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Introduction

Since 2015, Picnic Technologies has aimed at disrupting the traditional supermarket industry in The Nether-
lands and beyond its borders. With the demand for online grocery shopping ever growing, it is crucial to stay
innovative and ahead of the traditional big players in this highly competitive market [2]. Since the e-grocery
market is a small margin market, just like the offline grocery market, it is essential to save costs where possible
[4]. The biggest portion of costs during the fulfilment process lies in order picking: the process of retrieving
products from storage in response to a specific customer request [1]. Hence, saving costs in order picking can
significantly reduce the costs of the overall supply chain. A novel way to try to reduce costs is by introducing
Multiple Storage Locations (MSL): storing the same article, or stock keeping unit (SKU), at multiple locations
throughout the pick circuit, such that it can be picked from multiple locations instead of only one. Combin-
ing this with more efficient routing of the order pickers, and better batching of orders increases the chance
that order pickers only have to travel through part of the pick circuit. Having to traverse less distance with
heavy pick carts saves time, which can be converted to cost savings. Next to that, the demand for picking
from one storage location will be spread out over multiple locations for some SKUs. This might have a mit-
igating effect towards decreasing congestion in overcrowded pick circuits. To study if this reduction of cost
takes place and if the effect is significant enough to implement MSL along with SKU allocation, order picker
routing, and order batching into operations, both an exact model and a meta-heuristic model have been con-
structed. With the input of historic order data and information on the SKUs, the models can construct new
layouts where SKUs are stored at multiple locations, albeit within the capacity limits of the building. For the
exact model, Gurobi was used together with a Mixed Integer Linear Programming (MILP) formulation. This
model was compared to the meta-heuristic Adaptive Large Neighbourhood Search (ALNS) model, which uses
several destroy- and repair heuristics to modify the solution each time in search for the best outcome.

The goal of this master thesis is to obtain a degree in Aerospace Engineering for the track of Control &
Operations, as well as to conduct a case study about the subject at Picnic Technologies. The research consists
of two main parts; the MILP model and the ALNS model. The case study for Picnic was executed with both
models, with the goal to reduce costs and increase efficiency. The goal of the MILP model is to set a bench-
mark for the ALNS model such that the performance of the ALNS model can be tested against exact solutions.
Meanwhile, the ALNS model can handle larger instances in a shorter amount of time to ensure that business
decisions can be taken based on the output from the model.

This report is comprised of three parts. In the first part, the scientific article can be found. In this ar-
ticle, the methodology is explained, the results are discussed and conclusions are drawn. Part II contains
the literature study. This was done at the beginning of the research and consists of the problem description
and the research question and its sub-questions, to guide the research. Furthermore, the state-of-the-art re-
search from qualitative sources that were already available is discussed and comparisons between problems
are made. Also, different solution methods for said problems are laid out. Finally, the third section contains
all the supplementary work.
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Optimising storage assignment, order picker routing, and order
batching for an e-grocery fulfilment centre: an exact and heuristic

approach
Merel Sterk

Delft University of Technology, Delft, The Netherlands
Abstract

With (e-)grocery retailers striving to increase their efficiency and subsequently reduce their costs, the oppor-
tunities that lie in optimising the order picking process of the supply chain is of key importance. The complex
nature of assigning articles to an optimal storage location, having efficient routing of order pickers, and op-
timised grouping of orders calls for an integral approach to these problems. The objective of the research
presented in this paper is to reduce the travelled distance of order pickers and subsequently the costs of the
order picking process. Next to the integral approach, a new method of Multiple Storage Locations (MSL) is
introduced. Historic order data of an e-grocery retailer is used, together with information on stock keeping
units (SKUs), to implement SKU allocation with MSL possibility, routing, and batching into models. This
ensures that the cost saving effects of these measures can be quantified. A benchmark Mixed Integer Linear
Programming model (MILP) is developed and compared to a meta-heuristic Adaptive Large Neighbourhood
Search model (ALNS) to determine how much travelled distance would be saved. The ALNS has multiple
destroy- and repair heuristics, some of which are novel, that are specific to the problem at hand. The ALNS
is able to handle bigger instances than the MILP, whilst ensuring quality of the solution. The MILP model
outperforms the ALNS for small instances, however for large instances (instances of 400 orders or more) the
ALNS performs, on average, 12.5% better whilst reducing computational time by 14.8%. Finally, areas of im-
provement are suggested in the ALNS model as well as other effects that should be studied when introducing
MSL.
Keywords: storage assignment problem, routing problem, batching problem, adaptive large neighbourhood
search, e-grocery retailer, order picking, multiple storage locations.

