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Summary

Evolution plays an important role in biology, to such an extent that one of
the best-known quotes about biology is Theodosius Dobzhansky’s “Nothing in
biology makes sense except in the light of evolution.” To study evolution, it is
important to have a structured and standardized way to represent hypotheses
about evolutionary histories. This is where phylogenetic networks come in.
These provide a mathematical and graphical representation of an evolutionary
history as a graph.

Finding the most accurate phylogenetic network given some genetic data
gives rise to many computationally hard problems. So, one often has to resort
to heuristics. An important part of many of these heuristics is a local search
through the space of phylogenetic networks; the aim is to find a good phyloge-
netic network by taking small steps through this space. These steps correspond
to small changes made to a network, which are called rearrangement moves.

There is currently no standard type of rearrangement move, and each piece
of software defines their own set of moves. When such software is published,
they often mention the types of rearrangement moves they use. However, they
rarely justify their choice of moves, even though this choice can have large con-
sequences for the functionality of the heuristic. For example, to guarantee that
an optimal network can be found, each network must be reachable from each
other network by taking small steps through the space. In this thesis we study
such problems, which are all aimed at answering the following question.

Which rearrangement moves can be used in local search heuristics?

To answer this question, we take a mathematical approach, where we use
a graph to represent the space of phylogenetic networks—which are graphs
themselves as well. A graph is a collection of nodes (points) connected by
edges (lines), and in this graph, each node represents a network, and there is
an edge between two networks if there is a rearrangement move that changes
the one into the other. The requirement for a good move we mentioned before
(each network must be reachable from any other network) can then be stated
compactly in graph theoretical language as follows: Is the space of phylogenetic
networks connected under a certain rearrangement move?

The main part of this thesis answers this question for a small set of rear-



SUMMARY

rangement moves that are quite similar to moves that are used in practice. The
general conclusion of this study is that most spaces are connected. And, as
a result of the used techniques, we can additionally show that the number of
steps between each pair of networks is relatively small compared to the number
of networks. This is a nice property for the use of these rearrangement moves
in local search heuristics, as it shows that an optimal network can (in principle)
be found quickly if the right moves are chosen.

The computational hardness of the reconstruction problems unfortunately
implies that choosing the right moves is hard as well. This also holds for another
computational problem we study in this thesis: finding the shortest sequence
of rearrangement moves between two networks. We show that several versions
of this problem are NP-hard. This implies that, given two networks, there is
no fast way to find a rearrangement move that modifies one network so that it
becomes more like the other network.

Finally, in the discussion, we apply our results to published reconstruction
software. As mentioned, most of these publications do not study their search
spaces, so it needs to be checked that, at the very least, these search spaces are
connected. As the moves used in the software are similar to the moves studied
in this thesis, we can apply our results to the search spaces used in the software.
Fortunately, we conclude that, with one exception, all these search spaces are
connected. This solidifies the theoretical basis of these methods, and justifies
their application to biology.
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Samenvatting

Evolutie speelt een belangrijke rol in de biologie. Een van de bekendste uit-
spraken over biologie zegt zelfs dat je evolutie nodig hebt om biologie te kunnen
begrijpen: “Nothing in biology makes sense except in the light of evolution” —
Theodosius Dobzhansky. Daarom is het belangrijk dat we een gestructureerde
en gestandaardiseerde manier hebben om hypotheses over evolutie weer te kun-
nen geven. Dit is waar fylogenetische netwerken het toneel betreden: deze
wiskundige structuren worden gebruikt als (grafische) representatie van mo-
gelijke evolutionaire geschiedenissen.

Het reconstrueren van de echte evolutionaire geschiedenis komt dan neer
op het vinden van het fylogenetische netwerk dat het beste bij de (genetische)
data past. Dit geeft ons computationele problemen, die doorgaans moeilijk
zijn om op te lossen; ze zijn vaak NP-moeilijk. Het is daarom vaak nodig
om heuristieken te gebruiken. Een belangrijk onderdeel van deze heuristieken
is een lokale zoektocht naar een goed netwerk: hiervoor beschouwen we de
zoekruimte (alle mogelijke fylogenetische netwerken) als een graaf genaamd de
ruimte van fylogenetische netwerken, en nemen we kleine stappen door deze
ruimte. Deze stappen, die we herschikkingsstappen(rearrangement moves) noe-
men, corresponderen met kleine veranderingen in een netwerk.

Er is momenteel geen gestandaardiseerde definitie voor deze herschikkings-
stappen. ledere softwaretool gebruikt zijn eigen definitie. Bij het publiceren van
zulke tools wordt doorgaans geen aandacht besteed aan deze keuze, terwijl hij
van grote invloed kan zijn op de werking van de geimplementeerde heuristiek.
Het kan bijvoorbeeld onmogelijk zijn om een netwerk in een ander netwerk te
veranderen met een gegeven type herschikkingsstap. In dat geval kan het ook
onmogelijk zijn om het beste netwerk te vinden gebruik makend van alleen dit
type herschikkingstappen. Daarom bestuderen we in dit proefschrift een aantal
herschikkingsstappen en de bijbehorende ruimtes van fylogenetische netwerken.
We trachten in het bijzonder om de volgende vraag te beantwoorden.

Welke herschikkingsstappen zijn geschikt voor het gebruik in heuristicken?
Om deze vraag te beantwoorden gebruiken we wiskundige technieken uit de
grafentheorie. Een ruimte van fylogenetische netwerken is voor ons een graaf,

waar iedere knoop een fylogenetisch netwerk voorstelt. De herschikkingstap-

vii
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pen worden gecodeerd door de lijnen in deze graaf: er is een lijn tussen twee
netwerken precies wanneer het ene netwerk in het andere kan worden veranderd
in één herschikkingsstap. Zoals eerder genoemd, is het belangrijk om ons af te
vragen of we met een bepaald type herschikkingsstap ieder netwerk in ieder
ander netwerk kunnen veranderen. Deze vraag kan compact uitgedrukt wor-
den in de taal van de grafentheorie: Is de ruimte van fylogenetische netwerken
verbonden als graaf?

Het grootste deel van dit proefschrift is gericht op het beantwoorden van
deze vraag voor verschillende herschikkingsstappen, die erg vergelijkbaar zijn
met de herschikkingsstappen die in de praktijk gebruikt worden. Over het
algemeen concluderen we dat de ruimtes van fylogenetische netwerken verbon-
den zijn voor deze herschikkingsstappen. Daarbij zijn de technieken die we
gebruiken om dit te bewijzen constructief. Dit betekent dat we daadwerkelijk
een reeks herschikkingsstappen kunnen vinden tussen twee gegeven netwerken,
en dat we de afstanden tussen netwerken kunnen afschatten. Derze afstanden
blijken relatief klein ten opzichte van het aantal fylogenetische netwerken in een
gegeven ruimte. Dit is een fijne eigenschap in de praktijk, omdat het betekent
dat het beste netwerk in principe altijd in een klein aantal stappen gevonden
kan worden.

Helaas kunnen we niet makkelijk zo’n korte reeks stappen vinden. Dit
is omdat het vinden van het beste netwerk vaak NP-moeilijk is. Een ander
NP-moeilijk probleem is het vinden van de korste reeks stappen tussen twee
netwerken. We bewijzen in dit proefschrift dat dit probleem daadwerkelijk
NP-moeilijk is voor een aantal types herschikkingsstappen. Dit betekent dat,
hoewel we een afstand tussen twee netwerken kunnen definiéren als het mini-
male aantal stappen tussen deze netwerken, deze afstand niet gemakkelijk te
berekenen is. We geven, op basis van onze bewijzen van verbondenheid, wel
een aantal heuristieken voor het bepalen van deze afstanden. Het zal blijken
dat deze heuristieken in veel gevallen een redelijk korte reeks stappen kunnen
produceren.

Afsluitend, in de discussie, beschouwen we ruimtes van fylogenetische netwer-
ken die voorkomen in gepubliceerde software tools. We gebruiken daar onze
resultaten om te controleren of aan de minimale eis voor een goede zoekruimte
voldaan wordt, verbondenheid. Omdat we in dit proefschrift herschikkingstap-
pen bestuderen die erg lijken op de herschikkingsstappen in deze software tools,
kunnen we dit gemakkelijk staven. Gelukkig kunnen we concluderen dat de
meeste van deze zoekruimtes verbonden zijn, op een enkele na. Dit geeft een
extra theoretische verantwoording van het gebruik van deze software. Dit proef-
schrift versterkt dus de fundering van het biologisch onderzoek dat gebruik
maakt van deze heuristieken voor fylogenetische netwerken.

viii
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1. INTRODUCTION

1.1 What are phylogenetic networks?

Phylogenetic networks are a type of graph used in biology, to represent evolu-
tionary history. The most common shape for these networks is a tree. Trees
have a long history in biology. This starts with their use in taxonomy, where
they became popular in the eighteenth century [Rag09], but examples from as
early as 1592 exist as well [Zal40]. These trees had nothing to do with evolution,
taxonomic trees simply represented a classification of (living) things.

One of the first examples of evolutionary trees can be found in the book
“Philosophie Zoologique” by Jean-Baptiste Lamarck in 1809. However, the
most well-known early examples are by the hand of Charles Darwin, who laid
the basis for the currently accepted theory of evolution. For a more complete
overview of the history of trees in the representation of evolutionary history,
see, for example, [Arcl4].

Modern evolutionary trees, also called phylogenetic trees, show a branch-
ing pattern that corresponds to the branching pattern of evolution caused by
speciation. Such trees are often interpreted both as taxonomies and as phyloge-
nies. This dual interpretation of a phylogeny as a taxonomy breaks down when
additional non-vertical processes, such as hybridization |e.g. AAAT13|, hori-
zontal gene transfer (HGT) [e.g. ZD11, KGDOO05, KP08|, and recombination
[e.g. VB15] are involved as well.

With such additions, evolutionary histories become reticulate (i.e., net-like),
so they can no longer be represented by trees, but only by phylogenetic networks.
In such networks, there is no clear hierarchical grouping of the taxa as in a tree.
Hence, unlike a phylogenetic tree, a phylogenetic network cannot simply be read
as a taxonomy, although some taxonomic information may still be extracted,
for example by studying clusters [NW05, KNTX08, HRS10, Stel16]. The main
use of phylogenetic networks is therefore as a representation of evolutionary
history.

Phylogenetic trees and networks represent evolutionary histories by show-
ing the flow of hereditary information. In biological applications, this is most
often in the form of genetic information. There are also applications outside
of biology such as in linguistics [e.g. Dun15, JL19, LS20| and other anthropo-
logical topics like board games [e.g. Kra00, Carl4, BSP119] and archaeology
[Pre19], where, for example, the evolution of tools is subjected to phylogenetic
analysis [e.g. Houl2, OBB*14, WPR19|. In those cases, it is less clear which
flow of information is represented in the network exactly, and these types of in-
formation may not behave similar to genetic information, which makes accurate

4
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a b c d e f

Figure 1.1: A phylogenetic network with six leaves (representing extant taxa)
at the bottom, and the root (ancestral taxon) at the top. Edges are directed
downwards, showing the passing of time. The red nodes are the three reticu-
lations (i.e., reticulate evolutionary events), which make this network a tier-3
network.

reconstruction of these phylogenies challenging [Mor13, Str19|. Nevertheless,
in all these cases, phylogenetic trees or networks are assumed to represent some
kind of evolutionary history.

In its broadest mathematical sense, a phylogenetic network can be thought
of as a leaf-labelled graph, usually without parallel edges and degree-2 nodes
(Figure 1.1) [Morll, HRS10]. The underlying graphs of the networks may be
directed (and acyclic) or undirected. Between these, directed networks have
the simplest interpretation as evolutionary histories (Figure 1.2). In a directed
tree, the arcs represent periods of descent with modification, and the nodes
represent speciation/divergence events. In a directed network, there is a third
type of node, a reticulation node. Such a node represents the combination of
hereditary information like in hybrid speciation.

Undirected networks often only represent genetic data, but, in some cases,
they may be though of as the undirected version of a directed network, in
which we simply ignore or are ignorant of the direction. These two types of
networks are sometimes confused, leading to controversy: |[FFRF20| uses a
median joining network (MJN; a data displaying network) and reads it as an
evolutionary history, as [SPKPS™20] point out. This paints a sufficient, albeit
strongly simplified, picture of the interpretation of phylogenetic networks as
evolutionary histories, to which we will get back in the Section 8.2.1 of the
Discussion.
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T
HybridizationJ

Time

leaves

Figure 1.2: Schematic and simplified visualization of how phylogenetic net-
works represent evolutionary history. The squares and circles on the top and
left represent males and females respectively in a sexual species, and the arcs
connecting these individuals represent parent-child relations. Red: Speciation,
represented by a tree node in the network; Blue: Hybridization, represented by
a reticulation node in the network.

1.2 What is their use?

As mentioned in the previous section, phylogenetic trees have a dual use in tax-
onomy and evolution, which breaks down for networks. So, if networks cannot
directly be used for classification, what reasons remain for the construction of
phylogenetic networks?

Evolutionary histories are, among other things, needed to find the reser-
voir or initial infection for some disease [e.g., GBRT99, LCK™16], to construct
accurate pictures of what ancestral species looked like (i.e., ancestral state re-
construction) [Fit71, YHBH15, HF17], to make decisions in conservation using
phylogenetic diversity indices [e.g. Magl3]— which have been extended to net-

6
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works as well [VMM*14, WF17, WF18]— or to learn about the evolution of
genes, giving us insight in how they work [e.g., SKS94, YHBH15, JLM™16,
GANA*17, ATDI1S].

The obvious question is why we should use networks instead of the well-
established trees for these applications. The main reason is that evolutionary
histories cannot all be represented by trees because of non-vertical processes.
Arguments in this direction go as far as to relabel the tree of life as the tree
of one percent based on the limited amount of vertical inheritance [DMO6].
Clearly, if the evolutionary history cannot be represented by a tree, we should
not even attempt to construct a tree that represents it.

On the other hand, there are examples where the vertical inheritance is
clearly the most important mode of inheritance, for example, when we are in-
terested in the phylogenetic relations between distantly related mammals. In
such cases, it could be better to search for a tree representation. To deter-
mine whether one should search for a tree or network, [BA20| recommend first
using separate methods that detect non-vertical inheritance, such as the ABBA-
BABA test [DPRS11| or HyDe [BCWK18|. In the end, the authors argue that
neither tree nor network should be rejected in favor of the other, as the analy-
ses can complement each other, for example by detecting ancient reticulations
in snakes using network methods, and estimating time-scales and geographical
areas using well-established tree methods [BG18|.

As mentioned in the previous section, phylogenetic methods are also used in
fields other than biology. In these fields, it may also be right to assume networks
are needed to represent the evolutionary histories. However, the debate about
the use of trees or networks does not seem to have arrived to these fields yet.
This is probably because the use of phylogenetic methods in these fields is not
as well established as in biology. This is exemplified by |JL19|, who argue for
the use of phylogenetic methods in linguistics and, at the same time, debate
the use of trees versus networks.

1.3 How do we find them?

Phylogenetic networks represent past events, which we cannot observe directly.
This means we can only infer evolutionary histories based on present infor-
mation. For the reconstruction of evolutionary histories, this implies we must
primarily use information obtained from extant taxa, in some cases perhaps
supplemented by data collected from fossils. Extant taxa provide information
in the form of DNA sequences, which are found by sequencing the genome of
individuals in a given taxon.
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These sequences are typically preprocessed before they are used to find
a phylogeny. The first step is nearly always to align the sequences, that is,
to link the positions of the sequences of different taxa that have the same
evolutionary origin. The resulting alignment can then be used directly in some
reconstruction tools, whereas others require further preprocessing. These tools
may, for example, require pairwise distances between the sampled taxa, which
can be calculated by counting the pairwise differences of the sequences in the
alignment |e.g. BS16, BHMS18, vIMM20)].

Another often used form of preprocessed data are multi-locus sequences.
These are obtained by either sampling the genome at different loci, or by par-
titioning the alignment of a contiguous sequence into blocks that are inherited
as a unit (see the introduction of [JGvIT19] for an overview of such methods).
These blocks can then be used directly to find a network [e.g. YDLN14, SLA16],
or further processed into gene trees: a phylogenetic tree for each block.! For
overviews of methods for tree building, see |[KYT20, LSV09, SDG20|; and for
a recent overview of network methods, see [EOZN19].

After preprocessing, the data can be used to reconstruct the evolutionary
history. This reconstruction can broadly take two forms. It either consists of
finding a distribution of networks using a Bayesian approach, where networks
that explain the data better have a higher probability; or it uses an optimization
problem where the goal is to find a simplest network that explains the data or
a network that explains the data best. We now give a few examples of such
optimization problems.

If the data consists of distances between pairs of taxa, the optimization
problem may ask for the simplest network in which each distance corresponds
to the length of a certain type of path between the taxa [e.g. BS16, BHMS18,
vIMM20|. For data given as a set of gene trees, it may consist in finding
the simplest network which contains all these trees [BGMS05, LS19, WBZ13,
vIJJ*T19b]. A network being ‘simple’ can have different meanings, although
it often refers to the number of reticulation events, where fewer reticulation
events gives a simpler network. Finding a network with as few reticulations as
possible may be thought of as a parsimony based method (being parsimonious
with respect to the number of non tree-like events), but parsimony methods
typically refer to the next kind of reconstruction method.

Parsimony in phylogenetic tree reconstruction refers to a specific problem,
our next example, where one wants to find a tree which explains the sequence
evolution with as few mutations as possible. This model has recently been ex-

!The name gene tree does not accurately reflect what blocks are/should be chosen. Indeed,
as a result of recombination or domain reshuffling, only a small part of a gene (like a domain
or an exon) inherits as a unit [e.g. KZNL02, VTPLO05]. Hence, it is unlikely that a complete
gene is always inherited as a unit



1.3. How do we find them?

tended to phylogenetic networks as well [FvIKS15, VanlJS17|. Although these
network methods are based on parsimony, the term parsimony for network
reconstruction is increasingly reserved for methods that minimize deep coales-
cence |[YBN13, YCLN20]. These methods are parsimonious with respect to
some aspects of embeddings of gene trees in networks. We will use parsimony
exclusively for the methods that are parsimonious with respect to mutations,
and we will refer to the latter simply as methods that minimize deep coales-
cence.

The last example is the mazimum likelihood (ML) problem where one takes
an alignment and searches for a network (with arc lengths) that has the highest
likelihood, i.e., probability of producing the given alignment [e.g. YDLN14,
SLA16]. Of course, to define this likelihood, one needs a model of sequence
evolution. Hence, such reconstruction problems are also called model based
methods in the literature.

1.3.1 Heuristics

As most of the optimization problems are computationally hard, it is often
infeasible to find an optimal solution [e.g. FG82, CT06, Roc06, BFLS17|. To
find a good solution within a reasonable time, one needs to use heuristics. One
type of heuristic used for these problems is a local search heuristic [trees: Fel04,
LVDMH'08, NSvHM14, LCK " 16|[networks: YDLN14, WYHN16]. Instead of
considering all possible solutions as a set, these methods use a space of solutions,
where similar solutions are close to each other (Figure 1.3). One then attempts
to find a good solution by making small steps through this space.

When an underlying model of sequence evolution is used, one can also opt for
a Bayesian approach instead of an optimization approach [see, e.g., Lar20, for
an overview|. To use such methods, one needs a stochastic model of (sequence)
evolution, an alignment, and a prior distribution on the set of phylogenetic
networks. The aim of the Bayesian method is to update the prior distribution
with the information from the alignment to obtain a posterior distribution. To
reach this goal, heuristics are often employed here, too. In contrast to the local
search heuristics for optimization problems, these heuristics are not meant to
find an optimum, but to sample the posterior distribution. The estimate for
the posterior distribution is then simply the distribution of the samples.

Sampling is performed by randomly walking through the space of networks
using a Markov Chain Monte Carlo (MCMC) Metropolis-Hasting algorithm
(e.g., [WYN16]). In this algorithm, one performs a random walk through the
space of networks. This random walk proposes a neighbour of the current net-
work, and accepts this with a probability that depends on the prior distribution
and the data. Choosing this probability so that it is proportional to the proba-

9
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Figure 1.3: The space Niui1(3,1) of networks with three leaves and one reticu-
lation, where there is an edge between two networks if they can be transformed
into each other by a small change called a tail move.

10
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bility in the posterior distribution, the estimation of the posterior distribution
simply consists of the frequencies with which the networks are visited.

Using Bayes’ rule, the posterior probability of a network together with a
parameter set is proportional to

P(data|network, parameters)P(network, parameters),

where the first probability depends on the chosen evolutionary model, and the
second is simply the probability of the network with parameters in the chosen
prior distribution. For a more complete explanation of such Bayesian methods
for phylogenetics, see for example [Lar05, EOZN19].

1.3.2 Rearrangement moves

In all these heuristics, one needs to define the steps that can be taken through
the space. For phylogenetic trees, these steps are called rearrangement mowves.
Several of these moves have long been studied for phylogenetic trees. The most
prominent ones are Nearest Neighbour Interchange (NNI), Subtree Prune and
Regraft (SPR), and Tree Bisection and Reconnection (TBR) [Fel04, SS03]. All
of these moves take one edge, and move one or both endpoints to other locations
in the tree. To use local search heuristics for phylogenetic networks, one needs
rearrangement moves that work for networks as well.

A handful of rearrangement heuristics for phylogenetic networks have been
published recently, and each of them uses its own set of rearrangement moves.
For example, the PhyloNet method InferNetwork ML [YDLN14] uses the “Re-
locating the source of an edge” and “Relocating the destination of a reticulation
edge” moves, and the BEAST 2.5 add-on SPECIESNETWORK [ZODS18] uses the
“Branch relocator” operation. These sets of moves are often quite similar; for
example, the above-cited moves from [YDLN14| respectively move the head
and the tail of an arc of the network, and the SPECTESNETWORK move is a
combination of these moves where the moving arc is allowed to be redirected
as well.

Papers introducing these heuristics typically do not study the properties of
the moves they use, even though it is important to check some properties of
the corresponding spaces of networks. For example, for the heuristics to reach
an optimum or posterior distribution, the corresponding spaces need to be
connected. And for the heuristics to work efficiently, it is important to choose
a set of moves that guarantees each network can be reached using a small
number of moves. Hence, researchers have become interested in defining basic
rearrangement moves for phylogenetic networks and studying their properties
[BLS17, FHMW17, GvIJT17a, HMW16].

11
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Figure 1.4: Top: the tail move (u,v) to (x,y); Bottom: the head move (u,v)
to (z,y). On the left, the starting networks in which the moving edges are
coloured. The right networks are the resulting networks after the moves, with
the moved edge coloured differently. The middle graph is a combination of the
left and the right network, with the moving edge coloured differently. The solid
coloured edge is the moving edge of the network before the move, the dashed
coloured edge is the moving edge of the network after the move. We distinguish
the moves with edge colours: blue is a tail move, orange is a head move.

Huber et al. [HMWI16| generalized NNI moves to undirected phyloge-
netic networks, and showed the connectivity under these moves of the tiers
of phylogenetic-network space, i.e., phylogenetic networks having the same
number of reticulations. Other generalisations of tree moves that have been
proposed include tail moves and head moves, which are moves that relocate the
tail or head of an arc (Figure 1.4). For example, one rSPR move [GvIJT17a]
on a network consists of one head move or one tail move, and one rNNI move
consists of one head move or tail move that relocates an arc to an adjacent
arc. SNPR moves [BLS17| are a variation on this theme: they are defined as a

12
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tail move or the deletion/addition of an arc on networks where parallel edges
are allowed. Because of this deletion/addition of an arc, SNPR moves can
change the reticulation number. Moves that do this are called vertical moves,
as they allow us to move up or down a tier; moves that do not change the
number of reticulations are called horizontal moves. In this thesis, we study
such horizontal moves.

1.3.3 Internal labels

Previous studies of the properties of rearrangement moves have primarily fo-
cused on networks in which only the leaves of the network are labeled. In
this thesis, we consider networks where internal nodes can be labeled as well
this allows for the placement and labeling of ancestral taxa in the network.
The data for these taxa could, for example, be obtained from fossils [e.g.,
SGF15, GWSD14|, or from data simply sampled through time such as for
pathogens in ongoing epidemics [e.g., transmission trees in YYBW13, GWSD14]
or for cancer development within one patient [e.g., JVDT14].

Internal labels for trees have recently been introduced in different mathe-
matical phylogenetic contexts, like clusters [BDEM 120, JBZ20| and the com-
bination of trees [FBL20|. Bernardini et al. [BBDVP19] also considered fully
labelled phylogenetic trees. Their application was to cancer research, where,
sampling occurs throughout the tree, instead of only at the leaves. Most no-
table about this paper is that it uses rearrangement moves on internally labeled
trees. To our knowledge, no research has been done to investigate rearrange-
ment moves on internally labeled phylogenetic networks.

1.4 Thesis scope

In this thesis, we study rearrangement moves and the corresponding spaces of
phylogenetic networks. The existing literature studying these topics gives a
fragmented view of the connectedness and diameters of phylogenetic network
spaces. For example, before the papers used for this thesis, there were only
diameter bounds for a few types of moves. Here, we aim to give a complete
characterization of the connectedness and diameters of these spaces, where we
restrict to networks without parallel edges. We also consider networks with
internal labels. We focus on spaces defined by horizontal moves only, and we
do not consider classes of phylogenetic networks (e.g., tree-child, tree-based, or
reticulation visible networks). These are all major differences with the recently
published thesis by Jonathan Klawitter [Kla20b], wish also studies spaces of
phylogenetic networks.

13
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Our results contain complete characterizations of the connected components
of the spaces of (internally labeled) phylogenetic networks for tail moves, head
moves, rSPR moves, distance-1 tail moves, TNNI moves, SPR moves, and NNI
moves. For all these spaces, we also prove diameter bounds, some of which are
asymptotically tight.

The connectedness results in this thesis are all constructive, in the sense
that they provide a method to find a sequence of moves between any pair of
networks in the same component, so each of these proofs gives an upper bound
on some diameter. Hence, this thesis is essentially a compendium of diameter
(upper) bounds for phylogenetic network spaces, and the proofs form the main
part of this thesis.

1.4.1 Structure of the thesis

To structure these results, we study each type of rearrangement move together
with its local variants in a separate chapter. This structure deviates from
the structures of the papers this thesis is based on [JJET18, Jan21, JK19|.
The results for each move were scattered across the papers, which did not
exclusively concern one type of move. To make the original proofs easy to find,
each previously published result is accompanied by a reference to the original.
Many results do not have such an accompanying reference; those results are
new. We will now present the structure of this thesis, with indication of the
origin of different parts of the thesis.

Chapter 2, Preliminaries This chapter contains all relevant definitions
and specific notation. It starts with basic notation for graphs, and builds
up complexity by continuing with the definition of phylogenetic networks,
then rearrangement moves, and then spaces of networks. These definitions
are the same as the commonly used definitions, although the notation may
be different. For a complete list of notation, see the Symbol Index at the
end of this thesis.

Chapter 3, Tail Moves The first move type we consider is the tail move.
All connectedness results for networks without internal labels are taken from
[JJE*18]. The notation in these proofs has been updated, and some proofs
have been rewritten to improve the exposition. This led to an improved
upper bound for the space of networks under tail moves. All other results
in this chapter are new (i.e., lower bounds, and connectedness of spaces of
internally labeled networks).

Chapter 4, Head Moves The second type of move we consider is the
head move. All results about networks without internal labels are based

14
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on [Jan21]. For these networks, only the upper bound for local head moves
is new, as the paper did not calculate this bound based on the construc-
tive proof. Like for the tail move results, the notation has been modified,
and proofs have been rewritten to increase readability and to improve the
bounds. Also like in the tail move chapter, all other results pertaining to
internally labeled networks are new.

Chapter 5, rSPR and rNNI Moves Next, we consider the union of tail
and head moves, i.e., the rSPR move. This chapter starts with a section
that studies the relation between tail and head moves in networks with at
least two leaves, taken from [Jan21]. Then, it continues with constructive
connectedness proofs for rSPR spaces, based on [JJE118], and rNNT spaces,
based on [JK19|. Like for the previous two chapters, all these results are
updated, and the results about internally labeled networks are new.

Chapter 6, SPR and NNI Moves In this chapter, we study spaces of
undirected networks. We heavily leverage the results for directed networks.
Hence, the chapter starts with a section about the relation between spaces
of directed and undirected networks. This section is partly based on results
from [JJET18] and partly new. Then, we turn to the connectedness ques-
tion. The connectedness results for SPR moves are taken from [JJET18|,
and the results for NNI moves are from [JK19|. The results concerning
internal labels are new.

Chapter 7, Computing Sequences All constructive proofs can, in prin-
ciple, be converted into algorithms that compute a sequence of moves be-
tween a given pair of networks. In this chapter, we show that computing the
shortest such sequence is NP-hard for each move. Then, we explicitly con-
vert some of our proofs into algorithms and we test the quality and practical
running time of python implementations of these algorithms. The complex-
ity results are existing results, mostly based on [JJET18] and [Jan21], but
all algorithmic and experimental results are new.

Chapter 8, Discussion In this last chapter, we discuss all our results and
place them in a more applied context. First, we give a short summary of
the results, including a tabulated overview of all diameter bounds. Then,
we reconsider the use of a network as a representation of (biological) evolu-
tionary histories, and we discuss our assumptions used to define a network.
Then, we apply our results to several software tools, showing that for most
of these tools our results are sufficient and necessary to show that their
search spaces are connected.
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Chapter A, Rearrangement Moves in Software This appendix con-
tains the actual survey of the literature for software that uses rearrange-
ment moves mentioned in Chapter 8. We select several software tools and
compare the rearrangement moves used in these tools to the moves used
in this thesis. In particular, we check for each of these tools whether the
search space is connected, and, if so, whether they are still connected when
restricted to networks with the same number of reticulations.

Chapter B, Open Problems Although the discussion (Chapter 8) al-
ready contains several open problems, they are scattered throughout this
discussion. In this appendix, we give a more condensed and comprehensive
list of open problems related to this thesis.
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2. PRELIMINARIES

This chapter provides an overview of the specific notation and definitions
used throughout this thesis. It also includes some relevant basic results from
mathematical phylogenetics. For standard notation, e.g., writing N for the
natural numbers, refer to the Symbol Index at the end of this thesis.

We assume a basic knowledge of some mathematics such as complexity the-
ory, including NP-hardness and big-O notation. However, we will repeat some
graph theory basics, as graph theoretical notation is pivotal for the definition
of phylogenetic networks.

To define the main topic of this thesis, we start with a general introduction
for graphs. This is followed by an increasingly specialized introduction for
phylogenetic networks and their properties, culminating in the introduction of
rearrangement moves and the corresponding spaces of networks.

2.1 Graphs

This thesis concerns specific types of graphs, so we start with a general intro-
duction of graph theoretical concepts. We mostly follow standard notation for
graphs, such as can be found in [Diel2].

2.1.1 Undirected graphs

An undirected graph G = (V, E) consists of a set, V', of vertices (or nodes), and
aset £ C (‘2/) of edges. Note that this definition precludes the existence of
parallel edges: two edges are parallel if they share both endpoints.

We write V(G) for the nodes of a graph G, and E(G) for its set of edges.
Two nodes z and y are neighbours in G if G contains the edge {z,y}, and we
say that = (resp. y) and {x,y} are incident. The degree of a node is the number
of edges it is incident to.

A {1,3}-graph is a simple graph with nodes of degree 1 and degree 3. Sim-
ilarly a {1,2,3}-graph is a simple graph with nodes of degree 1, degree 2, and
degree 3. A graph with nodes of degree-3 only is called a cubic graph.

A graph G' = (V', E') is a subgraph of G = (V,E) if V' CV and E’' C E.
Let G, G’ be two graphs. Then an isomorphism between G and G’ is a bijection
¢ : V(G) = V(G’) such that there is an edge {u,v} € E(G) if and only if there
is an edge {¢(u),p(v)} € E(G'). We say G and G’ are isomorphic if there
exists an isomorphism between G and G’, and we write G ~ G’, or, when we

want to specify the isomorphism, G 2a
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Connectedness and connectivity

An (undirected) path of length n € N in G is a sequence of nodes (zo, ..., xy,)
such that x; is a neighbour of x;_; for all i € [n]. If there is such a path, we
say the nodes zg and x,, are connected by a path.

A graph is connected if each pair of nodes is connected by a path. If a graph
is not connected, we call it disconnected A path of length at least 1 that starts
and ends at the same node is called a cycle. A graph without cycles is a forest,
and a connected forest is a tree.

A spanning tree of a graph G is a connected subgraph T of G such that
V(G) =V(T) and T is a tree. A graph has a spanning tree iff it is connected.

A shortest path is a path of minimal length, and the distance dg(z,y) is
the length of a shortest path between x and y. If there is no path between
x and y, we write dg(r,y) = oo. For a connected graph G, the diameter
diam(G) of G is the maximal length of a shortest path in G, i.e. diam(G) =
min, yev(a) de (7, y)-

A graph is k-connected if one needs to remove at least k edges from G to
make it disconnected.! The connectedness of a graph is the property of being
connected, whereas the connectivity of a graph G is the maximal number &
such that G is k-connected.

A graph is biconnected if it is 2-connected. A biconnected component of a
graph G is a maximal subgraph of G that is biconnected

Multi-graphs

Although we generally assume graphs do not contain self-loops or parallel edges,
these do show up on several occasions. Graphs that do allow for these structures
are called multigraphs, and are defined as follows. A multi-graph G = (V, E, ¢)
consists of a set of nodes V, a set of edges E, and an endpoint mapping
€: EF— V xV. For simplicity, we refer to an edge e by its image e(e) = {z,y}
under €, so that notation for graphs and multigraphs becomes the same.

Modifying graphs

Let {u,v} be an edge in a graph. Subdividing {u, v} consists of deleting it from
the graph and adding a new node x and edges {u,z} and {z,v}. A subdivision
of a graph G is any graph obtained from G by repeatedly subdividing edges.
The reverse operation is suppressing a degree-2 node. Let x be such a node
with adjacent edges {u,x} and {z,v}, then suppressing x consists of removing

'This is generally referred to as k-edge-connected, to distinguish it from Fk-vertex-
connected. However, in this thesis, we will only use edge-connectedness, so we simply call
this k-connected.
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the edges {u,z} and {z,v} and the node z, and then adding an edge {u,v}.
If the graph already contains the edge {u, v}, this results in a multigraph with
two copies of the edge {u,v}.

Let G = (V,E) be a graph with nodes z,y € V, then identifying the
nodes x and y results in the following new graph G’ = (V' E’). In this graph
V' =V \{y}, and E' = {{u,v} € E:u,v #y}U{{z,u} :u # z,{y,u} € E}.

Any graph G’ obtained from G by repeatedly identifying pairs of nodes is
called a quotient of G. If ~ is an equivalence relation on V(G), then G/~
is the quotient of G obtained by identifying each pair of nodes in the same
equivalence class of ~.

2.1.2 Directed graphs

A directed graph (or digraph) D = (V, A) consists of a set, V', of wertices or
nodes, and a set A C V x V of arcs. We write V(D) for the set of nodes,
and A(D) for the set of arcs of a digraph D. Like undirected graphs, directed
graphs do not have parallel arcs, where two arcs (u,v) and (w, z) are said to be
parallel if w=w and v = z. Let e = (u,v) be the arc from u to v of a digraph,
then we say that u is the tail of e, and v is the head of e.

Let D, D’ be two digraphs. Then an isomorphism between D and D’ is a
bijection ¢ : V(D) — V(D') such that there is an arc (u,v) € A(D) if and
only if there is an arc (¢(u), d(v)) € A(D’). We say D and D' are isomorphic
if there exists an isomorphism between D and D’, and we write D ~ D', or,

when we want to specify the isomorphism, D 2D

A subgraph of a digraph D = (V, A) is a graph D' = (V/, A") such that
V' CVand A’ C A. Let D = (V, A) be a digraph, and let Y C V be a subset
of the nodes, we will write D[Y] to denote the subgraph of D induced by Y,
i.e., the graph (Y, AN (Y xY)) and we will write N \ Y to denote N[V \ Y].

Connectedness and connectivity

Each directed graph D = (V, A) has an underlying undirected multi-graph
U(D) = (V,E) where E = {{z,y}: (z,y) € A}. If for all pairs of vertices
z,y € V at most one of the arcs (z,y) and (y,z) is in A and (z,z) ¢ A for all
x € V, then U(D) is a graph.

A (directed) path of length n € N in D is a sequence of nodes (xq, ..., Z,)
such that (x;—1,z;) € A(D) for all i € [n]. An up-down path in a digraph D
is a sequence of nodes (:v,lll, o ag @, ,:UTQZQ) such that (¢,z,... ,xﬁh) is a
path in D for both i € [2]. A (directed) cycle is a path of length at least one
starting and ending at the same node.
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A digraph D is connected if U(D) is connected, it is strongly connected if
there is a directed path from each vertex to any other vertex. A subgraph D’
of D is a biconnected component if U(D') is a biconnected component of U (D).

Modifying graphs

Suppression of nodes and subdivision of arcs are defined similar for digraphs as
for graphs, where the new arcs inherit the direction of the old arcs. Let (u,v)
be an arc in a digraph. Subdividing (u,v) consists of deleting it from the graph
and adding a node x and arcs (u,z) and (z,v). A subdivision of a digraph G
is any graph obtained from G by repeatedly subdividing arcs.

The reverse operation is suppressing an indegree-1, outdegree-1 node. Let x
be such a node with in-arc (u, x) and out-arc (z,v), then suppressing = consists
of removing the arcs (u,z) and (z,v) and the node z, and then adding an arc
(u,v).

Digraph quotients are defined analogous to graph quotients: identifying
two nodes z,y € V(D) results in a new digraph D' = (V/; A’) with V' =
V\{y} and A" = {(u,v) € E : u,v # y} U{(x,v) : (y,v) € E,v # z,y} U
{(u,2) : (u,x) € E,u # x,y}.

DAGs

A directed acyclic graph (DAG) is a digraph without directed cycles. The
absence of directed cycles implies there is a natural partial order on the vertices
of a digraph.

This order relation for DAGs diverts from the notation for rooted trees in
[Diel2]|, as we imagine the arcs of a DAG to be pointed downwards, instead of
upwards as in [Diel2]. A node u is above a node v if there is a directed path
from u to v, we also say that v is below u. Note that for each node u, there
is a directed path (u) from u to w, so each node is below and above itself. A
node u is strictly above (resp. below) v if u is above (resp. below) v and u # v.
Moreover, an arc (x,y) is above a node w if y is above u, and it is below w if
is below .

Using terminology derived from phylogenetics, we alternatively use the fol-
lowing terms to indicate that u above v. In that case, we say that v is an
ancestor of v and v is a descendant of u. Similarly, if (u,v) € A(D), we say u
is a parent of v and v is a child of u. A child of a node w is often denoted c(u),
and we write p(u) for a parent of u. Alternatively, we say w is directly above
v, and v is directly below u. A lowest node in a DAG is a node that has no
descendants.
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A last common ancestor (or lowest common ancestor) of two nodes u and
v is an ancestor w of u and v such that no node below w is an ancestor of both
u and v. The set of lowest common ancestors of u and v is denoted LCA (u, v).

A subset Y C V(D) of the vertices of a DAG D is down-closed if there is
no arc (y,z) in D with y € Y and z ¢ Y. Similarly, a subset Y C V(D) of the
vertices of a DAG D is up-closed if there is no arc (z,y) in D with y € Y and
z2&Y.

2.1.3 Labeled graphs

A labeled (di)graph is a (di)graph G together with a bijective labeling [ : W — X
of a subset of the nodes W C V(G) with labels X.

Definition 2.1. Let G, G2 be two (di)graphs labeled by maps l; : W1 — X3

and Iy : Wy — Xo. If G4 § G9 such that for any label z € Y C X7 N Xy, the
node ¢(I; () = Iy (x), then ¢ is a labeled isomorphism between Gy and Go
with respect to Y. We say Gy and G» are labelled isomorphic with respect to
Y if there exists a labeled isomorphism between G; and G2 with respect to Y,

and we write G iy Gs.

2.2 Directed networks

In this section, we define directed phylogenetic networks, the explicit represen-
tation of an evolutionary history. After this definition, we introduce several
properties such a network may have. Then, we consider relevant structures
that may be found in a directed phylogenetic network, and a few examples of
(classes of) networks. Lastly, we introduce a special type of containment of
networks within other networks.

Definition 2.2. A directed phylogenetic network N = (V, A,l) on a set of taza
X is a DAG (V, A) labeled with [ : L(N) — X, where L(N) denotes the set of
leaves of N, with nodes of the following types.

Root Indegree-0, outdegree-1 node, it has exactly one of these;
Tree nodes Indegree-1, outdegree-k node, with k£ > 2;
Reticulation Indegree-k, outdegree-1 node, with k£ > 2;

Leaf Indegree-1, outdegree-0 node.

In a subdivided phylogenetic network, a fifth type of node is allowed.
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Figure 2.1: Two non-binary networks and a binary network (labels are not
shown). Square nodes indicate reticulations, and red nodes indicate non-binary
nodes. The network on the right is binary because it has no non-binary nodes.

Degree-2 Node Indegree-1, outdegree-1 node.

Incoming arcs of reticulation nodes are called reticulation arcs and incoming
arcs of leaves are called leaf arcs. The root of a network is often denoted as p.

Definition 2.3. An internally labeled (subdivided) directed network is a (sub-
divided) directed network N = (V, A,1) (N = (V, A,1)) in which the labeling
is a bijective map [ : V' — X. The set of labels X can be partitioned into sets
that correspond bijectively to the types of nodes. The set of leaf labels is X,
the set of tree node labels is Xt the set of reticulation labels is X", the set of
root labels is {2}, and the set of degree-2 node labels is X (?),

Because each leaf has a unique label in a network, we will often interchange
[(v) and v freely for leaves in networks. For internally labeled networks, we do
this for all nodes.

Definition 2.4. Let N be a subdivided directed network, then the suppression
of N, S (N ), is the multi-digraph obtained from N by suppressing all indegree-1
outdegree-1 nodes. If S(N) is a directed network (i.e., if it is a digraph without
parallel arcs or self-loops), then we say N is suppressable.

Definition 2.5. A network is binary if all its nodes are binary, i.e., if all tree
nodes have out-degree equal to two and all reticulations have in-degree equal
to two (Figure 2.1).

In this thesis, we will only consider binary directed phylogenetic networks,
so, henceforth, we will drop phylogenetic and binary whenever we refer to
a binary phylogenetic network. For example, we will say “directed network”
instead of “directed binary phylogenetic network”. When it is clear from context
that the network is directed, we will simply refer to it as a network.
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N N/ N//

1 3 2 1 2 3 1 2 3

Figure 2.2: Three internally labeled networks. All three networks are isomor-
phic, but only N’ and N” are leaf isomorphic. None of these networks are
labeled isomorphic with respect to the full label set.

Definition 2.6. The reticulation number of a (non-binary) phylogenetic net-

work N is
Z deg_ (U) - 17
vER(N)

where R(N) denotes the set of reticulation nodes of N.

Observation 2.7. Let N = (V, A,l) be a binary network with n leaves, m
degree-2 nodes, and reticulation number k, then N has 2n + 3k +m — 1 arcs
and 2n + 2k + m vertices, of which n are leaves, 1 is the root, k are reticulation
nodes, m are degree-2 nodes, and n + k — 1 are tree nodes.

Definition 2.8. Two networks are (labeled) isomorphic if they are (labeled)
isomorphic as labeled graphs, and the notation is the same as for labeled graphs.
We say two networks are leaf-isomorphic if they are labeled isomorphic with
respect to their leaf labels X! (Figure 2.2).

2.2.1 Substructures

For a network NV and an internal node v, N | v is the (subdivided) subnetwork
of N induced by v and all nodes below v. If v is a tree node, then a new root-arc
is added to the resulting digraph. A subgraph S of a network N is a pendant
subnetwork if S = N | v for some v € V() and all degree-2 nodes of S are
also degree-2 nodes in N. If S is a tree, it is called a pendant subtree, and if S
has exactly two leaves [ and I” it is called a cherry (I,1') on [ and I'.

A network N has a chain (z1,...,x;) of length [ if z; are leaves of N, and
N contains the subgraph consisting of the arcs {(p;,z;) : i € [[]}U{(pi,pi +1) :
i €[l — 1]}, and p; is a tree node.
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2.2. Directed networks

An important substructure in a network is the triangle. This structure has
a large impact on the rearrangements we can do in a network.

Definition 2.9. If a network N has arcs (z,y), (x, 2), and (y, z), then we say
z,y and z form a t¢riangle in N, or (z,y,z) € N. If y is a tree node, we write
(x,y, 2)¢, and if y is a reticulation, we write (x,y, 2),.

We call = the top of the triangle, y the side of the triangle, and the retic-
ulation z the bottom of the triangle. The arc (z, z) is called the long arc and
(y,z) is called the bottom arc of the triangle.

For a subdivided network N , we will often need to consider substructures
of S(N) and the corresponding parts of N. To simplify the notation in these
cases, we introduce some terms for these structures, where we simply replace
arc (in S(N)) with path (in N).

The root path of N is the path corresponding to the root arc of S( )
Similarly, the leaf path of a leaf z in N is the path that corresponds to the
incoming arc of z in S(IV).

If S(N) has a pair of parallel arcs from x to y, then the corresponding pair
of paths in N are called parallel paths.

Lastly, if S(N) has a triangle (z,y, z), then we say N contains the subdi-
vided triangle (-x,y, z-) which consists of the paths corresponding to the three
arcs of (z,y, z).

Definition 2.10. A blob of a (subdivided) phylogenetic network N = (V, A, 1),
is the network formed by a biconnected component of the underlying DAG
D = (V, A) of N, together with its out-going arcs, where each leaf [ is labelled
with the set of leaves of N below the node corresponding to [ in N.

Definition 2.11. The level of a phylogenetic network N is the maximum retic-
ulation number in a blob of N.

For an example of blobs of a network, see Figure 2.3. The network in this
figure has three blobs, one of which is level-1 and the other two are level-2
blobs.

Note that any level-2 blob with outdegree-1 (in any network) is isomorphic
to the level-2 blob with one outgoing arc in Figure 2.3.
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{1,2,3}

1 2° 3 4 5 b2s

Figure 2.3: A level-2 network (left) with its three blobs (right).

4

2.2.2 Recurring examples of networks

Definition 2.12. A directed phylogenetic tree is a phylogenetic network with-
out reticulations.

A (nonbinary) phylogenetic tree can be defined using a Newick string, which
represents this tree as a nested set of leaves followed by a semicolon. It is defined
recursively as follows: Let ni,...,n; be Newick strings without the semicolon,
with corresponding trees 717, ...,T;, then (nq,...,n;); is the Newick string for
the tree obtained by identifying the roots of the trees T1,...,7; and adding a
new root arc; if x is a leaf, the newick string x; represents the tree with the one
leaf x.

Definition 2.13. Let X = {zj,...,2,} be an ordered set of labels. The
caterpillar C(X) is the tree defined by the Newick string

(. .. (l‘l,l‘Q),l‘g) R ’$n);

Definition 2.14. Let X = {x1,..., 74} be an ordered set of 2 labels. The bal-
anced tree B(X) is defined recursively as the tree obtained from B(z1, ..., Ti-1)
and B(%gi-1,1,..., ) by identifying their roots and adding a new root arc.

Up to isomorphism, there is one networks with two leaves, one reticulation,
and no degree-2 nodes. Such a network has the shape of the capital letter A.
Hence, for any such network, we say N ~ N4. These networks will make many
appearances in the chapter about tail moves, as only the space of networks with
two leaves and one reticulations is not connected under tail moves.
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2.2. Directed networks

Hg(T,iE,y) N

12 3 4 5 6 7 1 2 3 4 267 123456

Figure 2.4: A tree T, a handcuffed tree Hs(T,z,y) constructed from T by
adding handcuffs (arcs) between the incoming arcs of z and y, and a ladder
tree N = H3(T,p(6),7) constructed from 7. If 2 were in a cherry with leaf 1
instead of with leaf 3 in all these networks, then T would be a caterpillar, and
N a ladder caterpillar.

Definition 2.15. For any tree T with n leaves, denote with 7" the tree with
n+ 1 leaves constructed from T by attaching the (n+ 1)-th leaf to the root arc,
i.e., subdividing the root arc with a node z and adding the arc (z,n + 1)

Definition 2.16. Let T be a tree and z,y € V(T), then Hy(T,z,y) is the
handcuffed tree constructed from the tree T by subdividing the incoming arcs
of x and y with k degree-2 nodes each, and attaching a new arc (a handcuff)
from the i-th degree-2 nodes on the incoming path of x to the i-th degree-2
node on the incoming path of y for each ¢ = 1,... &k (Figure 2.4).

Definition 2.17. A network has k reticulations at the top if it has the following
structure:

1) the node ¢: the child of the root;
2) nodes a; and b; and an arc (a;, b;) for each i € {1,... k};
3) the arcs (c,a1) and (¢, b1);
)

4) for each i € {1,...,k — 1} there are arcs (a;,a;+1) and (b;, bj+1) or arcs
(ai, bi+1> and (bi, ai+1).

We say the there are k reticulations neatly at the top if they are all directed to
the same arc, i.e. we replace point 4) with

4’) for each i € {1,...,k — 1} there are arcs (a;,a;+1) and (b;, biy1).

Examples are shown in Figure 2.5.
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Figure 2.5: The top parts of two networks with 6 reticulations at the top. On
the right, the reticulations are neatly at the top.

Definition 2.18. A ladder tree is a network with all reticulations neatly at
the top (Figure 2.6). The non-trivial biconnected component of a ladder tree
is called the ladder.

If N € N(n,k) is a ladder tree, then we can obtain a (unique) tree T' from
N by removing all arcs (a;, b;) and suppressing the resulting degree-2 nodes.
Hence, for each network N with all k reticulations neatly at the top, there is a
tree T so that N ~x Hy(T,x,y) or N ~x Hy(T,y,x), where x and y are the
grandchildren of the root of T

Definition 2.19. A ladder caterpillar is one of the following.?
e The one-edge network with one leaf and one root.

e A network with one leaf, one root, and one biconnected component con-
sisting of a path of reticulations k1, . .., k;, a path of tree nodes sq, ..., s;_1,
an edge from s; to k; for all : = 1,...,1 — 1, and the two edges (so, k1)
and (s;—1, k).

e A ladder tree N = Hy(T,x,y) constructed from a caterpillar 7" and the

grandchildren of the root z and y, where y is a leaf.

Lemma 2.20. Letn € Z>1 and k € N. Then there exists a ladder caterpillar
with n leaves and k reticulations, except whenn =%k = 1.

?In [Jan21] a ladder caterpillar was called a ladder network.

30



2.2. Directed networks

QP
W

Figure 2.6: Ladder caterpillars as defined in Definition 2.19. Dashed lines
indicate repeated structure, i.e., an extension of the ladder or an extension of
the caterpillar.

Proof. First note that if n = k = 1, then there is no network with n leaves and
k reticulations. In particular, there is no such ladder caterpillar.

If n =1 and k = 0, then the tree with one leaf is a ladder caterpillar with
n leaves and k reticulations; if £ > 1, then we take the network with one leaf
and one biconnected component consisting of a path of reticulations k1, ..., k;,
a path of tree nodes tg,...,t;_1, an arc from ¢; to k; forall 4 =1,...,1—1, and
the two arcs (to, k1) and (t;-1, k) (Figure 2.6, second network).

Now we may assume n > 1. We build a ladder caterpillar starting from a
caterpillar on n leaves, of which the leaf [ is a child of the top tree node ¢ of
the caterpillar, by repeatedly (k times) adding an arc between the two outgoing
arcs of the top tree node such that the new reticulation is on the arc which used
to be part of (¢,1) in the original caterpillar. This results in a ladder caterpillar
with n leaves and k reticulations, as the number of leaves does not increase in
this process, and the number of retciulations increases by one for each added
arc. O

Lemma 2.21. Let N be a connected network with n leaves and k reticula-
tions, then there exists a ladder caterpillar with the same number of leaves and
reticulations as N.

Proof. Because N is a network, it has at least one leaf. As there is no network

with one leaf and one reticulation, the result follows directly from Lemma 2.20.
O
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2.2.3 Displaying trees and networks

Definition 2.22. Let T be a phylogenetic tree and let Y C X be a subset of
the labels. Then T'|y is the subtree of T' induced by Y'; that is, T'|y is the union
of all (shortest) undirected paths between nodes of Y.

Definition 2.23. Let N = (V, A,l) and N’ = (V', A',I') be two networks with
X’ C X. Suppose there exists an injective mapping of the nodes iy : V! — V
and a mapping of the arcs i4 : A — P(N) to non-empty paths in N such that:

e i4(e) and i4(f) are internal-node disjoint for all e # f,

e and ig((u,v)) has iy (u) as starting point and iy (v) as endpoint for all
(u,v) € E'.

Such a mapping is called an embedding of N’ into IV, and if it exists, we say N
displays N', or that N’ is a subnetwork of N. When it is clear whether a is a
node or an arc, we simply write i(a) instead of iy (a) or i4(a). The union

i(N') = | iala)
acA’

is also called the (image of the) embedding of N’ into N.

The set of embedded trees of a network N is denoted T (N). If there exists
a T € T(N) such that U(T) is a spanning tree of U(V), then N is tree-based
[FS15].

2.3 Undirected networks

In this section we introduce the undirected version of a phylogenetic network.
In most respects, the definitions of undirected networks are analogous to those
of directed networks.

Definition 2.24. An undirected phylogenetic network U = (V, E,l) on a set of
at least 2 taxa X is an undirected, connected, finite, simple graph (V, E) with
two types of nodes:

Leaf Degree-1 node;
Internal node Degree-k node, with k& > 3;

labeled with bijective map [ : L(U) — X, where L(U) denotes the set of leaves
of U. In a subdivided undirected phylogenetic network, a third type of node is
allowed.
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2.3. Undirected networks

Degree-2 node Degree-2 node.
Edges incident to leaves are called leaf edges.

Definition 2.25. An internally labeled (subdivided) undirected network is a
(subdivided) undirected network U = (V, E,l) (U = (V, E,1)) in which the
labeling is a bijective map [ : V — X. The set of labels X can be partitioned
into sets that correspond bijectively to the types of nodes. The set of leaf labels
is X!, the set of internal node labels is X, and the set of degree-2 node labels
is X®.

Definition 2.26. Let U be a subdivided undirected network, then the sup-

pression of U, S(U),“is the multi-graph obtained from U by suppressing all

degree-2 nodes. If S(U) is an undirected network (i.e., if it is a graph without
parallel edges or self-loops), then we say U is suppressable.

Definition 2.27. An undirected network is binary if all internal nodes have
degree three.

Like for directed networks, we will only consider (internally labeled resp.
subdivided) binary undirected phylogenetic networks, so, henceforth, we will
drop phylogenetic and binary whenever we refer to a (internally labeled resp.
subdivided) binary undirected phylogenetic network. For example, we will say
“subdivided undirected network” instead of “subdivided binary undirected phy-
logenetic network”. When it is clear from context that the network is undi-
rected, we will additionally drop the adjective undirected, and simply refer to
it as a (internally labeled resp. subdivided) network.

Definition 2.28. The reticulation number of a (non-binary) network U is |E|—
V| +1.

Observation 2.29. Let U = (V, E,l) be a binary network with n leaves, m
degree-2 nodes, and reticulation number k, then U has 2n 4+ 3k + m — 3 edges
and 2n + 2k + m — 2 vertices, of which n are leaves, n + 2k — 2 are internal
nodes, and m are degree-2 nodes.

Definition 2.30. Two undirected networks are (labeled) isomorphic if they
are (labeled) isomorphic as labeled graphs, and the notation is the same as for
labeled graphs. We say two networks are leaf-isomorphic if they are labeled
isomorphic with respect to their leaf labels X*.
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It U It U/

X xr
xl X5 T xl T4 T

2 3 2 3
L3 X4 L3 X,

Figure 2.7: Two subdivided undirected networks U and U’. The labels of
the leaves and degree-2 nodes are shown in symbols, whereas the labels of
the degree-3 nodes are represented by node shapes. Note that both networks
contain a subdivided triangle, and that the leaf path of leaf 3 contains two
degree-2 nodes in both networks. Furthermore, U ~ >~ xiyxi U’ but the networks
are not isomorphic w.r.t. the full label set X, U and U’ are suppressable, and

S(U) =x S(U").

2.3.1 Substructures

Definition 2.31. Let U be a network and let x,y, z be nodes of U. We write
(x,y,2z) € U, or say x,y, and z form a triangle if there are edges {z,y}, {y, z}
and {z,z} in U.

For a subdivided network U, we will often need to consider substructures
of S(U) and the corresponding parts of U. To simplify the notation in these
cases, we introduce some terms for these structures, where we simply replace
edge (in S(U)) with path (in U) (Figure 2.7).

A leaf path of aleaf z in U is the path that corresponds to the edge incident
to = in S(U).

If S(U) has a pair of parallel edges from x to y, then the corresponding pair
of paths in U are called parallel paths.

Lastly, if S(U) has a triangle (z, v, z), then we say N contains the subdivided
triangle (-x,y, z-) which consists of the paths corresponding to the three arcs

of (z,y,2).

Definition 2.32. A blob of a (subdivided) network U = (V, E, 1), is the network
formed by a biconnected component B of the underlying graph G = (V, E) of
U, together with its incident edges, where each degree-1 node [ is labelled with
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2.3. Undirected networks

the set of leaves of U separated from B by removing the edge incident to [ from
U.

