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Summary

Automated Vehicles (AVs) have a great potential to change transport fundamentally
by making it safer, by reducing travel time, and by increasing mobility and acces-
sibility for all. The level of automation of these vehicles determines the extent to
which the driver’s task is accomplished by the AV. With the increasing number of
AVs entering the market, the level of automation of these vehicles is increasing.
The increasing level of automation will cause a paradigm shift: traditionally, human
drivers are responsible for the behavior of the vehicle, even if the vehicle is mo-
mentarily controlled by an Automated Driving System (ADS), but with increasing
levels of automation, the human driver will no longer be solely responsible. So, the
accountability and liability shift from the driver to the vehicle manufacturer, the op-
erator of the vehicle (fleet), and/or the (vehicle) authorities. Due to this paradigm
shift, for higher levels of automation, it can no longer be assumed that the human
driver intervenes whenever the ADS does not respond appropriately. To guarantee
that these ADSs respond appropriately in nearly all situations, new methods for
assessing ADSs are required.

Scenario-based assessment is an approach for assessing AVs that is broadly sup-
ported by the automotive field. With a scenario-based assessment, the AV under
test is subjected to many different test scenarios. These test scenarios resem-
ble situations that may be encountered in real-world traffic, to see whether the
AV responds appropriately to these scenarios. One of the main challenges with
scenario-based assessment of an AV with a high level of automation is to come up
with a set of test scenarios that provides enough confidence that the AV responds
appropriately in nearly all situations. One popular approach is to use real-world
data that contain scenarios from real-world traffic as a source to automatically gen-
erate test scenarios. This dissertation describes new methods for improving this
data-driven scenario-based assessment of AVs.

The first contribution of this dissertation is a comprehensive and operable def-
inition of the term scenario in the context of scenario-based assessment of AVs.
We define a scenario as a quantitative description of the relevant characteristics
and activities and/or goals of the ego vehicle(s), the static environment, the dy-
namic environment, and all events that are relevant to the ego vehicle(s) within the
time interval between the first and the last relevant event. A scenario category is
defined as the qualitative counterpart of a scenario and can be regarded as an ab-
straction of a scenario. To enable a computer to store, communicate, interact with,
and interpret scenarios, an Object-Oriented Framework (OOF) is proposed in which
scenarios, scenario categories, and their building blocks are defined as classes of
objects having attributes, methods, and relationships. The advantage of the OOF
is that it promotes clarity, modularity, and reusability of the objects that constitute
a scenario.

xi
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The second contribution is a novel metric for quantifying the degree of com-
pleteness of the collected data that are used for the data-driven scenario-based
assessment of AVs. The data are used to estimate unknown probability density
functions (pdfs) of the important parameters that are used to describe scenarios.
The proposed completeness metric is based on the expected approximation error,
which is the discrepancy between the real pdf and the estimated pdf: a lower
approximation error indicates a higher degree of completeness.

The third contribution is a novel method for capturing scenarios of a specific
scenario category from a data set. For example, the provided method can capture
all cut-in scenarios from a data set. One of the benefits of the method is that
characteristics of a scenario that are shared among different scenario categories
need to be identified only once. As a result, the provided method is easily applied
to a wide range of scenario categories, such that a wide variety of scenarios can be
obtained from the data.

The fourth contribution is the proposal of two complementary methods for gen-
erating test scenarios for AVs. The first method automatically determines the pa-
rameters that best describe the scenarios of a specific scenario category. The un-
derlying, unknown pdf of the parameters is estimated and scenarios are generated
by sampling parameter values from the estimated pdf. The second method enables
the conditional sampling of parameter values, which can be used to, e.g., generate
scenarios with predefined starting conditions. The benefits of the presented meth-
ods are that the generated scenarios are representative of real-world scenarios,
they cover the actual variety found in real-world traffic, and they extend the variety
found in the collected data. To measure the extent to which the generated scenar-
ios indeed represent real-world scenarios while covering the actual variety found in
real-world traffic, the novel Scenario Representativeness metric is proposed.

The fifth contribution is the proposal of two novel methods for quantifying the
risk of an AV. Both methods calculate the risk by combining the outcome of vir-
tual simulations of scenarios generated using the aforementioned methods and
the estimated likelihood of these scenarios. The first method quantifies the risk
prospectively, i.e., before the actual deployment of the AV on public roads. The
quantified risk supports the risk assessment activities of ISO 26262 and ISO 21448,
the leading standards in automotive safety. These standards decompose the risk
into three aspects: exposure, severity, and controllability. Whereas safety experts’
opinions are traditionally used to provide qualitative, subjective ratings for each of
these three aspects, our proposed method computes these aspects in a data-driven,
quantitative manner. The second method is the novel data-driven Probabilistic RISk
Measure derivAtion (PRISMA) method, which is used to derive Surrogate Safety
Measures (SSMs) that estimate the probability of a specific event (e.g., a crash) in
real time. As opposed to existing SSMs, which are only applicable in specific types
of scenarios, the PRISMA method can be used to derive multiple SSMs for different
types of scenarios.

The work presented in this dissertation thus makes a substantial contribution to
the full integration of a scenario-based assessment for the type approval of AVs.
This, in turn, brings us closer to the large-scale deployment of AVs on public roads.



Samenvatting

Geautomatiseerde voertuigen (Automated Vehicle, AV) hebben een groot potentieel
om het vervoer fundamenteel te veranderen door het veiliger te maken, de reistijd te
verkorten en de mobiliteit en toegankelijkheid voor iedereen te vergroten. De mate
van automatisering van deze voertuigen bepaalt in hoeverre de bestuurder de taak
van het AV uitvoert. Met het toenemende aantal AV’s dat op de markt komt, neemt
het niveau van automatisering van deze voertuigen toe. De toenemende mate van
automatisering zal een paradigmaverschuiving veroorzaken: van oudsher zijn men-
selijke bestuurders verantwoordelijk voor het gedrag van het voertuig, zelfs als het
voertuig tijdelijk wordt bestuurd door een geautomatiseerd rijsysteem (Automa-
ted Driving System, ADS), maar met toenemende mate van automatisering zal de
menselijke bestuurder niet langer verantwoordelijk zijn. De verantwoordelijkheid
en aansprakelijkheid verschuiven dus van de bestuurder naar de voertuigfabrikant
of de exploitant van het voertuig of de voertuigvloot. Vanwege deze paradigmaver-
schuiving kan voor hogere automatiseringsniveaus niet langer worden aangenomen
dat de menselijke bestuurder ingrijpt wanneer het ADS niet adequaat reageert. Om
te garanderen dat een ADS in bijna alle situaties adequaat reageert, zijn nieuwe
methoden nodig om deze systemen te beoordelen.

De beoordeling van AV’s op basis van scenario’s is een door de automobielindu-
strie breed gedragen aanpak voor het beoordelen van AV’s. Bij een op scenario’s
gebaseerde beoordeling wordt de te testen AV onderworpen aan veel verschillende
testscenario’s. Deze testscenario’s lijken op situaties die zich in het echte verkeer
kunnen voordoen, om te zien of het AV adequaat op deze scenario’s reageert. Een
van de grootste uitdagingen bij deze op scenario’s gebaseerde beoordeling van
AV’s met een hoge mate van automatisering is het bedenken van een set test-
scenario’s die voldoende zekerheid biedt dat het AV in bijna alle situaties adequaat
reageert. Een populaire benadering is het gebruik van echte data die scenario’s van
het echte verkeer bevatten als bron om automatisch testscenario’s te genereren. Dit
proefschrift beschrijft nieuwe methoden voor het verbeteren van de datagedreven,
scenariogebaseerde beoordeling van AV’s.

De eerste bijdrage van dit proefschrift is een uitgebreide en bruikbare defini-
tie van het begrip scenario in de context van scenariogebaseerde beoordeling van
AV’s. We definiëren een scenario als een kwantitatieve beschrijving van de rele-
vante eigenschappen en activiteiten en/of doelen van het (de) ego-voertuig(en),
de statische omgeving, de dynamische omgeving en alle gebeurtenissen die re-
levant zijn voor het (de) ego-voertuig(en) binnen het tijdsinterval van de eerste
en de laatste relevante gebeurtenis. Een scenariocategorie is gedefinieerd als de
kwalitatieve tegenhanger van een scenario en kan worden beschouwd als een ab-
stractie van een scenario. Om een computer in staat te stellen scenario’s op te
slaan, te communiceren en te interacteren met scenario’s is een object georiën-
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teerd raamwerk (Object-Oriented Framework, OOF) voorgesteld waarin scenario’s,
scenariocategorieën en hun bouwstenen gedefinieerd zijn als klassen van objecten
met attributen, methoden en relaties. Het voordeel van het OOF is dat het duide-
lijkheid, modulariteit en herbruikbaarheid van de objecten die een scenario vormen
bevordert.

De tweede bijdrage is een nieuwe maat voor het kwantificeren van de mate
van volledigheid van de data die gebruikt worden voor de datagedreven, scenario-
gebaseerde beoordeling van AV’s. De data worden gebruikt voor het schatten van
onbekende kansdichtheidsfuncties (probability density function, pdf) van de belang-
rijke parameters die worden gebruikt om scenario’s te beschrijven. De voorgestelde
volledigheidsmaat is gebaseerd op de verwachte schattingsfout, welke het verschil
is tussen de echte pdf en de geschatte pdf: een lagere schattingsfout duidt op een
hogere mate van volledigheid.

De derde bijdrage is een nieuwe methode om scenario’s van een specifieke sce-
nariocategorie uit een dataset te halen. De voorgestelde methode kan bijvoorbeeld
invoegscenario’s uit een dataset halen. Een van de voordelen van de methode is dat
kenmerken van een scenario die worden gedeeld met andere scenariocategorieën
slechts eenmaal hoeven te worden geïdentificeerd. Hierdoor is de voorgestelde
methode eenvoudig toepasbaar op een breed scala aan scenariocategorieën zodat
een grote variëteit aan scenario’s uit de data kan worden verkregen.

De vierde bijdrage is het voorstel van twee complementaire methoden voor het
genereren van testscenario’s voor AV’s. De eerste methode bepaalt automatisch
de parameters die de scenario’s van een specifieke scenariocategorie het beste be-
schrijven. De werkelijke onderliggende, onbekende pdf van de parameters wordt
geschat en scenario’s worden gegenereerd door parameterwaarden te bemonsteren
uit de geschatte pdf. De tweede methode maakt de voorwaardelijke bemonstering
van de parameters mogelijk. Dit kan bijvoorbeeld worden gebruikt om scenario’s
met vooraf gedefinieerde startvoorwaarden te genereren. De voordelen van de ge-
presenteerde methoden zijn dat de gegenereerde scenario’s representatief zijn voor
echte scenario’s, dat ze de werkelijke variatie in het echte verkeer dekken en dat
ze de variatie van de verzamelende data uitbreiden. Om te meten in hoeverre de
gegenereerde scenario’s inderdaad echte scenario’s vertegenwoordigen en tegelij-
kertijd de werkelijke variatie in het echte verkeer dekken, wordt de nieuwe scenario
representativiteit (Scenario Representativeness, SR) maat voorgesteld.

De vijfde bijdrage is het voorstel van twee nieuwe methoden voor het kwan-
tificeren van het risico van een AV. Beide methoden berekenen het risico door de
uitkomst van virtuele simulaties van scenario’s die zijn gegenereerd met de bo-
vengenoemde methoden te combineren met de geschatte waarschijnlijkheid van
deze scenario’s. De eerste methode kwantificeert het risico prospectief, dus vóór
de daadwerkelijke inzet van het AV op de openbare weg. Het gekwantificeerde
risico ondersteunt de risicobeoordelingsactiviteiten van ISO 26262 en ISO 21448,
de toonaangevende normen op het gebied van autoveiligheid. Deze normen split-
sen het risico op in drie aspecten: blootstelling, ernst en beheersbaarheid. Waar
traditioneel de meningen van veiligheidsexperts worden gebruikt voor kwalitatieve,
subjectieve beoordelingen voor elk van deze drie aspecten, berekent onze voor-
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gestelde methode deze aspecten op een datagedreven, kwantitatieve manier. De
tweede methode is een nieuwe manier voor datagedreven probabilistische aflei-
ding van risicostatistieken (Probabilistic RISk Metric derivAtion, PRISMA), die wordt
gebruikt voor het afleiden van surrogate veiligheidsstatistieken (Surrogate Safety
Metric, SSM) die in realtime de waarschijnlijkheid van een specifieke gebeurtenis
(bijvoorbeeld een crash) schatten. In tegenstelling tot bestaande SSM’s, welke
alleen toepasbaar zijn in specifieke soorten scenario’s, kan de PRISMA-methode
worden gebruikt voor het afleiden van meerdere SSM’s voor verschillende soorten
scenario’s.

Het werk gepresenteerd in dit proefschrift levert dus een substantiële bijdrage
aan de volledige integratie van een scenariogebaseerde beoordeling voor de type-
goedkeuring van AV’s.
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2 1. Introduction

The aim of the study described in this dissertation is to develop methods for the
safety assessment of Automated Vehicles (AVs) using real-world driving scenarios.
This introductory chapter starts with explaining the need for scenario-based test-
ing to address the challenge of the assessment of vehicles with a high automation
level. Next, it explains why real-world data should be used as a basis for the sce-
narios and it describes the overall approach of a scenario-based assessment. Then
the introduction outlines the research goals that are addressed in this work. This
chapter concludes with explaining the structure and organization of the remaining
chapters.

1.1. Automated vehicles

E ssentially, vehicles are machines that transport people and goods from A to
B. Traditionally, a human is in charge of controlling road vehicles by means

of steering, accelerating, and braking. In recent years, more and more vehicles
have been entering the market that are equipped with multiple systems that aid
the human in the driving task or even to take over the driving task for a part of a
trip. These systems have a great potential to change transport fundamentally by
making it safer, by reducing travel time, energy consumption, and pollution, and by
increasing mobility, accessibility, and availability for all [227].

Examples of systems that aid the human in the driving task range from systems
that only act in an emergency, systems that warn a driver for a potential collision,
and comfort systems. For example, an autonomous emergency braking system
[252] typically uses a camera, a radar, or a combination of these sensors to detect
an upcoming collision and activates the brakes upon imminent collision to avoid
or mitigate the consequences in case a collision is unavoidable. Warning systems
include forward collision warning [175], blind-spot detection [186], and lane depar-
ture warning [152]. Well-known examples of comfort systems are Adaptive Cruise
Control (ACC) [191], which keeps the vehicle at a safe distance behind a preced-
ing vehicle while not exceeding a set speed, and lane keeping assist system [193],
which steers the vehicle in order to avoid potential lane departures.

To classify the level of automation of an Automated Driving System (ADS), the
SAE J3016 standard [243] defines six levels of automation, ranging from no au-
tomation to full automation. Figure 1.1 shows a summary of these levels. The six
levels are defined as follows:

• With level 0 (no driving automation), the ADS may issue warnings and may
temporarily intervene, but the driver is in charge of the sustained motion
control.

• A level 1 system (driver assistance) takes over part of the motion control, e.g.,
the longitudinal motion control using an ACC.

• With a level 2 system (partial driving automation), the ADS takes over the
motion control. It is important to note that with a level 2 system, just like a
level 1 system, the human driver is still in charge of supervising the system
and responsible for intervening immediately if the system fails to respond
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Level Name Motion control Fallback ODD

0 No driving
automation Driver Driver Not applicable

1 Driver
assistance

Driver and
system Driver Limited

2 Partial driving
automation

System Driver Limited

3
Conditional
driving

automation
System Fallback-

ready user Limited

4 High driving
automation

System System Limited

5 Full driving
automation

System System Unlimited

Figure 1.1: Summary of levels of driving automation according to SAE J3016 [243]. Note that ODD refers
to operating conditions under which a given Automated Driving System (ADS) is designed to function.
Adapted from [243].

properly. So, the driver is the fallback in case the system fails to respond
properly.

• Level 3 (conditional driving automation) differs from level 2 in that the system
is able to cope with situations that require an immediate response. Still, the
driver must be prepared to intervene within some limited time in case the
system asks the driver to do so.

• A level 4 system (high driving automation) is responsible for both the mo-
tion control and the fallback. Therefore, no driver attention is required. The
driving automation, however, is still only available for a particular Operational
Design Domain (ODD), where the ODD refers to the operating conditions un-
der which the ADS is designed to function. For example, the ADS is only
available in some designated area during daytime.

• Level 5 (full driving automation) is not bound to a specific ODD and, thus,
offers a self-driving functionality in all operating conditions.

For a vehicle with no driving automation system, the driver is accountable in case
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of any damage caused by the vehicle. An AV refers to a vehicle equipped with an
ADS of level 1 or higher. Since the driver is still responsible for intervening if a level
1 or level 2 ADS fails, the driver is also accountable for AVs with driver assistance
(level 1) or partial driving automation (level 2). From level 3 and onward, the driver
cannot fully control the vehicle in each single situation and is neither required nor
expected to do so. Hence, the accountability shifts away from the driver [189].
As a result, according to a German ethics committee for automated and connected
driving [189], the companies who built the vehicle or who are operating its relevant
systems are liable for damage caused by activated ADSs of level 3 and higher. In
addition, the authority that approves the AVs for usage on the public roads has the
responsibility to thoroughly assess the AVs to verify whether the assessed AVs can
be deployed safely on the public roads.

The development of AVs with conditional, high, or full driving automation re-
quires extensive testing. For lower levels of automation (level 0, 1, and 2), it is
assumed that the driver responds appropriately to situations that the AV cannot
handle. For ADSs of level 3, 4, and 5, the driver, if any, may not be fully responsi-
ble in case of an accident while the ADS is activated. Therefore, it must be assured
that such ADSs can cope with all kinds of scenarios, even with scenarios that are
rare, without relying on a successful intervention of a human driver. It is even
expected that ADSs of level 3 and above must be at least 5 times safer than a
human driver in order to be publicly accepted [188]. To prove that ADSs of level
3 and above are safe enough, the more traditional methods [144, 164], used for
evaluation of driver assistance systems, are no longer sufficient [165, 167, 291].
This is mainly because the traditional methods assume that a human can take over
control in case the ADS fails to respond appropriately and because the traditional
methods assume that it is possible to predict nearly all (potentially dangerous) sit-
uations during the design process [168]. Also, safety validation through test drives
with prototypes is infeasible as this requires billions of kilometers of driving [155].
Therefore, as a widely used alternative in the automotive field, a scenario-based
assessment approach is adopted in this PhD dissertation.

1.2. Scenario-based assessment

W ith a scenario-based assessment of an AV, the AV is tested in a large number
of individual, distinct traffic scenarios. In this context, informally, a scenario

represents a description of the AV and its surroundings over a limited period of time
(a more rigorous definition follows in Chapter 2). One challenge with scenario-based
assessment is to come up with the scenarios that are used during the assessment.
In this thesis, as will be motivated next, we focus on a data-driven approach for
generating the scenarios for the assessment. In a data-driven approach, scenarios
are collected from real-world driving data and these collected scenarios are used to
generate test scenarios.

Instead of adopting a data-driven approach for the generation of test scenar-
ios, alternative approaches are adopted as well. One such an alternative approach
is a knowledge-driven approach. In this approach, typically, expert knowledge
is structured using one [23, 185] or multiple [51] ontologies. An ontology is a
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way to formalize properties of and relations between different concepts. The de-
veloped ontologies are automatically converted into a set of test scenarios. An-
other method is to adapt the test scenarios based on the ADS-under-test, such that
the scenarios are challenging for or even show failures of the system-under-test
[58, 149, 169, 205, 272]. A third alternative for scenario generation is functionality-
based testing where test scenarios are based on a specific functionality of the ADS
[137, 138]. Although each of these three alternatives has its own advantages and
drawbacks, which are not further discussed here, they all share one drawback: no
quantitative evaluation can be made of the performance of the ADS-under-test once
deployed on the road because it is unknown how realistic and likely the generated
test scenarios are. With a data-driven approach, the likelihood of the scenarios
can be estimated from the data. Therefore, a data-driven approach is a valuable,
complementary, and necessary extension to the aforementioned approaches for
generating test scenarios.

The objective of the data-driven scenario-based assessment is to quantify the
risk of an AV once the AV would be deployed on the public roads. Figure 1.2
presents a schematic overview of scenario-based assessment using real-world data
that is followed in the study described in this dissertation. The process consists of
9 steps:

1. Data are acquired, e.g., using a vehicle equipped with sensors [221].

2. Activities of the road participants are detected, where activities refer to ele-
ments of a scenario. An activity can be, e.g., a particular lane change of a
vehicle or a braking action of a vehicle.

3. Based on the detected activities in the previous step and other information,
e.g., the road layout, scenarios are mined, i.e., identified and extracted, from
the data.

4. Parameters are defined for characterizing the mined scenarios. Values of the
parameters are computed for each of the mined scenarios.

5. Based on the parameterized scenarios, scenario statistics are obtained. These
scenario statistics contain, among others, the likelihood of encountering sce-
narios with specific parameter values.

6. Test scenarios are generated using the scenario statistics from the previous
step.

7. Tests are conducted in which the response of the AV in the test scenarios is
measured. Often virtual simulations are used for conducting part of the tests.

8. Aggregating all test results, typically with some selected key performance
indicators, leads to the actual evaluation of the AV performance.

9. After approval of an AV, the AV may be deployed on the public road. The
scenario-based assessment does not end as the AV is still monitored during
its deployment. The so-called in-service monitoring may be required by road
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Real-world
data collection

Activity detection

Scenario mining

Scenario pa-
rameterization

Scenario statistics

Generation of
test scenarios

Testing

Evaluation

In-service
monitoring

Scenario-based
assessment with
real-world data

Figure 1.2: Schematic overview of the process of scenario-based assessment using real-world data that
is followed in this dissertation.

and/or vehicle authorities in order to assess the safety continuously during
the deployment.

The acquired data during in-service monitoring can be used to improve the gener-
ation of tests as it is possible that some scenarios have been overlooked during the
initial assessment process. Furthermore, the situations on the road will gradually
change with changes in traffic, e.g., because of the introduction of new mobility
systems. Therefore, new data need to be collected and the process as indicated in
Figure 1.2 needs to be repeated with the new data. The acquired data during the
in-service monitoring may be used for this purpose. The arrow in Figure 1.2 indi-
cates the continuous repetition of the scenario-based assessment approach for the
continuous improvement of the scenario-based assessment, accommodating both
tests that have been overlooked and changes to the traffic.

1.3. Research questions

T his dissertation intends to contribute to the development of the data-driven,
scenario-based assessment as outlined in Figure 1.2. To do so, the thesis en-

deavors to answer the research questions that are presented in this section.
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The objective of scenarios for scenario-based assessment of AVs is to represent
the actual phenomena in the real-world traffic. Given the complexity of the reality
that is being modeled, it is a challenge to define a structure for capturing these
scenarios. Nevertheless, a proper specification of the scenarios is crucial in order
to arrive at an unambiguous description of scenarios that is required for providing
repeatable and reproducible tests [16]. Furthermore, properly specified scenarios
enable us to translate the result of a test into an assessment of the AV performance
with regards to a particular ODD [125, 302]. On the one hand, existing definitions
of the notion of a scenario are unclear because of ambiguities and the use of other
undefined terms. On the other hand, existing file formats for specifying scenarios
unambiguously lack the definitions and justifications of each of the terms. The
following research question aims to address this:

Research question 1.1. What is a scenario and how to specify a scenario in the
context of the scenario-based assessment of AVs?

As a source of information for generating test scenarios, real-world data are
used. Because data collection is time-consuming and requires high investments and
resources, questions like “Do we have enough data?,” “How much more information
can we gain when obtaining more data?,” and “How far are we from obtaining
completeness?” are highly relevant. In fact, deducing safety claims based on a
scenario-based assessment that uses collected data as a basis for the test scenarios
requires knowledge about the degree of completeness of the data used. Therefore,
this thesis also aims to answer the following research question:

Research question 1.2. How to quantify whether we have collected enough field
data?

In the data-driven scenario-based assessment approach, the scenarios that are
captured from the real-world data form the basis of the test scenarios. Therefore,
different techniques for capturing scenarios from real-world data are proposed in
the literature [45, 157, 171, 221, 248, 313]. These techniques all focus on spe-
cific types of scenarios, e.g., a cut-in scenario. This research aims to provide a
method for extracting the scenarios from the data that can easily be extended to
multiple types of scenarios. Hence, this thesis also considers the following research
question:

Research question 1.3. How to extract a specific type of scenario from a given
data set with real-world traffic data and how to easily extend this approach to other
types of scenarios?

The observed scenarios that are extracted from the data can directly be used
as test scenarios [176]. In this case, however, the total variety of scenarios that is
found in real life will not be covered unless unrealistic amounts of data are gathered.
As an alternative to directly using the observed scenarios as test scenarios, test
scenarios can be generated based on the statistical information that underlies the
observed scenarios [94]. In the existing literature, scenario generation methods
are typically
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• oversimplifying scenarios, e.g., assuming a vehicle’s speed is constant [70,
277], and/or

• simplifying the distributions of the scenario parameters, e.g., assuming Gaus-
sian distributions [113] or independent distributions [102].

To address this, this thesis also aims to answer the following research question:

Research question 1.4. Based on a set of observed scenarios, how to generate
test scenarios for the assessment of AVs without oversimplifying the scenarios?

ISO 26262 [144] and ISO 21448 [143], the leading standards in automotive
safety, provide an approach to estimate the risk where risk is defined as the combi-
nation of the probability of occurrence of harm and the severity of that harm. The
former standard focuses on risks due to potential malfunctioning of components
and the latter standard focuses on risks due to possible functional insufficiencies.
The main shortcomings of the approach provided in ISO 26262 are that it depends
on subjective judgments of safety experts and that only a qualitative risk estimation
is performed. ISO 21448 addresses these shortcomings partially by providing sta-
tistical methods to guide the safety validation, but no complete method is provided
to quantify the risk. To address the lack of a complete method for quantifying the
risk of an AV, this thesis also considers the following research question:

Research question 1.5. How to quantify the risk of an AV in real-world scenarios?

1.4. Organization of the dissertation

T his thesis is presented as a collection of papers, either published, accepted for
publication, or under review. Except for this chapter and the last chapter, each

chapter is based on a single publication and, therefore, the chapters are standalone
and can be read separately. The structure of the thesis is shown in Figure 1.3.
Although each chapter can be read independently, the arrows in Figure 1.3 indicate
a convenient reading order. The contents of each chapter can be summarized as
follows:

Chapter 2: Object-oriented framework for scenarios
This chapter addresses Research question 1.1 by presenting a comprehensive and
operable definition of the notion of scenario for the context of scenario-based as-
sessment of AVs while considering existing definitions in the literature. This is
achieved by proposing an Object-Oriented Framework (OOF) in which scenarios
and their building blocks are defined as classes of objects having attributes, meth-
ods, and relationships with other objects. The object-oriented approach promotes
clarity, modularity, reusability, and encapsulation of the objects. This chapter also
provides definitions and justifications of each of the terms. Furthermore, the frame-
work is used to translate the terms in a coding language that is publicly available.



1.4. Organization of the dissertation

1

9

Chapter 1:
Introduction

Chapter 2:
Object-oriented
framework for
scenarios [79]

Chapter 4:
Scenario
mining [73]

Chapter 3:
Completeness
metric [72]

Chapter 6:
Constrained
sampling [75]

Chapter 5:
Scenario pa-
rameter gen-
eration [78]

Chapter 7:
Scenario risk
quantifica-
tion [76]

Chapter 8:
Surrogate safety
measures [77]

Chapter 9:
Conclusions
and outlook

Figure 1.3: Organization of the chapters of this dissertation.

Chapter 3: Quantifying whether we have collected enough field data
To answer Research question 1.2, Chapter 3 proposes a method for quantifying the
completeness of the so-called activities in a data set. For every activity, we create a
parameterization that encodes the information in the data of this activity. For each
type of activity, we estimate a probability density function (pdf) of the associated
parameters. Our proposed method approximates the degree of completeness of
a data set using the estimated uncertainty of the estimated pdf. The smaller this
uncertainty, the higher the degree of completeness and vice versa.

Chapter 4: Real-world scenario mining
Chapter 4 tackles Research question 1.3 by introducing a new method to capture
scenarios from real-world data using a two-step approach. The first step consists
in automatically labeling the data with tags. These tags typically describe activities,
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e.g., a vehicle that changes lane. Second, we mine the scenarios, represented
by a combination of tags, based on the labeled tags. One of the benefits of our
approach is that the tags can be used to identify characteristics of a scenario that
are shared among different type of scenarios. In this way, these characteristics
need to be identified only once. Furthermore, the method is not specific for one
type of scenario and, therefore, it can be applied to a large variety of scenarios.

Chapter 5: Generation and evaluation of test scenarios
Chapter 5 addresses Research question 1.4. The contribution of this chapter is
twofold. First, we propose a method to automatically determine the parameters
that describe the scenarios. Because the proposed method determines the param-
eters automatically, the chosen parameterization relies less on strong assumptions
that are typically made when the parameters that characterize the scenarios are
manually selected. By estimating the pdf of these parameters, realistic parameters
values can be generated. Second, we present the Scenario Representativeness (SR)
metric based on the Wasserstein distance, which quantifies to what extent the sce-
narios with the generated parameter values are representative of real-world sce-
narios while covering the actual variety found in real-world scenarios. A comparison
of our proposed method with methods relying on assumptions of the scenario pa-
rameterization and pdf estimation shows that the proposed method outperforms
the latter. The presented method is promising because the parameterization and
pdf estimation can directly be applied to already available importance sampling
strategies for accelerating the evaluation of AVs.

Chapter 6: Constrained sampling to generate scenario parameters
Chapter 6 continues addressing Research question 1.4. One way to generate the
required scenario-based test descriptions is to parameterize the scenarios and to
draw these parameters from a pdf that is fitted to the data. In some cases, it might
be useful to sample the parameters of a scenario such that the samples satisfy a
linear equality constraint, e.g., in case we want to generate scenarios in which a
vehicle has a predetermined starting speed. In this chapter, we propose a method
to sample from a pdf estimated using Kernel Density Estimation (KDE), such that
the samples satisfy a linear equality constraint.

Chapter 7: Risk quantification in driving scenarios
To address Research question 1.5, the first objective of Chapter 7 is to propose a
method to estimate the risk of an ADS in a more quantitative and objective man-
ner. A data-driven approach is used to rely less on subjective judgments of safety
experts. The output of the method is the expected number of injuries in a poten-
tial crash. Thus, the method is quantitative, the result is easily interpretable, and
the result can be compared with road crash statistics. The second objective is to
provide a method that supports the risk assessment as stipulated by the ISO 26262
and ISO 21448 standards by decomposing the quantified risk into the three aspects
of risk considered in these standards: exposure, severity, and controllability.
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Chapter 8: Probabilistic risk measure derivation method
Research question 1.5 is also addressed in Chapter 8. Surrogate Safety Mea-
sures (SSMs) are used to express road safety in terms of the safety risk in traf-
fic conflicts. Typically, SSMs rely on assumptions regarding the future evolution
of traffic participant trajectories to generate a measure of risk. As a result, they
are only applicable in scenarios where those assumptions hold. To address this
issue, Chapter 8 presents a novel data-driven Probabilistic RISk Measure derivA-
tion (PRISMA) method. The PRISMA method is used to derive SSMs that can be
used to calculate in real time the probability of a specific event (e.g., a crash). Be-
cause we adopt a data-driven approach to predict the possible future evolutions of
traffic participant trajectories, compared to traditional SSMs, less assumptions on
these trajectories are needed. Since the PRISMA method is not bound to specific
assumptions, multiple SSMs for different types of scenarios can be derived.

Chapter 9: Conclusions and outlook
Finally, this chapter concludes this dissertation with conclusions regarding the con-
tributions of this work and an outlook with directions for future work.
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The development of new assessment methods for the performance of auto-
mated vehicles is essential to enable the deployment of automated driving
technologies, due to the complex operational domain of automated vehicles.
One contributing method is scenario-based assessment in which test cases
are derived from real-world road traffic scenarios obtained from driving data.
Given the complexity of the reality that is being modeled in these scenarios,
it is a challenge to define a structure for capturing these scenarios. An in-
tensional definition that provides a set of characteristics that are deemed to
be both necessary and sufficient to qualify as a scenario assures that the
scenarios constructed are both complete and intercomparable.
In this chapter, we develop a comprehensive and operable definition of the
notion of scenario while considering existing definitions in the literature. This
is achieved by proposing an object-oriented framework in which scenarios
and their building blocks are defined as classes of objects having attributes,
methods, and relationships with other objects. The object-oriented approach
promotes clarity, modularity, reusability, and encapsulation of the objects.
We provide definitions and justifications of each of the terms. Furthermore,
the framework is used to translate the terms in a coding language that is
publicly available.
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A n essential aspect in the development of Automated Vehicles (AVs) is the as-
sessment of quality and performance aspects of the AVs, such as safety, com-

fort, and efficiency [27, 114, 132, 229, 233, 235, 270, 291]. For legal and public
acceptance of AVs, a clear definition of system performance is important, as well
as quantitative measures for system quality. According to Wachenfeld and Win-
ner [291], traditional methods for evaluating driver assistance systems, such as
[144, 164], cannot sufficiently assess quality and performance aspects of an AV
because they would require too many resources. A scenario-based approach could
be a viable way to perform the AV assessment [94, 229, 233]. For a scenario-based
assessment, proper specification of scenarios is crucial because

• scenarios provide the basis and justification for the tests used for the scenario-
based assessment [16, 112, 229, 270, 284, 327],

• it helps to arrive at an unambiguous description of scenarios that is crucial for
providing standardized, repeatable, and reproducible tests [16],

• standardized descriptions of scenarios can be more easily compared and clas-
sified automatically [74],

• properly specified scenarios are the basis for evaluating the coverage of the
assessment [229], and

• properly specified scenarios enable us to translate the result of a test into an
assessment of the AV performance with regards to a particular Operational
Design Domain (ODD) [125, 302].

Although the notion of scenario is frequently used in the context of automated
driving [89, 114, 140, 212, 229, 231, 235, 259, 314, 327], only rarely is an explicit
definition actually given. Furthermore, even those definitions are unclear because
of ambiguities and the use of other undefined terms. From the implementation
perspective, describing scenarios unambiguously becomes more important given
the many simulators that are recently being introduced [50, 158, 211, 238, 306].
To this end, there are several file formats and methods for defining scenarios for the
assessment of AVs, such as OpenSCENARIO [20] and CommonRoad [12]. Because
the focus of these implementations is on scenarios that can be simulated, these
implementations describe scenarios at a quantitative level and, consequently, they
do not provide concepts for a qualitative description of a scenario. Furthermore,
these implementations and other object-oriented approaches used in the field of the
assessment of AVs [282, 286, 307, 328] mostly lack the definitions and justifications
of each of the terms.

In this work, as a starting point for developing a full ontology of scenarios, we
propose a novel Object-Oriented Framework (OOF) that addresses the aforemen-
tioned shortcomings. To avoid ambiguities in the definitions, we provide intensional
definitions for concepts corresponding to scenarios and all of their essential build-
ing blocks (such as activities, actors, and events). These intentional definitions give
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the meaning of the concepts by specifying necessary and sufficient conditions for
when the concepts should be used. We base the definitions of each of the compo-
nents on definitions that are commonly used in the field of the safety assessment
of AVs [20, 104, 112, 245, 268, 284]. While being broadly consistent with existing
definitions [93, 112, 284], this framework aims to be sufficiently explicit to enable
the formalization of a scenario description. More specifically, because we give the
characteristics of the concepts corresponding to scenarios and specify how those
concepts interrelate, we can define the scenario components as objects of classes
having attributes, methods, and relationships with objects that are members of
other classes. In addition to the definition of a scenario, we introduce the concept
of a scenario category that is used to qualitatively describe scenarios, i.e., an ab-
straction of a scenario. Scenario categories enable the categorization of scenarios
in terms of the categories of their typical components. The presented OOF pro-
vides explicit guidelines for the construction of scenario descriptions that are able
to effectively assess the AV performance.

The proposed approach brings several benefits. First, we provide concepts for
a qualitative description of a scenario, which is useful because it enables to clas-
sify scenarios and to interpret scenarios. Second, the OOF allows for reusing and
maintaining (the building blocks of) a scenario as well as performing operations on
and interacting with (the building blocks of) a scenario. Third, our framework is
supported with the definitions and justifications of each of the concepts. Fourth,
the framework enables the translation of the concepts and their relationships into
object-oriented code. This, in turn, is used to describe scenarios in a coding lan-
guage that can be understood by various software agents, such as simulation tools,
and that can be ported to already available formats like OpenSCENARIO [20].

To illustrate how to use the presented OOF, we have implemented the frame-
work in a coding language that is publicly available at https://github.com/
ErwindeGelder/ScenarioDomainModel1. This link contains real-life applica-
tions of the presented OOF, such as describing scenarios extracted from data [73].
The framework is also used as a schema for a database system for storing scenarios
and scenario categories. Such a database can be used to perform scenario-based
assessment of AVs2 [76]. To further illustrate the use of the OOF, this chapter
provides an example with a real-world case in which a vehicle approaches a pedes-
trian crossing. The proposed OOF provides a first step towards an ontology [263]
for scenarios for the assessment of AVs. In a subsequent study, the formalized
concepts presented in this chapter will be used to design an ontology with logical
constraints that enable a computer to perform reasoning on scenarios.

The outline of the chapter is as follows. In Section 2.2, we explain why an OOF
is useful and what the context is. We define the notions of scenario, event, activity,
and scenario category in Section 2.3. The OOF that formalizes these definitions
is presented in Section 2.4. In Section 2.5, an application example is provided

1As a coding language, Python is used. The code implementation also contains more methods than
presented in this chapter.
2An illustration of such an assessment is publicly available at:
https://github.com/ErwindeGelder/ScenarioRiskQuantification.

https://github.com/ErwindeGelder/ScenarioDomainModel
https://github.com/ErwindeGelder/ScenarioDomainModel
https://github.com/ErwindeGelder/ScenarioRiskQuantification


2.2. Background

2

17

to illustrate the use of the framework with a real-world scenario. The chapter is
concluded in Section 2.6.

2.2. Background

I n Section 2.2.1, we explain why we want to present an OOF for describing sce-narios and scenario categories. Section 2.2.2 provides information on the context
for which we want to define scenarios.

2.2.1. Why an object-oriented framework?
According to Johnson and Foote [150], an OOF is a “set of classes that embodies an
abstract design for solutions to a family of related problems.” The object orientation
is used for “a representation, modeling, and abstraction formalism” [303], which
is why it is considered “not only useful but also fundamental” [303]. In addition,
Patridge [223] notes that object-oriented modeling can provide a bridge from tra-
ditional entity-relation-based data modeling to data modeling that is fully grounded
in a formalized ontology. An OOF offers the following benefits:

• Clarity: It provides “a common vocabulary for designers to communicate,
document, and explore design alternatives” [109].

• Modularity: By decomposing a scenario into components, the complexity of
a scenario itself is reduced. Thus, “modularity makes it easier to understand
the effect of changes” [150].

• Reusability: An OOF promotes reusability [150, 197, 265]. For example, if two
classes share certain procedures and/or properties, these procedures and/or
properties could be provided by a so-called superclass from which these two
classes inherit the procedures and properties, such that these procedures and
properties need to be defined only once.

• Encapsulation: Encapsulation assures “that compatible changes can be made
safely, which facilitates program evolution and maintenance” [265].

• Possibility to translate to object-oriented programming languages: As the OOF
consists of a set of classes, it can be directly used in an object-oriented coding
language. The OOF then specifies the relationships between the different
classes and provides information on the properties of a class and the possible
values.

2.2.2. Context of a scenario
Because the notion of scenario is used in many different contexts outside of the
domain of road traffic, a wide diversity in definitions of this notion exists. For an
overview, see [31, 288]. Therefore, it is reasonable to assume that “there is no
[generally] ‘correct’ scenario definition” [288]. As a result, to define the notion of
scenario, it is important to consider the context in which it will be used.
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In this dissertation, the context of a scenario is the assessment of AVs, where
AVs refer to vehicles equipped with a driving automation system3. It is assumed
that the assessment methodology uses scenario-based test cases. The ultimate
goal is to build a database with all relevant scenarios that an AV has to cope with
when driving in the real world [229]. Hence, a scenario should be a description of
a potential use case of an AV.

Note that a scenario typically describes what happens. How it happens is typi-
cally not included in the scenario descriptions. For example, if a scenario contains a
description of a complex trajectory of a vehicle, then the sudden reaction from the
driver controlling the vehicle, the vehicle dynamics, and tire mechanics that lead to
the complex trajectory do not need to be included in the content of a scenario.

2.3. Definitions

O ne of the main reasons to introduce an OOF is to enable sharing of knowledge
between researchers, developers, and users. Therefore, it is important that

the terms we use are clearly defined. When presenting the OOF in Section 2.4,
we will formalize the terms such that they can be used by software agents. In
this section, we define the terms scenario, event, activity, and scenario category,
thereby providing insight into the terms used in the next section. We aim to provide
intensional definitions that are in accordance with the common use of these terms
in the literature and to provide clarity on what are the necessary and sufficient
conditions for when the term should be used.

We first define the concept of a scenario in Section 2.3.1. Next, we define
two important components of a scenario: events and activities, in Sections 2.3.2
and 2.3.3, respectively. Lastly, we present the definition of a scenario category
in Section 2.3.4. Each of the Sections 2.3.1 to 2.3.4 starts with background in-
formation. Next, we draw conclusions that lead to our proposed definition of the
corresponding term. After proposing a definition, each section finishes with re-
marks and implications of the proposed definition. For the definitions provided in
Sections 2.3.1 to 2.3.4, use is made of the terms listed in Table 2.1. The definitions
in Table 2.1 are mostly based on literature; see Section 2.A for more details.

2.3.1. Scenario
Go and Carroll [115] describe a scenario within the field of system design. They
define a scenario as “a description that contains (1) actors, (2) background infor-
mation on the actors and assumptions about their environment, (3) actors’ goals
or objectives, and (4) sequences of actions and events. Some applications may
omit one of the elements or they may simply or implicitly express it. Although, in
general, the elements of scenarios are the same in any field, the use of scenarios
is quite different.”

3According to [243], a driving automation system is “the hardware and software that are collectively
capable of performing part or all of the dynamic driving task on a sustained basis. This term is used
generically to describe any system capable of level 1-5 driving automation.” Here, level 1 driving
automation refers to “driver assistance” and level 5 refers to “full driving automation”. For more details,
see [243].
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Table 2.1: Terms and definitions that are used in Section 2.3. For more details, see Section 2.A.

Term Definition

Ego vehicle Vehicle from which the world is perceived and/or vehicle
that must perform a certain task during a test

Physical element Object that exists in the three-dimensional space
Actor Physical element that experiences change

Note: An actor is a physical element, but a physical
element is not necessarily an actor.

Static environment Part of the environment that does not change
Dynamic environment Part of the environment that does change and that com-

prises all actors
Act Combination of an actor and an activity
State variables Description of the present configuration of a system that

can be used to determine the future response, given
the excitation inputs and the equations describing the
dynamics

State vector Vector containing all 𝑛 state variables
Model Equations that describe the dynamics
Mode Period in which a system does not exhibit a sudden

change in an input, a model parameter, or the model

Geyer et al. [112] describe a scenario within the context of automated driving.
They use the metaphor of a movie or a storybook for describing a scenario and state
that “a scenario includes at least one situation within a scene including the scenery
and dynamic elements. However, [a] scenario further includes the ongoing activity
of one or both actors.” Geyer et al. [112] define a scene “by a scenery, dynamic
elements, and optional driving instructions.” In [112], the meaning of activity is not
detailed.

Ulbrich et al. [284] define a scenario as “the temporal development between
several scenes in a sequence of scenes. Every scenario starts with an initial scene.
Actions & events as well as goals & values may be specified to characterize this
temporal development in a scenario. Other than a scene, a scenario spans a certain
amount of time.” The authors of [284] state that actions and events link the different
scenes. A further description of actions and events is not given in [284].

Another definition of a scenario in the context of automated driving is given
by Elrofai et al. [93]. They define a scenario as “the combination of actions and
maneuvers of the host vehicle in the passive [i.e., static] environment, and the on-
going activities and maneuvers of the immediate surrounding active [i.e., dynamic]
environment for a certain period of time.”

Saigol et al. [245] define a scenario as “a description of a short interaction
between an AV and other road users and/or road infrastructure”.

In a concept paper on OpenSCENARIO 2.0 [19], a scenario is defined as “a
‘description of the temporal development’ of road users (actor entities) defined by
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their actions, where temporal activation (defining when) ‘is regulated by’ conditional
‘triggers’. A scenario comprises both scenery and dynamic elements.”

As a basis for constructing a comprehensive definition for the concept of sce-
nario, we list the major characteristics contained in the above definitions as follows:

1. A scenario corresponds to a time interval. The aforementioned definitions
[93, 112, 115, 284] state that a scenario corresponds to a time interval. Van
Notten et al. [288] call such a scenario a chain scenario (“like movies”), as
opposed to a snapshot scenario, i.e., a scenario that describes the state at a
given time instant (“like photos”).

2. A scenario consists of two or more events [112, 115, 154, 284, 288]. It can
be helpful to develop scenarios using events [31]. Thus, a scenario could be
defined as a particular sequence of events or, as Kahn [154, p. 143] writes,
“a scenario results from an attempt to describe in more or less detail some
hypothetical sequence of events”. Furthermore, Geyer et al. [112] and Ulbrich
et al. [284] use the notion of event for describing a scenario, although they
do not provide a definition of the term event. Because a scenario contains at
least a start event and an end event, the minimum number of events is two.
In Section 2.3.2, we will elaborate on the notion of event.

3. Real-world traffic scenarios are quantitative scenarios. Regarding the nature
of the data, a scenario can be either qualitative or quantitative [288]. For a
real-world traffic scenario to be suitable for simulation purposes, it must be
described quantitatively. A scenario, however, can also be described qualita-
tively, such that it is readable and understandable for human experts. Pro-
viding a qualitative description of a quantitative scenario has become known
as a story-and-simulation approach [6]. Note that a qualitative description
of a scenario does not uniquely define a quantitative scenario. A qualitative
description can be regarded as an abstraction of the quantitative scenario,
see also Section 2.3.4.

4. The time interval of a scenario contains all relevant events. According to Geyer
et al. [112], “the end of a scenario is defined by the first irrelevant situation
with respect to the scenario”. In a similar manner, we require that the time
interval of a scenario should contain all relevant events. Note that ‘relevant’ is
subjective and, therefore, an event is considered to be relevant with respect
to the perspective of one or more of the participating actors, often called the
“ego vehicle”.

5. A scenario includes the description of the environment. A scenario should
include the description of the static and dynamic environment. Although the
description of the static environment is not a general prerequisite of a sce-
nario, this is often included when speaking about traffic scenarios [12, 89, 93,
112, 284]. The static environment consists of all relevant4 physical elements

4The term ‘relevant’ is subjective and depends on the use of the scenario. The composer of a scenario
typically judges whether something might be relevant for the scenario.
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that do not undergo relevant changes with respect to the ego vehicle(s) within
the time interval between the start and the end of the scenario. The dynamic
environment consists of all relevant actors that undergo changes that are rel-
evant to the ego vehicle(s). For example, the road may be part of the static
environment, but if the change in the road temperature is relevant to the ego
vehicle(s), the road is part of the dynamic environment.

6. A scenario includes at least one ego vehicle [93, 112]. Because of the two
previously mentioned characteristics, a scenario is required to include at least
one ego vehicle. Note that an ego vehicle is often regarded as the device
under test. In this chapter, however, this is not necessary because the ego
vehicle is just the vehicle whose perspective is used to define what is relevant
in the scenario.

7. A scenario describes the goals or activities of the actors. Either the activities,
the goals, or a combination of activities and goals are required to determine
how each actor in a scenario responds to specific events. Note that this also
holds for an ego vehicle since an ego vehicle is an actor. When describing a
scenario using real-world data, goals do not need to be given; e.g., Elrofai
et al. [93] mention the activities of the actors rather than the goals. When
describing a scenario that an AV has to cope with, however, the ego vehicle’s
goals (i.e., its driving mission [112]) could be specified rather than its activities
[284]. Note that if the activities of an actor are described rather than its goals,
an observer might not be able to determine whether the actor has successfully
responded to the scenario.

Hence, we define a scenario as follows:

Definition 2.1 (Scenario). A scenario is a quantitative description of the relevant
characteristics and activities and/or goals of the ego vehicle(s), the static envi-
ronment, the dynamic environment, and all events that are relevant to the ego
vehicle(s) within the time interval between the first and the last relevant event.

When applying Definition 2.1 in an OOF, it is possible to give the “description”
of a component of a scenario simply by providing a reference to that component.
A reference could be, e.g., the full name of a file, a pointer pointing to a specific
part of the computer memory, or an identifier that addresses a specific entry in a
database. The advantage of references is that these parts of the scenario can be
exchanged across different scenarios, as these scenarios can use the same refer-
ences. As an example, an OpenSCENARIO file allows to provide a reference to an
OpenDRIVE file that describes a road network [88]. As we will see in Section 2.4, in
our proposed framework, a scenario may contain references to physical elements,
activities, actors, and events.

2.3.2. Event
As mentioned in Definition 2.1, a scenario consists of events. The term event is
used in many different fields, e.g.:



2

22 2. Object-oriented framework for scenarios

• In computing [38], an event is an action or occurrence recognized by software.
A common source of events are inputs by the software users. An event may
trigger a state transition.

• In probability theory, an event is an outcome or a set of outcomes of an
experiment [226]. For example, a thrown coin landing on its tail is an event.

• In the field of hybrid systems theory, “the continuous and discrete dynamics
interact at ‘event’ or ‘trigger’ times when the continuous state [vector] hits
certain prescribed sets in the continuous state space” [37]. Moreover, “a
hybrid system can be in one of several modes, [...], and the system switches
from one mode to another due to the occurrence of events” [80].

• In the ISO 15926-2 standard, an ontology for long-term data integration,
access, and exchange is specified in which an event is defined as “a pos-
sible_individual5 with zero extent in time, which means that it occurs at an
instant in time” [25].