1 Introduction

Over the last decade, online purchasing has been on
the rise, which is evident by the growing e-commerce
sector [Alfonso et al. (2021)]. One of the interesting
markets, and a late bloomer in this sense, is the online
grocery market (e-grocery). The e-grocery market
comprises purchasing and selling food products or
grocery items online. The key difference between
e-grocery retailers and traditional supermarkets is the
order fulfilment process, which for e-grocery retailers
takes place in the Fulfilment Centres (FCs). In the
FCs, orders are assembled and there are many critical
and supporting processes taking place to fulfil the or-
ders in a timely manner. One of the critical processes
is the order picking process: retrieving products from
storage locations in response to a specific customer
request. Since the (e-)grocery market is traditionally
a low-margin industry, cost savings are of importance.
Previous research has shown that order picking is
estimated to make up 55% of the entire fulfilment
costs [Füchtenhans et al. (2021)]. Hence, to cut down
on costs, it is important to look at cost reductions
within the order picking process. Cutting costs in
this process can help to reduce the overall fulfilment
costs significantly because of the large share of order
picking costs. This area of research has gained a lot of
interest over the years with the arrival of many FCs.
There are a variety of studies dedicated to this topic.

Currently, there are two main types of order picking

systems that exist: parts-to-picker systems and
picker-to-parts systems. The former is often present
in automated FCs and it entails that the part (i.e.
item) is moved to the order picker, for example via
conveyor belts. The latter system is used in manual
FCs. For this research, the focus is on manual FCs and
thus a picker-to-parts order picking system. In this
system, order pickers traverse aisles in the pick circuit,
to retrieve all the required items from the storage
locations. The pick circuit consists of all storage
locations of items, usually separated into different
aisles. The efficiency of the order-picking process is
mainly dependent on three factors: (i) the storage
assignment, (ii) the routing of the order pickers, and
(iii) the batching of orders [Dukic and Oluic (2007),
Zhang et al. (2019)].

Which item, or Stock Keeping Unit (SKU), is stored
at which location is decided before the order picking
process commences. Assigning SKUs to storage
locations is known as the Storage Allocation Problem
(SAP). Deciding the optimal storage location for an
SKU is both cardinal and complex, especially for
e-grocery retailers since they can house over 10,000
different SKUs. The routing of the order pickers
through the pick circuit can be decided by many
different strategies, largely dependent on the order
(type) and layout of the FC, which is known as the
Order Picker Routing Problem (OPRP). Also, the
batching of orders is an effective measure to cut down
on time when executed properly, since an order picker
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can collect multiple orders simultaneously. Deciding
which orders are batched together is known as the
Order Batching Problem (OBP). In FCs, the batching
of orders is done on pick carts. For e-grocery retailers,
these pick carts contain several order totes (plastic
crates in which SKUs of the order are assembled),
where each order tote contains (part of) the SKUs of
an order.

This research is taking a novel integral approach
to three factors influencing the efficiency of the order
picking process, to reduce the travel distance of order
pickers. Next to that, Multiple Storage Locations
(MSL) are introduced. MSL entails that an SKU
does not have one storage location. Instead, the stock
can be split over multiple locations throughout the
order pick circuit. The idea of MSL is maximising
the likelihood that the order pickers will only need
to traverse a portion of the pick circuit. This might
bring extra burden to other parts of the operational
processes and therefore a limit is set to the maximum
number of MSL. An illustrative example of how this
would work is shown in Figure 1. Introducing MSL
is not an entirely new concept within supply chain
management, however, it is for e-grocery retailers.
The main difference between e-grocery retailers and
other e-commerce businesses is that the orders for
e-grocery retailers are generally of much bigger size,
i.e. contain more SKUs. The effect that MSL can
have in combination with this bigger order size and an
integral approach to the SAP, OBP and OPRP has
not been widely studied yet and has not been adopted
into practice as far as the author knows.

