such as dead-reckoning [18, 19] to interpolate/extrapolate the avatars’ positions.
The LoD mechanism promises to reduce the network consumption significantly, without
reducing the accuracy of information about the avatars that the player is paying attention
to.

6.3.4 Shared-zone State Dissemination Mechanism

The area servers of the AoS mechanism need to send states from their shared-zones to
all their SACs. As we will show later in Section 6.4.2, the states can consume more than
20% of the server upload bandwidth. Thus, we use a delta-encoding technique [126] to
reduce the bandwidth consumption. Delta-encoding technique sends the difference of data

90

instead of sending original data to client. When sending the shared-zones’ state to clients,
the area server will first get the difference of data, and then transfer only the difference
of data to clients. If the states of shared-zones only changed slightly since the last state
transfer, this technique can significantly reduce the bandwidth needed for sending states
of shared-zones.

6.3.5 Implications and Limitations

The AoS mechanism gives DVE designers the ability to tune the system by configuring
the trade-off between the high-fidelity, compute-intensive SAs and the relatively low-
fidelity, network-intensive UAs. In this way, the AoS mechanism addresses for MAVEs
the resource challenges in Section 6.3.5 and the consistency challenges in Section 6.3.5.
We also discuss some limitations to the AoS mechanism in Section 6.3.5.

Resource Challenges

The AoS mechanism has good scalability, because, as only a few areas catch the interest
of each player (see Section 6.1.4), each client simulates only a few, high-interest areas. In
contrast to the EBLS mechanism, the AoS mechanism does not simulate the entire virtual
world. Different from the traditional AoI mechanism, the AoS mechanism reduces the
network consumption by transferring commands besides using state-updates.

Consistency Challenges

Comparing to the update-based DVEs such as World of Warcraft, which have sequential
consistency server-side and eventual consistency client-side, the AoS mechanism pro-
vides sequential consistency for SAs, and eventual consistency for UAs and shared-zones
both on server- and client-side. The AoS mechanism can satisfy the users’ consistency
requirement that the areas that players are interested in have high consistency guarantee.

Limitations

The AoS mechanism adds some complexity into the design of MAVE servers. A DVE
which is designed for single-server architecture may need to be re-designed to adapt to the
distributed-server architecture of the AoS mechanism. The DVE designers may need to
conduct experiments, to determine the area management parameter (n) to achieve optimal
scalability for a specific DVE. However, as we will show in Section 6.4, even by setting
n = 1, the AoS mechanism is more scalable than the other models.

The AoS mechanism ensures eventual (instead of sequential) consistency in the
shared-zones areas. This may dissatisfy users who frequently control their avatars in

91

Table 6.2: Overview of experiments in Section 6.4.
Experiment Evaluation target

Comparison with alternatives
(Section 6.4.2)

Whether AoS scales
under different scenarios

Comparison of Area Management
mechanisms (Section 6.4.2)

Whether the dynamic
management mechanism works

Forwarding pool and
level-of-detail (Section 6.4.2)

The message reduction of
these mechanisms

Consistency evaluation
(Section 6.4.3)

Measuring the consistency
tradeoff of AoS

shared-zones (e.g., FPS players). There are two possible solutions. One is to use multiple
levels of consistency control protocols for different actions/objects [127]. For example, a
strong consistency control protocol (e.g., two-phase commit) can be used for death events.
Another possible solution is to change the design of the DVE, by reducing or limiting the
chance that users are controlling avatars in the shared-zones (e.g., the border of each sub-
map can be designed to be non-interesting to players).

6.4 Simulation Results

In this section, we evaluate AoS and four alternatives experimentally in a simulated envi-
ronment. We present results obtained in a real-world environment in Section 6.5. Overall,
our results indicate that AoS is more scalable than the alternatives.

We describe the experimental setup in Section 6.4.1. In Section 6.4.2, we compare
AoS against four alternatives. The results show that AoS can achieve much lower network
consumption than the pure update-based model (e.g., AoI), due to using the idle CPU
resources on the client’s side, and AoS can achieve much lower CPU consumption than
the pure event-based model (e.g., EBLS), due to simulating only parts of a virtual world.
In Section 6.4.3, we show that AoS achieves scalability without sacrificing too much
consistency: 99.5% of the drift distance [64] of avatars can converge within about 0.3
seconds (a limit that is acceptable even for advanced users, see Section 6.1.1). Table 6.2
summarizes the experiments conducted in this section.

6.4.1 Experimental Setup

The default experiment parameters are shown in Table 6.3. The simulation is running
on a 1280 × 512 tile map, partitioned into 5 × 2 sub-maps of 256 × 256 tile each. The
simulated virtual world map is 10 times larger than the largest game of StarCraft II. This
map size is consistent with our goal to scale this exemplary game and with the game-
design scalability challenge (Section 6.1.3). As determining the maximum number of

92

Table 6.3: Default experiment parameters.
Name Meaning Values
w × h virtual world size 1280 × 512 tiles
N number of users [10 to 400]
c frequency of user’s input 1 command per 10 ticks
K number of avatars per user 50
n maximum number of SAs per user 1
v avatar speed 1 tile per tick
r avatar vision range 10 tiles
w width of shared-zone w = r 10 tiles
tps number of ticks per second 40 ticks
nt number of ticks per turn 2 ticks
sl simulation length 10,000 ticks

w1, w2, si level of attention parameters w1 = w2 = 0.5, si = 1

SAs that each user’s machine can support is orthogonal to our work, we assume that each
user can have up to n SAs.

Each player is assigned a base, uniformly, randomly distributed across the virtual
world, with 50 avatars distributed around it. Each player will set the sub-map where the
base locates in as an SA, and keep the area as an SA until the end of the simulation. The
simulator is configured to update with a frequency of 40 ticks per second. Each avatar’s
vision is a square, centered on the avatar, with a range r = 10 tiles. The movement speed
of the avatars is 1 tile per tick. The vision range and movement speed is similar to the
setup of StarCraft II.

We run the simulation for 10,000 ticks (we have run some experiments with 50,000
ticks, and the results are similar). Unless otherwise specified, all the simulations are con-
ducted with 60 users (about 4 times larger than the maximum number of players in one
game of StarCraft II, which is 16) in a simulated LAN environment with no latency. Fol-
lowing the design of the very popular RTS game Age of Empires [172], all the commands
are scheduled to run 2 turns later.

Workload models: Modern MAVEs such as RTS games do not support more than 32
players in a game instance, so we are not able to obtain real-world workload traces with
many users. Instead, based on our experience with popular RTS games [172] and the code
of a modern open-source RTS game engine [1], we evaluate AoS against four different
workload models. Each workload model is a combination of a command model and a
mobility model. For the command model, each player is restricted to issue 1 command
per 10 ticks, which is equivalent to 4 commands per second. This mimics player behavior
during intense operations [172]. Each command will order a randomly selected avatar to
go to a position according to a mobility model. The mobility models are Weighted random
Walk (WW), Weighted random walk Inside sub-map (WI), Weighted random walk with
Distance (WD), and SAMOVAR. In WW, we partition the virtual world into multiple non-

93

overlapping 16 × 16 tile areas, and randomly assign a weight w between 1 to 10 to each
area. Each user is assigned i high-interest sub-maps, where i is sampled from the number
of high-interest areas per user (with h = 4, see Figure 6.2 (left)). In WW, when a user
commands an avatar to go to a new destination, the avatar selects a high-interest sub-map
randomly. Then the avatar has a higher probability to go to a grid of the selected sub-map
with higher weight, and it will go to a random position inside that grid. WI is similar to
WW, but i is fixed to 1. In WD, the probability p to go to a grid is defined as p = w

d2
,

where w is the weight (1 to 10) assigned to that grid, and d is the distance between the
centroid of that grid and the player’s base. For a player, this will make many avatars move
in close proximity of the base, with only a few of the avatars going to some (valuable)
spots away from the base. SAMOVAR is developed based on [198]. SAMOVAR acts
similarly to WW, except that each user has a limited amount of grids to visit, and each
user has different personal weights to visit those grids. Albeit we do not evaluate our
system using real-users, the players change AoI more frequently in the four workloads
than in StarCraft, so we believe that the scalability results achieved by AoS will be better
for real-users than for the four workload models. Unless otherwise specified, WD is the
default workload.

Metrics: We look at four metrics: the network bandwidth consumption (upload and
download), the compute unit, and the drift distance which we define as follows. We count
the number of messages sent/received as network bandwidth consumption. The compute
unit is a reference value to estimate the CPU consumption. We calculate the compute unit,
at each tick, as the number of avatars simulated at each client/server. We do not count the
computation used for updating objects and for processing events (according to our mea-
surement in the prototype implementation, the time required to perform the simulation of
an avatar is about 200 times higher than the time required to process state-updates/events).
The drift distance [64] is used to evaluate the difference of avatar positions between the
partitioned (AoS) and the un-partitioned (EBLS) models. We issue the same commands
at the exact simulation time in AoS and EBLS and compare the distances of each avatar’s
position obtained through AoS and EBLS. For each experiment, we report the 99.5 per-
centile of drift distance. Each experiment is repeated 10 times, and the metrics shown are
the average values.

6.4.2 Scalability Evaluation: Proposed Mechanisms

In this section, we evaluate AoS under a variety of scenarios. Our main findings are that
(i) AoS consumes at least 30% less bandwidth than all the other alternatives for all the
workload models; (ii) AoS requires an order of magnitude less computation than EBLS,
for the server; (iii) the improved AoS (that is, AoS for which we enable the mechanisms
introduced in Section 6.3) can further reduce bandwidth consumption by up to 60%.

94

10 20 30 40 50 60 80 100 200 400

10
1

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

10 20 30 40 50 60 80 100 200 400

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

Figure 6.4: Network upload: (left) the WI workload; (right) the WD workload. (Loga-
rithmic scale on vertical axes)

Comparison with alternatives

We evaluate the computation and network consumption of AoS against four alternatives:
single-AoI (SAoI), multiple-AoI (MAoI), proxy-server (Proxy), and EBLS explained in the
following. SAoI, MAoI, and Proxy are pure update-based models, while EBLS is a pure
event-based model. For each pure update-based model, a distributed server architecture
is adopted, for which each server is responsible for simulating a sub-map of the virtual
world. SAoI adopts a single, static area-of-interest approach, whose area is the whole
map. In MAoI, each player can have multiple area-of-interest, and each area is the visible
area around the player’s avatars. MAoI represents an extension of current AoI techniques,
but, unlike our AoS, lacks the areas with event-based updates (the SAs). MAoI can be
also viewed as AoS without any SAs. Proxy [157] acts similarly to MAoI, but each server
needs to send the states that it simulates to the other servers, for synchronization (the
original Proxy uses one AoI per player).

Figure 6.4 shows the upload bandwidth consumption of the server for SAoI, MAoI,
Proxy, EBLS, and AoS under WI and WD, in turn for various user counts. For ease of
reading the figure, we truncate the results of SAoI when the number of users is larger
than 100. SAoI consumes significantly more bandwidth than the other models; this re-
sult complements the analysis in Section 6.1.4 that a single static AoI does not work well
for MAVEs. Proxy consumes the second-most bandwidth; compared to AoI, as Proxy
needs to send additional messages to the other servers. It needs about 2 times and 1.5
times higher bandwidth than MAoI under WI and WD, respectively. AoS requires 30%
up to 80% less upload bandwidth than EBLS, because the AoS servers only transfer mes-
sages that are relevant to the players instead of every message. Compared to MAoI, AoS
consumes 40% up to 80% less bandwidth. This is because the AoS servers transfer com-
mands besides state-updates to players, by making use of the players’ idle CPU resources

95

10 20 30 40 50 60 80 100 200 400

10
1

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

10 20 30 40 50 60 80 100 200 400

10
1

10
2

10
3

10
4

Number of usersS
er

ve
r

m
es

sa
ge

s
se

nt
 p

er
 ti

ck

SAoI Proxy MAoI EBLS AoS

Figure 6.5: Network upload: (left) the WW workload; (right) the SAMOVAR workload.
(Logarithmic scale on vertical axes)

Figure 6.6: Network upload, 60 users: (left) server; (right) client. (For the servers’ upload
of AoS and AoI, each bar is divided into 3 parts, from top to bottom (dark, gray, and light):
number of commands sent, number of shared-zones’ states sent, number of state-updates
sent. Servers of EBLS only send commands, thus the bars for EBLS are not partitioned.)

to perform simulation of the virtual world.
Figure 6.5 shows the upload bandwidth consumption for WW and SAMOVAR. The

results are similar to the results for WI and WD: SAoI and Proxy consumes the most
bandwidth, and AoS consumes the least bandwidth. The bandwidth consumption of AoS
under WW and SAMOVAR is a bit more than that of under WI and WD, but AoS still
consumes about 30% to 50% less than EBLS. As SAoI and Proxy consumes much more
bandwidth than the other models, we only consider EBLS, AoS, and MAoI in the rest of
our experiments.

Dissecting upload messages: Figure 6.6 (left) shows the upload bandwidth consump-
tion of the servers for EBLS, AoS, and MAoI from left to right, grouped by four workloads
with 60 users. The servers of EBLS only send commands, while for AoS and MAoI, com-

96

Figure 6.7: Compute Unit under 4 workloads, 60 users: (left) server; (right) client.

mands consume less than 5% of the network bandwidth, and the state-updates consume
most of the bandwidth. For AoS, a large portion (more than 20%) of the bandwidth is
used for sending the states of shared-zones. For MAoI, most (≥ 95%) of its upload band-
width is used for state-updates. Figure 6.6 (right) shows the upload of clients. The client
upload is very low with less than 1 message per tick.

Computational overhead: Figure 6.7 shows the compute unit on the server-side (left)
and client-side (right). On the server-side, AoS and MAoI consume the same amount
of compute unit, and EBLS consumes about 10 times more. The compute unit depends
only on the number of avatars simulated. For AoS and MAoI, each server only needs to
simulate 10% of the avatars on average, while for EBLS, the server needs to simulate all
the avatars. Thus, the compute unit of AoS and MAoI are only 10% that of EBLS. On
the client-side, EBLS requires the same amount of CPU consumption on the client-side as
that on the server-side. For AoS, each client needs to perform the simulation of a sub-map
as the server of the sub-map. Thus, on average clients have the same amount of compute
unit as that of servers. MAoI requires zero computations on the client-side, as the clients
do not perform any computation.

Area management mechanisms and different numbers (n) of SAs

The previous experiments have shown that AoS with n = 1 is more scalable than the
others. We show that by increasing n and adopting the dynamic area management mech-
anism proposed in Section 6.3.2, AoS can achieve much lower bandwidth consumption.
We evaluate the impact of the area management mechanism, and the impact of the number
of SAs per user by changing n from 1 to 4.

Figure 6.8 (left) shows the results of using a static mechanism which randomly and
statically sets SAs for each user. In contrast, Figure 6.8 (right) shows the results of using
the dynamic area management mechanism (described in Section 6.3.2). In general, the

97

Figure 6.8: Server messages sent (left) without and (right) with dynamic management.
(each bar is divided into 3 parts, from top to bottom (dark, gray, and light): number of
commands sent, number of shared-zones’ states sent, number of state-updates sent.)

number of state-updates sent for UAs (light bars in the figure) decreases with the increas-
ing number (n) of SAs, while the number of commands sent (dark bars) increases.

As Figure 6.8 (left) shows, increasing n using the static mechanism slightly increases
the bandwidth consumption for WD, WW, and SAMOVAR. This is because the number
of shared-zone states that needs to be transferred increases with the increasing n, which
decreases the bandwidth reduction through the use of more SAs.

As Figure 6.8 (right) shows, the dynamic mechanism achieves significant bandwidth
reduction with increasing n. The amounts of shared-zones’ states and state-updates sent
by servers are both significantly reduced. For shared-zones’ states, when a client has
multiple neighboring SAs, the servers do not need to send the states of shared-zones of
those neighboring SAs to the clients (the client itself has the master-copy of the states of
shared-zones). The probability that a player will have multiple neighboring SAs is much
higher when using the dynamic mechanism than when using the static mechanism, as the
dynamic mechanism sets the top n sub-maps which contain more avatars of the player as
SAs instead of randomly. For the state-updates, as most avatars are located in SAs for the
dynamic mechanism, the servers send much fewer state-updates to clients than that of the
static mechanism.

Increasing n using the dynamic mechanism does bring some overheads. The compute
units used by servers do not increase, as each server only needs to simulate one sub-map
regardless of n. For the clients, as Figure 6.9 (left) shows, the compute units increase with
n. This is because with increasing n, each client has more SAs, which leads to increased
simulation overheads. Figure 6.9 (right) shows the number of UA-to-SA transitions per
sub-map. For WI, the number is zero, because the avatars of each player only move
inside one sub-map, thus only one sub-map can be an SA for each player regardless of

98

Figure 6.9: Dynamic area management mechanism with increasing n: (left) client com-
pute unit and (right) number of UA-to-SA transitions

Figure 6.10: Network consumption for AoS when using state dissemination mechanisms
to distribute states: (left) server; (right) client.

n. For the other workloads, on average, each player will experience about 4 UA-to-SA
transitions per sub-map. As the UA-to-SA transitions may stall the game, which may
dissatisfy players, we conduct experiments to evaluate the stall time of game-play using
our prototype (see Section 6.5). The stall time includes the time taken to serialize the
memory of a sub-map, to transfer the data to a client, and to create an SA based on the
received data on the client side. The stall time is lower than 12 ms when the server and the
client are within the same computer. The time used for transferring data over the Internet
depends on the amount of data and network conditions. In our prototype, the amount
of data of an SA is less than 0.1 MB, which is very low considering today’s residential
broadband bandwidth, so we expect the stall time will be low when the experiments are
conducted on the Internet.

99

State dissemination mechanisms

To see whether the state disseminations we propose in Section 6.3.3 are efficient, we
compare AoS (by default without any state dissemination mechanisms), with its variations
that use state dissemination mechanisms: using forwarding pool (FP), using level of detail
(LoD), and using both forwarding pool and level of detail (FP+LoD). When evaluating
LoD and FP+LoD, p = 10% of avatars’ state-updates are sent every tick while the others
are sent every 40 ticks (fi = 0.025), and tLoD = 150.

Figure 6.10 (left) shows that the server upload bandwidth consumption can be signifi-
cantly reduced by using these state dissemination mechanisms. Using FP can lead to about
50% to 60% lower upload bandwidth consumption under WD, WW and SAMOVAR, be-
cause FP makes use of the idle clients’ upload bandwidth to transfer the states of UAs.
Using LoD can lead to about 15% to 30% lower bandwidth consumption for the server,
but at the cost that some avatars’ state-updates are less frequently transferred (less accu-
rate). By using FP and LoD together, the server upload can be further reduced by about
20% to 50%, compared to using FP only.

FP increases the clients’ upload bandwidth consumption, as Figure 6.10 (right) shows,
the clients’ upload bandwidth consumption for FP and FP+LoD increases from less than 1
message per tick to about 30 to 40 for WD, WW, and SAMOVAR. Because LoD transfers
fewer states, the clients’ upload bandwidth consumption for FP+LoD is lower than that
for FP. We conduct experiments on LoD with varying p, fi and tLoD. We find that higher
p, higher fi, and higher tLoD lead to higher bandwidth consumption.

6.4.3 Consistency Evaluation

In Section 6.4.3 and 6.4.3, we evaluate the consistency tradeoff of AoS with a reference
metric: the drift distance of avatars (measured in tiles). We show that AoS introduces neg-
ligible inconsistency. In Section 6.4.3, we evaluate the percentage of collisions between
sub-maps.

The source of drift distance comes from the fact that when an avatar is crossing the
border of a sub-map, instead of moving continuously, the avatar needs to first send a com-
mand to the area server of the neighboring sub-map where it will arrive; then the avatar
will be created at the closest position connecting the current avatar’s position when the
issued command is executed at the neighbor sub-map. As the command can be delayed,
the avatar’s position may be slightly different in AoS, compared to EBLS. As the median
value of the drift distance of all the experiments in this section is zero, we only show the
99.5 percentile of drift distance.

100

10 20 30 40 50 60
0

5

10

15

20

25

30

Number of users

99
.5

 P
er

ce
nt

ile
 o

f d
is

ta
nc

e
dr

ift

WI
WD
WW
SAMOVAR

10 20 30 40 50 60
0

5

10

15

20

25

30

35

40

45

50

Number of users

99
.5

 P
er

ce
nt

ile
 o

f d
rif

t d
is

ta
nc

e

Speed = 1
Speed = 2
Speed = 4

Figure 6.11: Drift distance of AoS with: (left) different workloads and (right) WD work-
load and different movement speeds.

Workloads and speed

Figure 6.11 (left) shows the results under four workloads. The drift distance is very
small for each of these workloads. The drift distance for WI with varying number of
users is zero, because in WI avatars do not cross any border. The drift distance for WW
with varying number of users is about 10 tiles, as the movement speed of avatars is 1
tile per tick, this drift distance will eventually converge to zero within 10 ticks which is
approximately 0.3 seconds. Figure 6.11 (right) shows the impact of movement speed:
the higher the movement speed, the larger the drift distance is, but the drift distance can
converge to zero within 0.2 seconds.

Partition

We measure the drift distance when partitioning the virtual world into 256 × 256, 128 ×
128, to 64 × 64 tiles sub-maps. The 99.5 percentile of drift distance is about 5 tiles for
256 × 256 sub-maps, it increases to be 20 tiles for 64 × 64 sub-maps. Finer grain of
partition incurs higher drift distance, because finer partition will increase the probability
of avatars crossing sub-map border.

Collisions

We evaluate the additional computational overheads needed to resolve the possible con-
flicting states by measuring the percentage of collisions between sub-maps. The percent-
age of collision between sub-maps is calculated by dividing the number of collisions be-
tween sub-maps by the total number of collisions. The percentages are low: for WI, WW,
SAMOVAR, the percentages are below 0.5%, for WD, the percentage is below 4.5%. The

101

computational overhead needed to resolve in-precise collision detection depends on the
method chosen to mitigate them, but given the low chance of collisions between sub-maps,
the computational cost needed for resolving in-precise collision is low.