• In event-based control, a control action is computed when an event is trig-
gered, as opposed to the more traditional approach where a control action is
periodically computed [131]. In event-based control, the event is triggered
at the moment at which the system (is about to) reach a certain threshold.

Before providing the definition of an event, the following is concluded about an
event, based on the aforementioned literature:

1. An event corresponds to a time instant. For the definition of event, we con-
sider a hybrid-systems setting with a linear-time model [13]. Therefore, an
event happens at some time instant.

2. An event marks a mode transition or the moment a system reaches a thresh-
old. A mode transition may be induced by either an abrupt change of an input
signal, a change of a parameter, a change in the model, or an external cause.
It is also possible that the event marks the moment that a system reaches a
threshold.

Hence, we define an event as follows:

Definition 2.2 (Event). An event corresponds to a moment at which a mode tran-
sition occurs or a system reaches a specified threshold, where the former can be
induced by both internal and external causes.

Definition 2.2 indicates that the moment of an event can be defined in two dif-
ferent ways: (1) by a mode transition or (2) by the system reaching a threshold.
The first type could be a mode transition caused by a sudden driver input. An event
might also be induced by an external cause, such as an environmental change. The
second type of event, i.e., related to the system reaching a threshold, is especially
5“An entity that exists in space and time” [25].
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useful when describing test scenarios. For example, consider the ego vehicle ap-
proaching a pedestrian that is about to cross the road [256]. Here, the event marks
the moment that the distance between the vehicle and pedestrian is less than 𝑑v,p
meters. At the moment of this event, the pedestrian starts to cross the road such
that the vehicle would impact with the pedestrian if it would not change its speed
or direction [256]. By using a variable threshold 𝑑v,p, the value is flexible and can
be set differently to define multiple scenarios.

For the practical implementation of events, a set of conditions may be specified.
In that case, the event occurs at the moment that the conditions are met. In [20],
an extensive list of possible conditions that can be used to define an event is given.
For example, a condition could be that the distance between the vehicle and the
pedestrian is below a certain threshold.

Remark 2.1. Geyer et al. [112] and Ulbrich et al. [284] use the term scene to
define a scenario. Like an event, we consider a scene to correspond to a temporal
snapshot of the entire scenario. A scene can be obtained by taking a temporal
cross-section of the entire scenario as described in Definition 2.1. ♢

2.3.3. Activity
To describe the dynamic environment of a scenario, activities are used. A scenario
may also describe the activities of an ego vehicle.

Both the terms activity [54, 94, 104, 112, 268] and action [23, 112, 284] are
used in the context of automated driving. Although, strictly speaking, the terms
action and activity have a slightly different meaning, they are often used for the
same purpose:

• According to Ulbrich et al. [284], actions may be specified for characterizing
the temporal development in a scenario.

• Elrofai et al. [94] consider an activity as a building block of the dynamic part of
the scenario: “An activity is a time evolution of state variables such as speed
and heading to describe for instance a lane change, or a braking-to-standstill.”

• In a glossary for scenario catalog development [104], an activity is defined
as “the state [vector] of an object over an interval of time. An activity starts
with an event and ends with another event.”

• In the ISO 15926-2 standard, an activity is defined as “a possible_individual
that brings about change by causing the event that marks the beginning, or
the event that marks the ending of a possible_individual” [25].

Before providing the definition of an activity, the following is concluded about
an activity based on the aforementioned literature:

1. An activity corresponds to an inter-event time interval. As opposed to an
event, an activity spans a certain time interval. Furthermore, the start and
the end of an activity are marked by an event.
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2. An activity quantitatively describes the time evolution of one or more state
variables. Because activities are building blocks of a scenario and a scenario
corresponds to a quantitative description, the activities themselves need to
be quantitative as well. Therefore, an activity describes the time evolution of
one or more state variables, i.e., the trajectory of one or more state variables
over an inter-event time interval that corresponds to the activity, where the
term state variable is defined in Table 2.1.

3. An activity is performed by an actor. An activity describes the time evolution
of one or more state variables and a state variable corresponds to an actor,
e.g., the acceleration of a vehicle.

Hence, we define an activity as follows:

Definition 2.3 (Activity). An activity is a quantitative description of the time evo-
lution of one or more state variables of an actor between two events.

As an example, an activity could describe the longitudinal acceleration (or, e.g.,
speed) during an acceleration or deceleration of an actor. Activities describing the
lateral position of a vehicle with respect to the center of the corresponding lane
might, e.g., be labeled with “driving straight” or “changing lane”.

2.3.4. Scenario category
According to Definition 2.1, a scenario in the context of the performance assessment
of an AV needs to be quantitative. However, in the literature, the term scenario is
also used to refer to a collection of scenarios, where this collection of scenarios is
described qualitatively. For example, in [209], a typology of pre-crash scenarios is
proposed. Here, each of the pre-crash scenarios is an abstraction of many quantita-
tive scenarios. Similar studies have been performed to describe scenarios that lead
to highway accidents [98], car-cyclist accidents [216], and car-pedestrian accidents
[180]. In [280], a taxonomy of scenarios is proposed to qualitatively describe chal-
lenging scenarios for automated driving. In [212], a distinction is made between
so-called functional scenarios, abstract scenarios, logical scenarios, and concrete
scenarios. These four types of scenario descriptions represent different levels of
abstraction with functional scenarios referring to non-formal human-readable sce-
narios, abstract scenarios referring to formalized declarative descriptions, logical
scenarios referring to parameterized scenarios with ranges and distributions of the
parameters, and concrete scenarios referring to parameterized scenarios with fixed
parameters values.

The aforementioned references [98, 180, 209, 212, 216, 280] show that the
term scenario is also used to address qualitative descriptions. Since we define a
scenario as a quantitative description, we need to introduce a different term to
address the qualitative description. We propose to use the term scenario category
to refer to the qualitative description of a scenario. A qualitative description can
be regarded as an abstraction of a quantitative scenario, whereas a quantitative
description can be regarded as a concretization of a qualitative description.

We thus define a scenario category as follows:
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Definition 2.4 (Scenario category). A scenario category is a qualitative description
of the relevant characteristics and activities and/or goals of the ego vehicle(s), the
static environment, and the dynamic environment.

Introducing the concept of scenario categories brings the following benefits:

• For a human, it is often easier to interpret a qualitative description than a
quantitative description.

• Scenarios that have something in common can be grouped together, which
enables characterization of types of scenarios and facilitates discussion of
scenarios.

• The completeness of a set of scenarios can be assessed by considering the
completeness of scenario categories (see, e.g., [129]) and the completeness
of scenarios in each category (see, e.g., Chapter 3 [72]).

We describe the formal relation between a scenario and a scenario category
with the verb “to comprise”, denoted by ∋. If a specific scenario category 𝒞 is an
abstraction of a specific scenario 𝑆, then we say that 𝒞 comprises 𝑆, or simply 𝒞 ∋ 𝑆.
A given scenario category can comprise multiple scenarios and multiple scenario
categories can comprise a specific scenario. As a consequence, as opposed to the
proposed categorization of scenarios in [177, 180, 209, 216], scenario categories
do not need to be mutually exclusive.

The verb “to include” is used to describe the relation between two scenario
categories. A scenario category 𝒞2 is said to include a scenario category 𝒞1 if 𝒞2
comprises all scenarios that are comprised in 𝒞1. In that case, we can write 𝒞2 ⊇ 𝒞1.
Thus we have

𝒞2 ⊇ 𝒞1 if 𝒞2 ∋ 𝑆 ∀ {𝑆 ∶ 𝒞1 ∋ 𝑆}. (2.1)

We propose to provide scenarios and scenario categories with additional infor-
mation in the form of tags. A tag is a keyword or a keyphrase that provides extra
information on a piece of data [264]. For example, items in a database can contain
some tags that enable users to quickly retrieve several items that share a certain
characteristic described by a tag [60]. The use of these tags brings several benefits:

• The tags of a scenario can be helpful in determining which scenario categories
do and do not comprise the scenario.

• It is easy to select scenarios from a scenario database or a scenario library by
using tags or a combination of tags.

There is a balance between having generic scenario categories — and thus a
wide variety among the scenarios comprised by the scenario category — and having
specific scenario categories without much variety among the scenarios comprised
by the scenario category. For some systems, one may be interested in a very
specific set of scenarios, while for another system one might be interested in a
set of scenarios with a high variety. To accommodate this, tags can be structured
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Vehicle lateral activity

Going straight Changing lane

Left

Right

Turning

Left

Right

Swerving

Left

Right

(a) Lateral activities of a vehicle.

Vehicle longitudinal activity

Reversing Standing still Driving forward

Decelerating

Cruising

Accelerating

(b) Longitudinal activities of a vehicle.

Figure 2.1: Tags for lateral and longitudinal activities of a vehicle [74]. The lateral activity is relative to
the lane in which the corresponding vehicle is driving.

in hierarchical trees [201]. The different layers of the trees can be regarded as
different abstraction levels [35].

Figure 2.1 shows two examples of trees of tags taken from [74]. These tags
describe possible activities of a vehicle, i.e., the lateral motion control (via steering)
and longitudinal motion control (via acceleration and deceleration). The tags may
refer to the objective of an actor in case no activities are defined. For example,
a test case in which the ego vehicle’s objective is to make a left turn, the tags
“Turning” and “Left” are applicable. Note that tags may be used not only to classify
vehicle behavior, but also traffic and environment situations, e.g., “cut-in” or “heavy
rain”. For more examples of tags, see [68].

2.4. Object-oriented framework for scenarios

W e have already explained the use of an OOF in Section 2.2.1. In this sec-
tion, we present our OOF for scenarios for the assessment of AVs. The

overview of the framework is formally represented through class diagrams that
are briefly presented in Section 2.4.1. Next, Section 2.4.2 explains how a sce-
nario category is formally represented in our framework. Similarly, in Section 2.4.3,
we describe how a scenario is formally represented. The OOF can be imple-
mented straightforwardly in object-oriented languages such as C++ and Python,
since these languages support the definition of classes, the instantiation of ob-
jects from those classes, and concepts such as inheritance and aggregation. An
actual implementation of the OOF in a coding language is publicly available at
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https://github.com/ErwindeGelder/ScenarioDomainModel. This link
also contains tutorials for the technical application of the OOF.

2.4.1. Class diagrams
In Figures 2.2 and 2.3, the blue blocks represent the classes6 that are used to de-
scribe a scenario category according to Definition 2.4 and the red blocks represent
the classes that are used to describe a scenario according to Definition 2.1. The
green blocks represent so-called abstract classes. Abstract classes cannot be in-
stantiated. Each class serves as a template for creating objects whereas an object
of a particular class is referred to as the instance of that particular class.

Figure 2.2 shows the class-level relationships and Figure 2.3 shows the instance-
level relationships. In Figure 2.2, the arrow from, e.g., Scenario to Time interval,
denotes that Scenario is a subclass of Time interval. Therefore, all properties of the
Time interval are inherited by Scenario. The arrow with the diamond in Figure 2.3
denotes an aggregation. This means that, e.g., an actor, which is an instance of
the Actor class, has an actor category as an attribute. Here, the “1” at the start
of the arrow from Actor category to Actor indicates that an actor has exactly one
actor category. Similarly, “2” at the aggregation arrow from Event to Time interval
indicates that a time interval contains two events, i.e., the events that define the
start and the end of the time interval. A “0, 1, …” at the start of an aggregation arrow
indicates that an object has zero, one, or multiple objects of the corresponding class.
The arrow with the text “comprises” and “includes” represent methods that are
explained in Section 2.3.4. Here, “comprises” can be denoted by ∋ and “includes”
can be denoted by ⊇, see (2.1).

2.4.2. Scenario category and its attributes
Because all other classes in Figure 2.2 are subclasses of Scenario element, these
classes inherit the attributes and procedures of Scenario element. In our frame-
work, a scenario element has a human-interpretable name, a unique ID, and pos-
sibly predefined tags that are also interpretable by a software agent. So, all other
classes in Figure 2.2 also have these attributes. In addition to these attributes, the
Qualitative element class has a human-interpretable description.

The static environment is qualitatively described by one or more physical ele-
ment categories. Because physical element categories qualitatively describe the
static environment, they contain a human-interpretable description of the physical
things they describe.

The ego vehicle(s) and the dynamic environment are qualitatively described by
activity categories and actor categories. In line with Definition 2.3, Activity category
includes the state variable(s). The Model that is used to describe the time evolution
of the state variable(s) is specified. Note that Model is an abstract class that serves
as a template for different models.

A Model may be a differential equation of the form 𝑧̇(𝑡) = 𝑓𝜃(𝑧(𝑡), 𝑢(𝑡), 𝑡) [214],
6In the remainder of this chapter, when referring to (an instance of) a class, italic font is used. Addi-
tionally, class names start with capital letters and instance names with lowercase letters.

https://github.com/ErwindeGelder/ScenarioDomainModel
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Figure 2.2: Class-level relationships of most classes of our Object-Oriented Framework (OOF).

where 𝑧(𝑡) represents the state vector at time 𝑡, 𝑢(𝑡) represents an external input
vector, and the function 𝑓𝜃(⋅) is parameterized by 𝜃. Note that, technically speaking,
𝑧(⋅), 𝑢(⋅), 𝑡, and 𝜃 are inputs of the function 𝑓, but 𝜃 is assumed to be constant for
a certain time interval.

For illustration purposes, this work considers three examples of models, which
are, as shown in Figure 2.2: Sinusoidal, Linear, and Constant. Note that more
complex models are also possible, but since these models are not the focus of the
current work, this is out-of-scope. The Sinusoidal model is defined as follows:

𝑧̇(𝑡) = 𝜋𝐴
2𝑇 sin(𝜋

(𝑡 − 𝑡0)
𝑇 ), 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇], (2.2)

𝑧(𝑡0) = 𝑧0. (2.3)

Here, the amplitude (𝐴), duration (𝑇), initial time (𝑡0), and initial state (𝑧0) are
parameters. The Linear and Constant models are described by the following equa-
tions, respectively:

𝑧̇(𝑡) = 𝑠, 𝑧(𝑡0) = 𝑧0, (2.4)
𝑧(𝑡) = 𝑧0. (2.5)

The Linearmodel contains three parameters, i.e., the slope (𝑠), initial time (𝑡0), and
initial state (𝑧0). The Constant model only has the parameter 𝑧0. Since an activity
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Figure 2.3: Instance-level relationships of most classes of our Object-Oriented Framework (OOF).

category is a qualitative description, the values of the parameters of its model are
not part of the activity category. Note that this chapter only considers the models
Sinusoidal, Linear, and Constant, but more complex models may be necessary to
describe complex behavior. More complex models are out-of-scope of this chapter,
but it is straightforward to extend the OOF with such models.

The Actor category is a subclass of Physical element category so Actor category
inherits the properties of Physical element category. In addition, Actor category
has an attribute that specifies the type of object. To indicate that an actor is an
ego vehicle, the tag “Ego vehicle” is added to the list of tags of the actor category.

The Scenario category has physical element categories, activity categories, and
actor categories as attributes. Another attribute of the Scenario category is the
list of acts. These acts describe which actors perform which activities. Note that
it is possible that one actor performs multiple activities and that one activity is
performed by multiple actors.

The reader might wonder why we introduce the different classes for describing
a scenario category, i.e., the blue blocks, instead of only one class for modeling a
scenario category. The main advantage of the different classes is the reusability
of the instances of the classes because these instances can be exchanged among
different scenario categories. For example, if two scenario categories have the
same actor categories, we only need to define the actor categories once, whereas
if the actor categories would not be instances of a class but only properties of the
scenario category, we would need to define the actor categories twice.
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2.4.3. Scenario and its attributes
To distinguish objects that are directly used to compose a scenario, these objects are
instantiated from subclasses of the Quantitative element class. The class Scenario
is a subclass of Time interval and, therefore, it has events that define the start
and the end of the scenario. The Scenario also has physical element, activities,
actors, and events as attributes. The physical elements, activities, and actors are
the quantitative counterparts of the physical element categories, activity categories,
and actor categories, just as a scenario is the quantitative counterpart of a scenario
category. As with the Scenario category, the Scenario contains a list of acts that
describe which actors perform which activities.

A physical element has a physical element category and it may have multiple
properties that quantitatively define the object, such as its size, weight, color, radar
cross section, etc. Physical elements can be used to define, e.g., the road layout,
static weather and lighting conditions, and infrastructural elements.

According to Definition 2.3, an activity quantitatively describes the evolution
of one or more state variables during a time interval. The state variable(s) are
defined by the activity category that the activity has as an attribute. Together with
the Model that is contained by the activity category, the time evolution of the state
variable(s) is described by a set of parameters. The values of the parameters are
part of the activity.

Following Definition 2.2, an event contains conditions that describe the threshold
or mode transition at the time of the event.

Similar to a physical element and an activity, an actor has its qualitative coun-
terpart — an actor category — as an attribute. Additionally, the Actor contains an
initial state vector and a desired state vector, that can be used to specify the intent,
as attributes. Describing the intent is especially useful for defining a test scenario
in terms of the objective of the ego vehicle rather than its activities.

An advantage of having the qualitative counterparts of the Physical element,
Activity, and Actor is that the qualitative description can be reused and exchanged.
For example, there can be many different braking activities, but there needs to be
only one activity category for qualitatively defining the braking activity. Here, it
is assumed that all braking activities are modeled with the same model and that
similar tags apply. If this is not the case, multiple activity categories need to be
defined, but the number of activity categories will still be substantially lower than
the number of activities.

2.5. Example: pedestrian crossing

T o illustrate the use of the OOF, we describe a scenario using objects of the
classes presented in Section 2.4. The scenario is schematically shown in Fig-

ure 2.4. The ego vehicle is driving on the right lane of a two-lane road and a pedes-
trian is walking on a footway that intersects the road the ego vehicle is driving on.
Both the ego vehicle and the pedestrian are initially approaching the pedestrian
crossing. The ego vehicle brakes and comes to a full stop in front of the pedestrian
crossing. While the ego vehicle is stationary, the pedestrian crosses the road using
the pedestrian crossing. When the pedestrian has passed the ego vehicle, the ego
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𝑦
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𝑎
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Figure 2.4: Schematic overview of a scenario where both the ego vehicle and a pedestrian are approach-
ing a non-signalized pedestrian crossing. The pedestrian has priority.

vehicle accelerates. The code of this example is publicly available7.

This particular scenario can be used to formulate a test scenario for the assess-
ment of an AV. For example, when assessing a pedestrian automatic emergency
braking system [256], we are interested in the behavior of the system in case the
driver or automation system of the ego vehicle does not brake.

We first describe the scenario qualitatively using our proposed framework. Next,
the scenario is described quantitatively in Section 2.5.2. In Section 2.5.3, we show
which objects are reused and which objects are different if we consider an actual
test scenario with a crossing pedestrian.

2.5.1. Qualitative description of the pedestrian crossing
To describe the scenario according to the presented OOF, objects are instantiated
from the classes presented in Figures 2.2 and 2.3. Figure 2.5 shows the objects
for describing the scenario qualitatively. There are two actor categories: one for
the ego vehicle and one for the pedestrian. Four different activity categories are
defined: braking, stationary, accelerating, and walking straight. The braking, sta-
tionary, and accelerating activity categories contain the state variable 𝑣ego, i.e., the
speed of the ego vehicle, and use the Sinusoidal model of (2.2) and (2.3), the
Constant model of (2.5), and the Linear model of (2.4), respectively. The activ-
ity category walking straight has the position of the pedestrian (𝑦ped) as its state
variable and uses the Linear model of (2.4).

The two actor categories, the four activity categories, and the physical element
category that represents the crosswalk are used by the scenario category. The
scenario category has four acts. The first three acts assign the first three activity
categories to the ego vehicle. The last act assigns the activity category walking
straight to the pedestrian.

7See https://github.com/ErwindeGelder/ScenarioDomainModel. The repository also con-
tains other examples.

https://github.com/ErwindeGelder/ScenarioDomainModel
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Crossing pedestrian::Scenario category
description: A pedestrian is crossing the road

on a zebra crossing in front of the
ego vehicle

physical element: Pedestrian crossing
qualitative

actors: Ego qualitative, Pedestrian qualitative
activities: Braking, Stationary, Accelerating,

Walking straight
acts: (Ego qualitative, Braking),

(Ego qualitative, Stationary),
(Ego qualitative, Accelerating),
(Pedestrian qualitative, Walking straight)

tags:

Ego qualitative::Actor category
type: Vehicle
tags: Ego vehicle, Passenger car

Pedestrian qualitative::Actor category
type: Pedestrian
tags: Pedestrian

Braking::Activity category
model: Sinusoidal
state variable: Speed (𝑣ego)
tags: Decelerating

Stationary::Activity category
model: Constant
state variable: Speed (𝑣ego)
tags: Stationary

Accelerating::Activity category
model: Linear
state variable: Speed (𝑣ego)
tags: Accelerating

Walking straight::Activity category
model: Linear
state variable: Position (𝑦ped)
tags: Walking straight

Pedestrian crossing qualitative::Physical
element category
description: Straight road with two lanes and

a pedestrian crossing
tags: Non-signalized zebra crossing

Figure 2.5: The objects that are used to qualitatively describe the scenario that is schematically shown
in Figure 2.4. The first line of each block shows the name (before the double colon) and the class from
which the object is instantiated. The following lines show the attributes of the object with the name and
value of the attribute before and after the colon, respectively. For the sake of brevity, the unique ID of
each object is omitted.

2.5.2. Quantitative description of the pedestrian crossing
The objects to describe the scenario quantitatively are shown in Figure 2.6. The two
actors refer to the quantitative counterparts of the actor categories in Figure 2.5.
Initial state vectors are listed for each actor using the coordinate frame that is shown
in Figure 2.4. Since we are describing a real-world scenario, there is no need to
define goals or intents for the actors.

There are four events defined. These events mark the time instants that define
the start and the end of the activities. For simplicity, it is assumed that the start of
the scenario occurs at 0 s.

There are four activities defined and each of these activities refers to its qual-
itative counterpart. The activities contain the values of the parameters as well as
events that mark the start and the end of the activities. As described by the first
activity (ego braking), the ego vehicle starts with a speed of 8m/s and brakes in
4 s to come to a full stop. By integrating the sinusoidal function of (2.2) twice, it
can be shown that the ego vehicle stops at 4m from the center of the pedestrian
crossing. After waiting for 3 s as described by the second activity (ego stationary),
the ego vehicle accelerates with 1.5m/s2 towards a speed of 7.5m/s as described
by the third activity (ego accelerating). The fourth activity describes the position
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Ego brakes for pedestrian::Scenario
physical element: Pedestrian crossing
actors: Ego, Pedestrian
activities: Ego braking, Ego stationary,

Ego accelerating, Pedestrian walking
acts: (Ego, Ego braking),

(Ego, Ego stationary),
(Ego, Ego accelerating),
(Pedestrian, Pedestrian walking)

start event: Start scenario
end event: End scenario

Ego::Actor
actor category: Ego qualitative
properties: {width=1.8m, length=4.5m}
initial state vector: 𝑥ego = −20m,

𝑦ego = −1.5m,
𝑎ego = 90°

desired state vector:

Pedestrian::Actor
actor category: Pedestrian qualitative
properties: {width=0.5m, color=blue}
initial state vector: 𝑥ped = 0m, 𝑎ped = 0°
desired state vector:

Start scenario::Event
time: 0 s

End braking::Event
time: 4 s

Start accelerating::Event
time: 7 s

End scenario::Event
time: 12 s

Ego braking::Activity
activity category: Braking
parameters: 𝐴 = −8m/s, 𝑇 = 4 s,

𝑧0 = 8m/s, 𝑡0 = 0 s
start event: Start scenario
end event: End braking

Ego stationary::Activity
activity category: Stationary
parameters: 𝑧0 = 0m/s
start event: End braking
end event: Start accelerating

Ego accelerating::Activity
activity category: Accelerating
parameters: 𝑠 = 1.5m/s2, 𝑧0 = 0m/s,

𝑡0 = 7 s
start event: Start accelerating
end event: End scenario

Pedestrian walking::Activity
activity category: Walking
parameters: 𝑠 = 1m/s, 𝑧0 = −6m

𝑡0 = 0 s
start event: Start scenario
end event: End scenario

Pedestrian crossing::Physical element
physical element category: pedestrian cross-

ing qualitative
properties: {road: {lanes: 2, lanewidth: 3m,

xy: [(−60, 0), (60, 0)]},
footway: {width: 3m,

xy: [(0, 6), (0, −6)]}}

Figure 2.6: The objects that are used to quantitatively describe the scenario that is schematically shown
in Figure 2.4. For the sake of brevity, the tags and the unique ID of each object are omitted.

and speed of the pedestrian.
The pedestrian crossing describes the entire static environment, including the

main road the ego vehicle is driving on and the footway the pedestrian is walking
on. The example in Figure 2.6 shows some properties of the road layout to illustrate
how the static environment can be described. Note that, in practice, the quantitative
description of the static environment may contain many more facets than the ones
mentioned in Figure 2.6. As mentioned in Section 2.3.1, it is possible to refer to
another source that contains a description of (part of) the static environment, see,
e.g., [88].

The scenario has the previously defined physical element, actors, and activities
as attributes. The acts are used to assign the first three activities to the ego vehicle
and the last activity to the pedestrian. The scenario also has events marking the
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Crossing pedestrian::Scenario category
description: A pedestrian is crossing the road

on a zebra crossing in front of the
ego vehicle

physical element: Pedestrian crossing
qualitative

actors: Ego qualitative, Pedestrian qualitative
activities: Walking straight
acts: (Pedestrian qualitative, Walking straight)

Ego must brake for pedestrian::Scenario
physical element: Pedestrian crossing
actors: Ego, Pedestrian
activities: Pedestrian walking
acts: (Pedestrian, Pedestrian walking)
events: Start walking, Stop walking
start event: Start scenario
end event: End scenario

Start walking::Event
condition: |𝑥ego/𝑣ego| ≤ 2.5 s

End walking::Event
contition: 𝑦ped = 6m

Ego::Actor
actor category: Ego qualitative
properties: {width=1.8m, length=4.5m}
initial state vector: 𝑥ego = −60m,

𝑦ego = −1.5m,
𝑎ego = 90°,
𝑣ego = 8m/s

desired state vector: 𝑥ego = 20m,
𝑦ego = −1.5m,
𝑎ego = 90°,
𝑣ego = 8m/s

Pedestrian walking::Activity
activity category: Walking
parameters: 𝑠 = 1m/s, 𝑧0 = −6m,

𝑡0 = At Start walking
start event: Start walking
end event: End walking

End scenario::Event
condition: 𝑥ego ≥ 20m OR collision OR

𝑦ego ≤ −2m OR 𝑦ego ≥ −1m
OR 𝑡 > 100 s.

Figure 2.7: The objects that, together with the objects Ego qualitative, Pedestrian qualitative, Walking
straight, and Pedestrian crossing qualitative from Figure 2.5 and Start scenario, Pedestrian, and Pedes-
trian crossing from Figure 2.6, describe a test scenario that is schematically shown in Figure 2.4. For
the sake of brevity, the tags and the unique ID of each object are omitted.

start and the end of the scenario. A different scenario can be defined by, e.g.,
changing the parameter values. This illustrates that the scenario category in Fig-
ure 2.5 comprises multiple scenarios, including the scenarios that only differ from
the scenario in Figure 2.6 because of different parameter values.

2.5.3. Test scenario of the pedestrian crossing
In this example, we consider a test scenario based on the previously illustrated
real-world scenario, see Figure 2.4. To describe the test scenario, we reuse the two
actor categories from Figure 2.5 (ego qualitative and pedestrian qualitative) and the
actor describing the pedestrian from Figure 2.6 (pedestrian crossing). Figure 2.7
shows the other objects that are used to describe this test scenario.

The scenario category only differs from the scenario category shown in Fig-
ure 2.5 in that it does not contain activity categories that describe the activity of
the ego vehicle.

Two attributes of the quantitative description of the ego vehicle are different.
First, the initial state vector also includes the speed, denoted by 𝑣ego, at the start
of the scenario and the initial position is further away from the pedestrian crossing,
such that the ego vehicle’s driver or automation system has more time to perceive
the pedestrian. Second, because there are no activities defined for the ego vehicle,
the desired state vector is defined. The goal is to reach the point 80m in front of
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the ego vehicle while driving with a speed of 𝑣ego = 8m/s.
The event that marks the start of the walking activity of the pedestrian is trig-

gered if the ego vehicle is 2.5 s away from the center of the footway, assuming that
the speed of the ego vehicle is constant. In case the ego vehicle drives with a speed
of 𝑣ego = 8m/s, this is at a distance of 20m, similar to the scenario described in
Figure 2.6.

As with the scenario category, the scenario does not contain activities of the ego
vehicle. Furthermore, the end event of the scenario is defined differently: now the
scenario ends if the ego vehicle either reaches its destination (𝑥ego ≥ 20m), collides
with the pedestrian, deviates too much from its path (𝑦ego ≤ −2m or 𝑦ego ≥ 1m),
or takes too long to reach the destination (𝑡 > 100 s).

Note that this example considers a pedestrian that crosses the road at a fixed
speed (1m/s) regardless of the proximity of the ego vehicle. To model, e.g., the
case where the pedestrian notices the ego vehicle and accelerates if a collision is
about to happen, an activity can be added that describes the increased speed (e.g.,
2m/s) of the pedestrian. The start of this activity is at a predefined event with,
e.g., the condition |𝑥ego/𝑣ego| ≤ 1 s AND 𝑦ped < 0m.

2.5.4. Remarks on the example
The example illustrates the benefits of the object-oriented approach for defining a
scenario, which are:

• clarity regarding the content of the scenario,

• modularity, which makes it easy to understand the changes from the real-
world scenario in Figure 2.6 to the test scenario in Figure 2.7, and

• reusability, as is illustrated by the objects that are used more than once.

Furthermore, each object listed in Figures 2.5 to 2.7 is directly translatable to an
object in an object-oriented programming language. As a further illustration that
the presented OOF is practical to use in real life, the framework is used by TNO’s
StreetWise program for storing real-world scenarios in a database [94]8.

In the example, two different actors are considered: the ego vehicle and the
pedestrian. These are examples of traffic participants, but an actor is not necessarily
a traffic participant. For example, road side units that transmit messages in an
infrastructure-to-vehicle communication setting can also be actors. In this case,
the transmission of messages can be considered as an activity. Another example
of an actor is the road surface in case it is important for the scenario to model the
changing surface temperature.

Note that the main purpose of the current example is to illustrate the use of
the OOF. For the sake of brevity, the current example is a simplified description
of a typical description of a scenario. Relevant aspects that are not considered
in the current example include, but are not limited to, weather conditions, lighting
conditions, visibility conditions, road friction, road surface markings, road edge, and
height differences.
8See also https://www.tno.nl/streetwise.

https://www.tno.nl/streetwise
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2.6. Conclusions

T he performance assessment of Automated Vehicles (AVs) is essential for the
legal and public acceptance of AVs as well as for the technology development

of AVs. Because scenarios are crucial for the assessment, a clear definition of
a scenario is required. In this work, we have proposed a new definition of the
concept scenario in the context of the performance assessment AVs.

While our definition is consistent with other definitions from the literature, it
is more concrete such that it can directly be implemented using code. We have
further defined the notions of event, activity, and scenario category. To formalize
the concepts of scenario, event, activity, and scenario category, an Object-Oriented
Framework (OOF) has been proposed. Using the proposed framework, it is possible
to describe a scenario in both a qualitative and quantitative manner. The framework,
represented using class diagrams, can be directly translated into a class structure for
an object-oriented software implementation. This allows us to translate scenarios
into code, such that both domain experts and software programs, such as simulation
tools, are able to understand the content of the scenarios. To demonstrate this, we
have made our implementation in the coding language Python publicly available.

The OOF has been illustrated with an example of an urban scenario with a
pedestrian crossing. We have also demonstrated how this particular scenario can
be used to define a test scenario using the proposed framework. In the publicly
available9 coding implementation of the presented OOF, we have shown how to
use the proposed OOF from a real application’s perspective.

The presented OOF is applicable for scenario mining [73, 221] and scenario-
based assessment [94, 229] and, therefore, this framework provides a step towards
scenario-based performance assessment of AVs. The next step is to define scenar-
ios and scenario categories10 that are relevant for an AV in a specific deployment
area. Other future work is the expansion of the OOF, for example, by including dis-
tributions and/or uncertainties of the parameters of the activities or the properties
of the physical elements. Future work also includes creating an ontology for scenar-
ios for the assessment of AVs. The presented OOF could be a good starting point
for this [263]. An ontology allows, among others, to add properties to relationships
that enable automated reasoning. In this way, an ontology enables automated
classification of scenarios, thereby helping to overcome problems of data ambiguity
[19].

2.A. Nomenclature

F or the definition of scenario, several notions are adopted from the literature. In
this section, the concepts of ego vehicle, physical element, actor, static envi-

ronment, dynamic environment, act, state variable, state vector, model, and mode,
which are adopted from the literature, are detailed.

9https://github.com/ErwindeGelder/ScenarioDomainModel
10As a starting point, the 67 scenario categories in [74] can be used.

https://github.com/ErwindeGelder/ScenarioDomainModel
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2.A.1. Ego vehicle
The ego vehicle is the main subject of a scenario. In particular, the ego vehicle
refers to the vehicle that is perceiving the world through its sensors (see, e.g.,
[35]). When performing tests, the ego vehicle also refers to the vehicle that must
perform a specific task (see, e.g., [12, 104]). In this case, the ego vehicle is often
referred to as the system under test [270], the vehicle under test [114], or the host
vehicle [114].

2.A.2. Physical element
A physical element refers to an object that exists in the three-dimensional space.

2.A.3. Actor
According to Frost [104], “actors are all dynamic components of a scenario, ex-
cluding the ego vehicle itself.” Note that, in contrast to [104], in this work, the
ego vehicle’s driver, and/or automation system are considered as actors, similar
to [112], because they have the same properties as another driver or automation
system. While the aforementioned definition of Frost [104] provides a good idea
of what an actor could be, we use another definition in order to avoid a circular
definition: an actor is a dynamic physical element, i.e., a physical element that
experiences change.

Remark 2.2. An actor is also a physical element whereas a physical element is
not necessarily an actor. For example, a static road sign is considered a physical
element, but because it does not change during the course of a scenario, it is not
an actor. ♢

2.A.4. Static environment
The static environment refers to the part of the environment that does not expe-
rience change during a scenario. This includes geo-spatially stationary elements
[284], such as the road network.

2.A.5. Dynamic environment
As opposed to the static environment, the dynamic environment refers to the part
of the environment that changes during the time frame of a scenario. In practice,
the dynamic environment mainly consists of the moving actors (other than the ego
vehicle) that are relevant to the ego vehicle. For example, the primary use case
of OpenSCENARIO [20], a file format for the description of the dynamic content of
driving simulations, is to describe “complex, synchronized maneuvers that involve
multiple entities like vehicles, pedestrians, and other traffic participants” [20]; so for
OpenSCENARIO, these maneuvers represent the dynamic environment. Roadside
units that communicate with vehicles within the communication range [5] are also
part of the dynamic environment. Furthermore, changing (weather) conditions are
part of the dynamic environment.

Remark 2.3. Note that it might not always be obvious whether an element of the
environment belongs to the static or dynamic environment. Most important, how-
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ever, is that all parts of the environment that are relevant to the assessment of an
AV are described in either the static or the dynamic environment. ♢

2.A.6. Act
We define an act as a combination of an actor and the activity that is performed by
the actor or the combination of actors and the activities they are subjected to. This
is in accordance with the use of the term act in [20].

2.A.7. State variable
Dorf and Bishop [83, p. 163] write that “the state variables describe the present
configuration of a system and can be used to determine the future response, given
the excitation inputs and the equations describing the dynamics.” In our case, “the
system” could refer to an actor, a component, or a simulation. For example, a state
variable could be the acceleration of an actor.

2.A.8. State vector
A state vector refers to “the vector containing all 𝑛 state variables” [83, p. 233].

2.A.9. Model
The model refers to the equations that describe the dynamics. This may be algebraic
equations, ordinary or partial differential equations, time-delay models, etc.

2.A.10. Mode
In some systems, the behavior of the system may suddenly change abruptly, e.g.,
due to a sudden change in an input, a model parameter, or the model. Such a
transition is called a mode switch. In each mode, the behavior of the system is
described by a model with a fixed function 𝑓𝜃 and smooth input 𝑢(⋅) [80].
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The amount of collected field data from naturalistic driving studies is quickly
increasing. The data are used for, among others, developing automated driv-
ing technologies (such as crash avoidance systems), studying driver interac-
tion with such technologies, and gaining insights into the variety of scenarios
in real-world traffic. Because data collection is time consuming and requires
high investments and resources, questions like “Do we have enough data?,”
“How much more information can we gain when obtaining more data?,” and
“How far are we from obtaining completeness?” are highly relevant. In fact,
deducing safety claims based on collected data — for example, through test-
ing scenarios based on collected data — requires knowledge about the de-
gree of completeness of the data used. We propose a method for quantifying
the completeness of the so-called activities in a data set. This enables us to
partly answer the aforementioned questions.
In this chapter, the (traffic) data are interpreted as a sequence of different so-
called scenarios that can be grouped into a finite set of scenario categories.
The building blocks of scenarios are the activities. For every activity, there
exists a parameterization that encodes the information in the data of each
recorded activity. For each type of activity, we estimate a probability density
function (pdf) of the associated parameters. Our proposed method quantifies
the degree of completeness of a data set using the estimated pdfs.
To illustrate the proposed method, two different case studies are presented.
First, a case studywith an artificial data set, of which the underlying pdfs are
known, is carried out to illustrate that the proposed method correctly quan-
tifies the completeness of the activities. Next, a case study with real-world
data is performed to quantify the degree of completeness of the acquired data
for which the true pdfs are unknown.
The presented case studies illustrate that the proposed method is able to
quantify the degree of completeness of a small set of field data and can be
used to deduce whether sufficient data have been collected for the purpose
of the field study. Future work will focus on applying the proposed method
to larger data sets. The proposed method will be used to evaluate the level
of completeness of the data collection on public roads, aimed at defining rel-
evant test cases for the autonomous vehicle road approval procedure.
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3.1. Introduction

T he amount of collected field data from driving studies is increasing rapidly and
these data are extensively used for the research, development, assessment, and

evaluation of driving-related topics [40, 70, 81, 94, 163, 171, 228, 229, 242, 304,
327]. For any work that depends on data, it is important to know how complete
the data are. As mentioned by various authors [14, 112, 270], especially when de-
ducing safety claims based on collected data, e.g., through testing scenarios based
on collected data, we require knowledge about the degree of completeness of the
data set used. Hence, questions like “do we have enough data?” are highly rele-
vant when our work and conclusions depend on the data. Furthermore, since the
collection of data is time-consuming and requires high investments and resources,
we should ask ourselves “how much more data do we need?” or “how much more
information can we gain when obtaining more data?”

The aforementioned questions are already explored in other fields [32, 122, 194,
298, 316], but the question of how much data are enough regarding traffic-related
applications is less frequently answered. Wang et al. [298] appear to be the first in
the literature to point out and discuss issues concerning the amount of data needed
to understand and model driver behaviors. They propose a statistical approach to
determine how much naturalistic driving data are enough for understanding driving
behaviors. For scenario-based assessments [14, 94, 112, 228, 270], however, the
approach of Wang et al. [298] might not be applicable because they only consider
the individual measurements at consecutive time instants instead of taking into ac-
count the whole driving scenario. Hence, there is a need for a quantitative measure
for the completeness of a data set that takes into account the different scenarios a
vehicle encounters in real-world traffic.

We describe a method for quantifying the completeness of a data set. The data
are interpreted as a sequence of different scenarios that can be grouped into a
finite set of scenario categories. Activities, such as “braking” and “lane change”
form the building blocks of the scenarios [94]. For every activity, we create a
parameterization that encodes the information in the data of this activity. For each
type of activity, we estimate a probability density function (pdf) of the associated
parameters. Our proposed method approximates the degree of completeness of a
data set using the expected error of the estimated pdf. The smaller this error, the
higher the degree of completeness.

To illustrate the proposed method, two different case studies are presented.
The first case study involves artificial data of which the underlying distributions are
known. Because the underlying distributions are known, we can show that the
proposed method correctly quantifies the degree of completeness. Next, a case
study with real-world data is performed to quantify the degree of completeness of
the acquired data for which the underlying distributions are unknown. Additionally,
we show how we can estimate the required amount of data to meet a certain
requirement.

This chapter is structured as follows. Section 3.2 describes in more detail the
problem for which a solution is proposed in Section 3.3. The two case studies are
presented in Section 3.4. After a discussion in Section 3.5, this chapter is concluded
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in Section 3.6.

3.2. Problem definition

T he required amount of data depends on the use of the data [298]. For ex-
ample, when investigating (near)-accident scenarios from naturalistic driving

data, more data might be required compared to studying nominal driving behavior
because of the low probability of having a (near)-accident scenario in naturalistic
driving data. Therefore, in this chapter, the goal is to define a quantitative measure
for the completeness of the data that can be used to determine whether the data
are enough.

To define the problem of quantifying the completeness of the data, few assump-
tions are made:

1. The data are interpreted as an infinite number of possible scenarios, where
scenarios might overlap in time [94]. Several definitions of the term scenario
in the context of traffic data have been proposed in the literature, e.g., by
Elrofai et al. [93, 94], Geyer et al. [112], Ulbrich et al. [284]. Because we
want to differentiate between quantitative and qualitative descriptions, the
definition of the term scenario is adopted from Elrofai et al. [94] as it explic-
itly defines a scenario as a quantitative description: “A scenario is a quanti-
tative description of the ego vehicle, its activities and/or goals, its dynamic
environment (consisting of traffic environment and conditions) and its static
environment. From the perspective of the ego vehicle, a scenario contains
all relevant events.” Extracting scenarios from data received significant at-
tention and the applied methods are very diverse. For example, Elrofai et al.
[93] use a model-based approach to detect scenarios in which the ego vehi-
cle is changing lane, whereas Kasper et al. [157] use Bayesian networks to
detect scenarios with lane changes of other vehicles around the ego vehicle.
Xie et al. [313] use a random forest classifier for extracting various scenar-
ios and Paardekooper et al. [221] employ rule-based algorithms for scenario
extraction.

2. Just as Elrofai et al. [94], we assume that a scenario consists of activities: “An
activity is considered [to be] the smallest building block of the dynamic part
of the scenario (maneuver of the ego vehicle and the dynamic environment).”
An activity describes the time evolution of state variables. For example, an
activity can be “braking”, where the activity describes the evolution of the
speed over time. Furthermore, “the end of an activity marks the start of the
next activity” [94]. For more information, see Section 2.3.3.

3. Though a scenario refers to a quantitative description, these scenarios can
be abstracted by means of a qualitative description, referred to as scenario
category; see also Section 2.3.4 and [79, 94, 228]. An example of a scenario
category could have the name “ego vehicle braking”; that is, this scenario
qualitatively describes a scenario in which the ego vehicle brakes. An actual
(real-world) scenario in which the ego vehicle is braking would fall into this
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scenario category. It is assumed that all scenarios can be categorized into
these scenario categories. This assumption does not limit the applicability of
this chapter, though it might require a large number of scenario categories to
describe all scenarios that are in the data.

4. It is assumed that all scenarios that fall into a specific scenario category can be
parameterized similarly. As a result, the specific activities that constitute the
scenario are also parameterized similarly. As with the previous assumption,
this does not limit the applicability of this chapter. However, it might constrain
the variety of scenarios that fall into a scenario category.

Using these assumptions, we can describe the problem of quantifying the com-
pleteness of a data set into three subproblems:

1. How to quantify the completeness regarding the scenario categories?

2. How to quantify the completeness regarding all scenarios that fall into a spe-
cific scenario category?

3. How to quantify the completeness regarding the activities?

The first step towards quantification of the completeness of the data is to assess
the completeness of the activities. The next step is to quantify the completeness of
the scenarios, i.e., the combinations of activities. The final step is to quantify the
completeness of the scenario categories. In this chapter, the first step, i.e., the third
subproblem, is addressed. Because of the different approach required for answering
the first and second subproblem, those will be addressed in a forthcoming paper.

3.3. Method

I n this section, we present how to quantify the completeness regarding the ac-
tivities. As explained in Section 3.2, all scenarios that fall into a specific scenario

category are parameterized similarly. Therefore, all similar types of activities are
also parameterized similarly. For example, all activities labeled “braking” are param-
eterized similarly. In the remainder of this section, we assume that all activities that
we are dealing with are a similar type of activities, such that they are parameterized
similarly.

Considering one type of activity, let 𝑛 denote the number of recorded activities
of that type of activity. Each activity is described by a parameter vector. Let the
parameters of the 𝑖-th activity be denoted by 𝑋𝑖 ∈ R𝑑 with 𝑖 ∈ {1, … , 𝑛} and 𝑑 de-
noting the number of parameters for one activity. We will estimate the underlying
distribution of 𝑋𝑖. Let 𝑓(⋅) denote the true pdf and let 𝑓(𝑥) denote the probabil-
ity density evaluated at 𝑥. Similarly, let ̂𝑓(⋅; 𝑛) denote the estimated pdf using 𝑛
parameter vectors.

To quantify the completeness of the collection of the 𝑛 activities, we use the
estimated pdf ̂𝑓(⋅; 𝑛). For example, suppose that ̂𝑓(𝑥; 𝑛) equals 𝑓(𝑥) for all 𝑥 ∈ R𝑑.
In this case, it would be reasonable to say that the 𝑛 activities give a complete
view of the variety and the distribution of the different activities that are labeled
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similarly. On the other hand, when ̂𝑓(𝑥; 𝑛) is very different from 𝑓(𝑥), it would be
reasonable to say that the opposite is the case, i.e., the 𝑛 scenarios do not give a
complete view. One common measure for comparing the estimated pdf with the
true pdf is the Mean Integrated Squared Error (MISE):

MISE𝑓(𝑛) = E[∫
R𝑑
(𝑓(𝑥) − ̂𝑓(𝑥; 𝑛))2 d𝑥]. (3.1)

The index 𝑓 indicates that the MISE is calculated with respect to the pdf 𝑓(⋅).
A low MISE indicates a high degree of completeness whereas a high MISE indi-

cates a low degree of completeness because the expected integrated squared error
is high. Therefore, the MISE can be used to quantify the completeness of set of
activities that are of a similar type. The problem is, however, that (3.1) depends
on the true pdf 𝑓(⋅) which is unknown. So the MISE of (3.1) cannot be evaluated.

In the remainder of this section, we will explain how the MISE of (3.1) can be
estimated when Kernel Density Estimation (KDE) is employed. First, KDE will be
explained. Next, in Section 3.3.2, a method is presented for estimating the MISE
when assuming that the 𝑑 parameters are correlated. Section 3.3.3 shows how the
MISE can be approximated when some of the 𝑑 parameters are independent from
each other.

3.3.1. Estimating the distribution using Kernel Density Esti-
mation

The shape of the pdf 𝑓(⋅) is unknown beforehand. Furthermore, the shape of the
estimated pdf might change as more data are acquired. Assuming a functional form
of the pdf and fitting the parameters of the pdf to the data may therefore lead to
inaccurate fits unless a lot of hand-tuning is applied. We employ a non-parametric
approach using KDE [222, 237] because the shape of the pdf is automatically com-
puted and KDE is highly flexible regarding the shape of the pdf.

In KDE, the estimated pdf is given by

̂𝑓(𝑥; 𝑛) = 1
𝑛ℎ𝑑

𝑛

∑
𝑖=1
𝐾(𝑥 − 𝑋𝑖ℎ ). (3.2)

Here, 𝐾(⋅) is an appropriate kernel function and ℎ denotes the bandwidth. The
choice of the kernel 𝐾(⋅) is not as important as the choice of the bandwidth ℎ
[283]. We use a Gaussian kernel because it will simplify some of our calculations.
The Gaussian kernel is given by

𝐾(𝑢) = 1
(2𝜋)𝑑/2

exp{−12‖𝑢‖
2
2}, (3.3)

where ‖𝑢‖22 = 𝑢T𝑢 denotes the squared 2-norm of 𝑢.
The bandwidth ℎ controls the amount of smoothing. For the kernel of (3.3), the

same amount of smoothing is applied in every direction, although our method can
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easily be extended to a multi-dimensional bandwidth, see, e.g., [52, 255]. There
are many different ways of estimating the bandwidth, ranging from simple reference
rules like, e.g., Scott’s rule of thumb [254] or Silverman’s rule of thumb [262] to
more elaborate methods; see [24, 55, 151, 283] for reviews of different bandwidth
selection methods.

3.3.2. Estimating the Mean Integrated Squared Error for de-
pendent parameters

As an approximation of the MISE of (3.1), the Asymptotic Mean Integrated Squared
Error (AMISE) is often used. With the KDE of (3.2) employed, the AMISE is defined
as follows [195]:

AMISE𝑓(𝑛) =
ℎ4
4 𝜎

4
𝐾∫

R𝑑
(∇2𝑓(𝑥))2 d𝑥 + 𝜇𝐾

𝑛ℎ𝑑 . (3.4)

Here, 𝜎𝐾 and 𝜇𝐾 are constants that depend on the choice of the kernel 𝐾(⋅):

𝜎2𝐾 = ∫
R𝑑
‖𝑢‖22𝐾(𝑢)d𝑢, (3.5)

𝜇𝐾 = ∫
R𝑑
(𝐾(𝑢))2 d𝑢. (3.6)

Because we use the Gaussian kernel of (3.3), we have 𝜎𝐾 = 1 and 𝜇𝐾 = (2√𝜋)
−𝑑
.

In (3.4), ∇2𝑓(𝑥) denotes the Laplacian of 𝑓(𝑥), i.e.,

∇2𝑓(𝑥) =
𝑑

∑
𝑙=1

𝜕2𝑓(𝑥)
𝜕𝑥2𝑙

, (3.7)

where 𝑥𝑙 denotes the 𝑙-th entry of 𝑥. Note that the Laplacian equals the trace of
the Hessian. Assuming that ℎ → 0 and 𝑛ℎ𝑑 → ∞ as 𝑛 → ∞, the AMISE only differs
from the MISE by higher-order terms under some mild conditions1 [262].