Definition 2.33. The level of a network U is the maximum reticulation number

in a blob of U.

2.3.2 Recurring examples of networks

Definition 2.34. An undirected phylogenetic tree is an undirected phyloge-
netic network with reticulation number 0. Equivalently, it is an undirected
phylogenetic network whose underlying graph is a tree.

Definition 2.35. An undirected caterpillar C,(X) is an undirected phyloge-
netic tree with leaf labels X whose internal vertices are all adjacent to a leaf.
Equivalently, it is the undirected phylogenetic tree on X U {p} obtained by
forgetting the orientation of the arcs in the directed caterpillar C(X).

The following type of network was introduced by Francis et al. [FHMW17].

Definition 2.36. An Echidna network with n leaves and k reticulations is any
network constructed as follows (Figure 2.8). Start with the graph consisting
of the cycle {p1,...,Pntk—1,Tk—1,...,21,p1}; attach the leaves {/;}I' ; to the
cycle with arcs {l;, pj, } such that j; = 1 and j, = n+k—1and j; # jy if i # j;
lastly, add an edge {z;, pj} for each i € {1,...,k — 1} such that the degree of
all nodes becomes either one or three.

U N

P2 Ps

P1 9

| Iy 2

1

Figure 2.8: An Echidna network U and a directed network N such that U(N) =
U.
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2.3.3 Displaying networks

Definition 2.37. Let T be an undirected phylogenetic tree and let Y C X be
a subset of the labels. Then T'|y is the subtree of T induced by Y that is, T'|y
is the union of all (shortest) paths between nodes of Y.

Definition 2.38. Let U = (V, E,l) and U’ = (V', E’,l") be two networks with
X’ C X. Suppose there exists an injective mapping of the nodes iy : V/ — V
and a mapping of the edges igp : E' — P(N) to non-empty paths in N such
that:

e ip(e) and ig(f) are internal-node disjoint for all e # f,

e and ip((u,v)) has iy (u) as starting point and iy (v) as endpoint for all
(u,v) € E'.

Such a mapping is called an embedding of U’ into U, and if it exists, we say U
displays U', or that U’ is a subnetwork of U. The union

iU = izle)
ecE’

is also called the (image of the) embedding of U’ into U.

The set of embedded trees of a network U is denoted 7 (U). If there exists
a T € T(U) such that T is a spanning tree of U, then U is tree-based.

2.4 Rearrangement moves

In this section, we introduce rearrangement moves for phylogenetic networks.
These moves provide a way to slightly modify a phylogenetic networks. We
will define several of these moves, and present a few basic properties of these
moves.

2.4.1 Directed networks

Definition 2.39 (Tail move). Let N be a network containing the distinct arcs
(p,u), (u,c), (u,v), and (p/, ). Let D be the (multi-)digraph obtained from N
by

e pruning (u,v) at u, i.e., replace (p,u) and (u,c) with a new arc (p, ¢);

e and reattach (u,v) at (p/,c), i.e., replace (p/, ') by (p',u) and (u,c).
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2.4. Rearrangement moves

If D is a phylogenetic network (i.e., a DAG without parallel arcs), then we say
D is the result of the tail move of (u,v) from (p,c) to (p/,c') in N, which we
also denote (p,u,c) 2%, (u.) (p',c) or u LN (p/, ) if the from-arc (p,c) is not

relevant. All nodes retain their labels if they were labelled (Figure 2.9).

For simplicity, we also allow moves (p,u,c) ~2% (uv) (p', ) where (p/,c) €
{(p,u), (u,c)}. For these moves the resulting network is per definition equal to
the original network.

RN 7
K\/\/x

Figure 2.9: Two tail moves on the network on the left. The moves result in two
networks that are leaf-isomorphic, but not labeled isomorphic with respect to
the full label set. The labels of the internal nodes are represented by the node
shapes, the labels of the leaves are shown as letters.

The graph G in the definition above is not necessarily a phylogenetic net-
work, as it may be cyclic or contain parallel arcs.

A head move is defined similarly, with the following small change. Instead
of the tail, the head of an arc is pruned and reattached in a head move.

Definition 2.40 (Head move). Let N be a network containing the distinct arcs
(p,v), (v,¢), (u,v), and (p,’). Let D be the (multi-)digraph obtained from N
by

e pruning (u,v) at v, i.e., replace (p,v) and (u,v) with a new arc (p, ¢);
e and reattach (u,v) at (p/,c), i.e., replace (p', ') by (p',v) and (v, ).

If D is a phylogenetic network (i.e., a DAG without parallel arcs), then we say
D is the result of the head move of (u,v) from (p,c) to (p/,c’) in N, which we

also denote (p,v,c) 2%, (uv) (p/,c) or v LCON (p/, ) if the from-arc (p,c) is not
relevant. All nodes retain their labels if they were labelled (Figure 2.9).
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In the arrow notation for rearrangement moves, we always need notation
for the receiving arc. Sometimes, it is convenient to simply define the receiving
arc as the (unique) incoming arc of a tree-node or a degree-2 node, or as the
(unique) outgoing arc of a reticulation or a degree-2 node. In such cases, we
simply replace the other endpoint of this arc with a centered dot, e.g., we write
U M (-, z) for the move that moves the u-endpoint of (u,v) to the incoming
arc of z.

Note that head moves and tail moves cannot change the number of leaves,
tree nodes, or reticulations of a network.

Head moves and tail moves together are called rSPR moves. The term rSPR
was coined as an acronym for “rooted Subtree Prune and Regraft” when used
for phylogenetic trees. Now, it is also used for directed phylogenetic networks,
even though it does not actually prune off a subtree or subnetwork. Note
that each (valid) rSPR move is reversible, as applying (p/,u,c’) & (p,c) after
(p,u,c) & (p', ) results in the original network.

Definition 2.41. An rSPR move of (u,v) from (p,c) to (p/,c) is a distance-d
move, or a ISPRy move, if p’ or ¢ is at distance less than d from p or ¢ in the
graph resulting from pruning (u,v) from (p, c).

Similarly, we have tail; and headg; moves. An rSPR; move is also called an
rNNI move.

Note that a distance-d move cannot necessarily be simulated with a sequence
of d distance-1 moves. The path of length-d defining the distance of the move
might not be a path over which we can move the endpoint (Figure 2.10).

Comparing optimization scores across networks with different reticulation
numbers may be tricky, since a network generally allows a better fit with the
data when its reticulation number is higher. For this reason, it is increasingly
conventional [e.g. in GvIJT17a] to make a distinction between horizontal and
vertical moves.

Moves that do not change the reticulation number are called horizontal
moves; this is to contrast them with moves that change the reticulation num-
ber, which we call vertical moves. Note that all moves discussed above are
horizontal. SNPR moves, however, may be vertical as well: an SNPR mowve
is either a tail move, or a vertical moveof one of two types. A vertical move
can add an arc by subdividing two distinct arcs and attaching a new arc be-
tween the two new nodes, or it can remove an arc and suppresses its endpoints

[BLS17].
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2n+1 n+2 2n+3 2n + 4

Figure 2.10: A distance-5 tail move (x,u,y) M (2',y") that cannot be re-
placed by a sequence of five distance-1 tail moves. The path that determines
the distance of the move (thick arcs) contains arcs that u cannot be moved to,
as they are below the head of the arc (u,v).

Validity of moves

As we want to use rearrangement moves to traverse network space, each move
must result in a phylogenetic network. The definitions of tail moves, head
moves, and rSPR moves enforce that this always happens. In this thesis, we
often propose a sequence of moves by stating: move the tail of arc e to arc
f, then move the head of arc ¢ to f’ and so forth. We then check whether
these moves are wvalid, or allowed; that is, whether applying the steps in their
respective definitions produces a phylogenetic network. A necessary condition
for a rearrangement move to be valid, is that the moving arc is mowvable, which
ensures that pruning the arc does not create parallel arcs.

Definition 2.42. Let (u,v) be an arc in a network N, then (u, v) is tail-movable
if u is a tree node with parent p and other child ¢, and there is no arc (p, ¢) in
N. An arc that is not tail-movable is called tail-immovable.

This is equivalent to saying that an arc with tail u is tail-movable if u is a
tree node and w is not the side of a triangle (p, u, ¢). We give a similar definition
for head moves.
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Definition 2.43. Let (u,v) be an arc in a network N, then (u,v) is head-
movable if v is a reticulation node with other parent p and child ¢, and there is
no arc (p,c) in N. An arc that is not head-movable is called head-immouvable.

When the type of move is clear from context, we will simply use the terms
movable and immovable. Using the concept of movability, we can now succinctly
give sufficient conditions for a move to be valid. Besides movability, we need
additional conditions to make sure that reattaching the arc does not create
parallel arcs, and that the resulting network has no cycles. These correspond
to the second and third conditions in the following lemma.

Lemma 2.44. A tail move u M (s,t) is valid if all of the following hold:

o (u,v) is tail-movable;

.« v At
e v is not above s.

Proof. Because (u,v) is tail-movable, pruning (u, v) at u does not create parallel
arcs. Because v # t, reattaching (u,v) at (s,t) does not create parallel arcs
either. Hence, the resulting digraph N’ of the tail move contains no parallel
arcs.

Now suppose N’ has a cycle. As each path that does not use (u,v) in N’
corresponds to a path in N, the cycle must use (u,v). This means that there
is a path from v to v in N’. Because u is a tree node with parent s, there must
also be a path from v to s in N’. This implies there was also a path from v to
s in N, but this contradicts the third condition: v is not above s. We conclude
that N is a DAG. As all labelled nodes remain unchanged by the tail move,
N’ is a phylogenetic network and the tail move is valid. O

The proof of the corresponding lemma for head moves is completely analo-
gous.

Lemma 2.45. A head move v M (s,t) is valid if all of the following hold:
e (u,v) is head-movable;
o uF#s;
e ¢ is not above u.

We will very frequently use the following corollary of this lemma, which
makes it very easy to check whether some moves are valid.
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2.4. Rearrangement moves

Definition 2.46. Let (u,v) be an arc in a network N. A tail move u LCON
(w, z) is said to move a tail up if z is strictly above w. Similarly, a head move

(u,v)

v (w, z) is said to move a head down up if w is strictly below v.

Corollary 2.47. Let (u,v) be a tail-movable arc, then moving the tail of (u,v)
up is allowed. Similarly, moving the head of a head-movable arc down is allowed.

Note that, despite the previous corollary, movability of an arc a does not
imply that there exists a valid tail move for a: it only ensures that we can
remove the tail without creating a clear violation of the definition of a network;
it does not ensure that we can reattach it anywhere else. A tail can always be
moved to the root arc. However, this may result in an isomorphic network, if|
for example, the tail is the child of the root.

2.4.2 Undirected networks

For undirected networks, the two endpoints of an edge cannot be distinguished
as being a head or a tail. Hence, there are far fewer types of rearrangement
moves on undirected networks. Tail, head, and rSPR moves all have only one
analogue in undirected networks, the SPR move. Similarly, tail;, head;, and
rNNI moves are analogous to the undirected NNI move. Like their directed
counterparts, these moves prune an endpoint of an edge, and reattach it some-
where else so that the resulting graph is a network again.

Definition 2.48. Let U be a network containing the distinct edges {z,u},
{u,y}, {u,v}, and {2/,3'}. Let G be the (multi-)graph obtained from U by

o pruning {u,v} at u, i.e., replace {x,u} and {u,y} with a new edge {z,y};
e and reattach {u,v} at {x,y}, i.e., replace {2/, y'} by {2/, u} and {u,y'}.

If G is a phylogenetic network (i.e., a connected graph without parallel edges or
self-loops), then we say G is the result of the SPR move moving the u-enpoint of
{u, v} from {z,y} to {z’,y'} in U, which we also denote {z,u,y} {“*} {2/, ¢/}
or u M (2',y') if the from-edge is not relevant. All nodes retain their labels
if they were labelled.

Definition 2.49. An SPR move {z,u,y} RN {2/,y'} is an NNI move if
{z,y} n{z",y'} #0.

For the definition of NNI moves on internally labeled networks, we need to
point out that we made a choice in our definition. While moving the label with a
moving endpoint seems natural using the definition of (r)SPR moves. It may be
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o Swap

"/
Move

Figure 2.11: Two definitions for labelled NNI moves. This shows how different
moves resulting in the same unlabelled network may have the same or different
labellings.

less intuitive when one is used to NNI moves interpreted as actual neighbour
interchanges (or swaps): replacing {z,y} and {z,w} with {z,z} and {y,w},
where y and z are neighbours.®> When internal labels are involved, one has to
be careful with this equivalence, because the resulting labelling depends on the
ways the moves are performed. Fortunately, these moves are equivalent, even
when internal labels are introduced, as can be seen in Figure 2.11. However, if
there are degree-2 nodes as well, the neighbour interchange definition is more
flexible: two adjacent degree-2 nodes can be swapped using one move according
to this definition, but not according to our definition as SPR; moves.

The distance of an SPR move is defined similar to the distance of an rSPR
move.

Definition 2.50. An SPR move of {u,v} from {z,y} to {a/,y'} is a distance-d
move, or an SPRy move, if 2’ or ¢/ is at distance less than d from z or y in the
graph resulting from pruning {u, v} from {p,c}.

With this definition, we can equivalently define an NNI move as an SPR,
move.

Definition 2.51. The move {z,u,y} RCON {2’,y'} in a network U is walid (or
allowed) if the resulting graph is a network.

Definition 2.52. Let {u,v} be an edge in a network U, then the u-end of
{u,v} is movable if u is a degree-3 node, and there is no triangle (z,y,u) in U
with v # z,y.

Lemma 2.53. An SPR move u 1%, {s,t} is valid if all of the following hold:

3Gambette et al. have proven the equivalence of the swap definition and the definition
we use for INNI moves [GvIJt17b, Theorem 4].
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o the u-end of {u,v} is movable;
e and v & {s,t}.

If u € {s,t}, then the definition for rSPR moves cannot be applied directly.
However, like for moves in directed networks, we do allow for these moves, and
we simply define them as moves that result in an isomorphic network.

2.5 Network spaces

In this section, we introduce the main structures we will study in this thesis:
the spaces of phylogenetic networks. These spaces will be defined as graphs
where the node sets are sets of networks, and there is an edge between two
networks if there is a rearrangement move turning the one into the other. As
these spaces are graphs, we also introduce several properties of graphs that we
will study for these spaces.

Definition 2.54. Let n be a number of leaves, and k£ > 0 a number of retic-
ulations. The set of all directed networks with n leaves and k reticulations is
denoted N (n, k). The label set X = X! = {z!,... 2!} of all these networks is
arbitrarily fixed.

If, additionally, m is the number of degree-2 nodes, then N (n, k,m) is the set
of internally labeled subdivided directed networks with n leaves, k reticulations,
and m degree-2 nodes. Again, the label sets are fixed arbitrarily for all these
networks to X' = {zf,... 2L}, X" = {af,... 2}, Xt = {af,... 2!, 1},
and X2 = {x§2), e ,:c(mQ)}.

The set of internally labeled networks without degree-2 nodes is simply
denoted N(n, k) = N(n, k, 0).

The sets U(n, k), U(n, k) and U(n, k,m) are defined similarly, but for the
(subdivided internally labeled) sets of undirected networks.

Definition 2.55. The space of phylogenetic networks defined by the directed
rearrangement moves of type M with n leaves and k reticulations, is the graph
N (n, k) whose set of nodes is the set of phylogenetic networks N (n, k) with n
leaves and k reticulations, and there is an edge between two networks if there
is an M-move that transforms the one into the other (Figure 1.3).

The spaces Nz (n, k), Nar(n, k, m) are defined similarly (Figure 2.12). More-
over, if M is an undirected rearrangement move, then we also define the spaces
of undirected networks Uns(n, k), Ups(n, k), and Upr(n, k, m).

The k-th tier [FHMW17, HMW16] of directed network space consists of
all networks with k reticulations. As the number of leaves or reticulations
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Figure 2.12: A part of Mail(& 1), corresponding to all labelings of two neigh-
bours in Mii(3,1). Note that the connectedness of this subgraph together
with the connectedness of Ni,i1(3, 1) implies the connectedness of Mail(& 1), as
it shows that all permutations of the internal labels can be achieved using tail
moves.
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2.5. Network spaces

cannot be changed by a rearrangement move, we say the k-th tier is connected
by a (directed) move type M if all Njs(n, k) are connected, and the space of
phylogenetic networks is connected by a move type M if Nys(n, k) is connected
for all n, k > 0.

Note that spaces that take the shape of a connected graph come with a
metric: the distance between two nodes. Hence, a natural follow up question
is to ask about the distances between pairs of networks.

Definition 2.56. Let N and N’ be phylogenetic networks with the same leaf
set in the same tier. We denote by dy;(N, N') the distance between phylogenetic
networks N and N’ using rearrangement moves of type M. That is, dj; (N, N')
is the minimum number of M-moves needed to change N into N'.

Definition 2.57. Let £ € N be the number of reticulations, n € Zx>3 be
the number of leaves and M a type of rearrangement move. We denote with
diamyy(n, k) := diam(Ns(n, k)) (or diam(Ups(n, k)) for undirected networks)
the diameter of tier-k of phylogenetic network space with n leaves using moves
of type M.

Similarly, we define diam s (n, k, 0) = diam(Nys(n, k)) and diamys (n, k, m) =
diam(Nas(n, k,m)), where we use U instead of N if M is an undirected move.

This leads to the computational problems M DISTANCE, where M has to
be replaced with a specific move type. The input to this problem consists
of two directed or undirected networks N, N’, and the output is the distance
dy (N, N"). For example, for rSPR we have the following problem.

RSPR DISTANCE
Input: Two directed networks N and N'.
Output: The distance d,spr(N, N').

As we will see in Chapter 7, it will be more interesting for some move types
to restrict the input to networks from a fixed tier. Hence, for each move type
M and tier k, we have the problem M DISTANCE TIER-k.

Note that M DisTANCE TIER-0 is simply the problem of computing rear-
rangement distances between pairs of trees. We also write M DISTANCE TREES
for these problems. Note that M DISTANCE TREES is NP-hard for M equal to
SPR [HDRCBOg|, rSPR. [BS05], NNI [JLTZ00], and rNNI.4

Definition 2.58. If each move of a type M is also of type M’, then we write
M C M.

*Follows very easily from [JLTZ00] and Lemma 2.64, but it is unclear whether this lemma
was known (See Section 2.5.1).
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The following diagram shows some inclusions of move types that follow
immediately from the definitions.

tail
&
tail Q@
1 \C N
c rNNI C rSPR
head; g/\ C
head

The next observation will be useful for obtaining bounds for the diameters
of tail, head, and rSPR moves, and their local counterparts.

Observation 2.59. Let N and N’ be networks with the same number of

leaves, reticulations, and degree-2 nodes, and let M C M’, then dj;(N,N') >
dy (N, N').

This observation together with the diagram above gives the trivial bounds

for diameters of spaces and distances between two networks for different types
of moves shown in the following two diagrams.

dtail(Na Nl)
dtaill (N7 N/)

dinni(NV, N') < digpr(N, N')

dheadl (N7 NI)

A AN A
WA

dhead(Na N,)

diamyag (n, k)

N

diamyai, (n, k)

/

diam,nni(n, k) diam,gpg (1, k)

N\
\N A A

diamypead, (1, k)

In

diampeaq(n, k)



2.5. Network spaces

2.5.1 Tree space diameter bounds

Diameters of tree spaces are well studied. Tree spaces can simply be viewed as
the 0-th tier of network spaces, and the question of diameter bounds naturally
extends to higher tiers. In this thesis, we mainly investigate this question, and
we extend the diameter bounds to higher tiers of network space.

To establish and discuss these bounds, we compare them to diameter bounds
for tree spaces. A few of these are the following.

Theorem 2.60 ([DGH11| Corollary 3.5). Let n > 1 be a number of leaves,
then the space of trees with n leaves under rSPR moves has diameter of order
diam,spr(n,0) = n — O(y/n), and, in particular, diam,gpg(n,0) < n.

Theorem 2.61 (|[DGH11| Theorem 1.1). Let n > 2 be a number of leaves, then
the space of undirected trees with n leaves under SPR has diameter bounded by

—2[y/n] +1 < diamgpr(n,0) <n —3 — L@J.

Theorem 2.62 (|[LTZ96| Lemmas 1 and 2). Let n > 2 be a number of leaves,
then the space of undirected trees with n leaves under NNI has diameter bounded

by "2 log (2f( 2)) < diamnni(n, 0) < nlog(n) + 2n.

The proof of this theorem follows from the following proposition, which
bounds the distance between undirected caterpillars. Note that the intermedi-
ate networks are not necessarily caterpillars as well.

Proposition 2.63 ([LTZ96] Lemma 2). Let C' and C’ be two undirected cater-
pillars with n > 2 leaves, then dnni(C,C") < nlog(n).

The diameter of tree space for rNNI moves is rarely mentioned explicitly. Tt
is unclear why this is so, but it may be because it is rather trivial to show that
the spaces Unni(n + 1) and Ninni(n,0) are isomorphic. This can be shown
by simply noting that the vertex sets can be mapped bijectively by rooting
each undirected tree at the (n + 1)-th leaf, and that each NNI move can be
simulated with an rNNI move in the corresponding directed tree (Figure 2.13).
Furthermore, this result easily extends to internally labeled trees.

Lemma 2.64. Let T,T" € N (n,0,0), then doni(T,T") = 1 if and only if
dnni(U(T),U(T")) = 1.

Proof. The direction from rNNI to NNI is trivial, as each rNNI move on the
rooted trees is an NNI move un their undirected version.

For the other direction, let the NNI move from U(T) to U(T) be the one
that moves the u-end of {u, v} from {x,y} to {y, z}. First suppose that, in T,
the corresponding moving arc is (u,v). In that case, 7" can be reached with
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Figure 2.13: An illustration of the proof of Lemma 2.64. The NNI move on the
undirected tree (left panel) can be replaced by the corresponding rNNT move if
{u,v} is directed as (u,v) (middle panel), and by the rNNI move y (), (u, )

if it is directed as (v,u) (right panel).

the rNNI move (u,v) from the directed version of {z,y} to the directed version
of {y, z}.

Now suppose that the directed version of {u,v} is directed as (v,u) in T'.
In that case, the move cannot be performed as before, but we can still reach
T with one rNNI move. To see this, note that x and y are the children of u,
and z is a child of y. Let w # z be the other child of y, then 7" can be reached
from T with the rNNT move (y,w) from (u, z) to (u,z) (Figure 2.13). O

The following propositions follow immediately.

Proposition 2.65. Let C,C’ € N(n, k) be two directed caterpillars with n > 2
leaves, then dinni(C,C") < (n+1)log(n + 1).

Proposition 2.66. For all n > 0, the rNNI and NNI tree spaces are isomor-
phic, i.e., Ninn1(n, 0) >~ Unni(n + 1,0) and Ninni(n, 0,0) =~ Unni(n + 1,0,0).

Compare this with the following result from Atking and McDiarmid’s about
rSPR and SPR moves, which results from the fact that an SPR move can reroot
a rooted tree, but that achieving the same rearrangement without re-orienting
arcs is less efficient.

Lemma 2.67 ([AM19], Example 2.3). For each n > 0, there are T,T' €
N(n —1,0) such that dispr(T,T") > (n — 3)/2 but dspr(U(T),U(T")) = 1.
The caterpillars T = C(1,2,...,n—1) and T' = C(n —1,...,2,1) suffice.

In their paper, Atkins and McDiarmid do not mention that this result does
not hold for rNNI and NNI moves. Similarly, there is a related remark in
the review article [SJ17], where they state that “SPR can differ depending on
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whether the underlying trees are rooted or not”, which is also written in [Stel6].
However, neither of these works relate this to NNI and rNNI moves. It is unclear
whether this is because they deem the result trivial or well-known, or because
they are not aware of the result at all. Whidden and Matsen do mention this
fact for NNT and rNNT moves, but they also do so without proof [WMI18].

2.6 Orienting networks

Although directed and undirected networks are fundamentally different, as one
is directed, and the other is not, there is a strong connection between the two.
In this section, we will focus on this connection.

The underlying undirected graph of a directed network N € N(n,k) is a
{1,3}-graph with at least two degree-1 nodes (the root and a leaf). Hence,
forgetting the direction of each arc and labeling the root with the label xﬁH_l,
we get an undirected network U € U(n + 1,k). This unique network, the
underlying undirected network of N, is denoted U(N). Similarly, for a network
N € N(n,k,m), the underlying undirected network U(N) is an undirected
network in U (n + 1, k, m).

An undirected network U is called orientable if there exists a directed net-
work N such that U(N) = U. Note that this definition differs slightly from the
definition in [HvIJ*19], where the root has degree two and, to get such a node
in an undirected network, an edge is subdivided.

Not all undirected networks are orientable. For example, consider the net-
work shown in Figure 2.14. Indeed, in any orientation of this graph, one of the
arcs adjacent to a subdivided copy of K4 must be directed towards that copy
of K4. As there is no degree-1 vertex in that part of the graph, any orientation
will have a cycle there.

r Yy z

Figure 2.14: An undirected network that is not orientable.

49



2. PRELIMINARIES

Orientable networks can easily be recognized by looking at the blobs of
the network. Two blobs are necessarily separated by an edge, whose removal
disconnects the network. Any edge of an undirected network whose removal
disconnects the network is called a cut-edge. If only one of the components
resulting from the removal of an edge contains leaves, this edge is called a
redundant cut-edge. The next lemma characterizes orientable networks via re-
dundant cut-edges.

Lemma 2.68 ([JJET18|). An undirected network is orientable if and only if it
has no redundant cut-edges.

Proof. First let U be an undirected network with no redundant cut-edges. To
show that U is orientable, we pick any leaf p of U and show how to construct
a directed network with U as underlying graph and p as root. First, orient all
cut-edges “away” from p. Then, it only remains to find a valid orientation of
every blob. To this end, let B be a blob. After orienting all cut-edges, B has
only one incoming edge (s,t) and, as (s,t) is not redundant, B has at least one
outgoing edge (z,y). Since B is biconnected, there is a bipolar (i.e. acyclic)
orientation of B with ¢ as source and x as sink [LEC67|. Doing the same for
all biconnected components, we get an acyclic orientation of U rooted at p.
Conversely, suppose that U has a redundant cut-edge e. Deleting e creates
a component C without leaves. If we direct e towards C, then C has one source
and no possible sinks (no leaves). If we direct e away from C then C has one
sink but no possible sources (since the root is also a leaf). This implies there
is no valid orientation of the edges in C' and therefore in U. O

A redundant terminal blob of an undirected network U is a blob that is
incident to exactly one cut-edge (which must be a redundant cut-edge). The
next lemma, which follows directly from Lemma 2.68, characterizes orientable
networks via redundant terminal blobs.

Lemma 2.69 ([JJE118]). An undirected network is orientable with any arbi-
trary leaf as the root if and only if it has no redundant terminal blobs.

Given an orientable network, one can attempt to find an orientation (as
directed network) of this network with a given leaf as the root. This problem
has been studied extensively for the first time by Huber et al. ([HvIJT19]).
However, related results can already be found in Atallah’s paper in 1983, where
orientations with the fewest number of sinks are considered [Ata83].

An algorithm for this problem based on the proof of Lemma 2.68 would
work as follows. Choose an arbitrary leaf of the network as the root and orient
all cut-edges away from this root. To orient the internal edges of the blobs, let
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s be the head of the incoming edge of the blob and ¢ the tail of an arbitrary
other leaf-edge of the blob. Removing all cut-edges of the blob, we obtain a
biconnected graph, which can be st-oriented [LEC67]. Doing this for all blobs,
we obtain an orientation of the network.

Finding the st-orientation can be done in polynomial with a simple algo-
rithm [LEC67]. If the running time is deemed more important, it can also be
done in linear time [ET76|. Algorithms for this problem are still an active field
of research (e.g., [SS19]).

Lemma 2.70 ([JJET18]). Fach Echidna network is orientable.

Proof. Let U be an arbitrary Echidna network. Then U consists of a cycle,
leaf-edges, and edges between nodes of the cycle. As all edges are adjacent
to the cycle, the network consists of one blob. This blob is not a redundant
terminal blob, because all leaves are adjacent to this blob. Hence, the U has
no redundant terminal blobs, and it is orientable by Lemma 2.69. O
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In this chapter, we study spaces of networks under tail moves. Tail moves
are one of the natural extentions of rSPR moves from trees to networks, and
are thus a logical choice in local search heuristics. Hence, it is important to
know whether these moves are actually suited for this purpose. The most
fundamental question in this assessment is whether the spaces are connected
by tail moves. Establishing this connectedness result will be the main focus of
this chapter.

To study the connectedness of the tiers of tail move spaces, we first focus on
networks where only the leaves are labeled. Using a bottom-up approach, where
we inductively build an isomorphism between two networks changing only the
upper part, we show that there exists a sequence of tail moves between any pair
of networks with the same number of leaves and reticulations (excepting one
bad case; Section 3.2.1). This implies that the spaces Niaq1(n, k) are connected
for all n > 1 and k& > 0, except when n = 2 and k = 1 (Theorem 3.8). This
result still holds when we consider local moves, i.e., M, (n, k) is connected for
all (n,k) # (2,1) as well (Theorem 3.10). This is proven by showing that each
tail move can be replaced by a sequence of local tail moves (Lemma 3.9).

Next, we extend these results to spaces with internally labeled nodes, and
then also to networks with degree-2 nodes. For the first extension, we sim-
ply show that the tree nodes and the reticulations can be permuted (Proposi-
tions 3.19 and 3.22). Adding the degree-2 nodes to this result is quite simple:
we show degree-2 nodes can, in most cases, be collected on the root path where
they can be permutated (Section 3.3.2). This cannot be done in all cases, how-
ever, as the degree-2 nodes can be ‘stuck’ on some lowest arcs. We completely
characterize the connected components of the spaces Niaii(n, k, m) that include
degree-2 nodes.

All these connectedness proofs are constructive. Hence, by analysing these
constructions carefully, we also obtain upper bounds on the diameters of the
tiers of tail and taily move spaces. In Chapter 7, the basic construction for
leaf-labeled networks will be made explicit in the form of an algorithm, which
finds a sequence of moves between any pair of networks in the same tier. We
do not prove lower bounds in general, except for leaf-labeled networks in Sub-
section 3.2.3. There, we prove a lower bound based on the lower bound for
trees.

In this chapter, each move is a tail move and movability always refers to
tail-movability unless stated otherwise. We start with a short section discussing
some basic results about tail-movability.

o4



3.1. Tail movability

3.1 Tail movability

In this section, we relate movability of an arc to the existence of triangles, and
we show that most arcs can be made movable by destroying a triangle. Recall
that an arc (u,v) is movable iff u is a tree node and there is no triangle (x, u, y)
with y # v.

Lemma 3.1 ([JJET18] Observation 2.9). Suppose N has a triangle (x,u,y); €
N and an arc (u,v), then all arcs in (x,u,y): are movable, but (u,v) is not.
After moving (x,y) up, the arc (u,v) is movable.

Proof. First we check movability of the arcs of (z,wu,y). The arc (x,u) is mov-
able because there is no triangle (¢, z,b) with b # u for any ¢,b € V(N). Such a
triangle would necessarily have b = y, and ¢ would then have to be the common
parent of x and y, which doesn’t exist. Similarly, the arc (x,y) is movable be-
cause there is no triangle (¢, x,b) with b # y for any t,b € V(N). Lastly, (u,y) is
movable, because there is no triangle (z, u,b) with b # y for any b € V(N). O

Recall that moving (z,y) up is allowed iff z is not the child of the root and
(x,y) is tail-movable. Using this, we can make most arcs movable using at most
one move to destroy a triangle.

z z
T
w w
:IZK
U U
Yy Yy
v v

Figure 3.1: The immovable arc (u,v) whose tail u is a tree node can be made
movable by moving the long arc of the triangle (z,u,y) up.

Lemma 3.2 ([JJET18] Observation 2.9). Let u be a tree node, and (u,v) an
immovable arc because of the presence of (x,u,y) in N. If x is not the child of
the root, then (u,v) can be made movable by moving (x,y) up to an arc (z,w)
above x. Furthermore, we may choose w to be the parent of x.

Proof. As (u,v) is immovable and u is a tree node, the triangle (x, u, y) must be
in N (Figure 3.1). As (z,y) is an arc in a triangle, it is movable by Lemma 3.1.
If  is not the child of the root, there is an arc (z,w) with w # x above z—in
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particular, we can choose w to be the parent of x. By Corollary 2.47, we can
move (x,y) to (z,w). After this move, the parents of y are v and z, but the
parent of u is not equal to x. Hence, the arc (u,v) is now movable. O

The following lemma will play an important role in the arguments presented
in the next chapter, by making it easy to show there is a movable arc where we
need one.

Lemma 3.3 ([JJET18]| Observation 2.10). Let u be a tree node, then at least
one of its child arcs 1s mowvable.

Proof. Let x be the parent of u, and let y and v be the children of u. Note that
the network includes at most one of the triangles (x,u,y) and (z,u,v). If it
does not include (z,u,y), then (u,v) is movable; if it does not include (x, u, v),
then (u,y) is movable. O

The following lemma will be used in this chapter to find a tail that can be
moved down “sufficiently far”. This will be used mainly to make an incoming
arc of a low node movable.

Lemma 3.4 ([JJET18] Lemma 2.12). Let x,y be nodes of a phylogenetic nel-

work N such that x,y ¢ LCA(z,y). Then for any LCA u of x and y, one of
the child arcs of u is a movable arc that is not both above x and above y.

Proof. Consider an arbitrary u € LCA(z,y). This LCA is a tree node, and
both child arcs are above either z or y, but not both. Because at least one of
the child arcs of a tree node is movable by Lemma 3.3, at least one of the child
arcs of the LCA has the desired properties. O

3.2 Connectedness and diameter bounds

In this section, we study bounds for the diameters of tail move spaces, i.e., the
maximum value of drai(N1, N2) and drair, (N1, N2) over all possible networks
N7 and Ny with the same reticulation number.

3.2.1 Bottom-up isomorphism

To obtain our diameter bound, we incrementally build an isomorphism between
any given pair of networks. We keep an isomorphism between two down-closed
sets, one in each of the networks." To start, we let the down-closed sets consist

'The down-closed sets were initially thought of as parts of the networks below a certain
line, which we drew in green. Hence, in our discussions, we called this technique the “green
line approach”. This name still pops up in discussions and source files related to this proof.
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3.2. Connectedness and diameter bounds

of only the leaves. Then, in each step, we add one node to each of the down-
closed sets, while keeping them labeled isomorphic. To achieve this, we may
need to change the networks. Of course, these changes are made using tail
moves, and we aim to use as few tail moves for each step as possible.

Lemma 3.5 ([JJET18] Lemma 4.6 Case 1). Let N1, No € N(n,k) such that
Ny % Ny, and let Y1 O L(Ny) and Yo O L(N2) be down-closed sets of nodes

of N1 and Ny such that N1[Y1] ix Ns[Y3]. Suppose there is a lowest node usg
in No \ Ya such that ug is a reticulation. Then there is a network N with a
down-closed set Y{ such that Ni[Y{] ~x Na[Ya U {u2}| and dian(N1, Nj) < 3.

Proof. We first observe that ¢ maps reticulations (tree nodes) of Ny to reticu-
lations (tree nodes) of Na. Indeed, every node in Np[Y;] is mapped to a node
in Na[Ys] of the same outdegree, and the tree nodes are exactly those with
outdegree 2. It follows that Y7 and Y5 contain the same number of reticulations
and the same number of tree nodes. As N; and Ny have the same number of
nodes and reticulations by Observation 2.7, it also follows that V/(N7) \ Y1 and
V(N2) \ Yz contain the same number of reticulations and the same number of
tree nodes.

Let 9 be the single child of us. Then x5 is in Y3, and therefore there exists
a node x1 = ¢ '(x2) € Y. Furthermore, z; has the same number of parents
in N1 as xg does in Ny (because the networks are binary and z; has the same
number of children in Ny as x3 does in Na by the isomorphism between Ni[Y7]
and N3[Y3]), and the same number of parents in Y7 as x2 has in Ya. Thus z;
has at least one parent z; such that z; is not in Y7.

We now split into two cases:

1. z; is a reticulation: In this case, set N7 = N; and let Y] be the down-
closed set Y1 U {z1} in N{. We may then extend ¢ to an isomorphism
between Nj[Y{] and Na[Ya U {ua}] by setting ¢(z1) = ug (see Figure 3.2).
As N1 = Ni, we have di(Ny, Nj) =0 < 3.

2. z1 is not a reticulation: then z; cannot be the root of Ni. Indeed,
this would imply [Ny \ Yi| = |N2 \ Y2| = 1, and ug would be the root
of No. This contradicts the fact that us is a reticulation, so z; must be
a tree node. It follows that the arc (z1, 1) is movable, unless there is a
triangle (c1, z1,dy) € N with d; # 1.

a) (z1,x1) is movable: In this case, let u; be any reticulation in
N\ Y7 —such a node must exist, as ug exists and Ny \ Y7 has the
same number of reticulations as Ny \ Y2. Let v; be the child of uy
and observe that the arc (ui,v1) is not below z; (as x1 € Y] and
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Ny N, N Ny

NAY / Ny \ Yy /
N\ Y 21 No\ Vs U Yy 21 Y; U
Y 1 Y, ) 1 L2

Figure 3.2: Proof of Lemma 3.5, Case 1: If uy is a lowest reticulation in Na '\ Y2
with child 29, and the node 71 = ¢~!(z2) € Y7 has a reticulation parent z1 in
Ny \ Y1, then we may add z; to Y7 and us to Y2 to obtain Y] and Yj. The
networks weren’t changed, to N{ = N1 and Nj = Na.

o8

up ¢ Y1). If v1 = z1, then uy is a reticulation parent of x1 that is
not in Y7, and by substituting u; for z1, we have case 1. Hence, we
may assume vy # x1. Then it follows from Lemma 2.44 that the
tail move z; L, (g, vy) resulting in My is valid (see Figure 3.3).
Thus, M contains the arcs (u1, 21), (21,v1), (21,21). Note that if z;
is immediately below u; in Ny (i.e., 21 = v1) then in fact M; = Nj.
In this case, we may skip the move from N; to Mj, and in what

follows replace v1 by the other child of zy.

Note that (z1,v1) is movable in M, since the parent u; of z is a
reticulation node, and therefore deleting (21, v1) and suppressing z;
cannot create parallel arcs. Let w; be one of the parents of uy in
M. Then the tail move 21 M (w1, u1) resulting in M7 is valid
(see Figure 3.3). Indeed, u; # v; and (wi,u;) is not below vy, as
this would imply a cycle in Mj.

In M7, the reticulation w; is the parent of z; (as z; was moved), so
Case 1 applies to M{ and Na.

Set N7 = M{ and let Y] be the down-closed set Y3 U {u;} in Nj.
We may then extend ¢ to an isomorphism between Ni[Y{] and
No[Ys U {ug}] by setting ¢(u1) = ug. By construction, we have
drait (N1, N7) <2 < 3.

There is a triangle (c1,21,d1) € N1 with di # x1: As ¢; has
outdegree 2 it is not the root of Ny, so let b; denote the parent of
C1.
i. by is not the root of IN1: In this case, let a1 be a parent of by
in N1. By Lemma 3.2, the tail move ¢; Levd), (a1,by) is valid,
and (z1,21) is movable in the resulting network Mj.
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N1 Ml

w1 w1

th 21 . 21
Ni\Y1 | Mi\Yy |
n lxl n \zm

Figure 3.3: Proof of Lemma 3.5, Case 2a: If (z1,x;) is movable, the tail move

(z1,21)
e

of 21 (u1,v1) resulting in M is valid. In M, the parent z; of z is

the child of uq; so after the tail move 21 m (w1, u1), the reticulation uy

becomes a parent of x.

Now Case 2a (which uses at most 2 moves) applies to M; and
Ny. It follows that there is a network N{ with down-closed
set Y{ such that N{[Y]] =~ Nao[Ya U {u2}] and d(N1,N{) < 1+
d(My,N{) <142=3.

ii. by is the root of Nyp: In this case, we observe that d; € Y
implies that every reticulation in Nj is in Y;. This contradicts
the fact that N7 \ Y7 and Ny \ Y2 contain the same number of
reticulations, so we may assume that d; ¢ Yj. Then, we may
proceed as follows. Let N be the network derived from Y by

the head-move d; M (z1,21). We show that it is possible
to replace this head move with a sequence of three tail moves.

Let e; be the child of di in N;. We note that if e; is a retic-
ulation, then one of the parents of e; is a descendant of z;
(otherwise z1, b1, or ¢; would have to be a parent of ey, which
is not the case). Thus, if e; is a reticulation, then it is a de-
scendant of x1. By a similar argument, if 1 is a reticulation,
then it is a descendant of e;. Hence, either 1 = e; and we can
immediately extend the isomorphism by setting ¢(d1) = usg, or
we may assume that one of e; and x7 is not a reticulation, and
that, furthermore, at least one of e; and z; is a tree node. In-
deed, if both are leaves, then N1 >~ Ny; and, if one of e; and x
is a reticulation, then the other must be its ancestor, and must
therefore be a tree node.

Our approach in this case will be to “swap” the positions of e;
and 1 via a sequence of tail moves. First, assume that z is
a tree node. If ey is a child of z; and ¢; is the other child,
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3. TaiL MOVES

we apply the tail move x; M (d1,e1). Otherwise, let the

children of x; be s; and ¢;. As e; & {s1,%1} we may apply the
sequence of tail moves w1 M) (di,e1), x1 (ml—el)> (z1,t1),
1 M) (d1,s1) (Figure 3.4). In both cases, the resulting
network is isomorphic to the network N7 resulting from the head
move d M (z1,21). The case that e; is a tree node can be
handled in a similar manner.

Observe that, in Nj, z; has a non-reticulate parent in Nj \ Y7,
and that Nj[Y1] L Ni[Y1]. Hence, Case 1 applies to Ny
and Na, so there exists a down-closed set Y/ in Nj such that
N{[Y{] ~x N2[Y2 U {uz}]. Finally, by construction, we have

diait (N1, N7) < 3. O
N by by by N{ by
C1 C1 C1 C1
21, 21, 214 N{ \ }/1/ 21,
Ni\Y, ! d dy Y/ d

AW A R
tl S1 €1 tl €1 vS1 €1, tl S1 €1, tl S1

Figure 3.4: Proof of Lemma 3.5, Case 2(b)ii: Note that the sequence of tail

moves depicted results in the same network as the head move d; M) (21, 1).

After this sequence of moves, x1 has a reticulation parent.

Lemma 3.6 ([JJET18] Lemma 4.6 Case 3). Let N1, No € N(n,k) such that
Ny % Ny, and let Y1 O L(Ny) and Yo 2 L(N2) be down-closed sets of nodes

of N1 and Ny such that N;p[Y1] iX NslYs]. Suppose that each lowest node in
Ny \ Yo, and each lowest node in N1\ Y1 is a tree node, and let uay be such a

lowest node in Na \ Ya. Then there is a network N{ with a down-closed set Y{
such that N{[Y]] ~x Na[Yo U{u2}]| and dian(N7, N1) < 2.

Proof. Let x5 and yo be the children of us. As xa9,ys € Ys, there exist nodes
r1 = ¢ H(x2) and y; = ¢ (y2) in Y7. Furthermore, 1 has the same number
of parents in N7 as o does in N9, and the same number of parents in Y7 as xo
has in Y5 (again, because the networks are binary and x1 has the same number
of children in N; as xy does in Ny by the isomorphism between Nj[Y7] and
N3[Y3]). Thus, 21 has at least one parent not in Y;. Similarly, y; has at least
one parent not in Y;. We now split into two cases.
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3.2. Connectedness and diameter bounds

1. 1 and y; have a common parent u; in Ny \ Y1: In this case, set
N = Nj and let Y{ be the down-closed set Y3 U{u1} in N{. We may then
extend ¢ to an isomorphism between Nj[Y{] and Na[Y2 U {u2}] by setting
o(u1) = ug (see Figure 3.5). As Ny = N, we have diai(N1, N7) =0 < 2.

N1 N2 Nl/ NQI

N\ Y/ Ny \ Yy
2 Yl’ Uy y2/ U9

voanllt o vl
Y 3:1J \yl Y, le \yQ T U1 T2 Y2

Figure 3.5: Proof of Lemma 3.6, Case 1: If uy is a lowest reticulation in Na '\ Y2
with children x9, %9, and the nodes x1,y; € Y1 corresponding to xs, 32 share a
reticulation parent w; in N7 \ Y7, then we may add uy to Y7 and ug to Ys.

2. 1 and y; do not have a common parent in N7 \ Yi: In this case,
let 2§ be a parent of z; not in Y, and let 2! be a parent of y; not in
Y1. Recall that 2§ and 2} are both tree nodes. Moreover, either one of
(2F,21), (2], 91) is movable, or neither (2§, 1) nor (z{,y1) is movable.

a) (2¥,x1) is movable: In this case, observe that the arc (z{,v1) is
not below z1 (as x1 € Yy and 2} ¢ Y), and that z; # y1. Then, by

Lemma 2.44, the tail move 2§ (=fe1) (27, y1) is valid.
Let N be the network derived from N; by applying this tail move

(see Figure 3.6) and set Y{ = Y; U{z7}. Then, as 27 is a common
parent of x1 and y; in Ni and N{[Y1] ~ Ni[Y1], we have N{[Y]] Ly

Ny [Ys]. Additionally, we have dia (N7, N1) =1 < 2.

Ny Nl’
1
27 K
Ni\Y; . Ni\Y]
!
h $1J le. Yl T1d Y1

Figure 3.6: Proof of Lemma 3.6, Case 2a: If (27, z1) is movable, we may move
the tail of (27,z1) to (27,y1) so that z1 and y; share the parent z{ in the
resulting network.

61
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b) (z¥,y1) is movable: This case can be handled by exchanging the
roles of x1 and y; and applying Case 2a.

c) Neither (zF,z1) nor (z¥,y1) is movable: In this case, there
must exist nodes df, ¢f,dY, and ¢! such that (c},z},d}) € Ny, and
(c¥,2Y,dY) € N1. Moreover, as z{ and z{ are different nodes with one
parent each, we have ¢} # ¢! and it follows that one of ¢}, ¢{ is not
the child of the root of Ny. Suppose without loss of generality that
cf is not the child of the root. Then, (27, x;) can be made movable

by the upwards tail move ¢ @) (a7,b7), where b is the parent

of ¢f and af is a parent of b7 (Lemma 3.2). In the resulting network
M, (2f,21) is movable, so Case 2a applies to M; and No.

It follows that there is a network N{ with down-closed set Y{ such
that N{[Yll] ~ NQ[Yé U {UQ}] and dtaﬂ(N{,Nl) S dtail(leMl) +
dait (M1, N7) < 2. O

Lemma 3.7 ([JJET18] Lemma 4.6). Let N1, Ny € N(n, k) such that Ny % Nga,
and let Y1 O L(Ny) and Yo O L(N2) be down-closed sets of nodes of N1 and

Ny such that N1[Y1] ﬁX No[Ys]. Suppose N1\ Y1 contains t tree nodes and r
reticulations of N1, then dra(N1, No) < 3r + 2t.

Proof. We prove the claim by induction on ¢ and r. First we consider the base
case where t = r = 0, i.e., [Ny \ V7| < 1. If [Ny \ V1| = 0, then N} = N[Y1],
which is isomorphic to Na[Y2] = Na, and so dg (N1, No) =0=3-0+2-0. If
N1\ Yi| =1, then, as Y7 is down-closed, N \ Y7 consists of p;, the root of Ny,
and by a similar argument Ny \ Y3 consists of pa. Let 21 be the only child of p;
and x9 the only child of ps. Because x1 (resp. x2) is the only node of indegree
0, outdegree 2 in Ni[Y7] (resp. N[Y3]), it follows that ¢(x1) = x9. Thus, we
can extend ¢ to an isomorphism between Nj and Ny by setting ¢(p1) = po.
Again, this implies that da(N1, N2) =0<3-0+2-0.

Now, we may assume that |N; \ Yi| > 1, so the sets of lowest nodes of
N1\ Y1 and Ny \ Ys are non-empty. As L(IN7) C Y1, each node in these sets is
either a tree node or a reticulation. We consider three cases depending on the
composition of these sets.

1. There exists a lowest node uz of N3\ Yz such that us is a reticu-
lation. By Lemma 3.5, there exists a network network N{ with a down-
closed set Y{ such that N{[Y]] ~x Na[YaU{ua}] and dian (N7, N1) < 3. We
now decompose the distance diaq (N1, Na) < diait (N1, N7) + diain (N7, Na).
As Yo U {ug} contains one more reticulation than Ys, so does Y{ con-
tain one more reticulation than Y;. Hence, by induction dia; (N7, Na2) <
3(r—1)+2t, and it follows that dii (N1, Na) < 3+3(r—1)+2t = 3r+2¢.
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2. There exists a lowest node u; of N; \ Y7 such that u; is a retic-
ulation. By symmetric arguments to Case 1—exchanging the roles of
N7 and No—we have that there is a sequence of at most 3r + 2¢ tail
moves turning Ny into Ny. As all tail moves are reversible, there is also
a sequence of at most 3r + 2t tail moves turning Ny into No.

3. No lowest node of N1\Y3 nor any lowest node of N3\Y3 is a retic-
ulation. By Lemma 3.6, there exists a network network N{ with a down-
closed set Y{ such that N{[Y]] ~x Na[YoU{uz}] and dian (N7, N1) < 2. We
now decompose the distance diai (N1, Na) < diait (N1, N7) + deait (N1, N2).
As YoU{uz} contains one more tree node than Ya, so does Y1/ contain one
more tree node than Y;. Hence, by induction dia; (N7, No) < 3r+2(t—1),
and it follows that di.y (N1, No) <24 3r+2(t — 1) = 3r + 2t. O

For all (n,k) # (2,1), we get the following bound on the distance between
any two directed networks in the same tier by setting Y7 = L(Np) and Yy =
L(N3) and noting that a network in N (n, k) has n + k — 1 tree nodes and k
reticulations (Observation 2.7)

This leaves the space Niai1(2, 1), which contains exactly two networks. Both
consist of a triangle (a, b, ¢)y where ¢ is the child of the root, and the child x of
¢ and the child y # ¢ of b are leaves. The two networks are found by swapping
the labels of the leaves. By checking all possible moves, it is easy to see that
there is no move that transforms the one into the other. Hence, combining all
of the above, we obtain the following theorem.

Theorem 3.8 ([JJE118] Theorem 4.7). Let n € Z>1 and k € N such that
(n,k) # (2,1), then diamgy(n, k) < 2n + 5k — 2. The space Niain(2,1) is
disconnected.

As rSPR moves consist of head moves and tail moves, Theorem 3.8 also
provides an upper bound for the number of rSPR moves needed to turn N;
into Ny. In Chapter 5 (Theorem 5.19) we modify these arguments to improve
this bound for the rSPR diameter.

3.2.2 The diameter of tail; spaces

Here, we show that the tail; move space Niaq, (1, k) is connected whenever the
tail move space Niai(n, k) is connected, and we give diameter bounds for these
spaces of local tail moves. The main difference between tail moves and tail
moves is that in a tail; move the tail may only be moved a small distance,
whereas in tail moves the tail of the moving arc may be moved to any place
in the network. The following lemma shows that moving a tail over a long
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distance can always be done in steps, moving the tail to an adjacent arc each
step. This way, we show that each tail move can be replaced by a bounded
number of tail; moves. Hence, we find an upper bound for the diameter of tail;
spaces.

Lemma 3.9 ([JJET18] Lemma 4.11). Let N1, Ny € N(n, k) be two networks

such that Ny is the result of u M (s,t) in N1. Then there is a sequence of
at most d < n + 3k — 1 taily moves from Ny to Ny which moves the arc (u,v)
in each step, where d is the length of an up-down path between u and s.

Proof. Note that there exist directed paths P, and Ps from any ¢t € LCA(u, s)

to u and s (which are not necessarily unique). We prove that u (“*) (a) is
valid for all arcs a € P, U Ps. This gives a sequence of tail; moves: Indeed, if

b,c € P, U Ps share a node and both moves u (“_”)> b and u (“_”)> c are valid,

(u,v)

then there is a tail; move u ~2% ¢ between the resulting networks.

To see that u (), (x,y) is valid in Nj for all (z,y) € P, U Ps, we check
the conditions of Lemma 2.44. Firstly, (u,v) is movable, because the move
u (“_”)> (s,t) is valid. Secondly, v # y, as that would imply v lies above u
or above s, which contradicts the acyclicity of Ny or the validity of the move
U M (s,t). Lastly, v is not above y. Indeed, if (z,y) € P, this implies there
is a cycle in N7 consisting of the path from v to y, together with the path from
y to w via P,. Similarly, if (z,y) € P, and v were above y, there would be a
cycle in Na consisting of the path from v to y together with the path from y to
s in Py and the arcs (s,u) and (u,v).

Noting that a path between two nodes uses at most |E|—n arcs, we see that
at most |E| —n =n + 3k — 1 tail; moves (Observation 2.7) suffice to simulate

any tail move. O

Lemma 3.9 immediately gives us upper bounds on tail; distances and di-
ameters in terms of the tail move distances and diameters.

Theorem 3.10 ([JJET18]|). For all n,k € N and all N,N' € N'(n, k), the tail
move and local tail move distances satisfy dian, (N, N') < (n+3k—1)dgaun (N, N').

Proof. Let S be a sequence of tail moves between N and N’ of length dy.; (N, N').
By Lemma 3.9, each tail move in S can be replaced by a sequence of at most

n + 3k — 1 taily moves. This results in a sequence of tail; moves between N
and N’ of length at most (n + 3k — 1)d¢an (N, N'). O

Corollary 3.11 ([JJET18]). For all n,k € N, the tail move and local tail move
diameters satisfy diamgai, (n, k) < (n + 3k — 1) diamgau(n, k).
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Corollary 3.12 ([JJET18]). For all n,k € N, the local tail move diameters
satisfy diamyai, (n, k) < (n+ 3k — 1)(2n + bk — 2), except when (n, k) = (2,1).

3.2.3 Lower bounds

We will discuss lower bounds for M, (n, k) in Chapter 5. There, using the
fact that each tail; move is an rNNI move, we give a bound of order O,, ;((n +
k)log(n+k)). For tail moves, we give a lower bound based on the lower bound
for trees.

Lemma 3.13. Let N, N’ be networks such that dy.; (N, N') < 1. Then for each
T € T(N) there is a tree T' € T(N') such that dy(T,T") < 1.

Proof. Let the tail move from N to N’ be u (“Y) (z,y), and let T € T(N) be
arbitrary with embedding <.

If (u,v) € i(T), then T can be embedded in N without the arc (u,v). This
means T can also be embedded in N’. Hence, we assume (u,v) € i(s,t) for
some arc (s,t) of T. Let P C i(s,t) be the path through i(7") from i(s), to i(v).

If (x,y) € i(p,q) for some arc (p,q) € A(T), consider the subdivided tree
T =i(T)\ (PU{(z,y)}) U{(x,u), (u,y)}. As T} only uses arcs from N’ it is
a subgraph of N’ and T" = S(T)) € T(N'). Furthermore, dy(T,7") <1 as T”
can be obtained from T by the move s ﬂ) (p,q)-

Otherwise, let @ be a path from a node w in the embedding of T" to x that
does not use any arcs in the embedding of T'. This path exists as (z,y) & i(T),
so we can find it by going up from z using arcs not in i(7) until we reach a
node w € i(p, q) for some arc (p,q) of T (it is possible that x = w and Q = 0).
Set T7 = i(T) \ (P U{(x,y)}) UQ U {(x,u)}, and note that T} is a subgraph
of N/ again, as T? only uses arcs from N’. Hence, T = S(T!) € T(N’) and

diai)(T, T") <1 as T’ can be obtained from T by the move s (s, (p,q). O

Proposition 3.14. Let T,T7" € N(n,0) be any pair of trees, then for any
k > 1, the two ladder trees N,N' € N(n,k) with underlying trees T and T’
have distance diq (T, T') < diay(N, N') < diait(T, T') + 2.

Proof. Each tail move on the network does at most one tail move on each of
the embedded trees (Lemma 3.13). Hence, for N, N’, we have dg(N,N') >
di2i(T, T"). On the other hand, any sequence of tail moves on the trees T' and
T’ can directly be applied to the networks as well. Hence, to change N into N’
we fix the underlying tree with at most di.; (7, 7") moves, and then swap the
two pendant subtrees below the ladder with at most two moves to obtain the
bound dtaﬂ(N, N) < dtaﬂ(T, T/) + 2. O]
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Using the lower bound for diameters of tree space (Theorem 2.60), we can
now get a lower bound on the diameter of tail network spaces.

Theorem 3.15. The diameter of tail move spaces is of order diamg,;(n, k) >

n—Q(y/n).

Note that this lower bound only depends on the number of leaves and not
on the number of reticulations. In Section 5.2.3, we will give a different lower
bound that incorporates k as well.

3.3 Internal labels

Now we turn to spaces of networks with internally labeled nodes, too. This
leads to interesting problems, as moves that result in a leaf-isomorphic network
may give a network that is not labeled isomorphic with respect to all labels. For
example, moving the bottom arc of a triangle to the incoming arc of the triangle
swaps the labels of the two tree nodes of the triangle (Figure 3.7, bottom).