6.5 Real-world Experimental Results

To demonstrate the applicability of AoS, we implement the architecture described in the
previous sections and deploy the working system in a real-world environment. We eval-
uate the working system with a prototype RTS game, which represents the large-scale
multi-player extension of an open-source, single-player RTS game [89]. This prototype
game features many common elements of RTS game: training avatars, constructing build-
ings, fog-of-war, battles, etc.

We conduct real-world experiments an order of magnitude larger load than the current
state-of-the-art, up to 100 users (instead of 16 users in StarCraft II) and 5,000 avatars
involved in a large virtual world. The results show strong evidence that our AoS-based
system is scalable.

6.5.1 Experimental Setup

Implementation: our system implementation2 has about 25,000 lines of C++ code, which
add to the about 7,000 lines of C++ code of the original RTS game. The AoS mecha-
nism needs about 3,000 lines of code, while the other 15,000 lines of code are used to
implement the multi-user part for the original single-player game. Our network module
follows a similar design as 0 A.D [1] and uses the reliable UDP library ENet3. We use
the delta-encoding library xdelta4 to encode the shared-zones’ state to only transfer
the difference of data, and Zlib for data compression. Without compression, the size of
messages range from 40 bytes to 80 bytes. On average, the size of a command is 40 bytes,
while the size of a state is 75. The size of messages lies within that of modern commercial
RTS games [49].

Experimental environment: The experiments are conducted on the Amazon EC2
cloud. For our experiments, we use the “medium” instances of virtual machine (VM),
each installed with Windows Server Datacenter edition 2008. Unless otherwise specified,
we run 10 nodes (i.e., players) in each VM. All the other experimental configurations are
the same as the default setup used in Section 6.4. Due to time and cost limitation, we use
WI as the workload. As we focus on computing and networking resources, we disable the
graphical output of the game.

2http://www.pds.ewi.tudelft.nl/˜siqi/AoS.htm
3http://enet.bespin.org/
4http://xdelta.org/

http://www.pds.ewi.tudelft.nl/~siqi/AoS.htm
http://enet.bespin.org/
http://xdelta.org/

102

10 20 40 60 80 100
0

5

10

15

20

Number of users

S
er

ve
r

up
lo

ad
 p

er
 ti

ck
 [K

B
]

no compression
delta encoding
delta encoding & zlib

10 20 40 60 80 100
0

5

10

15

20

30

35

40

Number of users

Smooth experience

24

T
ic

ks
 p

er
 s

ec
on

d
Figure 6.12: Upload bandwidth (left) and tick per second (right).

AoS EBLS
0

1

2

3

4

5

6

7

S
er

ve
r

up
lo

ad
 p

er
 ti

ck
 [K

B
]

AoS EBLS
0

10

20

30

40

24

Smooth experience

T
ic

ks
 p

er
 s

ec
on

d

Figure 6.13: Comparison between AoS and EBLS: upload (left) and tick per second
(right).

Performance Metrics: We measure and report the ticks per second of each experiment,
the bandwidth consumption of the payloads of network messages sent by the server and
number of messages sent. As the number of messages sent by servers matches well with
the simulation results in Section 6.4, we only show the results for server upload bandwidth
consumption and ticks per second (TPS). Each experiment is repeated 10 times, and the
metrics shown are the average values.

6.5.2 Scalability Results

The bandwidth consumption of AoS scales lineally with the number of players. Fig-
ure 6.12 (left) depicts the upload bandwidth consumption of the server for an increas-
ing number of users for different compression methods: AoS without compression, AoS

103

with delta encoding, AoS with delta encoding and zlib. Using delta encoding can reduce
about 80% of the bandwidth consumption, by only transferring the differences between
shared-zones’ states. For WI, the shared-zones’ states can use about 90% of the upload
bandwidth. Using the delta-encoding mechanism we proposed in Section 6.3.4 can sig-
nificantly reduce the amount of network bandwidth used. Using zlib can further reduce
the upload bandwidth consumption by about 10%. Using delta-encoding and zlib, AoS
consumes about 2.1 KB per tick, when the number of players is 100. As the simulation
speed is about 26 ticks per second when the player count is 100, AoS consumes about 52
KB per second.

Figure 6.12 (right) shows TPS with varying number of players. With an increas-
ing number of players, the simulation overhead increases which leads to TPS decreases.
When the number of players is 100, the TPS is 26. All the TPS with different number
of players are higher than the TPS required (24) to deliver smooth virtual experience, the
user experience will not suffer.

To compare AoS with EBLS, we run 40-node experiments using AoS and EBLS.
As EBLS requires more memory and CPU than AoS, we run 5 (instead of 10) nodes
per VM when running the prototype using EBLS. Figure 6.13 (left) shows the network
consumption for these two models. The server upload of AoS is about 13 times lower
than EBLS; this value is slightly different from the message count result (there, AoS is
about 15 times lower), because in the prototype a state-update uses more bytes than an
event. Figure 6.13 (right) shows the TPS of the two models. Using AoS, the prototype can
achieve a simulation speed of 36 TPS while EBLS can only achieve 18 TPS. The 18 TPS
is below the minimal TPS (24) required to achieve smooth virtual world experience, so
the user experience will suffer. In summary, compared to EBLS, AoS can consume lower
network bandwidth and achieve lower computation consumption while still fulfilling all
the requirements of MAVEs.

6.6 Related Work

There are two major operational models to update the NVEs in the clients’ view: update-
based and event-based. For the update-based model, the clients receive state-updates from
the servers and then update their local view using the received information. For the event-
based model, clients receive commands/events from a server and perform simulation,
using the events to update the local game replicas. In this chapter, the NVE clients need to
receive state-updates and may perform simulation, which is different from cloud gaming
techniques such as [101], where the NVE clients only receive video streams from a server.
In this section, we compare AoS with the research about scalability in Section 6.6.1 and
consistency in Section 6.6.2.

104

6.6.1 Scalability Techniques

Much recent research explores scalable NVEs. We identify four main approaches: zone-
based, object-based, server replication, and interest management.

Zone-based

The virtual world is partitioned spatially into multiple non-overlapping zones; each zone
is assigned to a separate server [100,124,183]. Our AoS, SimMud [124], DSG [129], and
MOPAR [233] partition the the virtual world statically. In contrast, VSO [100], Solip-
sis2 [79], Cell [61], and [140] partition the virtual world dynamically. As an example of
zone-based NVEs, SimMud [124] partitions the game world into static zones and use an
peer-to-peer multicast channel to send game updates to clients. Many previous studies
focus on scalable messaging, and do not consider game-logic processing. For the studies
that do, the operational model is mostly update-based.

Object-based

The virtual world objects are load-balanced across servers [139, 154, 224]. Each server
is responsible for the simulation of a subset of objects (often called active objects), while
the remaining ones (often called shadow objects), which are active in the other participat-
ing servers, are synchronized across servers. Proxy server [157] used for comparison in
Section 6.4.2 belongs to this category.

Server replication

The virtual world states are fully-replicated at each server; clients connect usually to the
closest server. The event-based model is usually adopted to reduce the network band-
width. In this model, the events are transferred to some servers or broadcasted to all the
servers, and the server performs the simulation based on events. EBLS is one of the most
widely used server replication techniques adopted by NVEs such as [234] [52], and RTS
games. As the states are fully-replicated, maintaining the state for a large virtual world is
problematic for most servers.

Interest management (IM)

IM determines information that is interesting and should be received by players [231]. IM
can be class-based or space-based. For class-based IM, users only receive specific types
of information that are predefined per class, while space-based IM is based on proximity.
AoI is a form of space-based IM in which a player only receives the information close
to the location of the avatar(s) of the player. Usually, when an avatar moves, the AoI

105

moves with the avatar. An AoI can be a zone [124], a geometry area inside a zone [28],
or intersects with multiple zones [233]. The shape of an AoI can be: tile-based [28], cir-
cular [3], and free format [19]. The size of an AoI can be static [100] or dynamic [117].
Donnybrook [19] propose an estimation of FPS players’ interest based on distance be-
tween avatars, the aiming of the player’s weapon, and interaction history. They classify
avatars (based on interest) into two sets. Up-to-date states of the avatars in one set are
received every frame while the states of the others are received every second. Different
from previous work, we consider each player has multiple AoIs instead of one, and each
AoI is operated using event-based or update-based model.

AoS is the first approach that combines zone-base partition, event-based and update-
based models to support large-scale MAVEs, especially for RTS games.

6.6.2 Consistency Control

Pessimistic and Optimistic methods are two major classes of consistency control methods.
Pessimistic methods anticipate inconsistency between data replicas when performing local
actions. In contrast, optimistic methods assume no inconsistency exists and perform local
actions instantaneously.

Pessimistic methods

The local-lag [145] mechanism delays the execution of operations to reduce the prob-
ability of the occurrence of inconsistency. It usually delay commands according to a
system-level delay value. The local-lag mechanism works efficiently when the value is
larger than the largest network latency. The two-phase-commit (2PC) method is a dis-
tributed transaction technique. It needs two round-trip time to finish a transaction which
reduces the responsiveness of NVEs. Research such as [161] adopt the 2PC method to
manage distributed data by synchronizing events that span multiple servers.

Optimistic methods

AoS can be classified as an optimistic method which allows that inconsistency exists in
shared-zones. There are two major classes of optimistic methods: time warp (TW) and
dead reckoning (DR). In TW, all replicas are allowed to execute update optimistically,
and the method needs to record old states and roll back when inconsistency happens.
Although there are improved version of TW such as trailing state synchronization [52]
and [75], TW requires roll-backs, which may dissatisfy player; thus, we do not adopt this
approach. DR, widely applied in distributed interactive simulation [104] and NVEs such
as [19], is a technique to reduce the network consumption for position updates. DR can
be used in AoS architecture to reduce the network consumption of UAs.

106

Other approaches exist. Lupei et al. [141] use software transaction memory technique
(STM) to build a FPS game which runs in a multi-core machine. STM may have high
overheads and transaction abort rate; thus, fine-level tuning of transactions and even re-
design of game logic are needed. Krammer et al. [127] use multiple levels of consistency
control for different objects. Tang et al. [216] use different update frequencies for differ-
ent avatars to improve time-space consistency. Their work can be used in ours to resolve
the inconsistencies.

6.7 Summary

Multi-Avatar Virtual Environments (MAVEs) such as RTS games entertain millions of
people in small-scale, non-communicating game instances of only 8–16 players. To en-
able a future generation of MAVEs, in this paper we investigate a new mechanism and a
system architecture built around it, which are scalable and have many desirable properties.

Our main contribution is five-fold. Firstly, we conduct the first empirical investigation
into the presence of areas of interest in MAVEs. We find that, unlike the other virtual
environments such as RPG and FPS games, in MAVEs users have multiple areas of high
interest and that interest location changes quickly. Secondly, our AoS mechanism is novel
in its use of update-based and event-based operation for areas of interest and provides a
versatile scalability-consistency trade-off. For the latter, the AoS mechanism ensures that
only areas of high interest are fully simulated, that areas of limited interest only receive
infrequent updates, and that areas of no interest do not consume either computational
or network resources. Thirdly, we propose an AoS-based system architecture for scal-
able MAVEs, which supports the dynamic management of multiple areas of interest and
several more common, scalability-related techniques. Fourthly, we implement this ar-
chitecture as a real-world system, which is able to run RTS games up to 100 users and
5,000 avatars in the same virtual world. Fifthly, we compare qualitatively and quantita-
tively our approach with various state-of-the-art approaches, and show strong evidence
that AoS-based approaches offer superior performance and more flexibility for MAVEs.

107

Chapter 7

Scaling NVEs Efficiently through Cloud
Scheduling

A growing number of applications are running in the cloud. Academia [16, 54, 77, 143,
158, 189, 226] and industry [227] are both increasingly using cloud resources as infras-
tructure to serve their users, due to the elastic, flexible, and pay-as-you-go features of
Infrastructure-as-a-Service (IaaS) clouds. Cloud brokers need to lease resources from
IaaS clouds cheaply, yet execute the users’ jobs in time. To achieve this, cloud brokers
must use scheduling policies that match diverse requirements. Finding scheduling polices
that can schedule diverse workloads with zero waiting time yet cheaply is the focus of this
chapter.

IaaS clouds offer their users various types of machine configurations: different amount
of CPU cores, memory, and disk. It is non-trivial for a cloud broker to determine the
combination of machine configurations for user demands. This situation is complicated
by the current IaaS pricing models: machines configurations are not priced linearly with
their performance. For example, an EC2 large instance can serve more web requests
per core than the small instance, but their price per core is the same [192]. Moreover,
for the same machine configuration, the clouds offer different billing options on-demand-,
reserved-, and spot-instances, which are charged differently. Scheduling enough resources
to meet user demands yet keep the cost low while adapting to workload changes remains
challenging, despite recent research efforts [165, 192, 222].

In this chapter, we present a Cloud-based, online, Hybrid scheduling policy (CoH),
which keeps the rental cost of cloud resources low by finding the best combination of
machine configurations and billing options. At the core of this policy are its provisioning
and allocation strategies. We formulate these strategies as Integer Programming Problems
(IPP). As CoH needs to be executed online, the time to obtain a decision should be low.
We limit the time to solve the IPP, and run simultaneously various heuristics. The CoH
compares the result of IPP and heuristics, and picks the best one as its scheduling deci-

108

sion. Thus, a novel aspect of CoH is its portfolio-based scheduling strategy [103] adapted
to IaaS clouds. Further, we devise, CoH-R, an extension of CoH to also makes use of
reserved instances, which can lead to significant cost reduction compare to policies that
use on-demand instances only.

The major contribution of this chapter is three-fold.

1. A novel online scheduling policy, CoH, which makes scheduling decision using a
portfolio of IPP and heuristics-based approaches (Section 7.2).

2. A policy extended from CoH, CoH-R, which also makes use of reserved instances
to reduce rental cost (Section 7.3).

3. An evaluation of our policies for two broad application domains, grid computing
and online game hosting, using trace-based simulation (Section 7.4).

7.1 System Model

7.1.1 Workload and Resource Model

The workload model in this chapter is a set of independent jobs. The resource require-
ments and the runtime of each job are known when the job arrives in the system. Once
started, jobs run to completion, so we do not consider task preemption or migration during
execution.

Each job can be described by a tuple (ri, ai, di), where ri is the resource requirement
of job i, ai is the arrival time of job i, and di is its departure time. We assume that a
computer can host one or multiple jobs. This model is similar to the work of Stillwell
et al [206]. This kind of jobs is common: a compute node can run multiple MapReduce
tasks; an online game hoster may consolidate several game servers on the same machine;
etc. The resource requirements of each job, ri, could be a vector indicating multiple
resource requirements (e.g., CPU and Memory), or a scalar value (e.g., CPU only). We
focus on the CPU requirement. In practice, ri can be obtained though profiling [108,192]
or can be provided by the user.

We model the operation and billing model of cloud providers based on the real case
of Amazon EC2. We assume that clouds have infinite capacity. Each newly provisioned
VM needs serval minutes to be booted [108, 165]. An VM is charged per hour; even a
factional consumption of less than one hour is counted as one hour. An VM indexed by
j, has capacity denoted by wj and hourly cost cj .

109

7.1.2 Scheduling model

In our scheduling model, all machines are provisioned exclusively from clouds. The cloud
broker has pre-configured and stored in the cloud all the necessary VM images to run
users’ jobs. All the incoming jobs are enqueued into a queue. A system-level scheduler,
running on a dedicated system, manages all the jobs and a pool of machines, and decides
whether to provision new VM from clouds and/or to allocate jobs to VMs.

The scheduler is executed periodically (e.g., every 10 seconds). At each scheduling
moment, the scheduler performs five tasks: (1) Predicting future incoming workloads;
(2) Provisioning necessary VMs in advance, from clouds; (3) Allocating jobs to VMs,
(4) Releasing idle VMs (which don’t have job running on them) if its Billing Time Unit
(BTU) is close to increase (e.g., 10 second before the leased hour). (5) If the wait time of
un-allocated jobs is high, starting the necessary number of VMs. We design in the next
section a scheduling policy, CoH to perform tasks (3) and (4). We further extend this
policy in Section 7.3 to also use reserved cloud instances. As workload prediction is not
the focus of this chapter, we assume that there exists a predictor that can achieve perfect
prediction of future workload. Relatively good predictor [160] already exists for the type
of workload we target in this chapter.

7.2 A Scheduling Policy using On-Demand Instances

This section describes CoH, a Cloud-based, online, Hybrid scheduling policy using on-
demand instances. The strategy of CoH is presented in Section 7.2.1. CoH needs to
take both provisioning and allocation decisions, that is, to find a combination of VMs,
and a mapping between jobs and VMs. We formulate the above problem as an Integer
Programming Problem (IPP) in Section 7.2.2 and then select various heuristics to assist
CoH in Section 7.2.3.

7.2.1 Policy Overview

CoH actively provisions VMs before they are needed, and maps jobs to already provi-
sioned VMs according to the best mapping it can find. CoH finds the combination of
VMs and the mapping by solving an online scheduling problem through solving (par-
tially) one IPP and by using several heuristics, independently and simultaneously. As an
online scheduler, CoH needs to take scheduling decisions within limited amounts of time;
thus, it limits the time used to solve IPP, and compares the result of the IPP and heuris-
tics. CoH acts as a portfolio-based scheduler, in which multiple strategies are considered
simultaneously at each scheduling moment. The strategy that has the best objective value
(defined in formula (1)) is picked as the scheduling decision. Heuristics are needed be-

110

Table 7.1: Overview of notations in Section 7.2.
xijk

whether job i is assigned to jth VM of type k, xikj ∈ {0, 1}
yjk whether jth VM of type k is to-be-provisioned, ykj ∈ {0, 1}
zij whether job i is assigned to jth running VM, zij ∈ {0, 1}
ck hourly cost of VM of type k
cj hourly cost of running VM j
wj capacity of running VM j
fck full capacity of VM type k
ri resource consumption of job i
di departure/end time of job i
sj The start time of VM j: the time when it started to boot
ldj latest departure time: the time that the final running job finish in VM j
ct current time
M number of newly arrived jobs, M = {1, ...,M}
N number of running VMs, N = {1, ..., N}
K number of types of VMs, K = {1, ...,K}
dte math operation, divide time t by 3600 and get its ceil value.

cause the solution of IPP under limited time may be suboptimal or even infeasible (CoH
may not find a feasible solution of the IPP in limited time).

7.2.2 Formalization of the Scheduling Problem

CoH needs to provision enough number of VMs to support all the incoming jobs, and
to allocate all the jobs smartly such that the rental cost is minimized. An VM that has
jobs running on it cannot be shut down, so it will still incur cost. Unnecessary cost will
be incurred if long-running, low-resource requiring jobs are assigned to expensive VMs.
We formulate the scheduling problem as follows. The goal of the scheduling problem,
as defined in formula (1), is to minimize the cost while ensuring enough VMs for the
incoming jobs. All the notations used in this section are listed in Table 7.1. An VM to-be-
provisioned is identified by its identifier j and its type k, while a running VM is identified
only by its identifier j.

Minimize
K∑
k=1

M∑
j=1

(yjk × dmaxi∈M
(di × xijk)− cte × ck) +R (7.1)

R =
N∑
j=1

(d(max{max
i∈M

(di × zij), ldj} − sj)e × cj)

subject to
M∑
i=1

zij × ri ≤ wj ∀j ∈ N (7.2)

K∑
k=1

M∑
i=1

xijk × ri ≤ fck × yjk ∀j ∈M (7.3)

111

N∑
j=1

zij +
K∑
k=1

M∑
j=1

xijk = 1 ∀i ∈M (7.4)

xijk ≤ yjk ∀i, j ∈M,∀k ∈ K (7.5)

The cost of scheduling consists two parts: the cost of to-be-provisioned VMs and the
cost of running VMs (defined by R). Each to-be-provisioned VM is charged between the
current time (ct) and the latest departure time of its allocated jobs. The sum of the cost of
running VMs, denoted by R, is defined similarly: each running VM is charged between
the time it was started (sj) and the latest departure time of its jobs (jobs that are running
on VM and the jobs to-be-allocated to it).

This IPP is subject to a few constrains, which we describe in turn. Constraint (2)

ensures that the allocated jobs in each VM cannot exceed the running VMs’ capacity.
Constraint (3) ensures that the allocated jobs in each to-be-provisioned VM can not ex-
ceed the VM’s capacity. Constraint (4) ensures that each job is only allocated to one VM.
Constraint (5) ensures that each job will not be allocated to a VM that will not be pro-
visioned. The decision variables xijk and ykj are binary. If the result of this IPP is that
ykj = 0, ∀k ∈ K, ∀j ∈ M, there will be enough VM capacity left to allocate all the
future jobs. Otherwise, more VMs are needed. If xijk = 1 , job i will be allocated to the
to-be-provisioned VM with identifier j type k.

7.2.3 Scheduling heuristics

We explore for CoH a large class of scheduling heuristic algorithms. They work as fol-
lows. While there are un-allocated jobs, each algorithm performs a loop consisting of
four steps. Firstly, the algorithm sorts all the un-allocated jobs using job selection criteria
and sorts all the VMs using VM selection criteria. Secondly, the algorithm picks the first
un-allocated job. Thirdly, it picks the first VM which should have enough capacity left for
the job. And then allocate the job to the selected VM. If such an VM does not exist, a new
VM is provisioned according to VM type selection criteria and the job will be allocated in
the next loop.

This general class of heuristic algorithms uses three criteria: job selection, VM selec-
tion, and VM type selection criteria. All job selection and VM selection criteria used in
this chapter are listed in Tables 7.2 and 7.3. For VM type selection, we use a Cost-Efficient
heuristic, which always chooses the VM with the largest capacity/cost value.