To solve these intertwined problems, a model is
introduced that can concurrently solve the SAP
without constraining an SKU to one storage location
(i.e. having MSL), the OPRP, and the OBP. Com-
bining these three problems and working towards an
integral solution is paramount to the performance of
the model. With the reduction of travelled distance,
the order pickers will spend less time fulfilling an
order. This entails that the costs to fulfil an order
are reduced, since labour costs make up the biggest
portion of the order picking process. This will make
the e-grocery retailer that adapts its operations to the
model competitive and can ensure that they have the
edge over their competitors.

There are several methodologies to solve these
problems and reach the goal of reduced travelled
distance by order pickers. A commonly used approach
is constructing a Mixed Integer Linear Programming
(MILP) model. A MILP model ensures an optimal
solution to the problem. However, due to the large
and complex nature of the problems, considerable
computational time is needed before an optimal solu-
tion is reached for instances that are interesting from a
practical, operational perspective. To circumvent this
problem, meta-heuristics are a valid alternative, as
they might not find an optimal solution, yet they are
generally capable of finding a near optimal solution
within an acceptable time limit. The meta-heuristic
that is proposed in this research is an Adaptive Large

Neighbourhood Search (ALNS), which combines the
strength of several other meta-heuristics into one
algorithm. By inputting order data and retrieving a
proposed storage location assignment, the reduction
of distance can be computed when the routing and
batching are considered as well.

This paper is organised as follows. In Section 2 a
summary of the existing academic literature on order
picking processes is given. Thereafter, a detailed
description of the problem is given in Section 3.
Next, Section 4 describes both the exact methodology
and the meta-heuristic approach that were used.
Afterwards, Section 5 describes the computational
experiments that were executed. This leads to the
results and analysis thereof that are shown in Sec-
tion 6. Finally, Section 7 presents the conclusions of
the research and areas for further research.

Figure 1: Illustrative example of how introducing MSL
can reduce travelled distance. Top view of the order pick

circuit with eight aisles labelled E-L. Both the water
bottle and the apple are needed. In the situation on top,
the full circuit needs to be traversed to pick both SKUs.
In the situation on the bottom, the apple has MSL and

only half of the pick circuit needs to be traversed.

2 Literature Review
Ensuring the most beneficial order picking practices in
terms of travelled distance is a complex task. Over the
years, many methods have been proposed to tackle this
problem with many different focuses. In general, the
order picking process can be divided into three main
problems as discussed above: the SAP, the OPRP, and
the OBP. Researchers have developed countless models
and approaches to these problems, both integral and
sequential, and there have been numerous case studies
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on the subject. This section elaborates on the most
important works from literature on these topics.

2.1 Storage Allocation Problem
The SAP is defined by Reyes et al. (2019) as "the al-
location of products into a storage space and optimi-
sation of the material handling costs of storage space
utilisation". This problem is not only applicable to e-
grocery retailers, but to e-retailers in general. The ob-
stacle for e-grocery FCs is that the number of storage
locations is often higher, SKUs are much more volatile
in terms of popularity, and there are many fragility and
food safety guidelines compared to other e-retailers.
The SAP is classified as an NP-hard problem, since the
problem cannot be solved in polynomial time for large
instances that closer resemble reality [Abdel-Hamid
and Borndörfer (1994)]. Generally, there are three ap-
proaches used to solve the SAP throughout academic
literature: (i) MILP models, (ii) heuristic models, and
(iii) storage policies and rules.

Manzini et al. (2015) have created two MILP mod-
els, first for the assignment of SKUs to certain storage
classes, and subsequently for assigning these classes to
storage locations, based on demand patterns. They
argue that these models can help make long-term deci-
sions by considering the "life cycle" of the order picking
process. Long-term decisions cannot be easily changed,
and are decisions such as deciding the layout of the or-
der pick circuit and what kind of system (automated
or manual) to use. Others use a MILP model to solely
focus on optimal SKU assignment in terms of travel
time by the order pickers, as done by Ramtin and Pa-
zour (2015). The approach that is used is assigning
the most active SKUs (also called fast-movers) to the
best pick positions for varying other parameters such
as demand, differing peak hours and different system
configurations. It can be seen from these examples that
the application of the MILP model can vary and it is
a versatile way to focus on many different objectives.