To characterize when these networks can be reached from one another, we
prove that we can swap the labels of two tree nodes or reticulations. To swap the
labels of reticulations, we first transform the networks into ladder caterpillars.

3.3.1 Labeled isomorphisms without degree-2 nodes

We will first show how to swap the labels of two tree nodes using a constant
number of tail moves in any network. After establishing this fact, we turn to the
labels of the reticulation nodes. To permute these, we transform the network
into a ladder caterpillar. In those networks, we can swap the labels of adjacent
reticulations using a constant number of tail; moves.

Tree node labels

To permute the tree node labels, we us the following strategy. We show that
we can make any two tree nodes adjacent, and that, when two tree nodes are
adjacent, we can swap them.

Lemma 3.16. Let N € N(n,k) be a network with two tree nodes x and y
labelled I(x) and (y). Then there is a network N' in which the nodes labelled
l(z) and l(y) are adjacent such that dian(N,N') < 1 and dian, (N, N') < n +
3k —1.

Proof. If z is above y and y is above x, there is a cycle. Hence, we may assume
without loss of generality that y is not above x. Furthermore, we assume x
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and y are not yet adjacent in N. Hence, one of the outgoing arcs of x is tail
movable (Lemma 3.3), and it can be moved to any arc adjacent to y using
one tail move. This move creates a node labelled I(z) adjacent to y, which is
labelled with I(y). By Lemma 3.9, this move can be replaced by a sequence of
at most n + 3k — 1 tail; moves via an up-down path, the label of the moving
tail is the same for each move, hence, the resulting labelling is also the same
for the single tail move, as for the sequence of tail; moves. O

A A
A AL

Figure 3.7: Swapping tree nodes as in Lemma 3.17. The bottom move is used
when the intermediate network in the top sequence would contain parallel arcs.
The labels of the tree nodes are represented by node shapes.

Lemma 3.17. Let N € N(n, k) be a network, and let x and y be a pair of
adjacent tree nodes. Then, there is a sequence of at most 2 tail; moves that
swaps the labels of x and y.

Proof. The used sequences of tail; moves are shown in Figure 3.7. The top
sequence in the figure works if the second and third bottom node in the figure
are not the same: in that case, the intermediate network does not have parallel
arcs. If these nodes are the same, then the situation shows a triangle as in the
bottom sequence in the figure. In this case, we can swap the tree nodes with
one tail; move. O

Lemma 3.18. Let N be a network, and x and y two tree nodes. Then, using
a sequence of at most 4 tail moves or 2n + 6k taily moves, the labels of x and
y can be swapped.

Proof. By Lemma 3.16, we can use one tail move (or n+ 3k —1 tail; moves) in
N to make the nodes labeled [(z) and [(y) adjacent. Then, using Lemma 3.17,
the labels of these two nodes can be swapped with at most two tail; moves.
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Lastly, the first move is reversed. This results in a network isomorphic to N,
where only the labels of z and y are swapped. O

Proposition 3.19. Let N be a network with s tree nodes, and let © be a per-
mutation of the tree node labels. Then there is a sequence of at most 4s tail
moves and a sequence of at most (2n + 6k)s taily moves that permutes the tree
node labels with w and leaves all other labels the same.

Proof. Each permutation of n elements decomposes in at most n swaps. Each
of the swaps of two tree node labels can be achieved using at most 4 tail moves
or 2n + 6k tail; moves by Lemma 3.18. Hence, to permute the tree node labels
with 7, we need at most 4s tail moves, or (2n + 6k)s tail; moves. O

Reticulation labels

For the remaining part of this section, we will work with ladder caterpillars.
These networks have all reticulations in one path, which makes it easy to per-
mute the labels of reticulations.

In the following two lemmas, we show when and how we can permute the
labels of the reticulations. The first lemma shows that this cannot always be
done, and the second shows how it can be done when it is possible.

Lemma 3.20. Let N be a network with one leaf, whose parent p is labelled
l(p). Then, after any tail move in N, the parent of the leaf will still be labelled

l(p)-

Proof. The parent of the leaf of N is a reticulation, so it cannot be moved using
a tail move. Hence, the only way to change the label of the parent of the leaf
of N is to move another node to the leaf-arc. However, this arc is below all
other arcs of N. Therefore, no node can be moved there using a tail move. We
conclude that no tail move can change the label of the parent of the leaf. O

Lemma 3.21. Let N be a ladder caterpillar with two adjacent reticulations x
and y, and at least one tree node. Then, using a sequence of at most 5 taily
moves, the labels of z and y can be swapped, except if N has ezactly one leaf |
and x or y is the parent of .

Proof. Without loss of generality, we assume that y is above x. The sequences
shown in Figure 3.8 can then be used to swap the labels of z and y with at
most 5 tail; moves, except if x is the lowest reticulation and there is only one
leaf in the network. O

Now we know how to swap labels of reticulations in a ladder caterpillar, we
can permute all reticulation labels of such a network.
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a<
gt

| | | |
| | | |
| | | |
| | | |
U v U v U v U v
| | | |
| | | |
| | | |
| | | |
u v u v u="v U=
Figure 3.8: The sequence of moves used in Lemma 3.21 to swap two adjacent
reticulations in the ladder (z: black square; y: white square), except for the

lowest reticulation when there is only one leaf in the network. First apply the
moves in the first row, then, depending on whether u # v or u = v, apply the

moves to and within the second or third box. The sequences in this figure take
at most 5 tail; moves.

Proposition 3.22. Let N be a ladder caterpillar with k reticulations, and let 7
be a permutation of the reticulation labels. Then there is a sequence of 5k taily
moves, that permutes the reticulation labels with m and leaves all other labels
the same, except if N has one leaf with parent p labelled 1(p) and I(p) # = (I(p))-

Proof. Note that all reticulations are in one path, and that we can swap ad-
jacent labels of reticulations using at most 5 tail; moves (Lemma 3.21). Any
permutation of n elements of a sequence can be decomposed into at most n?
neighbour swaps. Hence, to permute the reticulation labels in a network, we
need at most 5k2 tail; moves. O

Using the results above, we can permute all labels of a network with tail
moves. Hence, we can find a sequence between any two internally labeled
networks (with only a few exceptions).
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Theorem 3.23. Let N, N’ € N (n, k) internally labelled networks. Then, there
exists a tail move sequence of length at most 2 diamg,;(n, k) +5k% +4(n+k—1)
and a taily sequence of length at most 2 diamgay, (n, k) +5k?+(2n+6k)(n+k—1)
from N to N', except in the following cases:

o (n,k)=(2,1) and N %y N';

e n=1andl(p) £ () for p and p' the parents of the single leaf in each
network.

Proof. We first look at the cases in which there is no sequence of moves possible.
For the first case, note that N and N’ cannot be made leaf-isomorphic by
Theorem 3.8. For the second case, we only need to observe that the label of
the parent of the leaf cannot be changed (Lemma 3.20).

In all remaining cases, Theorem 3.8 shows that we can turn N and N’ into
two ladder caterpillars (by Lemma 2.21) with the same labelling of the roots
and leaves using a number of moves at most twice the diameter. Then, with
s =n -+ k —1 the number of tree nodes (Observation 2.7), we can permute the
labels of the tree nodes using at most 4(n+k—1) tail moves or (2n+6k)(n+k—1)
(Proposition 3.19). Lastly, using at most 5k2 tail; moves, we can permute the
labels of the reticulations (Proposition 3.22). Combining these sequences, we
get a sequence from N to N'. O

Note that the bound for tail moves contains a quadratic term. We will see
in Chapter 5 that this quadratic term disappears for rSPR moves, when we use
a combination of tail and head moves. It is still an open question whether this
quadratic term is necessary for tail moves.

3.3.2 Degree-2 nodes

To show connectedness in the presence of degree-2 nodes, we will reduce to the
case where we are simply working with supressed networks. This will work in
all cases, except for N(l, k,m) and N(Q, 1,m). In the general case, we first
move all degree-2 nodes to a leaf edge in a some fixed order, and then fix all
the labels of leaves and degree-3 nodes. This is not possible for the mentioned
exceptions.

Lemma 3.24. Let N € ./\f(n, k,m) be a subdivided internally labeled network.
Then there is a sequence of at most m taily; mowves that turns N into a network
N'" without parallel paths, except when (n,k) = (1,1).

Proof. Let z and y be two nodes in N such that there are parallel paths between
x and y. If x is not the child of the root, then one of the outgoing arcs of x
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is movable, and moving it up reduces the number of parallel paths by at least
one. If x is the child of the root, then there is a highest tree node z directly
below y, because (n,k) # (1,1). One of the outgoing arcs of z can be moved
up to an incoming arc of y (Lemma 3.3). Again, this reduces the number of
parallel paths by at least one.

Indeed, for each of these moves, the parallel paths between x and y are
destroyed, and there is only one way to create new parallel paths. That is if,
in the second case, there is a subdivided triangle (-u,v,w-) € N and the move
we apply is (u/,v,w’) LCON (2',y"), where u' is on the subdivided path from u
to v, w’ is on the subdivided path from v to w, and (2/,%/) is an arc on the
subdivided path between z and y. However, in that case, u is a higher tree
node below gy, a contradiction. O

Lemma 3.25. Let N be a subdivided network without parallel paths, and sup-
pose there is a tail move changing S’(N) into N', then there is a tail move
changing N into a network N such that S(N') = N'.

Furthermore, if the tail move in S(N ) is a taily move, then there is a se-
quence of at most m + 1 tail; moves changing N into N'.

Proof. Suppose the move changing S(N) into N’ is u LCON (x,y). Let w be

the first node on the path between uw and v, and z be the first node on the path
between z and y in N. Then the move u M) (z,
in a network N’ with S(N') = N’.

For the second part, consider the length one path in S( V) that determines
the distance of the move. Then the corresponding path in N has length at most

m + 1, and we can move the tail along this path. O

z) is valid in N, and results

Lemma 3.26. Let N be a subdivided network with a tree node t such that S(N)
has arcs (p,t), (t,c1), and (t,c2), which are subdivided by the set of degree-2
nodes Y. Let y1,...,ys be any ordering of Y, then there is a sequence of at
most 25+ 2 tail moves or s*+4s+2 tail; moves from N to the network obtained
from N by removing the subdivided arcs incident to t, and replacing them with

(pat)7 (tv Cl) and (ta Ysyo v 7ylac2)'

Proof. First move s — 1 nodes to the incoming arc of ¢ using at most two tail
moves—moving all s degree-2 nodes to this arc may lead to a pair of parallel
arcs if ¢g = cg. If the degree-2 nodes are not all at (p,t) already, then we
may suppose (without loss of generality) that (¢, c1) is subdivided with at least
one node. Let ¢; be the degree-2 node whose child is c;, let (¢,v2) be the
outgoing arc of ¢ on the path to co, and (r1,¢1) the incoming arc of ¢;. Then,

all y € Y\ {q1} can be moved to (p,t) using the two moves ¢ M (r1,q1) and
¢ (G (-, c2).
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Secondly, we make y; the single node on the empty outgoing arc (¢, cz) of ¢
using at most 2 tail moves. If y; subdivides (¢, ¢1), then we exchange the roles of

c1 and cy. Otherwise, this can be achieved by applying the moves ¢ ﬂ) (y1,2)

and t M (,y1) if © # ¢, or, if x = t, the single move ¢ ﬁ) (-,y1) where
z # co. Note that, now, the arc (¢, cq) is subdivided with the single node y;.

To sort the remaining degree-2 nodes, we do the following: Assume (t, ¢2) is
subdivided by %;,...,y1. Apply the moves ¢ M (Yit1,w) and ¢ M (-, Yir1)
(Figure 3.9). This takes at most two moves for each i € {2,...,s}. Together
with the maximum of 4 moves used in the previous steps, we need at most
2s + 2 tail moves in total

Yit1 tkﬂ &H

| - Ny T L \Yi 1

/tkyz / / _){\ytﬁ-l
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e n
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Figure 3.9: Collecting an additional arc on (¢,...,¢3) in the proof of
Lemma 3.26.

If ¢1 = c9, the sequence of moves still works, but one has to consistently
identify one of the parallel paths as the “path above ¢;”, and the other as the
“path above cy”.

For the tail; sequence, replace each tail move by a sequence of tail; moves,
noting that each second move in the sorting sequence is a tail; move already,
and all other moves are along an up-down path of length at most s + 1. This
gives a tail; move sequence of length at most (s+1)(s+2)+s = s>+4s+2. 0O

The case N (1,k,m)

We first consider the cases N(l, k,m), where each network has one leaf. We
will show that these spaces are connected, provided the degree-2 nodes on the
leaf arc have the same labels. In fact, all these spaces (except for k = 1) have a
connected component for each ordered sequence (of each subset) of the degree-2
node labels. To prove this, we first need to show that the degree-2 nodes on
the leaf arc cannot be changed using tail moves.

By the same arguments as for Lemma 3.20, nothing on the subdivided leaf
arc can be changed using tail moves.
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Lemma 3.27. Let N € ]\:[(l,k,m) and let N’ be the result of a tail move in
N. Then the leaf path of N is labeled isomorphic to the leaf path of N'.

Proposition 3.28. For k =0, and for each m > 0, the space Niain(1,0,m) is
the edgeless graph on m! nodes.

Proof. There is exactly one network in A'(1,0,m) for each permutation of the
m degree-2 nodes. As there are no tree nodes, there are no tail moves possible
in any of these networks. O

Observation 3.29. Each network in N (1,1, m) consists of a root path, fol-
lowed by a pair of parallel paths, and then a leaf path.

Lemma 3.30. Each network in N'(1,1,m) has a leaf arc that is subdivided by
at most m — 1 degree-2 nodes.

Proof. If the leaf arc of a network N € N(1,1,m) is subdivided by m degree-
2 nodes, then all the degree-2 nodes are on the leaf path. This means the
parallel paths of the network are actually parallel arcs (Observation 3.29), which
contradicts the fact that N is a network. O

To move the remaining degree-2 nodes around, we use Lemma 3.26.

Proposition 3.31. For each m > 1 and ordered sequence of degree-2 nodes S =
(21,...,25) with 0 < s < m, there is a connected component of Niaii(1,1,m),
whose networks have a leaf arc subdivided by the degree-2 nodes S.

Furthermore, these are all the components ofMail(l, 1,m), and we have the
bounds diayy (N, N') < 2m +2 and diaqy, (N, N') < m? + 4m + 2 for each pair of
networks in the same component.

Proof. Let m and S be arbitrary conforming to the restrictions of the lemma.
Each network N in € N(l, 1,m) with the leaf arc subdivided by S, has all
its other degree-2 nodes on the remaining three arcs and at least one of the
degree-2 nodes subhdivides the pair of parallel arcs.

By Lemma 3.27, each network in the connected component containing N
has its leaf arc subdivided by S. Hence, we must prove that each network with
a leaf arc subdivided by S can be reached from N.

Fach such network has the remaining m — s degree-2 nodes on the other
three arcs, and at least one on one of the parallel arcs. By Lemma 3.26, these
nodes can be arranged on one of the parallel arcs in any predefined order using
at most 2(m—s)+2 tail moves, or (m—s)?+4(m—s)+2 tail; moves. Therefore,
each network with m degree-2 nodes whose leaf arc is subdivided by S can be
reached from N.
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Now note that each network is in a component of this type. Indeed, let
N € N(1,1,m) be an arbitrary network whose leaf arc is subdivided by a se-
quence of degree-2 nodes S, then |S| < m by Lemma 3.30. Furthermore, the
restrictions of the lemma apply to m and S. Therefore, N is in the compo-
nent of € N(l, 1, m) whose networks have a leaf arc subdivided by the degree-2
nodes S. O

If.emn.aa 3.32. For each k > 1, m > 0, and 0 < s < m, there is a network
N € N(1,k,m) whose leaf arc is subdivided by s degree-2 nodes.

Proof. For each k > 1, let N}, € N(l,k,()) be the ladder caterpillar with one
leaf and k reticulations. Such a network exists for all & > 1. To obtain a
network in N(l, k,m) with s degree-2 nodes on the leaf arc, subdivide the root
arc with m — s degree-2 nodes, and the leaf arc with s degree-2 nodes. O

To characterize the connected components of N(l,k,m) for all m and k,
we first treat the case for k = 2 separately in the next proposition.

Proposition 3.33. For each combination of a choice of m > 1, a reticulation
r, and an ordered sequence of degree-2 nodes S = (x1,...,xs) with 0 < s < m,
there are 1+ (m — s)! connected components of Niau(1,2,m):

e One component for each ordering S’ of the m — s remaining degree-2
nodes, which consists of the two ladder caterpillars with one leaf and two
reticulations, each with their leaf arc (r,1) subdivided by S and arc between
the reticulations subdivided by S';

e The other component consists of all other networks in N(1,2,m) whose
leaf arcs (r,1) are subdivided by S.

Furthermore, together with the single component where s = m, these are all the
components of € N'(1,2,m), and we have the bounds deay (N, N') < 2(9+2(m—
s)) and dyai, (N, N') < 2((m — s)> +6(m — s) +5) for each pair of networks in
the same component.

Proof. First note that for each network N e N(l, 2,m), the underlying DAG
of S(N) is isomorphic to one of the following two. It is either the unique
underlying DAG of N € N/ (1,2), which consists of two triangles sharing an arc;
or it is the directed multi-graph consisting of a root arc, a pair of parallel arcs,
a single arc, another pair of parallel arcs, and finally a leaf arc. In the last case,
each pair of parallel arcs must be subdivided by at least one degree-2 node.
Hence, if s = m, then there are only two networks, which are connected by a
tail move. Therefore, we henceforth assume that s < m.

74



3.3. Internal labels

First, consider any network of the second type (i.e., with parallel paths)
whose leaf path is P, = (r,z1,...,zs,0). By moving an outgoing arc of the
lowest tree node to an outgoing arc of the highest tree node, we obtain a network
of the first type whose leaf path is P;, in which one of the m — s degree-2 nodes
not on P; subdivides an arc of the highest triangle. We show that any such
network can be transformed into a network N’ € N(1,2,m) without parallel
paths, whose root arc is subdivided by S’ = (y1,...,Ym—s), and whose leaf arc
is P;. Note that there are exactly two such networks (we may only swap the
labels of the two tree nodes), and that these are exactly one tail move apart.

Let N € N(l, 2,m) be an arbitrary network without parallel arcs whose leaf
path P, is subdivided by S, and at least one of whose remaining m — s degree-2
nodes is not on the arc between the two reticulations. Then N contains two
subdivided triangles a top triangle (-s,t,q-); and a bottom triangle (-t,q,7:),.

Suppose N hass' >0 degree-2 nodes on the path between ¢ and r. To reach
N’ from N, we first move the m — s — s’ degree-2 nodes not on P, away from
the path between ¢ and r. This can be done as follows. First move all degree-2
nodes on the outgoing paths of ¢ up to the incoming path of ¢, using at most two
tail moves or m—s— s’ tail; moves. Now, (-s,t, ¢-) is subdivided by at least one
degree-2 node. Hence, using the tail; move ¢ ﬂ (q,-), we obtain a network
with parallel paths. As all degree-2 nodes on the path from t to r were moved
up, the resulting network contains the arcs (¢,r) and (gq,t). Then, go back to a

network without parallel paths using the tail; move ¢t ﬂ (+,q), where z # r.
This ensures the resulting network contains the arc (¢, r) (Figure 3.10).

N ! : ! ! ! !
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Figure 3.10: Removing all degree-2 nodes from the arc between the reticulations
q and r in the proof of Proposition 3.33 using at most 4 tail moves.
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Now, using at most one tail moves or s’ tail; moves, we can move all m — s
degree-2 nodes not on P, to an arc adjacent to the top split (only s’ of them are
not yet there). Using Lemma 3.26, these nodes can now be sorted as in S’ with
at most 2(m — s) + 2 tail moves or (m — s)? + 4(m — s) + 2 tail; moves. With
at most two tail moves or m — s + 1 tail; moves, these nodes can be moved to
the root arc, and the tree nodes can be swapped if needed. Hence, the distance
between any pair of networks in such a component is at most 2(9 + 2(m — s))
tail moves or 2((m — s)2 + 6(m — s) + 5) tail; moves.

For the other components, let N e N(l, 2, m) be a network without parallel
paths, with leaf path P;, whose arc between the two reticulations is subdivided
by S’. The component of Niait (1,2, m) containing N consists of two networks,
the other, N’ being N with its tree nodes swapped. Indeed, in N, no tail move
can be moved to the path (*',y1,...,Ym—s,7,21,...,%s,1), and no arc on this
path can be moved. Hence, after each tail move in N, this path will remain
intact, and the only network that can be reached is N’. For each S of length
s, there are (m — s)! orderings of the remaining m — s degree-2 nodes. This
accounts for the (m — s)! components of size two in /\/'tall(l,Q,m) for a fixed
S. O

Proposition 3.34. For each k > 2 and m > 1 there is a connected component
of € Mail(l, k,m) for each choice of lowest reticulation r and ordered sequence
of degree-2 nodes S = (x1,...,x5) with 0 < s < m. The networks in this
component are exactly those networks with the leaf path (r,z1,...,xs,1).

Furthermore, these are all the components of € Mail(l,k,m), and we have
the bounds dyy(N,N') < 6m + 2diamg(n, k,0) + 10 and diay, (N, N') <
2m(2 4 diamgai, (n, k,0) + n + 3k + m) + 2n + 6k + 2 for each pair of net-
works in the same component.

Proof. Let N be an arbitrary network in N(1,k,m) whose leaf arc is subdi-
vided by S, and let N, € N(l,k,m) be a ladder caterpillar whose leaf arc
is also subdivided by S, and all remaining degree-2 nodes are on the path
(t,y1,. - Ym—s,T), where r is the lowest reticulation, and ¢ is a tree node. We
show that there is a sequence of moves from N to N;. This then implies that
any pair of networks in N(l, k,m) is connected by a sequence of tail moves
provided they have the same sequence of degree-2 nodes subdividing their leaf
arcs. As no pair of networks with different sequences of degree-2 nodes on
their leaf arcs are connected, this characterizes all connected components of
Neaa(L ko). .. o

First, we turn N into a network N’ such that S(N’) € N(1,k,0) using at
most m tail; moves (Lemma 3.24). Then, by Theorem 3.23 and Lemma 3.25,
we may turn N’ into a network N/ such that S(N]) ~y S(IV;) using at most
diamy,i (n, k,0) tail moves, or (m + 1) diamyaj, (n, k,0) tail; moves.
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Like in the proof of Proposition 3.33, we can remove all degree-2 nodes from
incoming arcs of the lowest reticulations using at most 4 tail moves or m + 2
tail; moves. Let (t,7) be the incoming arc of r that has a tree node ¢ as its
tail. As there are no degree-2 nodes on the incoming paths of r, this arc may
be moved to the outgoing arc of any degree-2 node not in S.

We use a similar strategy to the one used in the proof of Lemma 3.26 to
collect all degree-2 nodes on (t,r) in the predefined order S" = (y1,..., Ym—s):
Suppose (t,r) is subdivided by (v, ..., Ym—s), then we may move (t,y;) to the
outgoing arc of y;_1 and move the other outgoing arc of ¢ up to the incoming
arc of y;_1. Repeating these two tail moves (or at most n+ 3k +m tail; moves)
for all m — s > ¢ > 1 and finally moving (¢, ym—s) back to its original position
(1 tail move or at most n + 3k — 1 tail; moves), we end up with the network
N;.

The sequences of moves from N to N consist of at most 3m~+diamg,y (n, k, 0)+
5 tail moves and at most m(2 + diamy,i, (n,k,0) +n +3k+m) +n+ 3k + 1
tail; moves. ]

Theorem 3.35. For all k > 0 except k = 2, two networks N, N € Mail(l, k,m)
are in the same component iff their leaf paths are labeled isomorphic. For k = 2,
N, N' e Mail(l, 2,m) are in the same component iff their leaf paths are labeled
isomorphic and either there is a subdivided arc besides the leaf arc and the
arc between the two reticulations, or there are no such subdivided arcs and the
subdivided arcs between the two reticulations in both networks are isomorphic.

Proof. This is a direct consequence of Proposition 3.28 (for k& = 0), Proposi-
tion 3.31 (for k = 1), Proposition 3.33 (for k = 2), and Proposition 3.34 (for
k> 2). O

The case N(Q, 1,m)

Each network in N(2,1,0) is isomorphic to N4. Hence, as N(2,1) is not
connected, we cannot use results about leaf-labeled networks to prove connect-
edness. Therefore, we study this case separately as well.

None of the spaces N'(2,1,m) (m > 0) is connected, as each network where
all degree-2 nodes are on the subdivided arc from the reticulation to a leaf is
on a different connected component than the ones where not all degree-2 nodes
are on this arc.

Lemma 3.36. Let N € N(2,1,m) such that all degree-2 nodes are on the
subdivided arc between the reticulation and a leaf. If N’ is the result of a tail
move in N, then the leaf path of N is labeled isomorphic to the leaf path of N'.
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Proof. Let P, = (r,x1,...,2Tm,l) be the path between the reticulation and the
leaf containing all degree-2 nodes. No tail in N can be moved to Pj, and no

arc on P can be moved. Hence, this path will stay intact after each move in
N. O

The proof for the following theorem works essentially the same as the proof
for Proposition 3.33, which characterizes the components of N (1,2, m).

Theorem 3.37. For each m > 0, the space Niait(2,1,m) consists of 2(m!) + 1
connected components. Moreover, two networks N, N' € Npu(2,1,m) are in
the same component iff

o cither both networks have a degree-2 node not on the arc between the
reticulation and a leaf;

o or both networks have all the degree-2 nodes on an arc between the retic-
ulation and a leaf, and these paths are labeled isomorphic.

and the distance between these networks is at most 18 4+ 4m tail moves and
2m? + 16m + 6 tail; moves.

Proof. First suppose both networks N,N’ € N(Q, 1,m) have a degree-2 node
not on an arc between a reticulation and a leaf. If N has no parallel paths, we
can make sure there is a degree-2 node subdividing the triangle using at most 1
tail; move. Then, using one tail move or at most m tail; moves, we can reach a
network with parallel paths. In that network, we can use at most 2 tail moves
or m tail; moves to make sure the leaf paths contain no degree-2 nodes. After
this, we can choose either leaf [, and use one tail; move or m tail; moves to go
back to a network without parallel paths, in which there is an arc between the
reticulation and [ without degree-2 nodes. In this network, we can use at most
2 tail moves or m tail; moves to make sure all degree-2 nodes are adjacent to
the top tree node. Lastly, using Lemma 3.26, we can sort the degree-2 nodes
and move them to the root arc with one additional tail move. Doing this for N’
as well, we find a sequence between N and N’ of at most 18 + 4m tail moves,
or 2m? + 16m + 6 tail; moves.

Now suppose N € N(2,1,m) has all its degree-2 nodes on the arc between
the reticulation and a leaf I. Then, after any move in N, this path will remain
intact (Lemma 3.36). Therefore, for each choice of leaf [ in combination with
an ordering (x1,...,2) of the m degree-2 nodes, there are two networks with
path (r,z1,...,2m,l) between a reticulation r and [, and each such pair is
connected by a tail move (swapping the tree nodes).
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Now we show that this characterizes all components of Mail(Q, 1,m). Let
N,N' € N(2, 1,m) have all the degree-2 nodes on an arc between the retic-
ulation and a leaf. If these paths are labeled isomorphic, then N and N’ are
isomorphic. If these paths are not isomorphic, then N and N’ are not iso-
morphic (as the paths cannot be changed by a tail move). Lastly, as the path
between the reticulation and the leaf cannot change, we can in particular reach
no network with a degree-2 node on a different arc of the network. Hence, we
have found all 2(m!) 4+ 1 components of Niaii(2, 1, m). O

General case

Finally, we investigate the spaces Mail(n,k,m) in general, where n % 1 and
(n,k) # (2,1). We will show that, in this more general case, all spaces
Niail, (n, k,m) are connected. The proof is similar to the proofs in the pre-
vious subsections for the connectedness of components of Maﬂ(l,k,m) and
Mail(Q, 1,m): it starts by removing parallel arcs, then it creates a movable
arc on which we collect the degree-2 nodes, and, finally, the structure of the
suppressed network is fixed.

Lemma 3.38. Let N € Nyai(n, k,m) (n>1 and (n,k) # (2,1)) be a network
without parallel paths. Then there is a sequence of at most 2 tail moves or
n 4+ 3k + 2m — 1 tail; mowves from N to a network N’ without parallel paths in
which there is a movable arc (t,1) between a tree node and a leaf and there does
not exist a subdivided triangle (-z,t,y-) in N'.

Proof. First suppose S(N) has an arc (¢,1) from a tree node to a leaf. In that
case, all degree-2 nodes on the corresponding path in N can be removed from
this path using one tail move or at most m tail; moves. Note that there is a
subdivided triangle (-z,t,y-) € N iff (t,1) is not movable in S(N). If z is not
the child of the root in S(V), then (t,1) can be made movable by moving (z, y)
up using one tail move. Otherwise, the child ¢ of y in S(N) is a tree node
(by the restrictions on n and k), and (¢,l) can be made movable by moving
one of the outgoing arcs of ¢ up to an incoming arc of y with one tail; move.
By Lemma 3.25, these tail; moves in S(N) correspond to one tail move or at
most m tail; moves in N each, resulting in a network N’ with the required
properties.

Now suppose each leaf in S(IN) is the child of a reticulation. Because n > 1,
we can choose two arbitrary leaves [ and !, and consider an LCA x of these.
By Lemma 3.4, one of its outgoing arcs (z,y) is movable in S(N), and this arc
is not above at least one of [ and I’. Assume without loss of generality that

y 1s not above [, then the move x M} (-,1) is valid in N, and it results in
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a network N’ with the required properties. The move can be replaced by a
sequence of at most n + 3k — 1 + m tail; (Lemma 3.9)

In the first case, two tail moves or 2m tail; moves suffice; in the second
case, we need at most 1 tail move or n + 3k + m — 1 tail; moves. The number
of tail moves can therefore be bounded by 2, and the number of tail; moves by
n+ 3k +2m — 1. O

Lemma 3.39. Let N € ./\f(n, k,m) be a network without parallel paths in which
there is a movable arc (t,1) between a tree node and a leaf and (-x,t,y-) & N',
and let (v1,...,0m) be any ordering of its degree-2 vertices. Then there are
sequences of at most 2m + 1 tail moves and at most (m + 1)(n + 3k + m)
tail, moves to the network N’ with S(N) = S(N') in which there is a path

(t,v1,. .., Um, ).

Proof. Suppose the network already contains the path (¢,vi41,...,0m,1). To
add the next degree-2 node v; to the path, apply the moves ¢ M (v, 2)
and t ﬁ) (-,v;). Because (-z,t,y-) ¢ N’ and N’ has no parallel paths, the
resulting network cannot contain such a triangle either. Hence, we can continue
this process for each v;, using at most 2 moves per degree-2 node. Lastly, we
need one additional move to place the moving path back to its original position,
50 diait(N, N') < 2m + 1.

Noting that m of the tail moves are actually tail; moves, and the remaining
moves can be replaced by a sequence of at most (n + 3k +m — 1) tail; moves,
we get diait, (N, N') < (m+1)(n+3k+m—1)+m < (m+1)(n+3k+m). O

Theorem 3.40. Let N,N' € N(n,k,m) with n > 1 and (n, k) # (2,1), then
diait (N, N') < 2diamyag(n, k,0) + 5k2 + 4n + 4k + 6m + 2 and dgay, (N, N') <
2 diamggg, (n, k,0) + 2n + 6k + 8m — 2+ m(2n + 6k + 2m) + 2n% + 8nk + 11k%.

Proof. First, in both networks, we destroy parallel paths using at most m tail;
moves (Lemma 3.24). Then, using at most 2 tail moves or n+ 3k +2m —1 taily
moves, we create a moving arc between a tree node and a leaf (Lemma 3.38).
Then, we place all degree-2 leaves on this moving arc using at most 2m + 1
tail moves or (m + 1)(n + 3k + m) tail; moves using Lemma 3.39. Finally,
Theorem 3.23 implies we have sequences of at most 2 diamg,g(n, k, 0) + 5k +
4(n+ k — 1) tail moves or 2 diamgyy, (n, k,0) + 5k% 4+ (2n + 6k)(n + k — 1) taily
moves between the two resulting networks. Hence, there are sequences of at
most 2 diamy; (n, k,0) + 5k2 4 4n + 4k + 6m + 2 tail moves and 2(m+n+3k+
2m—1+4(m+1)(n+3k-+m))+2diame,, (n, k,0) +5k%+ (2n+6k)(n+k—1) =
2 diamygagy, (1, k, 0) + 2n + 6k + 8m — 2 + m(2n + 6k + 2m) + 2n% + 8nk + 11k>
tail; moves from N to N'. O
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3.4 Conclusion

In this chapter, we have shown that all spaces Nian(n, k) and My, (n, k) are
connected, except when (n,k) = (2,1). The diameters of these spaces are at
most 2n + 5k — 2 and (n+ 3k — 1)(2n + 5k — 2) respectively. For tail moves, we
have also proven a lower bound of n — Q(y/n), which is directly inherited from
trees.

We have also extended the results to internally labeled networks, for which
we show that most spaces are still connected by tail moves and tail; moves.
The only exceptions are the spaces with one leaf, and the spaces where (n, k) =
(2,1). For these spaces, we have fully characterized all connected components.
We have also bounded the diameters in these cases by 2 diam.g(n, k) + 5k2 +
4n + 4k + 6m + 2 tail for tail moves, and 2 diamy,y, (n, k) + 2n + 6k + 8m — 2 +
m(2n + 6k + 2m) + 2n? + 8nk + 11k? for tail; moves.

We do not know the exact diameter for any of these spaces (except for a few
small ones where we can explicitly compute the whole space). Furthermore, in
most cases we do not even know whether our bounds are asymptotically tight.
Only for tail moves and networks without internal labels, we know that our
upper bound is asymptotically tight, as we will see in Section 5.2.3. Determin-
ing asymptotically tight bounds for (local) tail move spaces remains an open
problem.
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Unlike tail moves and rSPR moves, head moves do not constitute a natural
generalization of rearrangement moves from trees to networks. They are, how-
ever, part of rSPR moves, which are simply the combination of tail moves and
head moves. Hence, to understand rSPR spaces, we have to understand head
moves as well as tail moves. This, alone, is enough reason to study spaces of
head moves. In this chapter, we show that spaces of head moves have several
interesting properties on their own as well.

For example, we show that, even though the head move neighbourhood is
typically much smaller than the tail move neighbourhood, the diameters of the
respective spaces grow similarly fast in the number of leaves and reticulations.
In Chapter 5, we will show that this even holds for the distance between each
specific pair of networks in the following sense. Each tail move can be replaced
by at most 16 head moves, and each head move by at most 13 tail moves.
Hence, to find an optimal network using head moves, we have to consider fewer
neighbours than for tail moves, but we will be able to find an optimal network
in a similar number of steps.

Like the previous chapter, this chapter focuses on establishing connectedness
and diameters of head move spaces. We start by proving that each tier of
phylogenetic network space is connected by distance-2 head moves, but not
by distance-1 head moves (Section 4.2). The connectedness of Nhead2 (n, k) for
n, k > 0 is proven by first constructing a sequence from each network to a ladder
tree, and then describing how to find a sequence between any two ladder trees.
For the first part, we simply move the heads of all reticulations up towards the
root; for the second part, we observe that a ladder tree is (almost) defined by
its embedded tree, so it suffices to find a sequence of heads moves that changes
the embedded tree by one tree rearrangement move.

Then, in Section 4.3, we prove an upper bound of length 6n + 6k — 4 for
the diameter of Nhead(n, k) where n,k > 0. Like for tail moves, the proof uses
an isomorphism building strategy. In this case, however, we keep an up-closed
isomorphism. As head moves are essentially tail moves in the digraph where he
direction of all arcs are reversed, the proof is quite similar to that for tail moves.
The main difference is that, here, we end up with an unlabeled isomorphism,
as the leaves are the last to be added to the isomorphism. Hence, the proof has
an additional last part, where we permute the leaf labels.

Lastly, in Section 4.4, we consider internally labeled networks again. The
connectedness proofs here are quite similar to those in the last chapter. Indeed,
here too, we first change each network into a ladder caterpillar and then we
permute the leaf and reticulation labels. Similarly, to prove connectedness in
the presence of degree-2 nodes, we collect them all at one arc again. Recall that
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for tail moves, we could not change the leaf-path when the network only had
one leaf. For head moves, the same is the case for the root path. We show that
each space Nhead(n, k,m) has one connected component for each root-path.

In this chapter, unless stated otherwise, each move is a head move and
movability always refers to head-movability. We start with a short section
discussing some basic results about head-movability.

4.1 Preliminary observations

Before we turn to the connectedness of spaces, we start with a few facts that
we will use repeatedly throughout this chapter. The first two are simple obser-
vations about possible moves, and the last relates the sets of displayed trees of
networks that are one head move apart.

Observation 4.1 ([Jan21| Observation 1). Let N be a network with a triangle
(x,y, z)¢. Then reversing the direction of the arc (y, z) gives a network N'. We
say the direction of the triangle is reversed. This can be achieved using the

head; move z “2) (y, c), where ¢ # z (Figure 4.1).

Figure 4.1: The head; move z M (y,c) used to change the direction of a
triangle (z,y, 2)¢.

Lemma 4.2. Let r be a reticulation, then at least one of its incoming arcs is
mouvable.

The proof of this lemma is analogous to the proof of Lemma 3.3 for the tree
nodes and tail moves.

Lemma 4.3 ([Jan21] Lemma 3). Let N, N’ be networks with dpeaa(N, N') <1,
then T(N) NT(N') # 0 and for each T' € T(N') there is a tree T € T(N)
such that diy) (T, T") < 1.
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Proof. Let (u,v) be the arc that is moved in the head move from N to N’
Then v is a reticulation and it has another incoming arc (w,v). There is an
embedded tree T' € T(N) that uses this arc, and therefore does not use (u,v).
This means that changing the location of (u,v) does not change the fact that
T is embedded in the network, and T € T (N').

For the second part: first suppose the embedding of 7" in N’ does not use
the new arc (u,v) € N’. Then clearly 7" can be embedded in N without the
arc (u,v). This means it can also be embedded in N.

Now suppose the embedding of the arc (¢, z) of 7" in N’ uses the arc (u,v) €
N'. Let P be the path through the embedding of 7" in N’ starting at the image
of t, and ending at v. Note that this path passes through (u,v). Now consider
the tree obtained by taking the embedding of T, removing P and adding a
path leading from a node w in the embedding of T” to v via the other incoming
arc of v. This tree only uses arcs that are also in N. Hence, it is embedded
in N and it is at most one tail move away from T”: the one that moves the
subtree below v to w. O

4.2 Connectedness

In this section, we consider the connectedness of the tiers N'(n, k) of network
space under local head moves. One might hope that these spaces are connected
under distance-1 head moves, because a similar result holds for distance-1 tail
moves as well. We prove that this is, unfortunately, not the case. However, we
will show that distance-2 head moves do suffice.

4.2.1 Distance-1 is not enough

We show by counterexample that distance-1 head moves are not enough to con-
nect the tiers of phylogenetic network space (Figure 4.2). For tier-1 networks,
this example can easily be checked, as there are no distance-1 head moves in
the left network that result in a different network. For higher tiers, however,
many valid distance-1 head moves may be possible. However, using such moves
we are not free to change the structure of the network in any way we would
desire. Indeed, using the following lemma, we will show that the reticulations
remain roughly at the same place any network resulting from a distance-1 head
move.

Lemma 4.4 ([Jan21]| Lemma 4). Let N, N’ be networks with dyeaq, (N, N') < 1.
If, in N, all reticulations and their parents are below some tree node s, then the
same holds for N'.
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Proof. Suppose the head; move between N and N’ is (z,v,y) M) (z,w). Let
q be a reticulation or a parent of a reticulation in N, with ¢ # v, then there is
a path from s to g in N. Furthermore, we may assume that this path does not
pass through (u,v), as it could alternatively use a path using the other in-arc of
v. Hence, after the head move, q is still below s. Now we show that the parents
uw and z of v in N’ are below s. As u is the parent of the retculation v in N,
it is still below s by the previous argument. For z, we note that the move is a
distance-1 move, so either z = y or w = x. In the first case, z is below z, which
remains below s. In the second case, either x is a reticulation and its parent z
is below s, or x is a tree node. If x = s, then the move is invalid, because u is
below x; if © # s, then its parent z must be below s as well. We conclude that
all reticulations and their parents are below s in N'. O

N t

SN

3 n—1n —1

S

Figure 4.2: There is no sequence of distance-1 head moves between N and N’
(Proposition 4.5).

Proposition 4.5 ([Jan21] Proposition 1). In all tiers of phylogenetic space with
n > 3 leaves, there exist two networks not connected by a sequence of distance-1
head mowves.

Proof. Let T be a caterpillar on n > 3 leaves, and let s be the common parent
of two of the leaves, and let ¢ be the highest tree node in T. Now construct
a network N by adding k reticulation arcs between the outgoing arcs of s,
and the network N’ by adding k reticulation arcs between the outgoing arcs
of t (Figure 4.2). In N, all of the reticulations and their parents are below
s. Lemma 4.4 implies that, using distance-1 head moves, only networks with
all reticulations below s can be reached. Furthermore, because no part above
s can ever be involved, the caterpillar structure above s will remain intact.
Hence, any network reachable from N using distance-1 head moves consists of
a chain of pendant leaves followed by the node s, which must still be above
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all reticulations and parents of reticulations. Now note that N’ is not such a
network. We conclude that there is no distance-1 head move sequence between
N and N'. O

Perhaps surprisingly, for networks with only one leaf, we can easily prove
connectedness.

Proposition 4.6 ([Jan21| Proposition 2). The space Nhead, (1, k) is connected
forall k € Z>.

Proof. This follows from the fact that all tiers of phylogenetic network space
with one leaf are connected by distance-1 tail moves (Theorem 3.10). Indeed, if
one reverses the direction of all arcs, a network with one leaf becomes another
network with one leaf, and each distance-1 tail move in the reversed network is
a distance-1 head move in the original network. O

4.2.2 Distance-2 suffices

To prove the connectedness of tiers of network space using distance-2 head
moves, we present a procedure to generate a sequence between any two networks
in the same tier. This sequence first turns both networks into ladder trees,
where all reticulations are collected at the top. Next, the tree structure of these
networks is adjusted, by simulating rSPR moves on the trees using distance-2
head moves.

Collecting the reticulations at the top

In this subsection, we show how all reticulations can be collected at the top
of the network using distance-2 head moves (See Definition 2.17). This will be
achieved by creating triangles, and moving these through the network.

The following lemma ensures that the top reticulations can be directed
neatly using local head moves. The moves are similar to the one used to change
the direction of a triangle (cf. Observation 4.1).

Definition 4.7. Let N be a network with k reticulations at the top. Changing
the direction of an arc (a;, b;) (as in Definition 2.17) consists of changing N into
a network N’ that is isomorphic to N when (a;, b;) is replaced by (b;, a;). Note
that this changes a; from a tree node to a reticulation, and b; from a reticulation
to a tree node, which will not be possible when applying the rearrangement
moves in this thesis. Changing the direction of a set of such arcs at the same
time is defined analogously.
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Lemma 4.8 ([Jan21| Lemma 5). Let N be a network with k reticulations at the
top. Then the reticulation arcs (a;,b;) can be redirected so that they are neatly
at the top with at most k distance-1 head moves. The network below ap and by,
(notation as in Definition 2.17) is not altered in this process.

Proof. We redirect the top reticulation arcs (a;,b;) starting with the lowest
one (i = k). The move b; M) (aj,vit1), where w;_; is the parent of b;
that is not a; and v;41 the child of a; that is not b; (Figure 4.3), changes the
direction of the chosen arc (a;, b;) and all the reticulation arcs (a;, bj) above it

(i.e., j < 1); it leaves all other arcs fixed as they were. O

Uij—1 Uij—1 Uj—1

Vi1 Vi+1 Ui+1

Figure 4.3: The move used in Lemma 4.8 to redirect the ¢ highest reticulations
at the top, use the move b; M (@i, vit+1). This move changes the direction
of all reticulations at the top that are higher than the moved arc. The part of

the network below a; and b; does not change.

Definition 4.9. Let N be a network with a triangle at u (i.e., a triangle
(u,v,w)¢) and let u and s be the children of a tree node s. Moving a triangle
from u to s consists of removing the arc (v, w) and suppressing its endpoints,
and subdividing the outgoing arcs of s with two new nodes, and adding an arc
between them. The reverse of this process is called moving a triangle from s to
U.

Definition 4.10. Let N be a network with k reticulations at the top (notation
as in Definition 2.17) and a tree node x directly below ag. Removing a triangle

from the top consists of creating a triangle at x by a head move by, M (z,c),
where ¢ is a child of . Adding a triangle to the top is the reverse of this
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operation. Mowving a triangle to the top consists of first moving it to a tree
node directly below the top, and then adding it to the top.

Lemma 4.11 (|Jan21| Lemma 6). Triangles can be moved between adjacent
tree nodes using at most 4 heady moves, and added to or removed from the top
using at most 7 heady moves.

Proof. Suppose a network N has a triangle (u, v, w)¢, where u is the child of a
tree node s. Let the other children of s, v, and w be a, b, and c respectively.
To move the triangle up to s, we use the following sequence of distance-2 head
moves: w M (s,a), w M (u,v), w M (v,b), and w M) (s,u)
(Figure 4.4). None of the intermediate networks in the sequence contain a
directed cycle or parallel arcs, unless a = b. However, in that case, the move

w &), (s,a) is a heads move that moves the triangle up to s in N.

Figure 4.4: Sequence of moves used to move triangles with distance-2 head
moves (Lemma 4.11).

Now suppose the network has k reticulations at the top, and there is a
triangle (u, v, w) directly below s = ap—if the triangle is below by, first redirect
all reticulations at the top using one head; move. To move the triangle to the
top, first move the triangle up to s using the previous sequence of at most 4
moves; then reverse the direction of the triangle using the distance-1 head move
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w G

(v,w)

(v, bg), resulting in the triangle (s,v,w); and, lastly, apply w
(b, -). Including the first move to redirect the reticulations at the top, this
takes at most 7 heads moves. ]

If the restriction to distance-2 moves is relaxed, the triangle can also be
moved between adjacent tree nodes using one distance-3 head move w M
(s,a). Adding or removing triangles from the top then takes at most two

distance-3 moves, or one distance-4 move.

Lemma 4.12 ([Jan21]| Lemma 7). Let N be a network and v a highest reticu-

lation below the top reticulations. Suppose v M) (z,y) is a valid head move

resulting in a network N'. Then there is a sequence of at most n+ k + 5 heads
head moves from N to N'.

Proof. Choose an up-down path from v to (x,y) not via (u,v). Note that if
there is a part of this path above u, it is also above v and therefore we may
assume it only contains tree nodes. Sequentially move the head of (u,v) to
the pendant branches of this path as in Figure 4.5. This works for the entire
path, except at the point where u is on the up-down tree path (the obvious
move is a distance-3 move), and at the top (i.e., from 0 to 1 and from 3 to 5 in
Figure 4.5).

Note that at the top, we need to move the head to the lowest reticulation
arc at the top. This is only possible if this reticulation arc is directed away
from w. If it is not, we redirect it using one distance-1 head move (Lemma 4.8),
and redirect it back after we move the moving head down to the other branch
of the up-down tree path. This accounts for two heads moves.

If w is on the up-down path, we use Lemma 4.11 to pass this point: Let ¢ # v
be the other child of u and p the parent node of u; moving the head of (u,v)
from an outgoing arc of ¢ to the other outgoing arc (p,w) of p is equivalent to
moving the triangle at u to a triangle at p using at most 4 heads moves and an
addional move to reverse the direction of the triangle.

We have to be careful, because if the child ¢ of u is not a tree node, this
sequence of moves does not work. However, if ¢ is a reticulation node, there
exists a different up-down path from v to (z,y) not through u: such a path
may use the other incoming arc of c.

At all other parts of the up-down path, the head may be simply moved to the
arcs on the path. As we need one move for each arc on the path, and the path
has length at most n+ k — 2, the whole sequence takes at most n+k—2+2+5
heads moves. ]

Using these lemmas, it is easy to prove we can use distance-2 head moves
to move reticulations to the top.
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Figure 4.5: An example of a sequence as used in Lemma 4.12. Note that on the
side of the tree containing the tail of the moving arc, we use the side branches
to avoid cycles. The numbers represent the order of the distance-2 head moves.
Note that the move from position 0 to position 1 is not a distance-2 head move,
in this case we use the sequence of moves described in Lemma 4.11. Also note
that position 4 is only allowed when the lowest reticulation at the top is directed
away from the tail of the moving arc.

Lemma 4.13 ([Jan21] Lemma 8). Let N € N (n,k), then there is a sequence
of at most 5nk + 5k? 4+ k distance-2 head moves turning N into a network with
all reticulations at the top.

Proof. Note that the network induces a partial order on the reticulation nodes.
Suppose N has [ < k reticulations at the top. Let r be a highest reticulation
node that is not yet at the top. One of the two corresponding reticulation arcs
is head-movable. Let this be the arc (s,r).

If s is a child of a; or b; (as in Definition 2.17; i.e., s is directly below the top
reticulations), then one head move suffices to get this reticulation to the top.
By Lemma 4.12, this move can be replaced by a sequence of at most n+k+5
distance-2 head moves.
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Otherwise, there is at least one node between s and the top, let t be the
lowest such node, that means that t is the parent of s. Because r is a highest
reticulation that is not at the top, t is a tree node and there are arcs (t,s)

and (¢,q). The head move r (S_T)> (t,q) is valid, and it creates a triangle. By
Lemma 4.12, this head move can be replaced by a sequence of at most n+k+5
distance-2 head moves.

Now we move this triangle to the top using distance-2 head moves as in
Lemma 4.11. This increases the number of reticulations at the top by one. To
do this, we need at most 4 heads moves for each tree node on the path up to
the top, and at most 7 moves to add the triangle to the top reticulations. As
there are at most n + k — 2 tree nodes on this path, the total number of heads
moves used amounts to at most n +k+5+4(n+k—1) <5n+5k+1. O

Changing the tree

Networks with all reticulations at the top have exactly one embedded tree.
Therefore, such networks are essentially determined by their embedded tree.
This means we now only need to change this embedded tree. To achieve this,
we use the lowest reticulation arc (ag,bg) to create a triangle that can move
around the lower part of the network. Using the reticulation in this triangle,
we simulate rSPR moves on the embedded tree.

Lemma 4.14 ([Jan21| Lemma 9). Let N,N' € N(n,k) (k > 0) be networks
with k — 1 reticulations neatly at the top and the k-th reticulation at the bottom
of a triangle. Suppose N and N' have the same embedded trees with the top

reticulations oriented the same way along this tree, then dyead,(N, N') < 4n +
12.

Proof. Note that the network consists of k — 1 reticulations at the top, and two
pendant subtrees—isomorphic to the two pendant subtrees below the highest
tree node of the embedded tree—one of which contains a triangle. The triangle
can be moved through one of these subtrees using at most 4 heads moves for
each tree-node it passes (Lemma 4.11). To move the triangle anywhere, we
need to be able to move it between the pendant subtrees as well. This can be
done by moving the triangle to the top, and then moving it down on the other
side after redirecting all the top reticulations, using at most 14 heads moves
(Lemma 4.11). None of these triangle moves changes the embedded tree: each
of the intermediate networks has exactly one embedded tree, the triangle move
can be done with one head move, and doing a head move keeps at least one
embedded tree (Lemma 4.3). Hence, moving the triangle to the right place with
at most 4(n — 1) + 14 heads moves and then redirecting the triangle and the
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top reticulations as needed (using at most 2 moves to do this) gives a sequence
of at most 4n + 12 heads moves from N to N'. O

Lemma 4.15 ([Jan21] Lemma 10). Let N,N' € N (n,k) be networks (k > 0)
with all reticulations neatly at the top, and embedded trees T and T'. Then
dheadg (N, N/) < 2(61’L + 24)drspR(T, T/) +4n + 13.

Proof. Note that N and N’ both have exactly one embedded tree, T and T’
respectively, and we aim to change this embedded tree. It suffices to prove
this for any 7" that is one rSPR move removed from T, because the space of
phylogenetic trees with the same leaf set is connected by rSPR moves (Theo-
rem 2.60). Hence, let u M (z,y) be the rSPR move that transforms 7" into
T

First suppose the rSPR move does not involve the root arc of the embedded
trees. We can move triangles anywhere below the k — 1 reticulations at the top
by Lemma 4.14. Hence, there is a sequence of at most 4n 4 12 heads moves
transforming N into a network M with the following properties: the tree T' can
be embedded in M; M has a reticulation arc (a, b) where a lies on the image of
(z,y) in M, and the head b lies on the image of the other outgoing arc (z, z)
of x if  is not the root and on the image of one of the outgoing arcs (y, z’) of
y otherwise.

This creates a situation where there are arcs (z,a), (a,b), (p,b), (a,y), and
(b,¢) with p=x and ( = z or p =y and ¢ = 2. The case p = x is depicted in
Figure 4.6.

v Y

Figure 4.6: The head move used to simulate the rSPR move u M (x,y) on

the embedded tree T to T”. The triangle is already in the position described in
the proof of Lemma 4.15. The embedded trees T and T” are displayed with thick
arcs in the left and right network respectively. The right network is obtained

from the left one by the head move b (4%, (u,v).
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Now simulate the head move of (a,b) to the image of the T-arc (u,v) using
at most n+6 heads moves (Lemma 4.12; noting that the up-down path contains
at most n tree nodes). This is allowed because (a, b) is movable; b is not equal
to the image of u as b is a reticulation node and the image of u a tree node; and
the image of v is not above a, as otherwise the tail move u ﬂ) (z,y) could
not be valid. Let N’ be the resulting network, and note that the embedded
tree using the new reticulation arc is 7”. Finally, create a new triangle at the
parent p of u by moving (u, b) to the other outgoing arc of p using at most n+6
heads moves.

Next, suppose the rSPR move does involve the root arc of the embedded

tree. Let u M (p, ¢) be such an rSPR move to the root arc of the tree, and let
x and y be the nodes directly below the top: = on the side of the reticulations b;,
and y on the side of the tree nodes a;. Apply u M} (ak,x), where (ag, x) is an
arc directly below the top. This produces the network with k — 1 reticulations
at the top, and (in Newick notation) embedded tree ((T" | =, T | v),T | v),
where T' | z denotes the part of tree T' below z. Then do the rSPR move
u (“/_I)> (br,y), the other side of the top, producing a network with k£ — 1
reticulations at the top and embedded tree ((T'| z,T | y),T | v).

This creates the desired network with v below one side of the top, and x and
y on the other side. Both these rSPR moves are performed as in the previous
case, which did not involve the root arc. Hence, each rSPR move on the trees
can be simulated with a sequence of at most 2(4n+12+2(n+6)) = 2(6n+24)
heads moves.

To make the embedded trees isomrophic, we repeat this process for each
rSPR move, which takes at most (6n + 24)d,spr(7,7") heads moves in total.
Finally, we move the triangle back to the top without changing the embedded
tree using at most 4n + 12 heads moves, and redirect the top reticulations
using at most 1 move to produce N’. Tallying up all these moves, we get

dheadg (N, N/) < 2(6n + 24)drspR(T, T/) +4n + 13. O

Theorem 4.16 ([Jan21| Theorem 1). For alln,k > 0, the space Nyead, (1, k) is
connected and diampead, (7, k) < 2(6n + 24) diam,gpr(n, 0) +4n+ 13+ 2k(5n +
5k +1).

Proof. Let N, N' € N(n, k) be two arbitrary networks. Use Lemma 4.13 and
Lemma 4.8 to change N and N’ into networks N,, and N/ with all reticulations
neatly at the top using at most 2k(5n + 5k + 1) distance-2 head moves. Now,
Lemma 4.15 implies there is a sequence of at most 2(6n + 24) diam,spr(n,0) +
4n + 13 distance-2 head moves from N, to N/. Hence, tier-k of phyloge-
netic network space is connected by distance-2 head moves with diameter
diamypead, (n, k) < 2(6n + 24) diam,gpr(n,0) + 4n + 13+ 2k(5n + 5k +1) O
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The next corollary follows immediately from Theorem 2.60, which contains
an upper bound for diam,gpr(n,0).

Corollary 4.17. For all n,k > 0, we have diamypeaq, (n, k) < 12n% + 10kn +
10k2 + 52n + 2k + 13

4.3 Diameter bounds

The tail move diameter bounds from the previous chapter are obtained using a
technique where an isomorphism is built incrementally. For head moves, we can
employ a similar technique. For any pair of networks, we build an isomorphism
between growing subgraphs where, in each step, we only have to use a small
number of moves to grow the isomorphism. For tail moves and rSPR moves, it
is convenient to build this isomorphism bottom-up. Head moves are essentially
upside-down tail moves. Hence, for head moves, we build an isomorphism
starting at the root.

Lemma 4.18 ([Jan21] Lemma 22 Case 1). Let N1, No € N (n, k) with k > 0,
and let Y1 and Ys be non-empty up-closed sets of nodes of N1 and No such that
Ni[Yq] i Ns[Y3]. Suppose there is a highest node x1 of N1\ Y1 such that xq is
a tree node. Then there is a network Ni with up-closed set of nodes Yy such
that Nl[Yl U {.’L'l}] ~ Né[Yzl] and dhead(N27 Né) < 4.