Most of the selection criteria we use in this chapter are simple, which allows them to
be run online. We describe some of the criteria below. Latest arrival time (LA) sorts the
VM according to the latest arrival time of jobs in each VM in decreasing order. Opposite
to LT, Earliest arrival time (EA) sorts the VM by earliest arrival time of jobs in increasing
order. Similar to LT, Latest departure time (LD) picks the VM which has the job that

112

Table 7.2: Job selection criteria.
Name Description
FCFS First-come-first-server

RR round-robin
LJF Largest job first
SJF Smallest job first

LTJF Longest run-Time job first
STJF Shortest run-Time job first

Table 7.3: VM selection criteria.
Name Description
Rnd Random
LM Largest capacity VM first
SM Smallest capacity VM first
LA Latest arrival time
EA Earliest arrival time
LD Latest departure time
ED Earliest departure time

LAA Latest average arrival time
EAA Earliest average arrival Time
CFH Close to Full Hour
FFH Far from full hour

has the latest departure time; Earliest departure time (ED) does the opposite. The latest
average arrival time (LAA) and earliest average arrival time (EAA) sorts VMs according
to the average arrival time of their jobs in decreasing and increasing order, respectively.
Close to full hour (CFH) makes use of the billing model of EC2; it always puts jobs on
VM whose Billing Time Unit (BTU) is closest to be increased, while Far from Full Hour
(FFH) is the opposite. In this chapter, the scheduling heuristic method specified by its job
and VM selection criteria is uniquely identified as {job selection}-{VM selection}. For
example, the FCFS-Rnd heuristic uses First-Come-First-Server (FCFS) for job selection,
random (Rnd) for VM selection and the cost-efficient criteria for VM type selection.

7.3 A Scheduling Policy using Reserved and
On-Demand Instances

Cloud providers allow their users to reserve VM instances, long-term, for reduced cost.
For instance, Amazon offers reserved instance, which can be rented for 1-3 years for
a lower price than their on-demand counter-parts. When using reserved instead of on-
demand instance, for the same VM configuration, users can pay a higher upfront cost
(UFi) for a lower hourly cost (Ci). Currently, there are three types of reserved instances
supported in EC2: lightly utilized, medium-utilized, and heavily utilized reserved in-
stances. For the lightly utilized and medium-utilized instances, users need to pay an
upfront cost and pay for each hour the VM is running. For the heavily utilized instances,
users need to pay an upfront cost and pay for each hour during the reserved term even
if the VM is not running. The hourly cost of Amazon EC2 instances are listed in Table
7.5. We present CoH-R, an extension of CoH, which uses reserved instances to reduce

113

the operational cost. We describe the strategy of CoH-R in Section 7.3.1, then describe
the method used to determine the number and types of reserved instances to be used in
Section 7.3.2.

7.3.1 Policy Overview

Assuming that it is given an arbitrary amount of reserved instances, CoH-R makes use of
these reserved instances as follows: the heavily utilized instances are always on, while
the medium and lightly utilized instances are shut-down when they do not have any jobs
running on them before their Billing Time Unit (BTU) is about to increase (m seconds
before the BTU increases). Whenever CoH plans to start a new VM of type k, CoH-R
firstly looks at medium-utilized instances of type k, and starts one of them if any is off. If
no medium-utilized instance of type k exists, CoH-R tries to use a lightly utilized instance
of type k. As a last resort, CoH-R uses on-demand instance of type k.

Having too few reserved instances will not benefit much from the reduced price; while
reserving too much may actually increase operational cost. We do not seek to find the
optimal number of reserved instances, because obtaining the optimal solution requires
exact workload information of the entire reservation period (e.g., one year). Even if we
can know the workload of the upcoming time period, obtaining the optimal solution via
solving an IPP that takes the exact workload as input is computationally infeasible.

7.3.2 Determining the reservation plan

CoH-R only requires the workload distribution instead of exact information of the number
of VMs needed at each time interval. For simplicity of analysis, we assume VM start-up
and shut-down time are instantaneous (In experiment, we set the start-up time as two
minutes.). Assuming the number of VMs (resource demand) needed for the current time
interval t is Dt, we can obtain the cost needed at each interval B(Dt) as follows. If
Dt is lower than the number of heavily-utilized instances (N3), no other VMs will be
needed, as the heavily utilized instances can provide enough computing resources. If Dt

is high than N3, but lower than the total number of heavily and medium-utilized instances
(Dt ≤ N3 +N2), CoH-R needs to provision Dt −N3 medium-utilized instances. If Dt is
higher than the sum of heavily and medium-utilized instances (Dt > N3 +N2) but lower
than the total number of reserved instances, CoH-R needs to provision all the heavily and
medium-utilized instances and Dt − (N3 + N2) lightly utilized instances. Last, if Dt is
higher than the sum of all reserved instances, CoH-R needs all the reserved instances and
Dt − (N1 +N2 +N3) on-demand instances.

CoH-R obtains the number of reserved VMs needed, of each type, via finding the com-
bination of number of reserved instances (Ni) that minimizes

∑T
t=1B(Dt)+

∑
k∈K(UFk×

114

Nk), where T is the number of intervals (e.g, hour) of a time period (e.g, year or month).
Further, if the resource demand of each interval does not affect the other time intervals
(in practice, most of the jobs’ runtime is short, in the order of tens of minutes), the goal
can be reformulated via only using the probability of VMs needed at each time interval
as below, (

∑M
i=0 Pr(D = i) × B(i)) × T +

∑
k∈K(UFk × Nk), where Pr(D = i) is

the probability distribution of demand, and K is the set of reserved type, and M is the
maximal number of VM needed.

We extend the above method which deal with one machine configuration only, to allow
it to deal with multiple machine configurations. The goal is to find the number of reserved
instances (Njk) of machine configuration j and reserved type k, needed, to minimize the
cost defined in formula (7.6).

(
M∑
i=0

Pr(D = i)×B(i))× T +
∑
j∈J

∑
k∈K

(UFjk ×Njk) (7.6)

In formula (7.6), J is the set of machine configurations and UFjk is the upfront cost
of reserved instance of machine configuration j and reserved type k. The billing func-
tion B(D) need to be changed to be the lowest cost to meet the demand D via finding
the combination of reserved and on-demand instances to be used. B(D) ={Minimize∑

j∈J
∑

k∈K(njk × cjk) +
∑

j∈J(n
od
j × coj)} , where njk and cjk are the number and the

cost of the reserved instance with machine configuration j and reserved type k, respec-
tively. nod

j and coj are the number and the cost of the on-demand instances of machine
configuration j, respectively. The capacity offered by njk reserved instances and nod

j on-
demand instances should be enough to satisfy demand D.

7.4 Experimental Results

In this section, we evaluate the performance of our proposed approaches using multiple
real-world traces corresponding to two separate but popular domains: grid computing and
online game hosting. Firstly, we compare CoH against various commonly used heuristics.
Then, we evaluate CoH-R, which uses reserved instances to further reduce cost, and com-
pare it to CoH. Our results indicate that our proposed approaches can lead to significant
lower cost than heuristics.

7.4.1 Experimental setup

We conduct experiments using three real-world workloads LCG, Grid5000, and Dotali-
cious which are taken from public workload archives [73, 92, 107]. LCG and Grid5000
contain information about the computing activities of two grids while DotaLicious con-

115

tains workload information of a game platform. We use the first year traces Grid5000 and
Dotalicious, and the full trace of LCG (13 days) as our input workloads. The common
data we find in the above traces are, for each recorded job, its job id, the arrival time, and
the departure time. The basic statistics of these workloads are listed in Table 7.4. Notably,
the gaming server have similar runtime (CPU requirement) to Grid5000 jobs in the order
of tens of minutes. Game servers are also computationally intensive, a result of having to
perform virtual world physical simulation.

As not all the traces contain resource requirements for each job, we generate for each
job resource requirements using 3 different methods: Heterogeneous, Constant-100, and
Constant-10. For Heterogeneous workload, we generate each jobs’s resource require-
ments as ten times a random number which is between 1 to 10. For Constant-100 method,
each job’s resource required is 100. For Constant-10 method, each job’s resource required
is 10. We only consider two instance types: small and large. We model a small
EC2 instance’s capacity as 100 and a large instance’s capacity is 410. Large instance
is more cost efficient than small instance. Their cost1 are summarized in Table 7.5.

As running all the heuristics online is time consuming, we evaluate the heuristics
by running simulation and pick the heuristics that have good performance as alternative
method to compete with the solution obtained by solving IPP. We find that none of heuris-
tics can perform always best, across all scenarios, and find that the job selection criteria
does not have a significant impact on cost but VM selection criteria does have an im-
portant impact on cost. We pick FCFS-SM when the input workload is heterogeneous,
and use FCFS-LD and FCFS-CFH when the workload is homogeneous (Constant-10 and
Constant-100).

All the experiments are conducted using our own simulator and repeated at least 10
times. We set the acquisition time of an VM to two minutes and the scheduler is executed
every 10 seconds. We use IBM CPLEX to solve the formulated IPP when the number
of jobs to be scheduled is lower than 50 and set the time limited as two seconds. As our
methods have proactively provision VMs for all the jobs, the wait time of each job is zero.
We evaluate one metric, the rental cost. The rental cost is the price paid to cloud providers
for all the rented computing resource. We focus on cost because it is a major barrier for
cloud adoption.

For calculation of the utility of all the methods, we compare the lower-bound for
cost against actually paid cost. The lower bound for cost is calculated by assuming that
we have an ideal computer that it can vertically scale to the any of the desired capacity.
The vertical scaling takes zero time and the VM is charged by its actual usage of resource
which scales linearly with its capacity. So the optimal cost can be computed as [

∑N
i=1 ri×

(di − ai)] ÷ wk × ck, ∀i ∈ N, where N is the total number of jobs, and wk and ck are
the capacity and the cost of the most cost-efficient VM, respectively.

1http://aws.amazon.com/ec2/pricing/

http://aws.amazon.com/ec2/pricing/

116

Table 7.4: Overview of traces.
Trace #jobs average runtime [s] duration source

Grid5000 200,450 2728 May 2004 - May 2004 Grid workload archive [107]
LCG 188,041 8971 Nov 2005 - Dec 2005 Parallel workload archive [73]

DotaLicious 109,251 2231 Apr 2010 - Apr 2011 Game trace archive [92, 93]

Table 7.5: Overview of cost of EC2 instances: Small and Large.
Small (hourly, upfront) [$] Large (hourly, upfront) [$]

On demand (0.065, 0) (0.26, 0)
Lightly utilized (0.039, 69) (0.156, 276)
Medium utilized (0.024, 160) (0.096, 640)
Heavily utilized (0.016, 195) (0.064, 780)

7.4.2 Results

We first evaluate CoH against various heuristic methods. Figure 7.1 shows the average
experiment results using Grid5000 and LCG datasets, respectively. The error bars are
the standard deviation. Figure 7.1 shows the lower bound for cost (LB), and results for
FCFS-SM, FCFS-CFH, FCFS-LD, and CoH, from left to right; grouped by type of work-
loads. We find that CoH performs better than any of the heuristics. For the Grid5000
dataset, CoH can obtain about 20% to 40% lower cost than any heuristic. For the LCG
dataset, CoH can obtain 5% to 20% lower cost. This indicates that CoH can find better
combinations of VMs, and better mapping between jobs and VMs.

The cost obtained through CoH is about 1.1 to 1.6 times higher than LB. The utiliza-
tion of CoH, that is, the average use of leased VMs, ranged from 90% to 63%. We identify
three reasons why CoH is higher than the lower bound (LB): Firstly, our scheduler is run
online, thus not having all the necessary information. Secondly, the billing model of the
cloud: a fractional consumption of a VM’s capacity is charged as the fully busy VM.
Thirdly, the boot-up time of VM is not negligible. One possible way to lower the gap
between LB and CoH is to allow the jobs to wait for better scheduling opportunity, so that
scheduler can pack more jobs in the same VM instead of starting a VM for each short job.
This approach would be particularly effective during bursts in the workload.

We evaluate CoH-R using the Dotalicious and Grid5000 datasets. The results are
shown in Figure 7.2. We do not evaluate LCG dataset because it lasts for only 13 days
(less than the minimal reservation period of EC2). We compare in Figure 7.2: FCFS-CFH,
CoH, CoH-oneType, and CoH-R. CoH-oneType is a variation of CoH-R which only uses
heavily-utilized instance. For the Dotalicious dataset, CoH-R and CoH-oneType obtain
lower cost than CoH. CoH-R can obtain lower cost than CoH-oneType, because it takes
advantage of the cost reduction and flexibility provided by different reserved types. The
result obtained by CoH-R using the Dotalicious dataset is about 13% to 20% lower than
CoH and about 30% to 60% lower than FCFS-CFH. For the Grid5000 dataset, the perfor-
mance of CoH-R obtain about 3% to 5% lower cost than CoH, but still about 20% to 50%

117

Figure 7.1: Cost of various scheduling methods: (left) Grid5000 and (right) LCG.

Figure 7.2: Effect of using reserved instances: (left) Dotalicious and (right) Grid5000.

lower cost than the heuristic. The reason why CoH-R only obtains a small improvement
on Grid5000 is because Grid5000 contains busty workloads with short jobs, and some
very long jobs. As CoH-R always schedules jobs to VMs as soon as the jobs arrive in the
system, this cause some long jobs to run on on-demand instances instead of the cheaper
reserved instances. In summary, CoH-R can obtain about 20% and up to 60% lower cost
than the heuristic. CoH-R can obtain significantly lower cost than heuristics which use
on-demand instances only.

7.5 Related Work

A significant body of work has already focused on cloud resource scheduling from a cloud
provider’s perspective [95,178,219,236]. In this context, the common goals are to reduce
the storage/electricity cost and to improve platform utilization. In contrast, in this study

118

we schedule resources from a broker’s perspective, with the goal to minimize the rental
cost.

Previous studies have focused on provisioning and allocation of cloud resources, un-
der various constraints. In contrast to these studies, which we describe in the following,
we consider multiple instance types, billing models and heterogeneous workload. Clos-
est to our work, Genaud and Gossa [82] evaluate provisioning heuristics for on-demand
resources. Villegas et al. [222] conduct a performance-cost analysis of scheduling poli-
cies for IaaS Cloud. Deng et al. [59] develop a portfolio scheduler. Oprescu and Kiel-
mann [169] schedule bag-of-tasks on clouds focusing on budgets and runtime. They
formulate the provisioning problem as a Bounded Knapsack Problem and allocate jobs
to VMs round-robin. Mao et al. [142] propose a linear program for provisioning, and
allocate jobs randomly to VMs. Sharma et al. [192] use on-demand instances and use
migration but only for homogeneous workloads.

Hong et al. [98] use a method to determine number of reserved instances of one reser-
vation type. We show in our experiments that it is necessary to use multiple reserved
instance types to reduce cost. Chaisiri et al. [38] propose an algorithm to determine the
number and types of reserved VM to be used by solving a stochastic IPP to minimize
expected cost. They limit the on-demand instances can be only provisioned in specific
provision phase, while we proactively provision VM at any necessary time. Ostermann
and Prodan [170], and Song et al. [204] use spot-instance to reduce cost. Their work
complement ours.

7.6 Summary

It is challenging to select among machine configurations and billing options offered by
clouds to fit user demand while reducing operational cost. In this chapter, we propose
CoH, a Cloud-base, online, Hybrid scheduling policy which make uses of multiple ma-
chine configurations to plan enough capacity for users with less cost. We formulate the
resource provisioning and the job allocation problems as Integer Programming Problems
(IPP). To obtain the scheduling decision online, CoH limits the time of exploration for a
solution and only obtains an intermediate IPP solution. CoH makes scheduling decision
by picking the best among the solution of IPP and various heuristics; thus, CoH operates
as a portfolio scheduler. Further, we propose CoH-R, a policy that makes use of both
on-demand and reserved instances to reduce cost. Via simulation using real-world traces,
we show that our approaches can lead to significant lower cost than heuristics while
operating online.

119

Chapter 8

Making NVEs Robust through the
Availability-on-Demand Mechanism

Increasing amounts of datacenter resources provide the infrastructure of ICT utilities at
global scale [189,213]. Datacenter users rent datacenter resources to provide diverse ICT
utilities, from business-critical processes [43] and scientific computing [57], to social net-
working [15] and online gaming [160]. Due to the sheer scale of datacenters, resource
failures are bounded to happen [36,188]. When failures occur during critical service peri-
ods, such as during flashcrowds [8,23], during periodic collection of results, or at the end
of service operation (such as just before the outcome of an online game match), they are
likely to lead to significant revenue loss or customer departure [112, 136]. Over the past
decade, many high availability (HA) techniques have contended for masking resource
failures [138,185], but they can be costly and difficult to manage when applied indiscrim-
inately. Moreover, datacenters and even public Infrastructure-as-a-Service clouds offer
today to their users only limited management options for dynamically selecting and con-
figuring HA techniques. In this chapter, we propose Availability-on-Demand (AoD), a
mechanism for dynamic HA management comprised of an API to dynamically specify
availability requirements and a configurable availability-aware scheduler.

Managing HA techniques effectively is non-trivial. First, many HA techniques ex-
ist, including recent virtualization-based techniques such as Active/Active (AA) and Ac-
tive/Standby (AS) [138], which are increasingly adopted in large datacenters and com-
mercial datacenter products [53,223]. Second, the impact of resource failures on revenue
is difficult to estimate. Anecdotal evidence [112, 136] indicates revenue loss: even the
small, sub-second delays in generating the response to a customer query can lead to sig-
nificantly fewer sales (1% for Amazon) and overall site traffic (up to 20% for Google).
All HA techniques increase administrative costs and human resource needs [181], and
may incur significant costs in redundant infrastructure. Thus, we ask in this chapter the
research question How and when to use HA techniques effectively inside the datacenter?

120

We answer our main research question by designing and analyzing experimentally
Availability on Demand (AoD), a HA-aware mechanism for dynamic datacenter resource
management. Novel in this chapter, we consider for our mechanism the class of ICT
services where the availability requirements, and thus the utility of using HA techniques,
can change over time. In contrast to mission-critical applications, such as online-banking
transactions, which require HA during their entire lifespan, datacenter-supported services
such as business support, some types of scientific computing, and online games require
HA only during limited periods of time. For example, a company may want to run its
support services with HA only during working hours, an online service may increase its
HA requirements during launch or after major updates, an online gaming service may
require higher HA during the end of important matches (e.g., the final of the World Cup
of e-Sports League of Legends), etc.

We further design our mechanism to provide support for the specification and manage-
ment of HA in datacenters. We propose an easy-to-use API that allows datacenter users to
specify dynamically the availability levels they need. Users can express their availability
requirements over time, and for entire services or for parts of their service, e.g., only for
the master component of a master-worker application. We also propose an availability-
aware scheduler which tries to balance availability and the cost it incurs. We equip this
scheduler with a scheduling policy which manage computing resources dynamically to
meet user-specify availability requirements.

We evaluate our mechanism experimentally, through trace-based simulation. Using
the API, we express dynamic availability requirements for a variety of workloads. We
also conduct comprehensive, trace-driven, simulation-based experiments that compare the
proposed scheduler with several alternative approaches. To give evidence on the versatil-
ity and efficiency of our mechanism, our experiments use long-term traces representative
for two important and popular application domains, scientific computing and online gam-
ing.

The main contribution of this chapter is twofold:

1. We propose a novel mechanism, Availability on Demand, which manages the dy-
namic HA-requirements of datacenter users (Section 8.2). The mechanism consists
of an API for datacenter users to specify dynamic availability requirements, a sched-
uler that manages resources while trying to improve the availability of the system,
and a policy to configure the scheduler.

2. We evaluate our mechanism experimentally, through trace-based simulation (Sec-
tion 8.3). Our results indicate superior performance for our mechanism, in contrast
to approaches which use HA techniques indiscriminately or naively. Moreover,
comparing to an ideal approach which use perfect failure predictions, our approach
can lead to 13% to 31% more cost, but with similar availability for critical parts of

121

applications.

8.1 System Model

The system model we consider in this chapter is common for datacenter studies and
follows our work [58, 196], which it extends with a consideration of failures derived
from [106, 215, 237]. We describe, in turn, the infrastructure, the workload, the opera-
tional, the failure, and the HA elements of the system model used in this chapter.

8.1.1 Infrastructure and Workload Model

We consider datacenters who provide Infrastructure-as-a-Service (IaaS) or managed-IaaS
(Platform-as-a-Service like) cloud services. Datacenter users (customers) express their
ICT services (applications) as workload units (jobs) that run on virtual machines (VMs)
rented from the datacenter. VMs are hosted by the datacenter on homogeneous physical
hosts (e.g., blade servers) owned by the datacenter.

Jobs can consist of one or multiple tasks, where a task can be a typical Linux process
or a VM. For the IaaS model, customers submit each task in the form of a VM to the
datacenter, and the datacenter will allocate the VM to some host. For example, users can
control tasks that are running in VMs provided by Amazon’s EC2. For managed-IaaS,
customers submit their jobs to the datacenter, and let the datacenter allocates VMs and
run the jobs. There are two types of tasks: primary and backup. Primary tasks are tasks
that execute the application logic, while backup tasks are used to protect primary tasks to
avoid interruption of ICT services.

We only consider tasks for which the CPU is the dominant resource, that is, the time
to execute a task is inversely proportional to the performance of the processor it runs on
(e.g., SPEC CPU). We allow dependencies between tasks, and specifically consider two
traditional computational models: master-slave (MS) and bag-of-task (BoT). For MS-type
dependency, if the master task fails, the whole job fails; if any of the slave-tasks fails, it
will not affect the other tasks. For jobs with BoT-type dependency, individual task failures
do not lead to the failure of the entire job. We do not consider MPI-type applications. For
those applications, should any of the tasks fail, the whole job fails.

Match-based games, such as the Defense of the Ancients, are examples of bag-of-
task jobs. Matches are independent from each other. MapReduce applications are a type
of master-slave workload. The master-task of a MapReduce application monitors and
controls the slave-tasks to perform some data-analysis. We only consider the availability
of the jobs themselves, not the systems that jobs rely on. If those systems fail, the jobs
fail too. For example, for a master-slave application such as MapReduce, if the Hadoop

122

……Job1 Job2 Job3 Job4

Task queue

Front end

Datacenter user

Job

Job description

Task(s) description

Availability description

Scheduler

Provisioning policy

Allocation policy

HA policy

...

Taski Taskj
...

Task1

...

Backup1

... ...