The influence of the bandwidth ℎ is demonstrated in an illustrative way by the
AMISE of (3.4). The first term of the AMISE of (3.4) corresponds to the asymptotic
bias introduced by smoothing the pdf. Therefore, this term approaches zero when
ℎ → 0. However, when ℎ → 0, the variance goes to infinity, as can be seen by the
second term of the AMISE, which corresponds to the asymptotic variance.

As with the MISE, we cannot evaluate the AMISE because it depends on the
true pdf 𝑓(⋅). As suggested by Chen [52] and Calonico et al. [44], we can estimate
the quantity ∇2𝑓(𝑥) by ∇2 ̂𝑓(𝑥; 𝑛), with ̂𝑓(𝑥; 𝑛) defined in (3.2). Substituting 𝑓(𝑥) in
(3.4) with ̂𝑓(𝑥; 𝑛) gives the measure that we will use to quantify the completeness:

𝐽𝑓(𝑛) =
ℎ4
4 𝜎

4
𝐾∫

R𝑑
(∇2 ̂𝑓(𝑥; 𝑛))2 d𝑥 + 𝜇𝐾

𝑛ℎ𝑑 . (3.8)

1The pdf 𝑓(⋅) needs to comply with the regularity conditions, 𝐾(𝑢) ≥ 0, ∀𝑢, ∫R𝑑 𝐾(𝑢)d𝑢 = 1 and 𝜎𝐾
from (3.5) is not infinite.
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In summary, the measure (3.8) is an estimation of the MISE of (3.1) given that
the pdf is estimated using the KDE of (3.2). Because the MISE cannot be directly
evaluated, the asymptotic MISE is used with the estimated pdf substituted for the
real pdf.

3.3.3. Estimating the Mean Integrated Squared Error for inde-
pendent parameters

As explained in Section 3.3.1, KDE is employed because the KDE is highly flexible
regarding the shape of the pdf. However, when a large number of parameters are
used, i.e., for large values of 𝑑, the KDE becomes unreliable due to the curse of
dimensionality [254]. One way to overcome this, is to assume that certain parame-
ters are independent. In that case, the joint distribution is not modeled using only
one multivariate KDE, but using a combination of KDEs.

Without loss of generality, consider the parameter vector 𝑥 that can be decom-
posed into two parts:

𝑥 = [𝑦𝑧], (3.9)

such that 𝑦 ∈ R𝑑𝑦 and 𝑧 ∈ R𝑑𝑧 with 𝑑𝑦 + 𝑑𝑧 = 𝑑. If the parameter vectors 𝑦 and 𝑧
are independent, the probability density of 𝑥 equals

𝑓(𝑥) = 𝑔(𝑦) ⋅ 𝑙(𝑧), (3.10)

where 𝑔(⋅) and 𝑙(⋅) are pdfs. Because 𝑦 and 𝑧 have a lower dimensionality than
𝑥, the estimated pdfs of 𝑔(⋅) and 𝑙(⋅) will be more reliable. However, we cannot
use the measure of (3.8) to quantify the completeness anymore. Therefore, we
will show in this section how 𝐽𝑓(𝑛) can be computed in case the real distribution is
assumed to take the form (3.10).

The first step is to estimate 𝑔(⋅) and 𝑙(⋅) using 𝑔̂(⋅; 𝑛) and ̂𝑙(⋅; 𝑛), respectively,
where 𝑔̂(⋅; 𝑛) and ̂𝑙(⋅; 𝑛) are also estimated using KDE, see (3.2). Note that the
bandwidths of 𝑔̂(⋅; 𝑛) and ̂𝑙(⋅; 𝑛) are generally different. Now let the MISE of 𝑔(⋅)
and 𝑙(⋅) be defined similarly as the MISE of 𝑓(⋅) in (3.1). It can be shown2 that if
(3.10) holds, then the MISE of 𝑓(𝑥) approximately equals

MISE𝑓(𝑛) ≈MISE𝑔(𝑛)∫
R𝑑𝑧

(𝑙(𝑧))2 d𝑧 +MISE𝑙(𝑛)∫
R
𝑑𝑦
(𝑔(𝑦))2 d𝑦+

MISE𝑔(𝑛) ⋅MISE𝑙(𝑛).
(3.11)

We can estimate the MISE of 𝑔(⋅) and 𝑙(⋅) in a similar manner as we did for the
MISE of 𝑓(⋅) in Section 3.3.2, such that we obtain 𝐽𝑔(𝑛) and 𝐽𝑙(𝑛). Since we cannot
evaluate the integrals of (3.11), we estimate them by substituting the estimated
pdfs. As a result, we have

𝐽𝑓(𝑛) = 𝐽𝑔(𝑛)∫
R𝑑𝑧

( ̂𝑙(𝑧; 𝑛))2 d𝑧 + 𝐽𝑙(𝑛)∫
R
𝑑𝑦
( ̂𝑙(𝑦; 𝑛))2 d𝑦 + 𝐽𝑔(𝑛) ⋅ 𝐽𝑙(𝑛). (3.12)

2For the sake of brevity, the proof is omitted. The main idea is based on the variance of the product of two
independent variables, see [118], and the assumptions E[𝑔̂(𝑦; 𝑛)] ≈ 𝑔(𝑦) for all 𝑦 and E[ ̂𝑙(𝑧; 𝑛)] ≈
𝑙(𝑧) for all 𝑧.
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Figure 3.1: The true pdfs 𝑔(⋅) (red line) and 𝑙(⋅) (green line) that are used to illustrate the quantification
of the completeness.

In this section, we assumed that the parameters 𝑥 can be split into two partitions
that are independent. It is straightforward to extend the result of (3.12) in case
that the parameters 𝑥 can be split into three of more partitions.

3.4. Examples

I n this section, the proposed method of Section 3.3 is illustrated by means oftwo examples. The first example applies the method with data generated from
a known distribution. Because the distribution is known, the real MISE can be ac-
curately approximated and compared with the results from (3.8) and (3.12). Sec-
ondly, in Section 3.4.2, the proposed method is applied on a data set containing
naturalistic driving data.

3.4.1. Example with known underlying distribution
In this example, the data samples 𝑌𝑖 with 𝑖 ∈ {1, … , 𝑛} are independently and iden-
tically distributed random variables that are distributed according to the pdf 𝑔(⋅).
Each data sample 𝑌𝑖 corresponds to a scalar, i.e., 𝑑𝑦 = 1. Similarly, the data sam-
ples 𝑍𝑖 with 𝑖 ∈ {1, … , 𝑛} and 𝑑𝑧 = 1 are independently and identically distributed
random variables that are distributed according to the pdf 𝑙(⋅). The data samples
are combined, similar to (3.9), such that the likelihood of 𝑋𝑖 ∈ R𝑑 with 𝑑 = 2 is
𝑓(𝑋𝑖) = 𝑔(𝑌𝑖) ⋅ 𝑙(𝑍𝑖).

Figure 3.1 shows the distributions 𝑔(⋅) (red line) and 𝑙(⋅) (green line). Both dis-
tributions are Gaussian mixtures, i.e., both pdfs equal the sum of multiple weighted
Gaussian distributions. The pdf 𝑔(⋅) corresponds to the average of two Gaussian
distributions with means of −1 and 1 and standard deviations 0.5 and 0.3, respec-
tively. The pdf 𝑙(⋅) corresponds to the average of three Gaussian distributions with
means −0.5, 0.5, and 1.5, and standard deviations 0.3, 0.5, and 0.3, respectively.

The expectation E[⋅] of (3.1) is estimated by repeating the estimation of the pdf
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Figure 3.2: The bandwidths of 𝑓̂(⋅; 𝑛), 𝑔̂(⋅; 𝑛), and ̂𝑙(⋅; 𝑛) for the example of Section 3.4.1. The band-
widths are computed using leave-one-out cross validation for different number of samples 𝑛.

200 times, such that the real MISE is approximated:

MISE𝑓(𝑛) ≈
1
𝑚

𝑚

∑
𝑗=1
∫
R𝑑
(𝑓(𝑥) − ̂𝑓𝑗(𝑥; 𝑛))

2
d𝑥, (3.13)

where ̂𝑓𝑗(𝑥; 𝑛) is the 𝑗-th estimate and 𝑚 = 200.
All three pdfs are estimated using (3.2). We use leave-one-out cross validation

to compute the bandwidth ℎ [86] because this minimizes the Kullback-Leibler diver-
gence between the real pdf 𝑓(⋅) and the estimated pdf ̂𝑓(⋅; 𝑛) [283, 319]. Note that
although the estimation of the pdfs is repeated 200 times to accurately approximate
the MISE using (3.13), the bandwidth is only determined once for a specific num-
ber of samples. All the other 199 times, the same bandwidths are adopted. The
resulting bandwidths are shown in Figure 3.2. The bandwidth of ̂𝑓(⋅; 𝑛) is signifi-
cantly larger than the bandwidths of 𝑔̂(⋅; 𝑛) and ̂𝑙(⋅; 𝑛). This result is not surprising:
because ̂𝑓(⋅; 𝑛) represents a bivariate distribution, it requires more data to have a
similar bandwidth compared with a univariate distribution [255].

Figure 3.3 shows the results of this example. The blue lines show the real MISEs,
approximated using (3.13), where the solid line represents the MISE when 𝑓(⋅) is
directly estimated and the dashed line represented the MISE when use is made of
(3.10). The MISE is significantly lower when it is correctly assumed that the two
parameters are independent. One way to look at this is that the degree of freedom
of 𝑓(⋅) is reduced when assuming that the two parameters are independent and
this lower degree in freedom leads to a more certain estimate. Hence, the MISE is
lower.

The red lines in Figure 3.3 show the measures to quantify the completeness of
the data. The solid line shows the result of applying (3.8) and the dashed line shows
the result of applying (3.12). Both lines follow the same trend as the blue solid line
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Figure 3.3: The real MISEs (blue lines) of the example of Section 3.4.1, approximated using (3.13), and
the measures that are used to quantify the completeness (red lines). The solid lines show the result of
estimating a bivariate pdf, so here (3.8) is used to quantify the completeness. The dashed lines show the
result of estimating two univariate pdfs and combining them according to (3.10) to create a bivariate pdf,
so (3.12) is used to quantify the completeness. The red areas show the interval [𝜇−3𝜎, 𝜇+3𝜎], where
𝜇 and 𝜎 denote the mean and standard deviation, respectively, of the measures of (3.8) and (3.12)
when repeating the experiment 200 times.

and the blue dashed line, respectively. This illustrates that the measures (3.8)
and (3.12) are applicable for estimating the real MISE of (3.1). To show that this is
not a mere coincidence, the red areas in Figure 3.3 show the interval [𝜇 − 3𝜎, 𝜇 +
3𝜎], where 𝜇 and 𝜎 denote the mean and standard deviation, respectively, of the
measures of (3.8) and (3.12) when repeating the experiment 200 times. Note that
the measures of completeness are consistently higher than the real MISE. This can
be explained from the fact that the measures of completeness are approximations
of the AMISE and the AMISE itself is always higher than the real MISE under some
mild conditions, see Theorem 4.2 of [195].

3.4.2. Example with real data
In this example, 60 hours of naturalistic driving data from 20 different drivers (see
[70]) are used to extract approximately 2800 braking activities. Three parame-
ters are used to describe each braking activity: the average deceleration, the total
speed difference, and the end speed. A histogram of each of these parameters is
shown in Figure 3.4. Note that these braking activities do not include full stops, i.e.,
activities where the end speed is zero, because the distribution of the end speed
will have a large peak at zero. The AMISE of (3.4) deviates more from the real
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MISE of (3.1), especially for larger bandwidths, when such peaks are present in the
underlying distribution [195]. Because the measure (3.8) we use for quantification
of completeness is based on the AMISE of (3.4), we want to avoid these peaks as
much as possible. Therefore, the full stops are excluded. Note, however, that the
method can be applied separately for the full stops. In fact, the analysis for full
stops will be simpler because a full stop activity can be parameterized using only
two parameters because the end speed always equals zero.

The three parameters are correlated so this advocates the use of a multivariate
KDE. However, as we have seen in the first example, the higher the dimension,
the higher the measure for completeness will generally be. So there is a trade-
off: Assuming that certain parameters are independent results in an error of the
estimated pdf but the resulting MISE, and hence the measure of completeness, will
be lower. To illustrate this, we estimate the pdf while assuming all parameters to be
dependent and we estimate the pdf while assuming that the average deceleration
is independent from the other two parameters. Note that the correlation between
the average deceleration and the other parameters is fairly low, so this justifies
this choice. The speed difference and end speed are highly correlated, so we will
not assume that these two parameters are independent. Before estimating the
pdfs, the parameters are translated and rescaled such that each parameter has
a sample mean of zero and a sample variance of one. In this example, ̂𝑓(⋅; 𝑛)
denotes the estimated 3-dimensional pdf using all three parameters, 𝑔̂(⋅; 𝑛) denotes
the estimated univariate pdf of the average deceleration, and ̂𝑙(⋅; 𝑛) denotes the
estimated bivariate pdf of the speed difference and the end speed.

Figure 3.5 shows the bandwidths of the three estimated pdfs for different num-
ber of samples, starting from 𝑛 = 600 samples to approximately 𝑛 = 2800 samples.
As opposed to the bandwidths of our previous example, see Figure 3.2, the band-
width of ̂𝑓(⋅; 𝑛) is not larger than the bandwidth of 𝑔̂(⋅; 𝑛) for low values of 𝑛. This
is caused by some outliers of the average deceleration because these outliers have
a large influence on the bandwidth of 𝑔̂(⋅; 𝑛) [127]. These outliers also influence
the bandwidth of ̂𝑓(⋅; 𝑛), but this influence is less because the bandwidth of ̂𝑓(⋅; 𝑛)
is also influenced by the other parameters.

The measures of completeness of the data of the braking activities are shown
in Figure 3.6. The solid blue line results from the estimated 3-dimensional pdf, i.e.,
̂𝑓(⋅; 𝑛), where (3.8) is used to quantify the completeness. The solid red line results
from the estimated univariate and bivariate pdfs 𝑔̂(⋅; 𝑛) and ̂𝑙(⋅; 𝑛), where (3.12)
is used to quantify the completeness. The measure for the completeness is much
lower for the latter case, indicating that the uncertainty of the pdf is much lower
when it is assumed that the average deceleration is independent from the other
two parameters.

Whether it is better to assume that all parameters are dependent or not depends
on the threshold that defines the desired measure and the amount of data. If the
threshold is not met, the result can be used to guess how much more data is
required by extrapolating the result. To illustrate this, the straight dashed lines in
Figure 3.6 represent the least squares logarithmic fits of the corresponding solid
lines that can be used for extrapolation. These straight blue and red lines are
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Figure 3.4: Histograms of the data that are used for the example of Section 3.4.2.
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Figure 3.5: The bandwidths of 𝑓̂(⋅; 𝑛), 𝑔̂(⋅; 𝑛), and ̂𝑙(⋅; 𝑛) for the example of Section 3.4.2. The band-
widths are computed using leave-one-out cross validation for different number of samples 𝑛.
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Figure 3.6: The measures of completeness for the example of Section 3.4.2 with the assumption that
all three parameters depend on each other (blue solid line) and with the assumption that the first
parameter, i.e., the average deceleration, does not depend on the other two parameters (red solid line).
The corresponding dashed lines represent the least squares logarithmic fits given by (3.14) and (3.15).
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described by the formulas

0.019 ⋅ 𝑛−0.18, (3.14)
0.017 ⋅ 𝑛−0.26, (3.15)

respectively. As an example, let us assume that the threshold equals 0.003. In
that case, 𝑛 ≈ 800 would suffice if we assume that the average deceleration is
independent from the speed difference and end speed, see the dashed red line in
Figure 3.6 and (3.15). This threshold, however, is not yet reached when assuming
that all parameters are dependent, see the blue lines in Figure 3.6. Extrapolating the
result using (3.14) provides a rough estimate of the required number of samples:
𝑛 ≈ 28000, i.e., ten times as many samples as we have used in this example.

3.5. Discussion

T he measure for quantification of completeness of the set of activities that is
presented in this chapter is based on the amount of data and the chosen pa-

rameterization. More data might be used to achieve a certain threshold. However, it
might also be possible to adapt the parameterization to achieve a certain threshold
if a parameterization exists that achieves a certain threshold. Hence, the presented
method can be used to determine an appropriate parameterization of activities.

The method for quantifying the completeness of a set of activities depends on
a threshold that needs to be chosen. Only in case of an infinite set of data, the
measure for completeness approaches zero, so this threshold needs to be larger
than zero. This threshold might be different for different applications. For exam-
ple, when the data are used for determining test scenarios [94, 228], the desired
threshold might be lower than when the data are used for determining driver mod-
els [242, 298]. Furthermore, the threshold depends on the number of parameters
for one activity, denoted by 𝑑 in Section 3.3. Based on experience with the data set
used in Section 3.4.2, assuming that the data set is normalized such that the stan-
dard deviation equals one, a threshold between 0.01 and 0.001 gives good results.
When a threshold of 0.01 is reached, a reasonable reliable pdf can be constructed to
analyze nominal driving behavior, whereas a threshold of around 0.001 is required
to also accurately analyze the edge cases.

When using our measure for completeness, the following might be considered.
As explained in Section 3.3, the measure for completeness is based on the AMISE.
It is also mentioned that the AMISE only differs from the MISE by higher-order terms
under some mild conditions. This requires that the real pdf is smooth, i.e., without
large spikes [195]. Marron and Wand [195] also state that the AMISE is strictly
higher than the MISE under some mild conditions3. As a result, it is likely that the
measure for completeness, which is an approximation of the AMISE, is higher than
the MISE. This could lead to an overestimation of the number of required samples.

The measure for completeness that is proposed in this chapter can be regarded
as an approximation of the MISE of (3.1). To minimize the MISE, the approximated

3The Laplacian of 𝑓(⋅) needs to be continuous and square-integrable and 𝐾(𝑢) ≥ 0, ∀𝑢.
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pdf should be similar to the real pdf. It might be, however, that one is not interested
in the exact likelihoods of certain values of the parameters, but in all possible values
that the parameters can have. In this case, one might be interested in the support
of the real pdf because the support of the pdf defines all possible values for which
the likelihood is larger than zero, see, e.g., [250].

As mentioned in Section 3.2, our problem of quantifying the completeness of
a data set can be divided into three subproblems. The first subproblem, i.e., how
to quantify the completeness regarding the scenario categories, can be regarded
as the so-called unseen species problem [42, 110] or species estimation problem
[316]. In case of the unseen species problem, the entire population is partitioned
into 𝐶 categories and the objective is to estimate 𝐶 given only a part of the entire
population. To continue the analogy, the second subproblem, i.e., how to quantify
the completeness regarding all scenarios that fall into a specific scenario category,
relates to quantifying whether we have a complete view on the variety among one
species, given the number of individuals that we have seen. The third subproblem
addresses a part of the scenarios, i.e., the activities. In line with the previous
analogy, this can be seen as quantifying whether we have a complete view of the
parts of the species, e.g., its limbs or organs.

Our proposed method answers the third subproblem, i.e., how to quantify the
completeness regarding the activities. The advantage of using the activities for
determining the completeness is that there is only a limited number of types of
activities. As a result, for each type of activity, it is expected that there is no need
for an extremely large data set to obtain a fair number of similar activities. On
the other hand, however, it is not known how much data are required to obtain
the desired threshold because, e.g., this depends on the parameterization that is
chosen. The next step is to quantify the completeness regarding all scenarios that
fall into a specific scenario category. Here, the joint probability of the parameters of
different activities in the same scenario category might be considered. Although the
presented method can be applied, this might be impractical because the number
of parameters will be higher than for the activities. The problems of quantifying
the completeness regarding all scenarios that fall into a specific scenario category
and quantifying the completeness regarding the scenario categories remain future
work.

The more parameters are considered, the lower the rate at which the measure
for completeness decreases with more data. This is a direct result from the curse of
dimensionality [254]. Therefore, if more parameters are considered, the need for
more data increases exponentially if no further assumptions are done regarding the
dependence of the parameters. The presented measure for completeness shows
that if all aspects of a scenario, e.g., all vehicles, weather conditions and road
properties, are dependent, then one needs a practically infeasible amount of data
to estimate the statistics reliably. In other words, to estimate the statistics of all such
aspects of a scenario, it will be important to carefully examine which assumptions
can be made regarding the dependence of the aspects of a scenario.
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3.6. Conclusions

M ore and more field data from (naturalistic) driving data become available. The
data are used for all kinds of driving-related research, developments, assess-

ments, and evaluations. When deducing claims based on the collected data, we
require knowledge about the degree of completeness of the data. We considered
the data as a sequence of scenarios, whereas activities are the building blocks of
these scenarios. To obtain knowledge about the degree of completeness of the
data, we propose a measure to quantify the completeness of the activities. This
measure allows to partly answer questions like “have we collected enough field
data?” We illustrated the method using an artificial data set, for which the underly-
ing distributions are known. These results show that the proposed method correctly
quantifies the completeness of the activities. We also applied the method on a data
set with naturalistic driving to show that the method can be used to estimate the
required number of samples. In future work, we will extend the method to whole
traffic scenarios and scenario categories and we will investigate the appropriate
thresholds for the measure to quantify completeness in different applications. Fur-
thermore, the proposed method will be used to evaluate the level of completeness
of the data collection aimed at defining relevant test cases for the assessment of
automated vehicles.
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Scenario-based methods for the assessment of Automated Vehicles (AVs) are
widely supported by many players in the automotive field. Scenarios cap-
tured from real-world data can be used to define the scenarios for the as-
sessment and to estimate their relevance. Therefore, different techniques
are proposed for capturing scenarios from real-world data. In this chapter,
we propose a new method to capture scenarios from real-world data using a
two-step approach. The first step consists in automatically labeling the data
with tags. Second, we mine the scenarios, represented by a combination of
tags, based on the labeled tags. One of the benefits of our approach is that
the tags can be used to identify characteristics of a scenario that are shared
among different types of scenarios. In this way, these characteristics need to
be identified only once. Furthermore, the method is not specific for one type
of scenario and, therefore, it can be applied to a large variety of scenarios.
We provide two examples to illustrate the method. This chapter is concluded
with some promising future possibilities for our approach, such as automatic
generation of scenarios for the assessment of AVs.
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4.1. Introduction

T he development of Automated Vehicles (AVs) has made significant progress in
the last years and it is expected that AVs will soon be introduced on our roads

[29, 190] and become an integral part of intelligent transportation systems [49, 95].
An essential aspect in the development of AVs is the assessment of quality and
performance aspects of the AVs, such as safety, comfort, and efficiency [27, 270].
Among other methods, a scenario-based approach has been proposed [94, 229].
For scenario-based assessment, proper specification of scenarios is crucial since
they are directly reflected in the test cases used for the assessment [270]. One
approach for specifying these test cases is to base them on captured scenarios
from real-world data collected on the level of individual vehicles [70, 94, 229, 234].

Different techniques for capturing scenarios and driving maneuvers have been
proposed in the literature. Kasper et al. [157] use object-oriented Bayesian net-
works for the recognition of 27 type of driving maneuvers. Krajewski et al. [171]
detect lane changes using lane crossings and Schlechtriemen et al. [248] detect
lane changes using a naive Bayes classifier and a hidden Markov model. Xie et al.
[313] use random forest classifiers for detecting accelerating, braking, and turning
with features extracted using principal component analysis, stacked sparse auto-
encoders, and statistical features. Cara and de Gelder [45] extract safety-critical
car-cyclist scenarios from data collected by a vehicle using several machine-learning
techniques, among which support vector machines and multiple instance learning.

In this chapter, we propose a new method for mining scenarios from real-world
driving data using automated tagging and searching for combination of tags. Our
method consists of two steps. First, the data are automatically tagged with relevant
information. For example, a tag “lane change” is added to a vehicle at the time this
vehicle is performing a lane change. Second, the scenarios are mined based on
the aforementioned tags. To do this, we represent a scenario using a combination
of tags and we search for this combination of tags in the tagged data from the
previous step.

The proposed method brings several benefits. First, by tagging the data, char-
acteristics that are shared among different type of scenarios need to be identified
only once, whereas these characteristics would be identified multiple times if each
type of scenarios would be identified completely independently. For example, a
characteristic could be the presence of a leading vehicle, so if we independently
identify two different types of scenarios that consider a leading vehicle, we would
identify the leading vehicle two times. Second, by splitting the process in two parts,
i.e., the tagging and the scenario mining, the scenario mining can be applied to dif-
ferent types of data, e.g., data from a vehicle [221] or a measurement unit above
the road [170, 171]. It is also possible to have manually tagged data, e.g., see
[103]. Third, our approach is easily scalable because additional types of scenarios
can be mined by describing them as a combination of (sequential) tags. Fourth, the
approach reveals promising future possibilities, such as the generation of scenarios
based on the mined scenarios. The generated scenarios can be used to define the
test cases for the assessment of intelligent vehicles [70, 94, 229, 234, 270, 323].

In Section 4.2, we formulate the problem of scenario mining. Sections 4.3
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and 4.4 describe the two steps of our proposed method, i.e., the tagging of the data
and the scenario mining based on these tags, respectively. We illustrate the pro-
posed scenario mining approach with few examples in Section 4.5. In Section 4.6,
we discuss the approach, results, and some possible future improvements. We end
this chapter with conclusions and discuss next steps in Section 4.7.

4.2. Problem formulation

T o formulate the scenario mining problem, we distinguish quantitative scenar-
ios from qualitative scenarios, using the definitions of scenario and scenario

category of Chapter 2 [79]:

Definition 4.1 (Scenario). A scenario is a quantitative description of the relevant
characteristics and activities and/or goals of the ego vehicle(s), the static envi-
ronment, the dynamic environment, and all events that are relevant to the ego
vehicle(s) within the time interval between the first and the last relevant event.

Definition 4.2 (Scenario category [79]). A scenario category is a qualitative de-
scription of the relevant characteristics and activities and/or goals of the ego vehi-
cle(s), the static environment, and the dynamic environment.

A scenario category is an abstraction of a scenario and, therefore, a scenario
category comprises multiple scenarios [79]. For example, the scenario category
“cut-in” comprises all possible cut-in scenarios. Given such a scenario category, our
goal is to find all corresponding scenarios in a given data set. Hence, we define the
scenario mining problem as follows:

Problem (Scenario mining). Given a scenario category, how to find all scenarios
that correspond to this scenario category in a given data set?

4.3. Data tagging

O ur method of scenario mining is divided into two steps. The first step consists
in describing the data using tags, where a tag is a “label attached to a scenario

for the purpose of categorization” [147]. The second step involves extracting the
scenarios based on these tags. In this section, we explain how the tags are deter-
mined. The scenario mining based on these tags is explained in the next section.

As described in Definition 4.1, events and activities are constituents of a sce-
nario. Part of the tags that we consider describe activities of the vehicles. Therefore,
we will use the definition of the term activity of Chapter 2 [79]:

Definition 4.3 (Activity). An activity is a quantitative description of the time evo-
lution of one or more state variables of an actor between two events.

Because an activity starts and ends with an event, for describing the activities,
we will first describe how we detect the events.

As an illustration, Table 4.1 lists the tags that are considered for the case study
in this chapter. We distinguish between tags that describe the behavior of the ego
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Table 4.1: Tags that are considered in this chapter.

Subject Description Section Possible tags

Ego vehicle Longitudinal
activity

Section 4.3.1 Accelerating,
decelerating, cruising

Ego vehicle Lateral
activity

Section 4.3.2 Changing lane left,
changing lane right,
following lane

Any other vehicle Longitudinal
activity

Section 4.3.3 Accelerating,
decelerating, cruising

Any other vehicle Lateral
activity

Section 4.3.4 Changing lane left,
changing lane right,
following lane

Any other vehicle Longitudinal
state

Section 4.3.5 In front of ego, behind
ego

Any other vehicle Lateral state Section 4.3.6 Left of ego, right of ego,
same lane as ego,
unclear

Any other vehicle Leading
vehicle

Section 4.3.7 Leader, no leader

Static environment On highway Section 4.3.8 Highway, no highway

vehicle, tags that describe the behavior and the state of any other vehicle, and tags
that describe the static environment.

Remark 4.1. When other scenario categories are considered than the ones in our
case study, other tags might be necessary. The approach for mining the scenarios
using the tags, however, is general and also applies when other tags are used. For
example, for this chapter we do not consider other road users than vehicles, but
the proposed method also works if cyclists or pedestrians are considered. ♢

In the remainder of this section, we explain how the tags of Table 4.1 are as-
signed. Here, we assume that the data are sampled with a sample time of 𝑡s.

4.3.1. Longitudinal activity of the ego vehicle
We distinguish between three different longitudinal activities: “accelerating”, “de-
celerating”, and “cruising”. The ego vehicle is performing either one of these activi-
ties. An acceleration activity starts at an acceleration event, so we will first describe
how we detect an acceleration event.

To extract the longitudinal events, we might simply examine whether the ac-
celeration of the vehicle is above or below a certain threshold. This approach,
however, would be prone to sensor noise. That is why we use the speed differ-
ence within a certain sample window of length 𝑘h > 0, where 𝑘h is an integer. Let
𝑣(𝑘) denote the speed of the ego vehicle at sample step 𝑘. Next, let us define the
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𝑘 − 𝑘ℎ 𝑘

𝑣min(𝑘)
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Figure 4.1: An example of a speed profile and how the variables 𝑣min(𝑘), 𝑣max(𝑘), 𝑣+(𝑘), and 𝑣−(𝑘)
are calculated at a certain sample step 𝑘 with 𝑘h = 10.

minimum and maximum speed between the current sample step 𝑘 and 𝑘 − 𝑘h:

𝑣min(𝑘) ≡ min
𝜏∈{𝑘−𝑘h ,…,𝑘}

𝑣(𝜏), (4.1)

𝑣max(𝑘) ≡ max
𝜏∈{𝑘−𝑘h ,…,𝑘}

𝑣(𝜏). (4.2)

For detecting acceleration and decelerating events, the difference between the cur-
rent speed and 𝑣min(𝑘) and 𝑣max(𝑘) are used:

𝑣+(𝑘) ≡ 𝑣(𝑘) − 𝑣min(𝑘), (4.3)
𝑣−(𝑘) ≡ 𝑣(𝑘) − 𝑣max(𝑘). (4.4)

Figure 4.1 illustrates how 𝑣min(𝑘), 𝑣max(𝑘), 𝑣+(𝑘), and 𝑣−(𝑘) are calculated.
First, we assume that the event at the start of the data set is a cruising event

at 𝑘 = 𝑘0. Next, we go chronologically through the data set. An acceleration event
is happening at sample 𝑘 if all of the following conditions are true:

• The vehicle is not performing an acceleration activity, i.e., the last event is not
an acceleration event.

• There has been a substantial speed increase between sample step 𝑘−𝑘h and
𝑘, i.e.,

𝑣+(𝑘) ≥ 𝑎cruise𝑘h𝑡s, (4.5)

where 𝑎cruise > 0 is a parameter that describes the maximum average accel-
eration within the time window 𝑘h𝑡s for a cruising activity.

• There is no lower speed in the near future, i.e.,

𝑣min(𝑘 + 𝑘h) = 𝑣(𝑘). (4.6)
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Figure 4.2: Hypothetical speed profile and the corresponding activities cruising (c), accelerating (a), and
decelerating (d). The vertical lines represent the events times.

• There is a substantial speed difference during the activity, i.e.,

|𝑣(𝑘end(𝑘)) − 𝑣(𝑘)| > Δ𝑣 , (4.7)

where Δ𝑣 > 0 is the minimum speed increase and 𝑘end(𝑘), i.e., the last sample
of the acceleration activity, is controlled by the parameter 𝑎cruise and equals
the first sample at which the speed increase is below a threshold:

𝑘end(𝑘) ≡min
𝜏>𝑘

{𝜏 ∶ 𝑣+(𝜏 + 𝑘h) < 𝑎cruise𝑘h𝑡s}. (4.8)

A deceleration event is detected in a similar manner as an acceleration event.
Now that we know the start and the end of the acceleration and deceleration ac-
tivities, we simply label the remaining samples as “cruising”.

Figure 4.2 illustrates the longitudinal activities given a hypothetical speed profile.
The algorithm above described produces the activities “cruising”, “accelerating”,
“cruising”, “decelerating”, and “cruising”.

A result of the activity detection could be very short cruising activities, especially
when the acceleration is around 𝑎cruise or −𝑎cruise. Therefore, all cruising activities
shorter than 𝑘cruise sample steps are removed as well as the two events that define
the start and the end of the cruising activity. Here, we consider three possibilities:

1. Before and after the cruising activity, the vehicle performs the same activity.
In that case, these activities are merged.

2. The vehicle decelerates before the cruising activity and accelerates after-
wards. In that case, an acceleration event is defined at the lowest speed
of the vehicle within the original cruising activity.
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3. The vehicle accelerates before the cruising activity and decelerates after-
wards. In that case, a deceleration event is defined at the highest speed
of the vehicle within the original cruising activity.

4.3.2. Lateral activity of the ego vehicle
We distinguish between three different lateral activities: “following lane”, “changing
lane left”, and “changing lane right”. To detect the lane changes, the lateral dis-
tances toward the left and right lane lines are used. These distances are estimated
from camera images. The estimation is outside the scope of this chapter. We refer
the interested reader to [92]. Let 𝑙(𝑘) and 𝑟(𝑘) denote the distance toward the
left and right lane line, respectively. We use the ISO coordinate system1 [145], so
𝑙(𝑘) ≥ 0 and 𝑟(𝑘) ≤ 0. At the moment the vehicle crosses the line, the distances to
the lines will change substantially. For example, during a lane change to the left,
the left lane line becomes the right lane line. Hence, we detect a left lane change
if the change in the lane line distances is more than the threshold Δl > 0:

𝑙(𝑘) − 𝑙(𝑘 − 1) > Δl, (4.9)
𝑟(𝑘) − 𝑟(𝑘 − 1) > Δl. (4.10)

Similarly, a right lane change is detected when the following conditions are satisfied:

𝑙(𝑘) − 𝑙(𝑘 − 1) < −Δl, (4.11)
𝑟(𝑘) − 𝑟(𝑘 − 1) < −Δl. (4.12)

Once a lane change is detected using (4.9) to (4.12), the moment at which the
lane change starts is determined. To do this, we make use of 𝑙+(𝑘) and 𝑙−(𝑘),
which are similarly defined as 𝑣+(𝑘) and 𝑣−(𝑘), i.e.,

𝑙+(𝑘) ≡ 𝑙(𝑘) − min
𝜏∈{𝑘−𝑘h ,…,𝑘}

𝑙(𝜏), (4.13)

𝑙−(𝑘) ≡ 𝑙(𝑘) − max
𝜏∈{𝑘−𝑘h ,…,𝑘}

𝑙(𝜏). (4.14)

Similarly, 𝑟+(𝑘) and 𝑟−(𝑘) are defined. If a lane change is detected at sample
step 𝑘 using (4.9) and (4.10) or (4.11) and (4.12), the start of this lane change is
estimated. The start of the lane change is at the last sample step before sample
step 𝑘 at which there was not a change in either of the line distances larger than
a threshold controlled by the parameter 𝑣lat. For example, for a right lane change
detected at sample step 𝑘, the start is at:

max
𝜏<𝑘

{𝜏 ∶ 𝑙+(𝜏) < 𝑣lat𝑘h𝑡s ∨ 𝑟+(𝜏) < 𝑣lat𝑘h𝑡s}, (4.15)

where ∨ indicates that either one of the two conditions needs to be satisfied.
1In the ISO coordinate system, the 𝑥-axis points to the front of the vehicle and the 𝑦-axis points to the
left of the vehicle. The origin of the coordinate system is often at the ground below the midpoint of
the rear axle.
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Figure 4.3: The hypothetical distance toward the left lane line 𝑙(𝑘) during a right lane change of the
ego vehicle. The vertical lines indicate the time instants of the events at the start and the end of the
lane change.

The end of a lane change is at the sample step at which either of the lane line
distances increase or decrease is below a threshold. For a right lane change, this
is at

min
𝜏>𝑘

{𝜏 ∶ 𝑙+(𝜏 + 𝑘h) < 𝑣lat𝑘h𝑡s ∨ 𝑟+(𝜏 + 𝑘h) < 𝑣lat𝑘h𝑡s} (4.16)

For a left lane change, the start and end is defined by substituting −𝑙−(⋅) and −𝑟−(⋅)
for 𝑙+(⋅) and 𝑟+(⋅), respectively, in (4.15) and (4.16).

Figure 4.3 illustrates a hypothetical lane change of the ego vehicle. It shows
that the distance towards the left lane line changes when the ego vehicle crosses
the line, such that the conditions (4.11) and (4.12) are satisfied. In Figure 4.3,
events at the start and the end of the lane change are denoted by the black vertical
lines.

Remark 4.2. It might happen that there is no accurate measurement of the lane
line distances available at a certain sample step 𝑘. For example, in Figure 4.4, there
is no line information while the ego vehicle performs a lane change. By using the
next available line distances instead of 𝑙(𝑘) and 𝑟(𝑘) and the previous available line
distances instead of 𝑙(𝑘 − 1) and 𝑟(𝑘 − 1) in (4.9) to (4.12), our algorithm is still
able to detect lane changes. ♢

4.3.3. Longitudinal activity of other vehicle
The longitudinal activities of other vehicles are estimated in a similar manner as for
the ego vehicle. However, instead of the speed of the ego vehicle, 𝑣(𝑘), the speed
of the other vehicles is used. The ego vehicle measures the relative speed of other
vehicles. Let 𝑣rel𝑖 (𝑘) denote the relative speed of the 𝑖-th vehicles at sample 𝑘.
The absolute speed of other vehicles is estimated by adding 𝑣(𝑘) to the estimated
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Figure 4.4: The ego vehicle passes a flyover during daytime while performing a lane change. This causes
glare such that the distance to the lane lines are temporarily unavailable.

relative speed:
𝑣abs𝑖 (𝑘) = 𝑣rel𝑖 (𝑘) + 𝑣(𝑘). (4.17)

To compute the longitudinal activities of the 𝑖-th vehicle, the approach outlined in
Section 4.3.1 is used with 𝑣abs𝑖 (𝑘) substituted for 𝑣(𝑘).
Remark 4.3. Typically, 𝑣rel𝑖 (𝑘) is obtained by fusing the outputs of several sensors
[92]. If 𝑣rel𝑖 (𝑘) is not available, e.g., because the vehicle moved out of the view of
the ego vehicle’s sensors, there are no activities estimated for the 𝑖-th vehicle at
sample step 𝑘. Consequently, no tags are applied for the 𝑖-th vehicle at sample step
𝑘. This applies for all tags of the other vehicles that are mentioned in Table 4.1. ♢

4.3.4. Lateral activity of other vehicle
For the lane changes of other vehicles, only the lane changes to and from the ego
vehicle’s lane are considered. To detect a lane change of the 𝑖-th vehicle, we use
the distance of the 𝑖-th vehicle toward the ego vehicle’s left and right lane lines,
denoted by 𝑙𝑖(𝑘) and 𝑟𝑖(𝑘), respectively. To determine 𝑙𝑖(𝑘) and 𝑟𝑖(𝑘), we subtract
the estimated lane line positions from the estimated lateral position of the 𝑖-th
vehicle. The lane line positions are based on the estimated shape of the lane lines.
For more details, we refer the reader to [92]. We define 𝑙+𝑖 (𝑘), 𝑟+𝑖 (𝑘), 𝑙−𝑖 (𝑘), and
𝑟−𝑖 (𝑘) similarly as 𝑙+(𝑘) and 𝑙−(𝑘) in (4.13) and (4.14).

A lane change is detected if the vehicle crosses either of the two lane lines. There
are four possible ways this can happen. For now, we consider a right lane change
toward the ego vehicle’s lane. A right lane change of the 𝑖-th vehicle toward the
ego vehicle’s lane is detected at sample step 𝑘 if the vehicle is not already changing
lane and

𝑙𝑖(𝑘 − 1) ≤ 0 ∧ 𝑙𝑖(𝑘) > 0, (4.18)

where ∧ indicates that both of the two conditions need to be satisfied.
To determine the start of the lane change, the lateral speed should be below

the threshold 𝑣lat or — in case the vehicle changes several lanes — the lateral
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Table 4.2: Lateral state based on 𝑙𝑖(𝑘) and 𝑟𝑖(𝑘).

𝑙𝑖(𝑘) < 0 𝑙𝑖(𝑘) ≥ 0
𝑟𝑖(𝑘) < 0 Left of ego Same lane as ego
𝑟𝑖(𝑘) ≥ 0 Unclear Right of ego

movement should be above a certain threshold (controlled by 𝛼1). Because it might
happen that the lateral speed is below the threshold during the whole lane change,
a minimum lateral movement is considered as well (controlled by 𝛼2). As a result,
the start of a right lane change toward the ego vehicle’s lane is estimated to occur
at sample step

max
𝜏<𝑘

{𝜏 ∶ 𝑙𝑖(𝜏) < −𝛼1𝑤𝑖(𝑘) ∨ (𝑙+𝑖 (𝜏) < 𝑣lat𝑘h𝑡s ∧ 𝑙𝑖(𝜏) < −𝛼2𝑤𝑖(𝑘))}. (4.19)

Here, 𝑤𝑖(𝑘) = 𝑙𝑖(𝑘) − 𝑟𝑖(𝑘) is the estimated lane width. The end of the same lane
change is estimated, in a similar way, to occur at sample step:

min
𝜏>𝑘

{𝜏 ∶ 𝑙𝑖(𝜏) > 𝛼1𝑤𝑖(𝑘) ∨ (𝑙+𝑖 (𝜏 + 𝑘h) < 𝑣lat𝑘h𝑡s ∧ 𝑙𝑖(𝜏) > 𝛼2𝑤𝑖(𝑘))}. (4.20)

A right lane change from the ego vehicle’s lane and a left lane change from or
to the ego vehicle’s lane are determined in a similar manner.

4.3.5. Longitudinal state of other vehicle
For the longitudinal state of any other vehicle, two possibilities are considered: in
front of the ego vehicle or behind the ego vehicle. Let the longitudinal position at
sample step 𝑘 of the 𝑖-th vehicle relative to the ego vehicle be denoted by 𝑥𝑖(𝑘).
The tag “in front of ego” applies when 𝑥𝑖(𝑘) > 0 and the tag “behind ego” applies
when 𝑥𝑖(𝑘) ≤ 0.

4.3.6. Lateral state of other vehicle
Four different possibilities are considered for the lateral state of any other vehicle.
The lateral state is based on the estimated distance of the other vehicle toward the
ego vehicle’s lane lines, see Table 4.2. The situation of 𝑙𝑖(𝑘) < 0 and 𝑟𝑖(𝑘) ≥ 0
would mean that the other vehicle is left of the left lane line and right of the right
lane line, so it is unclear in which lane the vehicle is.

4.3.7. Leading vehicle
Two possibilities are considered: a vehicle is a leading vehicle (the tag “leader”
applies) or not (the tag “no leader” applies). A vehicle 𝑖 is considered as a leading
vehicle at sample step 𝑘 if all of the following conditions are satisfied:

• The vehicle is in front of the ego vehicle, i.e., 𝑥𝑖(𝑘) > 0.

• The vehicle drives in the same lane as the ego vehicle, i.e., 𝑙𝑖(𝑘) ≥ 0 and
𝑟𝑖(𝑘) < 0.
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• The time headway of the ego vehicle toward the other vehicle, i.e., 𝑥𝑖(𝑘)/𝑣(𝑘)
is less than the parameter 𝜏h > 0.

• There is no other vehicle that is closer to the ego vehicle while satisfying the
above conditions, i.e., 𝑥𝑖(𝑘) ≤ 𝑥𝑗(𝑘) for all 𝑗-th vehicles that satisfy the above
conditions.

4.3.8. Static environment
The aspect of the static environment that is considered in this chapter is whether
the ego vehicle drives on the highway or not. The location of the ego vehicle, based
on GPS measurements, is used to determine the road the ego vehicle is driving on
based on OpenStreetMaps2. If the road is classified as “motorway” (see [218] for
all possibilities), the tag “highway” is applied. Otherwise, the tag “no highway” is
used.

4.4. Mining scenarios using tags

F or the scenario mining, we formulate a scenario category using a combination of
tags. As an example, Figure 4.5 shows how the scenario category “cut-in” can

be formulated using tags. To further structure the tags, we formulate a scenario
category as a sequence of items where each item corresponds to a combination of
tags for all relevant subjects. The number of items may vary from scenario category
to scenario category. The scenario category “cut-in” in Figure 4.5 contains two
items and considers a vehicle other than the ego vehicle that changes lane (other
vehicle, item 1 and 2) and becomes the leading vehicle (other vehicle, item 2). In
the meantime, the ego vehicle follows its lane (ego vehicle, items 1 and 2) and the
scenario category only considers highway driving (static environment, items 1 and
2). When describing the tags for each item, logical AND, OR, or NOT rules may
be used. For example, for the other vehicle in Figure 4.5, either the tag “changing
lane left” or the tag “changing lane right” needs to apply.

The scenarios are mined by searching for matches of the defined items within
the tags of the data set. This searching is subject to two rules:

1. For each item, there needs to be a match for all relevant subjects at the same
sample time.

2. The different items need to occur right after each other.

To continue the example of the scenario category “cut-in”, Figure 4.6 shows a part
of labeled data in which a cut-in scenario is found. The two vertical dashed lines
indicate the start and the end of the cut-in that is defined in Figure 4.5.

4.5. Case study

H ere, we illustrate the proposed method by applying it to the data set described
in [221]. The data have been recorded from a single vehicle in which different

2See https://www.openstreetmap.org/.

https://www.openstreetmap.org/
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Figure 4.5: Formulation of the scenario category “cut-in” using tags.
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Figure 4.6: Example of tags describing a cut-in. Note that only the tags that are relevant for the cut-in,
as defined in Figure 4.5, are shown. Furthermore, whereas there are multiple other vehicles around the
ego vehicle, only the other vehicle that performs the cut-in is shown.
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Figure 4.7: Schematic representation of the field of view of the three radars (solid area) and the camera
(area filled with lines) that the ego vehicle is equipped with. The positions of vehicles on the left or the
right of the ego vehicle (dotted area) are predicted based on previous measurements.
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Figure 4.8: Formulation of the scenario category “overtaking before lane change” using tags.

drivers were asked to drive a prescribed route. The majority of the route is on the
highway. To measure the surrounding traffic, the vehicle is equipped with three
radars and one camera, as shown in Figure 4.7. The images from the camera are
used to estimate the lane line distances [92]. Furthermore, the surrounding traffic
is measured by fusing the data of the radars and the camera [92]. While fusing the
data of the different sensors, the position of the vehicles that disappear from the
sensors’ field of view on the left and right of the ego vehicle, see the dotted areas
in Figure 4.7, are predicted until the vehicles appear again in the sensors’ field of
view. In total, four hours of driving are analyzed.

To illustrate the proposed scenario mining approach, two different scenario cat-
egories are considered: “cut-in” and “overtaking before lane change”. Figures 4.5
and 4.8 show the formulation of these scenario categories using tags. Table 4.3
lists the values of the parameters that are used for the tagging of the data.

The results of the scenario mining are presented in Table 4.4. A false negative
(FN) means that a scenario that occurred is not detected and a false positive (FP)
means that the scenario mining detects a scenario whereas this scenario does not
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Table 4.3: Values of parameters used in the case study.

Parameter Description Value

𝑡s Sample time 0.01 s
𝑘h Sample window 100
𝑎cruise Threshold determining the start and end of an

acceleration or deceleration activity
0.1m/s2

Δ𝑣 Minimum speed increase/decrease for an
acceleration/deceleration activity

1m/s

𝑘cruise Minimum number of samples for a cruising activity 400
Δl A lane change is detected when the difference

between consecutive lane line distances is larger than
this threshold

1m

𝑣lat Threshold determining the start and end of a lane
change

0.25m/s

𝛼1 Maximum factor of the lane width for a lane change of
any other vehicle

0.5

𝛼2 Minimum factor of the lane width for a lane change of
any other vehicle

0.1

Table 4.4: Results of the scenario mining.

Scenario category FN FP TP Recall Precision F1

Cut-in 3 3 33 92% 92% 92%
Overtaking before lane change 1 0 18 95% 100% 97%

occur. The true positives (TP) are the scenarios that are correctly detected. The
recall is the ratio of the number of true positives (TP) and the total number of
scenarios that occur (TP+ FN) and the precision is the ratio of the number of true
positives (TP) and the total number of detected scenarios (TP+FP). The F1 score
is the harmonic mean of the recall and the precision:

F1 = 2 ⋅ Precision ⋅ Recall
Precision+ Recall

. (4.21)

As listed in Table 4.4, 33 out of 36 cut-ins are correctly detected and 3 out of
the 36 detected cut-ins are incorrect. This results in an F1 score of 92%. For
the scenario category “overtaking before lane change”, 18 out of 19 scenarios are
correctly detected and there are no scenarios incorrectly detected. This results in
an F1 score of 97%.

4.6. Discussion

T he false detections are a result of inaccurate or missing data. For example,
in case of the four false negatives, the other vehicle is not detected at the
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time of the cut-in or overtaking. For one cut-in, this is because another vehicle
obstructs the view toward the vehicle at the moment of the cut in. For the other
three false negatives, the other vehicles appear from the sensor’s blind spot (dotted
area in Figure 4.7). The three false positives of the cut-in scenario are a result of
inaccurate measurements of the lane line distances. On the one hand, it might be
interpreted as that the false detections are due to limitations of the data. On the
other hand, for future work, we can expand our work to deal with these limitations
of the data. For example, using techniques used for correcting the interpretation of
natural language [139], we might be able to correct wrong tags or to add missing
tags.