Apart from all heuristic measures, there are also
meta-heuristics that are frequented throughout liter-
ature. Tabu search, genetic algorithms, and artificial
neural networks are examples of those. Otto et al.
(2017) uses tabu search to optimise the SAP in flow
racks for ergonomics of the order pickers. Good er-
gonomics for order pickers entails taking into account
if the order pickers need to bend and lift a lot and re-
ducing this. Another case is the one from Yang et al.
(2015), where they use a tabu search to reduce the
complexity of the problem of location assignment in
an automated storage/retrieval system, which shows
strong results both in quality of the solution and the
computational time needed.

Lastly, there are examples of research that makes use
of storage policies and rules, such as class-based stra-
tegy, correlation-based strategy and random strategy.
The work of Petersen et al. (2004) is an example of
class-based strategy, where all SKUs are ranked accord-
ing to their pick activity, and compared to a volume-
based strategy. The pick activity of an SKU signifies

the number of times the SKU is picked. The volume-
based strategy is when SKUs are ranked according to
their volume. They show that the time spent on fulfil-
ment processes goes down with the new strategy, yet
there is a trade-off between the number of classes and
the performance. This strategy, which combines both
volume and popularity of an SKU, is the Cube-per-
Order Index (COI) strategy. SKUs are assigned into
classes based on their COI value. An example of this
for manual FCs is the work of Fontana et al. (2020).

For the assignment of MSL, there seems to be only
one previous research that resembles the strategy of
this research, being the one from Jiang et al. (2021).
The focus is on the correlation between SKUs and min-
imising the distance between SKUs that have a high
correlation. Correlation between SKUs conveys that
SKUs are often ordered together. Promising results are
shown, however, the instance size remains limited and
it is not possible to multiply storage locations for SKUs
at more than two locations. Also, the order picker rout-
ing in their research is unconstrained, whilst there are
often constraints in place for order picker routing due
to operational feasibility.

2.2 Order Picker Routing Problem
The OPRP is a variation of the well-known Travel-
ling Salesman Problem (TSP). The OPRP is very of-
ten studied and there are researches dedicated to pro-
vide a literature review on this topic specifically [Masae
et al. (2020a)]. The common denominator in these re-
searches is the trade-off between optimality and oper-
ational feasibility. Truly optimal routes often are more
complicated than heuristic routing policies. The order
pickers have to be able to follow the set route easily,
because having deviations from the predetermined tour
will counteract the efforts made to reduce the total dis-
tance travelled.

The OPRP is dependent on the type of warehouse,
i.e. the warehouse layout. This is determined by
several aisle characteristics. The two biggest groups
of warehouses are conventional warehouses, that are
rectangular in shape with parallel picking aisles, and
non-conventional warehouses, such as U-shaped or V-
shaped layouts [Glock and Grosse (2012), Çelk and
Süral (2014)]. To solve the OPRP there are again the
different strategies of exact methods, (meta-)heuristic
methods, and routing policies. In the work of Masae
et al. (2020b), an exact method is compared to the
S-shape routing policy for a conventional warehouse
with and without a middle cross aisle. It was shown
that the exact method had quite significant gains over
the heuristic method of between 6% and 35% and that
adding a middle cross aisle always leads to shorter
routes. The argument is made that optimal order
picker routing should always be preferred.

Most research on the OPRP is focused on static or-
der picking, meaning that the order list is set and will
stay the same throughout the order picking process.
However, there also exist examples where dynamic or-
der picking is examined, where the order list can be
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altered or updated during the order picking process.
SKUs can be added to the order list. This is done
by Lu et al. (2016), where they re-calculate the opti-
mal route during the picking operations for any new
order that arrives. The algorithm was tested via sim-
ulations and it showed that it can outperform certain
static heuristics both when distance and time are used
as proxies of performance.

2.3 Order Batching Problem
For e-retailers that sell small SKUs in terms of volume,
the OBP is of importance. Because of this character-
istic of the SKUs, one order picker collects multiple
SKUs during one pick round, and even multiple
orders. Often, order pickers are assisted in this via a
rolling cart with separate bins to collect the SKUs for
separate orders. For the sake of clarity these will all
be referred to as pick carts. Which orders are batched
together on one pick cart is naturally paramount to
the efficiency of the order picking process.