Taskx

Host1 Host2

Figure 8.1: Schematic Plot of the Operational Model.

Distributed File System fails, the MapReduce application fails, even when equipped with
our mechanism (introduced in Section 8.2).

8.1.2 Operational Model

The operational model is depicted in Figure 8.1. Users submit their jobs to the frontend
of a datacenter. Each job contains the necessary information needed to execute the job,
and the availability requirement of the job. All incoming jobs are enqueued into a system-
level queue. A system-level scheduler, running on a separate physical host, manages all
the jobs, a pool of physical machines, and a pool of virtual machines. The scheduler
decides whether to boot up physical and virtual machines, and whether to allocate tasks
to hosts.

The scheduler use an HA policy to manage backup tasks which is used to protect
normal tasks. As is depicted in Figure 8.1, backup1 is running in host1 to protect task1
which is running in host2. The scheduler uses a provisioning policy for booting up hosts
from the datacenter, and an allocation policy to select jobs or tasks and to allocate them
to hosts.

123

Provisioning Policy

For each task, the provisioning policy will try to place the task to the first host which has
enough capacity. If the task is a backup task, the host should not contain both the primary
and the backup tasks of the same task. If the task cannot be placed on any of the running
hosts, a new host will be booted.

Allocation Policy

The allocation policies will first select a job, according to the First-Come-First-Serve
(FCFS) policy, and then allocate all of the tasks of that job to some hosts. An allocation
of a job is successful only if all of its tasks can be allocated to hosts. For each task t,
the allocation policy will place the task on the eligible host with the least number of idle
CPUs. A host is eligible if it has enough capacity and it is not executing the primary task
of t (if t is a backup task).

8.1.3 Failure Model

We assume that physical hosts fail according to the fail-stop model: once a host fails, all
the VMs hosted on the physical host stop and fail. Failures adhere to the model proposed
in [106]: as in traditional failure models, once a failure happens to a physical host, the
physical host will be down for a while, then resume normal operation. Similarly to [215],
when a failure happens and cannot be masked by the HA technique of the datacenter (see
Section 8.1.4), the failing tasks that ran on the host are resubmitted to the system-level
queue and start from their beginnings.

We do not address other error models [11]. As failure-detection is not the focus of this
chapter, we also assume that there exists a failure detection mechanism which can detect
the fail-stop failures timely with perfect accuracy.

8.1.4 High Availability Model

We consider in this chapter one main HA model and its practical technique that can be
used at the VM level of the datacenter: the Active/Active (AA) technique.

The AA technique masks single failure occurring to individual VMs (and their ser-
vice), by using a backup VM is running in parallel with a primary VM, so the two VMs
operate as active replicas of each other. If a failure happens to one of active replicas,
the other active replica takes over. If both active replicas fail, the service fails. There
are many ways to achieve the AA technique, including synchronous methods such as
lockstep [223], which execute the exact instruction and data at each step; asynchronous
methods such as Xen Remus [53], which replicates its state asynchronously to the backup

124

active replica; and hybrid methods such as COLO [65], which synchronizes the replicas
only their outputs differ significantly.

Dynamically adding or removing AA replicas for a primary VM is already enabled by
current virtualization techniques [53, 114, 223]. Dynamically adding an AA replica can
be achieved by the following procedure. First, the virtual machine monitor initializes live
migration (e.g. as in [114]). Instead of terminating the primary VM at the end of the mi-
gration, the replicated VM will stay synchronized with the target VM using mechanisms
such as [53, 223].

Other HA models exist. Among them, we have considered but not explored in this
chapter the Active/Standby (AS) model, which recovers a failed VM from a booted stand-
by VM. In contrast to AA, AS ensures slower recover speed, but at the cost of only a
standby, rather than active, resource.

8.2 Availability On Demand

In this section, we propose the Availability on Demand (AoD) mechanism for the spec-
ification and management of HA in datacenters. The main requirement for our AoD
mechanism is to support services for which individual service components (tasks) can
have time-varying availability requirements. The mechanism includes an easy-to-use API
to specify HA requirements and an HA-aware scheduler.

Our key innovation is the support for dynamic HA requirements, which promises to
provide high availability with low cost (use of computational resources). Traditional ap-
proaches do not support the dynamic specification of HA for each service component, and
maintain replicas for each service and for the entire duration of the service. In contrast, the
AoD API enables the dynamic specification of requirements per service component, and
the AoD scheduler uses replicas only for selected services (tasks) and only temporarily,
when needed.

We describe, in turn, the API by which the users can specify their dynamic HA re-
quirements (Section 8.2.1), and, in detail, the availability-aware scheduler (Section 8.2.2)
and its policy (Section 8.2.3). Last, we discuss the implications and limitations of our
approach (Section 8.2.4).

8.2.1 A Customer API for Specifying Availability Requirements

We propose an API for customers to specify the dynamic availability requirements of
their applications, and per job or task. Our API is easy-to-use, in that it allows users to
specify their requirements through a single, three-parameter API call. To achieve this, we
consider in this chapter two levels of availability, high and normal; normal availability
does not provide any HA model, whereas high availability is supported through the AA

125

technique. The API provides a single function, the same for both per-job and per-task
specifications:

SetAvailability(id, availability, time period)

with the parameters: “id”, through which users can specify the unique id of the job
or task which requires different levels of availability; the “availability” field, to specify
the availability level, normal (NA) or high (HA). Users can specify the period for which
the availability requirements expressed in the API call should be valid, by using the “time
period” field. By default, the specified availability requirement apply to the entire life
cycle of the tasks; the “time period” field is then set to all. In this chapter, we use
the terms “critical period” and “high availability period” interchangeably to describe the
period which requires high availability.

The AoD API, albeit simple, is expressive. First, it supports many types of availability
changes, including three main models we consider in this study:

• Bursty: most of the time, the availability requirement of the task is normal, but can
raise at any moment to high.

• Periodical: the availability requirement of the task changes over time, alternating
between normal and high availability periods.

• Steady: the availability requirements of each task is set to normal or high and does
not change over time.

Second, it offers support for a variety of application domains, including the following
examples:

• For MS applications (see Section 8.1.1), which are common in scientific computing,
the master component is more important than the slave-tasks. Users wishing to
provide HA for these applications could specify this such kind of requirement by
making a single, task-level API call: SetAvailability(MasterId, HA, all).
(The calls of SetAvailability(WorkerId, NA, all) represent the default, so
they are not required.)

• For online gaming applications, many of which are BoT applications (see Sec-
tion 8.1.1), the availability requirement may be higher between 9PM to 1AM (after
dinner to late-night play). The users can specify this requirement through a single,
job-level API call: SetAvailability(gamingAppId, HA, 9PM→1AM).

In this chapter, we focus on the simplicity of the API to make it easy to understand
and to be sufficient to meet our initial requirement. The API can be further improved by
adding more features. For example, the API can include an option to be used to specify the
number of backups, as more backups can ensure better availability. As another example,

126

Algorithm 2 AoD scheduler, main execution cycle.
1: while not end of scheduling do
2: Managing backup tasks; //Section 8.2.3
3: Removing backup tasks;
4: Allocating backup tasks; //Section 8.2.3
5: Enqueuing tasks for scheduling;
6: Provisioning VMs;
7: Allocating tasks to hosts;
8: Turning off idle hosts;

the API can be extended to allow customers to specify their desired availability target, and
then our system will give the customers recommendations, for example based on expected
cost.

8.2.2 AoD Scheduler

In this section, we propose the AoD scheduler—a datacenter-level scheduler that is HA-
aware and tries, through the novel HA policy we will introduce in Section 8.2.3, to support
the requirements specified by datacenter users through the AoD API. The AoD scheduler
is configurable, in the sense that each policy used by the scheduler can be selected by
the user from a library of available policies. We assume that availability requirements are
provided by calls to the API at the moment when the jobs are submitted to the datacenter.

The function of the scheduler is to manage the process of booting up or turning off
physical hosts, of starting or stopping VMs, and of allocating tasks, while taking into ac-
count HA requirements and enforcing them through the AA technique (see Section 8.1.4).
In this chapter, we only use AA backup tasks, which use AA technique to create backup
for the primary task. For briefly, we refer to AA backup tasks as backup tasks.

The AoD scheduler consists of a main execution cycle, executed often (e.g., every
second). The main steps of the schedulers are depicted in Algorithm 2. They are:

1. Managing backup tasks The scheduler creates backup tasks for the running tasks
(detailed in Section 8.2.3).

2. Removing backup tasks The scheduler removes the backup tasks that are not longer
needed, for example because their high availability period has just ended.

3. Allocating backup tasks The scheduler allocates backup tasks to physical hosts (de-
tailed in Section 8.2.3). It is possible that some backup tasks cannot be allocated
due to lack of computing resources. Those tasks will be put into the system queue
and be processed later.

127

4. Enqueuing tasks for scheduling Newly arrived normal tasks, failed tasks, and
backup tasks are submitted to the system queue for scheduling.

5. Provisioning necessary computing resources by turning on (booting up) enough
hosts (see Section 8.1.2 for the provisioning policy).

6. Allocating tasks to hosts by creating a VM for each task of a job (see Section 8.1.2
for the allocation policy).

7. Turning off idle hosts to save operational cost. A host will be turned off if it has
been idle for k minutes (e.g., 2 minutes).

8.2.3 An AoD High Availability Policy

HA policies used in this chapter determine the behaviors of the scheduler about how
backup tasks should be created, executed and terminated. We propose an HA policy to
manage backup tasks: AoD based on user-specified availability Requirements (AoD+R).
The AoD+R policy creates backup tasks based on the availability requirements provided
by the customers (described in Section 8.2.3). All the backup tasks created will be allo-
cated to hosts to be executed using an allocation approach described in Section 8.2.3. The
AoD+R policy terminates a backup task if HA is not longer needed for its primary task.

Management of Backup Tasks

A distinctive feature of the AoD+R policy is the management of backup tasks, which
for our AoD mechanism are not running all the time and for all tasks, but temporarily
and only for selected tasks. The AoD+R policy relies on the availability requirements
provided by customers. Each time the policy is invoked, it works as follows. For each
task t in the running task set (TR), if t needs HA for a certain period of time, an AA backup
replica (taa) is generated for t and added to the set of AA backups (Taa). A backup task
for a master-task of a MS-type job will run during the entire lifespan of the master-task,
whereas backup tasks (taa) for non-master tasks (e.g., slave-tasks) will only run until the
end of the HA periods; at the end of this period, taa is marked for removal by being moved
into the removal set (TK) which will be removed by the scheduler.

Allocation of Backup Tasks

In this section, we describe how the AoD+R policy allocates backup tasks present in
the backup task set Taa which is created in step 1 of Algorithm 2. The scheduler takes
into account task characteristics of backup tasks (different runtime, different resource

128

Algorithm 3 AoD allocation heuristic.
Input: taa ∈ Taa all the AA backup tasks.

Hon on-line hosts.
ct the resource consumption of task t.
ch the remaining resource capacity of host h.
ht the host where task t locates.

1: calculate {Gtaa} for each taa ∈ Taa;
2: sort {Gtaa} in decreasing order;
3: for taa ∈ Taa do
4: for host h ∈ Hon do
5: if ctaa ≤ ch and ht 6= h then
6: allocate taa to h;
7: htaa = h;
8: if taa cannot be allocated then
9: T

′
aa = T

′
aa ∪ {taa};

consumptions, etc.) and tries to maximize the availability gain (an availability-aware
utility metric, defined in the following) achieved by allocating tasks to different hosts.

The goal of the allocation is to find a subset of Taa, and to allocate them to hosts H ,
so that the availability gain is maximal. We denote by Gtaa the availability gain of backup
task taa, where Gtaa = Etaa × Itaa , with Etaa being the already executed time of taa’s
primary task t, and Itaa being the relative importance of the primary task t. The intuition
behind Etaa is that more gain is ascribed to the tasks that have been executed the longest.
If the job has an MS-type dependency, and t is a master task (see Section 8.1.1), we model
Itaa as the total resource consumption of the job containing t—intuitively, if the master
task t fails, the whole job fails. For all other tasks of all other job types, if t requires HA
at the time when the allocation algorithm is invoked, Itaa = 1, otherwise 0.

The goal of maximal availability gain can be formulated as maximizing
∑

taa∈Taa
Gtaa ,

subject to two constraints which are formulated as follows.
Resource Constraint: The amount of resources allocated to tasks in a host h cannot

exceed the remaining resource capacity of h.∑
htaa=h

ctaa ≤ ch taa ∈ Taa, h ∈ H (8.1)

Anti-colocation Constraint: The AA replica taa of task t cannot be placed in the same
host as t.

htaa 6= ht taa ∈ Taa, t ∈ TR (8.2)

where ht indicates which host the task t locates, htaa denotes where taa will be lo-

129

cated, and TR is the running task set. The formulated problem is an integer programming
problem (IPP). As most IPP are NP-hard, we do not seek to obtain the optimal solution for
the above IPP we defined. We propose a heuristic algorithm to obtain a feasible, online
allocation of tasks to hosts. The heuristic algorithm is depicted in Algorithm 3. First, it
will obtain the availability gain for each task (line 1). Second, it will sort all the tasks in
Taa according to their gain {Gtaa} in decreasing order. Third, for each backup task taa,
the algorithm will try to allocate the task to the first host h which has enough capacity and
does not run the primary task t of taa (lines 3-9). For the tasks that cannot be allocated,
they will be organized as T ′

aa (lines 10-12). The T ′
aa will be inserted into the system queue

and be processed using the provisioning and allocation method described in Section 8.1.2.

8.2.4 Implications and Limitations of the AoD Mechanism

There are several ways to improve the AoD mechanism. One of the possible extensions
is to use both the AS and AA models (see Section 8.1.4). Using standby backup tasks can
reduce the resource consumption incurred by active backups, while keeping the downtime
of applications low (but longer than for active backups). Another possible extension is to
use both customer-specified availability requirements and failure predictions, to further
reduce the cost of offering availability.

There are several practical limitations to our work in this chapter. First, although the
overhead of AA replicas can be very small [65,223], in practice the AA technique may not
work efficiently for multi-core VMs [223], and may not be efficient for memory intensive
VMs [65]; in both cases, workload interference leads to decreased performance. An
approach to solve this problem in practice is to run benchmarks statically or dynamically,
to determine whether it is efficient to use AA techniques. Second, the AoD+R policy does
not work efficiently for MPI-like applications. Checkpointing may be a better solution for
those applications, but also faces many open challenges [27, 45].

8.3 Experimental Results

In this section, we evaluate our AoD scheduler equip with the AoD+R policy (see Sec-
tion 8.2.3), and compare them with four alternatives. We use for this realistic trace-based
simulation, using as input long-term, real-world traces that represent scientific computing
and online gaming. Our results indicate that the AoD+R policy can achieve high avail-
ability with low cost, in comparison to policies that use AA techniques randomly and an
AoD+R policy variation. Moreover, compared to an ideal policy which use perfect failure
predictions to manage backup dynamically, the AoD+R policy can consume 13% to 31%
higher cost but with similar availability for critical parts of applications.

130

We describe, in turn, the setup of our experiments (Section 8.3.1), the alternative ap-
proaches (Section 8.3.2) and the metrics used for comparison (Section 8.3.3), and the
main results for the usability (Section 8.3.4) and performance (Section 8.3.5) of the AoD
mechanism. Overall, we evaluate 5 scheduling policies under different scenarios: 2 task
dependency models (MS and BoT) and 3 availability requirement models (bursty, period-
ical, and steady), and with different parameters. Unless otherwise specified, the default
task dependency model is MS and the default availability requirement model is bursty.

8.3.1 Experiment Setup

Infrastructure

The experiments shown in this section are conducted using an event-based simulator de-
veloped for this study. The simulator is based on CloudSim [35] and our work on cloud
simulation [58,196]. We simulate a datacenter which consists of 1000 hosts, with 16 CPU
cores each. These values are realistic for a medium cluster, but also in the range of the
systems that provided the traces described in Table 8.1. Scaling these traces, for much
larger or much smaller systems, is difficult for various theoretical reasons [78].

Workloads

To indicate the versatility of our AoD mechanism, the real-world workload traces used in
this chapter represent two application domains, scientific computing and online gaming.
Table 8.1 presents an overview of these traces. The KTH-SP2 trace comes from the
Parallel Workload Archive (PWA) while the DAS2 trace comes from the Grid Workload
Archive (GWA). The DLI trace contains the first year records of the DotaLicious trace
from the Game Trace Archive (GTA). As the DLI trace does not specify the number of
CPU cores used per job, so we assume that each job uses 1 CPU core.

We do not have real user-defined availability requirements. Instead, we use the follow-
ing synthetic formulation. For the bursty model, a randomly continuous time period (k%
of the task duration) is picked as a critical period which requires high availability, while
the other period is set to be the normal period which requires normal availability. For
the periodical model, the task runtime is partitioned into multiple half-an-hour periods;
then, for each of the period, the first k% of the period requires high availability, while the
remainder requires normal availability. For the bursty and periodical model, high avail-
ability requirement period(s) are generated for a task only if the task’s runtime is longer
than 10 minutes. For the steady model, k% of the tasks need high availability all the time,
while the other tasks only need normal availability. In default, k is set to be 30. In this
chapter, the workload model specified by its task dependency and availability model is
uniquely identified as {task dependency}-{availability}. For example, MS-Bursty means

131

Table 8.1: Overview of real-world traces. “Sci.comp.” and “Onl.Gam.” stand for scien-
tific computing and online gaming, respectively.

Trace Trace Avg. Avg. Trace
Type name #jobs runtime [s] CPU source

Sci.comp. KTH-SP2 28,489 8876 7.7 PWA [73]
Sci.comp. DAS2 219,618 530 10.3 GWA [107]
Onl.Gam. DLI 109,250 2232 1 GTA [93]

MS task dependency and bursty availability model.

Failure Generation

When generating failures, the time and duration of a failure are determined according
to [106]; and then randomly one or two hosts will fail. The inter-arrival time of failures
are generated using a Weibull distribution (α = 9.7, β = 12.2), and the duration of
failures are generated using a LogNormal distribution (µ = 2, δ = 0.26). To determine
which hosts fail, we assign different failure probabilities to different hosts [237]. The
failure probabilities follows a Zipf distribution (exponent r range from 0 to 1); the hosts
with a larger failure probability will experience more failures. In this chapter, we set
r = 1, this leads to more failures happening to some hosts.

8.3.2 Alternative Policies for Comparison

We compare the AoD+R policy against four scheduling policies:

• None: This policy does not use any HA techniques.

• Rnd: This policy will use the AA technique to improve the availability of all the
jobs: for each task it will have a k% (i.e., 30) probability to add an AA backup task
which runs for the entire duration of the job.

• AoD-I: This policy is a variation of the AoD+R policy. The AoD-I policy does
not distinguish between master-tasks and slave-task and treats them equally, that
is, if the task (either a master-task or a slave-task) needs HA at the time when the
mechanism is invoked, it assigns Itaa = 1, otherwise Itaa = 0

• Pred: This policy is used as a reference to measure the gap between the AoD+R and
optimal scenarios. It assumes the existence of a predictor which tells about when
and where each failure will happen, the policy will create backup tasks for the
tasks located on hosts predicted to fail. The Pred policy also informs the allocation
module to stop allocating tasks to hosts predicted to fail, for an amount of time (e.g.,
10 minutes) or, if a downtime predictor exists, until the predicted end of the failure.

132

We explore in this chapter only the ideal case in which the location of failure is
perfectly predicted and the accuracy of the moment when failure happens is within
10 minutes.

8.3.3 Metrics

Each experiment is repeated at least 20 times. The results reported in this section are
average values. We consider the following metrics:

• Number of critical failure events (CRITS) The number of failure events during pe-
riods which require high availability. This metric indicates the ability of the system
to protect applications during the periods that matter, that is, when the customers
could be willing to pay extra for high-availability guarantees. The lower this metric,
the better.

• CPU hours The total number of hours that the CPUs in the datacenter are used
by the customer. This metric is useful to assess the efficiency of an availability
approach; less is better.

• Number of failure events (FAILS) The number of failure events, including failures
during periods require normal or high availability. The lower this value, the better,
but this metric may be misleading, because failures during normal availability peri-
ods may not be important enough (for example, it may not be user-facing). Similar
to CRITS and CPU hours, lower values mean better results.

For the three metrics, the CRITS metric emphasizes the importance to protect appli-
cations during critical periods. The CPU hours metric evaluates the cost-efficiency of a
scientific computing and online gaming system, and the FAILS metric measures the avail-
ability of a system. In this chapter, we only evaluate the above three metrics, more metrics
could be used to evaluate the effectiveness of our approach. However, it requires future
work.

8.3.4 Expressiveness Results

We apply the availability API proposed by AoD (in Section 8.2.1), in practice, for specify-
ing the availability requirements of each task in the input workloads, for various scenarios.

We generate the availability requirements of each task according to the availability
models we described in Section 8.2.1 and the amounts we have described in Section 8.3.1.

Overall, we conclude that the API can express the diverse workloads used in this
chapter: 2 application domains, 2 task dependency models, and 3 availability models.

133

Figure 8.2: Results under the MS task dependency and bursty availability requirement
model: (left) number of critical failure events (CRITS) and (right) CPU hours. (the non-
visible bars represent zeros.)

8.3.5 Performance Results

In this section, we show the results under different task dependency and availability re-
quirement models. The main findings are:

1. The AoD+R policy work well for the MS and BoT task dependency models.

2. The AoD+R policy consumes about the same CPU hours as the Rnd and the AoD-I
policy, but has significantly lower CRITS. Moreover, the AoD+R policy can lead to
less FAILS than the RnD policy and the AoD-I policy.

3. Comparing to the ideal policy: Pred, the AoD+R policy consumes 13% to 31%
more CPU hours, but about the same CRITS.

MS task dependency with bursty availability requirement model (MS-Bursty)

Figure 8.2 (left) shows CRITS for the None, the Rnd, the AoD-I, the AoD+R, and the
Pred policy, from left to right; grouped by traces. As is shown in the figure, the None
and the Rnd policy have much higher CRITS than the other policies. The None policy
has the highest CRITS, because it does not employ any HA techniques to protect tasks.
The AoD-I has at least 50% lower CRITS than the Rnd policy, but the CRITS for the
AoD-I under the KTH-SP2 and the DAS2 trace are non-negligible. The AoD+R, the Pred
policy has the lowest CRITS. This shows that the AoD+R policy satisfies the design goal
to protect applications at important occasions.