To mine scenarios from a scenario category, the scenario category needs to
be represented by a a certain combination of tags, such as shown in Figures 4.5
and 4.8. Provided that there are no new tags required, there are no new algorithms
required for mining scenarios from new scenario categories. As a result, it is rel-
atively straightforward to apply the proposed approach for mining scenarios from
other scenario categories than the ones presented in our case study. Future work
includes more tags, e.g., “turning left” or “turning right”, and to consider more
actors, e.g., pedestrians and cyclists. This will enable the mining of many more
scenarios.

For future research, the analogy between the proposed scenario mining and
Natural Language Processing (NLP) could be explored. In NLP, natural language
is analyzed by searching for certain combination of words or syllables. Similarly,
we are searching for certain combinations of tags. In NLP, n-gram models are
successfully used to correct [139] and predict [41] words and to generate text
[215]; so n-gram models might be used to correct and predict tags and to generate
new scenarios for the assessment of AVs.

4.7. Conclusions

F or the scenario-based assessment of Automated Vehicles (AVs), scenarios cap-
tured from real-world data collected on the level of individual vehicles can be

used to define the tests. We have proposed a two-step approach for mining real-
world scenarios from a data set. The first step consists in labeling the data with tags
that describe, e.g., the lateral and longitudinal activities of the different actors. The
second step mines the scenarios by searching for particular combinations of tags.
We have illustrated the approach with two examples, a cut-in and an overtaking
before a lane change. These examples demonstrated that the proposed approach
is suitable for mining scenarios from real-world data. Future work includes labeling
the data with more tags and exploring the possibilities of using techniques that are
used in the field of Natural Language Processing (NLP).
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The development of assessment methods for the performance of Automated
Vehicles (AVs) is essential to enable the deployment of automated driving
technologies, due to the complex operational domain of AVs. One candidate is
scenario-based assessment, in which test cases are derived from real-world
road traffic scenarios obtained from driving data. Because of the high variety
of the possible scenarios, using only observed scenarios for the assessment
is not sufficient. Therefore, methods for generating additional scenarios are
necessary.
Our contribution is twofold. First, we propose a method to determine the pa-
rameters that describe the scenarios to a sufficient degree while relying less
on strong assumptions on the parameters that characterize the scenarios.
By estimating the probability density function (pdf) of these parameters, re-
alistic parameter values can be generated. Second, we present the Scenario
Representativeness (SR) metric based on the Wasserstein distance, which
quantifies to what extent the scenarios with the generated parameter values
are representative of real-world scenarios while covering the actual variety
found in the real-world scenarios.
A comparison of our proposed method with methods relying on assumptions
of the scenario parameterization and pdf estimation shows that the proposed
method can automatically determine the optimal scenario parameterization
and pdf estimation. Furthermore, it is demonstrated that our SR metric can
be used to choose the (number of) parameters that best describe a scenario.
The presented method is promising because the parameterization and pdf
estimation can directly be applied to already available importance sampling
strategies for accelerating the evaluation of AVs.
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5.1. Introduction

A n essential aspect in the development of Automated Vehicles (AVs) is the as-
sessment of the quality and performance of AV behavior with respect to safety,

comfort, and efficiency [27, 167, 270]. Because public road tests are expensive
and time consuming [155, 323], a scenario-based approach has been proposed
[15, 70, 94, 171, 229, 233, 270]. With a scenario-based approach, the response of
the system-under-test is assessed in many scenarios and for the variations of these
scenarios that occur in the real world. Here, a scenario describes the situation the
system-under-test is in and how this situation develops over time (in Section 5.3.1,
a precise definition of the term scenario is provided). One of the advantages of a
scenario-based approach is that the assessment can focus on the more challeng-
ing situations by selecting scenarios that are challenging for the system-under-test.
As a source of information for the assessment scenarios, real-world driving data
has been proposed, thereby guaranteeing that the scenarios represent real-world
driving conditions [94, 171, 229].

For the scenario-based assessment approach, it is important that the generated
scenarios are representative of scenarios that could happen in real life. In other
words, the scenarios should be a representation of the real world [233]. Only
then, the results of the assessment can be generalized to the performance of the
system-under-test when operating in real life [70]. Furthermore, it is essential that
the generated scenarios cover the same variety that is found in real life. Riedmaier
et al. [233] argue that since an infinite number of situations occur in the real world,
the scenario generation methods must provide a large number of variations in order
to cover this infinite number of situations.

Our data-driven approach uses observed scenarios to generate parameter values
that describe new scenarios. Instead of relying on a predetermined functional form
of the signals, such as a vehicle’s speed, and fitting parameters to this functional
form, we employ a Singular Value Decomposition (SVD) [116] to determine in a
data-driven manner the parameters that best describe the scenarios. Next, the
probability density function (pdf) of the parameters is estimated, such that the
pdf can be used to sample the parameters to generate similar scenarios. To not
assume a particular shape of the pdf, Kernel Density Estimation (KDE) [222, 237]
is used for the pdf estimation. Furthermore, with KDE, the correlations that might
exist among the parameters is modeled. This chapter also proposes a novel metric
called the Scenario Representativeness (SR) metric for quantifying to what extent
the generated scenarios are representative and cover the actual variety of real-
world scenarios. More specifically, this metric uses the Wasserstein distance [241]
to compare a set of generated scenarios with a set of observed scenarios.

This chapter is organized as follows. Section 5.2 reviews related works. In
Section 5.3, the approach for generating scenarios for the assessment of AVs is
explained. Next, Section 5.4 presents the SR metric, i.e., a novel metric for quan-
tifying the performance of the scenario-generation method. A case study is per-
formed in Section 5.5. Section 5.6 discusses relevant implications of our approach
and some directions for future research. Conclusions of this chapter are provided
in Section 5.7.
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5.2. Related works

I n this section, first, works concerning the generation of scenarios for the assess-ment of AVs are reviewed. Next, works related to the SR metric are reviewed.

5.2.1. Scenario generation
The approaches to determine scenarios for the assessment of AVs can be catego-
rized into three kinds [183]: scenarios based on observations of real-world traffic,
scenarios based on the functionality that is being assessed, and a combination of
these two approaches. The current chapter focuses on the first approach.

In the literature, several methods are proposed to generate scenarios for the as-
sessment based on real-world driving data. Lages et al. [176] proposed a method
to construct scenarios in a virtual simulation environment by reconstructing the
real-world scenarios observed by laser scanners. Zofka et al. [327] presented how
recorded sensor data can be exploited to create scenarios that might lead to criti-
cal situations by modifying parameters of the recorded parameterized scenarios.
Stepien et al. [271] generate scenarios by sampling scenario parameter values
from generalized extreme value distributions, where the distribution parameters
are fitted using scenario parameter values extracted from safety-critical scenarios
observed in naturalistic driving data. In [70, 100–102, 184, 277], also parameter-
ized scenarios were generated and, in addition, importance sampling techniques
were presented that automatically generate scenarios in which the system-under-
test shows (safety-) critical behavior. Other approaches to generate scenarios in
which the system-under-test shows (safety-) critical behavior are Monte Carlo tree
search [169] and genetic programming [58]. Schuldt et al. [253] provided a method
to generate scenarios using combinatorial algorithms that should ensure that the
test cases cover the variety of the possible situations the system-under-test could
encounter in real life. More recently, Spooner et al. [269] presented a Generative
Adversarial Network (GAN) to generate pedestrian crossing scenarios.

In the existing literature, the scenario generation methods for the assessment
of AVs have either one or more of the following shortcomings:

• Observed scenarios are replayed without adding more variations [176]. In
this case, the total variety of scenarios that is found in real life will not be
covered unless unrealistic amounts of data are gathered.

• The scenarios are oversimplified. For example, a vehicle’s speed profile fol-
lows a predetermined functional form [70, 271, 277].

• Assumptions regarding the scenario parameter distributions are made that
potentially compromise the quality of the scenarios. For example, the param-
eters are assumed to originate from a Gaussian [113] or generalized extreme
value [271] distribution, and/or it is assumed that (some of) the parameters
are uncorrelated [102].

• Because no pdf of the scenario parameters is known [327], no evaluation
can be made of the performance of the system once deployed on the road
because it is unknown how realistic and likely the scenarios are.
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In Section 5.3, a method is proposed that overcomes these shortcomings.

5.2.2. Scenario representativeness metric
The generated scenarios should represent scenarios that could happen in real life.
Whereas different approaches exist in the literature regarding the generation of
scenarios for the assessment of AVs, less is known about the comparison of the gen-
erated scenarios with real-life traffic. From the mentioned sources in Section 5.2.1,
only Feng et al. [102] compared their generated scenarios with the ground truth
from naturalistic driving data. Feng et al. [102] compared the distributions of vehicle
speeds and bumper-to-bumper distances between the constructed scenarios and
the ground truth. To quantify the similarity between the distributions, the Hellinger
distance [47] and the mean absolute error were used. The disadvantages of this
approach are that:

1. the generated scenarios may still be substantially different even though the
distributions of the vehicle speeds and bumper-to-bumper distances are sim-
ilar, and

2. only the marginal distributions are considered while the correlation between
the vehicle speeds and bumper-to-bumper distances might be completely dif-
ferent.

Whereas little is known about comparing generated scenarios for the scenario-
based assessment of AVs with ground truth data, many similarity metrics for com-
paring two pdfs are known [47]. Well-known metrics are the Minkowski metric
[47], which is a generalized version of the Euclidean distance, the 𝑓-divergence,
which is a generalized version of both the Kullback-Leibler divergence [173] and
the Hellinger distance [47], and the Wasserstein metric [241]. For practical rea-
sons, this work uses the Wasserstein metric. As is shown in Section 5.4.2, the
Wasserstein distance can be estimated using empirical distributions, i.e., without
the need to estimate and evaluate a pdf. The other mentioned metrics require in-
tegration over the domain of the pdfs, which will give computational issues since
the considered pdfs will have a high dimensionality.

5.3. Scenario generation

T o generate realistic scenarios for the assessment of AVs, we use a data-driven
approach: observed scenarios are used to generate new scenarios. To do this,

the scenarios are parameterized, i.e., parameters are defined that characterize a
scenario. For example, the duration of a scenario could be a parameter. Next, the
pdf of the parameters is estimated. This pdf can be used to generate parameter
values for new scenarios. In addition, the pdf contains the statistical information
of the parameters so that the performance of AVs can be estimated [70, 322].
Choosing the parameters that describe a scenario, however, is not trivial:

• Choosing too few parameters might lead to an oversimplification of the actual
scenarios. As a result, not all possible variations of a scenario are modeled.
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• Too many parameters lead to problems with estimating the pdf, due to the
curse of dimensionality [254].

To overcome this problem, we first consider as many parameters as needed
for a complete description of the scenarios to avoid the oversimplification of the
scenarios. Next, using an SVD, a new set of parameters is created using a linear
mapping of the original scenario parameters. Because this new set of parameters is
ordered according to the contribution of each of these parameters in describing the
variation that exists among the original scenario parameters, we will consider only
the most important parameters without losing too much information. In this way,
the curse of dimensionality is avoided without relying on a predetermined choice of
parameters.

Below, we first explain how to describe a scenario using many parameters. Next,
Section 5.3.2 proposes the use of the SVD to reduce the number of parameters.
Section 5.3.3 describes how KDE is used to estimate the pdf of the reduced set of
parameters and how the estimated KDE can be used to generate scenario parameter
values.

5.3.1. Parameterization of scenarios
The first step of our approach is the parameterization of scenarios. There is no
single best way to parameterize the scenarios considering the wide variety of sce-
narios. To deal with this variety, this work distinguishes quantitative scenarios from
qualitative scenarios, using the definitions of scenario and scenario category of [79]
(Chapter 2):

Definition 5.1 (Scenario). A scenario is a quantitative description of the relevant
characteristics and activities and/or goals of the ego vehicle(s), the static environ-
ment, the dynamic environment and all events that are relevant to the ego vehicle(s)
within the time interval between the first and last relevant event.

Definition 5.2 (Scenario category). A scenario category is a qualitative description
of relevant characteristics and activities and/or goals of the ego vehicle(s), the static
environment, and the dynamic environment.

A scenario category is an abstraction of a scenario and, therefore, a scenario
category comprises multiple scenarios [79]. For example, the scenario category
“cut-in” comprises all possible cut-in scenarios. The goal of our approach is to
determine the optimal parameterization of scenarios of a given scenario category
based on a set of observed scenarios of the same scenario category and to estimate
the pdf of these parameters that can be used to generate parameter values for new
scenarios.

The observed scenarios are described using a time series for the content of the
scenario that changes within the time window of the scenario (e.g., the speed of a
vehicle) and some additional parameters for the content that is fixed (e.g., the lane
width and the duration of the scenario). Here, 𝑦(𝑡) ∈ R𝑛𝑦 denotes the time series
of a scenario with 𝑡 ∈ [𝑡0, 𝑡1], where 𝑛𝑦 denotes the dimension of the time series
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and 𝑡0 and 𝑡1 denote the start and end time of the scenario, respectively. The 𝑛𝜃
additional parameters are represented by 𝜃 ∈ R𝑛𝜃 .

To deal with the time series, the continuous time interval [𝑡0, 𝑡1] is discretized,
such that two consecutive time instants are (𝑡1 − 𝑡0)/(𝑛t − 1) apart. This gives:

y =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑦(𝑡0)
𝑦(𝑡0 +

𝑡1−𝑡0
𝑛t−1

)

𝑦(𝑡0 + 2
𝑡1−𝑡0
𝑛t−1

)
⋮

𝑦(𝑡1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

∈ R𝑛t𝑛𝑦 . (5.1)

Note that 𝑛t must be chosen such that no important information is lost during
the discretization, i.e., all relevant frequencies must be captured. It depends on
the application what the relevant frequencies are. Because in practice, due to
the discrete nature of sensor readings, the time series 𝑦(𝑡) is obtained at certain
specific times rather than on a continuous time interval, it may be required to use
interpolation techniques, such as splines [66], to evaluate y.

Let us assume that 𝑁𝑥 observed scenarios can be used to generate new scenar-
ios. To indicate that the scenario parameters y and 𝜃 belong to a specific scenario,
the index 𝑖 ∈ {1, … , 𝑁𝑥} is used, i.e., the parameters of the 𝑖-th scenario are y𝑖 and
𝜃𝑖. To further ease the notation, y𝑖 and 𝜃𝑖 are combined into one vector 𝑥𝑖:

𝑥𝑖 = [
y𝑖
𝜃𝑖 ] ∈ R𝑛t𝑛𝑦+𝑛𝜃 . (5.2)

5.3.2. Parameter reduction using Singular Value Decomposi-
tion

As shown in (5.2), 𝑛𝑥 = 𝑛t𝑛𝑦 + 𝑛𝜃 parameters describe a scenario. Even for small
numbers of 𝑛t, 𝑛𝑦, and 𝑛𝜃, the total number of parameters becomes too large to
reliably estimate the joint pdf. One way to avoid this curse of dimensionality is to
assume that the parameters are independent, but especially the parameters 𝑦(𝑡0)
till 𝑦(𝑡1) in (5.1) are obviously correlated, so assuming that the parameters are
independent is not a good solution.

In the field of machine learning, Principal Component Analysis (PCA) is com-
monly used for dimensionality reduction [3]. As PCA uses the SVD [116], this work
uses the SVD to transform the parameters 𝑥𝑖 into a lower-dimensional vector of
parameters. Before applying the SVD, the parameters are weighted with 𝛼 ∈ R𝑛𝑥
in order to give more or less importance to the 𝑛𝑥 parameters. This is particularly
useful to compensate for the imbalance in the parameter vector, where the imbal-
ance is caused by the fact that the parameter vector considers the time series 𝑦(𝑡)
at 𝑛t different times and the additional parameters 𝜃 only once. Let us define a
matrix that contains the parameters of the 𝑁𝑥 scenarios:

𝑋 = [(𝛼 ⊙ 𝑥1) − 𝜇 ⋯ (𝛼 ⊙ 𝑥𝑁𝑥) − 𝜇] ∈ R𝑛𝑥×𝑁𝑥 , (5.3)
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where ⊙ denotes the element-wise product of vectors and 𝜇 ∈ R𝑛𝑥 denotes the
mean of the weighted scenario parameters:

𝜇 = 1
𝑁𝑥

𝑁𝑥
∑
𝑖=1
𝛼 ⊙ 𝑥𝑖 . (5.4)

Using the SVD of 𝑋, we obtain:

𝑋 = 𝑈Σ𝑉T. (5.5)

Here, both 𝑈 ∈ R𝑛𝑥×𝑛𝑥 and 𝑉 ∈ R𝑁𝑥×𝑁𝑥 are orthonormal matrices. Therefore, both
matrices can be interpreted as rotation matrices in R𝑛𝑥 and R𝑁𝑥 , respectively. The
matrix Σ ∈ R𝑛𝑥×𝑁𝑥 takes the same shape as 𝑋. This matrix has only zeros except on
(part of) the diagonal. The diagonal contains the so-called singular values, denoted
by 𝜎𝑗 with 𝑗 ∈ {1, … , 𝑁̄}, 𝑁̄ = min(𝑛𝑥 , 𝑁𝑥). These singular values are in decreasing
order, i.e.,

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑁̄ ≥ 0. (5.6)

Because of the decreasing singular values, rotating the matrix 𝑋 from the left with
𝑈T transforms the data to a new coordinate system such that the first coordinate
has the largest variance compared to the other coordinates. This variance equals
𝜎21 . Similarly, the second largest variance equals 𝜎22 and lies on the second co-
ordinate, etc. Because of the decreasing variance, the scenario parameters can
be approximated using only the first 𝑑 coordinates of the new coordinate system,
as these 𝑑 coordinates describe the majority of the variations. So, the scenario
parameters of the 𝑖-th scenario are approximated by setting 𝜎𝑗 = 0 for 𝑗 > 𝑑:

𝛼 ⊙ 𝑥𝑖 = 𝜇 +
𝑁̄

∑
𝑗=1
𝜎𝑗𝑣𝑖𝑗𝑢𝑗 ≈ 𝜇 +

𝑑

∑
𝑗=1
𝜎𝑗𝑣𝑖𝑗𝑢𝑗 , (5.7)

where 𝑣𝑖𝑗 is the (𝑖, 𝑗)-th element of 𝑉, 𝑢𝑗 is the 𝑗-th column of 𝑈, and 𝑑 is the
number of parameters that are retained. Thus, the 𝑛𝑥 parameters of the 𝑖-th sce-
nario are approximated using the 𝑑 parameters 𝑣𝑖1, … , 𝑣𝑖𝑑. The singular values
𝜎1, … , 𝜎𝑑, the vectors 𝑢1, … , 𝑢𝑑, and 𝜇 are used to map the new scenario parame-
ters, 𝑣𝑖1, … , 𝑣𝑖𝑑, to an approximation of the weighted original scenario parameters,
𝛼⊙𝑥𝑖. In Section 5.4, a metric is proposed for evaluation, among others, whether
the approximation of (5.7) is acceptable or not.

Remark 5.1. Using the approximation of (5.7), it is not necessary to evaluate the
complete SVD of (5.5). Only the first 𝑑 columns of 𝑈 and 𝑉 need to be computed
and only the first 𝑑 singular values. In practice, 𝑑 ≪ 𝑁̄, so this saves a substantial
amount of computation time. ♢

The choice of 𝑑 < 𝑁̄ is not trivial. Choosing 𝑑 too small results in too much
loss of detail. Choosing 𝑑 too large will give problems when estimating the pdf of
the new parameters. One method to choose 𝑑 is to look at the amount of overall
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variance of 𝛼 ⊙ 𝑥𝑖 explained by the first 𝑑 singular values. The overall variance
scales with the sum of the squared singular values [116, p. 77], i.e.,

𝑁𝑥
∑
𝑖=1
((𝛼 ⊙ 𝑥𝑖) − 𝜇)

T((𝛼 ⊙ 𝑥𝑖) − 𝜇) =
𝑁̄

∑
𝑗=1
𝜎2𝑗 . (5.8)

Thus, the first 𝑑 singular values explain

∑𝑑𝑗=1 𝜎2𝑗
∑𝑁̄𝑗=1 𝜎2𝑗

(5.9)

of the overall variance. One approach would be to set 𝑑 such that (5.9) exceeds
a certain threshold, such as 0.95. Another way to choose 𝑑 is by inspecting the
actual approximation error in (5.7) and keep increasing 𝑑 until the approximation
error is not too large. Section 5.4 proposes an alternative way to determine 𝑑 using
a metric that quantifies the goal of our generated scenarios, i.e., that the generated
scenarios are representing real-world scenarios and cover the actual variety of real-
world scenarios.

5.3.3. Estimating the probability density function
Using the approximation of (5.7) based on the SVD, the 𝑖-th scenario is described
by the vector 𝑣̃𝑖:

𝑣̃T𝑖 = [𝑣𝑖1 ⋯ 𝑣𝑖𝑑]. (5.10)

Note that the 𝑑 entries of 𝑣̃𝑖 are linearly uncorrelated with the 𝑑 entries of 𝑣̃𝑚
(𝑚 ≠ 𝑖)1. Despite the linear independence, the different entries of 𝑣̃𝑖 may still be
dependent due to higher-order correlations; so we treat these 𝑑 entries as depen-
dent variables.

To estimate the pdf of 𝑣̃𝑖, we propose to use KDE. KDE [222, 237] is often
referred to as a non-parametric way to estimate the pdf because KDE does not
rely on the assumption that the data are drawn from a given parametric family of
probability distributions. Because KDE produces a pdf that adapts itself to the data,
it is flexible regarding the shape of the actual underlying distribution of 𝑣̃𝑖. In KDE,
the pdf is estimated as:

̂𝑓𝐻(𝑣) =
1
𝑁𝑥

𝑁𝑥
∑
𝑖=1
𝐾𝐻(𝑣 − 𝑣̃𝑖). (5.11)

Here, 𝐾𝐻(⋅) is the so-called scaled kernel with a positive definite symmetric band-
width matrix 𝐻 ∈ R𝑑×𝑑. The kernel 𝐾(⋅) and the scaled kernel 𝐾𝐻(⋅) are related
1This is assuming that 𝜎𝑑 > 0. With this assumption and because 𝑋 in (5.3) is defined such that the sum
of each row of 𝑋 equals zero, it is easy to verify that 1

𝑁𝑥
∑𝑁𝑥𝑚=1 𝑣𝑚𝑗 = 0 for 𝑗 ∈ {1,… ,𝑁𝑥}. Therefore,

∑𝑁𝑥𝑖=1(𝑣𝑖𝑗 −
1
𝑁𝑥
∑𝑁𝑥𝑚=1 𝑣𝑚𝑗)(𝑣𝑖𝑘 −

1
𝑁𝑥
∑𝑁𝑥𝑚=1 𝑣𝑚𝑘) = ∑

𝑁𝑥
𝑖=1 𝑣𝑖𝑗𝑣𝑖𝑘 = 0 for 𝑗 ≠ 𝑘, where the latter equality

follows from the orthonormality of 𝑉.
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using
𝐾𝐻(𝑢) = |𝐻|

−1/2𝐾(𝐻−1/2𝑢), (5.12)

where | ⋅ | denotes the matrix determinant. The choice of the kernel function is not
as important as the choice of the bandwidth matrix [87, 283]. This article considers
the Gaussian kernel2, which is given by

𝐾(𝑢) = 1
(2𝜋)𝑑/2

exp{−12‖𝑢‖
2
2}, (5.13)

where ‖𝑢‖22 = 𝑢T𝑢 denotes the squared 2-norm of 𝑢.
A bandwidth matrix of the form 𝐻 = ℎ2𝐼𝑑 is used, where 𝐼𝑑 denotes the 𝑑-by-𝑑

identity matrix. The bandwidth ℎ is determined with leave-one-out cross-validation
[86] because this minimizes the difference between the real pdf and the estimated
pdf according to the Kullback-Leibler divergence [283, 319].

To sample scenario parameters using ̂𝑓𝐻(⋅), first, an integer 𝑖 ∈ {1, … , 𝑁𝑥} is
randomly chosen with each integer having equal likelihood. Next, a random sam-
ple is drawn from a Gaussian with covariance 𝐻 and mean 𝑣̃𝑖. Then, using the
approximation in (5.7), the scenario parameters are calculated.

As far as the computational effort is concerned, sampling the scenario parame-
ters from a KDE is efficient because there is no need to actually evaluate the pdf.
Determining the optimal bandwidth matrix requires more computational effort, but
this only has to be done once per data set. The computational complexity of cross-
validation methods for the bandwidth estimation typically scales with 𝑁2𝑥 [119].

5.4. Scenario Representativeness metric

I deally, the parameters of the generated scenarios are sampled from the same
distribution that underlies the real-world scenario parameters. The problem is

that this distribution is unknown. Nevertheless, it is possible to define a metric
that quantifies the similarity of the distribution that is used to generate scenario
parameters and the distribution that underlies the real-world scenario parameters.
Section 5.4.1 further explains the goal of this metric, which we call the Scenario
Representativeness (SR) metric. Next, Section 5.4.2 explains the Wasserstein dis-
tance [241], which is then applied to derive our metric in Section 5.4.3.

5.4.1. Scenario comparison problem
The set of observed scenarios, described using the parameters 𝑥𝑖, 𝑖 ∈ {1, … , 𝑁𝑥}, are
used for generating the scenario parameters. To ease the notation, let us denote
the set of observed scenarios by 𝒳 = {𝑥1, … , 𝑥𝑁𝑥}. This chapter assumes that these
scenarios — that are comprised by the same scenario category — are independently
and identically distributed according to the distribution 𝑓(⋅) ∶ R𝑛𝑥 → R. Let us
denote the set of generated scenario parameter vectors by𝒲 = {𝑤1, … , 𝑤𝑁𝑤} where
2The advantage of the Gaussian kernel is that it gives the possibility to calculate a metric that quantifies
the completeness of the data [72] (Chapter 3) and to apply conditional sampling when generating
scenario parameters [75] (Chapter 6). Both these topics are out of scope of this chapter.
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𝑤𝑖 ∈ R𝑛𝑥 , 𝑖 ∈ {1, … , 𝑁𝑤} are similarly parameterized as in (5.2) and𝑁𝑤 is the number
of generated scenario parameter vectors. Let ̂𝑓(⋅) ∶ R𝑛𝑥 → R denote the pdf of the
generated scenario parameter vectors, which is obtained from ̂𝑓𝐻(⋅) ∶ R𝑑 → R under
a change of variable according to the approximation in (5.7). As later appears, it is
not needed to have an explicit definition for ̂𝑓(⋅). Ideally, ̂𝑓(⋅) is equal to 𝑓(⋅). So
our metric aims to quantify the similarity of ̂𝑓(⋅) and 𝑓(⋅).

To estimate the similarity between ̂𝑓(⋅) and 𝑓(⋅), we cannot simply compare𝒲
with 𝒳. In that case, taking𝒲 = 𝒳 would give us the best result, but this is unde-
sirable because, ideally, the scenarios of the generated parameters cover the whole
variety of real-world scenarios and not just the variety that have been observed in
𝒳. Therefore, another set of scenarios is needed that can be used to test. Let us
assume that such a set of scenarios is available, denoted by 𝒵 = {𝑧1, … , 𝑧𝑁𝑧} where
𝑧𝑖 ∈ R𝑛𝑥 , 𝑖 ∈ {1, … , 𝑁𝑧} are independently and identically distributed according to
𝑓(⋅). Thus, 𝒳 and 𝒵 can be regarded as a training and test set, respectively.

In summary, the goal is to find a metric that quantifies the similarity of ̂𝑓(⋅)
and 𝑓(⋅) using the sets of observed scenario parameters 𝒳 and 𝒵 and the set of
scenario parameters𝒲, generated based on 𝒳.

5.4.2. Empirical Wasserstein metric
The 𝑝-th Wasserstein metric (𝑝 ≥ 1) [241] is used to compare two pdfs 𝜉(⋅) and
𝜂(⋅) defined on the set 𝒰. This metric is defined as follows:

𝑊𝑝(𝜉, 𝜂) = ( inf
𝛾∈Γ(𝜉,𝜂)

{∫
𝒰×𝒰

(Δ(𝑢, 𝑣))𝑝 d𝛾(𝑢, 𝑣)})
1/𝑝
. (5.14)

Here, Δ(𝑢, 𝑣) denotes the distance from 𝑢 to 𝑣, which will be defined below, and
Γ(𝜉, 𝜂) denotes the set of joint distributions of (𝑢, 𝑣) that have marginal distributions
𝜉(⋅) and 𝜂(⋅). Intuitively, if the pdfs 𝜉(⋅) and 𝜂(⋅) are seen as two piles of earth
having a different shape with mass 1, then (5.14) calculates the minimum cost of
converting one pile of earth with shape 𝜉(⋅) into a pile of earth with shape 𝜂(⋅).
Therefore, the Wasserstein metric is also referred to as the earth mover’s distance
[240].

In our case, the goal is to have a metric to compare 𝑓(⋅) and ̂𝑓(⋅). Because 𝑓(⋅)
is unknown, its approximation based on 𝒵 is considered:

𝑓(𝑧) ≈ 1
𝑁𝑧

𝑁𝑧
∑
𝑖=1
𝛿(𝑧 − 𝑧𝑖), 𝑧 ∈ R𝑛𝑥 , (5.15)

where 𝛿(⋅) denotes the Dirac delta function. Considering the high dimension of 𝑧,
numerical approximation of the integral of the Wasserstein metric (5.14) using this
approximation and ̂𝑓(⋅) would require so many evaluations of ̂𝑓(⋅) that it becomes
computationally infeasible. Therefore, the empirical estimation of the Wasserstein
metric (5.14) is considered, which makes use of the empirical estimation of ̂𝑓(⋅):

̂𝑓(𝑤) ≈ 1
𝑁𝑤

𝑁𝑤
∑
𝑖=1
𝛿(𝑤 − 𝑤𝑖), 𝑤 ∈ R𝑛𝑥 . (5.16)
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Substituting the empirical estimations of (5.15) and (5.16) for 𝜉(⋅) and 𝜂(⋅), respec-
tively, into (5.14), leads to the so-called empirical Wasserstein metric [266], which
is defined as:

𝑊̃𝑝(𝒵,𝒲) = (inf𝑇

𝑁𝑧
∑
𝑖=1

𝑁𝑤
∑
𝑗=1
(Δ(𝑧𝑖 , 𝑤𝑗))

𝑝𝑇𝑖𝑗)

1/𝑝

, (5.17)

where 𝑇𝑖𝑗 is the (𝑖, 𝑗)-th element of the transportation matrix 𝑇 that is subject to
the following conditions:

𝑁𝑧
∑
𝑖=1
𝑇𝑖𝑗 =

1
𝑁𝑤

∀ 𝑗 ∈ {1,… , 𝑁𝑤}, (5.18)

𝑁𝑤
∑
𝑗=1
𝑇𝑖𝑗 =

1
𝑁𝑧

∀ 𝑖 ∈ {1, … ,𝑁𝑧}, (5.19)

𝑇𝑖𝑗 ≥ 0 ∀ 𝑖 ∈ {1, … , 𝑁𝑧}, 𝑗 ∈ {1, … ,𝑁𝑤} (5.20)

For the distance function, we will use the 2-norm of the difference of the scenario
parameters after scaling the scenario parameters according to the weights 𝛼 that
we also used in Section 5.3.2:

Δ(𝑧, 𝑤) = ‖(𝛼 ⊙ 𝑧) − (𝛼 ⊙𝑤)‖2. (5.21)

5.4.3. Metric for testing scenario representativeness
The empirical Wasserstein metric 𝑊̃𝑝(𝒵,𝒲) is an approximation of the Wasserstein
metric𝑊𝑝(𝑓, ̂𝑓). As one might expect, using an infinite number of scenarios, i.e., for
𝑁𝑧 → ∞ and 𝑁𝑤 → ∞, the empirical Wasserstein metric approaches the Wasserstein
metric with probability 1 [266]. The problem is that 𝑁𝑧 and 𝑁𝑤 are not infinite. In
addition, whereas a fairly large number for 𝑁𝑤 can be chosen, as it is only limited
by the available computational resources, to increase 𝑁𝑧, more data are needed
and this is generally expensive. Therefore, this section proposes a metric that is
different from (5.17).

Our proposed SR metric is based on the following intuition: Suppose that ̂𝑓 is
indeed an approximation of 𝑓. Because 𝒳 and 𝒵 are based on the same underly-
ing pdf, i.e., 𝑓, it is expected that 𝑊̃𝑝(𝒳,𝒲) is similar to 𝑊̃𝑝(𝒵,𝒲). If, however,
𝑊̃𝑝(𝒳,𝒲) is significantly smaller than 𝑊̃𝑝(𝒵,𝒲), it suggests overfitting of the train-
ing data because the generated scenario parameters are too much skewed towards
the training data 𝒳. To penalize overfitting of the training data, our SR metric in-
cludes a penalty in case 𝑊̃𝑝(𝒵,𝒲) is larger than 𝑊̃𝑝(𝒳,𝒲). Thus, the SR metric
becomes:

𝑀𝑝(𝒲,𝒵,𝒳) = 𝑊̃𝑝(𝒵,𝒲) + 𝛽(𝑊̃𝑝(𝒵,𝒲) − 𝑊̃𝑝(𝒳,𝒲)). (5.22)

Here, 𝛽 is the weight of the penalty. The case study in Section 5.5 demonstrates
empirically that𝑀𝑝(𝒲,𝒵,𝒳) of (5.22) better correlates with the Wasserstein metric
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Figure 5.1: Schematic representation of the scenario category “leading vehicle decelerating (LVD)”. The
left vehicle is the ego vehicle.

of (5.14) than the empirical Wasserstein metric of (5.17) and a method to choose
𝛽.

5.5. Case study

T o illustrate the proposed method for generating the scenario parameters (Sec-
tion 5.3) and the SR metric (Section 5.4), these are applied in a case study.

Section 5.5.1 explains the scenario categories that are considered in the case study
and describes the choices that are made regarding the scenario parameterization.
Section 5.5.2 illustrates the approximation of the original parameterization using
the SVD. Next, the scenario parameter generation method is demonstrated in Sec-
tion 5.5.3. Section 5.5.3 also shows that the SR metric (5.22) can be used to choose
𝑑. Our method for generating scenario parameters is compared with other meth-
ods in Section 5.5.4. Section 5.5.5 demonstrates that the SR metric (5.22) better
correlates with the Wasserstein metric (5.14) than the empirical Wasserstein metric
(5.17).

5.5.1. Scenario categories and parameterization
In this case study, two scenario categories are considered. The first scenario cat-
egory, labeled leading vehicle decelerating (LVD), involves an ego vehicle that is
following another vehicle that decelerates, see Figure 5.1. As a result, the ego
vehicle might need to brake or change direction to avoid contact with the vehicle
that decelerates. The second scenario category considers a vehicle that performs
a cut-in, such that this vehicle becomes the leading vehicle of the ego vehicle, see
Figure 5.2. Depending on the speed and timing of the vehicle that performs a
cut-in, the ego vehicle might need to brake or change direction to avoid a crash.

To obtain the scenarios, the data set described in [221] is used. The data were
recorded from a single vehicle in which 20 drivers were asked to drive a prescribed
route, resulting in 63 hours of data containing 1150 LVD scenarios and 289 cut-
in scenarios. The majority of the route was on the highway. To measure the
surrounding traffic, the vehicle was equipped with three radars and one camera.
The surrounding traffic was measured by fusing the data of the radars and the
camera as described in [92]. To extract the LVD and cut-in scenarios from the data
set with the fused data, we searched for particular (combinations of) activities in
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Figure 5.2: Schematic representation of the scenario category “cut-in”. The left vehicle is the ego vehicle.

the data: a deceleration activity of a leading vehicle indicates an LVD scenario and
a lane change of another vehicle that becomes the leading vehicle indicates a cut-in
scenario. For more information on the process of extracting the scenarios, see [73]
(Chapter 4).

From the 1150 LVD scenarios, the training uses 80% (so 𝑁𝑥 = 920) and the
testing uses the remaining 20% (so 𝑁𝑧 = 230) as this 80/20 ratio is commonly
used for splitting the data into a training set and a test set. The training data are
used for generating 𝑁𝑤 = 10000 new scenario parameter vectors. To describe the
decelerating behavior of the leading vehicle, the acceleration of the leading vehicle
at 𝑛t = 50 time instants is used (𝑛𝑦 = 1). As additional parameters, the duration of
the scenario, 𝑡1−𝑡0, the initial speed of the leading vehicle, and the initial time gap
between the leading vehicle and the ego vehicle are considered (𝑛𝜃 = 3). Thus,
𝑛𝑥 = 53. In Figure 5.3, the speed of the leading vehicle of 100 randomly-selected
observed LVD scenarios are shown. The 𝑘-th weight, 𝛼𝑘, is obtained by dividing a
chosen constant 𝛽𝑘 by the standard deviation of the 𝑘-th parameter:

𝛼𝑘 =
𝛽𝑘

√ 1
𝑁𝑥
∑𝑁𝑥𝑖=1((𝑥𝑖)𝑘 − 𝑥̄𝑘)

2
, (5.23)

with (𝑥𝑖)𝑘 denoting the 𝑘-th element of 𝑥𝑖 and 𝑥̄𝑘 =
1
𝑁𝑥
∑𝑁𝑥𝑖=1(𝑥𝑖)𝑘. In this way, the

contribution of the 𝑘-th parameter to the overall variance (see (5.8)) only depends
on 𝛽𝑘. When choosing 𝛽1 = … = 𝛽53, the acceleration of the leading vehicle would
contribute 50 times more to the overall variance of (5.8) because 𝑛t = 50 elements
are used to describe the acceleration. For the LVD scenarios, we want to give the
acceleration the same importance as each of the other parameters, so we choose
𝛽1 = … = 𝛽50 = 1/√𝑛t and 𝛽51 = 𝛽52 = 𝛽53 = 1.

From the 289 cut-in scenarios, 80% are used for training (so 𝑁𝑥 = 231) and
20% are used for testing (so 𝑁𝑧 = 58). Both cut-in scenarios from the left and from
the right are considered. The training data are used for generating 𝑁𝑤 = 10000
parameter vectors that describe cut-in scenarios. A cut-in scenario is described
using the speed of the vehicle that performs the lane change and its lateral position
with respect to the center of the ego vehicle’s lane (so 𝑛𝑦 = 2) at 𝑛t = 50 time
instants. In case of a cut-in scenario from the left, the lateral position is positive
when the cutting-in vehicle is on the left of the center of ego vehicle’s lane and vice
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Figure 5.3: Speed of the leading vehicle during 100 randomly-selected observed LVD scenarios. For
plotting purposes, the starting time of each scenario is set to 0.

versa for a cut-in scenario from the right. Furthermore, 𝑛𝜃 = 3 extra parameters
are used to describe a cut-in scenario: the duration of the scenario, the initial speed
of the ego vehicle, and the initial longitudinal position of the cutting-in vehicle with
respect to the ego vehicle. Thus, 𝑛𝑥 = 103. To give the same importance to the
speed of the vehicle that performs the lane change, its lateral position, and the 3
extra parameters, the weights are calculated using (5.23) with 𝛽1 = … = 𝛽100 =
1/√𝑛t and 𝛽101 = 𝛽102 = 𝛽103 = 1.

5.5.2. Approximation of scenarios with SVD
As explained in Section 5.3.3, using too many parameters will lead to poor estima-
tions of the pdf of the parameters. We use an SVD to obtain a reduced number of
parameters that best describe the original scenario parameters. This section illus-
trates the approximation of the original scenario parameters using the parameters
obtained after applying the SVD.

Following the approximation of (5.7), the scaled parameter vector, 𝛼 ⊙ 𝑥𝑖, is
approximated using a linear combination of the first 𝑑 columns of 𝑈, i.e., 𝑢1, … , 𝑢𝑑.
In Figure 5.4 and Table 5.1, 𝜇 and the first four columns of 𝑈 are shown for the LVD
scenarios. For an easier interpretation, the original scaling of the parameters by 𝛼
is undone via the element-wise division by 𝛼. Figure 5.4 shows that the average
scenario starts with a deceleration of about 0.4m/s2 and ends with a deceleration
of about 0.8m/s2. Table 5.1 shows that the average scenario duration is 4.73 s,
the average initial speed of the leading vehicle is 22.11km/h, and the average
initial time gap is 1.49 s. Since each scenario is estimated by combining the curves
in Figure 5.4 and values in Table 5.1, it can be seen that the approximations do
not contain complex acceleration curves. In other words, the accelerations will
be smoothed and the details may get lost. The amount of smoothing depends
on 𝑑, i.e., the number of vectors of 𝑈 that are used to approximate the original
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Figure 5.4: The first 𝑛t = 50 coordinates of 𝜇 and the first four columns of 𝑈 after scaling with 𝛼 for
the LVD scenarios. Note that ⊘ denotes element-wise division.

Table 5.1: The last 𝑛𝜃 = 3 coordinates of 𝜇 and the first four columns of 𝑈 after scaling with 𝛼 for the
LVD scenarios. Note that ⊘ denotes element-wise division.

Coordinate 51 Coordinate 52 Coordinate 53
Scenario duration Initial speed Initial time gap

𝜇 ⊘ 𝛼 4.73 s 22.11km/h 1.49 s
𝑢1⊘𝛼 −1.50 s −15.17km/h 0.28 s
𝑢2⊘𝛼 −3.09 s 12.22km/h −0.06 s
𝑢3⊘𝛼 1.15 s −16.52km/h 0.29 s
𝑢4⊘𝛼 1.32 s −2.88km/h −0.08 s

parameter vector. Choosing the value of 𝑑 is a trade-off: a higher value of 𝑑 leads
to less smoothing and, therefore, a smaller approximation error, but choosing 𝑑 too
large leads to problems when estimating the pdf of the new parameters.

Figure 5.5 shows five LVD scenarios. These selected LVD scenarios correspond
to the five LVD scenarios that require the highest average deceleration of the fol-
lowing vehicle. The line with the “1” denotes the LVD scenario that requires the
highest average deceleration. Table 5.2 lists the values of 𝜎𝑗𝑣𝑗𝑖 for 𝑗 ∈ {1, … , 𝑑} with
𝑑 = 4 that are used to approximate the original scenarios according to the approxi-
mation in (5.7). The red lines in Figure 5.5 show the approximated speed of the five
LVD scenarios. Table 5.2 shows the initial time gaps of the five scenarios shown in
Figure 5.5. These five scenarios illustrate that the accelerations are smoothed, but
the main characteristics of the scenarios are captured by the approximations: the
average deceleration, the scenario duration, the initial speed, and the initial time
gap are well approximated.
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Figure 5.5: Five scenarios that require the highest average deceleration of the following vehicle. The
blue lines denote the observed scenarios and the red lines denote their approximations based on the
𝑑 = 4 new parameters. The corresponding initial time gaps are listed in Table 5.2.

5.5.3. Generating scenario parameters
An important parameter for the generation of the scenario parameter vectors is
the number of reduced parameters (𝑑). One approach is to look at the so-called
explained variance of (5.9) of the first 𝑑 singular values, see Table 5.3. The first
four singular values already explain 90.4% of the variance for the LVD scenarios,
so 𝑑 = 4 might be a suitable choice. In Figure 5.6, the speed of the leading vehicle
of 100 generated LVD scenarios is shown using 𝑑 = 4.

Another way to determine 𝑑 is to use the SR metric 𝑀𝑝(𝒲,𝒵,𝒳) defined in
(5.22). In Figure 5.7, the result is shown when applying this metric with 𝑝 = 1,
alongside with the empirical Wasserstein metric 𝑊̃1(𝒵,𝒲) of (5.17) and the penalty
𝑊̃1(𝒵,𝒲) − 𝑊̃1(𝒳,𝒲). Each point in Figure 5.7 represents the median3 when
applying the metric 200 times, each time with a different (random) partition of
the training data 𝒳 and test data 𝒵. The standard deviation of the medians in
Figure 5.7, estimated using bootstrapping [91], is less than 0.005. For the SR
metric, the penalty is weighted using 𝛽 = 0.25. The choice of 𝛽 = 0.25 is justified
in Section 5.5.5.

The most left points in Figure 5.7 represent the metric in case the set of training
data 𝒳 is directly used to sample the scenario parameters instead of the approach
of Section 5.3. Here, 𝒲 is a selection with replacement of 𝑁𝑤 scenarios from 𝒳,
i.e.:

𝑤𝑖 = 𝑥⌊𝑢⌋, 𝑢 ∼ 𝑈(1, 𝑁𝑥 + 1), ∀𝑖 ∈ {1, … , 𝑁𝑤}, (5.24)

where 𝑈(1,𝑁𝑥 + 1) denotes the continuous uniform distribution with boundaries 1
3We preferred to use the median instead of the mean, such that the result is less influenced by outliers
[82].
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Figure 5.6: Speed of the leading vehicle during 100 generated LVD scenarios.
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Figure 5.7: Medians of the metrics for the set of generated LVD scenario parameters. Note that 𝑑 = 1
is excluded because its metrics are an order of magnitude higher than for 𝑑 = 2 and would, therefore,
not be visible with the current scaling of the y-axis.



5.5. Case study

5

95

Table 5.2: Initial time gaps of the five scenarios that require the highest average deceleration of the
following vehicle. The corresponding speeds are shown in Figure 5.5. The values 𝜎𝑗𝑣𝑖𝑗, 𝑗 ∈ {1, 2, 3, 4},
are used to approximate the corresponding scenarios.

# 𝜎1𝑣𝑖1 𝜎2𝑣𝑖2 𝜎3𝑣𝑖3 𝜎4𝑣𝑖4 Initial time gap
Original Approximated

1 2.21 0.30 −0.03 2.16 1.91 s 1.91 s
2 −0.28 0.75 −0.46 1.56 1.08 s 1.11 s
3 0.61 −0.21 −0.42 1.53 1.43 s 1.43 s
4 1.74 0.25 0.58 1.63 2.00 s 2.00 s
5 −1.74 −0.71 −0.49 1.30 0.81 s 0.80 s

Table 5.3: Explained variance according to (5.9).

𝑑 Leading vehicle decelerating Cut-in

1 36.9% 36.9%
2 63.0% 63.3%
3 78.0% 84.5%
4 90.4% 94.1%
5 94.5% 96.9%
6 96.7% 99.0%
7 98.2% 99.6%
8 99.2% 99.8%

and 𝑁𝑥 + 1, and ⌊⋅⌋ denotes the floor function. Using the training data directly
for “generating scenarios” leads to a low empirical Wasserstein metric. The down-
side is that there is not much variation among the generated scenarios. Therefore,
the penalty is also the highest, which results in 𝑀1(𝒲,𝒵,𝒳) ≈ 0.967. Looking
at 𝑑 = 4, the empirical Wasserstein metric is approximately similar compared to
when the training set is directly used. Due to the sampling of the scenario pa-
rameters from the KDE, the generated scenarios contain more variation than the
training set, resulting in a lower penalty and, therefore, a lower metric evaluation
of 𝑀1(𝒲,𝒵,𝒳) ≈ 0.843. Increasing 𝑑 even further results in higher metric evalua-
tions. So based on the proposed metric, 𝑑 = 4 seems the right choice.

Figure 5.8 shows the results of the generation of the cut-in scenario parameters
in a similar way as Figure 5.7. The standard deviation of all points in Figure 5.8 is
less than 0.008. The lowest penalty is obtained with 𝑑 = 2, but the higher empirical
Wasserstein distance suggests that too much information is lost. The best result,
i.e., where the SR metric, 𝑀1(𝒲,𝒵,𝒳), is minimal, is obtained at 𝑑 = 3.

5.5.4. Comparison with other approaches
Our proposed method utilizes an SVD to obtain the scenario parameters and multi-
variate KDE to estimate the pdf of these parameters. To illustrate the advantages of
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Figure 5.8: Medians of the metrics for the set of generated cut-in scenario parameters.

these choices, the results of our method are compared with alternative approaches.
First, instead of using an SVD for obtaining the parameters, a fixed parameteriza-
tion is used, such as in [70, 277, 327]. Second, instead of using KDE to estimate
the pdf of the parameters, a Gaussian distribution like in [113] is assumed. Third,
the parameters are assumed to be independent.

When using a fixed parameterization for the LVD scenario, four parameters de-
scribe the scenario [70]: the speed reduction of the leading vehicle, the final speed
of the leading vehicle, the duration of the scenario, and the initial time gap be-
tween the leading vehicle and the ego vehicle. The speed of the leading vehicle
is assumed to follow a sinusoidal function, such that the acceleration at the start
and at the end of the scenario equals zero. In case of the cut-in scenario, five pa-
rameters describe the scenario: the mean speed of the vehicle cutting in, its initial
lateral position with respect to the center of the ego vehicle’s lane, the duration of
the scenario, the initial speed of the ego vehicle, and the initial longitudinal position
of the vehicle cutting in with respect to the ego vehicle. The speed of the vehicle
cutting in is assumed to be constant. Its lateral position is assumed to follow a
sinusoidal function, such that the vehicle ends at the center of the ego vehicle’s
lane. For estimating the pdf of these parameters, the comparison considers four
possibilities: multivariate KDE, multiple univariate KDEs, a multivariate Gaussian
distribution, and multiple univariate Gaussian distributions.

Table 5.4 shows the results of the different approaches for generating scenario
parameters. For the LVD scenarios, our proposed approach (top row in Table 5.4)
resulted in the lowest 𝑀1(𝒲,𝒵,𝒳). For the cut-in scenarios, it is interesting to
note that the scores are not very different as long as SVD is used to obtain the
parameters. This is partly explained by the smaller data set because this results
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Table 5.4: Medians of the metric 𝑀1(𝒲,𝒵,𝒳) with different approaches for generating scenario param-
eter values.

Parameters Distribution Dependency LVD Cut-in

SVD KDE Dependent 0.84 1.30
SVD Gaussian Dependent 1.00 1.33
SVD KDE Independent 0.99 1.28
SVD Gaussian Independent 1.00 1.33
Fixed KDE Dependent 2.65 1.70
Fixed Gaussian Dependent 2.58 1.71
Fixed KDE Independent 2.31 1.67
Fixed Gaussian Independent 4.76 1.69

in a higher bandwidth4 that makes the KDE result with the Gaussian kernel look
more like a Gaussian distribution. Using SVD and KDE while assuming that the
parameters are independent, results in an even better result: 1.28 instead of 1.30
(with a standard deviation of 0.005). This indicates that assuming that the three
parameters obtained with the SVD are independent, is acceptable.