Proof. Because x1 is a highest node not in Y7, the parent p; of 21 is in Y7 and
there is a corresponding node py = ¢(p1) in Yo. This node must have at least
one child x9 that is not in Y3, as otherwise the degrees of p; and py in Ny[Y]
and Na[Y2] do not coincide.

1. The node x5 is a tree node. In this case we can add x7 and z9 to
Y1 and Ys and set ¢(z1) = x2 to get an extended isomorphism. No head
moves are necessary to make this extension.

2. The node x2 is a reticulation. We make sure py has a tree node yo as
a child not in Y5, using at most 3 head moves. We can then add x; to Y3
and yo to Y2 and extend the isomorphism with ¢(z1) = y2. To create this
tree node, we use a tree node ca € Na \ Ya, which exists because there is
a tree node in Ny \ Y.

a) The arc (p2,x2) is movable. Let t2 be the parent of co. Apply

9 M (ta,c2), which is valid because co cannot be above po

(otherwise ¢y € Y3, a contradiction) and to # po—if to = po then we
can add co to the isomorphism directly, as it is a tree node child of
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Y,

p2 not in Y5. Now the head move x5 M) (c2,-) where z9 # po is

valid because it moves a head down. After this move, the tree node
¢ is the child of ps, so we can extend the isomorphism with a tree
node ¢(x1) = co using at most 2 head moves (Figure 4.7).

b2 2 D2
[/ . & )

N\ Yy

p
N,
No\ 'Y,
Co &) T2 Ys Co
N2\Y2/\<

Figure 4.7: The moves and incremented isomorphism for Lemma 4.18 Case 2a.
For nodes outside of the shaded region, it is not known whether they are in Ys.

b) The arc (pz2,x2) is not movable. This means that xy is on the

side of a triangle (z9,x9,d2),, with z9 # py. The arc (z9,ds) is

movable, and ds M (ug,v2) is valid for some arc (ug,v2) with

vy not in Yy and (ug,v2) distinct from both (x2,d2) and from the
outgoing arc of dy. Such an arc (ug,v2) exists: choose a leaf [ not
equal to the child of dy (if that node is a leaf); as all leaves are
added to the isomorphism last, the leaf is not in Y5, furthermore, [
is not above zy, and the incoming arc of [ is not equal to (z2, ds) nor

to the outgoing arc of dy. Applying the head move dy M} ()
creates the situation of the previous case (Case 2a), and we can use
2 more head moves to create a network with a tree node ¢y below po
which maintains the isomorphism of the upper part Ys. Hence we
can extend the isomorphism with a tree node ¢(x1) = co using at
most 3 head moves.

3. The node x5 is a leaf. Again, note that there is a tree node cs in
Ny \ Ya, and let its parent be t5. Note also that N2 has a reticulation
node 7o with incoming arc (sg,r2), which is movable to (p2,x2) unless
ro = po (if p2 = s2, then the other incoming arc (go,r2) is also movable,
and can instead be moved to (pe, z2)).

a) The nodes ps and ty are the same. The node co € Ny \ Vs is a

tree node and a child of po. Hence, we can immediately extend the
isomorphism with a tree node by setting ¢(x1) = co.

97



4.

HeEAD MOVES

98

b)

The nodes ps and 7o are the same. First note that if so = 9

(resp. g2 = t2), then the move po M (ta,co) (resp. p2 M

(t2,c2)) is valid, and does not affect the isomorphism between the
up-closed sets because xa, co € Ys. Furthermore, this move results in
a network in which the tree node ¢ is a child of po. Hence, after this
move, we can extend the isomorphism with a tree node by setting
¢(x1) = ca.

Now assume that sg,qo # to. As ro = po is in Y5 and c¢o is not in

Yo, we know cg is not above py. Hence, as (s2,72) is movable and

S9 # to, the move py (s2.p2), (t2,co) is valid. Then, as qo # to, the

moves py (2P2), (g2, x2) followed by po (a2,p2), (s2,c2) are valid as

well. In the resulting network, the tree node c¢s is a child of po, so
we can extend the isomorphism by ¢(x1) = c2 with a tree node after
at most three moves.

The nodes t2 and ry are the same. First apply the move

79 m (p2,x2). If po = qo, this results in a network where ¢z is

a child of py, so that we can extend the isomorphism by ¢(z1) = ¢o

with a tree node. Otherwise, we can apply the additional two moves

79 M (g2, c2) and ro M) (s2,x2), which also results in a

network where c¢o is a child of ps. Hence, we can extend the isomor-
phism by ¢(x1) = ¢o with a tree node after at most three moves in
this case.

The nodes s and t3 are different nodes and ro # pa, ta. First

move 79 m (p2,2). In the resulting network, the arc (pg,rs) is

movable, and the move ry m (t2,c2) is valid because cg is not

above py and pg # to. This makes (t2,72) movable, and we can apply

the move rq M (s2,x2) because sy # to and zo is a leaf, so it

is not above to. Now lastly, we restore the reticulation by moving
(s2,72) back to its original position. Hence in this situation, 4 head
moves suffice to make po the parent of a tree node cs, so that we can
extend the isomorphism by ¢(x1) = co with a tree node (Figure 4.8).

The nodes s2 and ts are the same and 79 # pa, ta. Note that
a child of ¢4 is a tree node and a child of sy is a reticulation. This
means that so = to is a tree node, as it has two distinct children.
As (po2,x9) is a leaf arc, we may apply the move ry % (p2, x2).

Now, the move ry M (s2,¢2) is valid, because py # s9 and co

is not above ps (otherwise co has to be in Ys, contradicting our
assumption). In the resulting network, we can move (s2,72) back
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B2
t So t
Y-
= T9
N2 \ YZ —
C9
o)
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Figure 4.8: The moves and incremented isomorphism for Lemma 4.18 Case 3d.
For nodes outside of the shaded region, it is not known whether they are in Y5.

to its original position. This all takes three head moves, and makes
sure that a child ¢y of ps is a tree node. This means we can extend
the isomorphism by setting ¢(x1) = ¢o (and if ro was in Ys, changing
d(d~(re)) = 7o to ¢(¢~1(re)) = o) using at most 3 head moves to
add a tree node. O

Lemma 4.19 ([Jan21] Lemma 22 Case 3). Let N1, Ny € N(n, k) with k > 0,
and let Y1 and Ys be non-emply up-closed sels of nodes of N1 and No such
that N1[Y1] g Ns[Ys]. Suppose each highest node of N1\ Y1 and of Na\ Ya is
a reticulation or a leaf, and suppose N1\ Y1 has a highest node x1 that is a

reticulation. Then there is a network Ni with up-closed set of nodes Yy such
that N1[Y1 U {z1}] ~ Nj|Yy] and dyeaa(Na2, Nb) < 2.

Proof. This means the two parents p; and g1 of z1 are in Y7, and consequently
have corresponding nodes p2 and g2 in Y. Both these nodes also have at least
one child not in Y3, say ) and ci.

1. The children of p; and ¢» are equal (i.e., b = c2). In this case, we
can immediately extend the isomorphism with ¢(xq) = cb.

2. Both nodes ¢} and cf are leaves. Note that because z7 is a reticula-
tion node not in Y7, there must also be a reticulation node ro € Ny not in
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Y,

Ys. Let its movable incoming arc be (s2,72). As pa # g2 we know that sg
can be equal to at most one of ps and ¢o, hence we can assume without

loss of generality that so # pa. Then the head move ry M) (p2,ch) is
allowed, because the leaf ¢ cannot be above sa. Now (p2,72) is movable

because the child of r9 is a leaf, and the move 7o M) (g2, cl) is valid

because po # 2 and ¢} is a leaf, and hence not above py. After this head
move, po and go have a common child zo := 79, and the isomorphism can
be extended with one reticulation by setting ¢(z1) = x2 using at most 2
head moves.

. Both nodes ¢} and cj are reticulations. Assume without loss of

generality that cb is not below c3.

a) The arc (p2,ch) is movable. Apply the move ¢} M) (g2, ),
which is allowed because ¢4 is not above pa, and pa # q2. Now po
and g2 have a common child 25 := ¢}, so we can add one reticulation
to Y7 and Y5 and extend the isomorphism by ¢(z1) = z2 using 1
head move.

b) The arc (p2,ch) is not movable. Because (p2,ch) is not mov-
able, ¢b must be the side node of a triangle (¢, ¢}, z), and therefore
its outgoing arc (ch, z) is movable. If ¢ = ¢, then we can extend the
isomorphism by setting ¢(z1) = ¢} without applying any move. Oth-

P
erwise, 4 is not above ¢ by assumption, so the move z M (q2,c)

is valid. After this move, the other incoming arc (¢, ¢}) of ¢§ becomes

b
movable, and we apply ¢ M) (z,¢d) to move it down. Now po
and ¢ have a common child o := 2, and the isomorphism can be
extended with one reticulation by setting ¢(z1) = x2 using at most
2 head moves (Figure 4.9).

Y% q2

Y D2 q2 P2 q2
> I \l
No\ Yy Ny \ Yy Yy .
ticg t & . Na\ Yo
z

7 v q

(&) (&) (&)

Figure 4.9: The moves and incremented isomorphism for Lemma 4.19 Case 3b.
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4. One of the nodes ¢} and ¢ is a reticulation, and the other is a
leaf. Assume without loss of generality that ¢b is a reticulation and c3
is a leaf. The subcases here work exactly like the previous subcases in
Case 3.

a) The arc (p2,ch) is movable. Apply ) M) (q2, cl), which is
allowed because ¢} is not above py, and ps # g2. Now p and go have
a common child zo := cg, so we can add one reticulation to Y7 and
Y, and extend the isomorphism by ¢(z1) = x2 using 1 head move.

b) The arc (p2,ch) is not movable. Because (p2, ch) is not movable,
ch must be the side node of a triangle, and therefore its outgoing
arc (ch, z) is movable. Because cf is a leaf, it is not above b, so the

(ch,2) qy - . . . &
move z 27 (qo,c5) is valid. Now the other incoming arc (¢, c;) of

P
c& becomes movable, and we can move it down with &§ 2, (2, c).

Now po and g9 have a common child x9 := z, and the isomorphism
can be extended with one reticulation by setting ¢(z1) = 2 using
at most 2 head moves. O

Lemma 4.20 ([Jan21] Lemma 22). Let N1, Ny € N(n,k) be networks with
n,k > 0 networks and Y1 and Ys be non-empty up-closed sets of N1 and Na
such that N1[N1| ~ ¢No[Ns]. Suppose N1\ Y1 contains t tree nodes and r
reticulations, then there is a sequence of at most 4t + 2r moves that transforms
Ny into a network N such that N ~ Nj.

Proof. We prove the claim by induction on ¢ and r. First we consider the base
case where ¢t = r = 0. In that case, |[N1\Y7| and | N2\ Y| consist of only leaves, so
N; and Nj are unlabeled isomorphic. Therefore dyeaq(N1, N2) =0 <4-0+42-0.

Now, we may assume that ¢ # 0 or r £ 0, so there exists a highest reticu-
lation or tree node in N7 \ Y7 and Ny \ Yo. We consider three cases depending
on the existence of these nodes.

1. There is a highest node x; of Ny not in Y; such that x; is a
tree node. By Lemma 4.18, there exists a network network N/, with an
up-closed set Yy such that Ni[Y; U{x;}] ~ N5[Y5] and dpead (N5, No) < 4.
As N1\ (Y1U{z1}) contains one tree node fewer than N;\ Y7, by induction
there is a sequence of length at most 4(¢t — 1) 4+ 2r from N to a network
N7 such that Ny ~ Nj. By applying the reverse of the 4 moves from
Ny to Nj in Ny, it follows that there is a sequence of length at most
4+4(t—1)+2r =4t + 2r from N; to a network N (via Ny') such that
N{ ~ NQ.
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2. There is a highest node 3 of N3 not in Y3 such that x5 is a tree
node. By symmetric arguments to the previous case—exchanging the
roles of N1 and No—we have that there is a sequence of at most 4t + 2r
head moves turning Na into a network NJ such that Ny ~ NJ. As all
head moves are reversible, there is also a sequence of at most 4¢ + 2r head
moves turning Np into a network Nj such that Nj ~ Na.

3. Each highest node x; of N7 not in Y; and x3 of N3 not in Y3 is
a reticulation node or a leaf.

a) There exists a highest node x; of N; not in Y; which is a
reticulation node. By Lemma 4.19, there exists a network network
N}, with an up-closed set Yj such that Ni[Y; U {z1}] ~ Nj[Y3] and
dhead(N5, No) < 2. As Ny \ (Y1 U {z1}) contains one reticulation
fewer than N \ Y1, by induction there is a sequence of length at
most 4(¢ — 1) +2r from Nj to a network Ny’ such that N{ ~ Nj. By
applying the reverse of the 2 moves from Ny to NJ in N7, it follows
that there is a sequence of length at most 2+ 4t +2(r —1) = 4t +2r
from Nj to a network Nj (via Ny') such that Nj ~ Nj.

b) There exists a highest node x2 of N2 not in Y2 which is a
reticulation node. Do the same as in the previous case, switching
the roles of N7 and Ns.

c) All highest nodes of N; not in Y; and of Ny not in Y5 are
leaves. In this case t = 0 and r = 0, and we are in the base case of
the induction. O

By setting Y1 = {p1} and Y3 = {p2}, and noting that a network in N'(n, k)
has n + k — 1 tree nodes and k reticulations (Observation 2.7), we get the
following bound on the distance between any two directed networks in the
same tier.

Lemma 4.21 ([Jan21] Lemma 22). Let N1, Ny € N(n,k) be networks with
n,k > 0 networks, then there is a head move sequence of at most 4n + 6k — 4
moves from Ny to a network Ni such that and Nj ~ Na.

Lemma 4.22 ([Jan21| Lemma 23). Let N ~ N’ € N'(n,k) with n,k > 0, then
dhead(Na N/) < 2n.

Proof. Because N ~ N’, the only difference between N and N’ is a permutation
of the leaves, say m = (I},... ,lhl)(l%, .. .,Z%Q) (1P .,lﬁq) to get from N to

N’ (where all lg are distinct). Note also that there is a reticulation in N with
a head-movable arc (¢,r), which is movable to the incoming arc of any leaf,
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except the other child ¢; of ¢, if it is a leaf. If ¢; = l%j, shift indices of the cycle
by one. A sequence of moves from N to N’ consists of the moves

o r L0, (p(th), Uh):

(Pt ),r) ; ;
o7 H—]> (p(lﬂj_l),lf]j_l);

(1)) ; ;
7 L (p(lﬁj_z)’lﬁj_2)§

o r P, (o). 1):
o r PN, (115, )

o _>(t’r) (s,c),

for each cycle m; (1 < j < ¢) of m, where ¢ = 7;(¢/), with ¢ the child of
rin N (if ¢ is a leaf in the j-th permutation, the child of r becomes 7(c))
and s is the other parent of r in N. This permutes the leaves in N by 7 so
that the resulting network is N’. The sequence is allowed, provided that no
two subsequent leaves in a cycle have a common parent (e.g., p(I7) = p(_;)).
There is always a permutation in which this does not happen. Indeed, suppose
this were to happen with leaves x and y, so that we have w.lo.g. n(z) = =,
m(x) = y and 7(y) = w. Then, redefining and applying © with 7(z) := y,
7(y) := w, and 7(x) := x results in an isomorphic network, unless z = y and
w = x, in which case we redefine 7 as 7(z) := z and 7 (y) :=y.

The worst case is attained when there are a maximal number of cycles in
the permutation, which happens when 7 consists of only 2-cycles. In such a
case there will be n/2 cycles of length 2. Each such a cycle takes four moves.
An upper bound to the length of the sequence is therefore 4(n/2) = 2n. O

A direct corollary of the previous two lemmas is the following theorem,
giving an upper bound on the diameter of head move space. To see this, note
that any head move is reversible, and hence we can concatenate sequences in
different directions.

Theorem 4.23 ([Jan21] Theorem 4). Let N, N’ € N'(n,k) with n,k > 0, then
dhead(Na N/) < 6n + 6k — 4.
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4.4 Internal labels

Like in the previous chapter, we now extend the results to internally labeled
networks. The techniques are quite similar, as we, again, use the structure of
ladder caterpillars to permute the tree nodes and reticulations, and we collect
all degree-2 nodes in one path.

4.4.1 Labeled isomorphisms without degree-2 nodes

Most of the proofs in this section follow essentially from the proofs in the
previous chapter by reversing the direction of all the arcs. Of course, this
only results in a network when there is only one leaf. Nevertheless, the results
generalize with a little extra care.

We will first show how to swap the labels of two reticulations using a con-
stant number of head moves in any network. After establishing this fact, we
turn to the labels of the tree nodes nodes. To permute these, we transform the
network into a ladder caterpillar. In those networks, we can swap the labels
of adjacent tree nodes using a constant number of head moves or a number of
head; moves linear in the number of leaves. Note that this gives a slightly worse
result than for tail moves, as, there, we were able to swap adjacent reticulations
using a constant number of tail; moves.

Reticulation labels

Lemma 4.24. Let N € N (n, k) be a network with two reticulations x and y la-
belled 1(x) and I(y). Then there is a network N' in which the nodes labelled I(z)
and I(y) are adjacent, such that dpeaa(N,N') < 1. If N is a ladder caterpillar
there is such a N’ with dheadl(N, N') < k.

Proof. If x is above y and y is above x, there is a cycle. Without loss of
generality, assume that y is not above x. One of the incoming arcs of = is head
movable (Lemma 4.2), and it can be moved to any arc adjacent to y using
one head move. This move creates a node labelled I(x) adjacent to y, which is
labelled with [(y).

Now suppose N is a ladder caterpillar. As all reticulations are on one path,
and the incoming arc of each reticulation that is not on this path is movable,
we may simply move the highest of the two reticulations down to the other
reticulation, along this path. The path has length at most k, so we can do this
using a sequence of at most k head; moves. O
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Lemma 4.25. Let N be an wnternally labeled network, and let x and y be a pair
of adjacent reticulations. Then, there is a sequence of at most 2 head; mowves
that swaps the labels of x and y.

Proof. The used sequences of head; moves are obtained by taking the moves
shown in Figure 3.7 and reversing the direction of all arcs. O

Lemma 4.26. Let N be a network, and x and y two reticulations. Then, using
a sequence of at most 4 head mowves the labels of x and y can be swapped. If
N is a ladder caterpillar, x and y can be swapped using at most 2k + 2 head;
mouves.

Proof. By Lemma 4.24, we can use one head move in N to make the nodes
labeled I(z) and I(y) adjacent. Then, using Lemma 4.25, the labels of these
two nodes can be swapped with at most two head moves. Lastly, the first move
is reversed. This results in a network isomorphic to N, where only the labels
of z and y are swapped.

Using the same strategy, two reticulations in a ladder caterpillar can be
made adjacent using k£ head; moves. Then they can be swapped with 2 head;
moves, and the first £ moves can then be reversed again. This results in swap-
ping z and y using at most 2k + 2 head; moves. O

Proposition 4.27. Let N be a network with k reticulations, and let © be a
permutation of the reticulation labels. Then there is a sequence of at most 4k
head moves that permutes the reticulation labels with m and leaves all other
labels the same.

IfN 15 a ladder caterpillar, this can be achieved using a sequence of alt most
2k2 + 2k head; moves.

Proof. Each permutation of n elements decomposes in at most n swaps. Each
of the swaps of two reticulation labels can be achieved using at most 4 head
moves or 2k + 2 head; moves in a ladder caterpillar (Lemma 4.26). Hence,
to permute the reticulation labels with 7, we need at most 4k head moves, or
2k? 4 2k head; moves in a ladder caterpillar. O

Tree node labels

In this subsection, we will work with ladder caterpillars. These networks have
all tree nodes in one path, which makes it easy to permute the labels of tree
nodes. Note that, unlike for the reticulations and tail moves, here we have tree
nodes that are outside of the ladder (i.e., the biconnected component) as well.
Hence, these need some special attention beyond the observation that we can
reverse the direction of all arcs.
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In the following two lemmas, we show when and how we can permute the
labels of the tree nodes. The first lemma shows that this cannot always be
done, and the second shows how it can be done when it is possible. The proof
of the first lemma is identical to the proof of Lemma 3.20 with the direction of
all arcs reversed.

Lemma 4.28. Let N be a network in which the child ¢ of the root is labelled
l(c). Then, after any head move in N, the child of the root will still be labelled

l(c).

Lemma 4.29. Let N € N(n,k) (k > 0) be a ladder caterpillar with two
adjacent tree nodes x and y. Then, using a sequence of at most 8 head moves
or 2n + 6 head; moves, the labels of x and y can be swapped, except if x or y
15 the child of the root.

Proof. Without loss of generality, we assume that x is above y. First suppose
x and y are both part of the ladder, then the sequences shown in Figure 3.8
can be used to swap the labels of z and y with at most 5 head; moves, except
if z is the child of the root. Now suppose that y is in the caterpillar, then the
the sequence in Figure 4.10 can be used to swap the labels of x and y using at
most 8 head moves, or 2n 4+ 6 head; moves. O

Now we know how to swap labels of tree nodes in a ladder caterpillar, we
can permute all tree node labels of such a network.

Proposition 4.30. Let N € N(n, k) be a ladder caterpillar, and let 7 be
a permutation of the tree node labels. Then there is a sequence of at most
8(n+k —1)? head moves, or (2n+ 6)(n + k — 1)? head; mowves, that permutes
the tree node labels with m and leaves all other labels the same, except if the
child of the root c is labelled I(c) and l(c) # w(I(c)).

Proof. Note that all n + k — 1 tree nodes are in one path, and that we can
swap adjacent labels of tree nodes using at most 8 head moves or 2n 4 6 head;
moves (Lemma 4.29). Any permutation of m elements of a sequence can be
decomposed into at most m? neighbour swaps. Hence, to permute the tree node
labels in a network, we need at most 8(n + k — 1)? head moves, or (2n +6)(n +
k —1)2 head; moves. O

Using the results above, we can permute all labels of a network using head
moves. Hence, we can find a sequence between any two internally labeled
networks (with only a few exceptions).

106



4.4. Internal labels

U Uy 1 U U U U 1 Uy 1
Z N
T —
Figure 4.10: The sequence of 8 head moves, or 2n + 6 head; moves used in
Lemma 4.29. The first row shows the high level idea of the sequence: first
move a reticulation between the tree nodes, then use the second row to swap
the labels of the tree nodes, and, lastly, move the reticulation back to where it
came from. Moving the reticulation takes at most n head; moves, or one head

move, and the second row shows a sequence of 6 head; moves. If u = v, the
last two moves in the sequence of the second row are not necessary.

Theorem 4.31. Let N1, N, € N(n k) be networks. If l1(c1) = la(co) for ¢

and ¢y the children of the roots of N1 and Na, there ezists a head move sequence

of length at most 2 diamyeaq(n, k) + 4k +8(n+k —1)? and a heads sequence of

length at most 2 diamyeaq, (n, k) + 2k? + 2k + (2n+6)(n+k— 1)2 from Ny to
. Otherwise, there is no sequence from Ny to Ny.

Proof. We first observe that the labels of ¢; and ca cannot be changed using
head moves (Lemma 4.28). Hence, there is indeed no sequence between Nj and
N2 lf ll(Cl) 75 ZQ(CQ).

In all remaining cases, Theorems 4.23 and 4.16 show that for any network
M € N(n k), we can turn Ny and Ny into networks N1 and N2 such that
N{ ~y1 N~y M. In particular, we may choose M to be a ladder caterpillar
by Lemma 2.21. Then, we can permute the labels of the tree nodes using at most
8(n+k—1)? head moves or (2n+6)(n-+k—1)? heads moves (Proposition 4.30).
Lastly, using at most 4k head moves or 2k? 4 2k head, moves, we can permute
the labels of the reticulations (Proposition 4.27). Combining these sequences,
we get a sequence from N to N of the desired length. O

107



4. HeAD MOVES

Like the bound for tail moves, the upper bound on the head move diameter
for internally labeled networks contains a quadratic term. As mentioned before,
this quadratic term disappears for rSPR moves, where we use a combination of
tail and head moves (Chapter 5). As for tail moves, it is unclear whether this
quadratic term is necessary.

4.4.2 Degree-2 nodes

In this section, we present a procedure to move all degree-2 nodes of a network
to one arc. Thus, combining this with the previous results, we show how to
find a sequence between any pair of networks in Nhead(n, k,m), with a some
exceptions related to the root path.

For simplicity, we restrict our attention to non-local head moves. This is,
most importantly, because distance-2 head moves suffer from a similar problem
in the presence of degree-2 nodes, as distance-1 head moves did in their absence
(Figure 4.11).

X1 X1

1 2 3 1 2 3

Figure 4.11: Two networks in N(2,1,m) not connected by a sequence of
head,,+1 moves. The m degree-2 nodes z1,...,z, form a barrier which pre-
vents any distance-(m— 1) move that involves a part of the network above these
nodes.

Networks with one leaf are treated separately, as their spaces are tightly re-

lated to tail move spaces. In fact, we have an isomorphism space Nhead(l, k,m) ﬁ

Niail(1, k, m), where ¢(N) is the network obtained from N by reversing the di-
rection of each arc. Hence, by reversing the direction of all arcs, Theorem 3.35
fully characterizes Nyead(1, k, m) as follows.

Theorem 4.32. For allk > 0 except k = 2, two networks N, N’ € Nhead(l, k,m)
are in the same component iff their root paths are labeled isomorphic. For k = 2,
N,N' e NhEad(l,Q,m) are in the same component iff their root paths are la-
beled isomorphic and either there is a subdivided arc besides the root arc and
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the arc between the two tree nodes, or there are no such subdivided arcs and the
subdivided arcs between the two tree nodes in both networks are isomorphic.

We can now focus on spaces of networks with at least two leaves.

Lemma 4.33. Letn > 1,k >0, and N € N(n, k,m). Then there is a sequence
of at most m head mowes that turns N into a network N’ without parallel paths.

Proof. For each pair of parallel paths, move a bottom arc to a leaf that is not
the child of the bottom node of the parallel paths. As each parallel path needs
at least one degree-2 node, there are at most m pairs of parallel paths.

O

Lemma 4.34. Let N be a subdivided network without parallel paths, and sup-
pose there is a head move changing S(N) into N', then there is a head move
changing N into N such that S(N') = N'.

Proof. Suppose the move changing S(N) into N’ is v LCON (z,y). Let w be
the last node on the path between w and v, and z be the first node on the path

between z and y in N. Then the move v M (z,z) is valid, and results in a

network N’ with S(N') = N'. O

The above two lemmas take care of the tree and reticulation labels. Indeed,
we could already move those anywhere in networks in N(n, k), and with the
above two lemmas, we can use those moves on subdivided networks as well. To
move and permute the degree-2 nodes as well, we do the following. First, we
make a movable arc, which can be moved essentially anywhere in the network.
Then, we use this arc to collect the degree-2 nodes in order, like we did in
the proof of Lemma 3.39 for degree-2 nodes using tail moves. To collect the
degree-2 nodes without changing the underlying suppressed network, we must

first make sure this underlying network has no parallel arcs.

Lemma 4.35. Let n > 1 and N € N'(n, k,m) be a subdivided network without
parallel paths whose root path ends in the node x. Then there is a sequence of
at most 3 head moves to a network N’ without parallel paths in which there is
a subdivided triangle (-x,y, z-) with (x,z) not subdivided.

Proof. Create a subdivided triangle at the top by moving the head z of a highest
reticulation arc up to the root at most twice. As this is possible in S(INV) already,
this can be done in N without introducing parallel paths. After these moves,

the last arc in the path (z,..., z) is movable, and so is the other incoming arc
(w, z) of z. By moving (w, z) up to the highest arc in the (z,..., z) path, we
create the desired network. O
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Lemma 4.36. Let N € ./\/(n, k,m) be a network in which the root path consists
of one arc (p,x), and there is a subdwided triangle (-z,y,z-) with (x,z) not
subdivided. Let vy,...,vy be any ordering of the degree-2 nodes of N, then
there is a sequence of at most 2m + 2 moves to a network N’ with a path

(2,01, ..., 0m,2) and S(N') = S(N).

Proof. First, if (z,y) is subdivided, we use a sequence of three moves to make
sure both (z,y) and (z, z) are not subdivided. Let ¢ be the child of z, then this
can be done using the sequence z M (w,y), z (w,2) 27 (y,c¢), and 2z M) (z,v),
where (z,v) is on the path from x to z.

Now, we add each degree-2 node to (z, z) in order, exactly as for tail moves:

Assume the network already contains the path (z,v1,...,v;, z), then we first do
z M (p,viy1) and then z E’f)_) (Vit1,-). After these two moves, the network
contains the path (z,v1,...,v;11,2). Hence, by doing these two moves for each
i € [m] and then moving (v, 2) back to its original position by z (om,2), (y,-),
we obtain a network N’ with the desired properties. O

Theorem 4.37. Let n > 1 and Nl,Ng € N(n,k,m) be two networks with
empty root paths ending in nodes with the same label, then dpeaq(N1, N2) <
diamypeaq(n, k,0) + 6m + 10.

Proof. First, remove all parallel paths from both networks using at most m
head moves per network (Lemma 4.33). Let us denote the resulting networks
as N and N¥. Now, using at most diampeaq(n,k,0) moves, we can change

N? into a network N such that S(N?') iX\X@) S(N?) (Lemma 4.34 and
Theorem 4.31).

Then, create a subdivided triangle at the top of each network, where the
long path consists of one arc. This can be achieved using at most 3 head moves
in each network and without re-introducing parallel paths (Lemma 4.35). By
using the ‘same’ paths (i.e., mapped to each other by ¢), we can additionally
make sure that the resultlng networks Nt and N} satisfy S(N?) ~ 0\ x(2) S(NY).

In the resulting networks, all degree-2 nodes can be collected in any order
on the long path of the top triangle using at most 2m + 2 head moves in each
network. By Lemma 4.36, this can be done without changing the underlying
suppressed networks, so the resulting networks are labeled isomorphic. The
total number of head moves used is diamyeaq(n, k,0) + 6m + 10. ]
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4.5 Conclusion

In this chapter, we have shown that all spaces Nyead(n, k) and Nyead, (n, k) are
connected. The constructive proofs that these spaces are connected also give
upper bounds for the diameters of these spaces of 6n 4+ 6k — 4 for head moves
and 12n? + 10kn + 10k? + 52n + 2k + 13 for heads moves. This bound for
head moves is asymptotically tight, as we will see in Section 5.2.3. For all other
(local) head move spaces, we have no lower bounds, so we do not know whether
our upper bounds for these spaces are asymptotically tight.

Note that the local version of the head move we have considered is the
distance-2 head move, and not the distance-1 head move. This is because no
space of distance-1 head moves is connected. It may still be interesting to
investigate the connected components of Nheadl(n, k), in order to learn more
about the often used rNNI move as well.

Like for tail moves, these results for head moves also extend to inter-
nally labeled networks, with a few exceptions. All spaces Nhead(n k,m) and
NheadQ(n k,m) are disconnected. However, the connected components of the
spaces Nhead(n k,m) and /\/head2 (n, k,0) can easily be characterized by the se-
quence of nodes in the root path: two networks are in the same component
if their root paths are labeled isomorphic. In particular, when there are no
degree-2 nodes there is a connected component for each label in X*. We have
also computed the diameters of the components of all these spaces.

Note that we have not characterized the connected components of the spaces
Mleadz(n, k,m) for m > 0. This is because these spaces suffer from the same
problem as Mpead, (1, k). It is an open question whether distance-(m+2) moves
provide sufficient connectedness (with one component for each root path struc-
ture).
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5. RSPR aAND RNNI MoOVES

The previous two chapters concerned tail moves and head moves as separate
types of moves. Originally, this distinction was only made as a convenient way
to introduce rSPR moves in [GvIJT17b]. In this chapter, we return to the
original rearrangement move for directed networks, the rSPR move and its
local variant, the rNNI move.

As rSPR moves consist of tail moves as well as head moves, the question
of connectedness of rSPR and rNNI spaces has already been answered in the
previous two chapters—in fact, it has been answered several times, using inde-
pendent proofs.! For internally labeled networks, there were some exceptions
for connectedness for tail and head moves separately. We will show that these
exceptions disappear when we use the union of these moves.

Although the question of connectedness can be answered quickly using
the results from the previous two chapters in fact, we have NMgpr(n,k) =
Niait(n, k) U Npead(n, k)—we can still reconsider the diameter and distance
bounds. It is far from clear that using only head moves or tail moves is close
to being as efficient as using both at the same time. Hence, in this chapter, we
will study the interplay between tail and head moves.

First, we will show that using both moves is not much more efficient than
using either move separately. We show this by proving that the tail move
distance and the head move distance between two networks (with n > 1) can
differ by at most a multiplicative factor of 16. In these proofs, we give explicit
methods to replace any tail move by a sequence of at most 13 head moves
(Section 5.1.1), and any head move by a sequence of at most 16 tail moves
(Section 5.1.2). Note that this section only concerns networks without internal
labels.

Then, in Section 5.2, we will return to diameter bounds for rSPR and rNNI
moves. Although the tail and head move diameters directly give upper bounds
for the rSPR diameter, it is easy to improve on these bounds by adapting
the proof for the tail move diameter to include head moves as well. This
modified proof handles lowest reticulation nodes using one head move instead
of a sequence of several tail moves (Section 5.2.1).

For upper bounds for the diameters of rNNI spaces, we employ a technique
reminiscent of the technique used for distance-2 head moves (Section 5.2.2). In
this technique, which was first used for undirected networks in [JK19], each
network is first transformed into a highly tree-like network, whose underlying
tree is then changed using a small number of moves. In the head move proof,

'Tt must be noted that [GvIJT17b] were the first to provide a proof for this connectedness
result. However, as we will see in Section 6.1, their proof was based on a false lemma, so the
first correct proof was given in [JJET18].
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changing the tree required a quadratic number of moves, whereas, in the rNNI
proof, changing the tree requires a linearithmic number (i.e., O((n+ k) log(n +
k))) of moves. In the final part of this section (Section 5.2.3), we also prove
several lower bounds for the diameters of network spaces.

Like in the last two chapters, the final part (Section 5.3) of this chapter
concerns spaces of internally labeled networks. We show that these spaces are
all connected for rNNI moves. This is mainly due to the fact that the root path
can be rid of degree-2 nodes using tail moves, and, similarly, all degree-2 nodes
on a leaf-paths starting at a reticulation can be moved up using head moves.

5.1 Rewriting head and tail moves

In this section, we show that each tail move can be replaced by a sequence of
at most 13 head moves, and each head move can be replaced by a sequence of
at most 16 tail moves.

5.1.1 Tail move replaced by head moves

Here, we show how to replace a tail move by a sequence of head moves (The-
orem 5.7). The proof works by case distinction, where the main cases repre-
sent different types of tail moves. The first two lemmas prove that we can
replace certain types of distance-1 tail moves: in Lemma 5.1, we replace a
distance-1 tail move between the two outgoing arcs of a tree node, and in
Lemma 5.2, we replace a distance-1 tail move between the two incoming arcs
of a reticulation. Then, we turn to the remaining cases, where the tail move
(xp,u,ar) ﬂ)_) (xR,ar) is such that aj, # ar and (w.l.o.g.) ar, is not above
ar (Lemma 5.5). This case is split up into two lemmas, depending on where
the head-movable arcs are located in the network in relation to ar (Lemmas 5.3
and 5.4).

In this section, unless stated otherwise, each move is a head move and
movable means head-movable.

Lemma 5.1 ([Jan21] Lemma 11). Let n,k > 0 and N, N’ € N(n,k) such that
the tail move (z,u,ar) ﬂ)_) (z,aR) turns N into N', then dyeaa(N,N') < 4.

Proof. To prove this, we have to find a reticulation somewhere in the network
that we can use, as all of u,v,x,ar, and ag may be tree nodes.

Note that there exists a head-movable reticulation arc (¢,7) in N with ¢ not
below both ar and ap. Indeed, if there is a highest reticulation node below
ay, and apg, then one of its incoming arcs is movable (Lemma 4.2) and this arc
cannot be below both ar and ap. Otherwise, if there is no such reticulation,
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then there is a reticulation r that is below at most one of ay and ag, and the
same holds for its incoming arcs, one of which is movable (Lemma 4.2).
First, assume that t = x. Because u is a tree node and r is a reticulation,
we have r # u. This means that r = apr, and (x,ar) is movable. We apply
the move (s,ag, 2) M) (u,ar), which is allowed because x # wu, ar not
above x and (t,7) = (z,ar) is movable. Now, we can obtain N’ by applying
ap (R), (s,2).
Now, assume that x # t. Suppose w.l.o.g. that (¢,7) is not below ar, then
we can use the following sequence of 4 moves except in the cases we mention
in bold below the steps. For this lemma, we call this sequence the ‘normal’
sequence (Figure 5.1). The validity of each move is checked using Lemma 2.45.
o (s,1,2) (&), (u,ar), keeping (x,ar) except if @ = t. This can be done
if (¢,r) is movable, which it is by choice of (¢,7); t # u, but we note that
t = w may occur; and, ay, is not above ¢, which is true by choice of (¢, 7).

RGN (x,aR), creating the arc (t,ar), because (z,ar) # (t,r) and
(x,ar) # (r,ar). For this move, note that (u,r) is movable, except when
(t,ar) € N; u # x as these nodes are distinct in the original network;
and ap is not above u, as it is not above x.

o r @), (t,ar). The arc (x,r) is movable because v # ap (otherwise the
tail move would not be not valid); ¢ # x, as we have assumed so for the
first move; and ay, is not above z, as ay, is above z in N.

o7 ﬂ) (s,z), which moves r back to its original position. This move is
allowed because it results in N’.

X

Se b T Se o WT Se ot Sy ot ,T Se St ,T
z z z z z
U u ré u (]
T
r
ay, *vU ar arp, *vU ar ajy, *vU ar aj, *vU ar ay, *vU ar

Figure 5.1: The “normal” sequence of head moves simulating a tail move in
Lemma 5.1.

We now look at the situations where t = z, t = u, or (t,ar) € N separately.
We will split up in cases to keep the proof clear. Recall that (¢,7) is a movable
arc in N.
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1. t = u.

a) r = ar. This case can simply be solved by the following sequence
of 2 moves from N to N': (s,r,z) (), (z,ar) and r (@), (s,2).

b) r = v. To solve this case, first apply (s,r, 2) &), (x,aR), creating a

triangle at x. Now reverse the triangle using r LCIIN (t,ar). Lastly,
we obtain N’ by moving r back to its original position using r ﬂ)

(s,z). This is a sequence of 3 head moves.

2. t # u. Note that we can assume that (u, ay) is not movable, as, otherwise,
we are in the previous case. Because t # u, we may also assume that
(t,ar) € N. Otherwise, this would not be a special case, and we can
use the sequence of moves from the start of the proof. Hence, there is a
triangle (t,ar,c(ar)), € N.

a) t is below ag.

i. t is below v. Since t is below both ar and v, there is a highest
reticulation s strictly above ¢ and below both ar and v. As
s is strictly above t, it is strictly above ay. Therefore, we are
either in the ‘normal’ case, or in Case 1b of this proof, where
some incoming arc (-, s) of s is head-movable. This means this
situation can be solved using at most 4 head moves.

ii. t is not below v. As (¢,ay) is a reticulation arc in the triangle,

it is movable, and, because t is not below v, the head move
(t,ar=r)

U ﬂ (z,aR) is still allowed, because v is not above x. As

(u,c(ar)) is movable in this new network, we can simulate this

tail move using the 2 head moves (t,c(ar), 2) M (x,aR)

(z,c(ar))

r (u,v) is allowed. After this move, the tail move

and c(ar,) (t,z) (Case la). Afterwards, we can put the
triangle back in its place with one head move r &), (x,c(ar)),
which is allowed because it produces N’. The resulting sequence

has length at most 4.

b) t is not below agr. Because ¢t # =, we know that (t,ar) ¢ N.
Therefore we can do the ‘normal’ sequence of moves from the start
of this proof in reverse order, effectively switching the roles of af,
and ar. Because we use the ‘normal’ sequence of moves, this case
takes at most 4 head moves. O

To prove the case of a more general tail move, we need to treat another
simple case first.
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Lemma 5.2 ([Jan21] Lemma 12). Letn > 1, k > 0, and N, N’ € N'(n, k) such
that (xp,u,r) (uv), (xR,7) turns N into N', then dypeaq(N, N') < 4.

Proof. Let z be the child of 7, and note that not all nodes described must
necessarily be unique. All possible identifications are 7, = xg and v = z, other
identifications create cycles in either N or N’. First, note that if z;, = xR, then
N ~x N’. Hence we can restrict our attention to the case that xj # xg. To
prove the result, we distinguish two cases.

1. z # v. This case can be solved with the following two head moves:

(zr,r)

r (xp,u) and r JC2ZUN (u,z). The first head move is allowed

because v # z, so (xg,7) is head-movable; xr # zr; and u is not above
rgr because both its children aren’t: z is below ag, and if v is above xRy,
the tail move N — N’ is not allowed. The second head move is allowed
because it produces the valid network N’. Hence the tail move can be
simulated by at most 2 head moves (Figure 5.2).

Xy, xr

VANV,

Figure 5.2: The two moves used to simulate a tail move in Case 1 of Lemma 5.2.

2. z = v. The proposed moves of the previous case are not valid here,
because they lead to parallel arcs in the intermediate network. To prevent
this, we create the situation of the previous case by applying v ﬂ) e,
where e # (v, ¢) is an arc not above v (hence, neither above z, nor above
xR). After this move, the tail move u ACON (zg,r) is still allowed and can
therefore be simulated by 2 head moves as in the previous case. Finally,
moving (u,v) back with v LCON (r,c) results in N’. This sequence of

moves uses 4 head moves (Figure 5.3).

It remains to prove that an arc e with the required properties exist (i.e.,
not above v and excluding (v,c)). Because n > 1, there is a leaf [ # ¢
whose incoming arc (p,l) is not above ¢ and not equal to (v,c). Hence
this arc e = (p, () suffices as a location for the first head move.
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Xy

Figure 5.3: The four moves used in Case 2 of Lemma 5.2. The middle depicted
move is the tail move of Case 1, which can be replaced by two head moves.

We conclude that any tail move of the form (zr,u,r) (uv), (xR, r) can be

simulated by at most 4 head moves. O

Lemma 5.3 ([Jan21| Lemma 13). Letn > 1, k > 0, and N,N' € N(n, k) such
that (xp,u,ar) M (xR,ar) turns N into N'. Suppose ay # ag, ar, is not
above agr, and there exists a movable reticulation arc (t,r) not below ar, then
dhead (N, N') < 7.

Proof. Note that v cannot be above either of x; and xr. The only possible
identifications within the nodes ay,agr,zr, xR, u, and v are a;, = ar, r;, = TR
and ar = z1, (but not simultaneously), all other identifications lead to parallel
arcs, cycles in either N or N’, a contradiction with the condition “ay, is not
above ag”, or a trivial situation where the tail move leads to an isomorphic
network. The first of these two identifications have been treated in the previous
two lemmas, so we may assume ay, 7 ag and g 7 xgr. We now distinguish
several cases to prove the tail move can be simulated by a constant number of
head moves in all cases.

1. (t,aR) gN

a) r = xgr. As (t,7) is movable and not below ay, or v, we may apply

the head move (s,r,2) &), (xr,u). As (zr,r) is movable in the

resulting network, we may move its head down with r M) (u,ar).
Since u # s (otherwise the original tail move was not allowed), the
head move r (47, (s,ar) is now valid. Lastly, r (sm), (t,u) results
in N'.

b) r # xr. If t = zp then (t,ag) € N, which contradicts the as-

sumptions of this case. Hence, t # xg, and the move (s, 7, 2) ﬂ)
(zgr,apr) is valid in N. Because neither ay nor v can be above xp

and xy # xr, we can now apply the move r (@rr), (xp,u). Now, if
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Xy, IR 4 S X, IR t S xr;, « ol S
Y [ [
z z z
T
U U U
T
ary, v apr ary, v apR ar, v aR\

r

ar,

r # ar, and u # t or r # v, we apply the moves r M (u,ar) which

is allowed because it moves a movable head down, and r "), (t,aR).
Ifu=1tand r = v or r = ar, these moves are not valid, and we
simply skip these moves. Lastly, we move r ﬂ (s,2) to arrive at
N’. Hence the tail move of this situation can be simulated by at

most 5 head moves.

T, X ol oS
(

T, X t s T IR t s
( Y
z z
) U
T
v G,R\ ay, v apR ay, (% ar

Figure 5.4: The five moves used to simulate a tail move in Case 1b of Lemma 5.3.

2. (ty,ar) € N. Again (t,r) is the head-movable arc. Let z be the child of

120

r and s # t the other parent of r.

a) z = apg. First note that, in this case, we must have either zp =t
or xg = r. Otherwise, one of the arcs (¢,ar) and (r, z) is not in N.

i. xg = t Because r and t = xp are distinct, ap = z is a
reticulation node with movable arc (t = xg,z = ag). Hence,
this case can be solved easily with the following 3 head moves:

(r,z,c) ﬂ (xp,u), z M (u,ar), and 2z M} (r,c).

ii. g = r Note that the tail move u %), (t,ar) is also allowed

because (u,v) is tail-movable, v # ar and v not above ¢ (oth-
erwise the tail move to (r,z) is not allowed either). This tail
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move is of the type of the previous case, and can be replaced by
at most 3 head moves. In the resulting network, the tail move

u

(u,v)

(r,z) is of the type of Lemma 5.2, which takes at most

4 head moves to simulate. We conclude any tail move of this
type can be simulated using at most 7 head moves.

b) z # ag.
1. apr ;é T.
A, xp = t and v # r. The sequence for this case is much

ii.

like the sequence used in Case 2(a)i. The tail move u ACON

(xR, agr) can be replaced with the 4 head moves (s, r, 2) LGN

(xp,u), r M (u,ar), r M (t,agr), and r m (s, 2).

. xp = tand v = r. As ay is not above xg, the following

sequence of 4 head moves suffices: v m (xp,u),v M
(u,ar), v M (zRr,ag), and v M) (u, 2).

xr # t and arp # s. Because ag # s, the arc (zg,ag) is

movable. Also, because xp # xr and wu is not above xpg,

the move (t,ar,c) TR, (2, u)is valid. Now (21, ag) is

movable, so the downward head move agr M) (u,ar) is

allowed. Finally, the head move agr M (t,c) results in

N’. Hence, in this case we need at most 3 head moves.

. xp # t and ap = s. As ap is a child of ¢t and u has

children v and ajy. both of which are distinct from ag, we

know t # u. Hence, the following sequence of 5 head moves

suffices: r L’r) (u,ar), s _>(xR’s) (zp,u), s _>(”’5) (u,r),
s ﬂ (t,z), and finally r ﬂ) (s,2).

ar = r. In this case either zgp =t or xg = s.

A.

xr = t. This case is easily solved with 3 head moves:
ar (zr.ar) (zp,u) , ar (zr.aR) (u,ar), and ap (w.ar)

(s,2).

. xrp = s. If (s,r) is movable (i.e. there is no arc (¢, z)),

then we can relabel t <> s and use the sequence of the
previous case. Otherwise, there is an arc (t,z) and we

use the following sequence of moves: ap M (u,ar),

(t,z,c) (@r2), (xp,u), z (or2), (u,agr), z (w2), (t,c), and

ap LR, (z,¢). The tail move of this situation can there-
fore be replaced by at most 5 head moves. O
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Lemma 5.4 ([Jan21] Lemma 14). Letn > 1, k > 0, and N, N’ € N'(n, k) such

that (xp,u,ar) M (xR,aR) turns N into N'. Suppose ay # ag, ar, is not

above ar, and all movable reticulation arcs are below ag, then dpeaq(N, N') <
13.

Proof. Because the networks have at least one reticulation, we can pick a high-
est reticulation 7 in V. As each reticulation has at least one movable incoming
arc, there is a movable arc (¢,7) in N. As each movable reticulation arc is below
ag, so is (t,r). Let us denote the root of N with p, the child of r with z, and
the other parent of r with s # ¢t. We now distinguish two cases:

1. xgp # p. Because zpr is above ap, it must be a tree node, so it has
another outgoing arc (xg,b) with b # ar not above t: if b were above t,
there would have to be a reticulation above r, contradicting our choice of
.

a) r # b. In this case, the move r ACN (zg,b) is valid in both N and
N’—using the natural map between nodes of N and N’ induced by
the tail move resulting in networks M and M’ such that (xg,r) is
movable in M. Now, by relabelling ¢ as xr, we can see that there is
one tail move between M and M’ of the same type as Case 2(b)i of
Lemma 5.3, which can be simulated using at most 5 head moves. To
see this, take r as the relevant reticulation with movable arc (t,7)
and consider the tail move u (), (xR, ar) producing M’. This case
can therefore be solved with at most 5 + 2 = 7 head moves.

b) r=1>band (¢,z) € N. In this case, (xg,r) is movable, and not
below ag, contradicting our assumptions.

c) r =>band (t,z)) € N. Because N has at least two leaves,
there must either be at least 2 leaves below 7, or there is a leaf
not below r. Let [ be an arbitrary leaf below 7 in the first case,
or a leaf not below r in the second case. Note that the head move
(r,z,c) ﬂ (+,1) is valid, and it makes (zg,r) movable. Now the
tail move u (u_“)> (xR, ag) is still allowed because v # ag, v is not
above zg, and (u,v) is tail-movable. For this tail move we are in a
case of Lemma 5.3 because (xg,r) is not below ar. Hence, this tail
move takes at most 7 moves. After this move, we can do one head

move z M) (r,c) to put (t,z) back, so this case takes at most 9

moves.
2. xp = p. Let y,z be the children of ar. Now first do the tail move
U M (ag,z). This is allowed because ap is the highest tree node. The
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sequence of head moves used to do this tail move is as in the previous
case. Note that N’ is now one tail move away: u (4%, (ar,y). This is
a horizontal tail move along a tree node as in Lemma 5.1, which takes
at most 4 head moves. As the previous case took at most 9 head moves,
this case takes at most 13 head moves in total. ]

Lemma 5.5 ([Jan21| Lemma 15). Letn > 1, k > 0, and N,N' € N(n, k) such

that (xp,u,ar) ﬂ (xRr,aR) turns N into N'. Suppose ar # ar and ay, is

not above ag, then dpeaq(N, N') < 13.
Proof. This is a direct consequence of the previous two lemmas. O

Lemma 5.6 ([Jan21]| Lemma 16). Letn > 1, k > 0, and N,N' € N(n, k) such

that (xp,u,ar) ﬁf)_) (xRr,aR) turns N into N'. Suppose ar # ar and ay, is

above ag, then dpeaq(N, N') < 13.

Proof. Note that in this case ag is not above ay, in N’. Swapping the labels
xr, < xr and ay, < ar we are in the situation of Lemma 5.5 for the reverse
tail move N’ to N. This implies the tail move can be replaced by a sequence
of at most 13 head moves. O

Theorem 5.7 ([Jan21] Theorem 2). Let n > 1, k > 0, and N,N' € N(n,k).
If deait (N, N') < 1, then dneaq(N, N') < 13.

Proof. This follows from the previous lemmas. O

5.1.2 Head move replaced by tail moves
In this section, we show how to replace a head move (zr,v,ar) M (xR, aR)
by a sequence of tail moves (Theorem 5.16). In the proof, we first show how to
efficiently replace downward head moves by tail moves (i.e., when ay, is above
xr). This is then used repeatedly to simulate arbitrary head moves.

Unless stated otherwise, each move in this section is a tail move and movable
means tail-movable.

Distance-1 head moves

We first recall a result from [JJE118]: any distance-1 head move can be replaced
by a constant number of tail moves, so the following result holds.

Lemma 5.8 ([JJET18] Lemma 3.3). Let n > 1 and N,N' € N(n,k) such

that (zr,v,ar) M (xR, aRr) is a distance-1 head move that turns N into N'.

Then dian (N, N') < 4, except if N 2 N’ and (n, k) = (2,1).
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Furthermore, this lemma has the following special cases, for which we repeat
the proofs here, as we will use them repeatedly in the proofs of this section.

Lemma 5.9 ([JJET18] Lemma 3.3 Case c). Let NN’ € N(n,k) such that
(xp,v,ar) LCON (xRr,aR) turns N into N'. Suppose that ap = xr and xR is a

tree node, then di,y(N,N') < 1.

Proof. Let ¢ # apr be the other child of zg, then the tail move zg m (xp,v)
suffices. ]

Lemma 5.10 ([JJET18] Lemma 3.3 Case a). Let (n,k) # (2,1) and N,N' €
N (n, k) such that (z,v,ar) ICON (x,ar) turns N into N', then din(N, N') <
4.

Proof. Writing p for the parent of x, we distinguish two cases: u # p and u = p.
Except for this identification, all nodes in {p, u,v, z,ar,ar} must be distinct
the only other identification is a;, = ag, but in that case the head move results
in an isomorphic network.

1. u # p. In this case, we can use the sequence of two tail moves x (@ar),

(v,ar) and = (@ar), (p,v) (Figure 5.5). The intermediate network con-
tains no parallel arcs as ar # ar and v # p, and it has no cycles for
the following reason. If the intermediate network were cyclic, then the
(directed) cycle must involve the arc (z,ar), and there is a path from ag
to x. This implies there is a path from agr to v, which then implies there
is a path from ap to either u or to p. This path must also exist in the
networks before and after the head move. This leads to a contradiction,
because, then, one of these networks already contains a cycle, making the
head move invalid. Hence, this case can be solved using at most 2 tail

moves.
p p
U AT T
v — v
ag, ar ar, aRr

Figure 5.5: The sequence of tail moves needed to simulate the head; move in
Lemma 5.10 Case 1.
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2. u = p. Note that N contains the triangle (p,z,v). In this situation,
we cannot directly use the same sequence as before, since this sequence
would create parallel arcs. We can solve this problem in two ways.

a) There is a tail-movable arc (s,t) not above v. Instead of
moving arc (z,ar) directly, we first subdivide it with s by mov-

ing (q,s,¢) ﬂ (x,ar). Then, we can do the sequence of moves

depicted in Figure 5.6 and finally move s back with s % (g, c).
Barring the addition of the extra tail, the sequence of moves is quite
similar to the moves in case 1.

b) The root is not a parent of p. The long arc of the triangle (p, v)

is movable, and it can be moved to the root with (r, p, x) M (p,-).
Now, we are in the situation of case 1. Do the sequence of moves for

that case, and move the (p,v) back with p M) (r,z) to obtain N’.

Figure 5.6: The sequence of tail moves used to simulate the head; move in
Lemma 5.10 Case 2. The extra tail s of arc (s,t) is used in the sequence of

moves: (g, s, ¢) (o), (x,aRr), s (sar), (v,ar), s (sar), (z,t), and s (sb), (g,c).
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Option 2b is possible if there is at least one vertex above the triangle in
addition to the root, and option 2a can be used if there is a tree node not
above v.

There are two networks to which neither of these conditions apply. The
first is the network on one leaf with two reticulations. In this network
no head move leads to a different (non-isomorphic) network. The only
non-trivial case is the excluded network where (n,k) = (2,1). The head
move cannot be substituted by a sequence of tail moves, because there is
no valid tail move. O

Downward head moves

In this section, we prove that the head move can be replaced by a sequence of
constant length if a; is above xr. We start by considering the case that zg
is a tree node. In the proof we use a constant number of moves to create a
situation where we simply need to do a distance-1 downward head move.

Lemma 5.11 ([Jan21| Lemma 19). Let N, N’ € N(n,k) such that the move

(xp,v,ar) LN (xR,agr) turns N into N'. Suppose that ay, is above xR, aj, #

TR, and xR 1s a tree node, then dyeaa(N, N') < 4.

Proof. We split this proof in two cases: (xg,apr) is movable, or it is not. We
prove in both cases there exists a constant length sequence of tail moves between
N and N'.

1. (xRr,aR) is tail-movable. As (xzpg,ar) is movable, we may move it up

with (s, g, 2) @R, (v ap) (Corollary 2.47). Now (u,v) is still head-

movable, so we can move it down to (zg,ar). As this is exactly the

situation of Lemma 5.9, we can replace this head move by the tail move

(@RAL), (2 v). Now, tail-moving the subdivided (z, ar) back down

with zg M) (s, z) results in N’, so this move is allowed, too. Hence,

there is a sequence of 3 tail moves between N and N’.

TR

2. (zR,aR) is not tail-movable. Because xR is a tree node and (xg, ag) is
not movable, there has to be a triangle (p, xg, c); € N with ¢ # ar. Note

that (p, xR) is tail-movable, and that it can be moved up by (s, p, ¢) M

(v,ar). After this move, the parent v of p is a reticulation, so (p,ar) is

movable, and it can be moved up with p M) (zr,v) this move is

equivalent to the head move v ﬂ) (p,xr). The next step is to tail

move the subdivided (p, xr) back down with p ﬂ) (s,c). The resulting
network is allowed because it is one valid distance-1 head move away from
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N’ (as ¢ is not above u). Lastly, we simulate this distance-1 head move,

with the tail move 2z %), (p,v) (Lemma 5.9). Note that this sequence

is also valid if p = ay. Hence, there is a sequence of at most 4 tail moves

between N and N’. ]
Ty U Ty U iy U xy T
p
v v 3
b
ar, ar,
‘ ar ar, !
S, S, S, S,
P p
TR U
TR TR TR
ar apr apr apr

Figure 5.7: The four moves used in Case 2 of Lemma 5.11. The dased arc
represents the ancestry relation ap is above xg, which must be via a path
passing through s.