Figure 8.2 (right) shows the CPU hours metric for all the policies. As expected, the
None policy consumes the least CPU hours, as it does not use any HA techniques which

134

Figure 8.3: Number of failure events (FAILS) results under the : (left) MS-Bursty and
(right) BoT-Bursty workload models. (the non-visible bars represent zeros.)

use additional computational resources to execute tasks. The Pred policy consumes the
second lowest CPU hours. The AoD-R policy consume 15% to 30% more CPU hours than
the Pred policy. In addition, the AoD-I policy consumes more or less the same amount
of CPU hours as the Rnd policy. Moreover, the AoD-I policy consumes a bit less (about
5%) CPU hours than the AoD+R policy. This is because the AoD+R policy create AA
backups for master tasks during their overall runtime instead of only during HA periods.

Figure 8.3 (left) shows the FAILS metric for all the policies under the MS task depen-
dency and bursty availability model. The Pred policy has the least FAILS, as it predicts
occurrences of failure and create AA backups to protect tasks located in physical hosts
which will fail. The AoD+R policy has the second least FAILS, about 60% and 10% less
FAILS than the Rnd policy under the KTH-SP2 and the DAS2 trace, respectively. The
FAILS of the AoD-I policy are about 40% higher than AoD+R policy for the KTH-SP2
and the DAS2 traces. This because the AoD+R policy protect master tasks of jobs by
creating AA backup tasks for all the master tasks, when failure happens to a master task,
it will be protected as the master task has AA backup which is running in another physi-
cal host. The FAILS of the AoD-I and the AoD+R policy are identical for the DLI trace,
because each job only contain one task in the DLI trace, thus the performance of the two
policies are the same.

BoT task dependency with bursty availability requirement model (BoT-Bursty)

As is shown in Figure 8.4 (left), the AoD+R policy has about the same CRITS as the Pred
policy, and significantly less CRITS than the None and the Rnd policy. Comparing to
the MS-Bursty workload, the CRITS metric for the BoT-Bursty is less. This is because
for the MS-Bursty workload, a failure of the master task will trigger failures of tasks of
the same job. For the CPU hours metric, as is shown in Figure 8.4 (right), the Rnd, the

135

Figure 8.4: Results under the BoT task dependency and periodical availability require-
ment model: (left) number of critical failure events (CRITS) and (right) CPU hours.

AoD-I, the AoD+R policy consumes about the same CPU hours. And they consume 15%
to 25% higher CPU hours than the Pred policy. The FAILS of the policies for the BoT-
Bursty workload is lower than the FAILS for the MS-Bursty workload due to the reason
we explain before. As is depicted in Figure 8.3 (right), the AoD+R and the AoD-I policy
consume about the same FAILS as the Rnd policy.

For MS and BoT task dependency models with periodical and steady availability
model: MS-Periodical, MS-Steady, BoT-Periodical and BoT-Steady, we obtain similar
experimental results. The AoD+R policy has similar CRITS to the ideal policy: Pred.
And the AoD+R policy consumes similar amounts of CPU hours to the Rnd policy, but
leads to significantly lower CRITS. For tasks with MS dependency, the AoD+R policy
can lead to significantly less FAILS than the Rnd and the AoD-I policy. In comparison
with the Pred policy, we find that the AoD+R policy has more FAILS, but importantly
similar CRITS and only 13% to 31% higher CPU hours.

Impact of changing the percentage of HA periods

We evaluate the AoD+R policy by varying the percentage of HA periods (k), from 10% to
50%. With increasing k, the duration of HA periods for each task increases. The results
of this set of experiments are depicted in Figure 8.5. As is shown in Figure 8.5 (left), the
CRITS metric stays low (≤ 8) for the AoD+R policy with increasing k. This indicates
that the AoD+R policy can protect applications even for high percentages of HA periods.
For the CPU hours metric, as is depicted in Figure 8.5 (right), the CPU hours consumed
by the AoD+R policy increase linearly with k. This is because with the increasing k, AA
backup tasks will run longer to protect primary tasks, which leads to increased, but only
linearly, CPU hours. As Figure 8.6 (left) shows, the FAILS metric decreases linearly with
increasing k. This is because when the duration of HA periods increase, AA backup tasks

136

Figure 8.5: AoD+R with various percentage of HA periods: (left) number of critical
failure events (CRITS) and (right) CPU hours.

8 9 10 11 12 13 14
0

0.5

1

1.5

2

x 10
4 MS Dependency, Bursty Availability

Failure inter−arrival time parameter: Beta

F
A

IL
S

none Rnd AoD+R

Figure 8.6: Number of failure events (FAILS) for AoD+R with: (left) various percentages
of HA periods and (right) various frequencies of failures.

will run longer to protect their primary tasks longer.

Impact of changing the frequency of failures

We evaluate the impact of frequency of failures for the None, the Rnd, and the AoD+R
policy by changing β which determines inter-arrival time (IAT) of failures. The smaller
β is, the smaller the IAT is, which leads to in turn more failures. As is depicted in Fig-
ure 8.7 (left), the CRITS metric for the AoD+R policy remains low (≤ 5) for various
values of β, whereas the None and the Rnd policy has very high CRITS metric for small
values of β, and the metric decreases with increasing β (decreasing failure frequency).
This suggests that the AoD+R policy can protect applications during important moments,
regardless of the frequencies of failures. For the CPU hours metric, as Figure 8.7 (right)

137

8 9 10 11 12 13 14
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

MS Dependency, Bursty Availability

Failure inter−arrival time parameter: Beta

C
R

IT
S

none Rnd AoD+R

8 9 10 11 12 13 14
0

1

2

3

4

5

6

7

8

9

x 10
5 MS Dependency, Bursty Availability

Failure inter−arrival time parameter: Beta

C
P

U
 h

ou
rs

none Rnd AoD+R

Figure 8.7: AoD+R with various frequencies of failures: (left) number of critical failure
events (CRITS) and (right) CPU hours.

indicates, the None, the Rnd, and the AoD+R policies consumes slightly less CPU hours
with reducing failure frequencies (increasing β). This is because with less failures, less
tasks are needed to re-executed. For the FAILS metric, according to Figure 8.6 (right),
the FAILS metric for the three policies decreases significantly with increasing β.

8.4 Related work

A large number of research efforts have been devoted to improve the efficiency [5, 41,
62, 94] and availability [46, 110] of distributed systems. Hardware-based techniques,
which employ redundant power-facilities, cooling-facilities, switches, network links, and
storages [47], have been proposed to improve the availability of distributed systems. In
this section, we focus on comparing our work of this chapter with software-based high-
availability techniques. Two of the most common software-based techniques are check-
pointing and replication [36].

For checkpointing-based approaches: Researchers propose to use proactive and pre-
ventive checkpointing to improve the efficiency of HPC system [27]; to reduce the stor-
age space and overhead of checkpointing [164]; to determine the checkpointing interval
with the goal to reduce the job runtime and improve reliability [63]. For checkpointing-
based approaches, the efficiency of the approaches heavily depend on the characteristics
of failures and they may significantly slowdown job execution. In this chapter, we use
replication-based techniques, we plan to integrate our approach with checkpointing.

Replication-based techniques can be classified into application-level and system-level
replication. For application-level replication techniques, the application developer should
provide customized code to create replication of the applications. Researchers propose

138

to use iterative redundancy which trade-offs accurateness for cost-efficiency in volunteer
computing environment [30]; to use different fault-tolerance techniques for different parts
of applications [238]. Different from them [30, 238], we use system-level replication
techniques to improve the availability of systems.

For system-level replication techniques, the system where applications run can create
replicas for parts of the system. For example, Dynamo [56], a highly available key-value
store, automatically replicates data items in multiple locations to ensure the availability of
the data store service. Different from the data-replication techniques used in Dynamo, we
use a VM-level replication technique that creates backups for VMs. Researchers propose
to change the location of AA backups when failure happens with the goal to optimize
availability and application performance (latency) [115]; to use AA and AS to achieve
dependable VMs allocation [232]; to use AS to provide HA with the goal to minimize
the number of hosts used [20]. These approaches [20, 115, 232] statically allocate VMs
to hosts and only change the location of backup VMs when failure happens. In contrast,
our method dynamically manage backup VMs by taking into account the time-varying
availability requirements and failure predictions.

Some work use checkpointing and replication techniques both. Chtepen et al. [45] use
the two techniques both to improve resource utilization when running bag-of-task in Grid.
Elliott et al. [69] use the techniques both to provide fault-tolerance for MPI applications.
Different from them, we manage the backups dynamically instead of statically.

8.5 Summary

Datacenters are hosting the ICT services that serve our daily life. Failures, which are
bounded to happen in datacenters, can disrupt the availability of ICT services. Although
many high availability (HA) techniques have already been developed to mask failures,
dynamically selecting and configuring HA techniques for applications are still daunting
for datacenter practitioners and researchers.

In this chapter, we propose, Availability on Demand (AoD) a mechanism consisting of
an API that allows datacenter users to specify availability requirements which can change
over time, and a scheduler which provides HA to applications based on user-specified
requirements by dynamically managing computing resources for applications. We equip
our HA mechanism with a scheduling policy AoD+R which responds to the dynamic
availability requirements expressed by datacenter users with efficient management of re-
sources. By evaluating our proposed approach through realistic, trace-based simulation,
we show that the AoD+R policy can protect applications during important occasions,
while the baseline policies cannot. Moreover, compared to an ideal policy which uses
perfect predictions, the AoD+R policy consume 13% to 31% more resources but with
similar availability for critical parts of applications.

139

Chapter 9

Conclusion

Networked Virtual Environments (NVEs) have hundreds of millions of users with a global
market of tens of billions of Euros. In recent years, cloud computing has emerged as a
new computing paradigm which can offer computing resources to NVEs on-demand. Due
to the flexibility, availability, and pay-as-you-go features of clouds, there is an increasing
number of NVEs that are hosted in clouds. Beside the traditional challenges inherited
from non-cloud-based NVEs, for example, scalability and consistency, cloud-based NVEs
introduce new challenges and opportunities such as cost-efficient resource management.
In this thesis, we have developed a benchmarking system for NVEs, we have collected and
analyzed the traces of the workloads of several NVEs, we have designed and implemented
methods to massivize NVEs, and we have evaluated them with realistic simulations and
real-world environments. In this chapter, we present the main contributions of this thesis
in Section 9.1 and we suggest directions for future work in Section 9.2.

9.1 Main Contributions

Based on the research reported in this thesis, we list the main contributions of the thesis
below.

1. We have introduced RTSenv, a benchmarking system with a focus on Real Time
Strategy (RTS) games that is useful for both NVE researchers and developers. Our
system can control and measure many RTS-specific aspects, and enables a vari-
ety of experimental scenarios, from performance evaluations to taking game de-
sign decisions. RTSenv can operate in several types of computing environments,
from single desktop computers to wide-area multi-clusters and commercial clouds,
and leverages reactive fault tolerance techniques to perform robust, multi-machine,
multi-instance RTS game experiments.

140

2. We have proposed a method for studying the characteristics of Online Meta-Gaming
Networks (OMGNs), and we have applied this method to observe and analyze
XFire, which is a popular OMGN that serves about 20 million users playing over
1,500 games. We have found that OMGN players spend collectively in-game over
100 years hourly, that a significant fraction of the players have played over 10,000
in-game hours, that OMGN members are routinely engaged in the creation and con-
sumption of game-related media such as screenshots and videos, and that OMGN
members have on average over 60 friends.

3. We have shown how a general formalism can be used to extract social relationships
from the interactions that occur between networked-game players. Based on five
types of interactions, we have investigated implicit social structures of four popular
Multiplayer Online Battle Arena (MOBA), RTS games, and Massively Multiplayer
Online First Person Shooter (MMOFPS) games. Moveover, we have provided hints
on improving gaming experience through two socially aware services.

4. We have collected detailed virtual world mobility traces from World of Warcraft.
Using these traces, the public Second Life traces, and two real-world mobility traces
collected by others and kindly shared with us, we have conducted a comprehen-
sive, comparative study of the mobility characteristics of NVEs and real-world.
Our study has shown evidence that long-tail distributions characterize well flight
lengths, pause durations, and area popularity, that avatars move within limited sets
of areas inside a virtual world city, and that avatars do have preferences to differ-
ent areas. We have also indicated several differences between NVE and real-world
mobility characteristics: the flight length distributions have longer tails for real-
world, and the personal preference for different areas is more pronounced for real-
world. Based on these empirical observations, we have proposed a mobility model,
SAMOVAR, to generate realistic mobility traces of avatars in NVEs.

5. We have conducted the first empirical investigation of the presence of areas of in-
terest in Multi-Avatar Virtual Environments (MAVEs). We have found that, unlike
the other virtual environments such as RPG and FPS games, in MAVEs users have
multiple areas of high interest and that interest location changes quickly. Based on
this observation, we have proposed a novel scalable mechanism, Area of Simulation
(AoS), which uses update-based and event-based operation for areas of interest and
provides a scalability-consistency trade-off. We have proposed an AoS-based sys-
tem architecture for scalable MAVEs, which supports the dynamic management of
multiple areas of interest and several more common, scalability-related techniques.
We have compared qualitatively and quantitatively our approach with various state-
of-the-art approaches via simulations and real-world experiments, and have shown

141

strong evidence that AoS-based approaches offer superior performance and more
flexibility for MAVEs.

6. We have proposed CoH, a Cloud-base, online, Hybrid scheduling policy which
makes use of multiple machine configurations to plan enough capacity for NVE
systems with less cost. We have formulated the resource provisioning and alloca-
tion problem as an Integer Programming Problem (IPP). To obtain the scheduling
decision online, CoH limits the time of exploration for a solution and only obtains
a suboptimal IPP solution. CoH makes scheduling decisions by picking the best
among solutions of the IPP and various heuristics; thus, CoH operates as a portfolio
scheduler. Further, we have proposed CoH-R, a policy that makes use of both on-
demand and reserved instances to reduce the cost. Via simulation using real-world
traces, we have shown that our approaches can lead to significantly lower cost than
heuristics while operating online.

7. We have proposed Availability-on-demand (AoD), a mechanism consisting of an
API that allows NVE operators to specify availability requirements which can
change over time, and a scheduler which dynamically manages computing re-
sources for NVEs. The mechanism operates at the level of individual service in-
stance, thus enabling fine-grained control of availability, for example during sudden
requirement changes and periodic operations. Through realistic, trace-based sim-
ulations, we have shown that the AoD mechanism meet our design goal to protect
NVEs with low cost. The AoD approach provides for NVEs higher availability than
the approaches which use high-availability techniques randomly, and consumes the
same number of CPU hours. Moreover, comparing to an ideal approach which has
perfect predictions about failures, the AoD approach achieves similar availability
for critical parts of NVEs with 13% to 31% more CPU usages.

9.2 Suggestions for Future Work

There are a few future directions that are worth exploring:

1. We suggest building a better automatic benchmarking system by extending the RT-
Senv developed in this thesis. NVE researchers can extend RTSenv by allowing it
to control and measure Role Playing Game (RPG) specific metrics. Moreover, we
suggest integrating RTSenv with a cloud gaming framework to automatically test
and compare the performance of various cloud gaming system designs.

2. We suggest further analyzing the XFire datasets. While the richness of the datasets
allows NVE researchers to foresee many avenues for analysis, we suggest in par-

142

ticular correlating our findings with a similar, albeit much less detailed, study of
Steam datasets that we have already collected.

3. The field of online social networks research applied to online games is rich
and could lead to important improvements in gameplay, with direct impact to
networked-resource consumption and quality of experience. We suggest expand-
ing the methodology which is used to analyze implicit relationships of online social
networks for online games by taking into account temporal aspects such as loose
(dense) interactions between players over long (short) periods of time.

4. Movement is the most common action in NVEs. The mobility of avatars in NVEs
exhibits such properties as hotspots, long-tail pause duration, and invisible per-
sonal visitation boundary. We suggesting developing a cloud-based automatic load-
balancing method which takes into account the observed mobility characteristics
and the billing model of clouds to support large-scale NVEs with low operational
cost.

5. MAVEs such as RTS games are one of the most popular genres of online games.
We suggest investigating automatic tuning and balancing of the Area of Simulation
(AoS) systems, and integrating into the AoS architecture the ability to increase the
capacity of MAVE systems on-demand.

6. Clouds offer multiple billing options: on-demand, reserved, spot, etc. For the on-
demand billing model, users are charged with an hourly cost. For the reserved
billing model, users need to pay an upfront cost but with lower hourly cost. For the
spot billing model, users can bid to pay with lower hourly cost than the reserved
billing model without any upfront cost. We suggest using the spot billing model to
further reduce the operational cost of hosting NVEs.

7. Ensuring high availability is crucial to the proliferation of NVEs. We suggest ex-
tending the availability-on-demand mechanism with the Active-Standby technique
which recovers a failed VM from a booted standby VM to improve the availability
of NVE systems with low resource usage.

143

Bibliography

[1] 0 A.D. team. 0 A.D.— A free, open-source game of ancient warfare. http:

//wildfiregames.com/0ad/, 2014.

[2] A.-H. G. Abulrub, A. Attridge, and M. A. Williams. Virtual Reality in Engineering
Education: The Future of Creative Learning. Int. J. Engineering and Technology,
6(4):4–11, 2011.

[3] D. Ahmed and S. Shirmohammadi. Zoning Issues and Area of Interest Manage-
ment in Massively Multiplayer Online Games. In Handbook of Multimedia for
Digital Entertainment and Arts, pages 175–195. 2009.

[4] D. Ahmed and S. Shirmohammadi. Improving online gaming experience using
location awareness and interaction details. Multimedia Tools Appl., 61(1), 2012.

[5] J. Ahn, C. Kim, J. Han, Y. Choi, and J. Huh. Dynamic virtual machine scheduling
in clouds for architectural shared resources. In USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud), 2012.

[6] Amazon Inc. AWS Case Study: Cmune. http://aws.amazon.com/

solutions/case-studies/cmune/, 2014.

[7] C. Ang. Interaction networks and patterns of guild community in massively multi-
player online games. Social Netw. Analys. Mining, 1(4):341–353, 2011.

[8] I. Ari, B. Hong, E. L. Miller, S. A. Brandt, and D. D. E. Long. Managing Flash
Crowds on the Internet. In International Workshop on Modeling, Analysis, and
Simulation of Computer and Telecommunication Systems (MASCOTS), 2003.

[9] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee,
D. A. Patterson, A. Rabkin, and M. Zaharia. Above the clouds: A berkeley view
of cloud computing. Technical report, UCBekerly, 2009.

[10] ASCI. Distributed ASCI Supercomputer-Version 4, 2010.

http://wildfiregames.com/0ad/
http://wildfiregames.com/0ad/
http://aws.amazon.com/solutions/case-studies/cmune/
http://aws.amazon.com/solutions/case-studies/cmune/

144

[11] P.-L. Aublin, S. B. Mokhtar, and V. Quéma. RBFT: Redundant Byzantine Fault Tol-
erance. In International Conference on Distributed Computing Systems (ICDCS),
2013.

[12] M. Baladi, H. Vitali, G. Fadel, J. Summers, and A. Duchowski. A taxonomy for
the design and evaluation of networked virtual environments: its application to
collaborative design. Int. J. Interactive Design and Manufacturing, 2(1):17–32,
2008.

[13] M. Balint, V. Posea, A. Dimitriu, and A. Iosup. An analysis of social gaming
networks in online and face to face bridge communities. In International Workshop
on Large-scale System and Application Performance (LSAP), 2011.

[14] N. E. Baughman and B. N. Levine. Cheat-proof Playout for Centralized and
Distributed Online Games. In Conference on Computer Communications (INFO-
COM), 2001.

[15] D. Beaver, S. Kumar, H. C. Li, J. Sobel, and P. Vajgel. Finding a Needle in
Haystack: Facebook’s Photo Storage. In USENIX Conference on Operating sys-
tems design and implementation (OSDI), 2010.

[16] O. A. Ben-Yehuda, A. Schuster, A. Sharov, M. Silberstein, and A. Iosup. ExPERT:
Pareto-Efficient Task Replication on Grids and a Cloud. In International Parallel
& Distributed Processing Symposium (IPDPS), 2012.

[17] Y. Bernier. Latency compensating methods in client/server in-game protocol design
and optimization. In Game Developer Conference, 2001.

[18] Y. W. Bernier. Latency compensating methods in client/server in-game protocol
design and optimization. In Game Developers Conference, 2001.

[19] A. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda, J. Pang, S. Seshan,
X. Zhuang, and A. Bharambe et al. Donnybrook: Enabling large-scale, high-speed,
peer-to-peer games. In SIGCOMM Conference on Applications, Technologies, Ar-
chitectures, and Protocols for Computer Communications, 2008.

[20] E. Bin, O. Biran, O. Boni, E. Hadad, E. K. Kolodner, Y. Moatti, and D. H. Lorenz.
Guaranteeing High Availability Goals for Virtual Machine Placement. In Interna-
tional Conference on Distributed Computing Systems (ICDCS), 2011.

[21] J. Blackburn, R. Simha, C. Long, X. Zuo, N. Kourtellis, J. Skvoretz, and
A. Iamnitchi. Cheaters in a gaming social network. SIGMETRICS Performance
Evaluation Review, 39(3):101–103, 2011.

145

[22] Blizzard Inc. StarCraft II: Wings of Liberty Becomes Biggest PC Game Launch of
the Year, 2010.

[23] P. Bodı́k, A. Fox, M. J. Franklin, M. I. Jordan, and D. A. Patterson. Characterizing,
modeling, and generating workload spikes for stateful services. In ACM symposium
on Cloud computing (SoCC), 2010.

[24] W. Bohte and K. Maat. Deriving and validating trip purposes and travel modes for
multi-day GPS-based travel surveys. Transportation Research Part C: Emerging
Technologies, 17(3):285–297, 2009.