5.5.5. Evaluating the scenario representativeness metric
To determine whether our proposed metric (5.22) correlates better with the Wasser-
stein metric (5.14) than the empirical Wasserstein metric (5.15), the Wasserstein
metric (5.14) needs to be known. This is not possible because the true underlying
distribution of the data is unknown. To estimate the Wasserstein metric (5.14),
the empirical Wasserstein metric (5.15) can be used with large numbers of test
scenarios and generated scenario parameters, i.e., with large values of 𝑁𝑧 and 𝑁𝑤,
respectively. Since a large number of test scenarios is not available to us, we as-
sume a certain distribution for 𝑓(⋅) from which the training data and the test data
are generated. The approach is as follows (the numbers are for the LVD scenarios
and, in parenthesis, the numbers for the cut-in scenarios are shown):

1. Based on the original 1150 (289) scenarios, obtained from the data, the fol-
lowing sets of scenario parameters are generated using the proposed ap-
proach explained in Section 5.3 with 𝑑 = 4 (𝑑 = 3):

• A new set of training data 𝒳∗ of size 𝑁𝑥 = 920 (𝑁𝑥 = 231);
• A new set of test data 𝒵∗ of size 𝑁𝑧 = 230 (𝑁𝑧 = 58); and
• A large set of test data 𝒵∗large of size 𝑁𝑧 = 10000 (𝑁𝑧 = 10000).

2. Based on 𝒳∗, 𝑁𝑤 = 10000 (𝑁𝑤 = 10000) scenario parameters are generated
and collected in a set𝒲∗.

4On average, the bandwidth is about 1.5 to 2 times larger for the cut-in scenarios compared to the LVD
scenarios.
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Figure 5.9: Medians of the metrics for the set of 𝑁𝑤 = 10000 generated LVD scenario parameter vectors.
In this case, the 𝑁𝑥 = 920 scenarios of 𝒳∗ are sampled from 𝑓̂𝐻(⋅) of (5.11), where 𝑓̂𝐻(⋅) is based on
the original data set 𝒳.

3. Our proposed metric is computed using𝒲∗, 𝒵∗, and𝒳∗: 𝑀1(𝒲∗, 𝒵∗, 𝒳∗) with
𝛽 = 0.25.

4. The Wasserstein metric of (5.14) is estimated using the empirical Wasserstein
metric of (5.17) with 𝒲∗ and 𝒵∗large. Note: to approximate the Wasserstein
metric of (5.14) using the empirical Wasserstein metric of (5.17), both 𝒲∗

and 𝒵∗large need to be large (but not necessarily the same) in size.
We have repeated this approach 200 times, each time with a different (random)

partition of the training data 𝒳 and test data 𝒵. Figures 5.9 and 5.10 show the
result of this approach for the LVD scenarios and cut-in scenarios, respectively.
In both cases, the empirical Wasserstein metric 𝑊̃1(𝒵∗,𝒲∗) is minimal when the
training data are directly used for the generated scenario parameters. Thus, the
empirical Wasserstein metric suggests that the best approach for generating new
scenario parameters is to simply sample parameters from the training data. The
actual Wasserstein metric, estimated using 𝑊̃1(𝒵∗large,𝒲∗), shows that using our
proposed method outperforms sampling parameters directly from the training data.

To justify the choice of 𝛽 = 0.25, Figure 5.11 shows the correlation between the
medians of the proposed metric 𝑀1(𝒲∗, 𝒵∗, 𝒳∗) and 𝑊̃1(𝒵∗large,𝒲∗) for different
values of 𝛽. With 𝛽 = 0, i.e., 𝑀1(𝒲∗, 𝒵∗, 𝒳∗) = 𝑊̃1(𝒵∗,𝒲∗), the correlation is
0.974 for the LVD scenarios and 0.824 for the cut-in scenarios. The correlation
increases with increasing 𝛽 until the maximum is obtained at 𝛽 ≈ 0.21 for the
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Figure 5.10: Medians of the metrics for the set of 𝑁𝑤 = 10000 generated cut-in scenario parameter
vectors.

LVD scenarios and at 𝛽 ≈ 0.27 for the cut-in scenarios. The correlations at these
maxima are 0.992 and 0.987, respectively. Increasing 𝛽 further results in a lower
correlation, which suggests that a choice of 𝛽 = 0.25 seems appropriate.

The experiment described in this section can be used to determine both 𝑑 and
𝛽 in an iterative manner given an initial choice for 𝛽 (denoted by 𝛽0):

1. Set 𝑖 = 0.

2. Determine 𝑑𝑖 such that 𝑀1(𝒲,𝒵,𝒳) with 𝛽 = 𝛽𝑖 and 𝑑 = 𝑑𝑖 is minimized.

3. Generate 𝒳∗,𝒲∗, 𝒵∗, and 𝒵∗large using the approach described in this section
with 𝑑 = 𝑑𝑖.

4. Increase 𝑖 by 1.

5. Determine 𝛽𝑖 by maximizing the correlation between𝑀1(𝒲∗, 𝒵∗, 𝒳∗) with 𝛽 =
𝛽𝑖 and 𝑊̃1(𝒵∗large,𝒲∗) (e.g., see Figure 5.11).

6. Repeat step 2.

7. Stop if 𝑑𝑖 = 𝑑𝑖−1. Otherwise, return to step 3.

As an initial choice, 𝛽0 = 0.25 seems appropriate. More specifically, when choosing
𝛽0 ∈ [0.1, 1], the optimal choice of 𝑑 is found after one iteration.
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Figure 5.11: Correlation between the medians of𝑀1(𝒲∗ , 𝒵∗ , 𝒳∗) and 𝑊̃1(𝒵∗large ,𝒲∗) for different values
of 𝛽. The blue line shows the result for the LVD scenarios with a maximum correlation of 0.992 at
𝛽 ≈ 0.21. The red line shows the result for the cut-in scenarios with a maximum correlation of 0.987 at
𝛽 ≈ 0.25.

5.6. Discussion

O ne of the advantages of our proposed method for generating scenario parame-
ters is that less assumptions are needed regarding the parameterization of the

scenarios:

• There is no assumption needed on a predetermined functional form of the
time series data. For example, in an LVD scenario, the speed is often as-
sumed to follow a polynomial function [70], a sinusoidal function, or a linear
function [277]. In case of a predetermined functional form, parameters are
fitted to the functional form. In our case, the SVD automatically determines
the optimal choice of parameterization without relying on a predetermined
functional form.

• There is no assumption needed for the shape of the distribution of the param-
eters. For example, a particular distribution, such as a Gaussian distribution
[113] or a uniform distribution, may be assumed for which parameters are
fitted. Alternatively, assumptions are made regarding the independence of
the parameters [102]. In our case, the KDE automatically adapts its shape to
the data and also considers the dependence among the different parameters.

It should be noted, however, that if there is a reason to believe that one or more of
the assumptions are valid, then alternative methods for generating scenario param-
eters that make use of such assumptions might perform equally or better than the
presented method [261]. In most cases, it will be difficult to provide a proper justi-
fication of the assumptions regarding the functional form of, e.g., the vehicle speed,
and the pdf of the scenario parameters and the presented method will outperform
methods relying on such assumptions. In any case, the presented SR metric pro-
vides an opportunity to verify the applicability of any assumptions regarding the
scenario parameterization and parameter distributions.
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The generated scenario parameters represent scenarios that could happen in
real life and cover the same variety that is found in real-world traffic. Most likely,
the majority of these scenarios are straightforward for an AV to deal with. To
do an efficient assessment, the focus should be on scenarios that might lead to
critical situations in which the probability of a crash is high. That is why so-called
importance sampling [239, Chapter 5.6] is often used for the assessment of AVs,
e.g., see [70, 149, 315, 323]. With importance sampling, a different pdf, 𝑔(⋅), is
used to sample scenario parameters, such that more emphasis is put on scenarios
that might lead to critical situations. To get unbiased results, the result of a test with
scenario parameters 𝑥 is weighted by the ratio of the original probability density,
̂𝑓𝐻(𝑥), and the probability density of the pdf used for importance sampling, 𝑔(𝑥)
[70, 149, 239, 315]. Note that the importance sampling techniques explained in
[70, 149, 315] can be directly applied on the estimated pdf ̂𝑓𝐻(⋅) in (5.11) of the
reduced set of parameters. In future work, our method for generating scenarios
will be combined with importance sampling [70, 149, 315] for an assessment of an
AV.

In some cases, one might want to sample from a conditional pdf, e.g., in case of
sampling the scenario parameters for the LVD scenario such that the initial time gap
equals a specified value. Sampling from a KDE such that one or more parameters
are predetermined is straightforward [134]. In our case, sampling from ̂𝑓ℎ(⋅) such
that the time gap equals a specified value results in a linear constraint on the
samples because the reduced parameter vector 𝑣̃𝑖 of (5.10) results from a linear
mapping of the original parameters 𝑥𝑖 of (5.2). In other words, one might want to
sample 𝑣 from ̂𝑓𝐻(⋅) of (5.11), such that 𝑣 is subject to the linear constraint

𝐴𝑣 = 𝑏, (5.25)

where 𝐴 and 𝑏 are a matrix and vector, respectively. In Chapter 6 [75], an algorithm
is provided for sampling from a pdf estimated using KDE such that the generated
sample is subject to the constraint of (5.25). The main idea of [75] is to weight
each parameter vector 𝑣𝑖, 𝑖 ∈ {1, … , 𝑁𝑥} in the KDE based on how closely the 𝑣𝑖
matches the constraint (5.25).

Our method for generating scenarios employs SVD to reduce the number of
parameters. It must be noted that the parameters that result from the SVD are lin-
ear combinations of the original parameters. Therefore, the SVD only captures the
linear relationships of the original parameters. To capture non-linear relationships,
the original data can be first mapped using a non-linear kernel [249]. Choosing an
appropriate kernel is, however, not straightforward and may involve much trial and
error.

The presented case study considers a vehicle for which the full trajectory is pre-
determined. For the presented scenarios, this works well, but the full trajectory is
not predetermined in scenarios where the actor’s behavior depends on the behavior
of the ego vehicle [12]. To deal with such scenarios, one option is to use a driver
behavior model (e.g., [159, 281]) with predefined parameters instead of describing
the full trajectory. The parameters of the driver behavior model may be part of 𝜃.
The proposed method for generating scenario parameter values still applies in these
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kind of scenarios. Our ongoing research focuses on the assessment of AVs using
scenarios in which driver behavior models are used for vehicles that may respond
to the ego vehicle’s behavior.

Since KDE is used, the generated scenario parameters represent variations of
the data. Nevertheless, if the data do not contain scenarios that might lead to
critical situations, such as an emergency braking maneuver or a reckless cut-in sce-
nario, it is unlikely that such scenarios are generated, even if importance sampling
[70, 149, 315] is used. Therefore, when using the generated scenarios for the
(safety) assessment of AVs, it is important that there is enough data such that the
data contain such scenarios. Although there is no consensus yet on the required
amount of data, some metrics have been proposed (Chapter 3 [72] and [298]) for
determining whether enough data have been collected when using the data for the
assessment of AVs.

This work employs the Wasserstein metric to propose the SR metric for evalu-
ating the generated scenario parameters. It is illustrated how our proposed metric
could be used to determine the appropriate number of parameters (𝑑) and the type
of distribution that is used to model the pdf of the scenario parameters. Also, the
bandwidth ℎ or bandwidth matrix 𝐻 could also be determined by optimizing the
proposed metric. In case of the bandwidth estimation, the disadvantage is that
it would require more computational resources compared to, e.g., leave-one-out
cross-validation.

More research is needed to determine the influences on the optimal choice for
the penalty weight 𝛽. The case study has demonstrated one way to verify whether
the initial choice of 𝛽 is appropriate, but we do not yet know why a weight of
𝛽 ≈ 0.25 is an appropriate choice. The actual choice might depend on, among
others, 𝑁𝑥, 𝑁𝑧, 𝑁𝑤, and the shape of the underlying distribution of the scenario
parameters. Future research with a larger data set will allow us to better determine
the optimal 𝛽 and how this optimal value is influenced.

Future work involves researching the use of the proposed metric in combination
with alternative methods for generating scenarios for the assessment of AVs. For
example, Spooner et al. [269] have used a GAN [117] to create pedestrian crossing
scenarios. One of the difficulties with GANs is to know when the GAN truly replicates
the underlying distribution. Several metrics have been proposed [36] to evaluate
the performance of GANs, among which a metric based on the Wasserstein metric
that compares the generated data with test data. Alternatively, our proposed metric,
which also considers the training data, could be considered for evaluating GANs.
To judge the potential of our proposed metric in this application, more research is
needed.

5.7. Conclusions

I t is essential for the deployment of Automated Vehicles (AVs) to develop assess-ment methods. Scenario-based assessment in which test cases are derived from
real-world road traffic scenarios is regarded as a viable approach for assessing AVs.
This work has presented a method to generate parameterized scenarios for the use
in test case descriptions for the assessment of AVs. To not rely on a small set of
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parameters, we have used Singular Value Decomposition (SVD) to reduce the pa-
rameters. Parameter values for the scenarios are generated by drawing samples
from the estimated probability density function (pdf) of the reduced set of parame-
ters. To deal with the unknown shape of the pdf, it has been proposed to estimate
the pdf using Kernel Density Estimation (KDE). This work has also presented a
novel metric, the so-called Scenario Representativeness (SR) metric, based on the
Wasserstein metric, for evaluating whether the generated scenario parameters rep-
resent realistic scenarios while covering the same variety that is found in real-world
traffic.

A case study has illustrated the proposed method for generating scenario pa-
rameter values using scenarios with a leading vehicle that decelerates and scenarios
with a vehicle that performs a cut-in. The case study has also illustrated that the
proposed SR metric correctly quantifies the degree to which the generated scenario
parameter values represent real-world scenarios and, at the same time, cover the
same variety of scenarios that is found in real life.

Future work involves applying the proposed method for more complex scenarios,
e.g., scenarios that contain several different actors, to generate scenario-based test
cases for the safety assessment of AVs. Additionally, it would be of interest to apply
importance sampling for AV assessment in combination with the proposed method
for generating scenarios. Other future work involves investigating the use of the
proposed metric in combination with alternative methods for generating scenarios
for the assessment of AVs.
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The safety assessment of Automated Vehicles (AVs) is an important aspect
of the development cycle of AVs. A scenario-based assessment approach is
accepted by many players in the field as part of the complete safety assess-
ment. A scenario is a representation of a situation on the road to which the AV
needs to respond appropriately. One way to generate the required scenario-
based test descriptions is to parameterize the scenarios and to draw these
parameters from a probability density function (pdf). Because the shape of
the pdf is unknown beforehand, assuming a functional form of the pdf and
fitting the parameters to the data may lead to inaccurate fits. As an alterna-
tive, Kernel Density Estimation (KDE) is a promising candidate for estimating
the underlying pdf because it is flexible with the underlying distribution of
the parameters. Drawing random samples from a pdf estimated with KDE is
possible without the need of evaluating the actual pdf, which makes it suit-
able for drawing random samples for, e.g., Monte Carlo methods. Sampling
from a KDE while the samples satisfy a linear equality constraint, however,
has not been described in the literature, as far as the authors know.
In this chapter, we propose a method to sample from a pdf estimated us-
ing KDE, such that the samples satisfy a linear equality constraint. We also
present an algorithm of our method in pseudo-code. The method can be used
for generating scenarios that have, e.g., a predetermined starting speed or
for generating different types of scenarios. This chapter also shows that the
method for sampling scenarios can be used in case a Singular Value Decom-
position (SVD) is used to reduce the dimension of the parameter vectors.
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6.1. Introduction

A n essential facet in the development of Automated Vehicles (AVs) is the assess-
ment of quality and performance aspects of the AVs, such as safety, comfort,

and efficiency [27, 167, 270]. Because public road tests are expensive and time
consuming [155, 323], a scenario-based approach has been proposed [15, 70, 94,
229, 233, 270]. As a source of information for the scenarios for the assessment,
real-world driving data has been proposed, such that the scenarios relate to real-
world driving conditions [94, 171, 229].

When using scenarios extracted from real-world driving data as a direct source
for describing scenario-based tests, two problems arise. First, not all possible vari-
ations of the scenarios might be found in the data. Therefore, the failure modes
of the AVs might not be reflected in the tests that are based on the scenarios that
are extracted from real-world driving data [323]. Second, using scenarios extracted
from real-world driving data might not reduce the actual testing load because the
set of extracted scenarios is largely composed of non-safety critical scenarios [323].
As a solution to this, so-called importance sampling has been introduced in order
to put more emphasis on scenarios that are likely to trigger safety-critical situations
[70, 149, 315, 323]. These methods [70, 149, 315, 323] have in common that they
describe scenarios using parameters for which a probability density function (pdf)
is estimated.

As already presented in [70, 71], we propose to estimate the pdf using Kernel
Density Estimation (KDE). KDE [222, 237] is often referred to as a non-parametric
way to estimate the pdf because no use is made of a predefined functional form of
the pdf for which certain parameters are fitted to the data. Because KDE produces
a pdf that adapts itself to the data, it is flexible regarding the shape of the actual
underlying distribution of the parameters.

Sampling from a KDE is straightforward. In some cases, however, one wants
to sample from the estimated pdf while a part of the random sample is fixed. For
example, one may want to assess the performance of an AV when it is driving at
its maximum allowable speed. Conditional sampling allows to generate scenario-
based test cases in which, e.g., the ego vehicle has a fixed speed. One approach
to performing conditional sampling is to evaluate the conditional pdf and to use
this for sampling. This method, however, would be highly cumbersome, especially
with a higher-dimensional pdf, because marginal integrals of codimension 1 of the
conditional pdf must be evaluated.

We will propose an algorithm to sample parameters from a KDE while the param-
eters are subject to a linear equality constraint. Our work differs from [128, 308]
because these works consider (shape) constraints on the estimated pdf. The pro-
posed algorithm can be regarded as a generalization of the conditional density esti-
mation in [134]. Our proposed method is efficient because the actual (conditional)
pdf does not need to be evaluated. We illustrate the proposed sampling technique
and its practical usefulness using an example. Furthermore, we will explain the
usefulness of sampling with linear equality constraints in case parameter reduc-
tion techniques are used to avoid the curse of dimensionality that pdf estimation
techniques, such as KDE, are suffering from.
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This chapter is organized as follows. In Section 6.2, we first describe the prob-
lem in more detail. The proposed method is presented in Section 6.3. Through
an example, we illustrate the correct performance of the algorithm in Section 6.4.
We also apply the proposed method to sample different types of scenarios in Sec-
tion 6.4. In Section 6.5, some implications and limitations of this work are discussed.
Conclusions of this chapter are provided in Section 6.6.

6.2. Problem definition

W ith KDE, the pdf 𝑓(⋅) is estimated as follows:

̂𝑓(𝑥) = 1
𝑁

𝑁

∑
𝑖=1
𝐾𝐻(𝑥 − 𝑥𝑖). (6.1)

Here, 𝑥𝑖 ∈ R𝑑 represents the 𝑖-th data point of dimension 𝑑. In total, there are 𝑁
data points, so 𝑖 ∈ {1, … , 𝑁}. In (6.1), 𝐾𝐻(⋅) is the so-called scaled kernel with a
positive definite symmetric bandwidth matrix 𝐻 ∈ R𝑑×𝑑. The kernel 𝐾(⋅) and the
scaled kernel 𝐾𝐻(⋅) are related using

𝐾𝐻(𝑢) = |𝐻|
−1/2𝐾(𝐻−1/2𝑢), (6.2)

where |⋅| denotes the matrix determinant. The choice of the kernel function is not
as important as the choice of the bandwidth matrix [87, 283]. Often, a Gaussian
kernel is opted and this chapter is no exception. The Gaussian kernel is given by

𝐾(𝑢) = 1
(2𝜋)𝑑/2

exp{−12‖𝑢‖
2
2}, (6.3)

where ‖𝑢‖22 = 𝑢T𝑢 denotes the squared 2-norm of 𝑢. Substituting (6.2) and (6.3)
into (6.1) gives

̂𝑓(𝑥) = 1
𝑁(2𝜋)𝑑/2|𝐻|1/2

𝑁

∑
𝑖=1

exp{−12(𝑥 − 𝑥𝑖)
T𝐻−1(𝑥 − 𝑥𝑖)}. (6.4)

The bandwidth matrix is an important parameter of the KDE. Several methods
have been proposed to estimate the bandwidth matrix based on the available data.
Perhaps the simplest method is Silverman’s rule of thumb [262], in which 𝐻 = ℎ2𝐼𝑑
with 𝐼𝑑 denoting the 𝑑-by-𝑑 identity matrix1 and

ℎ = 1.06min(𝜎, 𝑅1.34)𝑁
− 15 . (6.5)

1If 𝐻 = ℎ2𝐼𝑑, the same smoothing is applied in every direction. Therefore, the data are often normalized
before applying KDE with 𝐻 = ℎ2𝐼𝑑.
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Here, 𝜎 denotes the standard deviation of the data and 𝑅 is the interquartile range
of the data. Another strategy is to use cross validation. As a special case, with
one-leave-out cross validation, the bandwidth matrix equals

argmax
𝐻

𝑁

∏
𝑖=1
( 1
𝑁 − 1

𝑁

∑
𝑗=1,𝑗≠𝑖

𝐾𝐻(𝑥𝑖 − 𝑥𝑗)). (6.6)

Selecting the bandwidth matrix by this method minimizes the Kullback-Leibler di-
vergence between 𝑓(⋅) and ̂𝑓(⋅) [283]. Another often-used strategy is to use plug-
in methods. The idea of plug-in methods is to select an initial 𝐻 and then plug
̂𝑓(⋅) into an equation that calculates the optimal2 bandwidth based on a given pdf.
This process is then iterated until 𝐻 converges. We refer the interested reader to
[87, 120, 151, 283] for details on the estimation of 𝐻. In this chapter, we assume
that 𝐻 is given.

Sampling new data points from ̂𝑓(⋅) of (6.4) is straightforward. First, an integer
𝑗 ∈ {1, … ,𝑁} is randomly chosen with each integer having equal likelihood. Next, a
random sample is drawn from a Gaussian with covariance 𝐻 and mean 𝑥𝑗.

In this chapter, we want to sample from (6.4) such that the samples satisfy the
linear equality constraint:

𝐴𝑥 = 𝑏. (6.7)
Here 𝐴 ∈ R𝑑c×𝑑 and 𝑏 ∈ R𝑑c denote the constraint matrix and the constraint vector,
respectively. It is assumed that the constraint matrix 𝐴 has full rank. Note that if 𝐴
has not full rank, the constraint of (6.7) can easily be reformulated using Gaussian
elimination, resulting in a similar constraint with a constraint matrix that has full
rank. In total, there are 𝑑c < 𝑑 constraints.

6.3. Method

T o deal with the constraint (6.7), we will perform a rotation of 𝑥 such that a part
of the resulting vector is fixed by the constraint (6.7), while the other part of

the resulting vector can be freely chosen. To perform the rotation, we employ a
Singular Value Decomposition (SVD) [116] of 𝐴:

𝐴 = 𝑈[Σ 0]𝑉T = 𝑈[Σ 0][𝑉
T
1
𝑉T2
] = 𝑈Σ𝑉T1 . (6.8)

Here, 𝑈 ∈ R𝑑c×𝑑c and 𝑉 ∈ R𝑑×𝑑 are orthonormal matrices, i.e., 𝑈−1 = 𝑈T and
𝑉−1 = 𝑉T. The first 𝑑c columns of 𝑉 are denoted by 𝑉1 while 𝑉2 denotes the
remaining 𝑑u = 𝑑 − 𝑑c columns of 𝑉. Moreover, Σ ∈ R𝑑c×𝑑c is a diagonal matrix
with its so-called singular values on its diagonal. Because 𝐴 has full rank and 𝑑c < 𝑑,
all singular values are strictly positive. As such, evaluating Σ−1 is straightforward.
Now, let 𝑥̄ ∈ R𝑑c and 𝑥̃ ∈ R𝑑u such that

𝑥 = 𝑉1𝑥̄ + 𝑉2𝑥̃ = [𝑉1 𝑉2][
𝑥̄
𝑥̃] = 𝑉[

𝑥̄
𝑥̃]. (6.9)

2Optimal in the sense that it minimizes a specific value, which is usually the asymptotic mean integrated
squared error.
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Note that because 𝑉−1 = 𝑉T, we have 𝑥̄ = 𝑉T1 𝑥 and 𝑥̃ = 𝑉T2𝑥. Moreover, 𝑉T1𝑉1 = 𝐼𝑑c
and 𝑉T1𝑉2 = 0, such that substituting (6.8) and (6.9) into (6.7), gives

𝑈Σ𝑉T1 (𝑉1𝑥̄ + 𝑉2𝑥̃) = 𝑈Σ𝑥̄ = 𝑏. (6.10)

This means that in order to satisfy the constraint (6.7), 𝑥̃ can take any value whereas
𝑥̄ is fixed:

𝑥̄ = Σ−1𝑈T𝑏. (6.11)

Similar as 𝑥̄ and 𝑥̃, let 𝑥̄𝑖 = 𝑉T1 𝑥𝑖 and 𝑥̃𝑖 = 𝑉T2𝑥𝑖. Using this and (6.9), we can
rewrite (6.4):

̂𝑓(𝑥) = 1
𝑁(2𝜋)𝑑/2|𝐻|1/2

𝑁

∑
𝑖=1

exp{−12[
𝑥̄ − 𝑥̄𝑖
𝑥̃ − 𝑥̃𝑖]

T

𝑉T𝐻−1𝑉[𝑥̄ − 𝑥̄𝑖𝑥̃ − 𝑥̃𝑖]}. (6.12)

To ease the notation, let us use the following notation:

𝑉T𝐻−1𝑉 = [Λ11 Λ12
Λ21 Λ22], (6.13)

with Λ11 ∈ R𝑑c×𝑑c , Λ12 ∈ R𝑑c×𝑑u , Λ21 ∈ R𝑑u×𝑑c , and Λ22 ∈ R𝑑u×𝑑c . Using the
Schur complement [320]

ΛS = Λ11 − Λ12Λ−122Λ21, (6.14)

we can write (6.14) as

𝑉T𝐻−1𝑉 = [𝐼𝑑c Λ12Λ−122
0 𝐼𝑑u

][ΛS 0
0 Λ22][

𝐼𝑑c 0
Λ−122Λ21 𝐼𝑑u

]. (6.15)

Substituting this in the exponent of (6.12) gives

[𝑥̄ − 𝑥̄𝑖𝑥̃ − 𝑥̃𝑖]
T

𝐻−1[𝑥̄ − 𝑥̄𝑖𝑥̃ − 𝑥̃𝑖]

= [ 𝑥̄ − 𝑥̄𝑖
𝑥̃ − 𝑥̃𝑖 + Λ−122ΛT12(𝑥̄ − 𝑥̄𝑖)

]
T

[ΛS 0
0 Λ22][

𝑥̄ − 𝑥̄𝑗
𝑥̃ − 𝑥̃𝑗 + Λ−122Λ21(𝑥̄ − 𝑥̄𝑗)

] (6.16)

= (𝑥̄ − 𝑥̄𝑖)
TΛS(𝑥̄ − 𝑥̄𝑖)+

(𝑥̃ − 𝑥̃𝑖 + Λ−122ΛT12(𝑥̄ − 𝑥̄𝑖))
TΛ22(𝑥̃ − 𝑥̃𝑖 + Λ−122ΛT12(𝑥̄ − 𝑥̄𝑖)). (6.17)

Using this, (6.12) can be written as

̂𝑓(𝑥) = 1
𝑁(2𝜋)𝑑/2|𝐻|1/2

𝑁

∑
𝑖=1
𝑤𝑖 exp{−

1
2(𝑥̃ − 𝑥̃

′
𝑖)
TΛ22(𝑥̃ − 𝑥̃′𝑖)}, (6.18)
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Algorithm 6.1: Sampling with linear equality constraints and full band-
width matrix.
Input : 𝑥1, … , 𝑥𝑁, 𝐴, 𝑏, 𝐻
Output: Sample 𝑥 from (6.4) while satisfying 𝐴𝑥 = 𝑏

1 𝑈, Σ, 𝑉1, 𝑉2 ← Perform an SVD of 𝐴; see (6.8)
2 𝑥̄1, … , 𝑥̄𝑁 ← Map the data points using 𝑥̄𝑖 = 𝑉T1 𝑥𝑖
3 𝑥̃1, … , 𝑥̃𝑁 ← Map the data points using 𝑥̃𝑖 = 𝑉T2𝑥𝑖
4 𝑥̄ ← Compute 𝑥̄ using (6.11)
5 Λ11, Λ12, Λ21, Λ22, ΛS ← Compute 𝑉T𝐻−1𝑉 according to (6.13) and ΛS
according to (6.14)

6 𝑤1, … , 𝑤𝑁 ← Compute the weights according to (6.19)
7 𝑗 ← Generate a random integer 𝑗 ∈ {1, … ,𝑁} with the likelihood of 𝑗
proportional to 𝑤𝑗

8 𝑥̃′𝑗 ← Compute the mean of the Gaussian to generate a sample from
according to (6.20)

9 𝑥̃ ← Generate a random sample from a Gaussian with covariance Λ−122 and
mean 𝑥̃′𝑗

10 𝑥 ← Compute 𝑥 according to (6.9)

with

𝑤𝑖 = exp{−12(𝑥̄ − 𝑥̄𝑖)
TΛS(𝑥̄ − 𝑥̄𝑖)}, ∀𝑖 ∈ {1, … , 𝑁}, (6.19)

𝑥̃′𝑖 = 𝑥̃𝑖 − Λ−122Λ21(𝑥̄ − 𝑥̄𝑖), ∀𝑖 ∈ {1, … , 𝑁}. (6.20)

To generate samples from (6.4) that satisfy (6.7), two random numbers need to
be generated. First, an integer 𝑗 ∈ {1, … ,𝑁} is randomly chosen with the likelihood
of the integer 𝑗 proportional to the weight 𝑤𝑗 of (6.19). Next, a random sample is
drawn from a Gaussian with covariance Λ−122 and mean 𝑥̃′𝑗 . Finally, this random sam-
ple is mapped according to (6.9) to obtain the final random sample. The procedure
for sampling is summarized in Algorithm 6.1.

6.4. Example

T o illustrate the proposed method, we have applied it to generate a new set of
parameters that describe scenarios. The Next Generation SIMulation (NGSIM)

data set is used as a data source. The NGSIM data set contains vehicles’ trajectories
obtained from video footage of cameras that were located at several motorways in
the US [170]. In total, 18182 longitudinal interactions between two vehicles are
analyzed. In each of these longitudinal interactions, we look at the speed profile of
the leading vehicle. The speed profile is split into parts of 5 s, resulting in𝑁 = 99840
data samples.

We first apply the method of conditional sampling in a straightforward exam-
ple to illustrate that Algorithm 6.1 produces correct results. The second example
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Figure 6.1: The histogram shows the result of 106 samples obtained by the conditional sampling ac-
cording to Algorithm 6.1. The red line represents the true pdf.

explains the usefulness of sampling with a linear equality constraint in case a pa-
rameter reduction technique is used.

6.4.1. Sampling with a linear equality constraint
In this first example, two parameters describe a scenario:

1. The speed of the leading vehicle at a certain time 𝑡 and

2. The speed of the same vehicle at time 𝑡 + Δ𝑡 with Δ𝑡 = 5 s.

The bandwidth matrix is estimated using the plug-in selector of Wand and Jones
[294]. We want to sample the initial speed in case the speed is reduced by 5m/s.
To achieve this, we use

𝐴 = [1 −1], 𝑏 = [5]. (6.21)

In Figure 6.1, the result of Algorithm 6.1 is shown. In total, 106 samples are
generated and shown by the histogram. Because the histogram follows the same
pattern as the actual density of the speed difference according to the KDE, it illus-
trates that the provided algorithm correctly samples from the KDE.

6.4.2. Applying conditional sampling with parameter reduc-
tion

Typically, more than two parameters are needed to describe a scenario. If the
number of parameters is too high, however, the pdf estimation using the KDE suffers
from the curse of dimensionality [254]. To avoid the curse of dimensionality, a
reduction of parameters can be obtained. In this example, we use an SVD to
reduce the number of parameters.



6.4. Example

6

113

Instead of using the speed at only two time instances, we consider the following
scenario parameters:

𝑥𝑖 =
⎡
⎢
⎢
⎣

𝑣(𝑡𝑖)
𝑣(𝑡𝑖 + Δ𝑡)

⋮
𝑣(𝑡𝑖 + 𝑛tΔ𝑡)

⎤
⎥
⎥
⎦
∈ R𝑛t+1, (6.22)

where 𝑣(⋅) denotes the speed of the leading vehicle, 𝑡𝑖 denotes the time of the 𝑖-th
data point, Δ𝑡 denotes the time step, and 𝑛t denote the number of time steps. We
use Δ𝑡 = 0.1 s and 𝑛t = 50, so this results in 51 parameters. To reduce these 51
parameters to 𝑑 parameters, consider the following matrix:

𝑋 = [𝑥1 − 𝜇 ⋯ 𝑥𝑁 − 𝜇] ∈ R(𝑛t+1)×𝑁 , (6.23)

with 𝜇 = 1
𝑁 ∑

𝑁
𝑖=1 𝑥𝑖 and the following SVD of this matrix:

𝑋 = [𝑈̄1 𝑈̄2][
Σ̄1 0
0 Σ̄2][

𝑉̄T1
𝑉̄T2
] ≈ 𝑈̄1Σ̄1𝑉̄T1 , (6.24)

with 𝑈̄1 ∈ R(𝑛t+1)×𝑑, 𝑈̄2 ∈ R(𝑛t+1)×(𝑛t+1−𝑑), Σ̄1 ∈ R𝑑×𝑑, Σ̄2 ∈ R(𝑛t+1−𝑑)×(𝑁−𝑑),
𝑉̄1 ∈ R𝑁×𝑑, and 𝑉̄2 ∈ R𝑁×(𝑁−𝑑). Using this approximation, it follows that

𝑥𝑖 ≈ 𝑈̄1Σ̄1𝑣̄𝑖 + 𝜇, ∀𝑖 ∈ {1, … , 𝑁}, (6.25)

where 𝑣̄𝑖 ∈ R𝑑 is the 𝑖-th column of 𝑉̄T1 .
Instead of using the original data points 𝑥𝑖, the vectors 𝑣̄𝑖 are used for the

estimation of the KDE. For each sample of this KDE, the mapping of (6.25) is then
applied to obtain the scenario parameters according to (6.22). In this example,
𝑑 = 4 is used. As with the first example, the bandwidth matrix is estimated using
the plug-in selector of Wand and Jones [294].

In Figure 6.2, 50 scenarios are sampled from the KDE in which the initial speed
𝑣init and initial acceleration 𝑎init are fixed by a linear equality constraint. To achieve
this, the following constraint matrix and constraint vector are used:

𝐴 = [𝑢̄1𝑢̄2]Σ̄1, 𝑏 = [ 𝑣init − 𝜇1
𝑣init + Δ𝑡 ⋅ 𝑎init − 𝜇2], (6.26)

where 𝑢̄1 and 𝑢̄2 denote the first and second row of 𝑈̄1, respectively, and 𝜇1 and 𝜇2
denote the first and second entry of 𝜇, respectively. Figure 6.2a shows the result
with 𝑣init = 15m/s and 𝑎init = 1m/s2. In Figure 6.2b, 𝑎init = −1m/s2 is used
instead.

In Figure 6.3, 50 scenarios are sampled from the KDE in which the initial speed
𝑣init and end speed 𝑣end are fixed by a linear equality constraint. To achieve this,
the following constraint matrix and constraint vector are used:

𝐴 = [ 𝑢̄1𝑢̄𝑛t+1
]Σ̄1, 𝑏 = [ 𝑣init − 𝜇1𝑣end − 𝜇𝑛t+1

]. (6.27)



6

114 6. Constrained sampling to generate scenario parameters

0 2 4
14

16

18

20

Time [s]

Sp
ee
d
[m
/s
]

(a) 𝑣init = 15m/s and 𝑎init = 1m/s2.
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(b) 𝑣init = 15m/s and 𝑎init = −1m/s2.

Figure 6.2: 50 scenarios sampled from the KDE with a constraint on the initial speed and the initial
acceleration.
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(a) 𝑣init = 10m/s and 𝑣end = 15m/s.
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(b) 𝑣init = 15m/s and 𝑣end = 10m/s.

Figure 6.3: 50 scenarios sampled from the KDE with a constraint on the initial speed and the end speed.

This illustrates that the conditional sampling can be used to generate scenarios in
which a leading vehicle is accelerating (Figure 6.3a) or decelerating (Figure 6.3b).
Figure 6.3a shows the result with 𝑣init = 10m/s and 𝑣end = 15m/s. In Figure 6.3b,
the start and end speed are opposite: 𝑣init = 15m/s and 𝑣end = 10m/s.

Note that all speed profiles in Figures 6.2 and 6.3 are all drawn from the same
KDE. The only difference between these scenarios is that different conditions are
used.

6.5. Discussion

T his chapter has provided a method for sampling from a KDE such that the
samples satisfy a linear equality constraint. The provided algorithm calculates

weights that are used to weigh the contribution of each input data point to the
overall pdf. Samples are drawn by randomly picking a random data point with the
likelihood proportional to the calculated weights and adding an offset to this data
point using a zero-mean multivariate Gaussian with a covariance matrix that equals
the original bandwidth matrix (pre)multiplied with a rotation matrix.

The provided algorithm can be regarded as a generalization of the conditional
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sampling in [134]. With conditional sampling, few parameters are fixed. This is the
same as considering the linear equality constraint of (6.7) with

𝐴 = [𝐼𝑑c 0]. (6.28)

In this particular case, the rotation of the data is not needed, so steps 2, 3, 4,
and 10 of Algorithm 6.1 can be skipped. Note that this way of sampling becomes
impractical if a parameter reduction is used as shown in Section 6.4.2 because the
set of reduced parameters have no physical meaning anymore.

The computational cost of the provided algorithm scales quadratically with re-
spect to number of parameters that are used to describe a single scenario (𝑑) and
linearly with the number of data points (𝑁). Because the number of data points
is generally much larger than the dimension of the data points, let us assume that
𝑁 ≫ 𝑑. Looking at Algorithm 6.1 and considering 𝑁 ≫ 𝑑, steps 2, 3, and 6 are the
most time consuming because these steps contain a loop over the data points. It is
easy to see that the number of computations of these steps scales linearly with 𝑁.
Since these computations contain a multiplication of a 𝑑-by-𝑑 matrix and a vector
with 𝑑 rows, the computational cost scales quadratically with 𝑑.

If we want to sample multiple times using the same linear constraint, it suffices
to perform steps 1 till 6 of Algorithm 6.1 only once. Step 7 of Algorithm 6.1 does
not depend on 𝑑 and scales linearly with 𝑁 [290]. Steps 8 till 10 of Algorithm 6.1
do not depend on 𝑁 and scale quadratically with 𝑑. Because these steps do not
depend on 𝑁 and 𝑁 ≫ 𝑑, the computational cost of these steps is minor compared
to step 7 of Algorithm 6.1. Therefore, if we want to draw many samples, i.e., more
than 𝑁, the computational cost is dominated by the computational cost of step 7,
which means that, in that case, the computational cost scales linearly with 𝑁.

Another application of the conditional sampling is to predict how the future will
develop based on some initial conditions. For example, Figures 6.2a and 6.2b each
show 50 possibilities for the speed of the leading vehicle in the next 5 s given an
initial speed and an initial acceleration. This could be used, for instance, to deter-
mine real-time a worst-case scenario, such that an AV could proactively respond
to such a scenario. Similarly, when using Bayesian networks for predicting contin-
uous variables [30], our algorithm provides a way to sample from the conditional
densities.

Note that for an efficient scenario-based assessment of an AV, scenarios that
might lead to critical behavior need to be emphasized. Several techniques are pro-
posed in the literature to emphasize these scenarios, such as reachability analysis
[11], boundary searching [325], and importance sampling [70, 149, 315, 323]. With
importance sampling, a different pdf is used to sample scenario parameters, such
that more emphasis is put on scenarios that might lead to critical behavior. Our
proposed method for conditional sampling can be combined with the importance
sampling techniques explained in [70, 149, 315].

This work comes with limitations. It should be emphasized that the method only
works when using a Gaussian kernel for the KDE. In practice, this is usually not a
problem because the choice of the kernel is not crucial [87]. Another limitation is
that our method cannot be extended to deal with (linear) inequality constraints. If



6

116 6. Constrained sampling to generate scenario parameters

these inequality constraints are not too severe, however, straightforward rejection
sampling could be used in that case, i.e., sample data points until a data point sat-
isfies the linear inequality constraint. It should also be noted that in practice, more
parameters for describing a scenario might need to be considered. For example, the
state of neighboring vehicles (instead of only the leading vehicle), lane curvature,
etc. Although these parameters are not considered in the example of this chapter,
a parameter reduction technique as explained in Section 6.4.2 can still be useful in
case these parameters are considered.

6.6. Conclusions

I t is expected that scenario-based test descriptions become more and more im-portant for the assessment of Automated Vehicles (AVs). One way to generate
these scenario-based test descriptions is to sample the scenario parameters from a
probability density function (pdf). To deal with the unknown shape of the pdf, it is
proposed to estimate the pdf using Kernel Density Estimation (KDE). In this chap-
ter, we have shown how these parameters can be drawn from the estimated pdf
while these parameters are subject to a linear equality constraint. Through an ex-
ample, we have illustrated the effectiveness of our method by generating different
scenarios of a longitudinal interaction with a leading vehicle.

Future work involves applying this method using more complex scenarios, e.g.,
scenarios that contain several different actors, to generate scenario-based test
cases for the safety assessment of AVs.
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The development of safety validationmethods is essential for the safe deploy-
ment and operation of Automated Driving Systems (ADSs). One of the goals
of safety validation is to prospectively evaluate the risk of an ADS dealing
with real-world traffic. ISO 26262 and ISO 21448, the leading standards in
automotive safety, provide an approach to estimate the risk where the for-
mer focuses on risks due to potential malfunctioning of components and the
latter focuses on risks due to possible functional insufficiencies. The main
shortcomings of the approach provided in ISO 26262 are that it depends on
subjective judgments of safety experts and that only a qualitative risk esti-
mation is performed. ISO 21448 addresses these shortcomings partially by
providing statistical methods to guide the safety validation, but no complete
method is provided to quantify the risk.
The first objective of this chapter is to propose a method to estimate the risk
of an ADS in a more quantitative and objective manner. A data-driven ap-
proach is used to rely less on subjective judgments of safety experts. The
output of the method is the expected number of injuries in a potential crash.
Thus, the method is quantitative, the result is easily interpretable, and the
result can be compared with road crash statistics. The second objective is
to provide a method that supports the risk assessment as stipulated by the
ISO 26262 and ISO 21448 standards by decomposing the quantified risk into
the three aspects of risk as mentioned in these standards: exposure, sever-
ity, and controllability. The proposed methods are illustrated by means of a
case study in which the risk is quantified for a longitudinal controller in three
different types of scenarios. The code of the case study is publicly available.
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7.1. Introduction

I t is expected that Automated Driving Systems (ADSs) will make traffic safer byeliminating human errors, enable more comfortable rides, and reduce traffic con-
gestion [48]. Lower levels of automation systems, such as Adaptive Cruise Con-
trol (ACC) [191] and lane keeping assist systems [193], are already widely deployed
in modern cars and trucks. Since the development of ADSs has made significant
progress, it is expected that ADSs addressing higher levels of automation and cov-
ering the full dynamic driving task, i.e., SAE level 3 or higher [243], are soon to
be introduced on public roads [29, 190, 198]. Before deploying an ADS on public
roads, it is of paramount importance to ensure that there is no negative impact on
the traffic safety. It has even been suggested [188] that vehicles controlled by an
ADS should be at least 4 to 5 times as safe as human-driven vehicles in order to be
accepted by the general public.

Safety validation of an ADS is essential to guarantee that the ADS is safe enough
to be allowed on public roads. Retrospective safety validation alone, i.e., through
test drives with prototypes, requires millions of kilometers of driving [155], which
makes this practically infeasible. Therefore, prospective safety validation, i.e., be-
fore performing (test) drives in public traffic, is required. Scenario-based safety val-
idation is an approach for prospective safety validation that is broadly supported by
the automotive field [12, 15, 94, 196, 206, 212, 213, 228, 229, 233, 235, 251, 278].

As a consequence of the broad support for scenario-based safety validation, sig-
nificant research progress has been made. Recent research focuses, among others,
on scenario terminology [79, 284], scenario-based requirement verification [156],
virtual simulation of scenarios [85, 158, 236, 238, 306], generation of scenarios
[78, 101, 253, 269], and scenario databases [12, 94, 229]. All these components
are vital parts for estimating the risk of the deployment of an ADS, where risk is the
combination of the probability of occurrence of harm and the extent of that harm.
This risk estimation itself, however, has received less attention in the literature de-
spite its essential role in the well-known ISO 26262 [144] and ISO 21448 [143]
standards, which capture the state of the art in automotive safety.

The contribution of this work is twofold. First, we propose a novel data-driven
method for assessing and quantifying the risk of an ADS considering real-world
driving scenarios. To provide a more objective method for risk quantification com-
pared to existing approaches, the proposed method uses real-world data and relies
less on the judgments of experts. Second, we show how the risk quantification
can be decomposed into the terms exposure, severity, and controllability, such that
the method can be applied to assess risks based on the ISO 26262 and ISO 21448
standards. Therefore, our method supports the risk assessment activities of these
standards. In the remainder of this section, we elaborate more on the need for
our work and we present the research questions that are addressed by the current
chapter.

7.1.1. Risk quantification of automated driving systems
In [53, 59, 136, 181, 182], risk quantification is proposed for real-time use, e.g.,
to support the path planning of a self-driving vehicle, so this is not intended to be
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used for a prospective risk assessment. In [172], a method for quantifying the risk
of scenarios is proposed based on the probability of occurrence of so-called envi-
ronmental conditions and the probability that an error propagates in the fault tree
given a specified environment condition. However, they [172] do not provide meth-
ods to estimate or specify these probabilities. Furthermore, the role of a back-up
operator, e.g., a human driver that supervises the ADS, is not considered, whereas
the influence of the back-up operator is an important aspect that is considered in
the ISO 26262 and ISO 21448 standards. Another method to quantify the risk
of a driving scenario is proposed in [292], but this method does not consider the
likelihood of encountering the scenario and the role of the back-up operator is not
explicitly considered. A quantitative assurance framework is proposed in [28, 299],
but this framework assumes that the frequency of accidents is known, whereas this
is unknown in a prospective assessment. Furthermore, similar to [172], [28] and
[299] do not consider the role of a back-up operator.

To address the aforementioned shortcomings, the current work aims to answer
the following question:

Research question 7.1. How to quantify the risk of an ADS in real-world driving
scenarios?

To answer Research question 7.1, this chapter proposes a novel method for
quantifying the risk of an ADS. The first step of the presented method is to identify
the scenarios that the ADS encounters in real life. Next, the exposure, i.e., the
likelihood of encountering these scenarios, is estimated. Using simulations, the
probability that a scenario leads to a harmful event is calculated. Combining this
probability with the exposure and the probability that a harmful event leads to an
injury results in the estimated risk.

7.1.2. Risk quantification in relation with ISO 26262 and ISO
21448

ISO 26262 is the state-of-the-art standard in automotive functional safety that of-
fers a framework for measuring risk in a qualitative manner. This standard concerns
hazards that are the result of malfunctioning behavior of components. In the Hazard
Analysis and Risk Assessment (HARA), an Automotive Safety Integrity Level (ASIL)
is determined for each hazardous event based on the classification of three as-
pects: exposure, severity, and controllability (the definitions of these terms will be
provided in Section 7.2). The classification has two limitations. First, the classifi-
cation relies on the judgments of experts of the three risk aspects, which renders
the classification subjective [161, 276]. Second, the classification is qualitative and
offers only five different levels of risk.

As an addition to the ISO 26262 standard, the ISO 21448 standard, also known
as “Safety Of The Intended Functionality (SOTIF)”, concerns hazardous behavior
due to a functional insufficiency of the intended functionality at the vehicle level
as opposed to malfunctioning behavior of components. A functional insufficiency
may refer to a failure due to technological limitations of a sensor or an actuator.
The hazard in the context of SOTIF is initiated by a so-called triggering condition.
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For the risk assessment, the ISO 21448 standard does not determine an ASIL, but
the exposure, severity, and controllability can be used to determine the required
validation effort. In [143, Annex C.6.4], the exposure, severity, and controllability
are quantitatively expressed as probabilities, but no method is provided for de-
termining these probabilities other than that the probabilities can be checked for
consistency with the functional safety HARA of the ISO 26262 standard. There-
fore, the risk estimation of the ISO 21448 standard inherits the limitations of the
ISO 26262 standard, which means that there is no explicit risk estimation method
that considers hazardous behavior caused by a triggering condition.

To address the lack of a quantitative and objective approach to assess risks
related to the ISO 26262 and ISO 21448 standards, the current work also aims to
answer the following question:

Research question 7.2. How to quantify the risk of an ADS using the three as-
pects of risk as defined by the ISO 26262 standard: exposure, severity, and con-
trollability?

To answer Research question 7.2, we decompose the quantified risk into the
terms exposure, severity, and controllability. Note that it is not our objective to
provide a method that replaces parts of the ISO 26262 and ISO 21448 standards,
but rather to provide a method that supports the risk assessment activities of these
standards.

7.1.3. Organization of this chapter
This chapter is organized as follows. We first elaborate on the risk assessment in the
ISO 26262 and ISO 21448 standards in Section 7.2. Section 7.3 provides a method
for risk quantification to answer Research question 7.1. In Section 7.4, Research
question 7.2 is answered by describing how the proposed risk quantification method
relates to the risk assessment according to the ISO 26262 and ISO 21448 standards.
To illustrate the proposed method, a case study1 involving the risk quantification of
an ACC is presented in Section 7.5 and the results are reported in Section 7.6. This
chapter ends with a discussion in Section 7.7 and conclusions in Section 7.8.