Lemma 5.12 ([Jan21] Lemma 20). Let n > 1, and N, N’ € N'(n, k) such that
(xp,v,ar) LN (xR, ar) turns N into N'. Suppose that ay, is (strictly) above
xr and TR is a reticulation, then there are networks M and M’ such that the

following hold:
1. dtail(Na M) < 1:'
2. dia(N', M') < 1;

) (

N / / / / / . N /
3. there is a head move (27 ,v', ) x'p, alp) turning M into M’ such
that o is above z'y and x', is a reticulation;

4. there is a tail-movable arc (s,t) in M with t not above zR.

Proof. Note that we have to find a sequence from N to N’ consisting of a tail
move followed by a head move and finally a tail move again, such that the
head move is of the desired type and the network after the first tail move has a
movable arc not above the top node xp of the receiving arc of the head move.
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If there is a tail-movable arc (s,t) in N with ¢ not above zg, we are done
by the previous lemmas: simply take M := N and M’ := N’, and the head
move of the statement of the lemma. Hence, we may assume that there is no
such arc in .

Recall that n > 1 and suppose that all leaves are below ap, then there must
also be a tree node below ar. Furthermore, as one of its child arcs is movable,
there is a tail-movable arc below ar (and hence not above zg). Hence, if all
leaves are below ag, we can again choose M := N and M':= N.

Because our networks have at least 2 leaves, the remaining part is to show
the lemma assuming that there is a leaf [; that is not below ar. Note that
there must also be a leaf Iy below ar. Now consider an LCA j of 1 and l». As
J & {l1,l2}, j is a tree node of which at least one outgoing arc (j,m) is not
above xg. If (j,m) is tail-movable, then M := N and M’ := N’ suffices, so
assume (j,m) is not tail-movable. Let ¢ be the parent of j, and k be the
other child of j; because j is a tree node and (j,m) is not movable, there is a
triangle (2, j,k) € N (Figure 5.8).

U
Xy

A L b

Figure 5.8: The situation of Lemma 5.12 in which we want to make the thick
arc (7, m) movable in both the network before (left) and after (right) the head

move v M (zr,ar). Dotted lines indicate ancestral relations, but are not

necessarily arcs in the network.

The idea is to destroy this triangle with one tail move in N and N’ simul-
taneously, essentially by doing ‘the same move’ in N and N’. If we can destroy
the triangle in both networks keeping (u, v) movable, creating new networks M
and M’, then choosing (s,t) := (4, m) in M will work. To show how to achieve
this, we split into two cases:

e ¢ is the child of the root. In this case, we destroy the triangle by
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moving a tail to the triangle. As v is a reticulation and there is no path
from any node below m to v (if so, there is a path from m to zg), there
must be a tree node p below k and (not necessarily strictly) above both
parents of v. At least one of the outgoing arcs (p, q) is movable in N. If
v is a child of p and (p,v) is movable, then we choose ¢ = v, otherwise
any choice of (p, q) will suffice.

Because (p, q) is movable and k is above p, the tail move p 2%, (p.a) (J, k) is
(uv)

valid. Now the head move v 2% (xp,ag) is valid, because xp is below
v, (u,v) is movable (as (u,v) was movable in N), and the only ways to
create a triangle (-, v,-), with one tail move are:

— suppressing one node of a four-cycle that includes v to create a tri-
angle by moving the outgoing arc of that node that is not included
in the four-cycle. As this node is p, and p is above both parents
of v, the suppressed node must be on the incoming arc of v in the
four-cycle (Figure 5.9 top). However, in that case v is a child of p
and (v, p) is tail-movable, so we choose to move (v, p) up for the first
move, which keeps (u,v) head-movable.

— applying the move z 227, (@) (y,c), where ¢ is the child of v,  # v and
y # v. But as the tall move moves (p,q) to (j, k), we see that k = ¢
which contradicts the fact that v is strictly below k in N. Hence, this
cannot result in a triangle with v on the side (Figure 5.9 bottom left).

— applying the move y ¥ (z,v), where c is the child of v,  # u

and y # v. As we move p M (j, k), we see that v = k and
u = ¢. But, then, ¢ = ¢ must be below the other child m of j,
and, as xg is below ¢, this contradicts the fact that (j,m) is not
above zr. Hence, this cannot result in a triangle with v on the side
(Figure 5.9 bottom right).

The preceding shows that (u,v) is still head-movable after the first tail
move. Because p is above xp through two paths, ay, is still above x g after
the tail move p M) (i,7). Now, the head move v M) (R, ap) is still
valid and of the right type. Furthermore (j,m) is a tail-movable arc with
m not above zg. Finally, after the head head move v M (xR, aR), we

can move (p, q) back to its original position to obtain N'.

Hence, we M is obtained from N by the tail move p (p.a), (i,7), and M’

from N’ by moving the corresponding arc p’ M (i,7). We can do this

because (i, 7) is still an arc in N’: indeed it is not subdivided by the head
move.
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Figure 5.9: The ways of making (u,v) not head-movable in Lemma 5.12. Top:
creating a triangle by suppressing a node in a four cycle. The first two of these
are invalid because p is not above both parents of v. The right one does not give
any contradictions, but forces us to choose to move (p,v), so that no triangle
is produced. Bottom: creating a triangle by moving an arc to become part of
the triangle. Both these options contradict our assumptions.

e ¢ is not the child of the root. In this case, we can move ¢ m (p,-),
where p is the root of N, and, possibly, (i,5) = (u,v)). Now note that
j is a tree node, so the tail move cannot create any new triangles with
a reticulation on the side. In particular, (u,v) is still movable after the
tail move. Furthermore, after the tail move zp is still a reticulation node
below ar,, and (j,m) is movable and not above x. Hence, the head move

v M (xR, ag) is allowed and of the appropriate type. Now moving the
tail of (i, k) back with ¢ (k) (+,7) results in N'.

Hence, this case works with M being the result of ¢ ﬂ (p,-) in N, and

M’ the result of i F)y (o)) in N
O

Lemma 5.13 ([Jan21| Lemma 21). Let n > 1 and N,N' € N(n, k) such that

(xp,v,ar) LN (xR,ar) turns N into N'. Suppose that ay, is above xr and

xR is a reticulation, then di,(N, N') < 8.
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Proof. By Lemma 5.12, with the cost of 2 tail moves, we can assume there
is a tail-movable arc (s,t) that can be moved to (zg,ar). After applying
(p,s,c) ﬂ) (xRr,ag), the head move v ﬂl} (s,ag) is allowed because it
moves a head down and (u,v) is head-movable. By Lemma 5.11, there is a
sequence of at most 4 tail moves simulating this head move. Now we need one
more tail move to arrive at N': the move s ﬂ (p, ¢) which puts (s, t) back to

its original position. This all takes at most 8 moves. O

Combining all the previous lemmas in this section gives us the following
result about simulating downward head moves with tail moves.

Proposition 5.14 (|Jan21| Proposition 3). Let n > 1 and N,N' € N(n,k)

such that (xp,v,ar) (u), (xR,agr) turns N into N'. Suppose that ay, is above

xR or ag is above xy, then dyy (N, N') < 8.

Non-downward head moves

Finally, we consider head moves where the original position of the head and
the location it moves to are incomparable.

Proposition 5.15 ([Jan21] Proposition 4). Let n > 1 and N,N' € N(n,k)

such that (zp,v,ar) “Y (zg,ar) turns N into N' and (n, k) # (2,1) Suppose
that ay, is not above xr and ar is not above xr, then di.n(N, N') < 16.

Proof. Find an LCA s of zp and zr. We split into different cases for the rest
of the proof:

1. s € {xr,xr}. One of the outgoing arcs (s,t) of s is tail-movable and it
is not above one of zy and zx (Lemma 3.4). Suppose ¢ is not above xp,
then we can do the following (Figure 5.10):

(s;t) :
i (p7 S, C) — (xL; U)7
allowed because t # v, (s,t) movable, and ¢ not above z.

e s ﬂ) (xR,aRr);

allowed because (xp,t) &€ N: otherwise x; was the only LCA of x,
and zg; ar, and hence v is not above zg; (zg,ar) # (u,v).

o M (s,ar), a distance-1 head move;

No parallel arcs after pruning: if so, they are between s and ay, = ag,
but then the move actually resolves this; no parallel arcs by re-
attaching: u # s; no cycles: ag not above u, otherwise, there would
be a cycle in N'.
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5. RSPR aAND RNNI MoOVES

PRGLIN (xp,t);
Moving a tail up is allowed if the tail is movable.
PRGN (p, ¢), which moves (s,t) back up to its original position.

Moving a tail up is allowed if the tail is movable.

As the head move used in this sequence is a distance-1 sideways move
through a tree node, it can be simulated with at most 4 tail moves as
long as (n, k) # (2,1) (Lemma 5.10).

p p p
Ty ; l‘L/J IL/J
t s ¢ "

\:L'R \Z.R \:UR
E — E — Sy, >
head
u u u
() () ()
a ar @ ar ar

D p p

JJL.\
t

LS
t
+LR +LR /
S, — —_—
(Y U U
a ar @ ar ar

Figure 5.10: The sequence of moves used in Case 1 of Proposition 5.15.

TL

2. s=wxy,.

a) u is not below xy. As s = xp is above xr and ay, is not above
TR, s must be a tree node. Hence, we may first apply the head move

(u0)

v (xr,t) where t # ar, this takes at most 4 tail moves by

Lemma 5.10. Now, we simply move v down with v (“_“)> (rp,ar)
to create N', this takes at most 8 tail moves by Proposition 5.14.

Hence, for this case we need at most 12 tail moves.
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5.1. Rewriting head and tail moves

b) u is below xy. In this case, the previous approach is not directly
applicable, as moving the head of (u,v) to the other outgoing arc
of xp, creates a cycle. Hence we need to take a different approach,
where we distinguish the following cases:

i.

il.

iii.

3. S =TR.

case.

(zr,v) is tail-movable. Apply the tail move (s, x, z) M

(zRr,apr), this is allowed because ay is not above xgr. Then

simulate the distance-1 head move v (%Y (rr,ar) using at

most 4 tail moves (Lemma 5.10). Then, move xp, M (s,2)
back up to create N’. This takes at most 6 moves

(u,v) is tail-movable. Apply (p,u,c) ﬁﬁ)_) (t,s), which
moves u up to an incoming arc of s. In the resulting network,
the head move v M (xR, ag) is still allowed, except if there
are triangles (s,u,v) and (u,v,ar) in N. However, in that case
x 1, could not be the LCA of 7, and xg. Hence, we can simulate
the head move with at most 12 tail moves by Case 2a of this
analysis. Because, afterwards, we can move the tail of (u,v)
back to its original position with u M) (p,c), this case takes
at most 14 moves.

Neither (xr,v) nor (u,v) is tail-movable. We create the
situation of Case 1 by reversing the direction of the triangle
at xp, this takes at most 4 tail moves (Lemma 5.10). Notice
that, if the bottom node of the (original) triangle is x g, then we
do not reach the situation of Case 1. However, in that case, the
head move v M (zR,ar) can be decomposed as two distance-
1 head moves v M) (rr,zR) and v M (xr,ar). These
moves can be simulated with at most 12 tail moves, as one is a
sideways move (Lemma 5.10), and the other is a downward move
(Lemma 5.14). Otherwise, we are in the situation of Case 1, and
we can simulate the head move with at most 8 moves. This is
allowed because it produces N’ with the direction of a triangle
reversed, which is a valid network. Then we can reverse the
direction of the triangle again using at most 4 tail moves. This
way, we obtain N’ with at most 16 tail moves (Figure 5.11).

This can be achieved with the reverse sequence for the previous
O
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5. RSPR aAND RNNI MoOVES

ary,

Figure 5.11: The sequence of head moves we simulate in Case 2(b)iii of Propo-
sition 5.15. The first and the last move reverse the direction of a triangle, and
the middle move is a move of the same type as dealt with in Case 1 of the same
Proposition, unless ¢ = xg. If ¢ = xp, the head move v M (xRr,apR) can be
decomposed into two distance-1 head moves, which can be simulated using at
most 12 tail moves.

Proposition 5.15 and Proposition 5.14 directly imply the following theorem

Theorem 5.16 ([Jan21] Theorem 3). Let n > 1 and N, N’ € N (n,k) such
that dyeaa (N, N') < 1 and (n, ) # (2,1), then dyga(N, N') < 16.

5.2 Diameter bounds

In this section, we study the diameter of rSPR and rNNI spaces. First, we
prove upper bounds for these spaces. The upper bound for rSPR spaces (Sec-
tion 5.2.1) follows from an argument very similar to that for tail moves. The
rNNI upper bound (Section 5.2.2) is based on the proof of the upper bound for
NNI moves in [JK19]|, which heavily uses the NNT bounds for trees. Lastly, in
Section 5.2.3 we also prove several lower bounds for the rSPR diameter.

5.2.1 rSPR upper bound: bottom-up isomorphism

Here, we modify the proof of Lemma 3.7 to get a better bound for the rSPR
diameter. Recall that the proof of Lemma 3.7 works by gradually expanding
two down-closed subsets Y C V(N),Y’ C V(N’) for which N[Y] is isomorphic
to N'[Y”], using at most 3 tail moves each time the size of Y and Y is increased.
We show that in Cases 1 and 2 of the proof of Lemma 3.7, we may instead use
one head move. As these cases both use Lemma 3.5, we improve this lemma
for the case that we can use both tail and head moves.
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5.2. Diameter bounds

Lemma 5.17 ([JJET18| Theorem 4.8). Let N1, No € N'(n,k) such that Ny #
N4, and let Y1 O L(N1) and Yo O L(N2) be down-closed sets of nodes of N1 and

Ny such that N1[Y1] ,ﬁX Nso[Ys]. Suppose there is a lowest node ug in Na \ Ya
such that uy is a reticulation. Then there is a network Ni with a down-closed
set Y] such that N{[Y{] ~x Na[Ya U {uz}] and d;spr(N1,N7) < 1.

Proof. Let x3 € Ys be the child of ug, let 27 = ¢~(z2) € Y7 be its corre-
sponding node in Ny, and z; a parent of 21 not in Y;. If z; is a reticulation
(Lemma 3.5 Case 1) then we set N] = Ny and Y{ = Y3 U {z1}. It then follows
that N{[Yﬂ ~x NQ[)/Q U {UQ}] and drspR(Nl,N{) =0<1.

If 21 is not a reticulation, then there exists a reticulation node in v; € N1\Y;
(again, such a node must exist, as ug exists and Ny \ Y7 and Nj \ Y have the
same number of reticulations).

One of the incoming arcs of (uj,v1) is movable. Furthermore, x; is not
above uy, because x1 € Y7, u1 € Y7 and Y is down-closed. Hence, unless
u1 = 21, the move vq M (21, 21) is valid and it results in a network Nj
with the down-closed set Y{ = Y7 U {v1} such that Nj[Y{] ~x Na[Ya U {ua}]
and drSPR<N1;N{) < 1.

Now, if u; = z1, then either (v1,z1) € A(N7), or the move vq M (z1,21)
is valid (with p; # 1) and it results in a network Nj with the down-closed set
Yll =Y U {Ul} such that N{[Yll] ~x NQ[YQ U {’LLQ}] and drspR(Nl,N{) <1.

Finally, if both moves aren’t valid, then (vi,z1) € A(N1), where vy is a
lowest reticulation above Y. Hence, in that case, we can immediately add v
to the isomorphism, setting N{ = N; with the down-closed set Y{ = Y; U {v1}
such that N{ D/ﬂ ~x Ng[}/g U {UQ}] and drspR(Nl,N{) =0<1.

O

The next lemma follows by an argument identical to the proof of Lemma 3.7,
where we use Lemma 5.17 instead of Lemma 3.5 to add reticulations to the
down-closed sets.

Lemma 5.18 ([JJET18] Theorem 4.8). Let N1, N2 € N(n,k) and let Y1 2
L(N1) and Yo 2 L(N3) be down-closed sets of nodes of N1 and Ny such that

N1[Y1] iX NolYs]. Suppose that N1\ Y1 contains v reticulations and t tree
nodes of Ny, then digpr (N1, No) < 2t +r.

By setting Y7 = L(N7) and Yy = L(NV2), and noting that a network in
N(n,k) has n+ k — 1 tree nodes and k reticulations (Observation 2.7), we get
the following bound on the distance between any two directed networks.

Theorem 5.19 ([JJET18] Theorem 4.8). Let n € Z>1 and k € N, then
diam,gpr(n, k) < 2n + 3k — 2.
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5.2.2 rNNI upper bound: using tree diameters

In this section, we prove a linearithmic upper bound for the diameters of rNNI
spaces. It is not clear whether each head move can be replaced by a short
sequence of rNNI moves. Hence, we do not try to use the bounds for rSPR
moves, but we use an independent proof.

This proof is a modified version of Theorem 13 in [JK19] for SPR moves.
In that paper, all networks under consideration were orientable (or, proper, as
it was called in that paper). Hence, with a little care, we can use the same
proof as in to give a linearithmic bounds on the diameter of rNNI spaces. Our
process for proving that MVinni(n, k) is connected with a linearithmic diameter
is as follows (Figure 5.12).

Step 1. Transform any network N into a network Np that is tree-based on

T € T(N).
Step 2. Transform Nr into handcuffed tree Np by adding handcuffs be-

tween the root arc and the incoming arc of leaf 1.

Step 3. Transform Npg into a sorted handcuffed caterpillar N*.

N/é\N/Té\\%%
1 %2 3 % ‘1 2 3 *M <1 ‘2 *3 ¥ ‘1 <2 ‘3 *

Figure 5.12: The process used in the proof of 5.23. We transform a network
N into a tree-based network Np, then into a handcuffed tree Ny, and, finally,
into a sorted handcuffed caterpillar N*.

Lemma 5.20 (Step 1). Let n > 1 and N € N(n, k), then there is a tree-based
network Np such that dinni(N, N') < 2k — 2.

Proof. Let T € T(N) with embedding 1. Note that N is tree based if |V(N)|—
[V (¥(T))| =0, and that this difference is at most 2k — 2.

Suppose |[V(N)| — |[V((T))| = d > 0, we prove that there is a net-
work N’ with T embedded as ¢/(T') such that |[V(N)| — |V (¢/(T))|] < d and
dynN1(N, N') < 1. As d is at most 2k — 2, this proves the lemma.
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5.2. Diameter bounds

As not all nodes of N are in ¢(T'), there is an arc (u,v) with u € ¥(T) and
v & YP(T). Choose (u,v) so that there is no other such arc (z,y) with = below
u.

If v is a tree node, then at least one outgoing arc (v, w) of v is movable, and

the rNNI move v M (p,w) is valid. Now, let ¢'(T") be the embedding of T in
the resulting network N, obtained by removing (p, ) from ¢(T), and adding
(p,v) and (v,u). Now ¢'(T) has one more node than ¢ (7T) (namely, the node
v), so |[V(N')| = |V(/(T))| < d (Figure 5.13 Left).

Now assume v is a reticulation and let y # u be the other parent of v, w
the child of v, and z # v the other child of u. If (y,v) is not head-movable,
then 2 = w and we can simply find a new embedding ' of T into N, by
removing (u, z) from ¢(7T) and adding (u,v) and (v, z) (Figure 5.13 Middle).
Hence, for this new embedding, |V(N)| — |V(¢/(T))| < d. Otherwise, (y,v)

is head-moveable, and we can move the head of v ﬂ) (u, z), because y # u

and y is not below u (Figure 5.13 Right). Again, T has an embedding ¢'(T)
in the resulting network N’ consisting of ¢(T") with (u, z) removed and (u,v)

and (v, z) added, so |V/(N")| — [V (¢/(T))| < d. O
p p
u u
V Y Y
u v v u u
v v
v
Y W z z

Figure 5.13: Transformation and rNNI moves used in Lemma 5.20 to obtain a
tree-based network Np.

Lemma 5.21 (Step 2). Let n > 1 and Ny € N(n,k) be a tree-based network,
then there is a handcuffed tree Ny on leaf 1 such that dinni(Np, Ng) < 5k +
5n + (k+ 2)log(k +2).

Proof. Let ¢(T) be the embedding of the base tree T into Np, and let M =
AN\ ¥(T)) = {(u1,v1),- .., (ug,vg)} be the arcs that are not in the embed-
ding T into Np. Without loss of generality, assume that for i € {1,...,r} the
distance between u; and the root in ¢(7T) is at most the distance of wu;1 to
root in ¢ (7). The idea is to carry all u; to the root arc by sweeping from the
leaves to the root, and then do something similar to move the v; towards leaf
1.
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For an arc a of T, let P, be the path of ¥(T") corresponding to a. Let a,
be the arc of T" incident to the root. Let < be a linear extension of the ‘lower
than’ order on the arcs of T' (so that o’ < a, for all a € A(T))

Let a = (z,y) be the minimum of < restricted to arcs a’ of T such that P,
contains a u;. Let P, = (x,...,y) be the corresponding path in ¢ (7). Proceed
as follows along P, from y to x.

(i) If there is an arc (v, u;) in P,, then tail;-move wu; M (p,v;) with
(uj,c) & Py p# wy (i.e., so that in (p,vr) € Py).

(ii) If there is an arc (uj,u;) in P, then tail;-move w; (uie), (uy,v;), where
(uj, c) € P,.

(iii) Otherwise, if there is an arc (z,u;) in P,, then tail;-move u; (uic), (-, ),

where (uj, ¢) &€ P,.

This is illustrated in 5.14. After this process, all u; on P, are moved to the
image 1 (a’) of the arc @’ directly above a in T. Informally speaking, we stack
u; onto u; so they can move together towards a,. Repeat this process for each
arc in the order given by <. For the last arc a,, ignore case (iii). Next “unpack”
the stacked w;’s on a,.

We now count the number of tail; moves needed. Firstly, each v; is swapped
at most once with a u; (k moves). Secondly, each u; is moving to and from
another arc (u;, v;) at most once (2k moves). Furthermore, each vertex of ¢ (7T)
corresponding to a vertex of T is swapped at most twice (2n moves). Hence,
the total number of NNI moves required is at most 3k 4 2n.

(i) oD 'Y (ii) Y4 'Y (iii)
U u;

’Ulll 7_)[1 Ul Ul‘
\ U; T, T,
U Uu; (i (Y
C C C C C C

Figure 5.14: The rNNI move used in Lemma 5.21 to obtain a handcuffed tree
Npy.

Repeat this process to move the v; towards leaf 1 using head; moves, where
< is the linear order on the arcs of T induced by the the partial order induced
by T rooted at leaf 1. Since the v; do not have to be swapped with u;, the total
number of rNNI moves required for this is at most 2k + 2n.
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Note that the resulting network may not yet be a handcuffed tree as the
order of the w; and the v; on P, and P may be different. To solve this, we
sort the arcs of the caterpillar P, U M on k + 1 leaves with the mergesort-
like algorithm by Li et al. [LTZ96, Lemma 2|. In fact, we simply use the fact
that the distance between two rooted caterpillars with k£ 4+ 1 leaves is at most
(k + 2)log(k + 2) (Proposition 2.65). O

Lemma 5.22 (Step 3). Let Ny € N(n,k) be a handcuffed tree on leaf 1,
and let N* be the ladder caterpillar in N (n, k) with base tree C((n,...,1))then
drNNI(UN7 N*) < (n + 1)(1 + log(n + 1))

Proof. Let M = {(u1,v1),..., (ug,vx)} be the handcuffs of Ny. We simply
transform the tree S(Ng \ M) into the ladder caterpillar on n leaves using at
most (n+1)(1+log(n+1)) tail; moves (Proposition 2.65). In this process, the
handcuffs remain between the root and the first leaf in the same order, so the
resulting network is N*. O

Theorem 5.23. For alln > 0, the spaces Nynni(n, k) are connected, and if n >
1, then diamynni(n, k) < 11n+14k—44-2(k+2) log(k+2)+(n+1)(1+log(n+1)).

Proof. Let N,N' € N(n,k) be two arbitrary networks. If n = 1, then the
spaces are connected by Theorem 3.10.

Otherwise, N can be transformed into a k-handcuffed tree Ny via a tree-
based network using at most bn + 7k — 2 + (k + 2)log(k + 2) rNNI moves
(Lemmas 5.20 and 5.21). Using n additional tail; moves, this network can
be transformed into a k-handcuffed caterpillar N*, by just changing the tree
formed by the network without the handcuffs.

Then, to see there is a sequence of the desired length between N and N’,
note that N’ can be transformed into N* via a k-handcuffed tree using at
most 5n + 7k — 2 4+ (k + 2)log(k + 2) + (n + 1)(1 + log(n + 1)) rNNI moves
(Lemmas 5.20, 5.21, and 5.22). Hence, the distance between N and N’ is at
most 11n + 14k — 4 + 2(k + 2) log(k + 2) + (n + 1)(1 + log(n + 1)). O

Note that Steps 2 and 3 concern tree-based networks only, but the interme-
diate networks in these proofs are not all tree-based. This is mainly because
we attempt to use an efficient sequence. If one desires to keep the networks
tree based, it is still easy to find a sequence, as we can simply collect the heads
and tails of the reticulations one at a time, without combining them; and we
can sort the caterpillars while keeping the caterpillar structures as well. This
results in a quadratic upper bound for the space of tree-based networks under
rNNI. An independent proof of this is given in [EFM20|. There, they prove the
stronger fact that this space is connected by tail; moves. Moreover, they also
prove it for networks with outdegree-2 roots.
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In the next chapter, we apply our proof of connectedness of directed net-
works under rNNI to undirected networks (as it originally was in [JK19]). Like
for directed networks, our proof cannot be applied immediately to undirected
tree-based networks, as the collection of the reticulation arcs and rearrange-
ment of the caterpillars does not allow this. The proof can be modified, like for
directed networks, to give a quadratic upper bound on the diameter of undi-
rected tree-based network space. Nevertheless, Francis and Fischer claim that
our proof technique is not applicable to undirected tree-based networks at all
|[FF20]. However, by performing the transformations naively as described for
the directed case, we essentially obtain their proof. This becomes even clearer
when inspecting their intermediate networks, so-called shoat networks, which
are the same as our intermediate stage of handcuffed trees.

5.2.3 Asymptotic bounds

Francis et al. ([FHMW17]) proved lower bounds for the diameters of spaces of
undirected networks under NNI and SPR moves. To apply these bounds to the
case of TNNI and rSPR moves, we need more information about the relation
between these moves and their spaces.

Lemma 5.24 (|[JJET18] Lemma 4.19). Let N, N’ € N'(n,k) be networks such
that dispr (N, N/) =1, then dspr(U(N), U(N/)) <1
Furthermore, if dinni(N, N') =1, then dani(U(N),U(N')) < 1.

Proof. Suppose the rSPR move in N resulting in N’ moves endpoint u of arc e
from f to another arc g. Then, moving endpoint u of edge e to edge g in U(N)
results in U(N'). If the rSPR move was actually a rNNI move, then the SPR
move in U(N) is an NNI move. This follows from the fact that f and g are
adjacent in N iff they are adjacent in the undirected graph U(N). O

Corollary 5.25 ([JJET18] Corollary 4.20). For any pair of networks N, N’ €
N(n, ki), we have drspR(N, N/) > ClSPR(U(N),U(N/)) and drNNI(Na Nl) >
dnni(U(N), U(N)).

For the application of this corollary, it is important to note that not every
undirected network has an orientation as a directed network. In particular, we
cannot deduce simple relations between diameter bounds for Uspr and N;spr.
Indeed, the diameter of the space of undirected networks could be determined
by parts of the space consisting of networks that are not orientable.

Nevertheless, we can use this corollary to study diameters. For lower bounds
on N(n, k), we simply consider orientable networks in U(n, k); and for upper
bounds on U(n, k), we bound the number of moves needed to make an undi-
rected network orientable (Section 6.1).
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For the lower bound on N;nn1(n, k), we use the following lower bound from
Francis et al. for NNI diameters ([FHMW17]).

Theorem 5.26 ([FHMW17| Theorem 2 and Proposition 4). Let n € Z>o
and k € N, then there exist two Echidna networks U, U’ € U(n,k) such that
dnni(U,U') is at least

1

20 <(v,’§ — 3) logg (UQI"’ - 2> — (2k — 1) logg(k — 1) — (v — 2k)logg e — 21),’3) ,

and there exist two Echidna networks U, U’ € U(n, k) such that dspr(U,U’) is
at least

' (vP — 3)In(% —2) — (2k — 1) In(k — 1) — (2n — 2)
diamspr(n, k) 2 == ; AIn(2(0} + k) ’

where vy is the number of nodes in an undirected network with n leaves and
reticulation number k. 2

As Echidna networks are orientable (Lemma 2.70) the argument of Francis
et al. extends to directed networks.

Lemma 5.27 (|[JJET18|). Let n € Z>1 and k € N, then there exist two net-
works N, N" € N(n,k) such that dxni(N, N') is at least

1 n

o ((v;; — 3)log, <“2k - 2) —(2k — 1) logg(k — 1) — (u] — 2k) logg e — 2v;;> :
where v} is the number of nodes in an undirected network with n+1 leaves and
k reticulation nodes.

Proof. Fix n and k, and let U and U’ be two Echidna networks in U(n, k) such
that dyni(U, U’) is at least

1 n Un n n
20 ((vk — 3) logg <2k - 2) — (2k —1)logg(k — 1) — (vy — 2k)logg e — 2Uk> ,

which exist by Theorem 5.26. By Lemma 2.70, there are two networks N, N’ €
N(n,k) such that N(U) = U and N(U') = U’. By Corollary 5.25, we have
dynN1(N, N') > dani(U(N), U(N')), which proves the statement. O

2The notation in their paper is somewhat unclear, as they claim AiSPR(n) is the diameter
of the SPR space Uspr(n, k), but they also use n for the number of nodes v} in such a
network.

141



5. RSPR aAND RNNI MoOVES

Theorem 5.28 ([JJET18] Theorem 4.12). The diameters of tiers of network
space for metrics induced by TNNI and taily moves satisfy diam,nni(n, k) =
O((n+ k)log(n + k)) and diamy,yg, (n, k) = Q((n + k) log(n + k)).

Using the same argument, we get a lower bound for the diameter of spaces
of directed networks under non-local moves as well.

Theorem 5.29. The diameters of tiers of network space for metrics induced by
rSPR, head, and tail moves satisfy diam,gpr(n, k) = O(n+k), diampeaq(n, k) =
O(n + k), and diam,i(n, k) = O(n + k).

5.3 Internal labels

As before, we start with spaces of networks without degree-2 nodes. For rSPR
moves, we simply make the networks leaf-isomorphic, and then permute the
tree nodes and the reticulations using a small number of tail and head moves
respectively. For rNNI moves, we once again use the structure of ladder cater-
pillars.

Theorem 5.30. For alln > 1 and k > 0, the spaces MSPR(n, k) an,dMNNI(n, k)
are connected. Furthermore, their diameters are bounded by diam,spr(n, k,0) <
diam,spr (n, k) + 4n + 8k — 4 and diam,xn1(n, k,0) < 2diam,nni(n, k) 4 2n% +
8nk + 8k — 2n — 4k.

Proof. Let Ny, Na € N(n,k,0) be arbitrary, we prove that there are rSPR and
rNNT sequences from N; to N of the desired length.

Because the spaces of rSPR moves are connected, there is a sequence of at
most diam,gpr(n, k) moves from Ny to a network N{ such that N{ >y, N,
(Theorem 5.19). Then using at most 4k head moves and 4(n + k — 1) tail
moves, we can permute the reticulations and the tree nodes to make the net-
works labeled isomorphic with respect to the full label set X (Propositions 3.19
and 4.27). Counting the number of moves for each of these steps, we get
diam,gpgr(n, k,0) < diam,spr(n, k) + 4n + 8k — 4.

For the rNNI moves, we take a similar approach, but changing both networks
into leaf-isomorphic ladder caterpillars first using at most diam,nni(n, k) rNNI
moves in each network. Then we can permute the reticulations using at most
2k? + 2k head; moves, and the tree nodes using at most (2n + 6k)(n +k — 1)
tail; moves (Propositions 3.19 and 4.27). Counting the number of moves for
each of these steps, we get diam,nni(n, k,0) < 2diam,nni(n, k) + 2n? + 8nk +
8k? — 2n — 4k. O
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), which implies

Note that diam,spr(n,k,0) > diam,gpr(n, k) = Q(n + k
n,k,0)©(n + k) for in-

that we have an asymptotically tight bound diam,gpg (
ternally labeled networks as well.

5.3.1 Degree-2 nodes

To prove connectedness and diameter bounds in the presence of degree-2 nodes,
we essentially reduce to the case of no degree-2 nodes by first collecting all
degree-2 nodes at the root. This works for all (n, k) except when (n, k) = (1,0)
(then the space is not connected) and when (n,k) = (1,1) (then there is no
corresponding network without degree-2 nodes).

Lemma 5.31. Let N € N(n, k,m) be a suppressable network, then the degree-2
nodes can be collected at the top in a predefined order using a sequence of at
most 2n + 3k + 2m + 2 rSPR. moves, or at most m(2n + 3k) + m? + 4m + 3
rNNI mowves, except whenn =1, k=0, and m > 0.

Proof. We may move all degree-2 nodes up to the root arc by starting at the
bottom, and moving all degree-2 nodes up one arc in S(N) at a time. Moving
all degree-2 nodes up one arc takes at most one rSPR move. Indeed, one can
move the vertex incident to both arcs down below all the degree-2 nodes. The
same can be achieved using one rNNI move per degree-2 node on the lower arc.
As there are at most m degree-2 nodes on this arc, we need at most m rNNI
moves. The network S(N) has 2n+ 3k — 1 arcs, so it takes at most 2n + 3k — 1
SPR moves or m(2n + 3k — 1) rNNI moves to collect all degree-2 nodes at the
root arc. To sort the degree-2 nodes, we need an additional 2m + 3 rSPR or

m? + 5m + 3 TNNI moves (Lemmas 3.26). O

Theorem 5.32. The spaces N(n,k,m) are connected for all n,k,m > 0, ex-
cept when n = 1, k = 0, and m > 0. Furthermore, the diameter of the
space of subdivided networks under rSPR is bounded by diam,gpg(n,k,m) <
diam,gpgr(n, k, 0)+4n+6k+4m+2 and diamNxNi(n, k, m) < diam,nni(n, &, 0)+
4mn + 6mk +m? + 2m + 2.

Proof. We first note that AV(1,0,m) is not connected. To see this, note that for
each permutation x1, ...,z of the m degree-2 nodes, there is a unique network
in NV(1,0,m) consisting of the path (p,z1, ..., xm,1), where p is the root of the
network and [ is the leaf. As all networks in N(1,0,m) necessarily consist of
such a path and none of the arcs of such a network can be moved the space
N(1,0,m) consists of m! nodes and no arcs.

Then, to prove connectedness in all other cases, we first turn to the case

n =k =1and m > 0. Here, we can first move all degree-2 nodes from
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the leaf path to one of the parallel paths using one head move or at most m
head; moves. Then, by Lemma 3.26, all degree-2 nodes can be sorted on either
of the parallel arcs using at most 2m + 2 tail moves or m? + 4m + 2 taily
moves. Hence, N'(1,1,m) is connected for all m > 0. Furthermore, as we can
collect all degree-2 nodes on one arc in arbitrary order in one of the networks
using at most 3 tail moves or 2m tail; moves, diam,gpr(1,1,m) < 2m + 6 and
diamrspR(l, 1, m) < m2+7m + 2.

For all other cases (i.e., n > 1 or k > 1) any network in A(n,k,m)
can be transformed into a suppressable network using at most m tail; moves
(Lemma 3.24). Then, we may move all degree-2 nodes up to the root arc using
at most 1 head move or m head; moves per reticulation, and at most 2 tail
moves or 2m tail; moves per tree node. Hence, this can be achieved using at
most 2n + 3k — 2 rSPR moves or m(2n + 3k — 2) rNNI moves in total. To do
this, we start at the bottom, and move all degree-2 nodes up one arc at a time.

Again, these degree-2 nodes can be sorted at the root arc using at most
2m + 2 tail moves or m? 4 4m + 2 tail; moves (Lemma 3.26). Starting with
two networks and applying this procedure to both (noting that we only have
to sort the degree-2 nodes in one of the networks) we can easily see that
diam,gpr(n, k,m) < diam,gpr(n,k,0) + 2(m + 2n + 3k — 2) + 2m + 2
diam,gpr(n, k, 0)+4n+6k+4m+2 and diam,nni(n, k, m) < diam,nn1(n, &, 0)
2(m+m(2n + 3k —2)) +m? +4m + 2 = diamnni(n, k, 0) +4mn + 6mk +m?
2m 4+ 2.

O+ + 1

Corollary 5.33. The spaces N(n, k,m) under rSPR and and rNNI moves have
diameters bounded by diam,spr(n, k,m) < 10n + 17k + 4m — 4 and

diam,nni (7, k, m) <2n? + 8nk + 8k* + 4mn + 6mk + m?
+2(k+2)log(k +2) +2(n+1)(1+log(n+1))
+20n + 24k + 2m — 6.

5.4 Conclusion

In this chapter, we have studied the spaces of networks under rfSPR and rNNI
moves. We have started by showing that head moves and tail moves are tightly
related in networks with at least two leaves: a head move can be replaced by a
sequence of at most 13 tail moves (if n > 1), and each tail move by a sequence
of at most 16 head moves.

This provides a new proof for connectedness of Niai(n, k) using the connect-
edness of Mpeaq(n, k) and vice versa. Furthermore, connectedness of Nya(n, k)
also implies the connectedness of N;gpr. Using both tail moves and head moves,
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we give a better upper bound for the rSPR diameters than the one following
directly from tail moves.

For the connectedness and diameter of TNNI moves we use a different tech-
nique. This technique is an adaptation of the connectedness proof for NNI
moves in [JK19]. The construction gives a diameter bound for Mnni(n, k) of
order O((n+k)log(n+k)) for networks with at least two leaves. This bound is
asymptotically tight by Theorem 5.28, which uses the linearithmic lower bound
for NNI spaces from [FHMW17].

For networks with one leaf, our diameter bound for Nxni(1, k) is order
O(k?), which follows by using the bound for tail moves. Note that this is not
as good as the linearithmic bounds for networks with at least two leaves. We
conjecture that a linearithmic upper bound can be obtained for n = 1 as well,
by using the following strategy. Make a triangle (a, b, ¢), at the bottom of the
network using a small number of moves, and then treat a and b as the leaves of
a network in AV(2,k — 2). The result then follows from our linearithmic upper
bound for networks with at least two leaves. It would also be interesting to
check whether this proof technique can be used to prove linearithmic upper
bounds for the diameters of Ny, (n, k) and Mpead, (1, k).

The results easily extend to internally labeled networks, too. All spaces
Nispr(n, k,m) and Nixni(n, k,m) are connected, except when (n,k) = (1,0)
and m > 0. The upper bound for the rSPR diameter is linear, even when
considering degree-2 nodes as well. This is because we can swap tree nodes using
a constant number of tail moves, and reticulations using a constant number of
head moves.

Recall that our upper bounds for the diameters of the spaces Mail(n, k,m)
and Myead (n, k,m) contain quadratic terms. The fact that each tail move can be
replaced by a constant number of head moves and vice versa makes it believable
that these quadratic terms are not necessary. Indeed, if these replacement lem-
mas still hold for internally labeled networks, two reticulations can be swapped
with a constant number of tail moves. Hence, it would be interesting to re-
solve this open question, by carefully checking the sequences of moves in these
lemmas to see what happens to the labels of all nodes involved.
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6. SPR AND NNI MoOVEs

In this chapter, we study spaces of undirected networks. The most common
rearrangement moves for undirected networks are SPR moves and their local
versions, NNI moves. Although there is a fundamental difference between di-
rected and undirected networks, there is a strong connection between (parts of)
the spaces of directed and undirected networks. Especially when we consider
spaces of orientable networks. Indeed, each rSPR move on a directed network
N gives an SPR moves in the orientable network U(N).

To prove connectedness and diameter bounds for the spaces of undirected
networks, we heavily use this connection between rSPR and SPR moves on
directed and orientable networks. Hence, we start this chapter with a section
about this relation (Section 6.1). Then, in Section 6.2, we prove connectedness
and diameter bounds for SPR and NNI spaces. In these proofs, we turn each
undirected network into an orientable network, and then leverage the relation
between directed networks and orientable networks. In Section 6.3, we again
generalize to spaces of internally labeled networks. The proofs in that section
use techniques similar to those used for rfSPR moves.

Note that connectedness of NNI spaces—and thus also SPR spaces—was
first proven in [HMW16]. The proof was based on the connectedness of cubic
graphs under NNI [Tsu96|. Although their proof was constructive in nature,
like all proofs in this thesis, [HMW16| did not give any diameter bounds. Such
bounds were first given in [FHMW17], but have since been improved [JJET18].
The currently best bounds can be found in this chapter.

6.1 Relation with directed moves

As we have seen in Lemma 5.24, moves on directed networks can easily be
translated to moves on their underlying undirected networks. The converse is
not true in general.

However, the converse is true in a limited sense for orientable networks:
if we have a network N and an SPR (or NNI) move U(N) to an orientable
network U’, then we can find an rSPR (or rNNI) sequence between N and
some network N’ for which U(N') = U’. This follows simply from the fact that
spaces of directed networks are connected under rSPR and rINNI.

This gives a relation between spaces of directed networks and spaces of
orientable networks. The following faulty version of this result is used in
[GvIJT17b] to prove connectedness of spaces of TNNI moves, using connect-
edness of spaces of NNI moves.'

!The authors of the paper have been informed about this issue on 14 June 2019, but have
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6.1. Relation with directed moves

False Lemma 6.1 (Lemma 3, [GvIJT17b|). Let N be a directed network and
U’ an undirected network one NNI move away from U(N), then there is a
sequence of TNNI moves from N to a network N' with U(N') =U’.

There is a serious issue with the claim in this lemma, which becomes clear
when we investigate the following example. Consider the non-orientable undi-
rected network U’ obtained from a copy of K4 and the network on two leaves
by subdividing an edge in both and adding an edge between the two result-
ing degree-2 nodes (See Figure 6.1). As U’ is not orientable, there is no N’
such that U(N') = U’. However, using one NNI move in U’, we can obtain an
orientable network U, with orientation N. The lemma fails for N and U’.

U U’ N

Figure 6.1: A counterexample showing that an NNI move on an orientable
network U, with orientation N, can result in an unorientable network U’.

As mentioned above, the lemma can be fixed by restricting U’ to be an
orientable network, because it then simply follows from the fact that the tiers
of rNNIT space are connected which leads to a cyclic argument in [GvIJT17h],
because this is what the lemma is ultimately used for. The first proof that
spaces of orientable networks are connected under NNT can be found in [JK19],
althrough it also easily follows from the results in |[GvIJT17b].

Lemma 6.2. Let N be a directed network and U’ an orientable network one
NNI move away from U(N), then there is a sequence of TNNI moves from N
to a network N' with U(N'") =U".

A more interesting question is whether an NNI (SPR) move from U(N) to
U’ can be replaced with a constant number of rNNT (rSPR) moves from N to
a network N’ with U(N’) = U’. The proof given in [GvIJT17b] does not help
in answering this question as, firstly, it does not give a constant number of

not corrected or retracted their paper yet.
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moves—and secondly, there is a mistake in the proof. Hence, we have to find
another proof, or a counterexample.

Considering the following example, it seems unlikely that such sequences of
constant moves always exist. This is hard to prove, because we have no good
algorithms for computing distances yet (Chapter 7).

Example 6.3. Let b > 0, and N be the network obtained from a series of 3b
in-degree-1, outdegree-1, level-2 blobs by adding ¢ > 0 arcs to the b-th blob,
and then adding an arc between the root arc and the incoming arc of the single
leaf of the network. Using one NNI move in U(N), we can get a network U’
for which the chain of blobs is reversed, and in which the (2b+ 1)-th blob has ¢
additional arcs. To simulate this in the oriented networks, we essentially have
to move all these ¢ arcs, which, intuitively, has to take a number of moves
increasing with ¢; or we have to move the level-(2 + ¢) blob, over a distance
increasing with b.

In light of this example, the best expectable result would be that we can
replace an NNT move with a (non-constant) sequence of rNNI moves, which
is trivial by Theorem 5.23. This example does not tell us anything about the
relation between SPR moves and rSPR moves the level-(2 + ¢) blob can be
moved over a large distance using a small number of moves (note that it also
needs to be turned upside-down, which may still take a large number of moves).

However, as we have seen in Chapter 2, a similar claim about the relation
between NNI and SPR fails already on trees. This follows from a result from
Atkins and McDiarmid ([AM19], Example 2.3; Lemma 2.67). Recall, also, that
the claim holds for NNI moves on trees by Lemma 2.64.

6.1.1 Moving towards orientable networks

In this section, we bound the number of SPR and NNI moves needed to reach
an orientable network (Propositions 6.7 and 6.10). For SPR moves, this en-
tails bounding the number of redundant terminal blobs (Lemma 6.4), and then
showing that we can reduce the number of redundant terminal blobs with one
SPR move (Lemma 6.6). As it may take many moves to reduce the number
of redundant terminal blobs using NNI moves, the proof for NNI moves uses a
different quantity, the number of redundant cut-edges. We bound the number
of redundant cut-edges (Lemma 6.8), and then show that this number can be
reduced using one NNI move (Lemma 6.9). As a network with redundant ter-
minal blobs or without redundant cut-edges is orientable (Lemma 2.69), this
shows that we can reach an orientable network in a bounded number of moves.
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SPR moves

Each redundant terminal blob accounts for at least three reticulations in the
absence of degree-2 nodes. If degree-2 nodes are present, the redundant terminal
blobs may account for fewer reticulations. The following lemma makes this
precise, and provides a bound on the number of redundant terminal blobs in
the presence of degree-2 nodes.

Lemma 6.4 ([JJET18] Lemma 4.16). Let U € U(n,k,m), then the number
of redundant terminal blobs in U is at most the optimum value of the ILP
max(co + ¢1 + c2) s.t. 3cop + 2¢1 + c2 < k and ¢1 + 2co < m with decision
variables ¢; € N.

Proof. Let V'’ be the set of nodes of a redundant terminal blob, and E’ the set
of edges incident to V’. Suppose the component has m’ degree-2 nodes and i
degree-3 nodes.

As each edge of E’ except for one is adjacent to two nodes of V/, we have
2|E'| — 1 =3i+2m/, so i must be odd. Furthermore, |V’| must be be at least
3, because 7 > 1 and a degree-3 node in V' has at least two neighbours in V.
Hence, |E'| — |V'| > 3i+2m' +1)/2 — (i +m') = 1/2i + 1/2 > 1 for each
redundant terminal blob.

If m" < 1, then V' has at least two degree-3 nodes, and one of these has
all its neighbours in V’. Hence, |V'| > 4 and ¢ > 3. Hence, using the same
calculation as in the previous paragraph using i > 3, we get |E'| — |[V/| > 2 if
m’ = 1. If m’ = 0, we have |V'| =i > 4. This, together with the fact that
|[V'| must be odd implies that ¢ > 5. Using the same calculation again, we get
|E'| —|V'| >3ifm'=0.

Now observe that every node and edge of U appears in at most one such V’
or E'. Furthermore, if all nodes and edges in all such sets V' and E’ are deleted,
the resulting graph (V" E”) is still connected because only redundant terminal
blobs are removed. Hence, the remaining part satisfies |E”| — [V"| > —1. Note
that |E| — |V] is equal to |E”| — |V"| plus the sum of all |E'| — |V’| for every
redundant terminal blob with nodes V' and incident edges E'.

Now suppose U has ¢ redundant terminal blobs with no degree-2 nodes, ¢;
redundant terminal blobs with one degree-2 nodes, and ¢y redundant terminal
blobs with at least two degree-2 nodes.

Then

2 ¢
Bl = V] = [E"| = V" |+ 323 (1Bl = V1) = =14 3co + 261 + ca,
=0 i=1

where V; j and E; j denote the nodes and the edges of the ith redundant terminal
blob with j = 0,1 or j > 2 degree-2 nodes of U.
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Furthermore, as the total number of degree-2 nodes is m, we have ¢; +
2¢2 < m. Using the fact that £ — 1 = |E| — |V, we see that the numbers of
redundant terminal blobs ¢y, c¢1, and ¢y must be such that 3cg + 2¢; + 3 < k
and c1 + 2¢co < m. O

The next lemma follows immediately.

Lemma 6.5 ([JJET18] Lemma 4.16). Let U eU(n,k,m), then the number of
redundant terminal blobs in U is at most k. If m = 0 or U is suppressable,
then there are at most k/3 redundant terminal blobs.

Lemma 6.6 ([JJET18] Lemma 4.17). Let U € U(n, k,m) be a network with c
redundant terminal blobs. Then there em@?tsua network U’ with at most ¢ — 1
redundant terminal blobs such that dgpr(U,U’) = 1.

Proof. Pick any redundant terminal blob B and let {u,v} be the unique edge
for which u ¢ B, v € B. Let  and y be the other neighbours of v. Now

SPR move v % {l1,-} to an arbitrary leaf edge of U. Suppressing v cannot
give parallel edges, because {u,v} is a cut-edge (Figure 6.2). In the resulting
undirected network, B is extended to a biconnected component with a pendant
leaf, and because no new cut-edges have been created, the network has at most
¢ — 1 redundant terminal blobs and is one SPR move away from the original
undirected network. O

Figure 6.2: The SPR move used to remove redundant terminal blob B. The big
circle represents all of U except for B. Note that in the undirected network on
the right, B is not a redundant terminal blob anymore, and no extra redundant
terminal blobs have been created.

Lemmas 2.69, 6.5 and 6.6 imply the following.

Proposition 6.7 ([JJE*18] Corollary 4.18). Let U € U(n, k,m), then there
erists an orientable network U’ such that dspr(U,U’) < k. If m = 0, then
there exists such a network with dspr(U,U’) < k/3
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NNI moves

The number of redundant cut-edges can simply be bound by the maximal num-
ber of edges that are not in some embedded tree.

Lemma 6.8. Let U e H(n,k,m), then the number of redundant cut-edges in
U is at most 3k +m.

Proof. Let G be the subgraph of U consisting of all paths between the leaves.
Note that U has at most 2n + 3k + m — 3 edges (Observation 2.7), and, as G
has an embedded tree on n leaves, G has at least 2n — 3 edges. None of these
edges can be redundant cut-edges. Indeed, if such an edge were a cut-edge, it
would separate two of the leaves of the embedded tree, and it would not be
redundant. Therefore, U has at most 3k + m redundant cut-edges. O

Lemma 6.9. Let U € Z/{(n, k,m) be a network with c redundant cut-edges. Then
there exists an undirected network U' with at most ¢ — 1 redundant cut-edges

such that dNNI(U, U') =1.

Proof. Let G C U be the graph consisting of the union of all paths between the
leaves of U.

Let e be a redundant cut-edge closest to G. Note that e must be incident to
G, that is, e = {u,v} with u € G and v ¢ G. Let wi,wy # v be adjacent to u.
As e is a redundant cut-edge, there is no edge {u,ws}, so the u-end of {u,w;}

is movable. Let z # u be adjacent to v, then the NNI move u M {v, 2}
is valid, because w1 ¢ {v,z}. Furthermore, the resulting network U’ has one
redundant cut-edge fewer than U. O

Proposition 6.10. Let U € U(n,k‘,m), then there is a sequence of at most

3k +m NNI mowves that makes U orientable.

Proof. By Lemma 6.8, U has at most 3k +m cut-edges. Using Lemma 6.9, we
can reduce the number of redundant cut-edges to zero using at most 3k +m
NNI moves. Such a network necessarily has no redundant terminal blobs, so it
is orientable (Lemmas 2.69). O

6.2 Connectedness and diameters

In this section, we prove diameter bounds for SPR and NNI spaces. For the
proofs, we use that each network can be turned into an orientable network using
a small number of SPR or NNI moves, as we proved in the previous section.
The bound for SPR moves then follows from a modified version of the rSPR
bound, and the NNI bound follows directly from the rNNI bound.
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6.2.1 SPR moves

In this section, we will prove an upper bound on the diameter of SPR moves
on undirected networks, using results for rSPR moves on directed networks.
This linear bound improves on the previously best quadratic bound: (v)? +
4vy, where v} denotes the number of nodes in a tier-£ network with n leaves
[FHMW17].

Recall from Corollary 5.25 that any rSPR. sequence transforming a directed
network N into another directed network N’ provides a corresponding SPR
sequence transforming U(N) into U(N’).

Moreover, since any orientable network is the underlying graph U(N) of
some directed network NV, the diameter for rSPR moves on directed networks
gives an upper bound for the diameter of SPR moves on the space of undirected
networks restricted to orientable networks.

Using this fact, and the techniques from the previous section to get to
orientable networks we obtain the following proposition. This proposition gives
an upper bound for diamgpg(n, k) in terms of diam,spr(n, k).

Proposition 6.11 ([JJE*18| Proposition 4.21). The diameter of the k-tier of
undirected network space has upper bound

diamspR(n, k) < diamrSpR(n, k) + 2M,

where M denotes the maximal SPR distance from any undirected network to an
orientable network.

Proof. Let U, U’ € U(n, k) be two undirected networks. Then we can apply at
most M moves to U and at most M moves to U’ to get to orientable networks
U, and U] (M exists by Lemma 6.6). Choose an orientation for these orientable
networks, taking the same leaf as the root in both. Then, by Corollary 5.25,
there is a sequence of at most diam,spr(n,k) moves to go from U, to U].
Because all moves are reversible, there is a sequence of moves:

diam,gpg (n,k)

v, Ul &y,

of length at most diam,spr(n, k) + 2M from U to U’. O

This proposition together with Proposition 6.7 and Theorem 5.19 gives a
reasonable upper bound on the diameter of U(n, k), namely 2n + 3k + %k
However, using the (lack of) structure in an undirected network, we can do
better. The next theorem again uses the bottom-up isomorphism building
technique. This time, we apply it to orientable networks, where we dynamically
re-orientate the networks between steps.
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Theorem 6.12 ([JJET18] Theorem 4.22). The SPR diameter of the k-tier of
undirected network space has upper bound

diamgpgr(n, k) < n+ gk

Proof. Let Uy,Us € U(n,k) be arbitrary undirected networks. By Proposi-
tion 6.7, we can apply a total of %/{ moves to produce orientable networks
Uy and Ug. Now we do induction as in the proof of the rSPR diameter (Theo-
rem 5.19). Choose network orientations N1, Na € N'(n—1, k) for both orientable
networks, i.e., networks such that U(N;) = Uy and U(Nz) = Ug. As before,
we construct the down-closed subsets Y7 and Y of N; and Na such that Nily,
and Naly, are isomorphic. We show that we need at most n 4+ 2k SPR moves
in total to reach U3 from Uy, by inductively increasing the size of Y7 and Y5.

Recall that, in the proof of Theorem 5.19, we use Lemma 3.5 to add retic-
ulations and Lemma 3.6 to add tree nodes to the down-closed sets. For retic-
ulations, this takes at most one rSPR move per reticulation, and at most two
rSPR moves per tree node. The only case that requires two moves is Case 2c
of Lemma 3.6, where all lowest nodes are tree nodes and the nodes in the
other network corresponding to their child nodes have tail-immovable incoming
edges. We now show how one SPR move suffices to deal with this case when
we consider undirected networks.

Suppose we are in the situation of Case 2c. We shortly recall the situation:
Every lowest node of N1\ Y1 and every lowest node of No\ Ys is a tree node, so
there exists a node ug € No\Ya with children xa,y2 € Y. Lel x1,y1 be the nodes
in Y corresponding to xo and yo. The nodes x1 and y1 do not have a common
parent not in Y1. Let z{ and 2} be parents of x1 and y1 not contained in Y.
Neither (2¥,x1) nor (z{,y1) s movable, so Ny contains triangles (c,27,d})
and (c¥, 2], dY{) such that d¥ # x1 and dY # y1. We distinguish three subcases:

1. dY € Y1. Reversing the direction of (27,dYy) gives a valid orientation
with the same underlying undirected network, and conserves the down-
closedness of Y7 and the isomorphism between N;[Y7] and Na[Ys] (Fig-
ure 6.3). The resulting directed network has a reticulation node directly
above Y7, so we can add a node to Y7 and Ys with at most one move.

2. df € Y7. This case is handled symmetrically to Case 1 by reversing the
direction of (zf,d7).

3. “.dy € Yi1. Note that one of (u2,z2) and (ug,ys) is tail-movable
(Lemma 3.3).
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cf ct
Y Y
<1 dy

Y
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Y1 Y1

yll yJ

Figure 6.3: The re-orientation of the bottom edge of a triangle in Theorem 6.12
Case 1. All of the nodes of the triangle are above Y7, so re-orientation does not
affect the isomorphism between N;[Y7] and Na[Y3].

a) (ug,x2) is movable. Tail moving (ugz,x2) to an incoming edge of
d3, the node in Y5 corresponding to df, we create a lowest tree node
ug with children z and df in Y5 (Figure 6.4). We can add 2§ (with
children z; and df) and us (with children z2 and d3) to Y7 and Y»
at the cost of one move.

b) (u2,y2) is movable. This case is handled symmetrically to the
previous case by interchanging the roles of x1 and y;.