[25] S. P. Borgatti, A. Mehra, D. J. Brass, and G. Labianca. Network Analysis in the
Social Sciences. Science, 323(5916):892–895, 2009.

[26] J. Botev, M. Esch, H. Schloss, I. Scholtes, and P. Sturm. HyperVerse: simulation
and testbed reconciled. Int. J. Adv. Media Commu., 4(2):167–181, 2010.

[27] M.-S. Bouguerra, A. Gainaru, L. A. Bautista-Gomez, F. Cappello, S. Matsuoka,
and N. Maruyama. Improving the Computing Efficiency of HPC Systems Using a
Combination of Proactive and Preventive Checkpointing. In International Parallel
and Distributed Processing Symposium (IPDPS), 2013.

[28] J.-S. Boulanger, J. Kienzle, and C. Verbrugge. Comparing interest management
algorithms for massively multiplayer games. In Workshop on Network and Systems
Support for Games (NetGames), 2006.

[29] E. Brewer. CAP Twelve Years Later: How the ”Rules” Have Changed. Computer,
45(2):23–29, 2012.

[30] Y. Brun, G. Edwards, J. Y. Bang, and N. Medvidovic. Smart Redundancy for
Distributed Computation. In International Conference on Distributed Computing
Systems (ICDCS), 2011.

[31] M. Buro. RTS Games as Test-Bed for Real-Time AI Research. In Joint Conference
on Information Science, 2003.

[32] M. Buro and D. Churchill. Real-Time Strategy Game Competitions. AI Magazine,
33(3):106–108, 2012.

[33] M. Burton. Dungeons and Desktops: The History of Computer Role-playing
Games. A K Peters Ltd, 2008.

[34] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as
the 5th utility. Future Generation Comp. Syst., 25(6):599–616, 2009.

146

[35] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. F. D. Rose, and R. Buyya.
CloudSim: a toolkit for modeling and simulation of cloud computing environ-
ments and evaluation of resource provisioning algorithms. Softw., Pract. Exper.,
41(1):23–50, 2011.

[36] F. Cappello, A. Geist, B. Gropp, L. V. Kalé, B. Kramer, and M. Snir. Toward
exascale resilience. Int. J. High Perf. Comp. Appl., pages 374–388, 2009.

[37] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. B. Moon. I tube, you tube, ev-
erybody tubes: analyzing the world’s largest user generated content video system.
In Internet Measurement Conference (IMC), 2007.

[38] S. Chaisiri, B.-S. Lee, and D. Niyato. Optimization of Resource Provisioning Cost
in Cloud Computing. Transactions on Services Computing, 5(2):164–177, 2012.

[39] C. Chambers, W.-C. Feng, S. Sahu, D. Saha, and D. Brandt. Characterizing online
games. IEEE/ACM Trans. Netw., 18(3):899–910, 2010.

[40] K.-T. Chen, P. Huang, and C.-L. Lei. Game traffic analysis: An MMORPG per-
spective. Computer Networks, 50(16):3002–3023, 2006.

[41] L. Chen and H. Shen. Consolidating complementary vms with spatial/temporal-
awareness in cloud datacenters. In Conference on Computer Communications (IN-
FOCOM), 2014.

[42] T. C. L. Chen and C. Verbrugge. A protocol for distributed collision detection. In
Workshop on Network and System Support for Games (NetGames), 2010.

[43] Y. Chen, S. Alspaugh, and R. H. Katz. Interactive Analytical Processing in
Big Data Systems: A Cross-Industry Study of MapReduce Workloads. PVLDB,
5(12):1802–1813, 2012.

[44] S. Choy, B. Wong, G. Simon, and C. Rosenberg. The Brewing Storm in Cloud
Gaming: A Measurement Study on Cloud to End-User Latency. In Workshop on
Network and System Support for Games (NetGames), 2012.

[45] M. Chtepen, F. H. A. Claeys, B. Dhoedt, F. D. Turck, P. Demeester, and P. A.
Vanrolleghem. Adaptive Task Checkpointing and Replication: Toward Efficient
Fault-Tolerant Grids. IEEE Trans. Parallel Distrib. Syst., 20(2):180–190, 2009.

[46] W. Cirne and E. Frachtenberg. Web-Scale Job Scheduling. In JSSPP, 2012.

[47] Cisco Inc. Data Center High Availability Clusters. http://www.cisco.com/c/
en/us/td/docs/solutions/Enterprise/Data_Center/HA_Clusters/

HA_Clusters/HAOver_1.html, 2014.

http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/HA_Clusters/HA_Clusters/HAOver_1.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/HA_Clusters/HA_Clusters/HAOver_1.html
http://www.cisco.com/c/en/us/td/docs/solutions/Enterprise/Data_Center/HA_Clusters/HA_Clusters/HAOver_1.html

147

[48] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt, and
A. Warfield. Live migration of virtual machines. In Symposium on Networked
Systems Design & Implementation (NSDI), 2005.

[49] M. Claypool. The effect of latency on user performance in Real-Time Strategy
games. Computer Networks, 49(1):52–70, 2005.

[50] M. Claypool and K. Claypool. Latency and player actions in online games. Com-
munications of the ACM, 49(11):40–45, 2006.

[51] Costa, F. Rodrigues, G. Travieso, and V. Boas. Characterization of complex net-
works: A survey of measurements. Adv. Phys., 56(1), 2007.

[52] E. Cronin, A. R. Kurc, B. Filstrup, and S. Jamin. An Efficient Synchronization
Mechanism for Mirrored Game Architectures. Multimedia Tools Appl., 23(1):7–
30, 2004.

[53] B. Cully, G. Lefebvre, D. T. Meyer, M. Feeley, N. C. Hutchinson, and A. Warfield.
Remus: High Availability via Asynchronous Virtual Machine Replication. In
USENIX Symposium on Networked Systems Design and Implementation (NSDI),
2008.

[54] M. D. de Assuncao, A. di Costanzo, and R. Buyya. Evaluating the cost-benefit
of using cloud computing to extend the capacity of clusters. In Symposium on
High-Performance Parallel and Distributed Computing (HPDC), 2009.

[55] P. de Melo, V. Almeida, and A. Loureiro. Can complex network metrics predict the
behavior of NBA teams? In International Conference on Knowledge Discovery
and Data Mining (SIGKDD), 2008.

[56] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo: amazon’s highly avail-
able key-value store. In ACM Symposium on Operating Systems Principles (SOSP),
2007.

[57] E. Deelman, G. Singh, M. Livny, G. B. Berriman, and J. Good. The cost of doing
science on the cloud: the Montage example. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC), 2008.

[58] K. Deng, J. Song, K. Ren, and A. Iosup. Exploring portfolio scheduling for long-
term execution of scientific workloads in IaaS clouds. In International Conference
for High Performance Computing, Networking, Storage and Analysis (SC), 2013.

148

[59] K. Deng, R. Verboon, and A. Iosup. A Periodic Portfolio Scheduler for Scientific
Computing in the Data Center. In Job Scheduling Strategies for Parallel Processing
(JSSPP), 2013.

[60] Y. Deng and R. W. H. Lau. On Delay Adjustment for Dynamic Load Balancing in
Distributed Virtual Environments. IEEE Trans. Vis. Comput. Graph., 18(4):529–
537, 2012.

[61] Y. Deng and R. W. H. Lau. Dynamic Load Balancing in Distributed Virtual En-
vironments Using Heat Diffusion. ACM Trans. on Multimedia Comp., Commun.
Appl., 10(2), 2014.

[62] U. Deshpande, B. Schlinker, E. Adler, and K. Gopalan. Gang migration of virtual
machines using cluster-wide deduplication. In International Conference on Cluster,
Cloud and Grid Computing (CCGrid), 2013.

[63] S. Di, Y. Robert, F. Vivien, D. Kondo, C.-L. Wang, and F. Cappello. Optimization
of cloud task processing with checkpoint-restart mechanism. In International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC),
2013.

[64] C. Diot and L. Gautier. A distributed architecture for multiplayer interactive appli-
cations on the Internet. IEEE Netw., 13(4):6–15, 1999.

[65] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and H. Guan. COLO: COarse-
grained LOck-stepping virtual machines for non-stop service. In ACM symposium
on Cloud computing (SoCC), 2013.

[66] N. Ducheneaut, N. Yee, E. Nickell, and R. J. Moore. The life and death of online
gaming communities. In SIGCHI Conference on Human Factors in Computing
Systems, 2007.

[67] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. University Press, Cambridge, 2010.

[68] EDGE Team. Rise of the Ancients: the unstoppable march
of the MOBA. http://www.edge-online.com/news/

rise-of-the-ancients-the-unstoppable-march-of-the-moba/,
2013.

[69] J. Elliott, K. Kharbas, D. Fiala, F. Mueller, K. B. Ferreira, and C. Engelmann. Com-
bining Partial Redundancy and Checkpointing for HPC. In International Confer-
ence on Distributed Computing Systems (ICDCS), 2012.

http://www.edge-online.com/news/rise-of-the-ancients-the-unstoppable-march-of-the-moba/
http://www.edge-online.com/news/rise-of-the-ancients-the-unstoppable-march-of-the-moba/

149

[70] M. Esch, W. T. Ooi, and I. Scholtes. Evaluation of the HyperVerse Avatar Man-
agement Scheme Based on the Analysis of Second Life Traces. In International
Conference on Parallel and Distributed Systems (ICPADS), 2009.

[71] ExileServers Inc. Minecraft hosting in the Cloud. https://exileservers.

com/minecraft-in-the-cloud/.

[72] FaceBook Inc. FaceBook Statistics. http://www.facebook.com/press/

info.php?statistics.

[73] D. Feitelson. Parallel Workloads Archive. [Online]. Available: http://www.cs.
huji.ac.il/labs/parallel/workload/.

[74] W.-c. Feng, F. Chang, W.-c. Feng, and J. Walpole. A traffic characterization of
popular on-line games. IEEE/ACM Trans. Netw., 13(3):488–500, 2005.

[75] S. Ferretti. A synchronization protocol for supporting peer-to-peer multiplayer
online games in overlay networks. In International Conference on Distributed
Event-based Systems (DEBS), 2008.

[76] T. Fields. Distributed Game Development: Harnessing Global Talent to Create
Winning Games. Focal Press, 2010.

[77] A. Folling and M. Hofmann. Improving Scheduling Performance Using a Q-
Learning-Based Leasing Policy for Clouds. In Euro-Par. 2012.

[78] E. Frachtenberg and D. G. Feitelson. Pitfalls in Parallel Job Scheduling Evaluation.
In Job Scheduling Strategies for Parallel Processing (JSSPP), 2005.

[79] D. Frey, J. Royan, R. Piegay, A. M. Kermarrec, E. Anceaume, and F. Le Fessant.
Solipsis: A decentralized architecture for virtual environments. In International
Workshop on Massively Multiuser Virtual Environments (MMVE), 2008.

[80] T. Fritsch, B. Voigt, and J. H. Schiller. Distribution of online hardcore player
behavior: (how hardcore are you?). In Workshop on Network and System Support
for Games (NetGames), 2006.

[81] R. Garfield. Metagames. Horsemen of the Apocalypse: Essays on Roleplaying,
http://www.wizards.com/Magic/magazine/Article.aspx?x=mtg/daily/feature/96,
2000.

[82] S. Genaud and J. Gossa. Cost-Wait Trade-Offs in Client-Side Resource Provi-
sioning with Elastic Clouds. In International Conference on Cloud Computing
(CLOUD), 2011.

https://exileservers.com/minecraft-in-the-cloud/
https://exileservers.com/minecraft-in-the-cloud/
http://www.facebook.com/press/info.php?statistics
http://www.facebook.com/press/info.php?statistics
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/

150

[83] J. S. Gilmore and H. A. Engelbrecht. A Survey of State Persistency in Peer-to-Peer
Massively Multiplayer Online Games. IEEE Trans. Parallel Distrib. Syst., 2012.

[84] M. Girvan and M. E. J. Newman. Community Structure in Social and Biological
Networks. Proc. Natl. Acad. Sci., USA, 99:7821–7826, 2002.

[85] Glenn Fiedler. What every programmer needs to know about game networking.
http://gafferongames.com/networking-for-game-programmers/

what-every-programmer-needs-to-know-about-game-networking/,
2010.

[86] A. D. Gloria, F. Bellotti, and R. Berta. Serious games for education and training.
Int. J. Serious Games, 1(1), 2014.

[87] M. C. González, C. a. Hidalgo, and A.-L. Barabási. Understanding individual
human mobility patterns. Nature, 453(7196):779–82, 2008.

[88] Google Inc. Angry Birds Soars Online with Google App Engine. https://

cloud.google.com/files/Rovio.pdf, 2012.

[89] C. Granberg. Programming an RTS Game With Direct3d. Charles River Media,
2006.

[90] M. Granovetter. The Strength of Weak Ties: A Network Theory Revisited. Sociol.
Th., 1:201, 1983.

[91] J. Gregory. Game Engine Architecture. A K Peters, Ltd., 2009.

[92] Y. Guo and A. Iosup. The Game Trace Archive. In Workshop on Network and
System Support for Games (NetGames).

[93] Y. Guo, S. Shen, O. Visser, and A. Iosup. An Analysis of Online Match-Based
Games. In International Workshop on Massively Multiuser Virtual Environments
(MMVE), 2012.

[94] A. Gupta, L. V. Kale, D. Milojicic, P. Faraboschi, and S. M. Balle. Hpc-aware vm
placement in infrastructure clouds. In IEEE International Conference on Cloud
Engineering (IC2E), 2013.

[95] M. Hadji and D. Zeghlache. Minimum Cost Maximum Flow Algorithm for Dy-
namic Resource Allocation in Clouds. In International Conference on Cloud Com-
puting (CLOUD), 2012.

[96] X. Han, Q. Hao, B. H. Wang, and T. Zhou. Origin of the scaling law in human
mobility: Hierarchy of traffic systems. Physical Review E, 83, 2011.

http://gafferongames.com/networking-for-game-programmers/what-every-programmer-needs-to-know-about-game-networking/
http://gafferongames.com/networking-for-game-programmers/what-every-programmer-needs-to-know-about-game-networking/
https://cloud.google.com/files/Rovio.pdf
https://cloud.google.com/files/Rovio.pdf

151

[97] G. Henson. From Planes to Pets to People: The Growth and Breadth
of Simulation Games. http://www.alteredgamer.com/pc-gaming/

58403-from-planes-to-pets-to-people-the-growth-and-breadth\

-of-simulation-games/, 2012.

[98] Y.-J. Hong, J. Xue, and M. Thottethodi. Selective commitment and selective mar-
gin: Techniques to minimize cost in an IaaS cloud. In International Symposium on
Performance Analysis of Systems and Software (ISPASS), 2012.

[99] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. VON: a scalable peer-to-peer network for
virtual environments. IEEE Netw., 20(4):22–31, 2006.

[100] S.-Y. Hu and K.-T. Chen. VSO: Self-organizing Spatial Publish Subscribe. In
Self-Adaptive and Self-Organizing Systems (SASO), 2011.

[101] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T. Chen. GamingAnywhere: an open
cloud gaming system. In ACM Multimedia Systems Conference (MMSys), 2013.

[102] H. Huang. Logistics Operations Management Simulation Practice Guide (In Chi-
nese). Higher Education Press of China, 2010.

[103] B. A. Huberman. An Economics Approach to Hard Computational Problems. Sci-
ence, 275(5296):51–54, 1997.

[104] IEEE. IEEE Standard for Information Technology - Protocols for Distributed In-
teractive Simulations Applications. Entity Information and Interaction. IEEE Std
1278-1993.

[105] U. E. Inc. Planetary Annihilation.

[106] A. Iosup, M. Jan, O. O. Sonmez, and D. H. J. Epema. On the dynamic resource
availability in grids. In IEEE/ACM International Conference on Grid Computing
(GRID), 2007.

[107] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and D. H. J. Epema.
The Grid Workloads Archive. Future Generation Comp. Syst., 24(7):672–686,
2008.

[108] A. Iosup, S. Ostermann, N. Yigitbasi, R. Prodan, T. Fahringer, and D. Epema. Per-
formance Analysis of Cloud Computing Services for Many-Tasks Scientific Com-
puting. IEEE Trans. Parallel Distrib. Syst., 22(6):931–945, 2011.

[109] A. Iosup, R. van de Bovenkamp, S. Shen, A. L. Jia, and F. A. Kuipers. An Analysis
of Implicit Social Networks in Multiplayer Online Games. IEEE Internet Comput-
ing, 2014.

http://www.alteredgamer.com/pc-gaming/58403-from-planes-to-pets-to-people-the-growth-and-breadth\-of-simulation-games/
http://www.alteredgamer.com/pc-gaming/58403-from-planes-to-pets-to-people-the-growth-and-breadth\-of-simulation-games/
http://www.alteredgamer.com/pc-gaming/58403-from-planes-to-pets-to-people-the-growth-and-breadth\-of-simulation-games/

152

[110] A. Israel and D. Raz. Cost aware fault recovery in clouds. In IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), 2013.

[111] L. Itzel, F. Heger, G. Schiele, and C. Becker. The quest for meaningful mobility in
massively multi-user virtual environments. In Workshop on Network and System
Support for Games (NetGames), 2011.

[112] B. Javadi, D. Kondo, A. Iosup, and D. H. J. Epema. The Failure Trace Archive: En-
abling the comparison of failure measurements and models of distributed systems.
J. Parallel Distrib. Comput., 73(8):1208–1223, 2013.

[113] Jenna Pitcher. EA cancels Titanfall release in South Africa due to
bad online performance. http://www.polygon.com/2014/3/7/5480654/

ea-cancels-titanfall-release-in-south-africa, 2014.

[114] C. Jo, E. Gustafsson, J. Son, and B. Egger. Efficient live migration of virtual ma-
chines using shared storage. In ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments (VEE), 2013.

[115] G. Jung, K. R. Joshi, M. A. Hiltunen, R. D. Schlichting, and C. Pu. Performance
and availability aware regeneration for cloud based multitier applications. In Inter-
national Conference on Dependable Systems and Networks (DSN), 2010.

[116] J. Juul. A Casual Revolution: Reinventing Video Games and Their Players. MIT
Press, 2009.

[117] J. Keller and G. Simon. Solipsis: A massively multi-participant virtual world. In
International Conference on Parallel and Distributed Processing Techniques and
Applications (PDPTA), 2003.

[118] A. Keränen, T. Kärkkäinen, and J. Ott. Simulating Mobility and DTNs with the
ONE. J. Commun., 5(2):92–105, 2010.

[119] J. Kienzle, C. Verbrugge, B. Kemme, A. Denault, and M. Hawker. Mammoth: a
massively multiplayer game research framework. In International Conference on
Foundations of Digital Games, (FDG), 2009.

[120] J. H. Kim, D. V. Gunn, E. Schuh, B. Phillips, R. J. Pagulayan, and D. R. Wixon.
Tracking real-time user experience (TRUE): a comprehensive instrumentation so-
lution for complex systems. In Conference on Human Factors in Computing Sys-
tems (CHI), 2008.

http://www.polygon.com/2014/3/7/5480654/ea-cancels-titanfall-release-in-south-africa
http://www.polygon.com/2014/3/7/5480654/ea-cancels-titanfall-release-in-south-africa

153

[121] J. Kinicki and M. Claypool. Traffic analysis of avatars in Second Life. In ACM
Workshop on Network and Operating Systems Support for Digital Audio and Video
(NOSSDAV), pages 69–74, 2008.

[122] B. Kirman and S. Lawson. Hardcore Classification: Identifying Play Styles in
Social Games Using Network Analysis. In International Conference Entertainment
Computing (ICEC), pages 246–251, 2009.

[123] J. M. Kleinberg. The convergence of social and technological networks. Commun.
ACM, 51(11):66–72, 2008.

[124] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer support for massively
multiplayer games. In Conference on Computer Communications (INFOCOM),
2004.

[125] D. Kondo, B. Javadi, A. Iosup, and D. Epema. The Failure Trace Archive: Enabling
Comparative Analysis of Failures in Diverse Distributed Systems. In International
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2010.

[126] Korn, D. and MacDonald, J. and Mogul, J. and Vo, K. The VCDIFF Generic
Differencing and Compression Data Format, 2002.

[127] L. Krammer, G. Schiele, D. Koch, and C. Becker. Quality of Experience-Aware
Event Synchronization for Distributed Virtual Worlds. In International Conference
on Parallel and Distributed Systems (ICPADS), 2012.

[128] C. La and P. Michiardi. Characterizing user mobility in Second Life. In Workshop
on Online Social Networks, 2008.

[129] D. Lake, M. Bowman, and H. Liu. Distributed scene graph to enable thousands
of interacting users in a virtual environment. In Workshop on Network and System
Support for Games (NetGames), 2010.

[130] K. Lee, Y. Kim, S. Chong, I. Rhee, and Y. Yi. Delay-capacity tradeoffs for mobile
networks with Lévy walks and Lévy flights. In Conference on Computer Commu-
nications (INFOCOM), 2011.

[131] Y.-T. Lee and K.-T. Chen. Is Server Consolidation Beneficial to MMORPG? A
Case Study of World of Warcraft. In International Conference on Cloud Computing
(CLOUD), 2010.

[132] M. Lehn, T. Triebel, C. Leng, A. Buchmann, and W. Effelsberg. Performance
Evaluation of Peer-to-Peer Gaming Overlays. In International Conference on Peer-
to-Peer Computing (P2P), 2010.

154

[133] J. Leskovec and E. Horvitz. Planetary-scale views on a large instant-messaging
network. In International Conference on World Wide Web (WWW), 2008.

[134] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Statistical properties
of community structure in large social and information networks. In International
Conference on World Wide Web (WWW), 2008.

[135] H. Liang, R. N. Silva, W. T. Ooi, and M. Motani. Avatar mobility in user-created
networked virtual worlds: measurements, analysis, and implications. Multimedia
Tools Appl., 45(1-3):163–190, 2009.

[136] G. Linden. Make Data Useful, 2006.