7.2. ISO 26262 and ISO 21448

I n Section 7.2.1, the risk assessment approach provided in the ISO 26262 standard[144] and its shortcomings are described. Section 7.2.2 elaborates on the risk
assessment approach described in the ISO 21448 standard [143].

7.2.1. ISO 26262
The ISO 26262 standard [144] captures the state of the art in automotive functional
safety. It defines the safety lifecycle and the related safety activities such as the
HARA. Other methodologies, such as Systems-Theoretic Processes Analysis (STPA)
[4] and Failure Mode and Effect Analysis (FMEA) [279], give guidelines on safety
1The code is publicly available at:
https://github.com/ErwindeGelder/ScenarioRiskQuantification.

https://github.com/ErwindeGelder/ScenarioRiskQuantification
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Table 7.1: Definitions of exposure, severity, and controllability according to the ISO 26262 standard
[144].

Term Definitions

Exposure State of being in an operational situation that can be hazardous
if coincident with the failure mode under analysis

Severity Estimate of the extent of harm to one or more individuals that
can occur in a potentially hazardous event

Controllability Ability to avoid a specified harm or damage through the timely
reactions of the persons involved, possibly with support from
external measures

engineering based on systems theory. Unlike the ISO 26262 standard, STPA and
FMEA do not offer a framework for measuring risk.

The ISO 26262 standard gives guidelines to assess risk based on hazardous
events. A hazardous event is the combination of an operational situation (or a
scenario) with a potential source of harm caused by malfunctioning behavior of
system components. The standard requires analyzing the risk of each hazardous
event based on three aspects: exposure, severity, and controllability; see Table 7.1
for the definitions according to the ISO 26262 standard. In this framework, each
aspect is classified in 4 or 5 levels:

• Exposure is classified as 0 (“incredible”), 1, 2, 3, or 4 (“high probability”);

• Severity is classified as 0 (“no injuries”), 1, 2, or 3 (“life-threatening injuries,
fatal injuries”); and

• Controllability is classified as 0 (“controllable in general”), 1, 2, or 3 (“difficult
to control or uncontrollable”).

The combination of these aspects contributes to constructing the ASIL ranking A, B,
C, D. With an ASIL D, the most stringent requirements on system design, verifica-
tion, and testing apply while an ASIL A requires the least additional safety measures.
If the sum of the aspects is 10, an ASIL D is assigned, representing the most critical
level. ASIL B or C is assigned when the sum equals 8 or 9, respectively. If the sum
is 7 and no aspect has scored 0, then ASIL A is assigned. In all other cases, there
are no requirements to comply with the ISO 26262 standard and the classification
“Quality Management (QM)” applies because it is assumed that the QM system of
the manufacturer suffices for reducing the risk.

A shortcoming of the ASIL ranking is that the results are subjective. Teuchert
[276] mentions that the classification of the ASIL depends very much on the engi-
neers that perform the classification. Also Khastgir et al. [161] mention the subjec-
tivity of the ranking: “The two distinct short-comings of the current ISO 26262-2011
standard are guided by the subjective nature of the experts’ mental models leading
to unreliable ratings and the ability to identify a hazard (including the black swan
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events).” Through an experiment, Khastgir et al. [161] demonstrated the low (intra-
rater) reliability due to the subjectivity of the HARA process. Another disadvantage
is the qualitative nature of the ASIL ranking. Because only five different levels of
risk are considered (ASIL A to D and QM), only large changes in the overall risk are
captured.

Since our proposed method for estimating the risk, presented in Section 7.3, is
based on data, it is more objective by nature. In addition, the results are quan-
titative. Therefore, our proposed method can be used to determine an ASIL-like
indicator in a quantitative and objective manner.

7.2.2. ISO 21448
Whereas the ISO 26262 standard focuses on possible hazards caused by the mal-
functioning behavior of system components, the ISO 21448 standard [143] ad-
dresses hazardous situations caused by the intended functionality, despite the sys-
tems being free from the faults addressed in the ISO 26262 standard. The absence
of unreasonable risk due to these hazardous situations is defined as the Safety Of
The Intended Functionality (SOTIF). Although no ASIL is determined for SOTIF-
related hazards, the aspects exposure, severity, and controllability are still used to
adjust the required evidence of the safe operation, including the number validation
scenarios used for testing. For determining these aspects, the ISO 21448 stan-
dard refers to the ISO 26262 standard, which — as reasoned earlier — provides a
subjective and qualitative approach.

To address the qualitative nature of the ISO 26262 standard, Annex C of the
ISO 21448 standard provides statistical methods to guide the SOTIF verification
and validation. A method to quantify the validation targets is provided in [143,
Annex C.2], while [143, Annex C.3] proposes to use on-road data or simulations
to validate whether systems meet these targets. The use of importance sampling
to lessen the amount of simulation testing is discussed in [143, Annex C.5], but
no quantification of, e.g., the risk, is provided. In [143, Annex C.6], a statistical
approach is presented for arguing that a safety criterion is met while considering
the performance of the constituent components. Also in [143, Annex C.6], the risk
aspects exposure, severity, and controllability are quantitatively expressed as prob-
abilities. No method is provided, however, to estimate these probabilities. Thus,
where Annex C of the ISO 21448 standard provides a step towards making the risk
evaluation more quantitative, the current work aims to be more explicit in quanti-
fying the risk. More specifically, in Section 7.4, we show how our proposed method
for risk quantification can be used to quantify the aspects exposure, severity, and
controllability. Furthermore, Section 7.4 describes how to combine these aspects
to quantify the risk.

7.3. Method for risk quantification

T o answer Research question 7.1, this section proposes a novel method for quan-
tifying the risk of an ADS in real-world driving scenarios. To structure the risk

quantification, the method consists of six steps:
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Table 7.2: The terms and definitions.

Term Definition

Risk Combination of the probability of occurrence of harm and the
severity of that harm [144]

ODD Operating conditions under which a given driving automation sys-
tem or feature thereof is specifically designed to function, includ-
ing, but not limited to, environmental, geographical, and time-
of-day restrictions, and/or the requisite presence or absence of
certain traffic or roadway characteristics [243]

Scenario Quantitative description of the relevant characteristics and activi-
ties and/or goals of the ego vehicle(s), the static environment, the
dynamic environment, and all events that are relevant to the ego
vehicle(s) within the time interval between the first and the last
relevant event [79] (Definition 2.1)

Scenario
category

Qualitative description of the relevant characteristics and activities
and/or goals of the ego vehicle(s), the static environment, and the
dynamic environment [79] (Definition 2.4)

Triggering
condition

Specific conditions of a scenario that [may] serve as an initiator
for a subsequent system reaction leading to hazardous behavior
[143]

1. Identify the scenarios that are part of the so-called Operational Design Domain
(ODD) of the ADS.

2. Determine the exposure of these scenarios, i.e., the expected number of oc-
currences per hour of driving.

3. Simulate the response of the ADS in these scenarios.

4. Calculate the expected number of harmful events.

5. Calculate the expected injury rate.

6. Calculate the risk by combining the exposure and the injury rate.

These steps are schematically shown in Figure 7.1. Figure 7.1 also shows how
the risk aspects exposure, severity, and controllability relate to these steps. This
relation will be further explained in Section 7.2.

Table 7.2 presents the definitions of the terms that are used in our proposed
method. In this work, the probability of 𝑢 is denoted by P(𝑢), while E[𝑢] denotes
the expectation of 𝑢. In the following subsections, the 6 steps for quantifying the
risk are described.

7.3.1. Identification of scenarios
An ADS is designed to operate within its ODD, which is defined by the ADS developer
and typically consists of a geofence and some known operational conditions, e.g.,
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Identify scenarios:
𝒞

Section 7.3.1

Calculate exposure:
E[𝑛𝒞]

Section 7.3.2

Simulate scenario:
𝑅(𝑥𝑆)

Section 7.3.3

Calculate proba-
bility of collision:

E𝑆∈𝒞[𝑅(𝑥𝑆)]
Section 7.3.4

Calculate in-
jury rate:

E𝑆∈𝒞[P(𝐼(𝑥𝑆))]
Section 7.3.5

Calculate risk:
Risk(𝒞)

Section 7.3.6

Exposure(𝒞)
Section 7.4.1

Severity(𝒞)
Section 7.4.2

Controllability(𝒞)
Section 7.4.3

Figure 7.1: Schematic overview of the risk quantification method presented in this chapter. The blue
blocks represent the six steps of the risk quantification method explained in Section 7.3. Each of these
steps is further explained in Sections 7.3.1 to 7.3.6, respectively. The red blocks show the relation
between our proposed method and the three aspects of risk as proposed in the ISO 26262 standard.
Each of these aspects is further explained in Sections 7.4.1 to 7.4.3, respectively.
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see [22, 111, 301]. The ODD is used to confine the risk analysis [125]. To quantify
the risk of an ADS in driving scenarios, the ODD of the ADS must be known. Once
deployed, the ADS needs to deal with many scenarios and the ODD in which the
ADS is operating determines the variety of these scenarios. It is our goal to provide
a method for determining the risk for the ADS in these scenarios.

Considering the wide variety of scenarios, we propose to distinguish between
quantitative scenarios and qualitative scenarios, where scenario categories refer to
the latter, see Table 7.2. It is assumed that all possible scenarios within a given
ODD can be categorized into one or more scenario categories. This assumption
does not limit the applicability of the methodology proposed in this work, though
it might require many scenario categories to describe all these scenarios. In the
remainder of this section, we propose a method to calculate the risk for an ADS in
all scenarios that are categorized by the same scenario category, i.e., for all 𝑆 ∈ 𝒞
[79], where 𝑆 and 𝒞 denote a scenario and a scenario category, respectively. For
example, the scenario category “cut-in” comprises all possible cut-in scenarios in
the ODD of the ADS. See [74] for more examples of scenario categories.

Remark 7.1. As part of the scenarios, some factors may cause hazardous behav-
ior. These factors are called triggering conditions because they may trigger some
specific behavior [143]. Typically, triggering conditions may happen rarely, so the
impact on safety may not be known. In our case, one or more triggering conditions
could be part of a scenario category. Examples of triggering conditions are heavy
rain, low road friction, poor lighting, or dirty sensor(s). For more examples, see
[143, Annex B.2]. ♢

7.3.2. Probability of exposure
To determine the exposure, we estimate the expected number of encounters of
a scenario 𝑆 ∈ 𝒞. Let 𝑛𝒞 denote the number of encounters per unit of time of
a scenario belonging to scenario category 𝒞. We express the exposure as E[𝑛𝒞],
i.e., the expected number of encounters per unit of time of a scenario belonging to
scenario category 𝒞:

E[𝑛𝒞] =
∞

∑
𝑛=1

𝑛P(𝑛𝒞 = 𝑛), (7.1)

where P(𝑛𝒞 = 𝑛) denotes the probability of encountering 𝑛 scenarios belonging to
scenario category 𝒞.

We propose to determine P(𝑛𝒞 = 𝑛), 𝑛 = 0, 1, 2, …, based on data because the
data provide a quantitative way to estimate P(𝑛𝒞 = 𝑛), 𝑛 = 0, 1, 2, …. Furthermore,
assuming that the data are collected with the same conditions as specified by the
ODD of the ADS, the data provides an objective way to estimate P(𝑛𝒞 = 𝑛). The
probability can be estimated by counting the number of occurrences of the scenar-
ios in the data. The method to find the scenarios belonging to 𝒞 is explained in
Chapter 4 [73]: First, tags are used to describe activities, such as lane changing
and braking, and statuses, such as “leading vehicle” and “driving slower”. Note that
a tag is typically associated with an object and has a start time and an end time.
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Second, by searching for a particular combination of these tags that describes the
scenario category 𝒞, the start and end time of the scenarios are found.
Remark 7.2. It is not uncommon to assume that

• the occurrence of a scenario 𝑆1 ∈ 𝒞 does not affect the probability that a
second scenario 𝑆2 ∈ 𝒞 occurs,

• the expected rate at which a scenario belonging to 𝒞 occurs is constant, and

• two scenarios belonging to 𝒞 cannot occur at exactly the same time.

In that case, the probability P(𝑛𝒞 = 𝑛) simplifies to a Poisson distribution:

P(𝑛𝒞 = 𝑛) =
𝜆𝑛
𝑛! exp{−𝜆}. (7.2)

Here, 𝜆 > 0 is a parameter that determines the rate at which a scenario belonging
to 𝒞 occurs. Assuming (7.2), (7.1) simplifies to E[𝑛𝒞] = 𝜆. ♢

7.3.3. Simulation of scenarios
The next step of the risk quantification is to simulate how the ADS behaves in the
scenarios belonging to scenario category 𝒞. Let 𝑥𝑆 ∈ R𝑑 denote the 𝑑-dimensional
parameter vector that describes scenario 𝑆. The (stochastic) outcome of a simula-
tion of scenario 𝑆 is denoted by 𝑅(𝑥𝑆), where 𝑅(𝑥𝑆) = 1 means that the simulation
of the scenario with parameters 𝑥𝑆 ends with an unsuccessful outcome and oth-
erwise 𝑅(𝑥𝑆) = 0. An unsuccessful outcome may be a crash or a situation where
the ego vehicle ends off the road. In addition to 𝑅(𝑥𝑆), the output of a simulation
run provides information to rank multiple scenarios from “most critical” to “least
critical” (see Section 7.3.4) and information to estimate the extent of harm in case
of a crash (see Section 7.3.5).

To enable the simulation of the scenarios, a simulation framework is set up.
Figure 7.2 shows the scheme of the simulation framework, which is represented by
the following five blocks:

• World: the relevant information about the environment of the system under
test. This includes other vehicles.

• Sensors: mapping of the global information to sensor data that can be used
by the ADS.

• ADS: the logic and control laws to perform an automated function. The ADS
uses the information of the sensors to determine the input to the vehicle.
The ADS provides input to the actuators of the vehicle and information to the
operator, e.g., a beep in case of a crash warning.

• Operator: the actual driver that is behind the steering wheel or a remote
driver.
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World Sensors

ADS
Vehicle

Operator

Figure 7.2: Scheme of the simulation framework.

• Vehicle: the system consisting of actuators for translating the inputs gener-
ated by the ADS and the operator into vehicle motions and subsystems for
enhancing conspicuity via, e.g., lighting, signaling, and sounding the horn.

Note that the simulation framework is easily extended to consider multiple ADSs,
operators, and vehicles. This could be of interest for testing, e.g., (cooperative)
ACC systems because one might be interested in the performance of a platoon of
vehicles rather than the performance of a single vehicle (see, e.g., [217, 287]).

7.3.4. Probability of a crash
Instead of estimating the risk of an ADS in a specific scenario with parameters 𝑥,
the goal is to calculate the risk for all scenarios from scenario category 𝒞. The first
step toward the calculation of the risk is to compute the expected outcome while
averaging over all scenarios in 𝒞: E𝑆∈𝒞[𝑅(𝑥𝑆)]. Here, the subscript 𝑆 ∈ 𝒞 indicates
that the expectation is computed while averaging over all scenarios belonging to
scenario category 𝒞.

To provide inputs to the simulation, scenarios are identified and characterized
from real-world driving data, e.g., collected in field operational tests or naturalistic
driving studies. In this way, the scenarios are most likely to represent real-world
driving conditions [94, 171, 229]. One approach would be to simply simulate the
scenarios that are recorded from data, but this gives two problems. First, because
not all possible variations of the scenarios might be found in the data, the failure
modes of the ADS might not be reflected in the simulations [323]. Second, because
the set of extracted scenarios is largely composed of non-safety critical scenarios,
many scenarios may be required to obtain the required statistical accuracy of rare
events such as crashes [149, 323]. To overcome these problems, so-called impor-
tance sampling can be applied in order to put more emphasis on scenarios that are
likely to trigger safety-critical situations [70, 149, 315, 323].

In this section, we propose a nonparametric importance sampling method with-
out requiring a-priori knowledge of what might be scenarios that are likely to trigger
safety-critical situations given the ADS under test. First, crude Monte Carlo sam-
pling is used. Next, the nonparametric importance sampling method based on the
simulation results of the crude Monte Carlo sampling is proposed.
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Crude Monte Carlo sampling
With crude Monte Carlo sampling, parameters are sampled from a probability den-
sity function (pdf). Let 𝑓𝒞(⋅) denote the pdf of the parameters of the scenarios
from scenario category 𝒞. Typically, the pdf 𝑓𝒞(⋅) is unknown, so it needs to be
estimated. To estimate the pdf, we use the observed scenarios that have also been
used to estimate the exposure (Section 7.3.2). Since the shape of the pdf is also
unknown beforehand, assuming a predefined functional form of the pdf for which
certain parameters are fitted to the data may lead to inaccurate fits unless a lot of
hand-tuning is applied. As an alternative, we propose to estimate 𝑓𝒞(⋅) using Kernel
Density Estimation (KDE) [222, 237]. Let 𝑥𝑆1 , … , 𝑥𝑆𝑁𝑥 denote the parameters of the
observed scenarios 𝑆𝑖 ∈ 𝒞, 𝑖 ∈ {1, … , 𝑁𝑥}, then the density 𝑓𝒞(⋅) is estimated by

̂𝑓𝒞(𝑥) =
1

𝑁𝑥ℎ𝑑
𝑁𝑥
∑
𝑖=1
𝐾(1ℎ(𝑥 − 𝑥𝑆𝑖)). (7.3)

Here, 𝐾(⋅) is the so-called kernel and ℎ is the bandwidth. The choice of the kernel
function is not as important as the choice of the bandwidth [87, 283]. We use the
often-used Gaussian kernel2, but our method does not depend on the choice of
kernel. The Gaussian kernel is given by

𝐾(𝑢) = 1
(2𝜋)𝑑/2

exp{−12‖𝑢‖
2
2}, (7.4)

where ‖𝑢‖22 = 𝑢T𝑢 denotes the squared 2-norm of 𝑢.
The bandwidth ℎ > 0 is a free parameter that controls the width of the kernel.

A larger bandwidth results in a smoother pdf, but choosing ℎ too large may result in
loss of details in the pdf. Methods for estimating the bandwidth range from simple
reference rules like Silverman’s rule of thumb [262] to more elaborate methods (for
reviews, see [24, 151, 283]). We use leave-one-out cross validation to determine
the optimal bandwidth because this minimizes the Kullback-Leibler divergence be-
tween the estimated pdf, ̂𝑓𝒞(⋅), and the unknown pdf that underlies the data, 𝑓𝒞(⋅)
[283]. With leave-one-out cross validation, the bandwidth equals:

argmax
ℎ

𝑁𝑥
∏
𝑖=1
( 1
(𝑁𝑥 − 1)ℎ𝑑

𝑁𝑥
∑

𝑗=1,𝑗≠𝑖
𝐾(1ℎ(𝑥𝑆𝑗 − 𝑥𝑆𝑖))). (7.5)

Note that with the one-dimensional bandwidth ℎ, the same amount of smoothing
is applied in every direction. Therefore, the parameters are first scaled, such that
they have the same standard deviation in each dimension. Our method can easily
be extended to a multi-dimensional bandwidth [87, 120].

Sampling from ̂𝑓𝒞 is straightforward. First, an integer 𝑗 ∈ {1, … , 𝑁𝑥} is chosen
randomly with each integer having equal likelihood. Next, a random sample is
2The advantage of the Gaussian kernel is that it gives the possibility to calculate a metric that quantifies
the completeness of the data (Chapter 3 [72]) and to apply conditional sampling when generating
scenario parameters (Chapter 6 [75]). Both these topics are out of scope of this chapter.
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drawn from a Gaussian with covariance ℎ2𝐼𝑑 and mean 𝑥𝑆𝑗 , where 𝐼𝑑 denotes the
𝑑-by-𝑑 identity matrix.

With crude Monte Carlo, the probability of a crash is calculated by taking the
mean of 𝑅(𝑥𝑆) over a large number, 𝑁MC, of different realizations of 𝑥𝑆:

𝜇MC =
1
𝑁MC

𝑁MC

∑
𝑗=1

𝑅(𝑥𝑗), 𝑥𝑗 ∼ ̂𝑓𝒞 . (7.6)

It is easy to see that the crude Monte Carlo result is unbiased, i.e., E[𝜇MC] =
E𝑆∈𝒞[𝑅(𝑥𝑆)]. To estimate the potential approximation error, 𝜇MC−E𝑆∈𝒞[𝑅(𝑥𝑆)], the
estimated standard deviation of (7.6) is commonly used:

𝜎MC =
1
𝑁MC

√
𝑁MC

∑
𝑗=1
(𝜇MC − 𝑅(𝑥𝑗))

2. (7.7)

Nonparametric importance sampling
In general, it can be expected that the probability of a crash, E𝑆∈𝒞[𝑅(𝑥𝑆)], is small.
As a result, none or few of the 𝑁MC scenario simulations may end with a crash
and the relative uncertainty, i.e., 𝜎MC/𝜇MC, will be high or undefined (in case none
of the scenario simulations ends with a crash). With importance sampling, the
scenario parameters are sampled from a different distribution — the so-called im-
portance density — such that the simulation runs focus more on scenarios in which
the probability of a crash is high. This will lead to a lower relative uncertainty of the
estimated probability of a crash. We use nonparametric importance sampling, which
means that a nonparametric method is used to estimate the unknown optimal im-
portance density [321]. More specifically, as proposed in [321], the nonparametric
importance sampling method employs KDE to construct the importance density.

Let 𝑔(⋅) denote the importance density for sampling the scenario parameters. If
𝑁NIS scenarios are simulated in nonparametric importance sampling, the estimated
probability of a crash is

𝜇NIS =
1

𝑁NIS

𝑁NIS
∑
𝑗=1

𝑅(𝑥𝑗)
̂𝑓𝒞(𝑥𝑗)
𝑔(𝑥𝑗)

, 𝑥𝑗 ∼ 𝑔. (7.8)

The weight ̂𝑓𝒞(𝑥𝑗)/𝑔(𝑥𝑗) is used to correct for the bias introduced by sampling
from 𝑔(⋅) instead of ̂𝑓𝒞(⋅). If 𝑔(𝑥) > 0 whenever 𝑅(𝑥) ̂𝑓𝒞(𝑥) > 0, then (7.8) gives
unbiased results [219]. The estimated standard deviation of (7.8) is

𝜎NIS =
1

𝑁NIS
√
𝑁NIS
∑
𝑗=1
(
𝑅(𝑥𝑗) ̂𝑓𝒞(𝑥𝑗)
𝑔(𝑥𝑗)

− 𝜇NIS)
2

. (7.9)
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In the ideal case, we choose 𝑔(⋅) such that the actual standard deviation of
𝜇NIS is minimized. This ideal 𝑔(⋅) is, however, unknown because it depends on
𝑅(⋅), for which no functional form is available, and on the unknown E𝑆∈𝒞[𝑅(𝑥𝑆)].
Therefore, we propose to first conduct crude Monte Carlo sampling and to base 𝑔(⋅)
on this result. Let {𝑥(1), … , 𝑥(𝑁MC)} denote the ordered set of scenario parameters
from the crude Monte Carlo sampling, such that 𝑥(1) and 𝑥(𝑁MC) are the parameter
vectors corresponding to the “most critical” scenario and “least critical” scenario,
respectively. Then, we use the KDE technique described earlier to construct 𝑔(⋅)
using the 𝑁C < 𝑁MC “most critical” scenarios:

𝑔(𝑥) = 1
𝑁Cℎ𝑑NIS

𝑁C
∑
𝑖=1
𝐾( 1
ℎNIS

(𝑥 − 𝑥(𝑖))). (7.10)

Using the Gaussian kernel of (7.4), it follows that 𝑔(𝑥) > 0 for all 𝑥, such that (7.8)
gives an unbiased result. The bandwidth ℎNIS is estimated using leave-one-out
cross validation, similar to ℎ in (7.5).

To order the scenarios from “most critical” to “least critical”, a metric for quanti-
fying the (maximum) risk during a single simulation run can be used. For illustration
purposes, this work uses the minimum absolute Time to Collision (TTC) [130] dur-
ing each simulation run. Note that the presented method can easily be applied with
other metrics. The TTC is defined as the ratio of the distance toward an approach-
ing object and the speed difference with that object. In case the simulation of a
scenario ends in a crash, the minimum TTC is 0. Note that 𝑁C must be larger than
the number of simulation runs of the crude Monte Carlo sampling that ended in a
crash and 𝑁C must be substantially smaller than 𝑁MC, e.g., an order of magnitude,
to really benefit from the nonparametric importance sampling.

7.3.5. Calculation of severity
Besides the probability of a crash, risk also includes the extent of the harm in
a potential crash. We express the severity as the expectation of the probability
of a moderate injury or worse, corresponding to a Maximum Abbreviated Injury
Scale (MAIS) [225] level of 2 or higher: E𝑆∈𝒞[P(𝐼(𝑥𝑆))].

Typically, two different approaches are considered for predicting the extent of
harm in a crash. The first approach involves simulation of the crash. The simulations
as explained in Section 7.3.3 and as used in Section 7.3.4 consider the pre-crash
phase and are used to determine initial conditions and boundary conditions for the
simulation of the in-crash phase. The extent of harm is predicted by simulations
of the in-crash phase using biomechanical models; see [39, 46, 224, 230, 317]
for an overview. The second approach makes use of phenomenological injury risk
functions based on the research of the relationships between crash parameters and
the probability of an injury [153]. The most commonly used crash parameter is the
impact velocity change [21, 106, 107, 174, 318]. Other factors for determining the
probability of an injury are belt usage [106, 174, 318], occupant age [21, 318], peak
acceleration during the crash [105], airbag deployment [21], and seating position
of the occupants [21]. Typically, logistic regression is used to model the relationship



7

134 7. Risk quantification in driving scenarios

between crash parameters and the probability of an injury.
In this chapter, we assume that a method to estimate the probability of an injury

given a parameterized scenario, i.e., P(𝐼(𝑥𝑆)), is known. In the case study in Sec-
tion 7.5, an example is provided. To estimate E𝑆∈𝒞[P(𝐼(𝑥𝑆))], the same approach
for estimating the expectation of 𝑅(𝑥) in (7.8) is used:

E𝑆∈𝒞[P(𝐼(𝑥𝑆))] ≈ 𝜇injury =
1

𝑁NIS

𝑁NIS
∑
𝑗=1

𝑤(𝑥𝑗), 𝑥𝑗 ∼ 𝑔, (7.11)

with

𝑤(𝑥𝑗) = P(𝐼(𝑥𝑗))𝑅(𝑥𝑗)
̂𝑓𝒞(𝑥𝑗)
𝑔(𝑥𝑗)

. (7.12)

The estimated standard deviation of 𝜇injury is

𝜎injury =
1

𝑁NIS
√
𝑁NIS
∑
𝑗=1
(𝑤(𝑥𝑗) − 𝜇injury)

2. (7.13)

7.3.6. Risk quantification
The risk associated with a scenario category 𝒞 can be defined as the combination
of the probability of occurrence of a scenario of 𝒞 and the probability of an injury
given such a scenario. Thus, the risk is mathematically defined as:

Risk(𝒞) = E[𝑛𝒞] ⋅ E𝑆∈𝒞[P(𝐼(𝑥𝑆))], (7.14)

where E[𝑛𝒞] is defined in (7.1) and E𝑆∈𝒞[P(𝐼(𝑥𝑆))] is estimated in (7.11).
Remark 7.3. The risks of two scenario categories can be combined as follows:

Risk(𝒞1 ∪ 𝒞2) = Risk(𝒞1) + Risk(𝒞2) − Risk(𝒞1 ∩ 𝒞2). (7.15)

In general, it is sufficient to estimate the upper bound of the risk, so in case it is
practically difficult to evaluate Risk(𝒞1 ∩ 𝒞2), one can use

Risk(𝒞1 ∪ 𝒞2) ≤ Risk(𝒞1) + Risk(𝒞2), (7.16)

where equality applies if two scenario categories, 𝒞1 and 𝒞2, do not overlap. ♢

7.4. Relation with ISO 26262 and ISO 21448

I n this section, we propose how to quantify the exposure, severity, and control-
lability in Sections 7.4.1 to 7.4.3, respectively. Finally, in Section 7.4.4, we show

that combining these aspects results in the earlier calculated risk of (7.14).
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7.4.1. Exposure
We consider the likelihood of being in a scenario that is comprised by the scenario
category 𝒞. Hence, the exposure is similar to (7.1):

Exposure(𝒞) = E[𝑛𝒞]. (7.17)

Note that the ISO 26262 standard [144] also mentions the “failure mode”, see
Table 7.1. The ISO 21448 standard [143], however, does not consider a specific
“failure mode”, which is why we focus on the likelihood of “being in an operational
situation”. Here, the “operational situation” is described by the scenario category
𝒞.

7.4.2. Severity
In Section 7.3.5, a method to compute the severity has been proposed. Following
the reasoning of the ISO 26262 standard, however, the severity is defined slightly
differently, as it is assumed that there is no operator that can avoid harm or damage.
Therefore, we define severity as follows:

Severity(𝒞) = E𝑆∈𝒞[P(𝐼(𝑥𝑆))|no operator], (7.18)

where “no operator” indicates that the backup function of the operator is not con-
sidered in the simulations.

Remark 7.4. An operator might still be considered in the simulation. For example,
if the ADS only controls the vehicle in the longitudinal direction, an operator is still
in charge of lateral control. In this example, the notation “no operator” indicates
that the driver is not a backup for the longitudinal control. ♢

Note that similar to the exposure, the severity in (7.18) is calculated with respect
to a scenario category, whereas the ISO 26262 standard determines the severity
with respect to a “hazardous event”. Our method still allows to evaluate the severity
considering such malfunctioning behavior by simply injecting this malfunctioning
behavior as part of the sensor(s), ADS(s), and/or vehicle(s). In a similar manner,
any triggering conditions (see Remark 7.1) that may cause hazardous behavior can
be included in the simulations.

7.4.3. Controllability
To determine the controllability, we compare the probability of an injury with and
without a backup operator. Hence,

Controllability(𝒞) = E𝑆∈𝒞[P(𝐼(𝑥𝑆))]
E𝑆∈𝒞[P(𝐼(𝑥𝑆))|no operator]

. (7.19)

If Controllability(𝒞) = 1, then a backup operator cannot avoid any potential harm.
The ISO 26262 standard calls this “difficult to control or uncontrollable”. If, on the
other hand, Controllability(𝒞) = 0, then a backup operator is able to avoid any
potential harm.
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Remark 7.5. It might be counterintuitive that a higher score for Controllability(𝒞)
indicates that the situation is less controllable. The ISO 26262 standard also assigns
higher scores for the controllability in case the situation is less controllable, see
Section 7.2.1. We have chosen to prefer consistency with respect to the ISO 26262
standard, which is why Controllability(𝒞) = 1 means that the situation is difficult
to control and Controllability(𝒞) = 0 means that the situation is easy to control.
♢

7.4.4. Combining the risk aspects to compute the risk
To compute the risk, the scores for the exposure, severity, and controllability are
multiplied:

Risk(𝒞) = Exposure(𝒞) ⋅ Severity(𝒞) ⋅ Controllability(𝒞). (7.20)

Substituting (7.17) to (7.19) into (7.20) results in the risk of (7.14).

Remark 7.6. The ASIL ranking is obtained by summing the scores for the expo-
sure, severity, and controllability, while the risk in (7.20) is obtained by multiplying
the scores for the exposure, severity, and controllability. Following the ISO 26262
standard, the scoring for the exposure, severity, and controllability is such that one
point difference corresponds to an order in magnitude. Therefore, loosely said, the
ASIL is proportional to the log of the risk of (7.20) while the individual scores of the
exposure, severity, and controllability are proportional to the log of (7.17), (7.18),
and (7.19), respectively. Since we can rewrite (7.20) as

logRisk(𝒞) = logExposure(𝒞) + logSeverity(𝒞) + logControllability(𝒞),
(7.21)

(7.20) is consistent with the way the risk is determined in the ISO 26262 standard.
♢

7.5. Case study

T his section explains the details of the case study; the results are reported in the
next section. In Section 7.5.1, the models for the ADS under test and the hu-

man driver that serves as a backup operator are described. The scenario categories
and triggering conditions are listed in Sections 7.5.2 and 7.5.3, respectively. Sec-
tion 7.5.4 describes the data set. This section ends with details on the simulation
(Section 7.5.5) and the severity estimation (Section 7.5.6).

7.5.1. Automated driving system under test
For the ADS under test, we consider the ACC model described by Xiao et al. [312].
This ACC model is based on the ACC model proposed by Milanés and Shladover
[199] but also includes a safety distance 𝑑0. The ACC function adjusts the ego
vehicle speed such that the ego vehicle maintains a safe distance from a leading
vehicle. If there is no vehicle ahead or the distance between the ego vehicle and the
leading vehicle is large, then the ACC acts like a Cruise Control (CC) that maintains
a constant speed set by the driver. The acceleration of the ACC is based on the
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speed of the ego vehicle, 𝑣e(𝑡), the speed of the leading vehicle, 𝑣l(𝑡), and the gap
between the leading vehicle’s back and the ego vehicle’s front, 𝑔(𝑡), at time 𝑡. If
the ACC function is active, the acceleration of the ego vehicle at time 𝑡 is described
by the following equations [312]:

𝑎e(𝑡) =max(min(𝑎ACC(𝑡), 𝑎CC(𝑡)), −𝑑max), (7.22)

𝑎ACC(𝑡) = {
𝑘1𝑔error(𝑡) + 𝑘2𝑣error(𝑡) if 𝑔(𝑡) < 𝑑ACC,
𝑎CC(𝑡) otherwise, (7.23)

𝑔error(𝑡) = 𝑔(𝑡) − 𝑑0(𝑣e(𝑡)) − 𝜏h𝑣e(𝑡), (7.24)

𝑣error(𝑡) = 𝑣l(𝑡) − 𝑣e(𝑡), (7.25)

𝑑0(𝑢) = {
5m if 𝑢 ≥ 15m/s,
7m if 𝑢 < 10.8m/s,
75m2/s

𝑢 otherwise,
(7.26)

𝑎CC(𝑡) = 𝑘CC(𝑣set − 𝑣e(𝑡)). (7.27)

The values and descriptions of the parameters 𝑑max, 𝑑ACC, 𝑘1, 𝑘2, 𝜏h, and 𝑘CC are
provided in Table 7.3. The parameter 𝑣set is the desired speed, which is assumed
to be the same as the initial speed of the ego vehicle in each simulation run, i.e.,
𝑣set = 𝑣e(0).

Following Xiao et al. [312], the human driver takes over control from the ACC
in the following circumstances:

• In case of a Forward Collision Warning (FCW). If the FCW is at time 𝑡, then
the human driver takes over at 𝑡 + 𝑡r, where 𝑡r is the reaction time of the
human driver.

• In case the ego vehicle approaches the leading vehicle with a relative speed
of 15m/s and the gap between the ego vehicle and the leading vehicle is less
than the perception range, 𝑑view.

Similar as in [312], the FCW model is taken from [162] and is triggered when
1/(1 + exp{−𝛽}) > 0.75, with

𝛽 =
⎧

⎨
⎩

−6.09 + 18.82𝑣e−𝑣l𝑔 + 0.12𝑣e if 𝑣l > 0 ∧ 𝑎l < 0,
−6.09 + 12.58𝑣e−𝑣l𝑔 + 0.12𝑣e if 𝑣l > 0 ∧ 𝑎l ≥ 0,
−9.07 + 24.23𝑣e−𝑣l𝑔 + 0.12𝑣e otherwise,

(7.28)

where 𝑎l denotes the acceleration of the leading vehicle. The reaction time of the
driver, 𝑡r, is distributed according to the log-normal distribution with a mean of
0.92 s and a standard deviation of 0.28 s [121].

Similar to Xiao et al. [312], we use the Intelligent Driver Model plus (IDM+)
[247] to model the human driver behavior. If the human driver is controlling the
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Table 7.3: Parameters of the system under test and human driver behavior model. If the parameter value
is taken from literature, the corresponding reference is mentioned after the value. For the parameters
𝑑max and 𝑑view, different values are considered as so-called triggering conditions that are included in
the scenarios, see Section 7.5.3.

Parameter Description Value

𝑑max Maximum deceleration (value with triggering
condition “limited braking capacity”)

6m/s2 (3m/s2)

𝑑ACC Maximum sensor range of ACC 150m
𝑘1 Distance gain of ACC 0.23 s−2 [312]
𝑘2 Speed gain of ACC 0.07 s−1 [312]
𝜏h Time-gap setting, also known as desired

time headway
1.1 s [312]

𝑘CC Speed gain of CC 0.4 s−1 [312]
𝑣set Desired speed Variable
𝑡r Reaction time Variable [121]
𝑑view Perception range of human driver (value with

triggering condition “poor visibility”)
150m (60m) [312]

𝑘a Maximum acceleration for human driver 0.73m/s2 [281]
𝑘d Maximum deceleration for human driver 1.67m/s2 [281]
𝛿 Acceleration exponent for human driver 4 [281]
𝑠0 Safety distance for human driver 2m [281]

vehicle and 𝑔(𝑡) ≤ 𝑑view, then the acceleration of the ego vehicle at time 𝑡 + 𝑡r is
described by the following equations [247]:

𝑎e(𝑡 + 𝑡r) =max(𝑎IDM(𝑡), −𝑑max), (7.29)

𝑎IDM(𝑡) = 𝑘amin(1 − (𝑣e
(𝑡)
𝑣set

)
𝛿
, 1 − (𝑔

∗(𝑣e(𝑡), 𝑣e(𝑡) − 𝑣l(𝑡))
𝑔(𝑡) )

2
), (7.30)

𝑔∗(𝑢, 𝑣) = 𝑠0 + 𝜏h𝑢 +
𝑢𝑣

2√𝑘a𝑘d
. (7.31)

Table 7.3 provides the descriptions of the constants 𝑘a, 𝑘d, 𝛿, 𝑠0, and 𝜏h. If 𝑔(𝑡) >
𝑑view, then 𝑎e(𝑡 + 𝑡r) = 0m/s2.

7.5.2. Scenario categories
This case study considers three scenario categories named “leading vehicle decel-
erating (LVD)” (𝒞LVD), “cut-in” (𝒞cut−in), and “approaching slower vehicle (ASV)”
(𝒞ASV), see Figure 7.3. The relevance of the first two scenario categories is ex-
emplified by the proposed regulation for automated lane-keeping systems in which
these two scenario categories are mentioned as “critical scenarios” [90]. The sce-
nario category ASV, which also includes scenarios in which the leading vehicle is
stationary, accounts for more than 25% of all crashes that involve two vehicles



7.5. Case study

7

139

𝑣l,0

(a) Leading vehicle decelerating (LVD).

𝑔0

𝑣e,0

𝑣l,0

(b) Cut-in.

𝑣e,0 𝑣l,0

(c) Approaching slower vehicle (ASV).

Figure 7.3: Schematic representation of the scenario categories considered in the case study. The left
vehicle is the ego vehicle. All parameters are shown except Δ𝑣 and 𝑎̄ of the LVD scenario.

[209]. For each scenario category, we will list the parameters that describe the
scenarios. Furthermore, we will describe how the speed of the leading vehicle is
modeled. Since the ego vehicle is controlled by the ACC or the human driver, only
its initial state at 𝑡 = 0 is provided.

𝒞LVD: Leading vehicle decelerating
In an LVD scenario, the ego vehicle is following another vehicle, which is referred to
as the leading vehicle. The LVD scenario starts as soon as the leading vehicle starts
to decelerate. The simulation of an LVD scenario ends if the distance between the
ego vehicle and the leading vehicle is no longer decreasing or if the ego vehicle
and the leading vehicle collide. To describe an LVD scenario, three parameters are
used:

• 𝑣l,0 > 0: The initial speed of the leading vehicle;
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• Δ𝑣 ∈ (0, 𝑣l,0]: The speed difference of the leading vehicle obtained through
decelerating; and

• 𝑎̄ > 0: The average deceleration of the leading vehicle.

To model the speed of the leading vehicle during its deceleration activity, a sinusoidal
shape is used:

𝑣l(𝑡) = {
𝑣l,0 −

Δ𝑣
2 (1 − cos(𝜋𝑎̄𝑡Δ𝑣 )) if 𝑡 < Δ𝑣

𝑎̄ ,
𝑣l,0 − Δ𝑣 otherwise.

(7.32)

It is assumed that the ego vehicle is following the leading vehicle at the same
speed, i.e., 𝑣e(0) = 𝑣l,0. This is also the desired speed, thus 𝑣set = 𝑣l,0. The
initial gap is such that the ego vehicle is initially driving at a constant speed, so
𝑔(0) = 𝑑0(𝑣e(0)) + 𝜏h𝑣e(0), such that the initial distance error, 𝑔error(0), is zero,
see (7.24).

𝒞cut−in: Cut-in
In a cut-in scenario, another vehicle changes lane such that it becomes the leading
vehicle of the ego vehicle. The reason for the other vehicle to change lane is not
considered, i.e., it may change lane because the driver of the vehicle assumes it
is safe and appropriate to change lane or because a lane change is mandatory.
A cut-in scenario starts as soon as the other vehicle enters the lane of the ego
vehicle. Similarly as for an LVD scenario, the simulation of a cut-in scenario ends as
soon as the distance between the ego vehicle and the leading vehicle is no longer
decreasing or if there is a crash. To describe a cut-in scenario, three parameters
are used:

• 𝑔0 > 0: The gap between the leading vehicle and the ego vehicle at the
moment of the cut-in;

• 𝑣l,0 > 0: The initial speed of the leading vehicle; and

• 𝑣e,0 > 0: The initial speed of the ego vehicle.

It is assumed that the leading vehicle drives at a constant speed, thus 𝑣l(𝑡) =
𝑣l,0. The initial gap and the initial speed of the ego vehicle are provided by the
parameters: 𝑔(0) = 𝑔0 and 𝑣e(0) = 𝑣e,0. The initial speed of the ego vehicle is also
the desired speed: 𝑣set = 𝑣e,0.

𝒞ASV: Approaching slower vehicle
In an ASV scenario, another vehicle, referred to as the leading vehicle, is driving in
front of the ego vehicle. Furthermore, the leading vehicle is driving slower than the
ego vehicle, such that the ego vehicle is approaching this vehicle. The ASV scenario
starts if the ego vehicle is at a safe distance and ends if the distance between the
two vehicle is no longer decreasing or if the two vehicles collide. To describe an
ASV scenario, two parameters are used:
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Table 7.4: Information of the participants that drove the 50km route six times.

Minimum Maximum Mean

Age [years] 29 60 52.3
Experience [years] 8 42 32.4
Mileage [km/year] 10 ⋅ 103 40 ⋅ 103 16.1 ⋅ 103

• 𝑣l,0 ≥ 0: The initial speed of the leading vehicle; and

• 𝑣e,0 > 0: The initial speed of the ego vehicle.

It is assumed that the leading vehicle drives at a constant speed, thus 𝑣l(𝑡) = 𝑣l,0.
The initial speed of the ego vehicle is 𝑣e(0) = 𝑣e,0, which is also the desired speed:
𝑣set = 𝑣e,0. The initial gap is 𝑔(0) = 𝜏h,0𝑣e(0) with 𝜏h,0 = 4 s, such that the initial
distance is safe, considering a time headway of 4 s.

7.5.3. Triggering conditions
To illustrate the application of the proposed method for the risk quantification for the
validation of the SOTIF, triggering conditions are included in the scenarios that may
trigger hazardous situations, see Remark 7.1. For comparison, the risk is calculated
without a triggering condition and with a triggering condition.

The first triggering condition is a limited braking capacity of the ego vehicle.
As a result, the maximum deceleration of the ego vehicle is 𝑑max = 3m/s2. The
reason for a limited braking capacity is not further specified here, but it could be
caused by a loss of road friction, e.g., due to an adverse road condition.

The second triggering condition is a poor visibility. It is assumed that the human
driver can only see up to 𝑑view = 60m. It is further assumed that the maximum
sensor range of the ACC, 𝑑ACC, is unaffected. This assumption is reasonable in case
the poor visibility is caused by fog because fog has a limited effect on automotive
radars that are typically used for an ACC.

7.5.4. Data set
To estimate the exposure and the pdfs of the scenario parameters, the data set
described in [221] is used. The data were recorded from a single vehicle in which
20 experienced drivers were asked to drive a prescribed route. Table 7.4 lists more
information about the drivers. Each driver drove the 50km route, as shown in
Figure 7.4, 6 times, which resulted in 63h of data. The route contains urban roads,
rural roads, and highways. To measure the surrounding traffic, the vehicle was
equipped with three radars and one camera. The surrounding traffic was measured
by fusing the data of the radars and the camera as described in [92].

To extract the scenarios from the data set, the approach described in [73] is
used. LVD scenarios are found by querying for a vehicle that has the tags “leading
vehicle” and “braking” at the same time. Cut-in scenarios are found by querying for
a vehicle that initially has the tags “changing lane” and “no leading vehicle” which
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Figure 7.4: The route, including the driving direction, that was driven by the drivers.

changes into the tags “changing lane” and “leading vehicle” [73]. ASV scenarios
are found by querying for a vehicle that has the tags “leading vehicle” and “driving
slower”, where the tag “driving slower” indicates that the vehicle has at most 90%
of the speed of the ego vehicle. In 63 hours of driving, 1300 LVD scenarios, 297
cut-in scenarios, and 291 ASV scenarios has been found.

7.5.5. Simulations
For the simulation, we use the forward Euler method with a step size of 0.01 s to
compute the positions of the ego vehicle and the leading vehicle. We used Python
as the coding language. The code is available on a public repository3. Initially, the
crude Monte Carlo sampling with 𝑁MC = 10000 simulation runs is performed where
the scenario parameters are drawn from ̂𝑓𝒞(⋅) of (7.3). Additionally, if applicable,
the driver reaction time, 𝑡r, is sampled from the log-normal distribution described
in Section 7.5.1.

The importance density 𝑔(⋅) of (7.10) is constructed using the 𝑁C = 200 “most
critical” scenarios of the crude Monte Carlo simulation: the scenarios with the lowest
TTC. If applicable, the driver reaction time is also part of the multivariate pdf 𝑔(⋅).
Note that these 𝑁C “most critical” scenarios always include scenarios that ended
with a crash because 𝜇MC < 𝑁C/𝑁MC = 0.02.

3https://github.com/ErwindeGelder/ScenarioRiskQuantification

https://github.com/ErwindeGelder/ScenarioRiskQuantification


7.6. Results

7

143

7.5.6. Probability of an injury
For the calculation of the injury rate, see (7.11), it has been assumed that the
probability of an injury given a parameterized scenario, P(𝐼(𝑥𝑆)), is known. The
presented case study uses the model from Kusano and Gabler [174] to determine
P(𝐼(𝑥𝑆)), since this model is also used in [175, 323]. Kusano and Gabler [174]
model the relationship between impact velocity change and belt usage with the
probability of an injury with MAIS≥2 in rear-end crashes:

P(𝐼(𝑥𝑆)) =
1

1 + exp{−(𝛽0 + 𝛽1Δ𝑣(𝑥𝑆) + 𝛽2𝑏)}
. (7.33)

Here, 𝛽0 = −6.068, 𝛽1 = 0.100 s/m, and 𝛽2 = 0.6234 are parameters that are
fitted to data of 1406 rear-end crashes [174]. For the velocity change during a
crash, Δ𝑣(𝑥𝑆), which depends on the masses of the two objects colliding, we assume
equal masses such that Δ𝑣(𝑥𝑆) is half of the impact speed (i.e., the speed difference
at the start of the crash). If the belt is not used, then 𝑏 = −1. In this case study,
it is assumed that the belt is always used, so 𝑏 = 1.

7.6. Results

T his section provides the results of the case study described in Section 7.5. First,
the exposures of the scenarios are listed. Next, the severity and controllability

are reported. Finally, we explain the results of the simulations that include the
triggering conditions.

7.6.1. Exposure
The bar graph in Figure 7.5 shows the estimated probability that the respective
scenario is found 𝑛 times per hour of driving. Given the number of encounters of
the scenarios, we have the following exposures:

Exposure(𝒞LVD) = E[𝑛𝒞LVD] = 20.6h−1, (7.34)

Exposure(𝒞cut−in) = E[𝑛𝒞cut−in] = 4.71h−1, (7.35)

Exposure(𝒞ASV) = E[𝑛𝒞ASV] = 4.62h−1. (7.36)

As mentioned in Remark 7.2, it is not uncommon to assume that the probability
of encountering 𝑛 scenarios belonging to a specific scenario category is Poisson-
distributed. To compare the results with the Poisson distribution of (7.2), the proba-
bility of the Poisson distribution is also shown in Figure 7.5. The parameter 𝜆 is esti-
mated by maximizing the likelihood. This gives the same results as (7.34) to (7.36),
i.e., 𝜆 = 20.6h−1 for the LVD scenarios, 𝜆 = 4.71h−1 for the cut-in scenarios, and
𝜆 = 4.62h−1 for the ASV scenarios. According to the Chi-square goodness of test,
the probability that P(𝑛𝒞LVD = 𝑛), P(𝑛𝒞cut−in = 𝑛), and P(𝑛𝒞ASV = 𝑛) are distributed
according to the Poisson distribution is very small (𝑝 < 0.001). Hence, it can be
concluded that the assumption that the number of encounters of the LVD, cut-in,
and ASV scenarios is Poisson-distributed is unrealistic.
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Figure 7.5: The bar graph shows how often a scenario of scenario category 𝒞LVD, 𝒞cut−in, or 𝒞ASV is
encountered 𝑛 times per hour of driving divided over the total number of hours, 63. For comparison,
the dots denote the Poisson distribution of (7.2) with the maximum likelihood estimate of 𝜆.
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Figure 7.6: Three parameters of the LVD scenarios. The histograms show the original data and the solid
lines represent the marginal probability distributions of the estimated pdf.