Ny \ Y5 { \ Ny '\ YJ\
U Y, I Y, A
Ny \ Y, \‘ |
"

. dgl 5’721 ds. 9 Z1 !

\

Figure 6.4: The tail move used in the proof of Case 3a in the proof of Theorem
6.12.

This proves that we can always add a node to Y] and Y5 using at most one
SPR move. Hence the number of SPR moves needed to transform Uy into Us
is at most |V| < n + 2k. Together with the moves needed to get to Uy and
Us from Uy and Us, we get an upper bound of n 4 %k for the number of SPR
moves needed to go from Uj to Us. O]
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6.2. Connectedness and diameters

6.2.2 NNI moves

Here, we prove upper bounds on the diameter of NNI spaces. First, we prove
a simple bound using the results from the previous section about SPR moves.
Then, we prove a better bound using the bound for rmni spaces from the pre-
vious chapter.

For the simple bound, we apply the following lemma, which is a variation
on [JK19] Lemma 3.4 where it is shown that each SPR move can be replaced
by a sequence of NNI moves. The proof here deviates from the proof in [JK19],
mainly because that proof does not work for internally labeled networks, but
also because this thesis uses different notation. With this lemma in hand, we
can easily prove connectedness of NNI spaces, using the connectedness of SPR
spaces.

Lemma 6.13. Let U, = U(n,k,m) with dSpR(U, U’) =1, then dNNI(U, U’) <
2n + 3k — 2 NNI mowes.

Proof. Assume that U can be transformed into U’ by the move u M) e.
Note that there is then a path P = (po,u, p1,p2,...,p) in U\ {e} such that
e={pi_1,p} and v & {po, p1}, since otherwise U’ would be disconnected. Like
in Lemma 3.9, the idea is now to move u along P to e with NNI moves.

Let U; be the result of the SPR move u ﬂ) {pi,pi + 1} in U for all
i = 1,...,l — 1. Note that such a move is valid—thus U; exists—iff v ¢
{pi,pi+1}. Hence, if v ¢ P, then each U; is a valid network. As it is trivial that
dNNI(Uz, UH—I) < 1 if these networks exist, the statement holds when v ¢ P.

Now suppose that v = p;, then only the networks UJ 1 and U do not exist,
and we need to find an NNT sequence between U —_o and U]+1—these must exist
because Uy = U and U;_; = U'. The following sequence works for this purpose:

w 2 o pia} w B {pyi,pyee}, and v 2% {p; 1 piia} Tt can be

easily verified that these moves are valid, except when p;_; is adjacent to p;y1.
In that case, however, there exists a path P that does not contain v.

The number of moves in such a sequence is at most [ + 1. As [ is at most
the number of edges in U, which is 2n + 3k — 3, we have that dyni(U,U’) <
2n + 3k — 2. O

However, using this lemma, we get a diameter of order O((n+k)?), whereas
we can get an asymptotically tight bound for Unni(n, k) using the strategy used
for rNNI moves in the previous chapter.

Applying the rNNI diameter proof to NNI moves, we recover the original
proof for the NNI diameter from Theorem 13 in [JK19]. In that paper, all
networks under consideration were orientable (or, proper, as it was called in that
paper). Leveraging the fact that each undirected network can be transformed
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into an orientable network with a small number of NNT moves (Proposition 6.7)
we can use Theorem 13 from [JK19] or Theorem 5.23 to get the following result.

Theorem 6.14. The space Unni(n, k) is connected and diamnni(n, k) < 12n+
20k — 15+ 2(k + 2) log(k + 2) + nlogn.

Proof. Let U, U’ € U(n, k). First, using at most 3k NNI moves per network, we
transform U and U’ into orientable networks U, and U, (Proposition 6.10). By
Lemma 2.69, there exist orientations N, N’ € N'(n—1,k) of U, and U with the
same leaf chosen as the root. Applying Theorem 5.23 to these networks, we see
that there is a sequence of at most 12n+ 14k — 15+ 2(k +2) log(k +2) + nlogn
rNNI moves between N and N’. Using Lemma 5.24, this gives dyni(U,U’) <
12n + 20k — 15 + 2(k + 2) log(k + 2) + nlogn. O

Recall the lower bounds from Francis et al. Theorem 2 (5.26), where they
gave a lower bound of order Q((n+ k) log(n + k)) for diamnni(n, k). Note that
our upper bound is of order O((n + k)log(n + k)), so we can conclude that
diamnni(n, k) = O((n + k) log(n + k)).

6.3 Internal labels

Like in the previous chapters, we will now prove that the spaces of internally
labeled networks are also connected by SPR and NNI moves. The proofs follow
a similar strategy as for directed networks: we first prove that the internal
degree-3 nodes can be permuted, and then we extend this to networks with
degree-2 nodes.

6.3.1 Permuting internal nodes

The results for directed networks cannot directly be used for this purpose,
because fixing an orientation of the undirected network also fixes a partition
of the nodes into tree nodes and reticulations. Doing this for both networks,
these partitions might not be compatible (a label attached to a tree node in
the first network might be mapped to a reticulation in the other network).
This problem cannot be circumvented by simply choosing some internal nodes
to become reticulations, because for some choices the network may not be
orientable [HvIJ719].

Hence, we simply reprove that there is a short sequence of moves making
any two internal nodes adjacent, and that there is a short sequence of moves
swapping the labels of adjacent nodes.
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6.3. Internal labels

Lemma 6.15. Let U E.Z/'l(n, k), and let x and y be two internal nodes of U.
Then there is a network U’ in which x and y are adjacent, and dgpr (U,U’) <1

Proof. Note that at least two out of the three edges incident to x are movable
with z as the moving endpoint, and that at most one of these edges is a cut-
edge that separates x and y. Hence, there is an edge {u,z} that is movable
with x as the moving endpoint and that is not a cut-edge separating x and y.

As the z-endpoint of {u,x} is movable and {u,z} does not separate = and
y, the SPR move x M {y,z} is valid as long as u &€ {y,z}. fu=y, x
is adjacent to y in U, and U’ = U suffices. If u = z, then we may simply
choose another edge {y, 2’} incident to y, and apply z % {y, 7'} to obtain
a network U’ in which z and y are adjacent. O

Lemma 6.16. Let Ue U(n, k), and let x and y be two adjacent internal nodes
of U. Let U’ be the network obtained by swapping the labels of x and y, then
dani(U,U') <2

Proof. Let a and b be the other neighbours of x, and ¢ and d the other neigh-
bours of y. If {a,b} N {c,d} # 0, then x and y are part of a triangle, and we
can swap two nodes in a triangle with one NNI move. O‘rherwi@e all of a, b,

¢, and d are distinct, and we may apply o 1%, {¢,y} and y 2%, {by) {a,z} to

reach the desired result. O

Theorem 6.17. For all n > 1 and k > 0, we have diamgpr(n,k,0) <
diamgpgr(n, k) + 4n + 8k — 8 and diamnni(n, k,0) < diamnni(n, k) + (n +
2k — 2)(4n + 6k — 2).

Proof. Let Uy, Us € Z/l(n k,0) be arbitrary internally labeled networks. Using
at most dlamspR(n k) moves, we can transform U, into a network U1 such that
Ul =~ Us.

For any permutation of the ¢ internal nodes, we need at most ¢ swaps, so
in total, the permutation costs 4¢ SPR moves (Lemmas 6.15 and 6.16). Using
that i = n+ 2k — 2, there is a sequence of at most diamgpg (n, k) + 4n + 8k — 8
SPR moves from U; to Us.

For the NNI bound, use Lemma 6.13 to see that we need at most 2n+ 3k —2
NNI moves to make two internal nodes adjacent; and note that we can make
the networks leaf-isomorphic using at most diamnni(n, k) moves. O

Like for rSPR moves, diamgpgr (1, k,0) > diamgpr (n, k) = Q(n + k), which
implies that we have an asymptotically tight bound diamgpg(n, k,0)O(n + k)
for internally labeled networks as well.
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6.3.2 Degree-2 nodes

Theorem 6.18. All spaces UNNI(n, k,m) are connected with diameter bounds
diamgpg (n, k,m) < diamgpgr(n, k,0)+4n+8k+2m+1 and diamnni(n, k,m) <
diamnni(n, k,0) + 4mn + 6mk +m? + 6k +5m + 3, except if n =2, k =0 and
m > 0, i which case USPR(Q, 0,m) is the edgeless graph with m! nodes.

Proof. Let U,U’" € U(n,k,m) be two networks. To find a sequence between
these networks, we first make the networks orientable using at most k£ SPR
moves or 3k + m NNI moves per network (Proposition 6.7 and 6.10).

Then, using at most 2n+3k—1 rSPR moves or at most m(2n+3k—1) rNNI
moves in the oriented versions of each network, we collect the degree-2 nodes at
one leaf which we choose to be the root of the oriented versions (Lemma 5.31).
To sort the degree-2 nodes in one of the networks, we need an additional 2m+3
SPR moves or m? + 5m + 3 NNI moves (Lemma 5.31).

Lastly, to make the networks labeled isomorphic w.r.t. the full label set,
we use at most diamgpg(n, k,0) SPR moves or at most diamnni(n, k,0) NNI
moves (Theorem 6.17). The total sequence of moves thus consists of at most
diamgpg(n, k,0) + 4n + 8k + 2m + 1 SPR moves or diamnni(n, k,0) + 4mn +
6mk +m? + 6k + 5m + 3 NNI moves. O

6.4 Conclusion

In this chapter, we have investigated the spaces of undirected networks. First,
we considered the relation between directed and undirected networks. This
relation turns out to be slightly weaker than assumed in [GvIJT17b]. We have
investigated their line of thought in more detail, and showed that an SPR move
cannot generally be replaced by a constant length sequence of rSPR moves in
the oriented version of the network. This is unsurprising, as this already holds
for trees [AM19]. It is still unclear whether this result holds for NNI moves in
networks. For trees, however, we already know that each NNI can be replaced
with a single rNNI move on each orientation of the tree (Lemma 2.64). We
expect it to be false for networks in light of Example 6.3.

To get good upper bounds for the diameters of SPR and NNI spaces, we
therefore cannot directly use the results for rSPR and rNNI moves. To use
these results, we have considered orientable networks, and we have shown that
each undirected network can be turned into an orientable network using a small
number of SPR or NNI moves: & SPR moves if m > 0, k/3 SPR moves if m = 0,
and 3k + m NNI moves. This last bound can possibly be improved because
for each cut-edge, we need a blob containing at least 5 edges (if m = 0).
By orienting the obtained orientable networks and using the results from the
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previous chapter, we obtain upper bounds on the diameter of SPR and NNI
spaces. For the SPR diameter, we slightly improve this bound by making small
alterations in the use of the rSPR result.

The space of directed networks is in some sense embedded in the space of
orientable networks O(n,k): take the quotient N'(n,k)/~, where N ~ N’ if
U(N) = U(N'), then N(n,k)/~ is a subgraph of O(n,k). It would be in-
teresting to investigate these graphs in more detail. We could, for example,
ask whether these graphs are isomorphic? In other words, for each pair of
orientable networks U, U’ € O(n, k) such that dgpr (U, U’) = 1, are there orien-
tations N, N’ of these networks such that d,spr(N, N') = 17

The extension to internally labeled networks is again quite straightforward.
The strategy we used is quite similar to the ones used in the previous chapters:
to swap the labels of two nodes, make them adjacent, swap them, and return
them to their original positions. For SPR moves, this gives linear upper bounds
for the diameters of ngR(n, k,m). However, for NNI moves, our strategy re-
introduces quadratic terms into the diameter bounds of UNNI(n, k,m), which we
have painstakingly removed for Unnr(n, k). It is still an open question whether
these quadratic terms are necessary.
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7. COMPUTING SEQUENCES

In the previous chapters, we have shown that most spaces of networks are
connected, when restricted to spaces corresponding to the moves studied in this
thesis. Furthermore, we have bounded the maximal distance between pairs of
networks in these spaces. The proofs for these bounds are constructive, so they
provide sequences of moves between networks. However, these sequences are
unlikely to be as short as possible.

Knowing an exact distance between a pair of networks could be useful for
comparing networks. Although there are many other distance measures be-
tween networks, rearrangement distances are most closely related to the local
search heuristics. Hence, these distances are quite insightful for assessing the
quality of local search heuristics.

In this chapter, we investigate the problem of finding short sequences of
moves between a pair of networks. We only consider spaces of networks without
internal labels. First, we prove that, in most cases, computing the shortest
sequence is NP-hard (Section 7.1). Then, we investigate some practical aspects
of finding a shortest sequence (Section 7.2.1). Finally, in Section 7.2, we leverage
the results from the previous chapters, and investigate several algorithms that
follow from the constructive proofs for sequences between networks. These
algorithms are implemented and tested for the quality of their solutions.

7.1 Complexity of M DISTANCE

The complexity of M DISTANCE where M is a type of horizontal move is easily
determined. In fact, it is NP-hard to determine the distance between two trees
for SPR [HDRCBO0S8], rSPR. [BS05|, NNI [JLTZ00|, and rNNI moves.! This
immediately implies that M DISTANCE is NP-hard for SPR, rSPR, NNI, rNNI,
tail, and tail; moves.

Since this does not immediately imply that these problems are also NP-
hard for networks with reticulations, we modify the question to determining,
for all k£ > 0, the complexity of M DISTANCE TIER-k, for networks with &
reticulations. In Section 7.1.1, we prove that this problem is NP-hard for rSPR
and tail moves.

This only leaves the question of the complexity of HEAD DISTANCE and
HEAD; DISTANCE. In Section 7.1.2, we prove that HEAD DISTANCE is NP-hard
when the reticulation number is allowed to vary, as in the original definition of

'"The NP-hardness of RNNT DisTaNcE TREES follows very easily from [JLTZ00| and
Lemma 2.64, but, as mentioned in Section 2.5.1, it is unclear whether there is a paper that
explicitly states this result.
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the problem. The complexity of HEAD; DISTANCE and the fixed-tier versions
of these problems are still open.

For all these problems, NP-completeness follows directly from NP-hardness
because a certificate can consist of a sequence of moves of the required length
plus an isomorphism between the resulting networks. Alternatively, for binary
networks as considered in this thesis, one could take a certificate consisting only
of the sequence of moves. Indeed, the sequence can be applied to a network in
polynomial time, and the resulting networks can be compared in polynomial
time as well, because BINARY NETWORK [SOMORPHISM, the problem of check-
ing network isomorphism, is polynomial time for binary networks [MR12]. This
follows easily from the facts that DIRECTED GRAPH [SOMORPHISM is polyno-
mial for graphs in which the degrees of the nodes are bounded by a constant
[Luk82, KST93|—for the reduction, simply attach the reversed caterpillar with
n leaves to the leaf with label n in each network.

Lemma 7.1 ([MR12|). The problem BINARY NETWORK ISOMORPHISM can
be solved in polynomial time.

7.1.1 M DiSTANCE TIER-k

In this subsection we prove that computation of the rSPR and tail distance
between two networks in a fixed tier is NP-complete. To prove this, we use
that the set of embedded trees of a network cannot change much after a move
of any of these types. As such, this proof is different from the original proof in
[JJET18], where agreement forests are used.

Lemma 7.2. Let N and N’ be networks such that d,gpr(N, N') < 1. Then for
each T € T(N) there is a tree T' € T(N') such that digpr(T,T") < 1.

Proof. The statement holds for tail moves and head moves by Lemmas 3.13
and 4.3. As each rSPR move is either a tail move or a head move, the statement
also holds for rSPR moves. O

Theorem 7.3 ([JJET18] Theorem 4.1). When M is rSPR or tail, the problem
M DisTANCE TIER-k 4s NP-complete for all k > 0.

Proof. We prove this using a reduction from RSPR DiSTANCE TIER-0. Let
(T, T') be an instance of RSPR DISTANCE TI1ER-0 with T, 7" € A/(n,0). Then,
in polynomial time, we can construct the instance (N, N’') of M DISTANCE
TIER-k consisting of the two ladder trees N = Hp(T*,c(p),n + 1) and N’ =
Hi (T, c(p),n+ 1) in N(n, k).
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Note that a sequence of moves between T and T" gives a sequence of moves
between N and N, as T and T’ are pendant trees of N and N’. This gives the
inequality dp (N, N') < d(T,T").

For the other direction, we observe that each rSPR or tail move in a network
changes each embedded tree of the network by at most one move (Lemma 7.2).
Hence, for any ¢t € T(N) and ¢’ € T(N'), a sequence of length [ from N to
N’ gives a sequence of length at most [ from ¢ to /. In particular, we have
dy(N,N') > d(T*,T').

Because T and T" are pendant trees of T and T"F, we also have d(T+,T"") >
d(T,T") and we can conclude that dy;(N, N') > d(T,T") and thus dy; (N, N') =
d(T,T"). Finally, because N and N’ can be constructed from T and 7" in poly-
nomial time, any instance of RSPR DISTANCE T1ER-0 can be transformed into
an equivalent instance of RSPR DISTANCE TIER-K in polynomial time. O

One would hope that an analogous proof works for SPR moves. However,
we will show using a counterexample for the analogue of Lemma 7.2 that it
does not.

Example 7.4. Let U and U’ be the networks in Figure 7.1, and T the embedded
tree of U shown in bold in the same figure. Notice that U’ is one SPR move away
from U, and that all trees in 7 (U’) are at least two moves away from 7. Indeed,
each embedded tree of U’ contains the cut-edge {u, v}, which separates the tree
into to trees on {ai,by,c1,a2,be,co}t and {as, b3, cs, aq, by, cq}t. All options for
these pendant trees are not isomorphic to the restrictions of 1" to these leaves.
Hence, to reach T from an embedded tree of U’, we need at least one move in
each of these pendant trees.

U U’

ap /N\ G2 a3 ay ap N\ ag ay

0 I VR S Y D O - S S O

L 1 ¢ G | ¢4 2 L2 G| Ja
Uu v

Figure 7.1: The networks of Example 7.4. The networks are one SPR move
apart, but the thick tree in the left networks is not at distance at most one
from any embedded tree of the right network.

For a similar reason, the same proof strategy also fails for local moves: A
local move on a network can introduce embedded trees that are further than
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one local move away from a previously embedded tree. See Proposition 6.3.1
of [Mar20| for an analysis of some cases where this cannot happen.

Example 7.5. Let N be the network obtained from a network with two leaves
and one reticulation by adding three leaves to the bottom arc of the triangle.
Let N’ be the network obtained from N by the tail; (or head;) move that
creates a cherry (1,2) below the bottom node of the triangle. Let T be the
embedded tree of N in which the leaves 1 and 2 are at large distance from each
other (bold part of N in Figure 7.2). As 1 and 2 are far apart in T, they will
still be far apart in any tree one rNNI move away from 7. In particular, such
a tree cannot contain the cherry on 1 and 2.

Figure 7.2: The networks of Example 7.5. The networks are one SPR move
apart, but the thick tree T in the left networks is more than one rNNI move
away from each embedded tree of the right network.

Although this proof strategy fails for local moves and SPR moves directly,
it does not mean that the theorem is false. In fact, it seems feasible that
the M-distances between the networks and the trees in Theorem 7.3 have the
same relation when considering local moves or SPR moves. The main reason
for believing this is that it is unlikely that the blob which already has the
right shape—can help in rearranging the pendant trees. For SPR moves, this
can probably be proven by applying agreement forest techniques directly to
networks in which only the pendant trees are different.

To enforce this distance relation for local moves, a more suitable technique
would be to separate the blobs from the trees by a chain of length n?, where
n is the number of leaves in the original trees. It should then be pointless to
rearrange the blob at all, as the only differences between the networks are in
the trees and the trees can be rearranged using at most O(nlogn) moves. We
will not attempt to prove this in this thesis.
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7.1.2 HEAD DISTANCE

In this section, we prove that the problem HEAD DISTANCE of computing the
head move distance between two networks is NP-complete. The proof uses a
reduction from RSPR DISTANCE TREES, which is the problem of finding the
rSPR distance between two rooted trees. The rough idea is to convert rSPR
moves on trees into head moves on specifically constructed networks.

Because rSPR moves change the location of the tail and not the head of
an arc, we use the following trick: we turn the tree upside down, which turns
each tail into a head, and hence a tail move into a head move. Just reversing
the direction of the arcs of the tree is not sufficient, as this gives a graph with
multiple roots and one leaf. Hence, we connect all these roots and add a second
leaf to create a phylogenetic network. To distinguish the leaves of the original
tree in this network, we finally attach chains of leaves. This construction is
formalized in the following definitions.

After these definitions, we will show that the minimal number of head moves
between two upside down trees is equal to the number of rSPR moves between
the two original trees. This proof uses the concepts of agreement forests.

Definition 7.6. Let T be a phylogenetic tree with labels X = {z1,...,z,},
the upside down version of T is a network L with 2n? + 2 leaves (egiforz e X
and 7 € [2n], y, and p) constructed by:

1. Creating the labelled digraph S, which is T with all the arcs reversed;

2. Creating the tree D by taking C(X U {y}) and adding 2n pendant arcs
with leaves labelled ey 1, .. ., €52, to each pendant arc e = (-, z) of C(X);

3. Taking the disjoint union of D and S

4. Identifying the node labelled z; in D with the node labelled z; in S and
subsequently suppressing this node for all i.

The bottom part of L is the subgraph of I below (and including) the parents
of the e, 1 (Figure 7.3).

The rSPR distance between two trees can be characterized alternatively as
the size of an agreement forest [BS05|. Here, we use this alternative description
as part of the reduction. To define agreement forests, we need the following
definitions, which we have generalized slightly to work for networks.

Definition 7.7. Let G and G’ be digraphs labeled by a set X. If S(G) ~x
S(G") (i.e., G and G’ are labelled isomorphic after suppression of all their

168



7.1. Complexity of M DISTANCE

C(X) I

€11 €ag,1
Ty X2 X3 T4 Tz Te L7 Ig

€21,16 28,16

T1 T2 XT3 Xy Ty T T7 Ay P

Figure 7.3: Left, the caterpillar C'(X) and the tree T, right, the upside down
version of T'. In the upside down version of T', the original leaves x; (grey) are
suppressed.

degree-2 nodes) then we write G = G’, or say G is s-isomorphic to G’ (for
suppressed isomorphic).

An s-embedding of a graph H in G is an s-isomorphism H = S of H with
a subgraph S of G. We say that H can be s-embedded in G if an s-embedding
of H in G exists. Note that any subgraph H of G can be embedded in G as
H=H.

Now we look at an important property of s-embeddings relating to sub-
graphs, which implies that being s-embeddable is transitive.

Lemma 7.8 ([Jan21| Lemma 24). Let A, B and H be digraphs with all degree-
1 nodes labelled. Suppose A = B and H is a subgraph of A, then H can be
s-embedded in B.

Proof. The s-isomorphism A = B is an isomorphism of graphs (topological
minors) without degree-2 nodes. This isomorphism is a bijection between the
non-degree-2 nodes of A to the non-degree-2 nodes of B. The map of the arcs is
a map of paths of A to paths of B, where the internal nodes of these paths may
only be degree-2 nodes. Now consider the subgraph H of A, and note that the
non-degree-2 nodes of H are non-degree-2 nodes of A as well. Indeed, the only
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way to create new non-degree-2 leaves by taking a subgraph, is to create a leaf
from a degree-2 node, but L(H) C L(A) = L(B), so each degree-1 node of H
corresponds to a degree-1 node of A and of B. This means each non-degree-2
node of H corresponds to a non-degree-2 node of B, and each arc of H to a
path between such nodes in B, and there is an s-isomorphism of H with the
subgraph of B formed by these nodes and arcs. O

Now we turn to the definition of an agreement forest, which, as mentioned
earlier, characterizes the rSPR distance for trees. Following the definition of
the agreement forest, we define a tool similar to an agreement forest tailored
to upside down versions of trees. This upside down agreement forest (udAF)
can be turned into an agreement forest of the two original trees.

Definition 7.9. Let 77 and T» be phylogenetic trees with labels X and root
p. Then a partition P = {P;} of X U{p} is an agreement forest (AF) for T}
and Ty if the following hold:

o Th|p, = Ty|p, for all i;

e Ti|p, and Ti|p, are node-disjoint for all pairs 4,5 with i # j and fixed
te{1,2}.

Definition 7.10. Let T be a tree with label set X, and let I be the upside
down version of T. Then an upside down agreement forest (udAF) for L is a
directed graph F' such that:

e The underlying undirected graph of F'is an (undirected) forest;

e [ is a leaf-labelled graph with label set {e;; : = € X,i € [2n]} U {p},
where each label appears at most once;

e [ = S for some subgraph S of the bottom part of L.
Note that the third requirement implies the first (Figure 7.4).
Lemma 7.11 ([Jan2l| Lemma 25). Let T and T" be phylogenetic trees with
label set X. If F is an udAF for I and for L', then there exists an AF of T

and T' of size at most |F|, where the size |F| denotes the number of components
of F.

Proof. Let K be the set of components of F'. For each K € K we define the
following part of the agreement forest:

Kap :={x € X|e; € K Vie [1,2n]} U (K N{p}),
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= 0 0

K? Kl K2

{Lp} | {34}

K1 Kar Kir
Kar

Figure 7.4: An example of a udAF F of the ud-version of the balanced tree on
four leaves T. The udAF F consists of four components K',..., K4 If Fis a
udAF for the ud-versions of T and another tree T, then the non-empty K
are parts of a AF for T and 7" by Lemma 7.11.

where e, ; indicates the i-th leaf of L corresponding to x. The agreement forest
consists of these parts (ignoring the empty ones, resulting from components
that have no complete sets of leaves), together with one part for each leaf that
is in none of these parts, that is

AF :={Y CXU{p}3K € Kst. Y = Kap}
U{{z} cXU{p}VK e K:az & Kap}\ {0}.

Note that each component Y of AF corresponds either uniquely to a compo-
nent K of F' which has all e, ; for some leaf x, or it corresponds to a leaf x for
which not all e;; are contained in one component of F'. In the last case, for
this x, there exists a component of F' containing only leaves e, ;, where z is
fixed and i € [2n]. Note that this correspondence AF — K must therefore be
injective, and AF has size at most |F|. What remains to prove is that AF is
indeed an agreement forest for T and T".

Let F’ be the subgraph of F where each component K is restricted to the
subgraph consisting of all paths between the leaves in K4p. As (per definition
of an udAF) F can be s-embedded in the bottom part of I, F’ can also be s-
embedded in the bottom part of .L as it is a subgraph of F' (Lemma 7.8). This
s-embedding must be unique, because it is of a labelled forest into a labelled
tree.

Let E, be the subgraph of L induced by the leaves e;; and their parents
for all ¢ and a fixed x. Now replace each subgraph FE, with one leaf x in
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both F’ and in the bottom part of L. Let the resulting graphs be F** and
B?. Subsequently reverse the direction of each arc in both B® and in F*® with
resulting graphs B" and F". Note that the resulting graphs are B” = T and the
union F" = UgexT |k, . and all the restricted trees T'|k,, are node disjoint.

We repeat this argument for I/, and note that the modifications from F to
F7 are independent of I, so we have the equality F" = UgexT" |k ,p, Where
the parts T”|k , . are again node disjoint. This means T'|k,, = T"|k,, for each
K € AF corresponding to a non-trivial component of F', and T'|p, and T'|p, are
node disjoint for all nontrivial parts P; and P; of AF (similarly for T7"). Hence,
so far, the elements of AF corresponding to non-trivial components of F', meet
all the requirements of an AF.

The only other elements of AF contain only one label, each of which is not
in any of the non-trivial components of AF. Hence, for any such label z, the
restriction T|{$} consists of only the node labelled x, which is not contained
in any other component by definition (and similarly for 7). Furthermore, the
s-isomorphism T'[(;3 = T"|(, is trivial. Hence, AF is indeed an agreement
forest. O

The preceding lemma shows that an udAF for two upside down trees gives
an AF for the original trees of the same size. We still lack a connection between
the number of head moves and an udAF, however. The following lemma, shows
that appropriate head move sequences correspond to udAFs of size related to
the number of head moves.

Lemma 7.12 ([Jan21] Lemma 26). Let T and T" be trees with label set X, and
| X| = n. Suppose S is a sequence of head moves I = Ny,...,Ng = L' of
length |S| < 2n. Then there is an udAF F of L and I’ with at most |S| + 1
components.

Proof. Let B be the bottom part of L. We prove this result using induction on
the number of moves to prove that there exist subgraphs F; of N; which can
be s-embedded in the bottom part of I and have |F;| < i components. Finally
we prove the subgraph Fjg of Nig = I’ must actually be a subgraph of the
bottom part of I..

As a base of the induction, set Fy = B, which is connected and can clearly
be s-embedded in itself and is a subgraph of L.

Now suppose we have subgraphs F; of N; with s-embeddings of F; in B and
|F3| <iforall i < j < [S|. We prove that there also exists a subgraph F} of
N; with at most j components that can be s-embedded in B.

Note that Fj_; is a subgraph of N;_; and therefore the moving arc e; =
(u,v) can be either an arc of F;_;, or it is in the complement N;_; \ F;_;.
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In the last case e; can have only its endpoints in F;_;. Now construct F} as
follows:

e remove arc e; = (u,v) from F;_q if it was contained in it;

e clean up the resulting graph by removing all arcs not contained in any
undirected path between two leaves, and suppressing v if it is a degree 2
vertex after removal of (u,v).

e add the new endpoint if necessary. That is, let the target arc of the move
be t, if ¢ is contained in the graph after cleaning up, subdivide t.

Note that I} can be s-embedded in F;_; because the only operations were:
restriction to a subset of labels, subdivision, and suppression (Lemma 7.8).

Because Fj_1 s-embeds in B, there is also an s-embedding of F} into B.
Furthermore, Fj is a subgraph of N; by construction: the three steps correspond
exactly to the pruning and reattaching steps of a head move in N;_;. Lastly,
F; has at most one more component than F;_;, because the only operation
that can increase the number of components is the removal of the arc in the
first step. Furthermore, because that is an arc removal in a graph, it creates at
most one extra component.

We conclude that the desired subgraphs F; of N; exist for all ¢ € [|.S]].

Note that we have not yet proven that F' := F|g is an udAF for I, as F
might not s-embed in the bottom part of I'. We now prove that F is in fact a
subgraph of the bottom part of L.

By construction, F is a directed subgraph of I'. Suppose (for a contradic-
tion) that F is not a subgraph of the bottom part of I, i.e., some part of F lies
in the top part of I'. This means that there is a node ¢ of F' that corresponds
to a tree node (which we also call t) in the upper part of I'. A tree node of
F' necessarily has two children ¢; and ¢o, as F' s-embeds in the bottom part of
L. One of these children (w.l.o.g. ¢1) must have a unique leaf descendant e ;.
The other child (c2) either has a leaf descendant e, ; with the same x as the
descendant of ¢;—or the next non-degree-2 descendant is a reticulation node.

If ¢ has a leaf descendant e, ;, we note the following: ¢ is mapped to a
tree node in the top part of I'. Hence, the leaves below the one child of ¢
and the leaves below the other child of ¢ can never correspond to the same
x € X: indeed if e, ; is below ¢y, then e, ; is also below ¢1, and similarly for co;
furthermore, as the only reticulations of I are in the lower part of the network
after the e.. split off, the leaves below ¢; and ¢y are disjoint (except for the leaf
corresponding to the root of 7”). Hence, as ¢; has a descendant e, ;, and ¢y has
a descendant e, j, we have a contradiction.
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Now, if ¢o’s first non-degree-2 descendant d is a reticulation node, then this
node maps to a reticulation in the bottom part of .I'. This means the arc (¢, d)
maps to a path from the top part of I’ to a reticulation in the bottom part of
I’. Such a path must necessarily contain the all parents of the leaves e, ; for
some x € X. As the s-embeddings of all components in F' are node disjoint,
and each leaf e.. is a node of F, each leaf e, ; (fixed z, for all i € [2n]) is its
own component in F'. Hence F' has at least 2n + 1 components, implying that
|S| > 2n, which gives us a contradiction with the assumptions of the lemma.

We conclude that there exists an s-embedding of F' in the bottom part of
L, and F is an udAF for I/ with at most |S|+ 1 components, as F' has at most
|S| + 1 components. O

Finally, we put everything together in the following lemma and theorem:
each candidate head move sequence defines an udAF, which in turn gives an
AF for the original trees, which bounds the rSPR distance between these trees.

Lemma 7.13 (|Jan21| Lemma 27). Let T and T5 be trees with a common label
set, then

drspr(T1,T2) = dhead (L 1,L2).

Proof. The inequality dyspr(71,72) > dhead(L1, L2) is obvious, as the rSPR
sequence for the trees directly translates into a head move sequence for the
upside down trees.

We now prove the other inequality. As 2n > dispr(71,72) > dpead (L1, L2)
we only have to consider head move sequences of length less than 2n. Suppose
we have a sequence of head moves S between I; and Ig of length less than 2n,
then there exists a udAF of size at most |S| + 1 for Ly and Lo (Lemma 7.12).
Now Lemma 7.11 tells us that there is an AF for T and T” of size at most |S|+1.
Using the fact that the size of the MAF of T' and 7" minus one is equal to the
rSPR distance between T and T” [BS05], we get the following inequalities:

|S| > |AF| =1 > dispr(T1, T2).
We conclude that d;spr (71, 72) = dheaq (L1, L2). d

Theorem 7.14 (|Jan21| Theorem 5). The problem HEAD DISTANCE is NP-
complete.

Proof. This is a direct consequence of the previous lemma, as computing the
rSPR distance between two trees is NP-complete [BS05]. O
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7.2 Algorithms

In this section, we present pseudocode of algorithms for computing (bounds
for) rearrangement distances. The exact algorithm is simply a breadth first
search. The algorithms for the upper bounds are based on the isomorphism
building proofs presented in the previous chapters. For rSPR and tail moves,
we use the bottom-up isomorphism strategy (Theorems 3.8 and 5.19), and, for
head moves, we use the top-down isomorphism construction (Theorem 4.23).

7.2.1 Exact algorithm

In this section, we give a simple breadth first search algorithm. This trivially
shows that the distance is computable, albeit with a very bad running time.
At the end of this chapter, we will discuss several options for improving this
running time, either by making algorithmic changes, or by using some properties
of the M-distance related to the structure of the networks.

If the breadth first search is implemented as it is most often defined—
with a queue—the queue will naturally grow rather long. This is because the
neighbourhood of each network is quite large. Furthermore, normally, a list
of visited nodes (networks) is kept to prevent searching in cycles. This would
also take quite a bit of memory. Moreover, checking whether a network is
already visited might not be very straightforward, as the candidate network
has to be compared to each network that has already been visited. Although
this NETWORK ISOMORPHISM problem can be solved in polynomial time (for
binary networks), this still takes a lot of time.

Algorithm 1: ITERATEDDFS (N, N')

Data: Two binary networks N and N’ in the same space S.
Result: An M sequence from N to N’

1 Set ¢ =0;
2 Let D be an upper bound for the largest diameter among the components of S;
3 while : < D do
4 Let s be a stack containing one element, the empty sequence of moves;
5 while |s| > 0 do
6 Take a sequence of moves S off the top of the stack;
7 Let Ng be the result of performing S on N;
8 if |S| =i and Ns ~x N’ then
9 L return S;
10 if |S| < ¢ then
11 for each valid M move t in Ng do
12 L | Add Sotto the top of the stack;
13 Set i =i+ 1;

14 return FALSE;
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Hence, the breadth first search is implemented as an iterated depth first
search (DFS) with increasing maximal depth (Algorithm 1). In this implemen-
tation, we do not keep a list of visited networks. This makes to possible to visit
a network multiple times, but, of course, such a sequence will never be optimal.

Theorem 7.15. Let M be a move type, and N and N' two networks in the
same space of (subdivided internally labeled) networks. If N and N’ are in
the same component, then BFSDISTANCEM (N, N') returns a minimal length
M -sequence between N and N'; otherwise, it returns FALSE.

Proof. The algorithm halts, because each line in the algorithm runs in poly-
nomial time, the largest diameter D among all components of S is finite (the
number of networks in § is finite), and the number of sequences of length at
most D is finite as well. An upper bound D can simply be found by looking
up the appropriate upper bound in the corresponding theorem in this thesis
if it concerns one of the moves studied here, otherwise, simply take an upper
bound for |S| as D. Correctness of the algorithm follows from the fact that all
possible sequences of moves of sufficient length are tried. ]

The running time of this algorithm depends on the space and the type of
move. In general we get a running time of O(poly(n, k)|Nbh|”), where |[Nbh| is
the maximal number of neighbours of a network in the space of networks. For
rSPR moves without internal labels, for example, we may take D = 2n+ 3k —2
(Theorem 5.19) and the number of valid rSPR moves in any network in S can be
bounded by 2(2n+3k —1)? (moving each endpoint of each arc to each arc in the
network). The running time can then be bounded by O(poly(n, k)(v/2(2n+3k—
1))4n+6k=4) We will not study this running time in more detail for two reasons.
First, we cannot calculate the running time very well because it depends on the
size of the neighbourhood and on the diameters of the spaces. For both of these,
we have some asymptotic bounds, but they aren’t all asymptotically tight. The
second reason is that the algorithm is so slow in practice (Section 7.3.4) that it
is not, very interesting to know the theoretical running time.

7.2.2 Upper bound: rSPR distance

We now give a heuristic for finding an rSPR sequence between any pair of net-
works. The structure of this heuristic is taken from the proof of Theorem 5.19.
Each of the following subroutines corresponds to a lemma used to prove this
theorem, starting with Algorithm 2 which is modeled after Lemma 5.17.
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Algorithm 2: LOWESTRETIC-RSPR (N, N Y, Y’ ¢, )

Data: Two binary tier-k networks N and N’ with down-closed sets Y and Y’ such that
N[Y] £, N[Y'] and a lowest node v’ in N \ Y that is a reticulation.
Result: Sequences of moves S, S’ and a node u of N such that after applying S to N and S’ to

N’ we get N[Y U {u}] & N'[Y’ U {u'}], where ¢’ is ¢ extended with ¢'(u) = u’.

1 Set S and S’ to be empty sequences of moves.

2 Let @’ be the child of ' and z = ¢~ (z);

3 Let z be a (random) parent of z not in Y;

4 if z is a reticulation then

5 ‘ Set u = z;

6 else

7 Let v be a (random) reticulation in N \ Y;

8 if N has an arc (u,v) such that v (&%), (2, ) is valid then
9 L Add v (), (z,2) to S;
10 Set u = v;

[y
[y

return S, S, u;

The algorithm follows the proof structure of Lemma 5.17, so correctness of
the algorithm follows almost immediately from the proof of this lemma, save
for the following small adjustment. The algorithm only checks one parent of z
for being a reticulation. If the other parent of x is a reticulation in N \ Y, this
node could be added to the isomorphism. However, the algorithm only catches
this if there is a triangle (z,v,z). To keep the correspondence between the
algorithm and the proof of Lemma 5.17, we have not implemented this possible
improvement.

Lemma 7.16. Let N, N' € N(n, k) be networks with down-closed sets Y and Y’

such that N[Y] L N'IY'] and v’ a lowest node of N'\'Y' that is a reticulation.
Moreover, let S, S, u be the output of LOWESTRETIC-RSPR(N, N", Y, Y’ ¢, u'),
and M and M’ the networks obtained by applying S to N and S" to N'.

Then |S|+ 15" <1, YU{u} and Y U{u'} are down-closed sets in M resp.
M, and MY U {u}] gx M'Y'U{u'}], where ¢ is ¢ extended with ¢p(u) = u'.
In other words, Algorithm 2 is correct.

The correctness of Algorithm 3 follows directly from Lemma 3.6 when all
lowest nodes above the down-closed sets are tree nodes. However, we claim
this algorithm is applicable in more general cases as well, but not in all cases,
it does return FALSE sometimes. There is always a lowest node for which this
algorithm does not return FALSE, so if the algorithm does return FALSE, we
may simply pick a new lowest node and try again.
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Algorithm 3: LOWESTTREE-TAIL(N, N, Y. Y’ ¢, u')

Data: Two binary tier-k networks N and N’ with down-closed sets Y and Y’ such that
N[Y] £, N[Y’] and a lowest node v’ in N \ Y that is a tree node.
Result: Sequences of tail moves S, S’ and a node u of N such that after applying S to N and S’

to N’ we get N[Y U {u}] ‘é N'[Y" U {u'}], where ¢(u) = u’, or FaLSE.

1 Set S and S’ to be empty sequences of moves.
2 Let x’,y’ be the children of u’;
3 Set z = ¢ (') and y = ¢~ 1 (v');
4 if z and y have a common parent in N \'Y then
5 | Set u to be a (random) common parent of z and y in N \ Y}
6 else
7 Let 2, be a (random) parent of z not in Y;
8 Let z, be a (random) parent of y not in Y7
9 if (z,,x) is tail-movable then
10 Add z, 22, (z,,y) to S;
11 Set u = z4;
12 else if (zy,y) s tail-movable then
13 Add z, (zy’y)) (20, ) t0 S;
14 Set u = zy;
15 else if Both z, and z, are tree nodes then
16 Let (cg, 24, dy) be the triangle with d, # x;
17 Let (cy, zy,dy) be the triangle with d, # y;
18 if ¢, is the child of the root then
19 | Swap the roles of = and y;
20 T.et b, be the parent of c.;
21 Let a, be a (random) parent of by;
22 Add ¢, (c2:92) (agz,by) and z; 22 (z2,,y) to S;
23 Set u = z4;
24 else
25 | return FaLsk;

26 return S, S’ u;

Lemma 7.17. Let N,N' € N(n,k) be networks with down-closed sets Y and

Y’ such that N[Y| L N'[Y'] and v a lowest node of N'\Y' that is a tree node.
Moreover, let O be the output of LOWESTTREE-TAIL(N,N", Y, Y’ ¢,u').

If O =FALSE, then N has a lowest node above Y that is a reticulation.
Otherwise, the output O is a triple S,S',u. Let M and M’ be the networks
obtained by applying S to N and S’ to N'.

Then |S| 415" <2, YU{u} and Y U{u'} are down-closed sets in M resp.

M', and M[Y U{u}] gx M'Y'U{u'}], where ¢ is ¢ extended with ¢p(u) = u’.
In other words, Algorithm 8 is correct.

Proof. First note that for the algorithm to return FALSE, it has to reach Line 25,
which it only does if the condition in Line 15 is not satisfied. In that case, at
least one of z, and z, is a reticulation. Note that this also implies one of these
nodes is a lowest node of N\ Y. Hence, the algorithm can only return FALSE if
N has a lowest node above Y that is a reticulation.

The correctness in all other cases follows almost immediately from the proof
of Lemma 3.6. We only need to be careful in Lines 7-14. In the proof of
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Lemma 3.6, these cases assume that all lowest nodes above Y are tree nodes.
Hence, we have to prove these lines give the desired outcome, even if this is not
true.

First suppose that x and y have no common parent, and let z, and z, be

parents of these nodes not in Y. If (25, x) is tail-movable, then z, M (2y,Y)

is valid, even if z, is not a tree node. Indeed, 2z, # 2, because z and y have no
common parent, and x is not above z, because Y is down-closed, z € Y, and
zy € Y. Furthermore, in the resulting network M, u = z, is a common parent
of z and y, so YU {u} and Y' U {u'} are down-closed sets in M resp. M' = N/,
and M[Y U {u}] ~x M'[Y'U{u'}], where ¢' is ¢ extended with ¢(u) = '
The case in which (z,,y) is movable is correct by symmetry in z and y. [

Like for Algorithm 2, some cases that could have been used to improve the
algorithm are not actually implemented. For example, when (z,, ) is not tail-
movable because of a triangle and z, is a reticulation, it could still be possible
to make z, movable using one tail move, and then use one tail move to make
z; a common parent of x and y. Again, this improvement is not necessary and
would make the algorithm deviate from the proof of Lemma 3.6.

Algorithm 4: BorToM-UP RSPR(N, N’)

Data: Two binary tier-k£ networks N; and N2 on X
Result: An rSPR sequence from N; to N

1 Set ¢(xz1) = z2 for all leaves z1 and xz2 of Ny and No with the same label;
2 Let S; and S2 be empty sequences of moves;
3 while |im(¢)| < |V(N)| — 1 do
4 if N5 has a lowest reticulation us above im(¢) then
5 | 51,85, u1 =LowesTRETIC-RSPR.(N1, N2, dom(e), im(¢), ¢, u2);
6 else if Ny has a lowest reticulation ui above dom(¢) then
7 ‘ Sh, 81, uz :LOWESTRETIC—RSPR(NZ,N1,im(d)),dorn(qﬁ),¢71,u1);
8 else
9 Let us be a lowest tree node above im(¢);
10 L S1, 8%, u1 =LowesTTREE-TAIL(N1, No, dom(¢), im(¢), ¢, uz);
11 Apply S to Ny and add it to Sy;
12 Apply S} to N2 and add it to Sa;
13 Set ¢(u1) = uag;

14 Set S;l to the inverse of Sy;
15 return S; o 5'2_1;

With Algorithms 4 and 5, we can finally find sequences between any pair
of networks. The first of these follows the proof of Lemma 5.18: a lowest
reticulation node is chosen whenever possible, and no randomness is required
in the subroutines Algorithms 2 and 3 (i.e., simply choosing nodes or arcs using
an arbitrary method works as well). In Algorithm 5, we let go of this restriction
of first choosing lowest reticulations, and we use the versions of the subroutines
that actually choose random nodes whenever meaningful (i.e., whenever an
instruction includes the word random within parentheses).

179



7. COMPUTING SEQUENCES

Algorithm 5: BorTomM-Up RSPR RAaNDOM(N, N')

Data: Two binary tier-k£ networks N1 and N2 on X
Result: An rSPR sequence from N; to No

1 Set ¢p(z1) = z2 for all leaves z1 and z2 of N; and N2 with the same label;
2 Let S; and Sz be empty sequences of moves;
3 while |im(¢)| < |[V(N)| — 1 do
4 Let L be the set of all lowest nodes in Ny \ dom(¢) and N3 \ im(¢);
5 for [ in L do
6 if | is a reticulation in N1 then
7 ‘ Let O be the output of LowESTRETIC-RSPR (N2, Ny, im(¢), dom(¢), ¢~ *,1);
8 else if | is a reticulation in No then
9 \ Let O be the output of LowEsTRETIC-RSPR(N7, N2, dom(¢),im(¢), ¢, 1);
10 else if | is a tree node in N1 then
11 ‘ Let O be the output of LowESTTREE-TAIL(N2, Ny, im(¢), dom(4) ™%, ¢,1);
12 else
13 L Let O be the output of LowESTTREE-TAIL(N7, N2, dom(¢),im(¢), ¢,1);
14 if O is not FaLsE then
15 if | is a node in N, then
16 Set up =1
17 L Set Sé,Si,uQ:O;
18 else
19 Set ug =1
20 L Set Sa, Sé, up = O;
21 Exit the for-loop;
22 Apply S; to N1 and add it to Si;
23 Apply S to N2 and add it to Sa;
24 Set ¢(u1) = uo;

25 Set S;l to the inverse of Sa;
26 return S; o S;l;

We now prove that both these algorithms always correctly return a sequence
of moves, and that their running time is polynomial.

Theorem 7.18. BorToOM-UP RSPR and BoTTOM-UP RSPR RANDOM (Al-
gorithms 4 and 5) are correct and run in polynomial time. Furthermore, for
N1, Ny € N(n, k), the sequence they return has length at most 2n + 3k — 2.

Proof. We will show that, in each of the algorithms, each iteration of the while-
loop adds one node to an isomorphism between down-closed sets. This implies
that the while-loop ends. Furthermore, after this loop, |im(¢)| = |[V(N)| —
1, and by adding the root to the isomorphism ¢, we obtain an isomorphicm
between the networks N7 and Ny (at that point, so after performing all moves
Sp on the original N7 and Sy on the original Ny). By reversing the moves of Sy,
which we can easily do using the explicit isomorphism ¢, we obtain a sequence
of rSPR moves from (the original) Ni to Nj.

For BorroM-Up RSPR, the claim about the while-loop follows from the
fact that LOWESTTREE-TAIL is only called when all lowest nodes are tree nodes
(so it will never return False; Lemma 7.17) and LOWESTRETIC-RSPR always
returns a way to extend the isomorphism (Lemma 7.16). For BoTTOM-UP
RSPR RANDOM, this is because there is always either a lowest reticulation, or
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all lowest nodes are tree nodes. Hence, there is always some lowest node for
which the call to LOWESTRETIC-RSPR or LOWESTTREE-TAIL returns a way
to extend the isomorphism.

Furthermore, because LOWESTRETIC-RSPR is used to add reticulations
and adds at most 1 move, and LOWESTTREE-TAIL is used to add tree nodes
and adds at most 2 tail moves, the sequence of moves has length at most
2n + 3k — 2.

For the running time of these algorithms, we note that finding a reticu-
lation or tree node in a given subset of the nodes of a network can be done
in polynomial time, and, similarly, a movable arc with the endpoints in given
sets can also be found in polynomial time. Hence, LOWESTRETIC-RSPR and
LowESTTREE-TAIL clearly run in polynomial time. Moreover, the loops of
BorTrom-Up RSPR and BorTOM-UP RSPR RANDOM have at most |V| iter-
ations, and each operation within these loops takes polynomial time, so these
loops take polynomial time in total as well.

Finally, to reverse a sequence of moves, we simply exchange the from-arc
and the to-arc of each move, and replace the nodes by their pre-image in ¢,
which can also be done in polynomial time, as the sequence has polynomial
length. O

Provable (in)effectiveness of the heuristic

The following lemma shows that the algorithm is in fact a heuristic, and no
guarantees about the quality can be given that improve significantly upon the
global upper bound of 2n + 3k — 2 moves.

Lemma 7.19. There exists a family of networks N; € N'(1,3-27=1—1) for which
BorToM-UpP RSPR RANDOM(N;, N;) returns a sequence of length Q(|V (N;)|)
with non-zero probability.

Proof. To construct N;, take the caterpillar C([2]) and identify leaf j with the
root of a copy M; ~ N of the unique network N € N(1,2). Then take the
balanced tree B([2%]), reverse the direction of all arcs, and combine the result
with the previously constructed network by identifying the original leaves of
the balanced trees with the leaves of the M;.

To see that BoTrTOM-UP RSPR RANDOM(N;, N;) may return a sequence of
length Q(|V (NN;)]), observe that the reversed balanced tree is highly symmetric,
and there is an (non-labeled) isomorphism ¢ : B([2Y]) — B([2]) sending leaf [
to leaf 28 — [ + 1 for all [ € [2¢] (Figure 7.5).

As the algorithm first adds lowest reticulations to the bottom-closed set, it
will first construct an isomorphism between the reversed versions of the bal-
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anced trees. This isomorphism may end up being the previously mentioned
one, sending leaf [ to leaf 2! — [ + 1 for all [ € [27].

The algorithm then proceeds to make the parts of the network above the
reversed balanced tree isomorphic. These parts are two caterpillars, where the
order of the leaves is reversed for one of these caterpillars. By Lemma 2.67, this
distance is of order Q(2%). As the networks have |V (N;)| = ©(2%) nodes, this
implies the algorithm may give a sequence of length of order Q(|V(N;)]). O

Note that this means that BorToM-UP RSPR may also return sequences
of length Q(|V(V;)|). Indeed, when parent nodes are chosen, this arbitrary
choice may be the worst choice possible, depending on the implementation of
the algorithm and on the encoding of the copies of N;. If these networks are
encoded in such a way that the worst parent is chosen each time, the algorithm
can indeed perform very badly.

Figure 7.5: An example showing the ineffectiveness of the heuristic as con-
structed in Lemma 7.19. BorToM-Up RSPR(N,N) may first construct a
down-closed isomorphism sending 7] to 7, , ;. This essentially leaves two
caterpillars T, T at the top, whose leaf labels are reversed, so dyspr(T,T") >
(2t —2)/2.

This example, unfortunately, shows that the heuristic is not an approxima-
tion algorithm. On the other hand, we may still expect good results from the
random version, as the next proposition shows.
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Proposition 7.20. If N € N (n, k), then BorTOM-UP RSPR RANDOM(N, N)
(Algorithm 5) returns the empty sequence with probability at least 27F. In par-
ticular, if N is a tree, then this probability is 1.

Proof. Let ¢ be a fixed labeled isomorphism between N and N’ = N. We
calculate the probability that the algorithm finds this isomorphism.

Suppose Y and Y’ are down-closed sets of N and N’ such that N[Y] i
N'[Y’], and let v’ be a lowest node of N"\ Y.

If « is a reticulation and ' its child, then 2’ € Y/, so x = ¢ 1(2/) € Y. If
x has two parents in N \ Y, then the parent z = ¢~!(u’) of z is chosen with
probability 1/2 in Line 3 of Algorithm 2. If z has one parent in N \ Y, then
the parent z = ¢~ !(u’) of x is chosen with probability 1 in the same line.

Similarly, if u/ is a tree node and 2’ and %/ its children, then z = ¢~ !(z')
and y = ¢~ () have at least one common parent ¢~ !(u’) in N\ Y. If z and
y have two such parents, then Algorithm 3 chooses ¢! (u') with prability 1/2
in Line 5, otherwise, it chooses it with probability 1.

Hence, we have an independent probability of at least 1/2 for mapping the
parents of a given reticulation correctly. Therefore, the algorithm will map
all parents of reticulations correctly (and thus all nodes according to ¢) with
probability at least 2%, O

It is still an open question whether a similar statement is true when N and
N’ are not isomorphic, i.e., when digpr(N, N’) > 0. More precisely, is the
probability of finding an optimal sequence always positive? And, if so, can we
find (a lower bound for) this probability?

7.2.3 Upper bound: tail move distance

For tail moves, a similar algorithm can be used. We cannot directly use the same
algorithm, however, as the subroutine LOWESTRETIC-RSPR. of Algorithm 4
and Algorithm 5 may return head moves, so it cannot be used to find a sequence
of tail moves. Hence, we replace this subroutine with the following algorithm
based on Lemma 3.5.

Lemma 7.21. Let N,N' € N(n, k) be networks with down-closed sets Y and Y’
such that N[Y] iX N'[Y'] and v’ a lowest node of N'\'Y' that is a reticulation.
Moreover, let O be the output of LOWESTRETIC-TAIL(N, N, Y, Y’ ¢, u').

If O =FALSE, then N ~ N4 and N #x N'. Otherwise, the output O is a
triple S, S, u. Let M and M’ be the networks obtained by applying S to N and
S’ to N'.
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Then |S|+15"] <3, YU{u} and Y U{u'} are down-closed sets in M resp.
M', and M[Y U{u}] ﬁ‘;'X M'[Y'U{u'}], where ¢ is ¢ extended with ¢(u) = u'.
In other words, Algorithm 6 is correct.

Algorithm 6: LowesTRETIC-TAIL(N, N, Y, Y’ ¢, )

Data: Two binary tier-k networks N and N’ with down-closed sets Y and Y’ such that
N[Y] §X N[Y'] and a lowest reticulation u’ in N \ Y.
Result: Sequences of tail moves S, S’ and a node u of N such that after applying S to N and S’
to N’ we get N[Y U {u}] g N'[Y" U {u'}], where ¢(u) = u'; or FaLsk if N ~ N4 and
N #x N’

1 Set S and S’ to be empty sequences of moves.
2 Let ' be the child of u’ and =z = ¢~ !(z);
3 Let z be a (random) parent of z not in Y
4 if z is a reticulation then
5 ‘ Set u = z;
6 else if (z,x) is tail-movable then
7 Let uw be a (random) reticulation in N \ Y;
8 Let v be the child and w a (random) parent of r;
9 if v # = then
10 if v = z then
11 Set v # x to be the other child of z;
12 Add z Y, (w,u) to S;
13 else
14 L Add z 52 (u,v) and z &Y, (w,u) to S;
15 else
16 Let (c, z,d) be the triangle with d # xz, and b the parent of ¢;
17 if b is not the root of N then
18 Let a be a (random) parent of b;
19 Add ¢ (C“l), (a,b) to S and apply it to N;
20 Execute Lines 7-14;
21 else
22 T.et e be the child of d;
23 if ¢ = z then
24 ‘ Set u = d;
25 else if x is a tree node then
26 Let s,t be the children of z;
27 if e € {s,t} then
28 Let g € {s,t} \ {e};
29 Add = (=9, (d,e) to S;
30 else
31 L Add = =9, (d,e), x (&9, (z,t), and x (=Y, (d,s) to S;
32 Set u = d;
33 else if e is a tree node then
34 Let s,t be the children of e;
35 if z € {s,t} then
36 Let g € {s,t}\ {z};
37 Add e (&9, (z,2) to S;
38 else
39 | Add e 9, (z,2), ¢ (), (d,1), and e (=1, (z,5) to S;
40 Set u = d;
41 else
42 | return Farsk;

43 return S, S’, u;
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Proof. The correctness follows almost immediately from Lemma 3.5. This is
easy to see by comparing the cases of the proof of Lemma 3.5 with the following
lines of the algorithm. Case 1 of the proof corresponds to Lines 4-5, Case 2(a)
to Lines 6-14, Case 2(b)i to Lines 1720, and Case 2(b)ii to Lines 21-40.