[137] H. Liu, M. Bowman, and F. Chang. Survey of state melding in virtual worlds. ACM
Comput. Surv., 44(4):21:1–21:25, 2012.

[138] S. Loveland, E. M. Dow, F. LeFevre, D. Beyer, and P. F. Chan. Leveraging
virtualization to optimize high-availability system configurations. IBM Syst. J.,
47(4):591–604, 2008.

[139] F. Lu, S. Parkin, and G. Morgan. Load Balancing for Massively Multiplayer Online
Games. In Workshop on Network and System Support for Games (NetGames),
2006.

[140] J. C. S. Lui and M. F. Chan. An Efficient Partitioning Algorithm for Distributed
Virtual Environment Systems. IEEE Trans. Parallel Distrib. Syst., 13(3):193–211,
2002.

[141] D. Lupei, B. Simion, D. Pinto, M. Misler, M. Burcea, W. Krick, and C. Amza.
Transactional memory support for scalable and transparent parallelization of mul-
tiplayer games. In European Conference on Computer Systems (EuroSys), 2010.

[142] M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling with deadline and budget
constraints. In IEEE/ACM International Conference on Grid Computing (GRID),
2010.

[143] P. Marshall, K. Keahey, and T. Freeman. Elastic Site: Using Clouds to Elastically
Extend Site Resources. In International Conference on Cluster, Cloud and Grid
Computing (CCGrid), 2010.

[144] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-Lag and Timewarp: Pro-
viding Consistency for Replicated Continuous Applications. IEEE Multimedia,
6(1):47–57, 2004.

155

[145] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg. Local-lag and timewarp: provid-
ing consistency for replicated continuous applications. IEEE Trans. Multimedia,
6(1):47–57, 2004.

[146] G. McAllister and G. R. White. Evaluating User Experience in Games. chapter
Video Game, pages 107–128. Springer Verlag, London, UK, 2010.

[147] J. McGee. The pros and cons of collision de-
tection. http://wow.joystiq.com/2011/07/10/

breakfast-topic-the-pros-and-cons-of-collision-detection/,
2011.

[148] J. McGonigal. Reality is Broken: Why Games Make us Better and How They Can
Change the World. Jonathan Cape, 2011.

[149] J. L. Miller and J. Crowcroft. Avatar movement in World of Warcraft battlegrounds.
In Workshop on Network and System Support for Games (NetGames), 2009.

[150] J. L. Miller and J. Crowcroft. The Near-Term Feasibility of P2P MMOGs. In
Workshop on Network and System Support for Games, 2010.

[151] P. Miller. Professional Gamers: A Day in the Life. PCWorld online article. http:
//bit.ly/f72HjT, 2011.

[152] A. Mirelman, B. L. Patritti, P. Bonato, and J. E. Deutsch. Effects of virtual re-
ality training on gait biomechanics of individuals post-stroke. Gait & Posture,
31(4):433–437, 2010.

[153] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattacharjee. Mea-
surement and analysis of online social networks. In Internet Measurement Confer-
ence (IMC), 2007.

[154] P. Morillo, S. Rueda, J. M. Orduña, and J. Duato. A Latency-Aware Partition-
ing Method for Distributed Virtual Environment Systems. IEEE Trans. Parallel
Distrib. Syst., 18(9):1215–1226, 2007.

[155] P. Morillo, S. Rueda, J. M. Orduña, and J. Duato. Ensuring the performance and
scalability of peer-to-peer distributed virtual environments. Future Generation
Comp. Syst., 26(7):905–915, 2010.

[156] C. C. Moul and J. V. C. Nye. Did the Soviets collude? A statistical analysis of
championship chess 1940-1978. Journal of Economic Behavior & Organization,
70(1-2):10–21, 2009.

http://wow.joystiq.com/2011/07/10/breakfast-topic-the-pros-and-cons-of-collision-detection/
http://wow.joystiq.com/2011/07/10/breakfast-topic-the-pros-and-cons-of-collision-detection/
http://bit.ly/f72HjT
http://bit.ly/f72HjT

156

[157] J. Müller, J. H. Metzen, A. Ploss, M. Schellmann, and S. Gorlatch. Rokkatan:
scaling an RTS game design to the massively multiplayer realm. In International
Conference on Advances in Computer Entertainment Technology, (ACE), 2005.

[158] M. A. Murphy, B. Kagey, M. Fenn, and S. Goasguen. Dynamic Provisioning of
Virtual Organization Clusters. In International Conference on Cluster, Cloud and
Grid Computing (CCGrid), 2009.

[159] V. Nae, A. Iosup, S. Podlipnig, R. Prodan, D. H. J. Epema, and T. Fahringer. Effi-
cient management of data center resources for massively multiplayer online games.
In International Conference for High Performance Computing, Networking, Stor-
age and Analysis (SC), 2008.

[160] V. Nae, A. Iosup, and R. Prodan. Dynamic Resource Provisioning in Massively
Multiplayer Online Games. IEEE Trans. Parallel Distrib. Syst., (3):380–395, 2011.

[161] M. T. Najaran, S.-Y. Hu, and N. C. Hutchinson. SPEX: Scalable Spatial Pub-
lish/Subscribe for Distributed Virtual Worlds Without Borders. In ACM Multime-
dia Systems Conference (MMSys), 2014.

[162] A. Nazir, S. Raza, and C.-N. Chuah. Unveiling Facebook: a measurement study
of social network based applications. In Internet Measurement Conference (IMC),
2008.

[163] M. E. J. Newman. The Structure and Function of Complex Networks. SIAM Rev.,
45(2):167–256, 2003.

[164] B. Nicolae and F. Cappello. BlobCR: efficient checkpoint-restart for HPC appli-
cations on IaaS clouds using virtual disk image snapshots. In International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC),
2011.

[165] B. Nicolae, F. Cappello, and G. Antoniu. Optimizing multi-deployment on clouds
by means of self-adaptive prefetching. In Euro-Par, 2011.

[166] NIST/SEMATECH. e-Handbook of Statistical Methods. Online Book, 2003.

[167] OpenTTD team. OpenTTD. http://www.openttd.org/.

[168] OpenTTD team. TJIP OpenTTD Challenge. www.tjip.com/

tjip-challenge.html.

[169] A. Oprescu and T. Kielmann. Bag-of-Tasks Scheduling under Budget Constraints.
In International Conference Cloud Computing Technology and Science (Cloud-
Com), 2010.

www.tjip.com/tjip-challenge.html
www.tjip.com/tjip-challenge.html

157

[170] S. Ostermann and R. Prodan. Impact of variable priced cloud resources on scientific
workflow scheduling. In Euro-Par, 2012.

[171] R. J. Pagulayan, K. Keeker, D. Wixon, R. L. Romero, and T. Fuller. The human-
computer interaction handbook. chapter User-cente, pages 883–906. 2003.

[172] M. T. Paul Bettner. 1500 Archers on a 28.8: Network Programming in Age of
Empires and Beyond. In Game Developer Conference, 2001.

[173] A. Petlund, P. l. Halvorsen, P. l. F. Hansen, T. Lindgren, R. Casais, and C. Gri-
wodz. Network traffic from Anarchy Online: analysis, statistics and applications:
a server-side traffic trace. In ACM Multimedia Systems Conference (MMSys), 2012.

[174] D. Pittman and C. GauthierDickey. Characterizing virtual populations in mas-
sively multiplayer online role-playing games. Advances in Multimedia Modeling,
5916:87–97, 2010.

[175] V. Posea, M. Balint, A. Dimitriu, and A. Iosup. An analysis of social gaming
networks in online and face to face bridge communities. In RoEduNet, LSAP11,
pages 218–223, 2010.

[176] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The Bittorrent P2P
File-Sharing System: Measurements and Analysis. In International Conference on
Peer-to-Peer Systems (IPTPS), 2005.

[177] R. Becker et al. Human mobility characterization from cellular network data. Com-
mun. ACM, 56(1), 2013.

[178] S. Ren, Y. He, and F. Xu. Provably-Efficient Job Scheduling for Energy and Fair-
ness in Geographically Distributed Data Centers. In International Conference on
Distributed Computing Systems (ICDCS), 2012.

[179] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong. On the Levy-Walk Nature of
Human Mobility. 2008.

[180] S. Rieche, K. Wehrle, M. Fouquet, H. Niedermayer, L. Petrak, and G. Carle. Peer-
to-Peer-Based Infrastructure Support for Massively Multiplayer Online Games. In
Consumer Communications and Networking Conference (CCNC), 2007.

[181] ROC team. The UC Berkeley/Stanford Recovery-Oriented Computing (ROC)
Project. http://roc.cs.berkeley.edu/.

[182] A. Rollings and E. Adams. Fundamentals of Game Design. Prentice Hall, 2006.

http://roc.cs.berkeley.edu/

158

[183] P. Rosedale and C. Ondrejka. Enabling Player-Created Online Worlds with Grid
Computing and Streaming. Gamasutra Resource Guide, 2003.

[184] P. R. Rosenbaum. Observational Studies. Springer Verlag, 2nd. edition, 2002.

[185] F. Salfner, M. Lenk, and M. Malek. A survey of online failure prediction methods.
ACM Comput. Surv., 42(3):10:1–10:42, 2010.

[186] G. Schiele, R. Suselbeck, A. Wacker, J. Hahner, C. Becker, and T. Weis. Require-
ments of Peer-to-Peer-based Massively Multiplayer Online Gaming. In Interna-
tional Symposium on Cluster Computing and the Grid, 2007.

[187] A. Schmieg, M. Stieler, S. Jeckel, P. Kabus, B. Kemme, and A. P. Buchmann.
pSense - Maintaining a Dynamic Localized Peer-to-Peer Structure for Position
Based Multicast in Games. In International Conference on Peer-to-Peer Com-
puting (P2P), 2008.

[188] B. Schroeder, E. Pinheiro, and W.-D. Weber. DRAM errors in the wild: a large-
scale field study. In International joint conference on Measurement and modeling
of computer systems (SIGMETRICS), 2009.

[189] Schwiegelshohn, U., Badia, R. M., Bubak, M., et al. Perspectives on Grid Com-
puting. Future Generation Comp. Syst., 26(8):1104–1115, 2010.

[190] J. Scott. Social network analysis: developments, advances, and prospects. Social
Netw. Analys. Mining, 1(1):21–26, 2011.

[191] A. Shaikh, S. Sahu, M.-C. Rosu, M. Shea, and D. Saha. On demand platform for
online games. IBM Sys. J., 45:7–20, 2006.

[192] U. Sharma, P. Shenoy, S. Sahu, and A. Shaikh. A Cost-Aware Elasticity Provision-
ing System for the Cloud. In International Conference on Distributed Computing
Systems (ICDCS), 2011.

[193] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu. The effect of latency on
user performance in Warcraft III. In Workshop on Network and System Support for
Games, pages 3–14, 2003.

[194] S. Shen, V. Beek, and A. Iosup. Towards Characterizing Business-Critical Work-
loads Hosted in Cloud Datacenters. In CCGrid, 2015, to appear.

[195] S. Shen, N. Brouwers, A. Iosup, and D. Epema. Characterization of Human Mo-
bility of Networked Virtual Environments. In NOSSDAV, 2014.

159

[196] S. Shen, K. Deng, A. Iosup, and D. H. J. Epema. Scheduling Jobs in the Cloud
Using On-Demand and Reserved Instances. In Euro-Par, 2013.

[197] S. Shen, S.-Y. Hu, A. Iosup, and D. Epema. Area of Simulation: Mechanism
and Architecture for Multi-Avatar Virtual Environments. Transactions on Multi-
media Computing, Communications and Applications (TOMCCAP), under minor
revision.

[198] S. Shen and A. Iosup. Modeling Avatar Mobility of Networked Virtual Environ-
ments. In MMVE, 2014.

[199] S. Shen, A. Iosup, A. Israel, W. Cirne, D. Raz, and D. H. J. Epema. An Availability-
on-Demand Mechanism for Datacenters. In CCGrid, 2015, to appear.

[200] S. Shen, O. Visser, and A. Iosup. RTSenv: An experimental environment for real-
time strategy games. In Workshop on Network and System Support for Games
(NetGames), 2011.

[201] S. Shen, O. Visser, and A. Iosup. RTSenv: An Experimental Environment for Real-
Time Strategy Games on Multi-Clusters. Tech.Rep. PDS-2011-002, TU Delft,
2011.

[202] K. J. Shim, K.-W. Hsu, and J. Srivastava. Modeling Player Performance in Mas-
sively Multiplayer Online Role-Playing Games: The Effects of Diversity in Men-
toring Network. In International Conference on Advances in Social Networks Anal-
ysis and Mining (ASONAM), 2011.

[203] C. Song, T. Koren, P. Wang, A.-L. Barabási, and C. Song et al. Modelling the
scaling properties of human mobility. Nature Phys., 6(10):818823, Sept. 2010.

[204] Y. Song, M. Zafer, and K.-W. Lee. Optimal bidding in spot instance market. In
Conference on Computer Communications (INFOCOM), 2012.

[205] Spil Games. 2013 State of Online Gam-
ing Report. http://www.spilgames.com/press/

\2013-state-online-gaming-report-released-spil-games/, 2013.

[206] M. Stillwell, F. Vivien, and H. Casanova. Dynamic fractional resource schedul-
ing for HPC workloads. In International Symposium on Parallel & Distributed
Processing (IPDPS), 2010.

[207] S. H. Strogatz. Exploring complex networks. Nature, 410(6825):268–276, 2001.

http://www.spilgames.com/press/\2013-state-online-gaming-report-released-spil-games/
http://www.spilgames.com/press/\2013-state-online-gaming-report-released-spil-games/

160

[208] D. Stutzbach, R. Rejaie, N. G. Duffield, S. Sen, and W. Willinger. On unbi-
ased sampling for unstructured peer-to-peer networks. IEEE/ACM Trans. Netw.,
17(2):377–390, 2009.

[209] M. Suznjevic and M. Matijasevic. Player behavior and traffic characterization for
MMORPGs: a survey. Multimedia Syst., 19(3):199–220, 2012.

[210] M. Suznjevic, I. Stupar, and M. Matijasevic. A model and software architecture
for MMORPG traffic generation based on player behavior. Multimedia Systems,
19(3):231–253, 2012.

[211] M. Szell and S. Thurner. Measuring social dynamics in a massive multiplayer
online game. Social Networks, 32(4):313–329, 2010.

[212] H. Tabuchi. Sony Says Parts of PlayStation Network Will Be Back On-
line This Week. NYTimes article. http://www.nytimes.com/2011/05/02/
technology/02sony.html?_r=0, 2011.

[213] D. Talia. Clouds for Scalable Big Data Analytics. IEEE Computer, 46(5), 2013.

[214] S. A. Tan, W. Lau, and A. Loh. Networked game mobility model for first-
person-shooter games. In Workshop on Network and System Support for Games
(NetGames), 2005.

[215] W. Tang, Z. Lan, N. Desai, and D. Buettner. Fault-aware, utility-based job schedul-
ing on Blue, Gene/P systems. In IEEE International Conference on Cluster Com-
puting (CLUSTER), 2009.

[216] X. Tang and S. Zhou. Update Scheduling for Improving Consistency in Distributed
Virtual Environments. IEEE Trans. Parallel Distrib. Syst., 2010.

[217] The Entertainment Software Association. Essential Facts About the Computer and
Video Game Industry: Sales, Demographics, and Usage Data, 2012.

[218] S. Tolic and H. Hlavacs. A testbed for p2p gaming using time warp. In Transactions
on Edutainment II, volume 5660, pages 33–47. 2009.

[219] J. Tordsson, R. S. Montero, R. Moreno-Vozmediano, and I. M. Llorente. Cloud
brokering mechanisms for optimized placement of virtual machines across multiple
providers. Future Gener. Comput. Syst., 28(2), 2012.

[220] T. Triebel, M. Lehn, R. Rehner, B. Guthier, S. Kopf, and W. Effelsberg. Generation
of synthetic workloads for multiplayer online gaming benchmarks. In Workshop
on Network and System Support for Games (NetGames), 2012.

http://www.nytimes.com/2011/05/02/technology/02sony.html?_r=0
http://www.nytimes.com/2011/05/02/technology/02sony.html?_r=0

161

[221] M. Varvello, S. Ferrari, E. Biersack, and C. Diot. Exploring Second Life.
IEEE/ACM Trans. Netw., 19(1):80–91, 2011.

[222] D. Villegas, A. Antoniou, S. M. Sadjadi, and A. Iosup. An Analysis of Provisioning
and Allocation Policies for Infrastructure-as-a-Service Clouds. In International
Conference on Cluster, Cloud and Grid Computing (CCGrid), 2012.

[223] VMWare Inc. Protecting Mission-Critical Workloads with VMware Fault Tol-
erance. www.vmware.com/files/pdf/resources/ft_virtualization_

wp.pdf.

[224] J. Waldo. Scaling in games & virtual worlds. ACM Queue, 51(8), 2008.

[225] W. E. Walker, J. Giddings, and S. Armstrong. Training and learning for crisis man-
agement using a virtual simulation/gaming environment. Cognition, Technology &
Work, 13(3):163–173, 2011.

[226] D. Warneke and O. Kao. Exploiting Dynamic Resource Allocation for Effi-
cient Parallel Data Processing in the Cloud. IEEE Trans. Parallel Distrib. Syst.,
22(6):985–997, 2011.

[227] J. Webb. How the cloud helps Netflix. [Online] Available: http://radar.

oreilly.com/2011/05/netflix-cloud.html, 2011.

[228] S. D. Webb, W. Lau, and S. Soh. NGS: an application layer network game simula-
tor. In Australasian conference on Interactive entertainment, 2006.

[229] C. Wilson, B. Boe, A. Sala, K. P. N. Puttaswamy, and B. Y. Zhao. User interactions
in social networks and their implications. In European Conference on Computer
Systems (EuroSys), 2009.

[230] N. Wingfield. In E-Sports, Video Gamers Draw Real Crowds and
Big Money. http://www.nytimes.com/2014/08/31/technology/

esports-explosion-brings-opportunity-riches-for-video-gamers.

html?_r=0, 2014.

[231] A. Yahyavi and B. Kemme. Peer-to-Peer Architectures for Massively Multiplayer
Online Games: A Survey. ACM Comput. Surv., 46(1):9:1–9:51, 2013.

[232] H. Yanagisawa, T. Osogami, and R. Raymond. Dependable virtual machine allo-
cation. In Conference on Computer Communications (INFOCOM), 2013.

www.vmware.com/files/pdf/resources/ft_virtualization_wp.pdf
www.vmware.com/files/pdf/resources/ft_virtualization_wp.pdf
http://radar.oreilly.com/2011/05/netflix-cloud.html
http://radar.oreilly.com/2011/05/netflix-cloud.html
http://www.nytimes.com/2014/08/31/technology/esports-explosion-brings-opportunity-riches-for-video-gamers.html?_r=0
http://www.nytimes.com/2014/08/31/technology/esports-explosion-brings-opportunity-riches-for-video-gamers.html?_r=0
http://www.nytimes.com/2014/08/31/technology/esports-explosion-brings-opportunity-riches-for-video-gamers.html?_r=0

162

[233] A. Yu and S. T. Vuong. Mopar: a mobile peer-to-peer overlay architecture for
interest management of massively multiplayer online games. In ACM Workshop on
Network and Operating Systems Support for Digital Audio and Video (NOSSDAV),
pages 99–104, 2005.

[234] L. Zhang and X. Tang. The Client Assignment Problem for Continuous Distributed
Interactive Applications. In International Conference on Distributed Computing
Systems (ICDCS), 2011.

[235] L. Zhang, J. W. Wade, D. Bian, A. Swanson, Z. Warren, and N. Sarkar. Data Fusion
for Difficulty Adjustment in an Adaptive Virtual Reality Game System for Autism
Intervention. In HCI International, 2014.

[236] T. Zhang, Z. Du, Y. Chen, X. Ji, and X. Wang. Typical Virtual Appliances: An op-
timized mechanism for virtual appliances provisioning and management. Journal
of Syst. and Soft., 84(3):377–387, 2011.

[237] Y. Zhang, M. S. Squillante, A. Sivasubramaniam, and R. K. Sahoo. Performance
Implications of Failures in Large-Scale Cluster Scheduling. In Job Scheduling
Strategies for Parallel Processing (JSSPP), pages 233–252, 2004.

[238] Z. Zheng, T. C. Zhou, M. R. Lyu, and I. King. FTCloud: A Component Ranking
Framework for Fault-Tolerant Cloud Applications. In International Symposium on
Software Reliability Engineering (ISSRE), 2010.

163

Appendix A

Datasets

Understanding the workloads of NVEs is important. By analyzing workloads, the system
designers can gain insights about the systems’ and users’ behaviors, and develop better
systems to support the users. We have in total collected 14 datasets, and analyzed some of
the datasets in Chapters 3, 5, and 6. The overview of the datasets are listed in Table A.1.
The “GTA ID” column indicates the Game Trace Archive (GTA) trace ID of the dataset
if it is published in GTA [92].

Table A.1: Datasets Overview.
No Name GTA ID Analyzed in Duration Scale

Multiplayer Online Battle Arena datasets
1 DotAlicious matches GTA-T1 Chapter 3 and [93, 109] 2010.4 - 2012.2 617,069 matches
2 DotAlicious replays 2012.2 - 2012.2 about 13,000 replays
3 Dota-League matches GTA-T2 Chapter 3 and [93, 109] 2008.11- 2011.7 1,470,786 matches
4 Dota-League replays 2006.7 - 2007.1 about 80,000 replays
5 League of Legend 2011.11 - 2011.12 about 120,000 matches

World of Tanks datasets
6 WoT matches GTA-T11 Chapter 3 and [109] 2010.8 - 2013.7 74,658 matches
7 WoT RU matches 2013.1 - 2013.8 about 0.6 millions matches
8 WoT clans 2011.3 - 2013.8 28365 clans

StarCraft datasets
9 SC2 replays Chapter 6 and [197] 2010.7 - 2010.11 5,796 replays

10 SC2 matches GTA-T10 Chapter 3 and [109] 2012.3 - 2013.8 85,532 matches
11 SC2 matches GGTracker 2012.10 - 2014.2 about 4.6 millions matches
13 WoW mobility GTA-T12 Chapter 5 and [195] 2011.4 - 2011.9 4 virtual world cities
14 VM stat [199] 2013.8-2013.9 1,750 VMs

Multiplayer Online Battle Arena datasets
Multiplayer Online Battle Arena (MOBA) is a game genre, in which each player con-

trols an in-game representation (here, the hero or the champion), and equally-sized teams,
generally of 3 or 5 players, have as objective the conquest of the opposite side’s main
building. This genre of games include many strategic elements, from the team opera-
tion to the management of resources and the creation of helper troops. In total, we have

164

collected traces from two games: Defense of the Ancients and League of Legend.
Defense of the Ancients (DotA) is a 5-against-5-player MOBA game. DotA is one

of the most popular e-Sports, with many international DotA competitions and large au-
diences [230]. In DotA, social relationships, such as same-guild membership and even
friendship, can improve the gameplay experience.