7.6.2. Severity and controllability
As explained in Section 7.3.4, to estimate the probability of a crash, the pdfs of the
scenario parameters need to be estimated. In Figures 7.6 to 7.8, the results of the
pdf estimation are shown. The histograms show the original data that are used
to estimate the pdfs. The multivariate pdfs are estimated using KDE, see (7.3).
To account for the infinite support of the Gaussian kernel of (7.4), the resulting
pdfs are set to 0 if the parameters are outside the valid range of parameters as
mentioned in Section 7.5.2. Next, the pdfs are scaled such that they integrate to
1. The solid lines in Figures 7.6 to 7.8 represent the marginal distributions of the
resulting pdfs.

Tables 7.5 and 7.6 show the results of the simulation runs. It shows that the
estimated probability of an injury with MAIS≥2 in LVD scenarios is 2.77⋅10−7 with an
estimated uncertainty of 1.27⋅10−7. If, however, there would be no backup from an
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Figure 7.7: Three parameters of the cut-in scenarios. The histograms show the original data and the
solid lines represent the marginal probability distributions of the estimated pdf.
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Figure 7.8: Two parameters of the ASV scenarios. The histograms show the original data and the solid
lines represent the marginal probability distributions of the estimated pdf.

operator, then this probability is substantially higher: Severity(𝒞LVD) = 1.12⋅10−5.
Therefore, the controllability score is small (Controllability(𝒞LVD) = 2.47 ⋅ 10−2),
resulting in Risk(𝒞LVD) = 5.72 ⋅ 10−6 h−1. In other words, it is expected that, on
average, one crash in an LVD scenario with a moderate injury or worse happens in
1.75 ⋅ 105 h of driving.

For the cut-in scenario category, the controllability score is almost 1, indicating
that it is unlikely that a human driver can avoid any potential harm. Although
the severity and exposure are lower than for the LVD scenario category, the higher
controllability score results in a higher overall risk (Risk(𝒞cut−in) = 1.75⋅10−5 h−1).

Out of the three scenario categories, the ASV scenario category has the highest
severity (Severity(𝒞ASV) = 2.12 ⋅ 10−5). According to the simulations, however,
the human driver is able to avoid any harm in almost all cases. Therefore, the
controllability score is low (Controllability(𝒞ASV) = 7.83 ⋅ 10−6) and the estimated
risk is also low (Risk(𝒞ASV) = 7.68 ⋅ 10−10 h−1). Note that for the ASV scenario
category, 𝜎injury is almost equal to 𝜇injury, indicating that the relative uncertainty is
high. This indicates that the actual risk could be an order of magnitude lower than
the estimated risk.

7.6.3. Triggering conditions
Tables 7.5 and 7.6 also show the results of the simulations that include a triggering
condition. The risk in LVD scenarios is approximately 50 times higher when consid-
ering the triggering condition “limited braking capacity”; so this triggering condition
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Table 7.5: First part of the results of the case study. 𝜇NIS of (7.8): estimated crash probability. 𝜎NIS of
(7.9): estimated standard deviation of 𝜇NIS. 𝜇injury of (7.11): estimated probability of an injury with
MAIS≥2. 𝜎injury of (7.13): estimated standard deviation of 𝜇NIS.

𝒞 Trig. cond. 𝜇NIS 𝜎NIS 𝜇injury 𝜎injury
𝒞LVD None 1.61 ⋅ 10−4 5.95 ⋅ 10−5 2.77 ⋅ 10−7 1.27 ⋅ 10−7
𝒞LVD Lim. braking 7.22 ⋅ 10−3 1.58 ⋅ 10−4 1.16 ⋅ 10−5 2.70 ⋅ 10−7
𝒞LVD Poor visibility 1.61 ⋅ 10−4 5.95 ⋅ 10−5 2.77 ⋅ 10−7 1.27 ⋅ 10−7
𝒞cut−in None 1.95 ⋅ 10−3 1.32 ⋅ 10−4 3.71 ⋅ 10−6 2.71 ⋅ 10−7
𝒞cut−in Lim. braking 2.20 ⋅ 10−3 1.35 ⋅ 10−4 4.79 ⋅ 10−6 3.23 ⋅ 10−7
𝒞cut−in Poor visibility 1.95 ⋅ 10−3 1.32 ⋅ 10−4 3.71 ⋅ 10−6 2.71 ⋅ 10−7
𝒞ASV None 1.03 ⋅ 10−7 1.02 ⋅ 10−7 1.66 ⋅ 10−10 1.64 ⋅ 10−10
𝒞ASV Lim. braking 4.51 ⋅ 10−3 1.72 ⋅ 10−4 9.78 ⋅ 10−6 4.15 ⋅ 10−7
𝒞ASV Poor visibility 3.57 ⋅ 10−3 1.41 ⋅ 10−4 1.01 ⋅ 10−5 3.97 ⋅ 10−7

Table 7.6: Second part of the results of the case study. Severity: estimation of (7.18). Controllability:
estimation of (7.19). Risk: estimation of (7.20). Note that for the risk estimation, the exposure of the
triggering condition is not considered.

𝒞 Trig. cond. Severity Controllability Risk

𝒞LVD None 1.12 ⋅ 10−5 2.47 ⋅ 10−2 5.72 ⋅ 10−6 h−1
𝒞LVD Limited braking 1.52 ⋅ 10−5 0.763 2.39 ⋅ 10−4 h−1
𝒞LVD Poor visibility 1.12 ⋅ 10−5 2.47 ⋅ 10−2 5.72 ⋅ 10−6 h−1
𝒞cut−in None 3.92 ⋅ 10−6 0.947 1.75 ⋅ 10−5 h−1
𝒞cut−in Limited braking 4.54 ⋅ 10−6 1.06 2.26 ⋅ 10−5 h−1
𝒞cut−in Poor visibility 3.92 ⋅ 10−6 0.947 1.75 ⋅ 10−5 h−1
𝒞ASV None 2.12 ⋅ 10−5 7.83 ⋅ 10−6 7.68 ⋅ 10−10 h−1
𝒞ASV Limited braking 3.70 ⋅ 10−5 0.265 4.52 ⋅ 10−5 h−1
𝒞ASV Poor visibility 2.12 ⋅ 10−5 0.476 4.66 ⋅ 10−5 h−1

has a significant impact on the safety during such scenarios. For cut-in scenarios,
the risk is of the same order of magnitude when considering the triggering condition
“limited braking capacity”. The estimated risk in ASV scenarios is the highest when
considering a limited braking capacity.

The triggering condition “poor visibility” does not influence the risk in LVD sce-
narios. This is because the leading vehicle is always within the viewing range of the
driver, i.e., 𝑠0 + 𝑣e𝜏h < 𝑑view. The risk in cut-in scenarios is also not influenced by
this triggering condition. It may be possible that the vehicle cutting in is at a larger
distance than 𝑑view, but in potential risky scenarios that may result in harm, the
vehicle cutting in is at a smaller distance than 𝑑view. Hence, the vehicle cutting in is
still in the limited viewing range of the human driver. For ASV scenarios, the risk is
significantly higher when considering the triggering condition “poor visibility”. The
severity is the same because the limited viewing range of the human driver does
not affect the ACC, but the controllability score is significantly higher. This indicates
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that it is less likely that the human driver will prevent harm in ASV scenarios when
its view toward the leading vehicle is limited.

7.7. Discussion

Q uantifying the risk in driving scenarios is an important component of the over-
all risk assessment of an ADS. Research question 7.1 addresses this by asking

how to quantify the risk of an ADS. The proposed method in Section 7.3 answers
this question. With answering Research question 7.2, we have also shown how the
proposed method for risk quantification contributes to the risk assessment as pro-
posed in the ISO 26262 [144] and ISO 21448 [143] standards by decomposing the
risk into the components exposure, severity, and controllability. This section pro-
vides further interpretations of the results and discusses limitations of the presented
research that are to be addressed in future research.

Whereas the ISO 26262 standard addresses functional safety and the ISO 21448
standard addressed SOTIF, for the safe deployment and operation of an ADS, cy-
bersecurity [61] needs to be addressed as well. The cybersecurity ensures that an
ADS is well protected against security attacks [62, 246]. This includes, e.g., miti-
gating privacy-related risks [160, 187, 297, 309–311, 326]. Note that cybersecurity
is out-of-scope of the ISO 26262 and ISO 21448 standards and, thus, it is also out-
of-scope of the current work. We refer to the ISO 21434 standard [142] for more
information regarding cybersecurity of ADSs.

The proposed risk quantification serves two purposes. One purpose is to sup-
port the evaluation of whether it is safe to actually deploy an ADS in real-world
traffic. In fact, the output of the proposed method, i.e., the expected number of
injuries per hour of driving, can be compared with road crash statistics. Another
purpose is to facilitate the design decisions during the development of an ADS. For
example, based on the high controllability score of the ACC in ASV scenarios with
poor visibility conditions (Table 7.6), it might be decided that a subsystem needs to
be in place to detect poor visibility conditions such that the speed is reduced under
these conditions. Also, the severity score might be lowered by adapting the control
logic of the ADS.

The exposure of a scenario category is estimated by counting the number of oc-
currences of the corresponding scenarios and dividing this number by the number of
hours of driving. As pointed out in Remark 7.2, it is not uncommon to assume that
the rate of occurrence is constant such that the occurrence is Poisson-distributed.
Looking at the results in Figure 7.5, however, the data do not support the as-
sumption that the occurrence is Poisson-distributed. This suggests that the rate of
occurrence is not constant and depends on other factors, e.g., the road layout, the
environment (a cut-in is less likely on a rural road than on the highway), the driver,
and the time of the day. If such factors are different during the deployment of the
ADS, the estimated exposure needs to be reconsidered.

The presented method for risk quantification comes with limitations that are to
be addressed in future research. While we advertised the use of data such that
the risk estimation relies less on possibly subjective opinions from safety experts,
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it might be difficult to justify the adequacy of the data. First, it is important that
we have enough data to accurately determine the pdf of the scenario parameters4.
Second, the data need to match the Operational Design Domain (ODD) (see Ta-
ble 7.2 for the definition) of the ADS. For example, the data that have been used
in the case study were obtained from driving a specific route multiple times during
daytime and good weather conditions. If the ODD of the ADS considers the same
route during daytime and good weather conditions, then the data are represent-
ing this ODD. If, however, the ODD is substantially different, extra arguments are
needed to justify that the data still represent the ODD. The estimated exposure
of the scenarios and the estimated parameter pdfs might not be accurate for the
specified ODD in case the data have been recorded under different circumstances.
As a result, the estimated risk might not be accurate enough.

Another difficulty involves accounting for the exposure of the triggering condi-
tions. If the occurrence rate of the triggering condition can be assumed to be in-
dependent of the scenario category, the calculated risk of (7.20) — which does not
consider the exposure of the triggering condition — can simply be multiplied with
the estimated exposure of the triggering condition. It may be difficult, however,
to justify this independence. More research is needed to investigate the possible
triggering conditions, their occurrence rates, their relations with the occurrence of
different scenarios, and the (possible) dependency between the scenario parameter
values and the triggering conditions.

The proposed method for risk quantification employs simulations of the ADS
response in driving scenarios. As a proof of concept, we have implemented simula-
tions using simple models for the system-under-test and the driver behavior model.
On the one hand, using these simple models contributes to the explainability of the
results, ensures short simulation run times, and facilitates the reproducibility of the
case study. On the other hand, the fidelity of the simulation results may be com-
promised by the simplicity of the simulations. When using the proposed method to
assess the risk of deploying an ADS in the real world, evidence is needed to justify
the fidelity of the simulation results. Therefore, the development of high-fidelity
simulators for ADSs is an important research topic; see [158, 238] for an overview.
More research is needed to actually verify the fidelity of such simulators. Note that
it might be possible to combine virtual simulations with, e.g., hardware-in-the-loop
tests, vehicle-in-the-loop tests, and proving ground tests [232]. For example, prov-
ing ground tests may be used to verify the virtual simulation results and virtual
simulations are used to alleviate the required resources as no longer all tests have
to be performed physically.

The proposed risk quantification is performed with regards to a given scenario
category, possibly including one or more triggering conditions. To thoroughly review
the risk of deploying an ADS in real-world traffic, many scenario categories and
triggering conditions need to be considered. It remains an open question how many
scenario categories and triggering conditions are to be considered. The 67 scenario
categories described in [74] might be a good starting point, but it is expected that

4To determine whether enough data have been collected to estimate the pdf accurately, the metric
proposed in Chapter 3 [72] can be used.



7.8. Conclusions

7

151

more scenario categories are needed for an ADS that aims for deployment in a
complex ODD. The ISO/CD 34502 standard [148], currently under development,
provides a process to determine the relevant scenario categories and triggering
conditions for the safety validation of an ADS that is active on highways. Thus,
once published, this standard may help to answer the question of which and how
many scenario categories and triggering conditions are needed for a thorough risk
assessment.

7.8. Conclusions

V alidating the safety of an Automated Driving System (ADS) is essential to enable
the safe deployment of an ADS. Part of the safety validation is the estimation

of the risk of an ADS when dealing with real-world driving scenarios. The current
work has presented a method to quantify this risk given a set of driving scenarios
that are comprised by a scenario category. Since a data-driven approach has been
proposed, the method relies less on the possibly subjective inputs from safety ex-
perts. Simulations are employed such that risks can be assessed prospectively, i.e.,
before real-life testing. The method supports the decomposition of the risk into
the three aspects of risk, i.e., exposure, severity, and controllability, as mentioned
by the leading standards in automotive safety, i.e., the ISO 26262 and ISO 21448
standards. Thus, the current chapter provides a method that can help engineers
when designing an ADS in compliance with these standards and when evaluating
the compliance of the ADS to these standards.

The risk quantification method has been illustrated by means of a case study.
In the case study, the risk of a moderate injury or worse per hour of driving of
an ADS is estimated for three scenario categories: leading vehicle decelerating
(LVD), cut-in, and approaching slower vehicle (ASV). In addition to these scenarios,
the scenarios have been complemented with so-called triggering conditions, such
as poor visibility conditions. The results have indicated, e.g., that the role of a
human driver as a back-up is essential to reduce the risk in ASV scenarios and that,
therefore, conditions that cause a poor visibility of the driver’s environment have a
significant impact on the risk.

Future work involves determining the statistics of the triggering conditions and
the dependencies between triggering conditions and the different scenarios. Fur-
thermore, verification methods for the fidelity of the simulation results is a topic
of ongoing research. Finally, more research is needed to determine the relevant
scenario categories that are to be considered for a full risk assessment of an ADS.
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Surrogate Safety Measures (SSMs) are used to express road safety in terms
of the safety risk in traffic conflicts. Typically, SSMs rely on assumptions
regarding the future evolution of traffic participant trajectories to generate a
measure of risk. As a result, they are only applicable in scenarios where
those assumptions hold. To address this issue, we present a novel data-
driven Probabilistic RISk Measure derivAtion (PRISMA) method. The PRISMA
method is used to derive SSMs that can be used to calculate in real time the
probability of a specific event (e.g., a crash). Because we adopt a data-driven
approach to predict the possible future evolutions of traffic participant trajec-
tories, less assumptions on these trajectories are needed. Since the PRISMA
is not bound to specific assumptions, multiple SSMs for different types of
scenarios can be derived. To calculate the probability of the specific event,
the PRISMA method uses Monte Carlo simulations to estimate the occurrence
probability of the specified event. We further introduce a statistical method
that requires fewer simulations to estimate this probability. Combined with
a regression model, this enables our derived SSMs to make real-time risk
estimations.
To illustrate the PRISMAmethod, an SSM is derived for risk evaluation during
longitudinal traffic interactions. Since there is no knownmethod to objectively
estimate risk from first principles, i.e., there is no known risk ground truth, it
is very difficult, if not impossible, to objectively compare the relative merits of
two SSMs. Instead, we provide a method for benchmarking our derived SSM
with respect to expected risk trends. The application of the benchmarking
illustrates that the SSM matches the expected risk trends.
Whereas the derived SSM shows the potential of the PRISMA method, future
work involves applying the approach for other types of traffic conflicts, such
as lateral traffic conflicts or interactions with vulnerable road users.

This chapter is based on [77].
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8.1. Introduction

R oad safety is an important key performance indicator in transportation. In ad-
dition to the suffering of people as a consequence of crashes in traffic, these

crashes cause enormous societal and economic losses. As a result, road safety
research is an important research topic. For example, in 20181, there were over
6.7 million crashes in the U.S.A. [210], which is about 1.3 crashes per 1 million
vehicle kilometers driven. These crashes in 2018 led to 2.7 million injured people
and 37 thousand fatalities [210]. Furthermore, apart from these societal losses,
the economic costs of all crashes in the U.S.A. in 2018 was 242 billion dollars [210].
Similarly, the European Commission [96] reported over 22 thousand fatalities in
2019.

Road safety can be expressed in terms of injuries, fatalities, or crashes per kilo-
meter of driving, but “that is a slow, reactive process” [17]. Furthermore, “crashes
are rare events and historical crash data does not capture near crashes that are
also critical for improving safety” [296]. An alternative for expressing road safety
that does not rely on historical crash data is the use of safety indicators that directly
measure the safety risk in traffic conflicts [17, 275, 296]. Traffic conflicts are far
more frequent than traffic crashes and the frequency of traffic conflicts can be used
to predict the frequency of crashes [65, 274]. To define traffic conflicts, thresholds
on so-called Surrogate Safety Measures (SSMs) are used, where SSMs characterize
the risk of a crash or harm given an initial condition [17]. SSMs vary from mea-
sures that estimate the remaining time until a crash, such as the well-known Time
to Collision (TTC) [130], to metrics that estimate the probability that a human driver
cannot avoid a crash, see, e.g., [295].

SSMs typically rely on assumptions of what drivers or systems controlling the
vehicles of interest are capable of doing and how their future trajectories — given
an initial condition — will develop. For example, TTC [130], the ratio of the dis-
tance toward and the speed difference with an approaching object, is computed by
assuming a constant relative velocity. As a result of these assumptions, SSMs are
only applicable in certain types of scenarios. For example, TTC is only applicable
when approaching an object. More complex SSMs consider, e.g., a human model
that can react to a risky situation by braking [295] or the uncertainty over the future
ambient traffic state [202]. Regardless of the complexity of these models, however,
these SSMs consider neither the specific capabilities of the driver or of the system
controlling the vehicle, nor the local context for predicting the future of the vehicle’s
environment.

This chapter presents the novel Probabilistic RISk Measure derivAtion (PRISMA)
method, which is a data-driven approach for deriving SSMs that are not limited to
certain types of scenarios. Because the method is not bound to certain predeter-
mined assumptions about driver behavior, the derived SSMs can be adapted to the
situations in which they are applied. In addition, to avoid relying on predetermined
assumptions on how the ambient traffic evolves over time, the PRISMA method
includes a data-driven approach for modeling the variations of the trajectories of

1At the time of writing, more recent results were not yet available.
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the ambient traffic. Monte Carlo simulations are employed to accurately predict
the safety risk given these variations. To enable the real-time evaluation of the
derived SSMs, we use the Nadaraya-Watson (NW) kernel estimator [300] for local
regression. The PRISMA method has the following characteristics:

• The derived SSMs give a probability that a specified event, e.g., a crash or
a near miss will happen in the near future, e.g., within the next 10 seconds,
given an initial state and the foreseen evolutions of traffic participant trajecto-
ries. Since a traffic conflict can be defined as the probability of an unsuccessful
evasion in a traffic interaction, according to Davis et al. [65], a probability is
easier to interpret than, e.g., a value ranging from zero to infinity such as the
TTC.

• Next to deriving new SSMs, i.e., new ways to estimate the probability of an
event such as a crash, it is possible to reproduce already existing measures
that provide a probability. Therefore, the PRISMA method can be seen as a
generalization for deriving such existing SSMs.

• A driver behavior model can be used. It is also possible to use a model of an
Automated Driving System (ADS), such that the derived SSM estimates the
safety risk if this ADS controls the vehicle.

• Because a data-driven approach is adopted, the derived SSM adapts to the
recorded data. In this way, it is possible to adapt the SSM to, e.g., the local
traffic behavior provided that this local traffic behavior is captured by the
recorded data.

• The PRISMA method is not limited to one type of scenario.

We illustrate the PRISMA method and its benefits by means of a case study. The
case study demonstrates that when using the PRISMA method with the assumptions
of the SSM of Wang and Stamatiadis [295], both the SSM derived by the PRISMA
method and the latter yield the same result. The case study continues with eval-
uating the crash risk of three longitudinal traffic conflicts which are a priori known
to be, respectively, safe (i.e., no crash possible), moderately safe, and unsafe (i.e.,
a crash occurs), based on vehicle kinematics. We evaluate the risk of each of the
scenarios using the SSM by Wang and Stamatiadis [295] and an SSM derived by
the PRISMA method, based on data from the Next Generation SIMulation (NGSIM)
[7]. Moreover, since a comparison between these measures is not directly possible
in general scenarios, a method to benchmark SSMs using expected risk trends is
introduced in the case study.

This chapter is organized as follows. Section 8.2 provides an overview of SSMs
described in the literature. The proposed PRISMA method is presented in Sec-
tion 8.3. In Section 8.4, we illustrate the method in a case study. Some implications
of this work are discussed in Section 8.5. The chapter is concluded in Section 8.6.
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8.2. Literature review

R isk in the context of traffic safety is often defined as the probability of an ac-
cident occurring [126]. Most SSMs are derived under specific assumptions of

the expected behavior of the driving participants under a specific driving scenario.
Several SSMs have been developed under such assumptions with the goal of quan-
tifying the risk involved in driving in traffic on the road [63, 178, 200, 220]. In
general, the risk is quantified in terms of the proximity between two traffic agents
in time and/or space, the ability to perform evasive actions like braking or swerv-
ing, or the magnitude of such actions [260, 324]. In a potential crash situation, the
proximity indicator is close to zero while the magnitude of evasive action is close to
the limits of the driver and the vehicle [324]. The above clustering of SSMs in terms
of time, space, and evasive action is common in the literature; so our literature re-
view follows this pattern of clustering SSMs. We focus on the most commonly used
measures in each cluster and their underlying assumptions.

The most common SSMs are time based. A popular time-based proximity in-
dicator is the TTC, which is an estimate of the remaining time until two vehicles
collide and is defined as the time remaining until two vehicles collide if they would
continue on the same course and speed [130]. The assumption for the TTC is that
the relative speed and course will remain the same. In addition, the TTC is only
relevant when two objects are approaching each other. These assumptions make it
difficult to use it for various driving scenarios. Several other time-based SSMs have
been derived from or based on the TTC. Notable among those are:

• the time-exposed TTC, which measures the amount of time the TTC is below
a certain threshold [200];

• the Time Integrated TTC (TIT), which calculates the total area in a TTC versus
time diagram where the TTC is below a certain threshold [200]; and

• the Modified TTC (MTTC), which is able to calculate the TTC for cases where
vehicles do not keep a constant speed and the follower is slower than the
leader [220].

For the MTTC, the relative speed is not assumed to be constant, but new assump-
tions on the acceleration and speed of the objects are introduced.

Other time-based proximity indicators include Post-Encroachment Time (PET),
which measures the “time between the moment that a vehicle leaves the area of
potential collision, i.e., the area in which the paths of the two vehicles intersect,
and the other vehicle arrives in the same area” [192] and Time Headway (THW).
The PET can only be calculated when the collision area of the two participants is
known. This assumption makes it mostly useful for scenarios with obvious crossing
conflicts like intersections.

For distance-based proximity indicators, the Potential Index for Collision with
Urgent Deceleration (PICUD) measures the remaining distance between vehicles
during an emergency stop [141, 285] and the Proportion of Stopping Distance (PSD)
measures the remaining distance to the potential point of collision divided by the
minimum acceptable stopping distance [9, 123, 192]. These two measures assume
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that the vehicles will apply the maximum deceleration during emergency situations.
This makes them suitable for emergency situations for which these assumption will
most likely hold. For non-critical situations, however, the deceleration that the
drivers will apply, may vary. More recently, a distance-based measure that assumes
“correct” driving behavior has been proposed [258]. This measure calculates the
minimum safety distance between a follower and its leader, such that no crash
occurs if the leader vehicle brakes with a specified deceleration and the follower
brakes after a specified reaction time with another specified deceleration. Based
on the definition of this measure, it is not suitable for driving situations where the
driver does not follow the description of “correct” driving given above.

In terms of indicators relating to performing evasive actions, the Deceleration
Rate to Avoid Collision (DRAC) is the most widely used. The DRAC is calculated
as the ratio of the difference in speed between a following vehicle and a leading
vehicle and their closing time [10, 192]. Another indicator is the Crash Potential
Index (CPI), which calculates the probability that a vehicle’s DRAC will exceed its
Maximum Available Deceleration Rate (MADR) in a given time interval [63]. The
DRAC is not a risk measure on its own if it is not compared with the braking capacity.
This is a limitation and this is why the CPI measure has been developed. Both DRAC
and CPI are mostly suitable for a car-following situation and are not suitable for
lateral movements [192].

Wang and Stamatiadis [295] derive a “crash propensity metric” using a com-
bination of the TTC, the vehicle braking capability, and the driver’s reaction time.
Although this metric is suitable for various car-following situations, lane-change
conflicts, and crossing conflicts, it is limited because it uses TTC in its calculations,
so this metric is undefined when the TTC is undefined. In addition, it assumes that
the driver will keep a constant speed before reacting and, after a reaction time, the
driver will apply the maximum deceleration.

Shi et al. [260] use indicators like TIT, CPI, and PSD to measure the effective-
ness of risk indicators for predicting accidents. The idea is to use a combination of
indicators and thresholds on the indicators to predict whether an interaction may
become a crash. This results in new indicators, but they inherit the union of the
assumptions of the other indicators. Mullakkal-Babu et al. [202] propose a proba-
bilistic driving risk field. The method derives the risk a vehicle is exposed to using
a kinematic approach with the inclusion of uncertainty in the vehicle’s future state.
Mullakkal-Babu et al. [202] define this for an encounter between the ego vehicle
and a road obstacle, such as other vehicles or objects. This research shares similar
ideas with our proposed method of risk estimation, but Mullakkal-Babu et al. [202]
do not use a data-driven approach to derive the SSM. Furthermore, the future state
of the vehicle is estimated with a fixed distribution (i.e., a normal distribution). This
limits the application in scenarios where the data may have an entirely different
distribution.

To estimate crash probabilities based on existing SSMs, the probabilistic ap-
proach using the Extreme Value Theory (EVT) has been applied successfully [267,
273, 296]. For example, based on a specific TTC value, EVT can be used to predict
the probability of a crash. Using EVT, the crash probability is estimated by assum-
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ing the generalized extreme value distribution or the generalized Pareto distribution
and fitting the parameters of the distribution using the “block maxima” approach or
the “peak over” approach, respectively [296]. It is also possible to combine multiple
SSMs using the EVT. The advantage of EVT is that EVT provides probabilities that
are directly linked to historical data and that these probabilities have been used
successfully to predict the frequency of crashes [18, 267]. Disadvantages of EVT
are that it might inherit the assumptions of the SSMs that it uses to estimate the
crash probability and that it assumes a fixed distribution of the extreme events,
which is only justified if many data are used. Furthermore, as the estimated crash
probability is solely based on the fitted distribution, it does not consider potential
changes to the driver’s behavior (model).

8.3. Probabilistic RISk Measure derivAtion

I n this section, we propose the PRISMA method which is a method for deriving ameasure that quantifies the risk of a certain event, such as a crash, in a particular
situation in which a vehicle - hereafter, the ego vehicle - is in and that is applicable
for real-time use. The PRISMA method consists of four steps. The first step is
the parameterization of the “initial situation” and the possible “future situations”.
Second, based on the initial situation, we estimate the probability (density) for the
possible future situations. The third step includes determining the probability of the
specified event based on the initial and the future situations. Finally, local regression
is used to speed up the calculations and to make it possible to use the SSM in real
time. These four steps are described in the following subsections.

In this chapter, the following notation is used. To denote a probability function,
P(⋅) is used. A probability density function (pdf) is denoted by 𝑝(⋅). The probability
of 𝑢 given 𝑣 is denoted by P(𝑢|𝑣). Similarly, a conditional pdf is denoted by 𝑝(⋅|⋅).
To denote the estimation of P(𝑢), P(𝑢|𝑣), 𝑝(𝑢), and 𝑝(𝑢|𝑣), we use 𝑃̂(𝑢), 𝑃̂(𝑢|𝑣),
𝑝̂(𝑢), and 𝑝̂(𝑢|𝑣), respectively.

8.3.1. Parameterize initial and future situations
The first step is to parameterize the initial situation the ego vehicle is in. In other
words, the initial situation needs to be described using 𝑛𝑥 numbers that are stacked
into one vector 𝑥 ∈ 𝒳 ⊆ R𝑛𝑥 . This vector contains all relevant aspects for deter-
mining the risk. As an example, 𝑥 could contain the speed of the ego vehicle and
the distance toward its preceding vehicle. In Section 8.4, we will consider more
examples.

Next to describing the initial situation, the future situation is described using 𝑛𝑦
numbers stacked into one vector 𝑦 ∈ 𝒴 ⊆ R𝑛𝑦 . Together with 𝑥, 𝑦 contains enough
information to describe how the relevant future, e.g., the next five seconds, around
the ego vehicle develops over time. As an example, 𝑦 could contain the speed
for the next five seconds of the leading vehicle (if any) that is in front of the ego
vehicle. In Section 8.4, we will consider more examples.

Let C denote an event, e.g., a crash or a near miss, such that the probability of
this event is P(C). The goal of our SSM is to estimate the probability of the event
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C given a particular situation 𝑥, i.e., P(C|𝑥). We do this by considering all future
situations, 𝒴, and calculating the probability of the event C given each possible
value of 𝑦. Using integration, we obtain P(C|𝑥):

P(C|𝑥) = ∫
𝒴
P(C|𝑥, 𝑦)𝑝(𝑦|𝑥)d𝑦. (8.1)

8.3.2. Estimate 𝑝(𝑦|𝑥)
In this section, we propose a method to estimate 𝑝(𝑦|𝑥), i.e., the pdf of 𝑦 given 𝑥.
Using the product rule for probability, we can write:

𝑝(𝑦|𝑥) = 𝑝(𝑥, 𝑦)
𝑝(𝑥) = 𝑝(𝑥, 𝑦)

∫𝒴 𝑝(𝑥, 𝑦)d𝑦
. (8.2)

Thus, it suffices to estimate 𝑝(𝑥, 𝑦).
Our proposal is to estimate 𝑝(𝑥, 𝑦) in a data-driven manner. A data-driven ap-

proach brings several benefits. First, the estimate automatically adapts to local
driving styles and behaviors, which can change from region to region, provided
that the data are obtained from the same local traffic. Second, assumptions such
as a constant speed of other vehicles, are not needed. For our data-driven ap-
proach, let us assume that we have obtained 𝑁 situations from data. For the 𝑖-th
situation, we denote the initial situation and the future situation by 𝑥𝑖 ∈ 𝒳 and
𝑦𝑖 ∈ 𝒴, respectively. The remainder of this subsection describes how we estimate
𝑝(𝑥, 𝑦) using {(𝑥𝑖 , 𝑦𝑖)}

𝑁
𝑖=1.

Kernel density estimation
We first explain how to estimate 𝑝(𝑥, 𝑦) if we assume that all 𝑛𝑥 + 𝑛𝑦 parameters
depend on each other. If the shape of the pdf is known, a particular functional
form can be fitted to the data, e.g., by estimating the parameters of a distribution
by maximizing the likelihood. For example, if it is known that the data {(𝑥𝑖 , 𝑦𝑖)}

𝑁
𝑖=1

come from a multivariate normal distribution, it suffices to estimate the mean and
the covariance. If, however, the shape is unknown, fitting a particular parametric
distribution may lead to very inaccurate results [52]. Furthermore, the shape of
the estimated pdf might change as more data are acquired. Assuming a functional
form of the pdf and fitting the parameters of the pdf to the data may therefore lead
to inaccurate fits unless extensive manual tuning is applied.

In the remainder of this work, we assume that the shape of the pdf 𝑝(𝑥, 𝑦) is
unknown a priori. Therefore, we employ a non-parametric approach using Kernel
Density Estimation (KDE) [222, 237] because the shape of the pdf is then automat-
ically computed and KDE is highly flexible regarding the shape of the pdf. Using
KDE, the estimated pdf becomes:

𝑝̂(𝑥, 𝑦) = 1
𝑁

𝑁

∑
𝑖=1
𝐾𝐻([

𝑥
𝑦] − [

𝑥𝑖
𝑦𝑖]), (8.3)
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where 𝐾𝐻(⋅) is an appropriate kernel function with an (𝑛𝑥 +𝑛𝑦)-by-(𝑛𝑥 +𝑛𝑦) sym-
metric positive definite bandwidth or smoothing matrix 𝐻. The choice of the kernel
𝐾𝐻(⋅) is not as important as the choice of the bandwidth matrix 𝐻 [283]. We use
the often-used Gaussian kernel [87]:

𝐾𝐻(𝑢) =
1

(2𝜋)(𝑛𝑥+𝑛𝑦)/2|𝐻|1/2
exp{−12𝑢

T𝐻−1𝑢}. (8.4)

The bandwidth matrix 𝐻 controls the width of the kernel, or, in other words,

the influence of each data point (i.e., [𝑥T𝑖 𝑦T𝑖 ]
T
) on nearby regions (see [294] for

a more extensive explanation of the bandwidth matrix). There are many different
ways of estimating the bandwidth matrix, ranging from simple reference rules like,
e.g., Silverman’s rule of thumb [262] to more elaborate methods; see [24, 55, 151,
283, 319] for reviews of different bandwidth selection methods.

Drawing samples from the estimated pdf in (8.3) is straightforward: two random
numbers are drawn, one to choose a random generator kernel out of the 𝑁 kernels
that are used to construct the KDE, and one random number from that kernel.
Sampling from 𝑝̂(𝑦|𝑥) works similarly, but instead of using an equal probability for
each random generator kernel to be selected, different probabilities are used based
on 𝑥. For more information on sampling from a conditional pdf obtained using KDE,
see Chapter 6 [75] and [134].

Assuming independence
Due to the curse of dimensionality [254], estimating 𝑝(𝑥, 𝑦) with one KDE according
to (8.3) becomes inaccurate if 𝑛𝑥+𝑛𝑦 becomes large. One option to avoid this curse
of dimensionality is to assume that one or more parameters are independent of the
other parameters. E.g., suppose that 𝑦T = [𝑦̄T 𝑦̃T], such that 𝑦̃ is independent of
𝑥 and 𝑦̄. Then we can write

𝑝(𝑥, 𝑦) = 𝑝(𝑥, 𝑦̄, 𝑦̃) = 𝑝(𝑥, 𝑦̄)𝑝(𝑦̃). (8.5)

In this case, we would need to estimate 𝑝(𝑥, 𝑦̄) and 𝑝(𝑦̃), which can be done in a
similar manner as presented in (8.3). Because these two pdfs have fewer variables
than 𝑝(𝑥, 𝑦), the two estimated pdfs will suffer less from the curse of dimensionality
[254].

Another option is to model 𝑝(𝑦|𝑥) as a cascade of conditional probabilities. For
example, using the partitioning 𝑦T = [𝑦̄T 𝑦̃T], 𝑝(𝑥|𝑦) can be approximated using
two conditional densities:

𝑝(𝑦|𝑥) = 𝑝(𝑦̄, 𝑦̃|𝑥) = 𝑝(𝑦̄|𝑦̃, 𝑥)𝑝(𝑦̃|𝑥) ≈ 𝑝(𝑦̄|𝑦̃)𝑝(𝑦̃|𝑥). (8.6)

This approximation is valid if 𝑦̄ and 𝑥 are conditionally independent given 𝑦̃ [208].
The same partitioning can be applied to 𝑝(𝑦̄|𝑦̃) and 𝑝(𝑦̃|𝑥) to the point that only
two-dimensional pdfs need to be estimated. Although this will lead to larger ap-
proximation errors, the lower-dimensional pdfs can be estimated more accurately.
For more information on this approach, we refer the reader to [2, 208].
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Reduce number of parameters using singular value decomposition
Another way to avoid the curse of dimensionality is to use a Singular Value De-
composition (SVD) [116] to reduce the number of parameters. With an SVD, the
parameters 𝑥 and 𝑦 are transformed into a lower-dimensional vector of parame-
ters in such a way that the reduced vector of parameters describes as much of the
variation as possible. To do this, an SVD is made of the matrix that contains all 𝑁
observed situations:

[𝑥1 − 𝜇𝑥 ⋯ 𝑥𝑁 − 𝜇𝑥
𝑦1 − 𝜇𝑦 ⋯ 𝑦𝑁 − 𝜇𝑦] = 𝑈Σ𝑉

T. (8.7)

Here, 𝜇𝑥 =
1
𝑁 ∑

𝑁
𝑖=1 𝑥𝑖 and 𝜇𝑦 =

1
𝑁 ∑

𝑁
𝑖=1 𝑦𝑖. The matrices 𝑈 ∈ R(𝑛𝑥+𝑛𝑦)×(𝑛𝑥+𝑛𝑦) and

𝑉 ∈ R𝑁×𝑁 are orthonormal, i.e., 𝑈−1 = 𝑈T and 𝑉−1 = 𝑉T. Moreover, Σ ∈ R(𝑛𝑥+𝑛𝑦)×𝑁

has only zeros except at the diagonal: the (𝑗, 𝑗)-th element is 𝜎𝑗, 𝑗 ∈ {1, … , 𝑁̄} with
𝑁̄ =min(𝑛𝑥 + 𝑛𝑦 , 𝑁), such that

𝜎1 ≥ 𝜎2 ≥ … ≥ 𝜎𝑁̄ ≥ 0. (8.8)

Because these so-called singular values are in decreasing order, we can approximate
𝑥 and 𝑦 by setting 𝜎𝑗 = 0 for 𝑗 > 𝑑 with 𝑑 chosen2 such that 𝑛𝑥 < 𝑑 < 𝑛𝑥 + 𝑛𝑦:

[𝑥𝑖 − 𝜇𝑥𝑦𝑖 − 𝜇𝑦] =
𝑁̄

∑
𝑗=1
𝜎𝑗𝑣𝑖𝑗𝑢𝑗 ≈

𝑑

∑
𝑗=1
𝜎𝑗𝑣𝑖𝑗𝑢𝑗 , = [

𝑈̄1
𝑈̄2]Σ̄𝑣̃𝑖 , (8.9)

where 𝑣𝑖𝑗 is the (𝑖, 𝑗)-th element of 𝑉 and 𝑢𝑗 is the 𝑗-th column of 𝑈. Moreover, 𝑈̄1
is the 𝑛𝑥-by-𝑑 upper left submatrix of 𝑈, 𝑈̄2 is the 𝑛𝑦-by-𝑑 lower left submatrix 𝑈,
Σ̄ ∈ R𝑑×𝑑 is the diagonal matrix with the first 𝑑 singular values on its diagonal, and
𝑣̃T𝑖 = [𝑣𝑖1 ⋯ 𝑣𝑖𝑑]. Thus, with 𝜇𝑥, 𝜇𝑦, 𝑈̄1, 𝑈̄2, and Σ̄, the (𝑛𝑥 + 𝑛𝑦)-dimensional
vector [𝑥T𝑖 𝑦T𝑖 ]

T
is approximated using the 𝑑-dimensional vector 𝑣̃𝑖.

Instead of estimating the pdf of [𝑥T𝑖 𝑦T𝑖 ]
T
, we now estimate the pdf of 𝑣̃𝑖 using

KDE as described in (8.3). To sample from 𝑝̂(𝑦|𝑥), we can sample from the esti-
mated distribution of 𝑣̃𝑖. Because (8.9) is a linear mapping, the sample 𝑣̄ that is
drawn from the estimated distribution of 𝑣̃𝑖 is subject to a linear constraint:

𝑈̄1Σ̄𝑣̄ = 𝑥 − 𝜇𝑥 . (8.10)

In Chapter 6 [75], an algorithm is provided for sampling from a KDE with a Gaussian
kernel of (8.4) such that the resulting samples are subject to a linear constraint such
as (8.10).

8.3.3. Estimate crash probability using a Monte Carlo simula-
tion

Monte Carlo simulations are used to estimate P(C|𝑥), i.e., the probability of an
event C given the initial situation described by 𝑥. The details of the simulation
2We have 𝑑 < 𝑛𝑥 + 𝑛𝑦, such that the dimension is reduced (from 𝑛𝑥 + 𝑛𝑦 to 𝑑) and we have 𝑑 > 𝑛𝑥,
such that the number of linear constraints in (8.10) (𝑛𝑥) is smaller than the number of variables (𝑑).
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depend on the actual application. For example, if the goal of our SSM is to evaluate
the risk that a human-driven vehicle collides, the simulation should involve a human
driving behavior model. On the other hand, if the goal is to evaluate the risk of
crash when an ADS is controlling the vehicle, the simulation should include the
model of this ADS.

A straightforward way to compute P(C|𝑥) is to repeat a certain number of simu-
lations with the same 𝑥 and count the number of simulations that result in the event
C. If 𝑁sim denotes the number of simulations and 𝑁C is the number of events C,
then P(C|𝑥) could be estimated using

𝑃̂(C|𝑥) = 𝑁C
𝑁sim

. (8.11)

An important choice for estimating P(C|𝑥) is the number of simulations, 𝑁sim.
One approach is to keep increasing 𝑁sim until there is enough confidence in the
estimation of (8.11). For example, the Clopper-Pearson interval [56] or the Wilson
score interval [305] can be used to determine the confidence of the estimation of
(8.11). A disadvantage of (8.11) is that only the fact whether the event C occurred
or not is used, while the simulation provides more information, such as the minimum
distance between two objects or the impact speed in case of a crash. Therefore,
we provide an alternative approach to estimate P(C|𝑥).

For the alternative approach, let us assume that one simulation run provides
more information than just the fact that the event C occurred or not. Let 𝑧 ∈ R𝑛z
be a continuous variable representing the result of a simulation run and let 𝒵C
denote the set of possible simulation results in which the event C occurred. Thus,
𝑧 ∈ 𝒵C if and only if the simulation results in the event C. We assume 𝒵C is known;
see, e.g., the example in Section 8.4.1. Therefore, we have

P(C|𝑥) = P(𝑧 ∈ 𝒵C|𝑥) = ∫
𝒵C
𝑝(𝑧|𝑥)d𝑧. (8.12)

Similar as with the estimation of 𝑝(𝑥, 𝑦) in Section 8.3.2, we employ KDE to estimate
𝑝(𝑧|𝑥):

𝑝̂(𝑧|𝑥) = 1
𝑁sim

𝑁sim
∑
𝑗=1

𝐾𝐻𝑧(𝑧𝑗 − 𝑧), (8.13)

where 𝑧𝑗 denotes the result of the 𝑗-th simulation and 𝐻𝑧 denotes an appropriate
bandwidth matrix. The kernel function 𝐾𝐻𝑧(⋅) is similarly defined as (8.4). We can
now estimate P(C|𝑥) by substituting 𝑝̂(𝑧|𝑥) of (8.13) for 𝑝(𝑧|𝑥):

𝑃̂(C|𝑥) = 𝑃̂(𝑧 ∈ 𝒵C|𝑥) = ∫
𝒵C
𝑝̂(𝑧|𝑥)d𝑧 = 1

𝑁sim

𝑁sim
∑
𝑗=1

∫
𝒵C
𝐾𝐻𝑧(𝑧𝑗 − 𝑧)d𝑧. (8.14)

Similar as with (8.11), we need to choose the number of simulations 𝑁sim. Our
proposal is to keep increasing 𝑁sim until the variance of 𝑃̂(𝑧 ∈ 𝒵C|𝑥) is below a
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threshold 𝜖 > 0. The variance follows from [207]:

Var[𝑃̂(𝑧 ∈ 𝒵C|𝑥)] =
P(𝑧 ∈ 𝒵C|𝑥)(1 − P(𝑧 ∈ 𝒵C|𝑥))

𝑁sim
. (8.15)

Because P(𝑧 ∈ 𝒵C|𝑥) is unknown, we use the estimated counterpart of (8.14).
Thus, 𝑁sim is increased until the following condition is met:

𝑃̂(𝑧 ∈ 𝒵C|𝑥)(1 − 𝑃̂(𝑧 ∈ 𝒵C|𝑥))
𝑁sim

< 𝜖. (8.16)

8.3.4. Regression for real-time estimation of crash probability
To evaluate the risk measure during real-time operation of the ego vehicle, the ex-
pression of (8.14) is problematic because it would require 𝑁sim simulations. Even
if the calculation is accelerated using a technique such as importance sampling, it
might take too long. Therefore, we propose to evaluate (8.14) only for some fixed
{𝑥′𝑘}

𝑚
𝑘=1. Next, regression is used to estimate (8.14). One option is to choose a

parametric model, e.g., a logistic model, and estimate the parameters of the model
using {(𝑥′𝑘 , 𝑃̂(C|𝑥′𝑘))}

𝑚
𝑘=1. Up to our knowledge, however, there is no good reason

to assume a particular parametric model, so we use a non-parametric regression
technique to estimate (8.14). More specifically, we use the Nadaraya-Watson (NW)
kernel estimator [300] because it automatically smooths the data (as is demon-
strated in Section 8.4.1) and the approximation is guaranteed to give a number
between 0 and 1, also when extrapolating the data. The NW kernel estimator is
given by:

𝑃̂(C|𝑥) ≈
∑𝑚𝑘=1 𝐾𝐻NW(𝑥 − 𝑥′𝑘)𝑃̂(C|𝑥′𝑘)

∑𝑚𝑘=1 𝐾𝐻NW(𝑥 − 𝑥′𝑘)
. (8.17)

Here, 𝑃̂(C|𝑥′𝑘) is based on (8.14) and 𝐾𝐻NW(⋅) represents the Gaussian kernel given
by (8.4). Two important choices have to be made: The choice of the {𝑥′𝑘}

𝑚
𝑘=1 for

which to evaluate (8.14) and the choice of the bandwidth matrix 𝐻NW. We suggest
to base the design points {𝑥′𝑘}

𝑚
𝑘=1 on the data that is used to estimate 𝑝(𝑦|𝑥) in

Section 8.3.2, i.e., {𝑥𝑖}
𝑁
𝑖=1, such that all 𝑥𝑖 have at least one design point 𝑥′𝑘 nearby.

In other words, {𝑥′𝑘}
𝑚
𝑘=1 are chosen such that

min
𝑘
(𝑥𝑖 − 𝑥′𝑘)

T𝑊(𝑥𝑖 − 𝑥′𝑘) ≤ 1, ∀𝑖 ∈ {1, … , 𝑁}, (8.18)

where 𝑊 denotes a weighting matrix. Note that if 𝑊 is the identity matrix, then
(8.18) calculates the minimum squared Euclidean distance. In general, 𝑊 is a
diagonal matrix. Choosing the diagonal elements of𝑊 is a trade-off; if the elements
are too large, then too many details are lost in the approximation of (8.17); if the
elements are too small, it takes too long to evaluate (8.14) 𝑚 times, as 𝑚 increases
for lower diagonal elements of 𝑊. The bandwidth matrix 𝐻NW might be based on
𝑊, e.g., 𝐻NW = 𝑊−1. Alternatively, 𝐻NW might be based on the measurement
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uncertainty of 𝑥 if this measurement uncertainty is significant, where a larger 𝐻NW
applies in case of a larger measurement uncertainty of 𝑥. Note that if 𝐻NW is a
diagonal matrix with positive values on the diagonal that are close to zero, then the
NW kernel estimation of (8.17) acts like nearest-neighbor interpolation.

8.4. Case study

I n the first part of the case study, we illustrate that the PRISMAmethod generalizesthe SSM proposed by Wang and Stamatiadis [295]. Here, we also demonstrate
the effect of 𝜖 on the accuracy of the SSM derived by the PRISMA method and
we show the difference between 𝑃̂(C|𝑥) of (8.14) and the approximation of 𝑃̂(C|𝑥)
using the NW kernel estimator of (8.17). In Section 8.4.2, we demonstrate how the
PRISMA method can be used to create a new SSM that calculates the risk of a crash
in a longitudinal interaction between two vehicles. The SSM derived in Section 8.4.2
is analyzed in Section 8.4.3. The last part of the case study discusses and illustrates
a method for benchmarking an SSM.

8.4.1. Comparison with Wang and Stamatiadis’ measure
Wang and Stamatiadis [295] provide an SSM, which we denote by WS, that calcu-
lates the probability of a crash under certain assumptions. We first explain howWS
is calculated. Next, we show how to estimate this SSM using our method. Finally,
we illustrate the results of both.

Measure of Wang and Stamatiadis
The SSMWS calculates the probability of a crash of the ego vehicle and the leading
vehicle, where the ego vehicle is following an initially slower driving leading vehicle.
The SSM WS is based on the following assumptions [295]:

• the leading vehicle keeps a constant speed;

• the (driver of the) ego vehicle starts to brake after its reaction time, denoted
by 𝑡r;

• based on [121], the reaction time 𝑡r is distributed according to a log-normal
distribution, such that the mean is 0.92 s and the standard deviation is 0.28 s;

• when the ego vehicle reacts, it brakes with its MADR, denoted by 𝑎MADR; and

• 𝑎MADR is distributed according to a truncated normal distribution with a mean
of 9.7m/s2, a standard deviation of 1.3m/s2, a lower bound of 𝐿 = 4.2m/s2
[64], and an upper bound of 𝑈 = 12.7m/s2 [64].