The algorithm returns FALSE precisely when (z,x) is not movable which
implies the existence of the triangle (c, z,d), the parent b of ¢ is the root of NV,
and neither z nor e (the child of d) is a tree node. As noted in the proof of
Lemma 3.5, e and x cannot be reticulations, so they have to be leaves. Hence,
N consists of the nodes b,c,d, e, x, and z, and N ~ N4. Furthermore, as the
parent u’ of 2’ = ¢(x) is a reticulation, we have N 2x N'. O

The algorithms BoTTOM-UP TAIL and BoTTOM-UP TAIL RANDOM are
now defined exactly as BoTrToM-Up RSPR and BorTOM-UP RSPR RANDOM
with the following two changes. Each occurrence of LOWESTRETIC-RSPR
is replaced with LOWESTRETIC-TAIL, and a few lines are added that catch
the FALSE output of LOWESTRETIC-TAIl, when N ~ Ny and N #x N/, in
this case, the algorithms should return FALSE as well. The correctness and
polynomial running time of these algorithms follow from the same argument as
for their rSPR versions.

7.2.4 Upper bound: head move distance

For head moves, like for tail and rSPR moves, we present pseudo-code for a
heuristic based on the top-down isomorphism approach we took to find an upper
bound for the head move diameter in Theorem 4.23. Again, each algorithm
corresponds to a lemma used to prove this bound.

Lemma 7.22. Let N,N' € N(n, k) be networks with up-closed sets Y and Y’

such that N[Y] 2 N'[Y'] and x’ a highest node of N'\'Y' that is a tree node.
Let S, 5, ¢ be the output of HIGHESTTREE(N, N, YY"’ ¢,2'), and let M
and M' be the networks obtained by applying S to N and S’ to N'.
Then |S| +|S'| < 4, Y U{c} and Y' U {2’} are up-closed sets in M resp.
M', and MY U {c}] 4 M'Y"U{2"}], where ¢' is ¢ extended with ¢(c) = z'.
In other words, Algorithm 7 is correct.

Proof. The correctness follows immediately from Lemma 4.18. This is easy to
see by comparing the cases of the proof of Lemma 4.18 with the following lines
of the algorithm. Case 1 of the proof corresponds to Lines 3 4.

Case 2 consists of two parts, where Case 2a corresponds to Lines 8-13 and
Case 2b to Lines 14-21.

Finally, Case 3 has five subcases, where Case 3b corresponds to Lines 24-33,
Case 3c to Lines 34-37, Case 3d to Lines 38-39, and Case 3e to Lines 40-41.
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Lastly, Case 3a is the subcase where t = p, which is caught by Line 23. In this

case, the added node is simply the tree node c.

O

Algorithm 7: HicHESTTREE(N, N, Y, Y ¢, ')

Data: Two binary tier-k networks N and N’ with up-closed sets Y and Y’ such that
N[Y] £ N[Y’] and a highest tree node z’ in N’' \ Y.
Result: Sequences of tail moves S, S’ and a node c of N such that after applying S to N and S’
to N’ we get N[Y U {c}] £ N'[Y’ U {z'}], where ¢(c) = z’.

1 Set S and S’ to be empty sequences of moves.
2 Let p’ be the parent of z’, p = ¢~ '(p’), and € Y a (random) child of p;
3 if = is a tree node then
4 ‘ Set ¢ = x;
5 else if x is a reticulation then
6 TLet ¢ be a (random) tree node in N\ Y}
7 Let t be the parent, and b # = a (random) child of ¢;
8 if p #t and (p,z) is head-movable then
9 if x =t then
10 Let g # p be the other parent of x;
11 Add z (2, (¢,b) to S;
12 else
13 L Add & (2, (t,¢) and = 2 (c,b) to S;
14 else if p #t (and (p,x) is not head-movable) then
15 Let (z,z,d) be the triangle with z # p;
16 Let (w,!) be the incoming arc of a (random) leaf | with w # d;
17 Let b ¢ {l,z} be a (random) child of c;
18 if d =t then
19 | Add d =D, (w,1) and @ =7, (c,b) to S;
20 else
21 | Addd &9, (w,1), ¢ @2, (t,¢), and = &), (¢,b) to S;
22 else
23 Tet ¢ be a (random) tree node in N \ Y with parent ¢;
24 if ¢t # p then
25 Let (s,7) € A(N) be a head-movable arc with s # p;
26 Let g be the other parent of r, and w the child of r;
27 if r = p then
28 if t = s then
29 | Addp @P) (¢,¢) to S;
30 else
31 Add p (P), (t,¢) to S;
32 if ¢t # q then
33 L Add p &P, (q,z) and p 2P, (s,¢) to S;
34 else if »r =t then
35 Add + 1) (p,x) to S;
36 if p # q then
37 L Add r 27, (g,¢) and 7 (7, (s,z) to S;
38 else if s # ¢t then
39 ‘ Add r (5”")) (p,z), v (P”")) (t,c), v (t‘”; (s,z), and r (S'”) (g, w) to S;
40 else
41 L Add + &0 (pya), r 20, (s,¢), and 7 27 (q,w) to S;

42 return S, S’ c;

186



7.2. Algorithms

Algorithm 8: HIGHESTRETIC(N, N YY" ¢, 2)

Data: Two binary tier-k networks N and N’ with up-closed sets Y and Y’ such that
N[Y] £ N[Y’] and a highest reticulation «’ in N’ \ Y’.
Result: Sequences of tail moves S, S’ and a node r of N such that after applying S to N and S’
to N’ we get N[Y U {r}] £ N'[Y’ U {z'}], where ¢(r) = z'; or FarsE.

1 Set S and S’ to be empty sequences of moves.
2 Let p’ and ¢’ be the parents of 2/, p = ¢~ (p’), and ¢ = ¢~ (¢');
3 Let ¢, €Y and ¢q € Y be (random) children of p resp. g;
4 if ¢, or cq is a tree node then
5 | return Facse;
6 if ¢, = ¢4 then
7 ‘ Set 7 = cp;
8 else if both c, and c, are leaves then
9 Let (s,r) be a (random) movable arc with r € N\ Y;
10 if s = p then
11 L Swap the roles of p and ¢;
12 Add r 1) (p,ep) and 7 27, (q,¢q) to S;
13 else
14 if ¢, is above cq or cp is a leaf then
15 | Swap the roles of p and g;
16 if (p, cp) is movable then
17 Add ¢, (Prep) q,cq) to S;
18 Set r = cp;
19 else
20 Let (t, cp, z) be the triangle with t # p;
21 if t = q then
22 L Set r = cp;
23 else
24 Add z (CP‘Z); (q,¢q) and ¢p (t’C”); (z,¢q) to S;
25 Set r = z;

26 return S, S’,r;

Lemma 7.23. Let N,N' € N(n,k) be networks with up-closed sets Y and Y’

such that N[Y] 2 N'IY'] and 2" a highest node of N'\'Y' that is a reticulation.
Moreover, let O be the output of HIGHESTRETIC(N, N, Y, Y’ ¢,2').

If O =FALSE, then N has a highest node below Y that is a tree node. Oth-
erwise, the output O is a triple S,S’,r. Let M and M’ be the networks obtained
by applying S to N and S’ to N'.

Then |S|+ 15" <2, YU{r} and Y' U {2’} are up-closed sets in M resp.
M', and MY U {r}] 4 M'Y"U{a'}], where ¢' is ¢ extended with ¢(r) = z'.
In other words, Algorithm 8 is correct.

Proof. The correctness follows immediately from Lemma 4.19, by a straightfor-
ward mapping of the cases of its proof to parts of the algorithm. The structure
of the algorithm diverges from the proof, as most cases use a very similar se-
quence of moves.

First note that the algorithm outputs FALSE only in Line 5. This line is
only executed if ¢, or ¢, is a tree node. Cases 1 and 2 correspond to Lines 6—
7 and Lines 8-12. The remaining cases all correspond to Lines 13-25. More
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precisely, for Case 3, the assumption that ¢4 is not below ¢ is enforced by
Lines 14-15, and the remaining lines simply follow the structure of the proof.
Similarly, for Case 4, the assumption that ¢, is a reticulation and ¢, a leaf is
enforced by Lines 14-15, and the remaining lines simply follow the structure of
the proof. O

Algorithm 9: PERMUTE LEAVES HEAD(Ny, No, ¢)

Data: Two binary tier-k networks N1 £ Ny € N'(n, k) labeled I; and I5
Result: A head move sequence making N; labeled isomorphic to N2

1 Find the permutation (as a set of disjoint cycles) of the leaves m : L(Ny1) — L(N2) that makes
the networks labeled isomorphic;
2 Let S be an empty sequence of moves;
3 Tet (t,r) be a head movable arc;
4 Let ¢ be the child, and s # t the other parent of r;
5 for each cycle (l1,...,l,,) in m with m > 2 do
6 if t is the parent of l,, then
7 [ Set (L1, vslm) i= (msliy ooy lm—1)s
8 Let p,, be the parent of [,,;
9 if r # p,, then
10 L Apply r (t"”)) (pm, lm ) and add this move to S;
11 Tet emoved = (¢, 7);
12 fori=m,...,1do
13 Let p; # tail(eémovea) be a parent of r, and p;—1 the parent of I;_1;
14 if p; # p;—1 then
15 Apply 7 (pi"r); (pi—1,li—1) and add this move to S;
16 Set emoved = (Pi, 7);
17 if c = 1; then
18 L Set c =1;_1;

19 Apply r (&7, (s,¢) and add this move to S;
20 return S;

Lemma 7.24. Let Ny i Ny, then PERMUTE LEAVES HEAD(Ny, No, @) returns
a sequence of head mowves from N1 to No.

Proof. First, in Line 1, the algorithm finds the permutation of the leaves that
makes the networks labeled isomorphic. To use this permutation in the algo-
rithm, it must be given in terms of a set of disjoint cycles. Such a representation
of the permutation can easily be found as follows. Start with any leaf z; of
Ny, find the node zo = ¢(x1) € Ny this node is mapped to by the current
isomorphism, and finally find the leaf 2} = I7*(I2(22)) of Ny with the same
label as x9. Now repeat this with 21 := 2, and continue until ] is the original
x1. This gives one of the cycles of the permutation. All other cycles of the
permutation can be found in this way, simply by starting with a leaf that is
part of this cycle.

The standard sequence of m+2 moves for a cycle (I1,...,l;) are performed
in Lines 8-18. The first of these moves is skipped if r is the parent of [,,, as
the purpose of that move is to make r the parent of [,,. Moves 2 up to m + 1
Lines 12-16. The if-statement in this for-loop ensures that no consequtive leaves
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in the cycle are part of a cherry. Finally, the last move is skipped except for
each cycle, and is only performed once at the end in Line 19. This is possible
because the first and the last move for each cycle in the permutation move the
same arc. To make sure this last move actually puts (¢,r) back in its original
position, the head of the from-arc (s, ¢) is changed as needed in Lines 17 18. [

Algorithm 10: Tor-DowN HEAD(Ny, Na)

Data: Two binary tier-k networks Ny, No € N(n, k), with k > 2
Result: A head move sequence making N; isomorphic to Ny
Set ¢(p1) = p2 for the roots, and let S; and Sz be empty sequences of moves;
while |im(¢)| < |V(N1)| — n do
if Ny has a highest node z1 below dom(¢) thal is a tree node then
Set S5, S}, x2 =HIGHESTTREE(Na2, N1, im(¢), dom(sp), ¢~ 1, x1);
else if Ny has a highest node x2 below im(¢) that is a tree node then
| Set 57,85, 21 =HigursTTREE(N1, N2, dom (), im(¢), ¢, z2);
else
L Let x1 be a highest reticulation node in Ny \ dom(¢);

Set S, S}, xo =HIGHESTRETIC(N2, N1, im(¢), dom(¢), ¢~ 1, z1);
10 Apply S to N and add it to Sq;

11 Apply S5 to N2 and add it to Sa;
12 Set ¢p(x1) = x2;

© NN W=

13 Extend the isomorphism ¢ to include the leaves;
14 Set S™ =PerMUTE LEavEs HEAD(N1, N2, ¢);

15 Set S{l to the inverse of Ss;
16 return S; o S” o S2_1;

Algorithm 11: Tor-DowN HEAD RANDOM(Ny, N2)

Data: Two binary tier-k networks N1, N2 € N (n, k), with k > 2
Result: A head move sequence making N; isomorphic to Na

1 Set ¢(p1) = p2 for the roots, and let S; and S2 be empty sequences of moves;
2 while |im(¢)| < |[V(N1)| —n do
3 Let H be the set of all highest nodes in Ny \ dom(¢) and N» \ im(¢);
4 for h in H do
5 if h is a tree node in N; then
6 ‘ Let O be the output of HiGHESTTREE(N2, N1,im(¢),dom(¢), ¢~ 1, h);
7 else if h is a tree node in N, then
8 \ Let O be the output of HicHEsTTREE(N7, N2, dom(¢), im(¢), ¢, h);
9 else if h is a reticulation in N, then
10 ‘ Let O be the output of HigHESTRETIC(Na, N1, im(¢), dom(¢), ¢~ %, h);
11 else
12 L Let O be the output of HicuestRETIC(N1, N2, dom(¢), im(¢), ¢, h);
13 if O is not FaLsE then
14 if h is a node in N; then
15 Set x1 = h;
16 L Set S5, 51, z2 = O;
17 else
18 Set xo = h;
19 L Set Si,S&ml = O;
20 Exit the for-loop;
21 Apply S] to Ny and add it to Sq;
22 Apply S5 to N2 and add it to Sa;
23 Set, ¢(z1) = x2;

24 Extend the isomorphism ¢ to include the leaves;
25 Set S™ =PErRMUTE LEaves HEAD(N1, Na, ¢);

26 Set S;l to the inverse of Ss;
27 return S; o0 S” o 5’2_1;
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Using the previous algorithms together with their correctness proofs, it is
immediately clear that the Algorithms 10 and 11 that give upper bounds for
the head move distance are correct.

7.3 Testing the heuristics

In this section, we present an implementation of the algorithms in this chap-
ter. This python implementation is tested to determine its running time in
practice. Furthermore, we investigate the quality of the solutions by running
the heuristics on a large number of inputs. As we cannot easily find the actual
distance between pairs of networks this problem is NP-hard, and no efficient
algorithms are known—we construct experiments in which we can judge the
quality of the solutions by comparing them to each other, or to other known
bounds. All data from these experiments can be found at the 4tu data reposi-
tory, DOI:10.4121/13604387.

7.3.1 Implementation details

We have implemented the heuristics in python (v2.7) with a very simple in-
terface for a (linux) terminal, which can be found at https://github.com/
RemieJanssen/RearrangementHeuristics. The script requires an input file
containing two networks (in extended Newick format, or as set of edges in
python list format). Other terminal options are then used to choose the heuris-
tic and the output options.

The implementation relies on the python package ‘networkx’ (v2.2), to
represent the networks as graphs. Leaf labels are attached to nodes as a
node attribute called ‘label’. With this representation, it is easy to determine
whether two networks are (labeled) isomorphic using the networkx function
is_isomorphic. For our purposes, this makes isomorphism checking of networks
fast enough. The only other ways this package is used are to check for ancestral
relations between nodes, and to manipulate the graphs (applying moves and
renaming nodes).

7.3.2 Running time in practice

In Section 7.2, we have proven that the running time of the heuristics is poly-
nomial, but we have not determined the degree of the polynomial. Here, we
investigate the practical running time of the heuristics.

To test the running time, we generated a large number of network pairs.
Networks were obtained using the online ‘Ntk generator’ [Zhal6].2 We gener-

*http://phylnet.univ-mlv.fr/tools/randomNtkGenerator.php
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ated 20 networks for each of the following parameters: the number of leaves is

n € {5, 10, 20,50, 100} and the number of reticulations k € {1,2, 5, 10, 20, 50, 100}.
For all pairs among these with the same number of leaves and reticulations
(including the pairs consisting of two copies of the same network), all six
heuristics—non random or random for each of the three move types tail, head,
and rSPR were run once, and the time used to run the heuristic was recorded
using the built-in ‘time’ package of python (the time to read the trees and
parameters was not included).

All tests were run on a Linux system with an Intel Core i7-8650U CPU
running at 1.90GHz and 8192MB of DDR4 RAM clocking in at 2400MT/s.
The operating system was Ubuntu 18.04.4 with a 4.15.0-118-generic kernel.
The software was written in Python version 2.7.17.
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Figure 7.6: The dependence of the running time on the input size for the six
different heuristics.

Results

The results of our experiments are shown in Figure 7.6. Note that the random
versions seem to be slightly slower than non-random versions. Furthermore,
the head move heuristics appear slower as well, which may be a result of the
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permutation parts of these. This can most likely be explained by the failing
attempts to add nodes to the isomorphism in the random algorithms, which
cannot happen in the non-random algorithms. In general, however, the running
times are all quite similar, and all are very sufficiently fast for our purposes.

To determine the degree of the polynomial running time, we performed
a least squares linear fit in log-log space using the sklearn.LinearRegression
function from the python package sci-kit learn. The independent variable in
this analysis was log(n + k) and the dependent variable log(t), where ¢ is the
running time of the heuristic.

Table 7.1: Linear fits of the running times versus the input size (n + k) for
log-log transformed data.

Move | Random | Slope | Intercept R?
False 2.146 | -16.96 0.9644
'SPR e 9130 | -16.73 0.9652
cail False 2.162 | -16.85 0.9556
True 2.146 | -16.68 0.9563
False 2.065 | -15.72 0.9909
head
True 2.079 | -15.41 0.9947

Note that all these fits are decent (high R?), and the slopes are all close to
2. As the slope in log-log space is equal to the degree of a polynomial function,
the running time is slightly worse than quadratic, but certainly better than
cubic. The apparently worse running time of the random versions is not visible
in these fits, but the worse running time of the head move heuristics is clearly
visible in the intercepts, which have a value roughly one higher than the tail
move and rSPR heuristics.

In practice, this dependency may not be very relevant because, even for
large networks (e.g., 100 leaves and 100 reticulations) the heuristics all run
within two seconds. Even running a random heuristic 100 times only takes a
few minutes on rather large pairs of networks. Therefore, when one wants to
compare two networks, the heuristics are fast enough.

7.3.3 Performance

Although we cannot give a guarantee for the quality of the solutions the heuris-
tics provide, it may still be possible that the heuristics output short sequences of
moves in some cases. In this section, we investigate the quality of the solutions
of the heuristic for three different types of input. First, we run the heuristics
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on isomorphic networks, to see how frequently the heuristic recognizes that the
input networks are isomorphic. Then, we supply it with more realistic inputs,
where the two input networks are not isomorphic. We do this in two experi-
ments, in the first of these, we use only small networks; in the second, we use
larger networks, where we make sure the distance between the input networks
is small.

Quality for isomorphic inputs

In this experiment, we use the heuristic to determine whether two networks are
isomorphic. This can be done in polynomial time (Lemma 7.1), but not with
our heuristics, as the heuristics are not made to check for network isomorphism.
Indeed, the heuristics may return non-trivial sequences of moves between the
already isomorphic networks (indicating that it thinks they are not isomorphic).
As we have shown in Proposition 7.20, a sequence of length zero will be returned
with probability at least 27 by the random rSPR/tail heuristic, but it is still
interesting to see how long the sequences can get, and how large the probability
of returning a sequence of length zero is in practice.

To test this, we create an input for each network of the previously mentioned
data set by simply taking two copies of this network as the input. For each
such pair, we run each of the three random heuristics 100 times.

To judge the quality of the heuristics, we estimate the probability of finding
the optimal sequence, which has length zero as the pairs are all isomorphic. For
each pair of networks, we estimate this probability by calculating the fraction
of the 100 tests in which a sequence of length zero was found (Figure 7.7).

For rSPR and tail moves, two similar pictures emerge. The fraction in which
an optimal sequence is found decreases sharply with k, but slightly slower than
we may expect from Proposition 7.20, and the fraction increases very slightly
with n. Furthermore, there seems to be an inverse correlation between the
fraction optimal runs and the length of the worst solution. For head moves,
however, the results are abysmal. A sequence of length zero is found only in a
few cases, and only for very small networks (at most 10 leaves). Furthermore,
the head move heuristic finds very long sequences sometimes.

This shows that, even though the top-down isomorphism approach works
well to find a head move diameter upper bound, the corresponding heuristic
cannot effectively determine a good upper bound for the head move distance
between a specific pair of networks. For rSPR and tail moves, however, the
heuristic seems to be quite effective for small k. Hence, it is interesting to see
how these results hold up when the networks are not isomorphic to begin with.
The next two experiments investigate this question.
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to a pair of isomorphic networks. Each dot represents a pair of networks, and

the colour of the dot the worst found solution. The independent variable is k,
and the dependent variable is the fraction of the 100 tests for that pair that
results in a sequence of length zero.

7.3.4 Quality for small networks

For small networks, the number of valid moves in a network is small. Never-
theless, it is not easy to find the distance between two small networks quickly.
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Indeed, as we will see shortly, even for networks with 3 leaves and 3 reticula-
tions, or 4 leaves and 2 reticulations, a naive breadth first search may take more
than ten minutes to find the distance. Therefore, we investigate the quality of
the heuristic solutions for small networks.

For each of the combinations of n € {3,4} leaves and k € {1,2,3} retic-
ulations, we generated 10 networks using the aforementioned ‘Ntk generator’.
We then used a breadth first search (Algorithm 1) to determine exact distances
between these pairs of networks (with the same number of leaves and reticula-
tions). As the running time of this algorithm increases sharply with the actual
distance, we limited the time for each pair to ten minutes. If the time limit
was reached before a sequence was found, the breadth first search gave a lower
bound on the distance. Indeed, as all sequences shorter than the currently con-
sidered sequence were already tried, the actual distance is at least the length
of the sequence under consideration when the lime limit was reached. We com-
pared these distances (or lower bounds) to the solutions of the heuristics, by
running the random heuristic 100 times for each pair of networks.

As we have seen in the previous experiment, the rSPR and tail move heuris-
tics often give the correct sequence for small networks if this distance is 0. With
this experminent, we see that the fraction of tests in which the heuristics give
the right answer (for a given pair of networks) decreases quite sharply with
the distance between the networks (Figure 7.8). Again, the fraction of cor-
rect sequences is markedly larger for rSPR moves and tail moves than for head
moves.

We do see that, in many cases, the fraction of correct sequences is not zero,
so taking the best sequence out of 100 runs could still often give the correct
distance d for a given pair. To see how frequently we can obtain a correct
sequence by running the heuristic 100 times, we determine whether the exact
distance/lower bound found by the breadth first search is attained in at least
one of the runs. Then, for each combination of d and k, we determine for how
many pairs of networks this happens (Figure 7.9a).

For some combinations of move, d, n, and k there is no data. This is either
because no such pairs exist, or because they simply did not occur in our inputs.
Observe that the correct length is found in many cases for rSPR and tail moves,
and a sequence of length d + 1 is found in almost all cases (Figure 7.9b). For
head moves, the results are observably worse again, but the heuristic still gives
sequences that are only one move too long in many cases.

7.3.5 Quality for short distances

At first glance, it seems reasonably easy to calculate the distance between two
networks that are only a small distance apart. As we have seen, for small
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Figure 7.8: The quality of the solutions of the random heuristics when applied
to small networks. Each dot represents a pair of networks, and the colour of
the dot the worst solution found for that pair. The independent variable is k
and the dependent variable is the ‘fraction optimal’. This is the fraction of the
100 runs for that pair that resulted in a sequence of length at most the actual
distance d between the pair of networks.

networks this is the case. However, for large networks, this does not hold
anymore, because the runtime dependency of the breadth first search on the
distance and the size of the network is very bad. Because the heuristics still
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Figure 7.9: The fraction of pairs of small networks for which the heuristic found
a good answer of length at most d or d+ 1 in at least one of the 100 runs, where
d is the actual distance between the networks.

perform quite well for larger isomorphic networks, it may be reasonable to
expect them to perform well for short distances as well. We investigate this by
running the random heuristics on pairs of networks that are a small distance
apart.
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As we cannot simply calculate the distance between pairs of networks, we
create pairs of networks that are a small distance apart. To do this, we take a
network, and apply a small number of moves chosen uniformly at random from
all possible moves. The number of applied moves is an upper bound on the
actual distance. Indeed, the actual distance may be shorter, as moves could be
reversed or there may be shorter sequences between the networks.

The data set for this experiment is created by starting with five networks
in the previously mentioned data set for each n € {20,50} and k € {1,2,5,10}.
For each of these networks, we create 60 pairs: 20 per move type, where we
make 5 pairs for each upper bound in d = {1, 2, 3,4}—for the tail/head move
upper bound, we, of course, only apply tail/head moves.

Like for the isomorphic networks, we judge the quality of the heuristics by
estimating the probability of finding an optimal sequence. In this case, we do
not know the exact distance between the networks, and it takes too long to
compute this distance for all the pairs using the breadth first search algorithm.
Hence, we take the number of moves d we used to create the pair of networks as
being a good score for this pair. Then, for each pair, we calculate the fraction
of the 100 tests in which we find a sequence of length at most d.

In Figure 7.10, we show the results of this analysis for rSPR and tail moves,
where each dot represents a pair of networks. We see a similar dependence
on d and k for rSPR and tail moves: an increase in d as well as k leads to a
lower fraction of good scores. There also seems to be a less pronounced effect
of n, where a larger n leads to lower fractions of good scores. Contrast this to
isomorphic networks, where an increase in n seemed to give higher fractions of
good scores.

For many pairs, the fraction of good scores is quite low, so we cannot discern
pairs for which a good score was found from pairs for which no good scores were
found in Figure 7.10. Hence, we also investigate the fraction of pairs for which
at least one of the 100 tests finds a good score (i.e., a sequence of length at most
d). These fractions are shown in Figure 7.11a. Observe that the fraction of pairs
for which a good score is found decreases with both k£ and d. In Figure 7.11b,
we show a similar plot for the fraction of pairs for which we found a sequence
of at most length 2d at least once. For rSPR and tail moves, this is almost in
all cases, and this even happens occasionally for head moves.

This shows that, for small distances, the heuristics work rather well and
find a (near) optimal sequence in many cases. Moreover, a sequence at most
twice the length of the original sequence is found in most cases. We conclude
that the tail and rSPR heuristics provide decent upper bounds when run often
enough.
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Figure 7.10: The quality of the solutions of the random heuristics when applied
to networks a small distance apart. Each dot represents a pair of networks, and
the colour of the dot the worst solution found for that pair. The independent
variable is k£ and the dependent variable is the ‘fraction good score’. This is
the fraction of the 100 runs for that pair that resulted in a sequence of length
at most the number d of moves used to create the pair of networks.
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Figure 7.11: The fraction of pairs which are a small distance d apart for which
the heuristic found a good answer (length at most d or 2d) in at least one of
the 100 runs.
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7.3.6 Discussion

With the experiments, we have first shown that it is practically feasible to run
the (random) heuristics a large number of times for a large number of pairs
of networks. Indeed, the running time is roughly quadratic in practice, and
does not exceed a few seconds, even for large networks with 100 leaves and 100
reticulations.

Then we tested the quality of the heuristics: we have applied the heuristics a
large number of times to a wide range of networks. First, we have confirmed that
the tail and rSPR heuristics frequently return empty sequences for isomorphic
inputs, as may be expected from Proposition 7.20. The frequency with which
this happened increased with the number of leaves while keeping the number of
reticulations constant. This may be the result of a kind of dilution effect, where
correct (0-length) sequences become more likely if the reticulations are far apart
in the networks. The results for the head moves heuristic were strikingly worse,
and sequences of length zero were rarely found. Note that using these heuristics
to determine network isomorphism is not very useful, as BINARY NETWORK
ISOMORPHISM is polynomial (Lemma 7.1).

Then, we investigated the quality of the solutions for non-isomorphic inputs.
We started this investigation by considering small networks of at most 4 leaves
and 3 reticulations. The fraction of runs in which an optimal sequence was
found decreased with the actual distance between the networks. However, for
most pairs, the tail and rSPR heuristics still found an optimal sequence at least
once in one of the 100 runs, and, in almost all cases, the best sequence was at
most one move too long. For head moves, the picture is again a lot worse, even
though optimal sequences were still found in many cases.

We continued by considering larger networks that were only a small number
of moves apart. For these networks, the head move heuristic was essentially
worthless. The tail move and rSPR heuristics, however, still performed quite
well. The quality of the solutions did decrease with the number of reticulations
in the networks and with the distance between the networks. Nevertheless, in
most cases, these heuristics found solutions that were within a factor 2 of the
length of the original sequence.

From these experiments, we conclude that the rSPR and tail move heuristics
are able to provide decent upper bounds, but the head move heuristic is rather
worthless in this aspect. It seems it is often possible to find an optimal sequence
using the tail move and rSPR heuristic, but not with the head move heuristic.
For larger networks with a larger distance, we found fewer optimal sequences.
This may be because the probability of finding an optimal sequence within 100
runs is small, or it may even be impossible to find an optimal sequence using
the heuristics.
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7.4 Conclusion

In this chapter, we have studied the problem of finding the rearrangement
distance between a pair of directed networks without internal labels.

7.4.1 Computational complexity

First we have shown that these problems are NP-complete for non-local moves,
and they remain NP-complete for rSPR and tail moves when restricted to a
fixed tier of network space. It remains open whether the same holds for head
moves. A first step for this might be to study head move distance computation
in tier-1. This seems intriguingly simple, as head move distance in tier-1 seems
to correspond to a weighted rSPR distance on the corresponding trees, where
the weight of a sequence of moves is the number of moves plus the graph distance
between the moving arc and the previous target arc for each move.

For local moves and moves on undirected networks, several of these ques-
tions also remain open. Perhaps, these questions can be answered using differ-
ent techniques. For example, it seems reasonable to expect that the problems for
local moves can be proven to be NP-complete by separating the reticulate parts
from a tree part, and using the fact that it is hard to compute the rearrangement
distance on trees. For SPR moves, the question can probably be answered using
an agreement forest technique similar to the one used in [JJET18]|. The proofs
can possibly be simplified by seeing these agreement forests as restrictions of
agreement graphs of the networks to the trees. Agreement graphs have al-
ready been studied by Klawitter for directed networks [Klal8a| and undirected
networks [Kla20a).

7.4.2 Heuristics

Next, we turned to algorithms for computing sequences between networks. We
started with a simple breadth first search, which is guaranteed to find an opti-
mal sequence, but is very slow in practice: it often exceeds 10 minutes running
time on very small networks.

To compute sequences more efficiently, we employed heuristics based on
the bottom-up and top-down isomorphism proofs for diameter bounds. The
bottom-up heuristics for rSPR and tail moves worked quite well. They gave
optimal sequences in many cases, and sequences at most twice as long in most
cases. This shows that, by making the right choices in the heuristics, we can find
short sequences between networks. In their theses, Husanovic and Versendaal
have attempted to find rules for good choices. Husanovic did this by explicitly
formulating rules, and testing whether they improved the solutions [Hus20]; and
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Versendaal used machine learning to find such rules [Ver20]|. Unfortunately, no
guarantees for the quality of the solutions can be given, as there exists a family
of networks for which the heuristics can return long distances (Lemma 7.19),
even if the network is used as both parts of the input. This holds for the
random and non-random versions of the heuristics in this thesis, but also for
the versions used by Versendaal and Husanovic.

In contrast to the tail move and rSPR heuristics, the head move heuristic
does not provide good bounds at all. This is probably because the heuristic
does not take the leaf labels into account until the end. This could be checked
by running all heuristics on networks with one leaf, but as these cases are
biologically irrelevant, we have not done this. For a better heuristic, it might
be better to build an isomorphism bottom-up for head moves as well. This
is possible by taking the rSPR. heuristic, and replacing each tail move by a
sequence of at most 13 head moves (Theorem 5.7). Perhaps, this replacement
can be done more efficiently in the specific cases of the heuristic, to get a decent
head move bound.

Although we have exclusively studied heuristics for directed networks and
non-local moves in this chapter, the diameter bounds for local and non-directed
networks from the previous chapters can also be converted to heuristics. For
example, for tail; and rNNI moves, we can take the same heuristic where we
use the tail move heuristic and replace each long distance move with a sequence
of tail; moves via an up-down path (Lemma 3.9). This is quite straightforward
to implement. For SPR and NNI moves, the modifications are quite minimal
as well.

For heads moves, the heuristic that follows from the diameter proof is
slightly less simple to implement, as it involves computing an rSPR sequence
between trees. To get a good solution, this rSPR sequence should not only be
short, but the distance between the to-arcs of the moves should be small as well.
Indeed, each rSPR move is simulated by moving a triangle through the tree to
the from-arc first. This problem of finding such a sequence has not been studied
yet, so it is unclear whether this can be done efficiently. Alternatively, we can
take any sequence—for example, as returned by our rSPR heuristic applied to
the trees—but this may result in low quality solutions in the heady heuristic.

Network generator

We must note that our input networks may not be representative of realistic
networks, as the Ntk generator was not designed to produce such networks. In
fact, this generator is supposed to draw networks uniformly at random from
the set of networks [Zhal6]. It is known that the PDA (Proportional to Distin-
guishable Arrangements) distribution for trees is not representative of realistic
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phylogenetic trees [Ald96, BF06]. This makes it unlikely that drawing phyloge-
netic networks uniformly at random results in a set of networks representative
of realistic networks.

Hence, to test the quality of the heuristic in more realistic cases, one should
generate input networks that are representative of realistic networks. This
could be done by extending tree generators to networks. Two examples of
such generators are the birth-hybridization models of [ZODS18| and [PSC19].
The first of these adds reticulation arcs uniformly to the current network while
generating the network, and the latter adds reticulations where it is more likely
that the reticulation arcs are local. However, the underlying tree model—
obtained by turning reticulations off are ERM (Equal Rate Markov, also nown
as Yule) models, which are also known to be unrealistic despite their wide use
[Ald96, BF06]. To remedy this, one could take a more realistic tree model
and add reticulation edges between taxa with increased probability for closely
related taxa®, or use in silico evolution models to generate realistic networks

[e.g., yYDMCH19, KMC*07].

7.4.3 Better exact algorithms

Of course, the goal is not to have an efficient heuristic, but an efficient algorithm
for computing exact distances. For this, we may need a more abstract charac-
terization of the exact distance between two networks. There are currently no
exact characterizations of distances between networks given by rearrangement
moves. A first attempt was recently made using agreement graphs, but this
approach currently only yields constant factor approximations for the distance

between two networks which cannot be calculated in polynomial time (unless
P=NP) [Klal8a, K118, Kla20a].

Reduction rules

Alternatively, we can try to improve the exhaustive search approach. The
breadth first search presented in this chapter is quite inefficient. This is al-
ready true when applied to trees (results not shown). For trees, however, many

31 have implemented two such generators, but neither is published. The first is an ex-
tension of the Heath model for tree generation with autocorrelated speciation and extinction
rates [HZKHO08|. The generator uses this model and adds hybridization rates that depend
on the current distance between each pair of taxa; the second network model uses a beta-
splitting model [Ald96] for tree generation—which contains the ERM and PDA models as
special cases—and adds reticulation edges to the tree where the probability of a reticulation
arc between closely related taxa is larger than between distant taxa. Both can be found at
https://github.com/RemieJanssen/NetworkGenerators.
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improvements have been made, which make an exhaustive search much more
effective.

First, we note that several common reduction rules for the problem on
trees, such as subtree and cluster reduction [BS05, BSTW17]|, are not always
safe when adapted for networks. For subtree reduction, this means that the
tail move distance may increase after removing a common subtree. As an
extreme example, consider the networks in Figure 7.12, which are three tail
moves apart. After reducing the subtrees on {y, z} to a single leaf there is no
tail move sequence between the networks anymore.

Figure 7.12: Two networks for which subtree reduction does not preserve tail
move distance.

The same example shows that cluster reduction does not conserve tail dis-
tance: The sum of the tail distance within the common cluster {y,z} and
the tail distance for the networks resulting from the removal of this cluster
does not give the tail distance between the original networks. Here, we use
a non-standard definition of common cluster which seems necessary for rear-
rangement moves. A common cluster of two networks N and N’ is a pair of
pendant subnetworks M, M’ of N and N’ such that X(M) = X(M'). To make
sure a sequence of moves between M and M’ exists, we additionaly require that
r(M)=r(M").

Note that these examples only prove that these reductions fail for tail moves.
They may still work for rSPR or head moves. Furthermore, Lemma 4.5 of
[JJET18] indicates that reducing “tree clusters” might still be possible for tail
move distance, when the networks after removing the tree clusters do not be-
come networks with 2 leaves and one reticulation. In fact, it could even still be
safe to reduce subtrees to size 2.

Nevertheless, it is even easier to see that cluster reduction fails for head
moves. Indeed, we can consider a pair of networks with two clusters: one
cluster consists of two non-isomorphic trees, and the other cluster consists of
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two isomorphic networks with at least one reticulation. There is a sequence
between the two networks, but there is no head move sequence between the
non-isomorphic trees that form one of the clusters.

A* search

As an alternative to breadth first search, we could attempt to design a pro-
gressive A* search, like the one for trees introduced by Whidden and Matsen
[WM18]. To implement such a search, we need quickly computable upper and
lower bounds. As we have shown in this chapter, our heuristics give reasonable
upper bounds quickly. These can be made progressively better by repeating
the random heuristic an increasing number of times.

Currently, some lower bounds are known, but none of these can be calcu-
lated efficiently. For example, we can obtain lower bounds from the sets of
embedded trees. Indeed, to make two networks isomorphic, we in particular
need to make sure the sets of embedded trees are equal. As each rSPR move
changes each of the embedded trees by at most one rSPR move (Lemma 7.2),
this results in the following lower bound.

Lemma 7.25. Let N and N’ be two networks in the same tier, and T and T’
their sets of displayed trees. Then the following bound holds for all T € T

drspR(N, Nl) > min d(T, T/),
T'eT’
and therefore
dispr(N,N') > max Tn/flel% dispr (T, T").

Unfortunately, calculating such a lower bound entails calculating about 2*
(first bound) or 2%* (second bound) distances on trees. As this problem is
NP-hard as well, there is no fast way to obtain these bounds. However, Whid-
den et al. [WM18| have implemented quickly computable lower bounds for the
rSPR distance between trees, such as a 3-approximation for the rSPR distance
between two trees that runs in linear time [WZ09]. Using this linear time ap-
proximation algorithm, we can get a O(2%n) time lower bound for d;spr (N, N”)
by calculating the 3-approximation for d,spr(7,T") for a fixed T € T and all
T" € T', each in O(n) time. As long as k is small, this lower bound can be
computed efficiently. For better lower bounds, one could also use the cubic
time 2-approximation for tree rSPR distance by [CHW17].

A second candidate for a lower bound is based on agreement graphs. The
agreement distance between a pair of directed networks is a 3-approximation for
their SNPR distance [Klal8a|. Hence, a lower bound on the agreement distance
also gives an approximate lower bound for the SNPR distance. Unfortunately,
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computing the agreement distance is NP-hard. Therefore, to make this work,
we need an algorithm to compute a lower bound for the agreement distance.

Of course, it may be possible to find lower bounds using different techniques.
For example, it may be useful to consider some distance between the blob trees of
the networks, where the blob tree of a network is the tree obtained by identifying
all nodes of each blob of the network. Again, to make the networks isomorphic,
we in particular need to make the blob trees isomorphic. To find such a lower
bound, we need to study the what effects a move can have on the blob tree of
a network.

We conclude that we do not have an efficient algorithm for rearrangement
distance problems yet. However, the results in this thesis provide a strong basis
on which such algorithms can be based.
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In this chapter, we will summarize all results from this thesis—including
three tables with all our diameter upper bounds and discuss the results from
this thesis in light of applications to biology and to other mathematical research
fields. In particular, we will discuss the interpretation of a phylogenetic network
in a biological context, and the actual use of rearrangement moves in commonly
used software for phylogenetic networks. In this discussion, we will encounter
several open problems, which can also be found in the comprehensive list of open
problems in Appendix B. Overall, it will become clear that our connectedness
results suffice to justify the selections of rearrangement moves used in several
software tools.

8.1 Overview of the results

Although this thesis is quite long, its results can easily be summarized. The
central results all pertain to diameter upper bounds, which are summarized in
Tables 8.1, 8.2, and 8.3. Since we have seen that not all spaces are connected,
the tables show the diameters of the connected components. For networks with-
out internal labels, all spaces are connected except for N'(2,1) under tail and
tail; moves. For internally labeled networks, there are several more exceptions,
which all concern the highest tree node for head moves, and the lowest nodes
for tail moves. For degree-2 nodes there are similar exceptions. Note that, for
rSPR and rNNI moves, all spaces are connected, except N(1,0,m) for m > 0.
Although these diameter bounds were the main focus of the thesis, there
are several other results that deserve to be mentioned. First, disregarding
the internal labels, each tail move can be replaced by a constant length se-
quence of head moves, and (if n > 1) the converse holds as well. Secondly,
embedded trees of a network cannot change by more than one move for each
move on the network. This result was used to find lower bounds for the dis-
tance between networks, and to prove NP-hardness of M DISTANCE TIER-
k. Lastly, computing exact distances is generally NP-hard, and our heuristics
(https://github.com/RemieJanssen/RearrangementHeuristics) work quite
well for rSPR and tail moves for networks that are a small distance apart.

8.2 Revisiting networks

Our definition of a network contains several assumptions, some of which are
common throughout phylogenetic network literature and others are less agreed
upon. The latter category obviously deserves attention, but, as we will argue,
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8.

Table 8.2: Upper bounds for the diameters of the (largest components of) network spaces with internal labels. Note
that not all these spaces are connected. For each move, the upper bound is given twice: once in terms of the diameter

without internal labels, and once written out completely.

diamps(n, k, 0)

M asymptotic upper bound
tail Theorem 3.23 | 2diamy,(n, k) + 5k% +4(n +k — 1)
O(n + k?) 5k2 + 8n + 14k — 8
head | Theorem 4.31 | 2diamypeaq(n, k) + 4k +8(n + k — 1)?
O((n+k)?) | 8n?+ 16nk + 8k? — 4n
rSPR || Theorem 5.30 | diam,spr(n, k) + 4n + 8k — 4
O(n + k) 6n+ 11k — 6
SPR || Theorem 6.17 | diamgpgr(n, k) + 4n + 8k — 8
O(n+k) 5n+ 32k —8
taily Theorem 3.23 | 2diamy, (n, k) + 5k + (2n + 6k)(n + k — 1)
O((n+k)?) | 6n% 4 30nk + 41k? — 10n — 28k + 4
heads || Theorem 4.31 | 2diampeaq, (1, k) + 2k% + 2k + (2n + 6)(n + k — 1)?
O((n+k)?) | 2n® 4+ 10n%k + 14nk? + 6k3 + 20n2 + 4kn + 10k? + 1061 + 12k + 26
rNNI || Theorem 5.30 | 2diam,nn1(n, k) + 2n? + 8nk + 8k? — 2n — 4k
O((n+k)?) | 2n? + 8nk + 8k? + (4k + 8)log(k + 2) + (2n + 2)(1 + log(n + 1)) + 20n + 24k — 8
NNI || Theorem 6.17 | diamnni(n, k) + (n + 2k — 2)(4n + 6k — 2)
O((n+k)?) | 4n? + ldnk + 12k% + 2n + 4k — 11 + 2(k + 2) log(k + 2) + nlogn
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so does the former. These assumptions are closely tied to the interpretation
of networks as representations of evolutionary histories. Hence, in this section,
we revisit the definition and interpretation of a phylogenetic network.

We only focus on biological evolutionary histories for this section. This
may seem quite restrictive, as interpretations of networks in other fields such
as linguistics and archaeology may require very different assumptions. However,
we will see that the biological interpretation of networks already requires us to
consider many different variations on the definition of a network. Furthermore,
these variations are quite general as they correspond to natural extensions of
the mathematical description of a network.

8.2.1 Biological interpretation

In the introduction, we introduced directed networks as a generalization of
trees, where the arcs represent periods of descent with modification, tree nodes
represent speciation, and reticulation nodes represent combination of hereditary
material from two taxa. Unlike for trees, the interpretation of networks depends
heavily on the assumptions on the reticulate processes involved.

Perhaps the simplest example is when we assume the only reticulate process
is HGT. In that case, there is a direct and unidirectional transfer of information
from one group to another. Such a transfer may be singular, or it may consist
of a burst of transfers, and it may be between closely related groups, or highly
diverse groups [KP08]. These transfers are assumed to mostly occur within
Bacteria or Archaea, but also from Bacteria to Fungi [JST15], or even within
eukaryotes such as plants [LVK*14, LRM*15, DW04].

Suppose we draw a network for a scenario in which there is a single transfer,
with time passing in the vertical direction. The transfer would be represented
by a horizontal arc—no time passes—between the two involved taxa. This
arc itself does not represent descent with modification, and the new tree node
does not represent a speciation event. If we ignore the lengths of the arcs,
as we have done in this thesis, we cannot tell which of the parent arcs is a
transfer, and which is simply an arc representing descent with modification.
Therefore, for these kinds of situations, it is common to use networks with
additional structure, such as tree-based networks in which the support tree is

'For trees, the interpretation is not always as clear-cut either, as it may not be obvious
to decide which lineages should be grouped into one arc of the tree [Kwoll|. For example,
when sequence homology is mostly caused by recombination and not by vertical inheritance,
the reconstruction of evolutionary histories becomes quite complicated, as arcs in the tree
may represent groups that easily recombine, instead of groups related by descent [SFvN19|.
This problem is tightly related to the Species Problem of defining a taxon or species [e.g.,
May97, Hey01, Erel0].
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xr Yy z w o Yy z z

Figure 8.1: Evolutionary histories of incompletely sampled taxa. A network
for x, y, z, and w on the left, where 2z is a hybrid between y and w. In the
middle network, the arc (r,b) represents both descent with modification and
hybrid speciation. Without knowing that the middle network was sampled in-
completely, (r,b) could erroneously be interpreted as descent with modification.
The restriction to z and z on the right contains arcs (a,b) and (r,b), which both
represents descent with modification as well as hybrid speciation.

given [KGDO05, VWD™17], which has also been studied in the form of lateral
gene transfer (LGT; synonym of HGT) networks [CPR15].

When considering other processes as well, such as recombination and hy-
bridization in the form of hybrid speciation or hybrid introgression, the in-
terpretation becomes even more muddled. In hybrid speciation, for example,
neither incoming arc of the reticulation node represents descent with modifica-
tion. Hence, to represent an evolutionary history that includes multiple types
of vertical processes, we may need to annotate phylogenetic networks with ad-
ditional information. This information may consist of the types of processes
represented by each arc of the network. To annotate a network with such infor-
mation, additional biological information may be needed, provided it is possible
to actually infer such an annotation from biological data.

To make it even more complicated, one could consider incomplete sampling
of the involved species. Consider a tree-like evolutionary history (Figure 8.1)
for three species x, y, and z, where x and y are most closely related, and a HGT
from a recent ancestor of species y to a recent ancestor of species z occured. If
we draw the network for only the taxa x and z that fully captures the flow of
information, there should be an arc from the LCA of x and y to the very recent
ancestor of z that received the genetic material. This arc is not horizontal, as
it represents descent with modification as well as HGT.? Not only does this

2The contrived network shown in Figure 1.2 of the introduction suffers from many of
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mean the interpretation of a network becomes more complicated, it also means
that using tree-based or LGT networks to represent evolution with HGT may
be too limited.

Another complication is that this kind of incomplete sampling can lead
to parallel arcs in the true phylogeny, for example by restricting any of the
networks in Figure 8.1 to only the taxon z. Note that incomplete sampling like
this can occur simply when a too small number of species is studied, but also
when some of the lineages have become extinct.

8.2.2 Network definitions
Parallel arcs

In our definition of a network, there cannot be parallel arcs. This can easily be
defended, as parallel arcs do not give any information about the evolutionary
relationships between the studied species—the same holds for all blobs with
two incident cut-edges for that matter. Moreover, in some settings a network
with parallel arcs is indistinguishable from the same network where the parallel
arcs are removed |[GL18, SLCA20]. However, as we have seen in the previous
subsection, it may be necessary to include parallel arcs to fully show the phy-
logeny of the studied species, especially when arcs have lengths as well [PS15].
It is therefore easy to argue for as well as against the use of parallel arcs.

Spaces of directed networks with parallel arcs were first studied in [BLS17].
However, they included vertical moves for their investigation of the full space of
networks (these vertical moves were excluded when studying certain classes of
networks). Hence, the connectedness of the tiers of network spaces with parallel
arcs is still an open problem.

Although we have worked with networks that do not include parallel arcs,
it is easy to generalize our connectedness results to networks that do include
parallel arcs. To remove parallel arcs, one can use the same techniques as
used to remove parallel paths for taily moves (Lemma 3.24) and head moves
(Lemma 4.33). This shows that tail and head move spaces N0 (n, k) of networks
with parallel arcs are connected if their counterparts N'(n, k) without parallel
arcs are connected. Moreover, N'U(n, k) may even be connected if N (n, k) is
disconnected which is the case for Mia1(2,1)  and similar results also hold for
NO(n, k,m).

It is not immediately clear how the diameters of spaces on N(n,k) and
N()(n,k) relate. On the one hand, using the technique of removing parallel
arcs first, we obtain a larger diameter bound for N'O(n, k) than for N(n, k).

these problems. Indeed, it is unlikely that two groups merge completely as shown in that
figure.
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On the other hand, when parallel arcs are allowed, the distance between net-
works without parallel arcs may become smaller than when parallel arcs are
not allowed. Asymptotically, the diameters of M (n, k) and N0 (n, k) will most
likely be the same, as it takes only a linear number of moves in n and k& to
remove parallel arcs for most types of moves.

Internal labels and degree-2 nodes

This thesis contains the first results on rearrangement of internally labeled phy-
logenetic networks. We have chosen to generalize to such networks for three
reasons: mathematical generality (why only label the leaves?), the existing re-
search on trees that uses internal labels (e.g., [BBDVP19, BDEM 20, JBZ20]),
and the possible applications for such networks in research where ancestral data
is available. Using these internally labeled networks, we can label ancestral taxa
in a reticulate evolutionary history as well.

In the absence of degree-2 nodes, the following problem arises: it is unlikely
that an ancestral taxon should always be located exactly at a speciation or
reticulate event. Furthermore, using the moves as defined in this thesis, if we
choose to assign an ancestral taxon to a speciation node, a local search cannot
change this assignment to a reticulation node. This justifies the introduction
of labeled degree-2 nodes.

It could then be argued that only leaves and degree-2 nodes should be
labeled; one could go one step further by arguing that degree-2 nodes should not
be used, and ancestral taxa should be represented by regular leaves. The former,
only labeling leaves and degree-2 nodes, is quite reasonable for the reasons
mentioned in the previous paragraph. Moreover, most spaces of networks with
only labels for degree-2 nodes and leaves are connected. This follows by a
restriction of our connectedness results for N'(n, k,m): simply ignore the labels
of reticulations and speciation nodes.?

The second, representing ancestral taxa by leaves, is reasonable only under
certain restrictions. If all ancestral taxa are represented by degree-2 nodes,
they must necessarily all be an ancestor of at least one leaf (i.e., one of the
studied extant taxa). It seems unlikely that this is always the case, and an
ancestral taxon (for example as found in the fossil record) may just as well be
part of an extinct clade. In such a case, it is not an ancestor of any extant
taxon, and must be represented either as a leaf, or as an internal node which
is ancestral only to extinxt taxa. The blade cuts on both sides in this case, as

3In fact, the results similarly generalize to spaces of networks where a subset of the nodes
is non-bijectively labelled, as long as the pre-image of each label consists of nodes that are
all of the same type.
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by representing an ancestral taxon with a leaf, it can never be an ancestor of
any extant taxon in the network.

For the purposes where networks with branch lengths are used, this can
easily be solved using these branch lengths. Indeed, we can always represent an
ancestral taxon using a leaf, and set the length of its pendant branch to zero to
effectively make it a degree-2 node. This immediately changes the moves one
can do in the network, as these ‘degree-2 nodes’ can now be moved, too. For
example two adjacent ‘degree-2 nodes’ can be swapped using one rNNI move,
and ‘degree-2 nodes’ can even be combined with other nodes: if a length-0 arc
is moved to another length-0 arc, their pendant leaves are essentially in the
same place in the network. Whether this last option is desirable should be
determined for each application separately.

While this workaround is useful for methods based on explicit evolutionary
models, such as likelihood methods, it does not work for parsimony methods.
Consider the tree consisting of a root, one leaf, and one degree-2 node. If the
state of the root and the leaf are A, and the degree-2 node has state C, then the
parsimony score of this tree is 2. However, if the degree-2 node is replaced by
a leaf, where the state of the degree-2 node is moved to the leaf, the parsimony
score becomes 1. This shows that the representation of ancestral states needs
to be chosen quite carefully.

One solution to all these problems, is to introduce additional moves that can
change the labeling of a network more liberally. One can, for example, combine
any of the moves studied in this thesis with a move that swaps the labels of
two internal nodes, or with a move that attaches a leaf to a degree-2 node and
relabels the new leaf with the label of the degree-2 node. Connectedness of
the space of networks N (n, k, m) under either of these extended move types di-
rectly follows from the connectedness of the corresponding space on N (n, k, m).
However, the natural set of networks for these moves is not N (n, k, m), but one
where a larger set of permutations of the labels should be allowed, because,
for example, leaf-labels can become degree-2 labels and tree node labels can
become reticulation labels. For these larger spaces, connectedness likely still
follows from the previously mentioned connectedness results, but one needs to
be careful and prove that each permutation of the labels can be achieved using
the new set of moves.

Multi-rooted networks

In research into rearrangement moves, it is always assumed that the network
has one root. This makes sense in most cases, because, generally, a well spread
sample of taxa is chosen, and we can assume there is some ancestor of all these
taxa that nicely fits in the evolutionary history we want to show. However,
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VXA

Figure 8.2: Removing the top part (grey box) of a network leaves a multi-rooted
network with multiple components, as shown on the right.

it is also common to study small parts of the full network of life, concerning,
for example, a set of very related taxa, or two very distantly related groups
where we are looking for the most likely HGT event. In such cases, we may
want to fix the network structure representing the evolutionary history in the
distant past. In that case, rearrangement moves may not change this part of
the network, and we could also remove it. This leads to networks with multiple
roots (Figure 8.2).

The advantage is that one does not have to make assumptions about how
these roots are connected higher up; we do not have to assume the evolutionary
history before the existence of these root genes or species [HJH'13]. Addition-
ally, a famous but slightly dated view of the evolutionary history is the net of
life by [D0099], which features multiple roots. A third reason becomes apparent
when we take a broader view of phylogenetic networks that includes pedigrees:
these often start with multiple individuals that may coalesce in the distant past.

As can be seen in Figure 8.2, removing the top part of the network may
create multiple components and roots—these roots are labelled to show where
they connect to the fixed part of the network. This prompts the need to consider
networks with multiple roots and multiple components. One could argue that
we could simply connect all these roots at the top, but this would add no
information, and it would appear to represent some history which we are not
actually sure of.

There is an additional mathematical reason for studying multi-rooted net-
works. We have seen that reversing the direction of all arcs in a network with
one leaf gives a new network. Each tail move (head move) in the original net-
work becomes a head move (tail move) in the new network. When we allow
multiple roots, this works for all networks; each root becomes a leaf and vice
versa. Hence, to unify the results for tail moves and head moves, one could
consider head or tail moves in multi-rooted networks. Connectedness results
for head moves and for tail moves can then easily be related.
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Polytomies and non-binary networks

Another assumption we have made for the definitions of networks, is that they
are binary. This assumption is quite common in mathematical phylogenetics,
where it is argued that non-binary nodes can simply be resolved to obtain a
binary network. It is sometimes (tacidly) assumed that the real network or tree
must be binary [e.g., in Gra89, WZB14|, but this goes against the evidence that
hard polytomies exist [RC06]. These are speciation events into three or more
lineages, which cannot be represented by a binary node. The existence of these
hard polytomies cannot be ignored when using local search heuristics, even for
trees [WM10|. This means we should also consider non-binary networks and
rearrangement moves for these networks.*

It is not directly clear how our moves should generalize to non-binary net-
works, especially when internal labels are involved. In the absence of internal
labels, one option is to allow for the reattachment of endpoints to existing nodes.
This means that we should also allow for the pruning of one arc to remove it
from a polytomy, and we must suppress nodes after pruning only if this results
in a degree-2 node. Using these generalizations, high degree tree nodes can
be resolved using tail moves, and high degree reticulations using head moves.
Note that the degree of a tree node (resp. reticulation) cannot be changed by
a head move (resp. tail move). Another option is to introduce an additional
move that can contract arcs or resolve nodes, which makes it possible to change
the degree of a tree node or reticulation regardless of the rearrangement move
used.Connectedness of such spaces (using the generalized rSPR move, or any
move together with the contraction/resolution move) is easily proven: simply
use the connectedness results for binary networks after resolving each polytomy.

It is unclear how these generalizations should behave when internal labels
are involved as well. For example, what should happen to the labeling when an
endpoint moves away from a labeled high-degree node. Should the moving arc
always carry the label with it, or only when the node of origin is suppressed,
or never, resulting in a labelled degree-2 node? If it does carry a label with
it, can we merge two labelled nodes to create a node with higher degree and
multiple labels? In these cases, it seems the solution used by [BBDVP19| for
trees may work, although their move is not directly related to classic tree moves
like rNNI and rSPR moves on binary trees. It would be interesting to explore
the connections between their rearrangement move, and the ones used in this
thesis in more detail.