We have collected two matches datasets: Dota-League matches and DotAlicious
matches, over multiple years for two DotA communities, Dota-League1 and DotAlicious2,
respectively. Both communities identify each of their matches with a unique number in in-
creasing order, and for each match dedicated information (such as the names of the players
participating in the match and the duration of the match) is available on a corresponding
webpage. We have crawled all the unique matches played within these communities via
their openly accessible websites, by gradually increasing the identifier number from 1 to
the total number of matches played; we obtained the latter from the main page of each
website. Some of the webpages with a match identifier in the crawling range appeared to
be broken. We have crawled each web page at least twice, at different times, to reduce
the effect of possible temporary unavailability and traffic shaping of the website. The
two replay datasets: DotaLicious replays and Dota-League replays are collected from
Dota-League and DotAlicious, respectively. The replay dataset contains individual replay
which record the players’ actions during gameplay.

League of Legend (LoL) is one of the most popular MOBA game developed and
published by Riot Games. The game play of LoL is similar to DotA. The League
of Legend dataset contains about 120,000 matches from a fan organized website www.

leaguereplays.com. This dataset is not analyzed yet.

World of Tanks datasets
World of Tanks (WoT)3 is a free and popular Massively Multiplayer Online First Per-

son Shooter (MMOFPS) Game developed by WarGaming4. There are a few fan organized
websites that allow uses to upload their game matches results and share with each others.
We collected two matches datasets: WoT matchesand WoT RU matches. The data collec-
tion method is the same as the DotA datasets. The WoT matches dataset is collected from
an European website wotreplays.com; this dataset is also analyzed in [109]. The WoT
RU matches dataset is collected from a Russian website wotreplays.ru. Beside the
matches datasets, we have collected WoT clan dataset which contains team information
from about 30,000 European clans registered in the WarGaming’s website.

StarCraft II datasets
1www.dota-league.com
2www.dotalicious.com
3www.worldoftanks.com/
4Wargaming.net

www.leaguereplays.com
www.leaguereplays.com
wotreplays.com
wotreplays.ru
www.dota-league.com
www.dotalicious.com
www.worldoftanks.com/
Wargaming.net

165

StarCraft II5, the most popular Real Time Strategy games, is played by millions of
players. We have collected one replay dataset SC2 replays and two matches datasets: SC2
matches and SC2 matches GGTracker. The data collection method is the same as the
MOBA datasets. The SC2 replays dataset, collected from a fan organized website drop.
sc, contains the actions of about 1,000 players issued during game play. The SC2 matches
dataset is collected from drop.sc; the dataset is analyzed in [109]. Similarly, we have
collected the SC2 matches GGTracker dataset from a fan organized website ggtracker.
com/. We do not analyze this dataset yet.

WoW mobility dataset
World of WarCraft (WoW)6 is one of the most popular Massively Multiplayer Online

Role Playing Game. The virtual world of WoW resembles a medieval, albeit fantasy-
based, real-world environment. The players of WoW need to be highly mobile, to be able
to finish quests of the storyline, trade goods, and socialize with the other players. We have
collected and analyzed the position information of about 30,000 players.

VM stat dataset
We have collected from a distributed datacenter hosting business-critical workloads

two large-scale and long-term workload traces from about 1,800 virtual machines owned
by an IT company Bitbrains7. We have analyzed in [194] using these traces both
requested resources and actual resource usage, in terms of CPU, memory, and disk and
network I/O.

5www.starcraft.com/
6www.warcraft.com/
7www.bitbrains.nl/

drop.sc
drop.sc
drop.sc
ggtracker.com/
ggtracker.com/
www.starcraft.com/
www.warcraft.com/
www.bitbrains.nl/

166

167

Summary

Networked Virtual Environments (NVEs) are virtual environments where physically dis-
tributed, Internet-connected users can interact and socialize with others. The most popular
NVEs are online games, which have hundreds of millions of users and a global market of
tens of billions Euros per year. Besides entertainments, NVE techniques are used in ed-
ucation, enterprise training, disaster-scenario analysis, etc. Because the number of NVE
users is ever increasing, new NVEs which can host massive number of users are increas-
ingly needed. To meet the demands of NVE users, NVE researchers and designers are
continuously seeking novel ways to design NVEs. In recent years, due to the scalability,
the flexibility, and the cost-efficiency of cloud computing technologies, clouds are gaining
popularity as computing platforms for NVEs. It is challenging to manage large amounts
of cloud computing resources to serve NVE users in a scalable, consistent, highly avail-
able, cost efficient, and interactive way. To massivize NVEs on clouds, in this thesis, we
analyse the workloads of several NVEs, design and implement several NVE mechanisms,
and evaluate them using realistic simulations or real-world experiments. Although we
validate our approaches using exclusively online gaming data, we believe that the fun-
damental findings of this thesis can be applied to other fields of NVEs, because online
games are often found to be among the most demanding kinds of NVEs.

In Chapter 2, we introduce RTSenv, a benchmarking system for NVEs with a focus on
Real Time Strategy (RTS) games. RTSenv can operate in several types of computing en-
vironments, from desktop-computers, to wide-area multi-clusters and commercial clouds.
It leverages reactive fault tolerance techniques to perform robust, multi-machine, multi-
instance RTS game experiments. RTSenv can help NVE researchers and practitioners to
gain better insight into the real-world performance of NVEs.

In Chapter 3, we propose a formalism to understand the implicit social networks of
NVEs. The formalism consists of various ways to map interaction to social structure.
By applying the formalism to real-world data collected from three different game genres,
we analyse the implications of the formalism for in-game and gaming-related services,
ranging from network and socially-aware matchmaking of players, to an investigation of
social network robustness against player departure.

In Chapter 4, we collect a long-term trace from an online meta-gaming networks:

168

XFire. We present a high-level, marginal distribution- and time-based analysis of XFire:
its global network, player activity, user-generated content, and social structure. We find
that XFire is a slowly growing network whose players spend collectively in-game over
100 years, every hour. We quantify the “hardcore”-ness of XFire players, and find that a
significant fraction of them have played over 10,000 in-game hours.

In Chapter 5, we collect mobility traces of virtual-world citizens from World of War-
craft (WoW), and compare these traces with mobility traces collected from Second Life.
Furthermore, motivated by the existence of numerous studies and models of mobility for
networked real-world environments (NRE), we systematically study the characteristics of
two NVE and two NRE mobility traces. We find that the mobility of citizens in real-
world and virtual-world share many properties but with some differences. Based on the
findings of this study, we propose a mobility model which can be used to generate realistic
mobility traces for virtual-world citizens.

In Chapter 6, we propose Area of Simulation (AoS), a scalability mechanism for
multi-avatar virtual environments such as RTS games. The AoS mechanism combines and
extends the mechanisms of Area of Interest (AoI) and Event-Based Lockstep Simulation
(EBLS). Novel in the AoS mechanism, it uses both event-based and update-based oper-
ational models to manage not single, but multiple areas of interest. Moreover, the AoS
mechanism synchronizes only selected areas of the virtual world instead of all the virtual
world. We further design an AoS-based architecture, which uses the AoS and several
scalability mechanisms simultaneously, dynamically trading-off consistency guarantees
for scalability. We implement and deploy this architecture and we demonstrate that it can
operate with an order of magnitude more avatars and a larger virtual world than common
alternatives, yet without exceeding the resource capacity of computers of players.

In Chapter 7, we propose CoH, a Cloud-based, online, Hybrid scheduling policy
which reduces operational cost of hosting NVEs by making use of both on-demand and
reserved instances of clouds. When provisioning and allocating computing resources for
NVEs, the CoH policy dynamically selects the best solution among the solutions of some
heuristics, and then manages resources accordingly. We show, via simulation and using
multiple real-world traces, that the hybrid scheduling policy can obtain significantly lower
cost than typical heuristics-based policies.

In Chapter 8, we propose Availability-on-Demand (AoD), a mechanism providing
high availability (HA) for NVE services when and only when HA is needed. The mech-
anism consists of an API that allows NVE operators to specify availability requirements
which can dynamically change, and an availability-aware scheduler that dynamically
manages computing resources based on user-specified requirements. Through trace-based
simulation, we show that the AoD mechanism can protect important parts of NVEs dy-
namically.which also leads to low operational cost.

169

Samenvatting

Networked Virtual Environments (NVEs) zijn virtuele omgevingen waarin fysiek gedis-
tribueerde gebruikers kunnen communiceren en socialiseren via internet. De meest po-
pulaire NVEs zijn online games, die honderden miljoenen gebruikers en een wereld-
markt van tientallen miljarden euro’s per jaar hebben. Naast entertainmentdoeleinden
worden NVE-technieken ook gebruikt in onderwijs, bedrijfstrainingen, rampenscenario-
analyse enz. Als het aantal NVE-gebruikers steeds toeneemt, zijn nieuwe soorten NVEs
noodzakelijk om het enorme aantal gebruikers te kunnen bedienen. NVE onderzoek-
ers en ontwerpers zoeken voortdurend naar nieuwe methoden voor het ontwerpen van
NVEs, zodat die aan de eisen van NVE-gebruikers voldoen. In de afgelopen jaren is
cloudinfrastructuur een steeds populairder wordende infrastructuur voor NVEs door de
verbeteringen in de schaalbaarheid, flexibiliteit en kostenefficiëntie van cloud computing
technologieën. Het is uitdagend om grote hoeveelheden cloud computing resources te
beheren zodat NVE-gebruikers kunnen worden bediend op een schaalbare, consistente,
hoogbeschikbare, kostenefficiënte en interactieve wijze. Om NVEs te schalen op clouds
hebben wij in dit proefschrift verschillende NVE-workloads geanalyseerd, diverse NVE-
mechanismen ontworpen, geı̈mplementeerd en geëvalueerd met behulp van realistische
simulaties van real-world experimenten. Hoewel wij onze aanpak uitsluitend valideren
met online gamingsgegevens, zijn wij van mening dat de fundamentele bevindingen in
dit proefschrift op andere gebieden dan NVEs kunnen worden toegepast, omdat online
games vaak beschouwd worden als een van de meest veeleisende NVEs.

In Hoofdstuk 2 introduceren wij RTSenv, een benchmarkingssysteem voor NVEs die
zich vooral richt op Real Time Strategy (RTS) games. RTSenv kan opereren in ver-
schillende soorten ICT-omgevingen; onder andere desktopcomputers, wide-area multi-
clusters en commerciële cloud infrastructuren. RTSenv maakt gebruikt van reactieve
fouten-tolerante technieken die zorgen voor het uitvoeren van robuuste, multi-machine,
multi-instance RTS-game experimenten. RTSenv kan NVE-onderzoekers en beoefenaars
helpen om beter inzicht te krijgen in de prestaties van NVEs in de werkelijkheid.

In Hoofdstuk 3 stellen we een formalisme voor om de impliciete sociale netwerken
van NVEs te begrijpen. Het formalisme bestaat uit verschillende manieren om inter-
actie in verband te brengen met sociale structuren. Door het formalisme toe te passen

170

op real-world gegevens verzameld uit drie verschillende game genres, analyseren wij de
uit het formalisme komende verbanden op in-game en gaminggerelateerde diensten, van
netwerk- en sociale relaties van de spelers tot de robuustheid van het sociale netwerk
tegen het vertrek van spelers.

In Hoofdstuk 4 hebben wij een langetermijntrace van een online meta-gaming
netwerk, XFire, verzameld. We presenteren een op tijd gebaseerde analyse van XFire in-
clusief zijn wereldnetwerk, spelersactiviteit, user-generated content, en sociale structuur.
Onze bevinding is dat XFire is een langzaam groeiend netwerk is waarin de spelers geza-
menlijk 100 jaar besteden in elk uur. Wij kwantificeren de “hardcore”-heid van XFire-
spelers, en vinden dat een aanzienlijk deel van hen meer dan 10000 speeluren hebben.

In Hoofdstuk 5 verzamelen wij de mobiliteitstraces van burgers in de virtuele wereld
van World of Warcraft (WoW), en vergelijken die met die van Second Life. Bovendien,
gemotiveerd door talrijke mobiliteits-studies en modellen van Networked Real-World En-
vironments (NREs), bestuderen we systematisch de kenmerken van twee NVE mobiliteit-
straces en twee NRE mobiliteitstraces. Wij concluderen dat de mobiliteit van burgers in de
echte wereld en in de virtuele wereld zeer vergelijkbaar zijn, maar dat er toch verschillen
bestaan. Op basis van de bevindingen van dit onderzoek stellen we een mobiliteitsmodel
voor dat gebruikt kan worden om realistische mobiliteitstraces van burgers in virtuele
wereld te genereren.

In Hoofdstuk 6 stellen we Area of Simulation (AOS) voor, een schaalbaarheidsme-
chanisme voor multi-avatar virtuele omgevingen zoals RTS games. Het AoS-mechanisme
combineert en breidt de mechanismen van Area of Interest (AOI) en Event-Based Lock-
step Simulation (EBLS) uit. Het AOS-mechanisme beheert niet alleen één, maar meerdere
AOIs door het gebruik van event-based en update-based modellen. Verder synchroniseert
het AOS mechanisme alleen geselecteerde delen van de wereld in plaats van de gehele
virtuele wereld. Boodndien ontwerpen wij een AOS-gebaseerde architectuur, die AOS
en diverse schaalbaarheidsmechanismen tegelijk gebruikt en consistentiegaranties dy-
namisch afweegt tegen schaalbaarheid. Wij implementeren deze architectuur en tonen
aan dat die functioneert met een orde van grootte meer avatars en een grotere virtuele
wereld dan de alternatieven, zonder de computercapaciteit van de spelers te overschrij-
den.

In Hoofdstuk 7 stellen wij voor een cloud-based, online, hybride (CoH) schedulingsal-
gorithme dat de operationele kosten van de NVEs vermindert door het gebruik van zowel
on-demand als gereserveerde instances van clouds. Het CoH algoritme selecteert dy-
namisch de beste oplossing uit een aantal heuristieken tijdens de verstrekking en de al-
locatie van IT-middelen voor NVEs. Via simulatie en verschillende real-world traces
tonen we aan dat het hybride schedulingsalgoritme aanzienlijk lagere kosten heeft dan de
gewone heuristieken.

In Hoofdstuk 8 stellen we Availibility-on-Demand (AoD) voor, een mechanisme

171

dat High Availibility (HA) verstrekt voor NVE-diensten wanneer HA noodzakelijk is.
Het mechanisme bestaat uit een API waarmee NVE-operators dynamische beschikbaar-
heidseisen kunnen specificeren, en een beschikbaarheid-bewuste scheduler die dynamisch
computercapaciteit beheert op grond van door gebruikers het gespecificeerde eisen. Via
simulatie met traces laten we zien dat het AoD-mechanisme op een dynamische wijze
belangrijke delen van NVEs kan beschermen, hetgeen ook tot lage operationele kosten
leidt.

172

173

Biography

Siqi Shen was born in Zhaoan, China, September 27th, 1985. Siqi obtained his Bachelor
and Master degree of computer science from National University of Defense Technology,
China in 2007 and 2009, respectively. In 2010, he was a research assistant at Parallel
and Distributed Processing Laboratory of National University of Defense Technology.
Since October 2010, he is a PhD student in the Parallel and Distributed Systems group
at Delft University of Technology, the Netherlands. He is interested in the analysis, the
design, and the implementation of distributed systems, especially on Networked Virtual
Environments and clouds.

Journal articles
1. Alexandru Iosup, Ruud van de Bovenkamp, Siqi Shen, Adele Lu Jia, and Fernando

Kuipers, “An Analysis of Implicit Social Networks in Multiplayer Online Games,”
IEEE Internet computing 18(3), pp. 36-44, 2014.

2. Siqi Shen, Shun-Yun Hu, Alexandru Iosup, and Dick Epema, “Area of Simulation:
Mechanism and Architecture for Multi-Avatar Virtual Environments,” ACM Trans-
actions on Multimedia Computing, Communications and Application, under minor
revision.

3. Adele Lu Jia, Siqi Shen, Ruud van de Bovenkamp, Alexandru Iosup, Fernando
Kuipers, and Dick Epema, “Socializing by Gaming: Revealing Social Relationships
in Multiplayer Online Games,” ACM Transactions on Knowledge Discovery from
Data (TKDD), accepted for publication.

Conference articles
4. Siqi Shen, Alexandru Iosup, Assaf Israel, Danny Raz, Walfredo Cirne, and Dick

Epema, “An Availability-on-Demand Mechanism for Datacenters,” IEEE/ACM In-
ternational Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2015, to
appear.

174

5. Siqi Shen, Vincent van Beek, and Alexandru Iosup, “Towards Characterizing
Business-Critical Workloads Hosted in Cloud Datacenters,” IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2015, to ap-
pear.

6. Siqi Shen, Niels Brouwers, Alexandru Iosup, and Dick Epema, “Characterization
of Human Mobility in Networked Virtual Environments,” ACM Workshop on Net-
work and Operating Systems Support for Digital Audio and Video (NOSSDAV),
2014.

7. Siqi Shen and Alexandru Iosup, “Modeling Avatar Mobility of Networked Virtual
Environments,” International Workshop on Massively Multiuser Virtual Environ-
ments (MMVE), 2014.

8. Yunhua Deng, Siqi Shen, Zhe Huang, Alexandru Iosup, and Rynson Lau, “Dy-
namic Resource Management in Cloud-based Distributed Virtual Environments,”
ACM Multimedia, 2014.

9. Alexandru Iosup, Siqi Shen, Yong Guo, Stefan Hugtenburg, Jesse Donkervliet,
and Radu Prodan, “Massivizing Online Games using Cloud Computing: a Vision,”
Cloud Gaming Systems and Networks, held in conjunction with IEEE International
Conference on Multimedia & Expo (ICME), 2014.

10. Siqi Shen, Kefeng Deng, Alexandru Iosup, and Dick Epema, “Scheduling Jobs in
the Cloud Using On-demand and Reserved Instances,” Euro-Par, 2013.

11. Siqi Shen, Alexandru Iosup, and Dick Epema, “Massivizing Multi-Player Online
Games on Clouds,” Doctoral Symposium at IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing (CCGrid), 2013.

12. Ruud van de Bovenkamp, Siqi Shen, Alexandru Iosup, and Fernando Kuipers, “Un-
derstanding and Recommending Play Relationships in Online Social Gaming,” In-
ternational Conference on COMmunication Systems and NETworkS (COMSNETS),
2013.

13. Yong Guo, Siqi Shen, Otto Visser, and Alexandru Iosup, “An Analysis of Online
Match-Based Games,” International Workshop on Massively Multiuser Virtual En-
vironments (MMVE), 2012.

14. Siqi Shen, Otto Visser, and Alexandru Iosup, “RTSenv: An Experimental Environ-
ment for Real-Time Strategy Games,” Annual Workshop on Network and Systems
Support for Games (NetGames), 2011.

175

15. Siqi Shen and Alexandru Iosup, “The XFire Online Meta-Gaming Network: Obser-
vation and High-Level Analysis,” International Workshop on Massively Multiuser
Virtual Environments (MMVE), 2011.

Technical reports
1. Siqi Shen, Vincent van Beek, Alexandru Iosup. Workload characterization of cloud

datacenter of Bitbrains, PDS Technical Report PDS-2014-001.

2. Siqi Shen, Niels Brouwers, and Alexandru Iosup, Human Mobility in Virtual and
Real Worlds: Characterization, Modeling, and Implications, PDS Technical Report
PDS-2011-007.

3. Siqi Shen, Otto Visser, and Alexandru Iosup, RTSenv: An Experimental Environ-
ment for Real-Time Strategy Games on Multi-Clusters, PDS Technical Report PDS-
2011-002.

	Introduction
	Networked Virtual Environments and Clouds
	Problem Statement
	Contributions and Thesis Outline

	Benchmarking NVEs
	Background
	The RTSenv Benchmarking System
	Experimental Results
	Related Work
	Summary

	Analyzing Implicit Social Networks in NVEs
	Background
	A Method for Analyzing Implicit NVE Social Networks
	Application to Other Game Genres
	Application to OSG Services
	Related Work
	Summary

	Analyzing Online Meta-Gaming Networks
	Background
	A Method for Studying Online Meta-Gaming Networks
	Datasets
	Characterization Results
	Related Work
	Summary

	Analyzing and Modeling in-NVE Mobility
	Background
	Datasets
	Characterization Results
	SAMOVAR: An NVE Mobility Model
	Validation and Application to NVEs
	Related Work
	Summary

	Scaling NVEs through the Area-of-Simulation Mechanism and Architecture
	Background
	The Area-of-Simulation Mechanism
	The Area-of-Simulation based System Architecture
	Simulation Results
	Real-world Experimental Results
	Related Work
	Summary

	Scaling NVEs Efficiently through Cloud Scheduling
	System Model
	A Scheduling Policy using On-Demand Instances
	A Scheduling Policy using Reserved and On-Demand Instances
	Experimental Results
	Related Work
	Summary

	Making NVEs Robust through the Availability-on-Demand Mechanism
	System Model
	Availability On Demand
	Experimental Results
	Related work
	Summary

	Conclusion
	Main Contributions
	Suggestions for Future Work

	Bibliography
	Datasets
	Summary
	Samenvatting
	Biography