To calculateWS at a given time 𝑡, the speed difference between the ego vehicle and
the leading vehicle, Δ𝑣(𝑡), and the TTC, 𝑡TTC(𝑡), are used. Note that 𝑡TTC(𝑡) is the
ratio of the gap, 𝑔(𝑡), between the ego vehicle and the leading vehicle and Δ𝑣(𝑡).
If Δ𝑣(𝑡) ≤ 0, then the ego vehicle drives slower and there is no risk of a future
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crash according to Wang and Stamatiadis [295], so WS(𝑡) = 0. Given 𝑎MADR, the
driver of the ego vehicle needs to react within

𝑡max(𝑡) = 𝑡TTC(𝑡) −
Δ𝑣(𝑡)
2𝑎MADR

(8.19)

in order to avoid a crash. Using the distributions of 𝑎MADR and 𝑡r, we can calculate
the probability that this is the case, resulting in:

WS(𝑡) = {
0 if Δ𝑣(𝑡) ≤ 0
∫𝑈𝐿̂ ∫

𝑡max(𝑡)
0 𝑝(𝑡r)𝑝(𝑎MADR)d𝑡r d𝑎MADR if Δ𝑣(𝑡) > 0 ∧

Δ𝑣(𝑡)
2𝑡TTC(𝑡)

< 𝑈
1 otherwise

,

(8.20)

with 𝐿̂ = max(𝐿, Δ𝑣(𝑡)
2𝑡TTC(𝑡)

), 𝑝(𝑡r) is the log-normal probability density of 𝑡r, and
𝑝(𝑎MADR) is the truncated normal probability density of 𝑎MADR.

Replicating Wang and Stamatiadis’ measure
Because WS is based on Δ𝑣(𝑡) and 𝑡TTC(𝑡), these two variables are also used by
the PRISMA method to describe the initial situation:

𝑥T(𝑡) = [Δ𝑣(𝑡) 𝑡TTC(𝑡)]. (8.21)

The leading vehicle is assumed to have a constant speed, so 𝑥(𝑡) of (8.21) already
describes the future situation of the leading vehicle. Therefore, there is no need to
estimate 𝑝(𝑦|𝑥). At the start of each simulation run, the driver of the ego vehicle
is not braking. After the reaction time 𝑡r, the driver starts braking with 𝑎MADR. The
random parameters 𝑡r and 𝑎MADR are similarly distributed as described earlier.

Since we are interested in the probability of a crash, the event C denotes a crash.
A simulation run ends if either the ego vehicle and the leading vehicle are colliding
or if the gap between the ego vehicle and the leading vehicle is not decreasing.
Depending on the reason for a simulation run to end, we consider the following
result:

• If the ego vehicle and the leading vehicle are colliding, we are interested in
the “severity” of the crash. This is expressed using the speed difference:
𝑣l(𝑡1) − 𝑣e(𝑡1), with 𝑡1 denotes the final time of the simulation run.

• If there is no crash, we are interested in how close the two vehicles came.
Therefore, the minimum gap is used, which is 𝑔(𝑡1).

Thus, we have:

𝑧 = {𝑣l(𝑡1) − 𝑣e(𝑡1) if crash
𝑔(𝑡1) otherwise

. (8.22)

Clearly, 𝑧 ≤ 0 indicates a crash, so 𝒵C = (−∞, 0]. The minimum number of sim-
ulations to estimate P(C|𝑥) is set to 10. The number of simulations is further
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increased until the condition in (8.16) with 𝜖 = 0.2 or 𝜖 = 0.02 is met. For the
design points {𝑥′𝑘}

𝑚
𝑘=1, we use a rectangular grid with Δ𝑣 ranging from 0m/s till

40m/s with steps of 2m/s and 𝑡TTC ranging from 0.5 s till 4 s in steps of 0.1 s.
Thus, 𝑚 = 21 ⋅ 36 = 756. For 𝐻NW, a diagonal matrix is chosen with the diagonal
elements corresponding to the square of the step size of the grid, i.e., 4m2/s2 and
0.01 s2.

Comparison
Figure 8.1 shows the results of the comparison between the measure of Wang and
Stamatiadis [295] and the measure derived using the PRISMA method described in
Section 8.3. The blue lines in Figure 8.1 denote WS of (8.20). These lines show
that for lower values of 𝑡TTC,WS increases. Also, for increasing values of Δ𝑣 (solid,
dashed, and dotted lines), the risk measureWS increases. Both these observations
match the intuition that a lower TTC and a higher speed difference are less safe.

The red lines in Figure 8.1 denote 𝑃̂(C|𝑥) of (8.14). Figure 8.1 illustrates that
𝑃̂(C|𝑥) follows the same trend as WS. Figure 8.1 also illustrates the effect of
the choice of the threshold 𝜖. In general, for a lower value of 𝜖, the number of
simulations 𝑁sim used in (8.13) is higher. As a result, it can be expected that the
estimation 𝑃̂(C|𝑥) is closer to P(C|𝑥) (cf. (8.15)). A comparison of Figure 8.1a
(𝜖 = 0.2) and Figure 8.1b (𝜖 = 0.02) demonstrates this effect.

The green lines in Figure 8.1 represent the approximation of 𝑃̂(C|𝑥) using the
NW kernel estimator of (8.17). This illustrates the regression using the NW kernel
estimator: the green lines in can be seen as smoothed versions of the red lines.

8.4.2. Developing an SSM for longitudinal interactions
To further illustrate the PRISMA method, we apply it to derive an SSM that calculates
the risk of a crash in a longitudinal interaction between two vehicles. The SSM is
based on the NGSIM data set [7]. The NGSIM data set contains vehicle trajectories
obtained from video footage of cameras that were located at several motorways in
the U.S.A. The derived SSM estimates the risk of a crash of the ego vehicle with its
leading vehicle. To describe the initial situation at time 𝑡, 𝑛𝑥 = 4 parameters are
used:

• the speed of the leading vehicle (𝑣l(𝑡));

• the acceleration of the leading vehicle (𝑎l(𝑡));

• the speed of the ego vehicle (𝑣e(𝑡)); and

• the log of the gap between the leading vehicle and the ego vehicle3 log𝑔(𝑡).

Thus, we have:
𝑥T(𝑡) = [𝑣l(𝑡) 𝑎l(𝑡) 𝑣e(𝑡) log𝑔(𝑡)]. (8.23)

3Note that the log is used, such that there are, relatively speaking, more simulations performed with a
small initial gap, cf. (8.18).
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Figure 8.1: Comparison ofWS of (8.20) and 𝑃̂(C|𝑥), where 𝑃̂(C|𝑥) is based on either (8.14) (red lines)
or (8.17) (green lines). Here, 𝑃̂(C|𝑥) is based on the same underlying assumptions asWS. The influence
of the parameter 𝜖, which determines the number of simulations to estimate P(C|𝑥), is illustrated by
using different values.
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(a) Initial situation: 𝑣l = 15m/s and 𝑎l = 1m/s2.
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(b) Initial situation: 𝑣l = 15m/s and 𝑎l = −1m/s2.

Figure 8.2: 50 potential future situations samples from the KDE that is constructed using data from the
NGSIM data set.

The speed of the leading vehicle at 𝑛h = 50 instances, each Δ𝑡 = 0.1 s apart,
describes the future situation:

𝑦T(𝑡) = [𝑣l(𝑡 + Δ𝑡) ⋯ 𝑣l(𝑡 + 𝑛hΔ𝑡)]. (8.24)

It is assumed that 𝑦(𝑡) depends on 𝑣l(𝑡) and 𝑎l(𝑡). To model this dependency
with a single kernel density estimator would give us a pdf with 𝑛h + 2 dimensions.
To reduce the dimensionality, we use an SVD as described in Section 8.3.2 with4

𝑑 = 4. In total, 18182 longitudinal interactions between two vehicles have been
analyzed. For each second of an interaction, we extract an “initial situation” 𝑥𝑖 and
a corresponding “future situation” 𝑦𝑖. This leads to 𝑁 = 469453 data points. Based
on Silverman’s rule of thumb [262], we use a bandwidth matrix 𝐻 = ℎ2𝐼4 for the
KDE with ℎ ≈ 0.186 and 𝐼4 denoting the 4-by-4 identity matrix.

To demonstrate the sampling from the estimated density of the reduced pa-
rameter vector subject to a linear constraint such as (8.10), the plots in Figure 8.2
show 50 different future situations in the form of (8.24). Figure 8.2a assumes an
initial situation with 𝑣l = 15m/s and 𝑎l = 1m/s2 and Figure 8.2b assumes an
initial situation with 𝑣l = 15m/s and 𝑎l = −1m/s2. Note that the same pdf is
used to produce the lines in Figure 8.2; the only difference between Figure 8.2a
and Figure 8.2b is a different linear constraint (based on 𝑣l and 𝑎l) on the gener-
ated samples. In case a simulation run is longer than 5 s, the speed of the leading
vehicle is assumed to remain constant after these 5 s. Note that a simulation run is
rarely longer than 5 s, so this assumption does not have a significant effect on the
results.

To estimate P(C|𝑥) (Section 8.3.3), we use the Intelligent Driver Model plus
(IDM+) [247] for modeling the ego vehicle driver behavior and response. In addi-
tion to IDM+, we assume that the driver has a reaction time that is similarly dis-
tributed as 𝑡r in Section 8.4.1 and that the MADR is similarly distributed as 𝑎MADR in
Section 8.4.1. The simulation result 𝑧 is defined according to (8.22). The minimum
4Note that because we assume that 𝑦(𝑡) depends on two parameters of 𝑥(𝑡), i.e., 𝑣l(𝑡) and 𝑎l(𝑡), we
need to choose 𝑑 such that 2 < 𝑑 < 𝑛h + 2.
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number of simulations to estimate P(C|𝑥) is set to 10 and this number is further
increased until the condition in (8.16) with 𝜖 = 0.1 is met.

To calculate P(C|𝑥) using (8.17), we create a grid of points {𝑥′𝑘}
𝑚
𝑘=1 using the

method explained in Section 8.3.4. For 𝑊, we use a diagonal matrix with diagonal
elements: 0.25, 4, 0.25, and 0.25, which is a trade-off between keeping many points
such that the estimation in (8.17) is accurate while also keeping the total number
of points for which P(C|𝑥) is estimated manageable. With this choice of 𝑊, we
have 𝑚 = 10129. For the regression of (8.17), we use 𝐻NW = 𝑊−1.

8.4.3. Analyzing the SSMs for longitudinal interactions
The heat maps in Figure 8.3 show how the developed SSM depends on the input
variables 𝑣l and 𝑔. The other two parameters, 𝑣e and 𝑎l, are fixed for each heat
map. The heat maps shows that the estimated crash probability is practically 0
if both 𝑣l and 𝑔 are large. This seems reasonable because in that case the ego
vehicle is at a safe distance from its leading vehicle while the approaching speed
is small. In addition, for a fixed 𝑣e, we see that the crash risk increases as the
difference in speed increases, as is expected. The same applies for a decreasing
distance between the two vehicles. For small values of 𝑣l and 𝑔, the estimated
crash probability is practically 1. The left and center heat maps of Figure 8.3 show
that for a higher speed of the ego vehicle, the crash probability is estimated to be
higher. Similarly, the right and center heat maps of Figure 8.3 show that for a lower
initial acceleration of the leading vehicle, the crash probability is estimated to be
higher.

In Figure 8.4, the evaluations of the measure described in Section 8.4.2 are
shown for three different scenarios. Each of the three scenarios considers an ego
vehicle and a leading vehicle driving in front of the ego vehicle. Both vehicles are
driving in the same direction and in the same lane. For comparison, the right plots
also include the evaluations of WS of (8.20).

The first scenario in Figure 8.4 (top row) shows a scenario in which the leading
vehicle initially drives with a speed of 20m/s. The leading vehicle starts to decel-
erate after 3 s toward a speed of 10m/s with an average deceleration of 3m/s2.
The ego vehicle initially drives with a speed of 24m/s at a distance of 40m from
the leading vehicle. The ego vehicle starts decelerating after 2 s toward a speed
of 8m/s within 4 s. It takes 4 s more to reach the speed of the leading vehicle.
Because the ego vehicle always maintains a relatively large distance toward the
leading vehicle, both SSMs do not qualify this scenario as risky, considering the
estimated crash probability that stays below 0.1.

The second scenario in Figure 8.4 (center row) differs from the first scenario
in that the ego vehicle starts to decelerate 2 s later. As a result, the ego vehicle
approaches the leading vehicle up to a distance of 5.4m. According to 𝑃̂(C|𝑥)
from Section 8.4.2 (blue line in the right plot of Figure 8.4), the probability of
a crash reaches almost 1, indicating that around that time, the risk of a crash
is high. The local minimum of 𝑃̂(C|𝑥) at around 6 s illustrates the effect of the
numerical approximation of P(C|𝑥). Because we have used 𝜖 = 0.1 > 0, the
resulting estimation may have an error. When lowering the threshold 𝜖, the resulting
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(b) 𝑣e = 20m/s, 𝑎l = 0m/s2.

10 12 14 16 18 20

5

10

15

20

Speed leading vehicle, 𝑣l [m/s]

G
ap
,𝑔

[m
]

0

0.2

0.4

0.6

0.8

1

Co
lli
si
on
pr
ob
ab
ili
ty
,𝑃
( C
|𝑥
)

(c) 𝑣e = 20m/s, 𝑎l = −1m/s2.

Figure 8.3: Heat maps of the SSM described in Section 8.4.2 as a function of the speed of the leading
vehicle (𝑣l) and the gap between the ego vehicle and the leading vehicle (𝑔). For each heat map, the
other two input parameters are fixed at 𝑣e = 25m/s (a) or 𝑣e = 20m/s (b and c) and 𝑎l = 0m/s2 (a
and b) or 𝑎l = −1m/s2 (c). The estimated crash probability ranges from 0 (white) to 1 (black).
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Figure 8.4: Demonstration of SSMs for 3 hypothetical scenarios. The left plots show the speeds of the
ego vehicle (blue line) and leading vehicle (red line) and the distance between the ego vehicle and the
leading vehicle (green line, scale on the right of the plot). The right plots show the estimated probability
of a crash corresponding to the three scenarios according to the SSM explained in Section 8.4.2 (blue
lines) and the SSM of Wang and Stamatiadis [295] explained in Section 8.4.1 (red lines).
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𝑃̂(C|𝑥) in the center right plot in Figure 8.4 will be smoother. This goes, however,
at the cost of an increased number of simulations5.

The third scenario in Figure 8.4 (bottom row) differs from the second scenario
in that the initial distance between the ego vehicle and the leading vehicle is 31.5m
instead of 40m. As a result, the ego vehicle collides with the leading vehicle after
6 s. As expected, the SSMs in Figure 8.4 indicate a crash probability of 1. The
difference between 𝑃̂(C|𝑥) and WS is that 𝑃̂(C|𝑥) increases earlier. Note that
𝑃̂(C|𝑥) increasing sooner than WS does not necessarily mean that it is better:
because there is no objective truth for an SSM, we cannot argue that one SSM is
better than another SSM. Hence, in the next section, we will present a quantitative
approach to benchmark an SSM.

8.4.4. Benchmarking an SSM with expected risk trends
In this section, we demonstrate an approach for benchmarking an SSM that is based
on expected risk trends discussed in Mullakkal-Babu et al. [203], who argue that
the risk increases if the approaching speed of the ego vehicle toward the leading
vehicle increases. Also, the risk increases with a higher ego vehicle speed [1] or
a higher driver reaction time [163]. On the other hand, the risk decreases with a
higher road friction [293] or a larger intervehicle spacing [203].

To check whether the developed SSM follows these five expected risk trends6,
we evaluate the partial derivatives of the measure of (8.17). The intuition is as
follows: If the expected risk trend for an input X (e.g., the ego vehicle speed)
is that the risk increases as X increases, then we expect the partial derivative of
our SSM with respect to X to be positive. Furthermore, if we evaluate the partial
derivative at many points, we expect that at least the majority of these evaluated
partial derivatives is positive. Similarly, if we expect that the risk measure decreases
with increasing X, then we expect that at least the majority of the evaluated partial
derivatives is negative.

To illustrate the approach for benchmarking an SSM, we use the SSM of Sec-
tion 8.4.2 with a few different assumptions. Because we have not described an
expected trend regarding 𝑎l, we simply use 𝑎l = 0. Also, because the expected risk
trend for the relative speed is defined, we use the relative speed, i.e., Δ𝑣 = 𝑣e−𝑣l,
instead of 𝑣l. For the same reason, instead of assuming a random reaction time
𝑡r and MADR 𝑎MADR, these are now considered as inputs to our measure. Finally,
instead of using the log of the gap between the ego vehicle and the leading vehicle,
we use the gap as a direct input. Thus, we have:

𝑥T = [𝑣e − 𝑣l 𝑣e 𝑡r 𝑔 𝑎MADR]. (8.25)

We compute 𝑃̂(C|𝑥) using (8.17) where the points {𝑥′𝑘}
𝑚
𝑘=1 are taken from a grid.

5Alternatively, the bandwidth matrix𝐻NW may be increased. On the one hand, this will lower the variance
of the error, but, on the other hand, it will increase the bias of the result. We refer the interested reader
to [52] for more details on the effect of 𝐻NW.
6In [203], a sixth expected risk trend is mentioned based on [97], namely the vehicle mass. Our
interpretation of [97], however, is that the ratio of masses of two colliding vehicles influences the
safety risk and that one cannot argue that a higher mass of the ego vehicle necessarily increases the
safety risk. Therefore, we exclude the ego vehicle mass from our analysis.
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Table 8.1: Percentiles of the partial derivatives of the SSM and the corresponding expected risk trends.

𝑣e − 𝑣l 𝑣e 𝑡r 𝑔 𝑎MADR

Expected trend Increase Increase Increase Decrease Decrease
Maximum 0.1629 0.1555 1.3136 0.0010 0.0037
99th percentile 0.1585 0.1162 0.8968 0.0002 0.0002
95th percentile 0.1495 0.0524 0.6765 0.0000 −0.0000
90th percentile 0.1346 0.0151 0.5351 −0.0000 −0.0000
75th percentile 0.0746 0.0012 0.2917 −0.0002 −0.0003
50th percentile 0.0114 0.0001 0.0605 −0.0070 −0.0054
25th percentile 0.0004 0.0000 0.0022 −0.0320 −0.0290
10th percentile 0.0000 −0.0000 0.0000 −0.0545 −0.0654
5th percentile 0.0000 −0.0002 0.0000 −0.0645 −0.0880
1th percentile 0.0000 −0.0007 −0.0020 −0.0781 −0.1337
Minimum −0.0035 −0.0030 −0.0180 −0.1076 −0.2030

For each input variable, 10 different values at equal distance are used, resulting in
𝑚 = 105. Here, 𝑣e − 𝑣l ranges from 0m/s to 20m/s, 𝑣e ranges from 10m/s to
30m/s, 𝑡r ranges from 0.5 s to 1.5 s, 𝑔 ranges from 5m to 30m, and 𝑎MADR ranges
from 4m/s2 to 10m/s2. A threshold 𝜖 = 0.02 is used. For the bandwidth matrix
𝐻NW, we use a diagonal matrix with the (𝑖, 𝑖)-th entry corresponding to the squared
difference between two consecutive values of the 𝑖-th entry of 𝑥. For example, the
first value is (20m/s/(10 − 1))2 ≈ 4.9m2/s2. The other values on the diagonal
are: 4.9m2/s2, 0.012 s2, 7.7m2, and 0.44m2/s4. For each input variable listed in
(8.25), we evaluate the partial derivative of (8.17) at each 𝑥′𝑘, 𝑘 ∈ {1,… ,𝑚}.

Table 8.1 shows the result of the benchmarking. It shows that the SSM follows
the expected risk trends mostly. E.g., in more than 99% of the cases, the partial
derivative of the relative speed (𝑣e−𝑣l) is positive. For the remaining 1%, the partial
derivative is negative, albeit only slightly. One explanation is that this remaining
1% is caused by the inaccuracies introduced by the numerical approximation of
(8.14).

8.5. Discussion

T ypically, SSMs rely on assumptions regarding the behavior of traffic participants.
An advantage of the presented PRISMA method for deriving SSMs is that the

PRISMA method is not bound to certain predetermined assumptions. We want to
stress, however, that when using the PRISMA method for deriving an SSM, a set
of assumptions is still needed. In fact, multiple SSMs can be derived by using the
PRISMA method with different sets of assumptions. As a result, the PRISMA method
can be used to derive multiple SSMs that are applicable in various types of scenarios,
e.g., ranging from vehicle-following scenarios to scenarios at intersections. Note
that although the PRISMA method is applicable in various types of scenarios, the
current case study focuses on longitudinal traffic conflicts. In a future work, we will
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present the application of the PRISMA method for deriving SSMs for lateral traffic
conflicts.

The PRISMA method uses data to adapt the SSMs to, e.g., the local traffic be-
havior. More specifically, the data are used to predict the possible future situations
(𝑦) given an initial situation (𝑥). This can be an advantage because the data can be
used to rely less on assumptions as to how the future develops given an initial situ-
ation. To fully benefit from this approach, the data should satisfy a few conditions.
First, the recorded data need to represent the actual traffic behavior in which the
SSMs are applied. Second, we need enough data to estimate 𝑝(𝑦|𝑥). In Chapter 3
[72], a metric is presented that can be used to determine whether enough data
have been collected to estimate 𝑝(𝑦|𝑥) accurately.

The PRISMA method can still be applied in case no data are available. The
first alternative is to use existing knowledge to determine an estimate of 𝑝(𝑦|𝑥)
instead of estimating 𝑝(𝑦|𝑥) on the basis of data. For example, statistics or literature
on driving behavior of traffic participants may be used. The second alternative is
to use assumptions on how the future develops given an initial situation 𝑥. For
example, when assuming that the speed of the leading vehicle in Section 8.4.1
remains constant, it is not needed to estimate 𝑝(𝑦|𝑥). Note that a combination
is also possible. For example, estimate 𝑝(𝑦|𝑥) based on data in case 𝑥 is well
represented in the data, but define 𝑝(𝑦|𝑥) on the basis of existing knowledge and/or
assumptions for the cases where 𝑥 is underrepresented in the data.

Note that the PRISMA method is used to derive SSMs that predict the probability
of a specific event, such as a crash, i.e., the derived SSMs can be used as a measure
of proximity of the specified event. However, the PRISMA method is not used to
measure the severity of an interaction, i.e., the extent of harm in case the interaction
leads to a crash. For measuring the severity of an interaction, typically energy-
based SSMs are used [296]. So, if there is a need to also have an indicator of the
severity of an interaction, an energy-based SSM, e.g., see [8, 179, 202, 220], may
be considered alongside an SSM derived using the PRISMA method.

We have illustrated the PRISMA method through different derived SSMs in the
case study. The derived SSMs estimate the probability of a crash with a leading
vehicle under different assumptions. Because of the focus on crashes, the resulting
SSMs may still be low given an initial situation that is generally considered to be
unsafe. For example, the SSM described in Section 8.4.2 gives a crash probability of
approximately 14% when approaching a leading vehicle that is driving at a constant
speed of 𝑣l = 12m/s (𝑎l = 0m/s2) with a speed of 𝑣e = 25m/s and a gap of
𝑔 = 20m (see left heat map in Figure 8.3). In this initial situation, the THW is only
𝑔/𝑣e = 0.8 s and the TTC is only 𝑔/(𝑣e − 𝑣l) = 1.5 s, whereas a THW of less than
1 s or a TTC of less than 1.5 s is considered unsafe [289]. In order to put more
emphasis on such unsafe situations, different events — instead of crashes — can
be considered. For example, we can derive an SSM that estimates the probability
that the TTC is below 1 s within the next five seconds. More research is needed to
investigate whether such SSMs can be of practical use, e.g., for evaluating whether
a driver is actively pursuing large safety margins.

A few choices have to be made when using the PRISMA method for deriving
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SSMs. One such a choice is the set of initial situations {𝑥1, … , 𝑥𝑚} for which the
probability P(C|𝑥) is estimated. Generally speaking, for larger 𝑚, the approxi-
mation of P(C|𝑥) in (8.17) improves. One disadvantage, however, is that more
simulation runs are required when 𝑚 is larger, but because these simulation runs
are performed offline, this problem might be solved by, e.g., parallel computing re-
sources. Another disadvantage is that the computational cost of the approximation
in (8.17) scales linearly with 𝑚. Especially when using this approximation for real-
time evaluation of the SSM, this can be a bottleneck. One solution to this is to not
use all 𝑚 initial situations for evaluating (8.17). The intuition is as follows: since
(8.17) uses local regression, an initial situation 𝑥𝑘 can be removed from the set
{𝑥1, … , 𝑥𝑚} if all neighboring data points give (approximately) the same probability
of the event C, i.e., |𝑃̂(C|𝑥𝑖) − 𝑃̂(C|𝑥𝑘)| is below a threshold for all 𝑥𝑖, 𝑖 ≠ 𝑘 for
which ‖𝑥𝑖 − 𝑥𝑘‖2 is below another threshold (assuming that 𝑃̂(C|𝑥) is sufficiently
smooth). For example, the SSM that is shown in Figure 8.3, only a few initial situ-
ations are required in the upper right region of the heat maps, since the estimated
probability is always lower than 0.1.

Another choice is the threshold 𝜖 that controls the number of simulation runs
(𝑁sim) that are used to estimate P(C|𝑥). According to (8.16), 𝑁sim is increased
until the variance of the estimation error is below 𝜖, i.e., Var[P(C|𝑥) − 𝑃̂(C|𝑥)] < 𝜖.
Therefore, a lower 𝜖 generally results in more accurate estimations of the probabil-
ity, as illustrated in Figure 8.1. The downside, however, is that for a lower 𝜖, more
offline simulation runs are required. Although a good choice of 𝜖 remains a topic of
research, based on experience, we advice to use a maximum threshold of 𝜖 = 0.1
and lower values if the computational resources allow for this.

In the examples presented in Section 8.4, we have considered the leading vehi-
cle as the only traffic participant other than the ego vehicle. The PRISMA method
can be applied in scenarios with multiple traffic participants other than the ego ve-
hicle. However, the number of parameters (𝑛𝑥, i.e., the size of 𝑥) then becomes
larger. As a result, two problems may arise. First, as 𝑚 grows exponentially with
𝑛𝑥, so does the number of simulation runs. Second, even if these simulation runs
can be performed, the regression using (8.17) becomes slow due to the large 𝑚.
To overcome these problems, an SSM can be computed for each traffic participant
independently. For example, let 𝑁tp denote the number of traffic participants other
than the ego vehicle. With 𝑖 ∈ {1, … , 𝑁tp}, let C𝑖 denote the event of colliding
with the 𝑖-th traffic participant and let 𝑥𝑖 denote the initial situation considering the
𝑖-th traffic participant. Under the assumption that P(C𝑖|𝑥𝑖) is independent of 𝑥𝑗
for all 𝑖 ≠ 𝑗, we can calculate the probability of colliding with one or more traffic
participants using

1 −
𝑁tp

∏
𝑖=1
(1 − P(C𝑗|𝑥𝑗)). (8.26)

For example, consider a scenario with multiple crossing pedestrians. Using the
PRISMA method, we can derive an SSM that estimates the probability of colliding
with a pedestrian. Then, after evaluating this SSM for each pedestrian, the probabil-
ity of colliding with one or more pedestrians can be calculated using (8.26) without
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the need for an SSM that considers multiple pedestrians.
In the case study, we have shown how to analyze an SSM both qualitatively,

using heat maps and testing the SSM in different scenarios, and quantitatively by
benchmarking the SSM with expected risk trends [203]. Since the SSMs derived
using the PRISMA method provide a probability, it is also possible to verify the
estimated probability by comparing it with real data. This requires, however, an
extensive data set that would allow for estimating the probability of the event C,
e.g., a crash, in the near future given a certain situation a vehicle is in. It remains
a topic for future work to use such a data set to verify the SSMs derived using the
PRISMA method.

8.6. Conclusions

R oad safety is an important research topic. To quantify the safety at a vehi-
cle level, Surrogate Safety Measures (SSMs) are often used to characterize the

risk of a crash. We have proposed a novel approach called the Probabilistic RISk
Measure derivAtion (PRISMA) method for deriving SSMs that calculate the proba-
bility that a certain event, e.g., a crash, will happen in the near future given an
initial situation. Whereas traditional SSMs are generally only applicable in certain
types of scenarios, the PRISMA method can be applied to various types of scenar-
ios. Furthermore, because the PRISMA method is data-driven, the derived SSMs
can be adapted to the local traffic behavior that is captured by the data. Also, no
assumptions on the driver behavior are made. Therefore, the PRISMA method has
the potential for deriving multiple SSMs for quantifying the safety of a — possibly
automated — vehicle.

We have illustrated that the PRISMA method can be used to reproduce known
probabilistic SSMs. In an example, we have derived a new SSM based on the Next
Generation SIMulation (NGSIM) data set that calculates the risk of a crash in a lon-
gitudinal interaction between two vehicles. Through several explanatory scenarios,
it has been shown that the derived SSM correctly provides a quantification of the
crash risk. We have also presented how the evaluation of the partial derivatives of
the SSM can be used to benchmark an SSM using expected risk trends.

The SSMs derived using the presented PRISMA method can be used to warn
drivers for unsafe situations and ensuring that proper attention is being paid to the
road situation. Furthermore, the derived measures can prospectively estimate the
impact of newly introduced systems on traffic safety. A limitation of the current
study is that the presented approach is only applied to longitudinal traffic interac-
tions. Future work involves applying the PRISMA method for the derivation of SSMs
that measure the risk of lateral traffic interactions, interactions with vulnerable road
users, and interactions with multiple (different types of) traffic participants. Fur-
thermore, more research is needed to investigate whether the SSMs derived by
the PRISMA method can be used to evaluate whether a driver is actively pursuing
(large) safety margins.
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This thesis has presented methods for the data-driven scenario-based assess-
ment of Automated Vehicles (AVs). We have proposed a framework for specifying a
scenario in the context of the scenario-based assessment of AVs, a method to quan-
tify the degree of completeness of a database with real-world driving data, and a
method to extract such scenarios from real-world driving data. Next, this thesis has
proposed methods to generate test scenarios for the assessment of AVs based on a
set of scenarios extracted from real-world data. Finally, we have introduced novel
methods for quantifying the risk of collisions and/or (fatal) injuries, either through a
prospective assessment or through Surrogate Safety Measures (SSMs). In this final
chapter, we first summarize the main conclusions from the research presented in
this dissertation in Section 9.1. Next, in Section 9.2, directions for future research
are presented. The full integration of a scenario-based assessment for the type ap-
proval of AVs requires — in addition to future research — an open discussion among
policy makers, authorities, developers, researchers, and the public, which is why
Section 9.3 describes directions for future work that also involves policy decisions.

9.1. Conclusions

T his dissertation has aimed to contribute to the development of the data-driven
scenario-based assessment of AVs. To report how this dissertation has achieved

this, conclusions are drawn for each of the Research questions 1.1 to 1.5:

• What is a scenario and how to specify a scenario in the context of
the scenario-based assessment of AVs?
As defined in Definition 2.1 in Chapter 2, a scenario is a quantitative descrip-
tion of the relevant characteristics and activities and/or goals of the ego vehi-
cle(s), the static environment, the dynamic environment, and all events that
are relevant to the ego vehicle(s) within the time interval between the first
and the last relevant event. In addition, we have defined a scenario category
in Definition 2.4 as the qualitative counterpart of a scenario. Furthermore,
we have provided definitions for the building blocks of a scenario, such as
activities and events. While the provided definitions are consistent with other
definitions from the literature, they are more concrete, which has allowed us
to formalize the concepts of scenario, event, activity, and scenario category
using an Object-Oriented Framework (OOF). The OOF can be directly trans-
lated into a class structure for an object-oriented software implementation.
This has been demonstrated using a publicly available implementation in the
coding language Python1. The OOF enables the description of scenarios us-
ing software code, such that both domain experts and software programs,
such as simulations tools, are able to understand and interpret the content of
scenarios.

• How to quantify whether we have collected enough field data?
In Chapter 3, we have presented a metric for quantifying the degree of com-
pleteness of a data set, which can be used to quantify whether or not we have

1https://github.com/ErwindeGelder/ScenarioDomainModel

https://github.com/ErwindeGelder/ScenarioDomainModel
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collected enough field data. To evaluate the proposed metric, the parameters
of activities, such as a vehicle changing lane or decelerating, are extracted
from the data. The underlying probability density function (pdf) of these pa-
rameters is estimated. The metric for quantifying the degree of completeness
is the estimated Asymptotic Mean Integrated Squared Error (AMISE) of the
estimated pdf. The smaller the estimated AMISE, the more complete the data
set is. By exploiting the logarithmic dependence of the AMISE on the number
of samples, the proposed metric can be used to estimate the required amount
of data such that the estimated AMISE is below a specified threshold.

• How to extract a specific type of scenario from a given data set with
real-world traffic data and how to easily extend this approach to
other types of scenarios?

In Chapter 4, we have proposed a two-step approach for mining real-world
scenarios from a data set. The first step is to label the data with tags. These
tags describe the various aspects of scenarios, e.g., the lateral and longitudi-
nal activities of the different actors, elements of the static environment, and
information on the environmental conditions, such as the weather and lighting
conditions. The second step mines the scenarios by searching for a particular
combination of tags, where this particular combination of tags corresponds
to a specific scenario category. Provided that there are no new tags required
for the definition of another scenario category, there are no new algorithms
required for mining scenarios for other scenario categories, i.e., other types
of scenarios. Therefore, the proposed approach is easily extended to other
types of scenarios.

• Based on a set of observed scenarios, how to generate test scenarios
for the assessment of AVs without oversimplifying the scenarios?

Two different complementary strategies for generating test scenarios are pre-
sented in Chapters 5 and 6 of this dissertation. Both these strategies use
parameters to describe the observed scenarios and the estimated underlying
pdf of these parameters. Using too many parameters leads to inaccurate es-
timation of the pdf due to the curse of dimensionality, which is why Chapter 5
has proposed the use of a Singular Value Decomposition (SVD) to reduce the
number of parameters without loosing essential information. Given 𝑑, the SVD
automatically determines the 𝑑 parameters that best describe the scenarios.
Next, to not assume a particular shape of the pdf, Kernel Density Estima-
tion (KDE) is used for estimating the pdf of the reduced set of parameters. To
quantify to what degree the generated scenarios represent realistic scenarios
while covering the same variety that is found in real-world traffic, Chapter 5
has also proposed the novel Scenario Representativeness (SR) metric. The SR
metric is based on the Wasserstein metric and compares a set of generated
scenarios with a set of observed scenarios. The SR metric can be used to
tune and optimize hyperparameters that influence the way test scenarios are
generated.
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In Chapter 6, a method has been proposed to sample from a KDE such that
the generated vectors of parameters satisfy a linear equality constraint. The
proposed sampling method can be used to generate test scenarios that satisfy
a predetermined condition, e.g., scenarios with a fixed speed of the ego vehi-
cle at the start of a scenario. As demonstrated in Chapter 6, this is particularly
useful when using an SVD to reduce the number of parameters, which makes
the proposed method for sampling helpful in combination with the proposed
method for generated test scenarios in Chapter 5.

• How to quantify the risk of an AV in real-world scenarios?

Chapter 7 has proposed a method to quantify the risk of an AV prospectively,
i.e., before the actual deployment of the AV in real-world traffic. Based on
recorded data, the likelihood of encountering specific scenarios is estimated.
The recorded data are also used to generate test scenarios for virtual simula-
tions of the AV. These virtual simulations are used to estimate the probability
and the severity of a collision. Combining this probability with the likelihood of
encountering specific scenarios leads to a quantified risk expressed as the ex-
pected number of injuries per unit of time. Chapter 7 has also presented how
this risk can be decomposed into the terms exposure, severity, and controlla-
bility, which are the risk aspects used by the leading standards in automotive
safety, ISO 26262 and ISO 21448. The proposed method for quantifying the
risk can be used to evaluate whether it is safe to actually deploy an AV in the
real-world traffic. Another purpose of the proposed method — especially the
decomposition of the risk into the terms exposure, severity, and controllability
— is to facilitate the design decisions during the development of an AV.

The Probabilistic RISk Measure derivAtion (PRISMA), proposed in Chapter 8,
is a method for deriving SSMs. The SSMs measure the risk of a — possibly au-
tomated — vehicle while operating in real-world traffic. The PRISMA method
derives SSMs by pre-calculating the probability of a specified event, e.g., a
collision, under various conditions. Based on the pre-calculated probabilities,
regression is used to quickly evaluate the SSM for some specific conditions.
Whereas traditional SSMs are generally only applicable in certain types of
scenarios, the PRISMA method can be applied to various types of scenarios.
Therefore, the PRISMA method has the potential for deriving multiple SSMs
for quantifying the risk of an AV.

In conclusion, by answering the research questions, this dissertation has pre-
sented novel methods for the scenario-based assessment of AVs. Although the
research forms a substantial contribution to the full integration of a scenario-based
assessment for the type approval of AVs, the research has also led to questions that
are to be addressed in future work. The remaining part of this chapter addresses
future work that is required in order to fully integrate scenario-based assessment
for the type approval of AVs.
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9.2. Recommendation for future research

I n this section, we discuss directions for future research regarding the scenario-based assessment of Automated Driving Systems (ADSs) and AVs. The directions
for future research concern the input data of the scenario-based assessment, the
Operational Design Domain (ODD) of the ADS, the explainability of the ADS behav-
ior, over-the-air updated of AVs, and the use of simulators in the scenario-based
assessment.

Input data for scenario-based assessment
While we have advertised the use of data, it might be difficult to justify the adequacy
of the data. First, whereas we have proposed a metric for measuring the degree of
completeness of the data, it remains future work to determine what thresholds for
this metric are appropriate. Second, the quality of the data needs to be sufficient.
For example, inaccuracies in the data may lead to unrealistic scenarios [57]. To
address this, efforts are made to release high-quality data sets (e.g., [33, 171]) or
data sets with extensive annotations (e.g., [43]), but it is questionable whether it
is feasible to collect enough data in this way.

One solution for the potential shortage of (high-quality) data is the use of acci-
dent data (e.g., the German in-depth accident study [99]) or data from event data
recorders that only record data of (near-) accidents [108]. The advantage of these
sources is that the recorded scenarios typically address situations that are chal-
lenging for an AV to deal with. Obviously, however, data from these sources are
not identically distributed as naturalistic driving studies. Also, data from different
event data recorders may not be identically distributed since different triggers may
be used to initiate the data recording. Future work involves the estimation of the
underlying statistics of scenarios using non-identically distributed recordings.

Operational design domain
An ADS up to SAE level 4 is designed to operate in a specific ODD. The ODD defines,
among others, the spatial areas and the environmental conditions for which the ADS
is designed to operate in. One part of the assessment of an ADS should focus on
the performance of the ADS in its ODD [125, 166]. For example, if rainy conditions
are part of an ADS’ ODD, a selection of the test scenarios should consider rainy
conditions. One open question is to how to express the ODD. Although initiatives
has been started [146, 278], there is no consensus yet on a standardized taxonomy
and format for describing an ODD.

Another open question to be addressed in future research is to express to what
degree a set of scenarios covers an ODD. Such an expression could then be used
to express to what degree a scenario-based assessment covers the ODD of an ADS.

A third open question concerns the assessment of an ADS when exiting its ODD.
For higher levels of automation, it is the duty of the ADS to not exit the ODD, to
warn the driver in time to take over the control of the vehicle, or to bring the vehicle
to a safe, stationary condition. To assess whether the ADS properly fulfills this duty,
the ADS needs to be exposed to scenarios that end up at the boundaries of the ADS’
ODD with the potential to cross these boundaries. The assessment of an ADS when
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it is about to exit its ODD is not covered by this dissertation and requires further
research.

Explainability of ADS behavior
We have proposed methods for generating test scenarios and, as we have demon-
strated, the generated test scenarios can be used to determine, e.g., if the ADS
behaves appropriately. Besides estimating this probability, it would be interesting
to be able to explain the ADS behavior. For the ADS developer, this explainabil-
ity provides useful information for improving the ADS performance. Perhaps more
importantly, this explainability of the results could also help to ensure that the
logic behind sensitive decisions made by AVs are transparent and explainable to
the public [34]. One challenge toward the explainability of the ADS behavior that
requires more research is the increasing use of machine learning algorithms, see,
e.g., [84, 124, 135].

Over-the-air updates
Over-the-air updates are already used by most car manufacturers: new software is
sent to the car while the car is parked in order to provide an enhanced experience
after successful installation of the software. Typically, the new software concerns
small tweaks to, e.g., the infotainment, but with the introduction of AVs, over-the-
air updates provide an opportunity to improve the driving performance of the AVs.
There is, however, one potential problem: the vehicle with the new software does
not correspond to the vehicle that went through the assessment before the type
approval of the AV. The scenario-based assessment proposed in this thesis could
be used to assess the vehicle with the new software, but it is very cumbersome to
do a full assessment after each software update. Future work involves, therefore,
the development of (scenario-based) assessment methods that address incremental
changes, such as changes after an over-the-air update.

Using virtual simulations for the type approval
Given the complexity of AVs, the required safety level, the required trust that AVs
are safe once they are deployed on the public roads, and the costs of physical sim-
ulations, it seems that virtual simulations play an increasingly important role in the
type approval of AVs [228]. That is one of the reasons for the recent developments
regarding virtual simulations of AVs [85, 158, 204, 238, 257]. Although the simu-
lation models and tools get more and more realistic, there are still challenges that
are to be addressed in future research [133, 306]. More research is also needed
for developing methods for quantifying the fidelity of virtual simulations.

9.3. Additional directions for future work

T he road toward the full deployment of AVs with a high automation level does
not only require more research. It also requires a debate among policy makers,

developers, operators, etc., because new policies need to be drafted to even allow
AVs of SAE level 3 and above on public roads. In this section, few aspects that
require such a political debate are discussed.
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Organizing legal structure for type approval
In addition to the research presented in this thesis, much research is being con-
ducted to provide methods for a reliable evaluation of an AV. When such a reliable
evaluation for the type approval of an AV is fully developed, there remain challenges
to agree on a procedure to conduct the evaluation. One of the challenges of such a
procedure is that proprietary, confidential information regarding the development
of the AV must be respected [67]. At the same time, the authority that is respon-
sible for the type approval needs enough confidence in the evaluation. Therefore,
the authority needs enough information to support the decision to approve the AV
for deployment on public roads.

One of the contradicting interests between the need for information of the au-
thority and the desire to respect the proprietary, confidential information, is the
disclosure of detailed test results. Due to the complex ODD, there are many tests
required to obtain enough confidence in the evaluation, so virtual simulations be-
come a necessity to limit the expensive physical testing load. The stakeholder
responsible for the evaluation might conduct them, which means that the devel-
oper has to provide a model of the AV. Even if a black-box model is provided, the
detailed test results obtained with the virtual simulations contain proprietary and
confidential information. Alternatively, if the developer conducts the virtual simu-
lations, it is conceivable that the developer does not want to disclose the detailed
test results because of the proprietary and confidential information contained by
the detailed test results. A political debate is needed to determine a procedure
that respects the developer’s intellectual property and the developer’s desire to not
disclose too many details regarding the test results while ensuring the authority has
enough evidence and confidence that the AV is safe enough. As a starting point for
such a debate, the proposed procedure in [67] could be used.

Data sharing
Considering a complex ODD, there is a large set of data needed to conduct the
scenario-based assessment as proposed in this dissertation. The question is: how
to organize such a data collection? Large data sets are already collected by dif-
ferent organizations in the automotive field, so one solution would be to combine
the different efforts made by the different organizations. Instead of sharing the
data among different stakeholders, the scenarios that are extracted from the data
could be shared in order to prevent the disclosure of propriety information that is
contained in the raw data. Technically, this seems feasible, considering the dif-
ferent scenario databases that have been developed [15, 94, 244]. The challenge
is to agree with multiple stakeholders, including competitors, on how to organize
the scenario collection campaign and on the conditions under which the collected
scenarios can be shared with other stakeholders.

In-service monitoring
Once an AV is approved for deployment on public roads, it is expected that the
AV is still monitored during its deployment. In this way, the road and/or vehicle
authorities can monitor the safety continuously while the AV is in service. To enable
the so-called in-service monitoring (or monitored deployment [67]), the operator
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of the AV might be required to upload detailed driving data to allow the monitor-
ing of the AV behavior. There are some open questions for which a discussion is
needed with different stakeholders, such as AV operators, AV developers, author-
ities, independent research and development organizations, and independent test
institutes:

• What kind of data needs to be uploaded? There is a trade-off between up-
loading very detailed driving data, which allows a thorough analysis of the
operational safety, and uploading only very few measures as to keep as much
of the system behavior undisclosed as possible. The former is in interest of
the authorities whereas the latter is in interest of the AV developer.

• Who analyzes the data? Both the AV operator and the authorities might have
their own motivation to keep the AV in service, so it might be preferred to
have an independent organization responsible for the analysis of the data.

• What decisions are made based on the data? For example, if a (near-) acci-
dent takes place, does that lead to a temporal withdrawal of the permission
to have the AV in service? What are the criteria to revoke the approval for
the deployment on public roads?

What is safe enough?
In this dissertation, methods has been proposed to quantify the risk. From safety
perspective, it would be best if the quantified risk can be reduced to zero. How-
ever, AVs cannot eliminate all accidents. One open question facing authorities, AV
developers, and the public, is “how safe is safe enough?” There are several views
on this question:

• ISO 26262 [144] and ISO 21448 [143], the leading standards in automotive
safety, state that the objective is to keep the system free from unreasonable
risk. This is based on the industry practice of keeping the risk “as low as
reasonably possible (ALARP)” [26]. This suggests a trade-off between a cer-
tain safety benefit and the required effort to reach that certain safety benefit.
Although this principle is widely adopted, it cannot directly be used to set a
quantified safety target.

• One can argue that as long as AVs cause relatively fewer fatalities than human-
driven vehicles, the introduction of AVs itself will lead to safer traffic. This
would give a clear safety objective because statistics on the current fatality
rate in traffic are available. This is also known as a “positive balance of risks”
[189]. Note, however, that for the public acceptance of AVs, the AVs might
need to be five times safer than human-driven vehicles [188]. Also note that
a positive balance of risks implies that AVs might perform worse than human-
driven vehicles in certain scenarios, as long as this is compensated by better
performance in other scenarios.

• A proposal for a new UN Regulation concerning the approval of vehicles with
an automated lane keeping system, a level 3 ADS, states that an ADS “shall
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not cause any collisions that are reasonably foreseeable and preventable” [69,
90]. Here, a collision is assumed to be preventable if a skilled and attentive
human driver could prevent the collision. It is not further specified what
reasonably foreseeable means.
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dat het onderzoek doen naar de veiligheid van (deels) zelfrijdende auto’s mijn in-
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zoveel anderen. Ik wil graag alle mensen die mij hebben geholpen heel hartelijk
bedanken.
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het onderzoek — blijft mij inspireren. Niet alleen heb je een belangrijke bijdrage
geleverd aan de totstandkoming van dit proefschrift, ook buiten het werk om bleek
je een uitstekende gesprekspartner (en wandelpartner) te zijn. Ontzettend bedankt
voor al je hulp! Ik hoop dat we ook in de toekomst kunnen blijven samenwerken
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Olaf Op den Camp, ook jij hebt een belangrijke bijdrage geleverd aan dit proef-
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nog meer dan jouw hulp bij mijn proefschrift, zal ik onze samenwerking blijven
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dat je, ook nadat je TNO hebt verlaten, mij wilde helpen bij het schrijven van twee
artikelen die nu ook als hoofdstuk in dit boek zijn opgenomen.

Hala Elrofai, at the beginning of 2017, you were the first person that I told about
my idea to start with a PhD. You immediately started arguing why on earth I would
do such a thing and the troubles that I would face. But after this discussion, you
realized that I already made my decision and from that moment on, you helped me
with finding enough support within TNO to (partially) fund my PhD. I will be forever
grateful for your help. Next to this, you also contributed to two articles that are
now chapters of my dissertation.

Mijn eerste twee jaar van mijn onderzoek heb ik gedaan in Singapore. Peter
van Hooft, jij was toen ook mijn nieuwe afdelingshoofd. Je hebt mij geholpen bij
mijn uitdagingen wat betreft het combineren van mijn werk in Singapore en het
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en in het bijzonder het bestuur — dan ook bedanken voor de samenwerking, de
sportiviteit en de gezelligheid.

Het is ontzettend waardevol als je altijd terug kan vallen op je vrienden en ook
zij verdienen het om hier genoemd te worden. In het bijzonder wil ik Chris, Lars en
Marco bedanken. We kennen elkaar al zo lang en wat er ook gebeurt, ik weet dat
jullie er altijd voor me zijn. En ondanks dat we tegenwoordig iets minder fanatiek
zijn, is het nog steeds heerlijk om samen naar Ajax te kijken. Marco, jou wil ik nog
speciaal bedanken omdat je mijn paranimf wilt zijn. Omdat we ook tot ver in onze
studententijd samen zijn opgetrokken, was het voor mij een makkelijke keuze om
jou hiervoor te vragen.

Jan, Jan-Joost & Marieke en Esther & Freek, wat leuk dat ik jullie er als familie
bij heb gekregen. Ik heb me vanaf het eerste moment bij jullie thuis gevoeld en
ik ben blij dat jullie mijn bijdehandheid tolereren. Het is jammer dat Aartje er niet
meer bij kan zijn. Het is bijzonder hoe betrokken ze was en ik ben dankbaar voor
het feit dat ik haar nog heb leren kennen.

Natuurlijk wil ik ook nog mijn familie benoemen. Jeannette & Herman, Yolanda &
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Steve, Remco & Wieteke, Vincent & Emma en mijn moeder Adrie, heel erg bedankt
dat ik altijd op jullie kan terugvallen en bedankt voor jullie interesse. Ma, jij hebt
ongelooflijk veel moeten aanhoren van mijn wel en wee. Bedankt voor je geduld
en je luisterend oor. Ik weet dat je trots bent net zoals pa dat ongetwijfeld ook
was geweest. Vincent, als tweelingbroer weet jij als geen ander hoe ik me voel. Of
we nu samen koffiedrinken, eten, klussen of sporten, onze tijd samen is en blijft
waardevol. Het was daarom logisch om jou ook te vragen als paranimf en een
dankjewel is hiervoor zeker op zijn plaats.

Als laatste wil ik mijn lieve Judith bedanken. Het moet niet altijd makkelijk zijn
geweest als ik weer even achter mijn laptop kroop, maar jij hebt mij hierin altijd
gesteund. Ik kan je niet genoeg bedanken voor jouw liefde en voor alles wat je
hebt gedaan. Ik kijk uit naar onze toekomst samen en ik hoop dat er nog vele jaren
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Erwin de Gelder
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