“The existence of hard polytomies actually only necessitates the introduction of high
degree tree nodes, and not high degree reticulations, but it seems natural to consider those
as well.
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Classes of networks

Finally, we note that most of the adjustments proposed in the previous section
generalize the definition of a network to include more types of structures. How-
ever, it is also quite common to restrict the structure of the networks. This
can be done to make the search space smaller, or simply because one expects a
network with a specific structure. This leads to subspaces of networks formed
by classes of networks. Bordewich et al. [BLS17| first studied such spaces. An
extensive overview of the connectedness of these subspaces of networks for a
given class can be found in [Kla20b]. Hence, we do not repeat such an overview
here.

8.3 The use of rearrangement moves in software

To see how our results apply to existing methods that reconstruct evolutionary
histories, we discuss the use of rearrangement moves in existing software pack-
ages. As we have argued in the introduction, it is important that the search
spaces of these methods are connected. Nevertheless, most of the papers ac-
companying such software packages neglect to investigate the search space they
use.

In Appendix A, we study the connectedness of search spaces of several soft-
ware packages, including some functions within the PhyloNet package [TRNO0§|,
some BEAST 2.5 packages [BVBS'19], but also other methods like GTmix
[Wu20] and RF-Net [MAVE19, ME19, Mar20]. Among these, we found one
method (GTmix) where the search space was highly disconnected, and con-
sisted of many components. This shows that rearrangement moves should be
chosen carefully when designing new methods for reconstructing phylogenetic
networks.

All other methods we have investigated in Appendix A had connected search
spaces, which could be explained by the large set of moves they used. These sets
often contain some rSPR-like move, where each method uses its own variation.
By modifying our results of the connectedness of tiers under rSPR moves, it
can be shown that the search spaces of most of these software tools (except for
BACTER, which uses a different type of network definition, and GTmix, which
has a disconnected search space) have connected tiers.

Additional to these rSPR-like moves, most methods also use vertical moves
and other horizontal moves. These horizontal moves change the direction of
an arc, swap the endpoints of two arcs, or they move an entire arc. The use
of vertical moves generally make the spaces connected via trees and the use of
rSPR-like moves make the tiers connected as well.
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8.3.1 Move selection for heuristics

The fact that all methods use their own versions of an rSPR move makes it very
hard to compare the spaces of networks used in all these methods. Moreover,
this myriad of moves seems unnecessary if only the connectedness of the search
spaces is of interest. However, these could exist a justification by the fact
that the underlying optimization criterion or sequence/tree evolution model
is different. Nevertheless, it must be noted that, with the exception of the
BACTER paper [VWD™'17], none of the papers explaining the methods justify
the introduction of new variations. Therefore, there does not seem to be a good
reason for the proliferation of rSPR-like moves in heuristics. So, why then is a
new rSPR-like move invented for each new heuristic?

Interaction of moves and the model

To design a good set of moves, it is important to keep in mind the interac-
tion between the moves and the optimization criterion or likelihood function.
According to [VWD™17], which uses a Bayesian approach, moves “should not
generate new states that are too bold (accepted with very low frequency) nor
too timid (accepted with very high frequency): both extremes tend to lead
to chains with long autocorrelation periods.” Hence, they constructed moves
with two criteria in mind. The first is that they should minimally affect the
likelihood of the network, presumably to ensure that the steps are small in
light of the evolution model that is used; and the second is that they should
“draw any significant changes from the prior”, which is probably so that larger
steps through the space are justified by the prior distribution. They forego
the strategy of using a mix of timid and bold moves, which is used by most of
the software tools we have investigated. This strategy, if correctly calibrated,
should on average also generate states which are on average not too bold, nor
too timid.

For local search heuristics solving optimization problems, it is also impor-
tant to understand the interaction between the moves and the optimization
criterion. Although Markin et al. have not devised their own moves for the
use in their RF-Net software, they have studied the interplay between SNPR
moves and clusters, to better understand what local search can achieve in their
problem. As the study of rearrangement moves for networks is still young, the
interplay between rearrangement moves and network optimization criteria is
virtually untouched. For trees, such studies have been done, for example by
studying the interaction between NNI moves and parsimony [UFSJ16].

As we have seen above, it is common to use a mix of moves, which may make
these interactions even more complicated. There seems to be some hierarchy in
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these mixes, as there are clearly moves that can affect the topology much more
than others. For example, consider an rNNI move versus an rSPR move. In
light of this, it would also be interesting to consider a hierarchy of rearrange-
ment moves, and use them in variable neighbourhood searches, where it is also
important to understand the effect of moves on the optimization criterion (see
“Intensified shaking” in [HMP10]).

Effects on the running time

Of course, one should not only consider the connectedness of the space when
selecting or designing rearrangement moves for a problem. It is also important
that the desired solution is found within reasonable time. Indeed, if connected-
ness were the only condition, one could use the ‘move’ that simply picks a new
network at random from the full set of networks. Of course, for a local search
heuristic, this would not work, as it would require the computation of the score
of all networks. Hence, it is desirable that the neighbourhood of a network
is small, and, if possible, that it primarily contains promising new networks,
but it should still be possible to reach an optimal network quickly. Choosing
a small neighbourhood so that any network can still be reached quickly is gen-
erally possible, as we have shown that the tiers of network space are already
connected under tail; moves with a quadratic diameter; but choosing a neigh-
bourhood that contains promising networks requires a better understanding of
the interplay between moves and optimization criteria, as argued above.

For Bayesian approaches, a similar argument holds: introducing a move
that simply picks a new network at random is rather pointless, but moves
that cannot make large enough changes would lead to very long convergence
times. Here, again, our results show that tail; moves could be a reasonable
first guess for a good move, as they lead to relatively small neighbourhoods
in a connected space of networks with small diameter. Of course, these are
not the only desirable characteristics that one should keep in mind, so the
effectiveness of tail; moves would have to be proven in practice. This can be
done either by simply testing methods that use these moves (as is common
practice), or by proving facts about the mizing time for the Markov chains
used in these methods. The mixing time is the number of steps it takes for the
infered distribution to get close to the posterior distribution.

As a first approach, the diameter can be used to give a lower bound on the
mixing time [LP17, Chapter 7|. Hence, if the diameter is large, the mixing time
will necessarily be bad. However, the diameter of a graph does not have a strong
connection to upper bounds on the mixing time. In fact, the mixing time may
be exponential in the diameter. However, the example to show this is a tree
|[LP17, Example 7.7|, a graph that has low connectivity per definition. There
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is some evidence that higher connectivity corresponds to faster mixing. For
example, [Sin92] links “canonical paths” to the mixing time, which is interpreted
by [MYK10] as a link between connectivity and mixing time. In this light, it
would be interesting to study the edge-connectivity of phylogenetic spaces, and
keep this in mind when selecting moves as well.

8.4 Concluding remarks

In the introduction, we justified the research in this thesis with the claim that we
need to understand spaces of networks for their use in reconstruction methods.
However, all the software mentioned in this chapter was tested in practice
and seems to function perfectly fine, all without a mathematical proof of the
connectedness of these spaces. In fact, in most cases, the moves are chosen so
general that, at first sight, it seems unlikely that the corresponding spaces can
be disconnected at all. This raises the question of the use of the results in this
thesis. They clearly don’t make the software more efficient, and they weren’t
necessary for the methods to be applied to biological data sets.

At first glance, it seems we do not add much to the story, and we have
simply checked something that should have been checked by the designers of
the software in the first place. In fact, maybe they have, but they did not
publish this. Only for the GTmix software we can be reasonably sure that
they did not check this, as their space of networks is highly disconnected. This
shows that, at the very least, the topic of this thesis is important.

Nevertheless, only focusing on connectedness may be selling the results of
this thesis short, and we should consider the results of this thesis in a broader
context. As we have argued before, a good understanding of the search space
may be important in understanding expected or unexpected output of recon-
struction methods. Furthermore, understanding the interaction between prop-
erties of networks, such as the sets of embedded trees, and rearrangement moves
may help in choosing good rearrangement moves for future applications.

Most importantly, even within the small scope of connectedness results,
the results in this thesis are simply necessary. Without these results, many
methods used to reconstruct evolutionary histories lacked justification. Hence,
this thesis was necessary not for the sake of practicality, but for the sake of
scientific rigour.
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A. REARRANGEMENT MOVES IN SOFTWARE

In this chapter, we investigate the use of rearrangement moves in commonly
used software, which are either local search heuristics for optimization prob-
lems or Bayesian methods (Section 1.3.1).In particular, we inspect the sets of
moves that are employed in their algorithms, paying special attention to the
connectedness of their search spaces.

A.1 Move types

To get an idea of the move types used in software, we investigate several (ar-
bitrarily chosen) software packages. These include some functions within the
PhyloNet package [TRNO8]—interestingly, PhyloNet use different sets of moves
in different functions—and the BEAST 2.5 packages [BVBST19], but we will
also consider other methods like GTmix [Wu20| and RF-Net [MAVE19, ME19,
Mar20]. We by no means claim to give a full list of network reconstruction
methods that use rearrangement moves, as we for example omit SMARTIE
[BS10], ClonalOrigin [DLDF10], and AllopNET [JSO13]. None of the publica-
tions for the methods mentioned in this paragraph proves the connectedness of
the search space, except for the RF-Net software, where connectedness is fully
proven.

It will turn out that the connectedness question is easy to answer in many
cases, as most of these software packages use vertical moves as well as hor-
izontal moves. Although this makes the connectedness of #iers of networks
less relevant—connectedness of their spaces follows simply from the facts that
each network can be turned into a tree and that tree space is connected [e.g.,
BLS17]—we still compare their horizontal moves to ours. Because vertical
moves seem to be used rarely and a network with fewer reticulations is less
likely to explain the input data, the connectedness of tiers may still be impor-
tant in practice. To validate the methods used in the software packages, we
compare the used moves to the moves studied in this thesis.

In most of the software packages, the networks have additional numerical pa-
rameters such as the lengths of the arcs and the inheritance probabilities along
reticulation arcs. This means these packages also employ numerical moves
that result in isomorphic networks, where only the numerical parameters have
changed. For these moves, unlike for horizontal and vertical moves, we say that
they do not change the topology of the network. Hence, to check that the space
of networks used by the software is connected, it needs to be checked that each
network with each set of possible parameters can be reached.
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A.2 PhyloNet

A.2.1 MCMC_GT

The first PhyloNet function we consider is MCMC _GT, a Bayesian estimator
with gene trees as input data [WYN16]. This methods uses the following seven
types of moves: Change-Length, Change-Inheritance, Move-Tail, Move-Head,
Flip-Reticulation, Add-Reticulation, and Delete-Reticulation. The first two
moves are numerical, Moves 3-5 are horizontal moves, and the last two moves
are vertical moves.

It is easy to check that the numerical moves suffice to reach each parameter
condition without changing the topology of the network. Hence, we turn to
the moves that change the topology, and we check that all networks can be
reached. It is important to note that networks in this software tool have a
root of outdegree-2, whereas we assume the root has outdegree-1. There is a
correspondence between these two representations as sets—simply remove or
add this root arc to go between them—which does not necessarily hold for the
spaces if the definition of the move is kept the same. We will see that, in this
case, the move is defined such that this correspondence also holds for spaces of
networks.

The last two types of moves are vertical moves, which are proposed with
a probability . In the documentation of this software https://wiki.rice.
edu/confluence/display/PHYLONET/MCMC_GT, there is no mention of a default
for k—it is unclear from the documentation whether this parameter is actually
controlled implicitly by the Poisson parameter for the prior for the reticulation
number. Hence, it is unclear how big the role of vertical moves is for this
method. Therefore, it is unclear how important it is that the tiers of the search
space of MCMC GT are connected. Nevertheless, we now argue why the tiers
of network spaces for this software are connected, in case this turns out to be
important.

We first note that Move-Tail and Move-Head are equivalent to our tail and
head moves. This is non-trivial because of the different types of roots used in
MCMC _GT and this thesis: if Move-Tail were defined exactly as the tail move
in this thesis, this would result in a different set of neighbours for Move-Tail
than for our tail move. However, Move-Tail corrects for the lack of a root arc
by providing exceptions to the definition of a move involving the root [WYN16,
supplementary material]. A similar inspection shows that Move-Head and our
head move are also identical.

The third horizontal move, Flip-Reticulation, is one entirely different from
the moves considered in this thesis. A Flip-Reticulation move re-orients an arc
(i.e., take an arc (x,y) in the network, and replace it with the arc (y,z)). As

229



A. REARRANGEMENT MOVES IN SOFTWARE

usual, the move is valid precisely when the resulting graph is again a network.
If internal labels are used, we have to observe that Flip-Reticulation turns the
tree node x into a reticulation and the reticulation y into a tree node. As
no internal labels are used in this software tool, this is no issue regarding the
connectedness.

In fact, the tiers of the considered search spaces are already connected under
Move-Tail and Move-Head moves, so the addition of Flip-Reticulation moves is
superfluent for the connectedness of the search spaces. However, this addition
may affect distances and diameters. These cannot get much smaller, though,
as each Flip-Reticulation of (z,y) can be replaced by a sequence of at most
two rSPR moves: head move y up above x, and move it down on the other
outgoing arc of x (Figure A.1a). This sequence is valid unless the intermediate
network contains parallel arcs (which are not allowed in the software) but, in
that case, the Flip-Reticulation can be replaced by at most one rSPR move
(Figure A.1b—d).
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Figure A.1: Replacing a Flip-Reticulation move for (z,y) with at most two
rSPR moves. The black labels follow the rSPR moves, and the red labels
correspond to the Flip-Reticulation move.
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A.2.2 InferNetwork MP

PhyloNet’s InferNetwork MP is a heuristic for finding a network minimizing
the deep coalescence score of a set (or distribution) of trees [YBN13|. These
trees are derived from sequences using a parsimony or Bayesian approach, and
the score of a network is found by counting the number of extra lineages in an
optimal reconciliation of the trees in the network. Because the direct computa-
tion of an optimal network is infeasible, a local search heuristic is used to find
an optimal network.

The moves used by InferNetwork MP are quite similar to the ones used in
MCMC GT. The only change is that there is an additional horizontal move:
Replace-Reticulation. This move removes a reticulation arc and adds another.
This essentially makes it a combination of a tail move and a head move, where
the intermediate network is allowed to contain cycles.

Also in this case, the fact that vertical moves are used makes it clear that
the space under consideration is connected. However, the search strategy does
not allow for going down a tier: all tiers up to a certain reticulation number
r are searched in order. First a (locally) optimal tree is found using a hill-
climbing approach, then a tier-1 network, and so forth until either a (locally)
optimal network is found in N (n,r) or the (locally) optimal solution in tier-k
is at least as good as the score found in tier-(k + 1). Because of this strategy,
the proof of connectedness via trees is not enough, and we actually need the
connectedness of tiers of network space. Therefore, our results show that this
search strategy of searching each tier separately may work, although it stays
unclear how commonly the hill-climbing heuristic gets stuck in local optima.

For this software, the probabilities of all the move type proposals can be set
explicitly as parameters'. The default values are (0.1,0.1,0.15,0.55,0.15,0.15)
for adding a reticulation node, deleting a reticulation node?, relocating the head
of a reticulation edge, relocating the tail of an edge, reversing the direction of
a reticulation edge and replacing a reticulation edge respectively. Our results
imply it is possible to set these probabilities to zero for the vertical moves, if
one desires to search within a tier.

Note that Phylonet’s recent package InferNetwork MP _Allopp [YCLN20]
uses the same moves, so our conclusions regarding the search space of InferNet-
work MP can be directly transferred to this method.

!See the documentation at https://wiki.rice.edu/confluence/display/PHYLONET/
InferNetwork_MP.

*Why this move is mentioned is unclear, as [YBN13] claims to never reduce the number
of reticulations.
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A.2.3 InferNetwork ML and InferNetwork MPL

The InferNetwork ML and InferNetwork MPL methods aim to maximize the
likelihood [YDLN14| or pseudo-likelihood [YN15] of a network respectively,
given an input of gene trees. They use a hill-climbing heuristic for these prob-
lems, which uses vertical moves (removing or adding a reticulation arc) and
two types of horizontal moves.

The horizontal moves are head and tail moves. However, the networks have
an outdegree-2 root and no correction is mentioned for this like in MCMC _GT
(see definition of these moves in the supplementary information of [YDLN14]).
Hence, the connectedness of the resulting space does not immediately follow
from our results. However, it is easy to see that all head moves and tail moves
are (or can be replaced by at most two of these) more restricted tail moves
(Figure A.2). Using this obervation, the connectedness of the search spaces in
this method follows directly from our connectedness results.
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Figure A.2: Tail moves with different types of roots. The tail move on the
left is not possible when the root arc is removed to obtain a network with two
outgoing arcs as on the right. This move can be simulated using at most two

tail moves. Note that if the intermediate network on the right is not valid, then

y is the right child of ¢, but then only one move suffices: x % (c,d), where

d is the left child of c.

Interestingly, the documentation of these methods mention four horizontal
moves, and not two.? This gives a total of seven moves: adding a reticulation
node, deleting a reticulation node, relocating the head of a reticulation edge, re-
locating the tail of an edge, reversing the direction of a reticulation edge, replac-

Shttps://wiki.rice.edu/confluence/display/PHYLONET/InferNetwork ML and
https://wiki.rice.edu/confluence/display/PHYLONET/InferNetwork_MPL
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ing a reticulation edge and changing branch lengths and inheritance probabili-
ties. The default weights for these moves are (0.1,0.1,0.15,0.55,0.15,0.15, 2.8)
respectively. Assuming that these methods use the tail and head moves de-
scribed in the paper, and not another set of moves as mentioned in the docu-
mentation, the method indeed uses spaces with connected tiers.

A.2.4 MCMC SEQ

The last PhyloNet function we consider is MCMC__SEQ, which uses a Bayesian
technique to compute a posterior distribution based on sequence data [WN18|.
The model of sequence evolution underlying this function takes ILS and hy-
bridization into account in a multi-species network coalescent (MSNC') setting.

Like for the previous functions, the paper does mention the used moves,
but does not investigate the resulting space of networks. In this case, the soft-
ware chooses a move from the following twelve types: Scale-PopSize, Change-
PopSize, Change-Inheritance, Scale-Time, Change-Time, Swap-Nodes, Flip-
Reticulation, Slide-SubNet, Move-Tail, Move-Head, Add-Reticulation, and Delete-
Reticulation. The first five of these are numerical moves. Again, it is easy to see
that all possible parameter values can be reached for a given network topology,
so we turn to the connectedness of the space of networks.

The moves Move-Tail and Move-Head are like the tail and head moves
in InferNetwork ML, in that they use outdegree-2 root nodes. Again, our
connectedness results can be leveraged to show the connectedness of the search
spaces of this paper. However, we need to be careful, as these Move-Tail and
Move-Head take into account the numerical parameters as well: a Move-Head
move is a head move v (%Y, (x,y) where t(y) < t(u), that is, if we draw the
network with the time on the vertical axis, v must be higher than y.

As all possible numerical parameter values can be reached using the numer-
ical moves, it only remains to prove that there is such a drawing (i.e., set of
parameter values) of the network for each head move. This is easy to prove:

if v M (x,y) is valid, then y is not above u, so there exists a total order
t: V — R such that t(y) < t(u).

This implies the remaining two horizontal moves Swap-Nodes, which swaps
the parents of two randomly selected nodes, and Slide-Subnet, which is a tail
move that moves the tail up or down are not strictly necessary to search the
whole space.

Again, the last two moves are vertical moves, that allow for the search to
reach trees. Hence, the connectedness is easily proven. Moreover, applying our
results about the connectedness of tiers to Move-Tail and Move-Head moves, is
is eagy to see that a search can be effective even when vertical moves are absent
or rare.
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A.3 BEAST 2.5

A.3.1 SPECIESNETWORK

The BEAST 2.5 package SPECIESNETWORK is a Bayesian method based on
sequence data that co-estimates a distribution of gene trees as well as a network
[ZODS18|. As such, it is much like the PhyloNet function MCMC _SEQ, with
four main differences as listed in the paper. Three of these differences concern
the evolutionary models and the priors, so they are not directly relevant to this
discussion. The fourth difference is that SPECIESNETWORK allows for parallel
arcs in the networks, whereas MCMC _SE(Q) does not. Recall from Section 8.2.2
that this is no issue, as parallel arcs can be removed just like parallel paths.

The moves used in this package are also slightly different from the ones used
in MCMC_SEQ. In SPECIESNETWORK, the moves are: Node Slider, Node Uni-
form, Inheritance-Probability Uniform, Inheritance-Probability Random-Walk,
Relocate Branch, Add-Reticulation, and Delete-Reticulation.

The first four are numerical moves, Relocate Branch is a horizontal move,
and the last two are vertical moves. Relocate Branch includes rSPR moves, but
also allows for a slightly more general move. This move combines an (invalid)
rSPR move with a Flip-Reticulation move. More precisely, if the rSPR move
u & f introduces a cycle then this move is followed by a Flip-Reticulation on
e. If this results in a network, then this combination of an rSPR and Flip-
Reticulation is considered a valid Relocate Branch move. Because this move
includes the rSPR move, our results imply that the tiers of the search spaces
used by SPECIESNETWORK are connected.

A.3.2 BACTER

BACTER [VWD™17] uses a Bayesian approach to find the geneaology of bac-
terial samples using sequence data and an evolutionary sequence/coalescence
model tailored to bacterial taxa. The specific aim is to find a tree-based net-
work, where a given base tree represents the true reproductive genealogy (also
called the clonal frame) and the reticulation arcs represent recombination.

As the networks are tree based, the types of moves used in the MCMC
Bayesian inference are quite different from the moves in this thesis. Instead of
moving arcs in the network, they essentially change the base tree, and simulta-
neously relocate reticulation arcs to conserve the time at which they occurred
(See Figure 2 in the paper). Hence, we cannot directly apply our connect-
edness results to BACTER. Note, however, that BACTER also uses vertical
moves, which can turn the network into a tree, and that this tree space is con-
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nected simply by tail moves, so it is easy to see that BACTER’s search space
is connected nevertheless.

A.3.3 CoalRe

CoalRe is a package that uses Bayesian inference to find networks together with
embedded trees for genetic segments for viruses [MSD'20]. Tt tailored to this
setting as it uses a coalescent model with reassortment.

In the MCMC process, CoalRe uses the following moves: scale operator,
segment diversion operator, add/remove operator, subnetwork slide operator,
exchange operator, gibbs operator, empty segment preoperator. Among these,
the scale operator and the segment diversion operator are the only moves that
cannot change the network topology. The moves in this method are interesting,
in that they must jointly change the embedding of the segment trees when the
network topology is altered.

For the sake of connectedness, we note that each set of embeddings can be
reached in a given network using the segment diversion operator. The question
of connectedness then simply comes down to the connectedness of the space of
network topologies under the remaining moves. As the add-remove operator is
the vertical move used by SNPR moves (see Section 2.4.1), and the exchange
operator includes rNNI moves when restricted to trees, it is easy to see this
space is connected.

We now check whether tiers of this space are also connected under the
given moves. This can easily be seen to be the case, as the subnetwork slide
operator is topologically the same as the Slide-SubNet operator in PhyloNet’s
MCMC _ SEQ: it is simply an upward or downward tail move. As all tiers
are connected under tail moves (except N(2,1)), and each tail move can be
replaced by an upward tail move followed by a downward tail move, each tier
is already connected under the subnetwork slide operator alone.

A.4 PhyloNetworks: SNaQ

The SNaQ method (Species Networks applying Quartets) is a maximum pseudo-
likelihood method, that computes the pseudo-likelihood of a semi-directed net-
work (i.e., only the reticulation arcs are directed) by calculating the likelihoods
of all its subnetworks with four leaves [SLBA17].

The search starts in a user specified tree, and then proceeds to search net-
work space using the following moves: 1) move the origin of an existing hybrid
edge; 2) move the target of an existing hybrid edge; 3) perform a nearest-
neighbor interchange move (NNI) on a tree edge; 4) change the direction of an
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existing hybrid edge; and, 5) add a hybridization if the current topology has
k < km, where k,, is the user specified maximal reticulation number considered
in the search.

In the first two of these moves, the to-edge is chosen from the ‘vicinity’ of
the current position of the moving endpoint. We assume this means the move
is actually an NNI move that moves an endpoint of a reticulation arc. For the
third type of move, it is not defined what it means for an NNI move to be
performed on a tree edge, but a reference to [HLMW16] is given for a similar
definition. There, an NNI on an arc (u,v) is either a tail; move v ﬂ) (-, u)
where v is a tree node, or a tail; move v M (u, z) with z # v.

If SNa() uses this definition for NNI moves, then the moves used by SNa(Q
include our rNNI moves for the following reason. All rNNI moves that move an
endpoint of a reticulation arc (either tail or head) are included in the first two
types. All other rNNI moves move a tree arc, and must thus be tail; moves.
The only of these that are included, are of the third type. Clearly, this type
of move does not include all TNNI moves as defined in this thesis, as it cannot
move a tail down, up to a reticulation arc, or sideways through a reticulation
node. However, all these moves result in a network that can also be obtained
using different types of moves used by Solis-Lemus and Ané, as can be seen in
Figure A.3.

Figure A.3: The rNNI moves not included in the SNaQ moves can all be re-
placed by moves used by SNa(Q). Each upper move is a tail; move not explicitly
included in the moves used by SNaQ, and the bottom sequence is a simulation
of this move fitting within the SNaQ framework.

The direction-changing moves are interesting as well, as they are applied to
semi-directed networks. These moves flip the direction of a reticulation arc, so
that the head of this arc becomes a tree node and the tail becomes a reticulation
node. In a directed network, keeping the directions of all other arcs would fully
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define the new network, but for a semi-directed network, the new reticulation
node only has one defined reticulation arc after this move. The paper does not
specify how the new reticulation arc adjacent to this node is chosen.

The methods restrict to semi-directed level-1 networks (with parallel arcs).
For connectedness, the paper mentions Huber et al. [HLMW16]|, which proves
connectedness of the space of undirected level-1 networks under LST moves, a
combination of NNI and a vertical move called a Three-Cycle operation. Ac-
cording to Solis-Lemus and Ané (|]SLBA17|), this suggests that their moves
are sufficient. However, this proof of connectedness uses sequences that go via
lower tiers (See Fig. 1 in [HLMW16]|, and observe that the tier-2 networks are
only connected to tier-1 networks). Such sequences are unlikely to occur in the
search by SNaQ), as the only proposed vertical moves increase the reticulation
number. Reticulation arcs are only removed when there is no inheritance of
genetic information via that arc (as given by the numerical parameters). More-
over, in Huber et al., networks do not have parallel arcs, so a more complete
proof of connectedness of tiers of network space as used by SNa(Q is warranted:
the results for directed networks in this thesis, together with the fact that a
semi-directed network orientable (by the definition in [SLBA17]), imply that
the search spaces of SNa(Q are connected.

A.5 GTmix

GTmix uses a maximum likelihood approach to find admixture graphs based
on local genealogies—which can be thought of as gene trees—in a maximum
likelihood setting within a coalescent setting [Wu20|. From a graph theoretical
perspective, admixture graphs are the same as phylogenetic networks. The
main difference is that admixture graphs are used for smaller scale processes in
populations, whereas the same graphs are called phylogenetic networks when
they represent similar processes over longer time periods.

Again, directly computing the optimal network is hard, so a hill-climbing
heuristic is used. To search the space of networks, GTmix uses rNNI moves of
the following type: v, M (vg, Vsp), Where vy is a tree node with children vy,
and vy, the latter of which is a tree node with children v, and vs. According to
the paper, the method only uses these types of moves, and keeps the number
of reticulations (admixture nodes) constant.

Interestingly, the resulting spaces of networks are disconnected, with often
a large number of components. For example, because leaves cannot move past
reticulations (Figure A.4). Although the method is a heuristic and does not
claim to find an optimal network, this can still lead to large problems. The
paper does claim that the results obtained using GTmix are of a good quality,
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and it observes that GTmix is able to work with much larger networks than
PhyloNet. Although this is guesswork on my part, this could be a result of using
a very limited move, which leads to a small neighbourhood, and a disconnected
(and much smaller) search space.

/el
/o NI

N N

Figure A.4: The space N (3,1) under the GTmix move is disconnected. Note
that the partition of the leaves and tree nodes obtained by removing the retic-
ulations is invariant under the move.
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A.6 RF-Net

RF-Net is a method that optimizes a Robinson-Foulds based criterion [MAVE19,
ME19, Mar20|. This criterion is

min RF(T, T,
TEIT E€T(N)

where 7 is an input set of trees, and RF(T,T") is the Robinson-Foulds distance
between the trees T and T’. In other words, the aim is to find a network
that explains the clusters of the input trees the best. Computing the optimal
network is NP-hard, so a local search heuristic is used.

The moves used by the local search are tail moves.* The paper also mentions
distance-1 moves, but it seems these are only used as a conceptual tool, and not
as a rearrangement move in the algorithms. All searches are performed within
a tier N (n, k), or in the restriction of M (n, k) to tree-child networks.

Note that this paper is the only one to fully address the connectedness
of the search spaces. This was done by citing [JJE'18] and [BLS17] for the
connectedness of NV(n, k) and the tree-child restricted space respectively. This
makes this the only paper we found that fully justifies their choice of moves
with regards to connectedness of the search space.

In the paper, the moves are called SNPR moves, but only horizontal moves are used.
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B. OPEN PROBLEMS

In the discussion of this thesis, we have already mentioned several open
problems regarding the study of rearrangement moves. As these were intro-
duced piecemeal, we will now give a more complete overview of such questions.
This list is only partly inspired by questions regarding the efficiency of moves in
heuristics and Bayesian inferences. A larger part of these questions are based
on similar questions for trees, or on open directions following from queries in
this thesis.

B.1 Gaps in this thesis

B.1.1 Connectedness

We have fully characterized the connectedness of spaces under tail;, tail, head,
heady, rSPR, rNNI, SPR, and NNI moves, except for the spaces Npead, (1, k, m)
with m > 0. As mentioned in Section 4.4.2, we know these spaces are discon-
nected, but we do not know to what extent. There are two open problems to
this regard.

e Is there a simple characterization for the connected components of heads
spaces?

e Are all spaces N (n, k,m) connected under head,, o moves?

The reason for the disconnectedness is similar to that for head; moves, where
a head cannot be moved past its tail. As head; moves are a more logical choice
for a local move than heads moves, it is worth investigating the components of
head; space as well.

e Is there a simple characterization for the connected components of head
spaces?

B.1.2 Diameter bounds

Besides connectedness, the other main focus of this thesis were the diameters
of all studied spaces of networks (Tables 8.1, 8.2, and 8.3). Many of these
bounds are asymptotically tight—where the asymptotic bound is given in ©-
notation in the tables even though the lower and upper bounds may be quite
far apart. Indeed, we know that our bounds for networks without internal labels
are asymptotically tight for all move types except tail; and heads moves.

For networks with internal labels, the only tight bounds are for rSPR and
SPR moves; and for networks with degree-2 nodes, none of our bounds have
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B.1. Gaps in this thesis

been proven tight, as no known bounds include the number of degree-2 nodes.
This leads to the following problem regarding asymptotic bounds for the diam-
eters of network spaces, where all problems are still open except for the ones
just mentioned.

e Determine asymptotically tight bounds for the diameters diamps(n, k),
diamps(n, k,0), and diamys(n, k,m).

We conjecture that diamg,, (n, k) = ©(nlogn+klog k) which may be provable
using a technique similar to the one used for TNNI moves. The main steps to
reprove are that any network can efficiently be turned into a tree-based network,
and that collecting the heads at one pendant arc can be done efficiently.

For internally labeled networks, we conjecture that the diameter bounds
for tail and head moves can be improved to linear. This seems likely for the
following reason. For tail moves, the quadratic number of moves is a result of
the permutation of the reticulations nodes, which can be done using a linear
number of head moves. We have proven that each head move can be replaced
by a constant number of tail moves, but we have not considered the internal
labels in that proof (Theorem 5.16). If it turns out each head move can be
replaced by a constant number of tail moves for internally labeled networks as
well, this directly gives a linear upper bound for diamg,y(n, k,0). Similarly, if
we can replace a tail move by a constant number of head moves respecting the
internal labels, we get a linear upper bound for diampeaq(n, &, 0).

e Can each tail move be replaced by a constant number of head moves, and
vice versa, in an internally labeled network?

e Does a similar relation exist between local moves?

After determining asymptotic bounds, it would be interesting to see if we
can calculate the exact diameters of these spaces, or at least find lower and
upper bounds that are less far apart. The direct use of this is less apparent, but
it is interesting from a pure mathematical perspective. To improve the bounds,
it may be worth to try to improve the techniques that were used for the current
bounds. Many of the proofs for upper bounds use ineflicient sequences for the
sake of simpler proofs. The lower bounds can possibly already be improved
by using more recent bounds on the number of phylogenetic networks in each
tier, which are not based on a quick estimation counting like for the Echidna
networks, for example as in [FGM20, Man20, CZ20].

e Identify unnecessarily long sequences in proofs of upper bounds for the
diameters.
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e Use better estimates of the number of networks to improve lower bounds
for the diameters.

B.1.3 Computational complexity

We have shown it is hard to compute the distance between two networks without
internal labels for several types of moves. For the version of the problem where
we do not fix the tier (i.e., M DISTANCE), most problems are NP-hard because
they are already NP-hard for trees. This argument only fails for head moves, so
we have proven NP-hardness separately for HEAD Di1sTANCE. This only leaves
the complexity of HEADy DISTANCE open.

e Determine the complexity of HEADy DISTANCE.

For, M DISTANCE TIER-k, the problem restricted to a fixed tier, we have
only been able to prove hardness for tail moves and rSPR moves.

e Determine the complexity of M DISTANCE T1ER-k for M € {rNNI, NNI,
taily, heads, SPR, head}.

The complexity of this problem for M € {rNNI,NNI, tail; } may be easy to
solve: these problems seem to be NP-hard by a reduction that adds a blob
with k reticulations to each tree separated by a long chain. This may force the
distance to be entirely determined by the distance between the trees, which is
NP-hard to compute. For SPR, a technique similar to the one used for rSPR
moves can possibly be used. Only for heads moves and head moves, there is no
obvious method for proving hardness. The problem HEAD DISTANCE TI1ER-1
is interesting in particular, because of it is much like finding a weighted rSPR
distance between the embedded trees (Section 7.4).

In these problems, we rather arbitrarily fix one of the parameters (n and k)
for our network spaces. Of course, we could also fix the number of leaves, and
ask whether the problem is hard for a fixed number of leaves as well. As the
blobs in such networks can have almost arbitrary structure, it seems that these
problems should be hard in most cases as well.

e Determine the complexity of M DISTANCE when the input is restricted
to networks with a fixed number of leaves.

Lastly, note that we have only considered networks without internal labels
for all these computational problems, which begs the question of the complex-
ity of all the distance problems for networks with internal labels and degree-2
nodes. For the link-and-cut distance on fully labelled trees, the distance com-
putation problem is polynomial time computable [BBDVP19|, but when no

3
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internal labels are given, the NNI or SPR distance between two trees is NP-
hard to find.

e Determine the complexity of M DISTANCE for inputs with internal labels
and degree-2 nodes.

B.1.4 Improved algorithms

Although most of these problems are hard, we would still like to have efficient
(approximation or parameterized) algorithms for computing the distances. As
we have shown, a naive breadth first search is not efficicient enough to find
larger distances, or even small distances for moderately large networks. Hence,
to find these distances, we need more efficient search algorithms or reduction
rules. Alternatively, it may be possible to improve the upper and lower bounds
(quality as well as running time), so that they can be used in an A* search.
This leads to the following open problems, which are open for all move types
M if a move type is mentioned.

e Determine reduction rules that work for M DISTANCE.

e Is M DisTANCE FPT?

e [s there an approximation algorithm for M DISTANCE?

e Improve upper bounds using the heuristics from this thesis.
e Improve lower bounds (e.g., for use in A* search).

To find approximation or parameterized algorithms for M DISTANCE, new char-
acterizations of this distance may be useful. This could be in the form of agree-
ment graphs, such as for networks defined by [KL18, Klal8a, Kla20a]. These
characterizations are approximate characterizations for SNPR moves (which
also use vertical moves). Therefore, for full use in this setting, they would have
to be generalized to rSPR moves (only horizontal moves), and preferably also
be made exact instead of approximate.

The heuristic upper bounds in this thesis can easily be improved for use in
A* gearch. First, it should be rather straightforward to improve the running
time of the rSPR and tail heuristics. This can be done by keeping a list of
the lowest nodes above the isomorphism, and of the tree and reticulation nodes
above the isomorphism. In fact, a large part of the running time is a result
of looping over all nodes of the network to find these nodes, so keeping track
of these nodes and efficiently updating these sets should greatly improve the
running time. Another way to improve the running time and the quality at
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the same time, is by finding better rules for picking the nodes that determine
the sequence. As mentioned, Husanovic [Hus20] and Versendaal [Ver20] have
shown promising results in this direction.

e Improve the running time and quality of the heuristics.

It seems unlikely that these improvements will be helpful for the head move
heuristic. Indeed, the results for the head move heuristic are quite bad as a
result of the isomorphism being built top-down. A better head move heuristic
may work bottom-up, like the rSPR and the tail move heuristics. It should be
possible to write such a bottom-up heuristic for head moves, as each tail move
in the rSPR. heuristic can be replaced by a constant sequence of head moves.

e Find a bottom-up heuristic for the head move distance.

As mentioned in the discussion of Chapter 7, it may also be worth to reconsider
the test sets for the heuristics. Ideally, the test sets should consist of realistic
networks, but it is unclear what a realistic network would look like.

e How can one generate realistic phylogenetic networks?

B.2 Alternative network definitions

In this thesis, we have chosen a particular definition for a phylogenetic network.
As discussed above, this definition is not the only meaningful definition. Hence,
all questions that we have answered for our type of network can also be answered
for other definitions. This leads to the following variations on the connectedness
questions, some of which are simply mathematical variations, without clear
biological interpretations. Note that we give partial or non-rigorous answers to
some of these questions in Chapter 8 and in Chapter A.

e How does using a root with outdegree-2 affect the connectedness of spaces?
(See Section A.2.3)

e How does allowing parallel arcs affect the connectedness of spaces? (See
Section 8.2.2)

e Are spaces of reduced (non-binary) networks [PS15| connected?

e Are the spaces of multi-rooted networks connected? That is, networks
are allowed to have multiple roots, and we can optionally require that a
network is connected.
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e How does allowing cycles affect the connectedness and diameters of di-
rected network spaces?

e Are spaces of undirected network with one or no leaves connected? That
is, change the definition of undirected networks to leaf labeled {1,2,3}-
graphs without restriction on the number of leaves.

As mentioned in Section 8.2.2, the question about parallel arcs is partly an-
swered by the lemmas about removing parallel paths. For multi-rooted net-
works that are allowed to be disconnected, we conjecture that tail, head, and
rSPR spaces are all still connected. For local moves, these spaces are obvi-
ously disconnected, as nodes cannot be moved between different components of
the network. In these cases, we can modify the question so that multi-rooted
networks need to stay connected as well.

The last question may be relevant in more abstract mathematics, studying
polytopes corresponding to graphs [FAPRAR20]. Or it may just be interesting
per se, as similar problems have been studied [Tsu96, Tsu98]. Note that [Tsu96]
formed the basis of the first proof of connectedness under NNT in [HMW16].

B.2.1 Extra structure

Besides these small changes within the definition of a network, we can also
impose extra structure on the networks. An example of this would be the
addition of time. This could be in the form of an order or time-label for the
nodes ([MNW04]), such as in temporal networks ([Bar04]) or as an additional
structure for tree-child networks (|[BLS20]). Time could also be added in the
form of branch lengths.

e Study spaces of networks with time added as node labels.

e Study spaces of networks with branch lengths.

For both these questions, the moves studied in this thesis have to be extended to
handle the extra structure of the network as well. As we have seen in Chapter A,
there are many options for this for branch lengths.

Regarding the first question, a study of trees with ordered node labels has
recently been put online [CEFT19|. Interestingly, they show that some distance
questions become polynomial under certain conditions. It would be interesting
to see if a similar result holds for networks.
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B.2.2 Classes of networks

As mentioned earlier, these extra structures can also lead to subspaces of net-
works corresponding to a class of networks. Again, as Klawitter gives an ex-
tensive overview of the connectedness of these subspaces of networks [Kla20b],
we do not go into detail about the related open problems here. Although it
is worth mentioning that the isomorphism building techniques have not been
used to find good diameter bounds for these subspaces yet. This seems to par-
ticularly promising for tree-child networks and orchard networks, as these have
structures that are excellent for bottom-up treatment [LS19, JM20b, ESS19].

e Can the bottom-up heuristics be applied to the spaces of tree-child net-
works and orchard networks?

B.3 Rearrangement moves in reconstruction

For the use of rearrangement moves in reconstruction methods, it is important
the spaces of networks are understood well. This means we do not only need
to know that the spaces are connected, but also how connected they are, and
how the methods interact with the spaces. One could, for example, study the
following.

e What is the edge and vertex connectivity of network spaces?

A partial answer can easily be given for trees. Indeed, it is easy to prove that
spaces of trees have high connectivity, for example, by noticing that for each
tree T on n leaves, there is a Ky,_3 in Ni(n,0) for each leaf [ of T. This
Koy, _3 consists of the trees that can be obtained by moving only this leaf. As
for each pair of networks, there is a sequence of moves between them that moves
only one leaf at a time, this implies the space Ni(n,0) is (n — 1)-connected.
This also raises the question whether there are more interesting subgraphs of
Nztait (1, 0) or Meair, (n,0). In the taily space, we do not get a copy of Kay,_3 for
each leaf in a tree, but the line-graph of that tree with the moving leaf removed
(a bunch of connected triangles). A proof of biconnectedness of (unrooted)
tree space under NNI moves already exists in [GFJ13], where it is proven that
the space of trees under NNI moves is Hamiltonian. As AV(n,0) ~U(n + 1,0)
(Lemma 2.64), this also proves Hamiltonicity of rooted NNI tree spaces.

For this question, it is also worth revisiting the definition of a network space.
In our definition, it is a simple graph, where two networks are connected if there
is a move transforming one into the other. In many applications, however, a
neighbour is chosen by trying a random move (somewhat uniformly), and not
by chosing a neighbour uniformly at random. To reflect this, it may make more
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sense to view spaces of networks as multigraphs, where each edge represents a
move.

e What are the minimum and maximum neighbourhood sizes?

e What are the minimum and maximum number of valid moves for a net-
work in a given space? In other words, what are the minimal and maximal
degrees of the nodes in network spaces when viewed as multigraphs?

Neighbourhood sizes have been studied in detail for tree-child networks [Kla18b|.
No extensive study has been done into neighbourhood sizes for general networks,
however. For these networks, we do have some trivial observations about the
maximal neighbourhood sizes, but they do not reflect the variation in possible
neighbourhoods for different networks.

e How are subsequent spaces related? In other words, compare N;spr(n, k)
to MSPR(” +1,k) and MSPR(nv k+1).

For each network in M spr(n,k), we can add an extra leaf to find multiple
networks in Mgpr(n + 1,k), and all these new networks are quite similar.
Hence, there must be some relation between N;spr(n, k) and Nspr(n + 1,k),
but it is not clear to what extent we can find N;gpr(n, k) within MVigpr(n+1, k).
A similar observation holds for MVispr(n, k) and Nispr(n, k+1). To get an idea
of such relations, it might be interesting to fully describe Mspr(n, k) for small
n and k. For trees, there has already been some interest in fully describing
these spaces [WMI18].

B.3.1 Interaction with reconstruction methods

Besides knowing more about the space as a graph on itself, we can try to un-
derstand the interplay between the methods and this graph. In particular, we
should try to understand the behaviour of random walks (i.e., Markov chains)
on network spaces, and the interaction of optimization criteria with rearrange-
ment moves. The former leads, among others, to the following problems.

e Understand random walks on network spaces.
e Determine the Ricci—Oliver curvature of network spaces.

The second of these is tightly related to the first, and has been studied for tree
spaces [WMIL7]. It is unlikely we will understand these random walks through
mathematical studies alone, and practical experiments will be needed as well
to determine the best combinations of moves for different underlying models.
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For optimization problems, we will need to understand the interplay of
moves and objective functions. This means we have to answer questions like the
following for all optimization criteria, such as maximum parsimony, maximum
likelihood, and deep coalescence.

e Is the subspace of optimal networks connected?
e (Can local optima be arbitrarily bad compared to the global optimum?
e How much can the objective function change after one move?

These types of questions have been investigated sparingly, but there has been
some interest in these problems for trees. For example, the interaction was
investigated for likelihood in [MW12], and for parsimony in [UFSJ16]. More-
over, among the methods we have surveyed in Chapter A, only Markin and
Eulenstein [ME19] study a version of the third question.

B.3.2 Comparing networks

Finally, the rearrangement distance can also be used as a way to compare
networks or find an average or consensus network. As the rearrangement dis-
tances are hard to compute, and several other distances are easy to compute
le.g., IMRS19], it is important to know whether the rearrangement distances
actually add information.

e How do the rearrangement distances compare to other distances such as
the Robinson-Foulds distance?

Such a focus on pairwise distances is less useful when we need to compare a
set of networks. In that case, we may need to compute the radius of such
a set {N;}._, of networks (i.e., the minimal distance d so that there exists a
network N with d(N, N;) < d for all 7). Computing this is at least as hard as
M DISTANCE, by a reduction where the set consists simply of two networks.
This central network can possibly be used as a consensus network.

e Study the radius of a set of networks in network space.

e How many networks can there be that realise the radius of a set of net-
works?

e Are these networks useful as consensus networks?

Interestingly, it seems our tail move and rSPR heuristics can be used to find
upper bounds on the radius of a set of networks as well. For example, in rSPR
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and tail move heuristics of this thesis, we can simply pick a lowest node in one
of the networks and apply the subroutines to modify all other networks until
so that a node can be added to the isomorphisms between all networks.

e Modify the heuristics so they compute the radius of a set of networks.

This does not work for head moves, as the networks only become non-labeled
isomorphic after the top-down part of the algorithm. This is another reason to
find a new bottom-up heuristic for head moves.
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Symbol Index

Basics

iff
w.l.o.g.

P(X)

dom(f)
im(f)

()

—~

if and only if

without loss of generality

An equivalence relation

logarithm base e

logarithm base 2

logarithm base 6

the floor of a real number x

the real numbers

the integers

the integers greater or equal to n

the natural numbers {0,1,2,...}

the set of n numbers {1,2,...,n}

the cardinality of a set X

A is a (not necessarily proper) subset of B
A is a proper subset of B

the powerset {Y : Y C X} of a set X

the set of n-element subsets of X

the domain of the function f

the image of the function f

the pre-image {z € dom(f) : f(z) = y} of y under f
the pre-image x of y for the bijective function f

an undirected graph with nodes V' and edges E
a directed graph with nodes V' and arcs A

the set of nodes of a (di)graph G

the set of edges of a graph G

the set of arcs of a digraph D

the distance between v and v

the diameter of G
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G[X]

G/~

G\ X

deg™ (v)

deg™ (v)

G~G

GLa

(G, 1)

(G, 1) ~x (G, 1)

(G.1) L5 (G, 1)

(G,1) = (Gl
G|

('7$)

(fL‘, )

the subgraph of G induced by X C V(G)

the quotient of G for the equivalence relation ~
the subgraph G[V(G) \ X]| of G

the indegree of a node v of a digraph D

the outdegree of a node v of a digraph D

G is isomorphic to G’

¢ is an isomorphism between G and G’

the labeled graph with labels I(w) for w € W C V(G)

G is labeled isomorphic to G’ for the label set X C [(V(G)N
V(&)

¢ is a labeled isomorphism between G and G’ for the label
set X CU(V(G)NV(G))

S(G) ~x S(G)

the number of nodes of G, i.e., |[V(G)|

the (unique) incoming arc of a tree node or degree-2 node z
the (unique) outgoing arc of a reticulation or degree-2 node
x

Phylogenetic networks

T = (V,A,l)
T = (V,E,I)
N =(V,Al)
U= (V,E,I)
N
v
N
U

a directed phylogenetic tree on X, with labels { : W — X
an undirected phylogenetic tree on X, with labelsl: W — X
a directed phylogenetic network on X, with labels [ : W —
X

an undirected phylogenetic network on X, with labels [ :
W —X

a directed internally labeled phylogenetic network

an undirected internally labeled phylogenetic network

a directed subdivided internally labeled phylogenetic net-
work

an undirected internally labeled subdivided phylogenetic
network

a child of the node v

a parent of the node v

the label of a node v of a network

the reticulation number of a network

the number of nodes in an undirected network in U(n, k)
the set of leaves of an (un)directed network N

the set of reticulations of a directed network N
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SYMBOL INDEX

X(N)
Xl

Xt

XT‘
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the labels [(V(N)) of a network N, often simply X

the leaf labels of an internally labeled network N or U
labeled with X

the tree node labels of an internally labeled network N
labeled with X

the reticulation labels of an internally labeled network N
labeled with X

the degree-3 (internal) node labels of an internally labeled
network U labeled with X

the degree-2 node labels of an internally labeled network
N labeled with X

the pendant tree of T with outdegree-2 node v

the tree obtained from T by attaching a new leaf to the
root arc

the set of LCAs of two nodes u and v

the supressed version of a subdivided network

the handcuffed tree with base tree T" and handcuffs be-
tween the incoming arcs of x and y

the underlying undirected network of a directed network
N

the set of embedded trees of N

the labeled digraph obtained by restricting N to Y C
V(N)

a network with two leaves and one reticulation

the upside-down version of a tree T’

the caterpillar on the ordered set of leaves X

the balanced tree on the ordered set of leaves X

a triangle with nodes x,y, z and long side (z, 2)

a triangle with nodes z,y, z and long side (z, z) where y
is a tree node

a triangle with nodes z,y, z and long side (z, z) where y
is a reticulation

a subdivided triangle with degree-3 nodes x,y, z and long
path (z, z)



Network spaces

(uv)

v —= (plv C,)

(@, u,yy 29 (24}

w 1 (o)

N(n, k)
Nar(n, k)
N(n, k)

Nas(n, k)

N(n,k,m)

Nut(n, k,m)
dp (N, N)
U(n, k)
Uns(n, k)
Un, k)

Unr(n, k)

the tail move which moves the u-end of (u, v) from
(p,c) to (p', )

the tail move which moves the u-end of (u,v) to
(')

the head move which moves the v-end of (u,v)
from (p,c) to (p, )

the head move which moves the v-end of (u,v) to
¥, c)

the SPR move which moves the-u end of {u,v}
from {z,y} to {2/, y'}

the SPR move which moves the u-end of {u, v} to
{=',y'}

the set of directed networks with n leaves and k
reticulations

the space of networks on A/ (n, k) using move type
M

the set of internally labeled directed networks with
n leaves and k reticulations

the space of internally labeled networks on
N (n, k) using move type M

the set of subdivided internally labeled directed
networks with n leaves, k reticulations, and m de-
gree two nodes

the space of subdivided internally labeled net-
works on /\/(n, k,m) using move type M

the graph distance between N and N’ in Ny (n, k)
or Nar(n, k)

the set of undirected networks with n leaves and
k reticulations

the space of networks on U(n, k) using move type
M

the set of internally labeled undirected networks
with n leaves and k reticulations

the space of internally labeled undirected net-
works on N(n, k) using move type M

277



SYMBOL INDEX

U(n,k,m)

Z/'lM(n, k,m)
dM(Uv U/)
M C M

diamys(n, k)
diamps(n, k,m)
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the set of subdivided internally labeled undirected
networks with n leaves, k reticulations, and m de-
gree two nodes

the space of subdivided internally labeled undi-
rected networks on N(n, k,m) using move type M
the graph distance between U and U’ in Ups(n, k)
or Upr(n, k)

each move of type M is a move of type M’

the diameter of Ny (n, k) or Ups(n, k)

the diameter of NM(n, k,m) or Unr(n, k,m)



Index

{1,2,3}-graph, 20
{1, 3}-graph, 20

above, 23

directly, 23

strictly, 23
AF

see agreement forest 170
agreement forest, 170
alignment, 8
allowed, 42

see valid 39
ancestor, 23

arc, 22
head, 22
parallel, 22
tail, 22
at the top
neatly, 29
attach, 29
below, 23

directly, 23

strictly, 23
biconnected

see connectivity 21
biconnected component, 21, 23
binary, 25, 33
Binary Network Isomorphism, 165
blob, 27, 34
blob tree, 207
Bottom-Up

rSPR, 179

rSPR Random, 180

Tail, 185
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Tail Random, 185

caterpillar, 28
undirected, 35
chain, 26
cherry, 26
child, 23
class
equivalence, 22
phylogenetic network, 13
cluster, 4
component
biconnected, 21, 23
connected, 21
k-, 21
dis-, 21
strongly, 23
connectedness, 21
connectivity, 21
consensus network, 250
cubic graph, 20
cut-edge, 50
redundant, 50
cycle, 21
directed, 22

DAG

see graph

directed acyclic 23

degree, 20
degree-2 node, 25, 33
descendant, 23
diameter, 21

heads, 95, 107

taily, 65, 80
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head, 103, 107, 110
network space, 45
NNI, 158-160
rNNI, 139, 142, 144
rSPR, 135, 142, 144
SPR, 155, 159, 160
tail, 63, 69, 80

digraph

see graph
directed 22

connected, 23

labeled, 24

disconnected, 21
display, 32, 36
distance

graph, 21
rearrangement, 45

distribution

posterior, 9
prior, 9

down-closed, 24

Echidna, 35
edge, 20

parallel, 20

embedding, 32, 36

s-, 169

ERM, 204

forest, 21

gene tree, 8
graph
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{1,2,3}, 20

{1,3}, 20

cubic, 20

directed, 22
directed acyclic, 23
labeled, 24

multi-, 21
quotient, 22
underlying, 22

undirected, 20

handcuffed tree
see tree 29
head, 22
head move, 37
down, 41
head-movable, 40
HGT, 4
horizontal gene transfer
see HGT 4
hybridization, 4

immovable, 40

head-, 40

tail-, 39
incident, 20
internal node, 32
isomorphic

leaf-, 26, 33
isomorphism, 20, 22

labeled, 24

s-, 169

ladder, 30
caterpillar, 30
tree, 30
last common ancestor, 24
lateral gene transfer
see HGT 215
LCA
see last common ancestor 24
leaf, 24, 32
leaf arc, 25
leaf edge, 33
leaf path, 27, 34
level, 27, 35
LGT
see HGT 215
likelihood, 9
local search, 9
lowest common ancestor



Index

see last common ancestor 24
lowest node, 23

M Distance, 45

Tier-k, 45

Trees, 45
M Distance Tier-k, 164
maximum likelihood, 9

MCMC, 9
mixing time, 223
ML

see maximum likelihood 9
model based method, 9
movable, 40, 42

head, 40

tail, 39
move type

see rearrangement move 45
MSNC, 233
multi-graph, 21

neighbour, 20

network
see phylogenetic network 24
binary, 25
class, 13, 221
consensus, 250
directed, 24
Echidna, 35
internally labeled, 25, 33
isomorphic, 26, 33
leaf-isomorphic, 26, 33
LGT, 215
phylogenetic, 4
semi-directed, 235
shoat, 140
space, 43
subdivided, 24
subdivided undirected, 32
underlying undirected, 49
undirected, 32

upside down, 168
Newick string, 28
NNI move, 41
node

see vertex 20, 22

binary, 25
non-vertical process, 4
Ntk generator, 190

orientable, 49

parallel path
see path 27, 34
parent, 23
parsimony, 8
path
directed, 22
leaf, 34
length, 21, 22
parallel, 34
shortest, 21
undirected, 21
up-down, 22, 91
PDA, 203
pendant subnetwork, 26
pendant subtree, 26
phylogenetic network, 4
see network 24
phylogenetic tree, 4
see tree 28
posterior distribution, 9
prior distribution, 9
proposal, 9
prune, 36, 37, 41

quotient, 22

radius, 250

rearrangement move, 11
distance, 38, 42, 45
head, 37
horizontal, 13, 38
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INDEX

NNI, 41 suppressable, 25, 33
numerical, 228 suppressed isomorphic, 169
reversible, 38 suppression, 33
rNNI, 38 swap, 42
rSPR, 38
SNPR, 12, 38 tail, 22
SPR, 41 tail move, 37
tail, 37 up, 41
Three-Cycle, 237 tail-movable, 39
vertical, 13, 38 taxon, 24
reattach, 36, 37, 41 taxonomic tree, 4
recombination, 4 taxonomy, 4
reticulation, 24 terminal blob
at the top, 29, 88 redundant, 50
number, 26, 33 tier, 43
reticulation arc, 25 topology, 228
rNNI, 38 tree, 21
root, 24 see directed 28
root path, 27 balanced, 28
rSPR, 38 caterpillar, 28
distance, 38 gene, 8
handcuffed, 29, 136
s-embedding, 169 phylogenetic, 4
s-isomorphic, 169 taxonomic, 4
shoat, 140 undirected phylogenetic, 35
space upside down, 168
phylogenetic networks, 43 tree node, 24
spanning tree, 21 tree-based, 32, 36
SPR triangle, 34
distance, 42 bottom, 27
SPR move, 41 bottom arc, 27
stricly directed, 27
above, 23 direction, 85
strictly long arc, 27
below, 23 move to the top, 89
subdivide, 21, 23 side, 27
subgraph, 20, 22 top, 27
subnetwork, 32, 36
subtree UD-tree, 168
induced, 32, 36 bottom part, 168
suppress, 21, 23 udAF, 170
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undirected, 32
up-closed, 24
up-down
see path 22
upside down network, 168

valid, 39, 42
vertex, 20, 22
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