With the OBP there are many different sub-
problems that need to be handled, of which one of the
most important is constructing the time windows for
the order picking [Gil-Borrás et al. (2021)]. Orders
are delivered to customers and customers expect the
orders at a certain time. Orders that need to leave the
FC around the same time, can be batched together,
whilst others cannot. The time window should be
as big as possible to allow for more flexibility in the
OBP, yet adhering to delivery times is also a must
[Gil-Borrás et al. (2020)]. The other problem that is
most often considered is the proximity of the SKU
locations to one another. If the SKUs of the orders
that are batched together are in close proximity to
each other, the order picker will have to travel less
distance to fulfil all orders, which is desirable [Il-Choe
and Sharp (2014)].

The objective of the OBP is often to reduce the time
spent on order picking. Chen et al. (2018) show an
approach to this objective through heuristics, which
are independent of any warehouse parameters. The
size of the batch, i.e. the number of orders on one pick
cart, is of course of great influence on the service time
per order, yet they show that with optimal batch sizes
the heuristic outperforms traditional methods.

Other research emphasises the effect of solving the
OBP for the distance travelled by order pickers. Öncan
(2015) does this for a conventional warehouse through
a MILP model and a tabu search algorithm, which
they compared to empirical results. The comparison
showed significant overlap in results, indicating that
the proposed batching yields the decreased distance
in real-life operations. They solved the OBP for
three different routing policies: traversal, return, and
midpoint, of which the traversal (entering an aisle and
completely traversing it) yields the best results.

In case the OBP also takes the order pickers into
account, other objectives could be to balancing the
workload [Zhang et al. (2017)], minimising waiting

times of the order pickers due to congestion [Hahn and
Scholz (2017)], or minimising the turnover time for ex-
ample [Tang and Chew (1997)].

3 Problem Statement
In this section, the fulfilment processes that influence
the order picking process are described. There are mul-
tiple interconnected processes that affect the efficiency
of the order picking process. Also, research objective
is stated, as well as the problem setting with input,
output, assumptions, and constraints. This research
is done in collaboration with an European e-grocery
retailer, which will be referred to as such. Their oper-
ational set-up is used as a guideline for this research.

3.1 Fulfilment Processes
In FCs, all processes are connected and one process
influences another. In Figure 2 the different processes
that influence order picking efficiency are shown and
how they connect to one another. It also shows which
processes are inside the scope of the research and which
are outside the scope.
The slotting service determines both the storage lo-
cation of the SKU as well as the dimensions of that
storage location. This is a process that can take place
daily, however not for every SKU. SKUs are changing
storage locations based on a variety of reasons, such as
congestion, seasonality, demand, and fragility.

The day before the order picking commences, the
tote service takes care of two processes: allocating or-
der totes (order crates) to orders and allocating SKUs
to certain order totes, which is essentially a bin packing
problem. The aim is to use as little order totes as pos-
sible. This objective determines which SKUs should go
into which order tote. Optimising the tote allocation
to ensure that SKUs that have a high correlation in
characteristics such as storage location are placed to-
gether in an order tote is imperative to reducing the
travelled distance of order pickers. The tote alloca-
tion that is used in the FCs for the case study already
has this functionality and therefore it is outside of the
scope of this research.

The planning service determines to which dispatch
frame the order tote is assigned and the respective lo-
cation of the order tote within the dispatch frame. This
is dependent on the delivery routes and therefore a ve-
hicle routing problem needs to be solved for this. The
dispatch frame is the frame in which order totes are
placed that is used for the home delivery service of the
e-grocery retailer. This is part of the distribution pro-
cess and is out of the scope for this research. An order
can be comprised of several order totes, in case the cus-
tomer has ordered a large number of SKUs. Since this
research does not consider the tote service and order
totes have the same composition throughout, one or-
der tote is considered to be one order. Therefore, one
order tote will be referred to as one order from here on
out.
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Figure 2: Interconnected processes that influence order picking efficiency.

Lastly, right before the pick round commences the
Warehouse Management System (WMS) assigns the
orders to pick carts, i.e. batches the orders together
and also determines the location of the order on the
pick cart, for both good ergonomics for the order pick-
ers and efficiency. Afterwards, the pick round is ready
to start and the routing of the order picker is set.
Changes to the routing during the pick round due to
discrepancies in WMS can take place in reality. How-
ever they should be treated case-by-case and are very
dependent on a multitude of circumstances, therefore
they are considered out of scope for this research.

3.2 Research Objective
The research objective is to reduce the distance trav-
elled by order pickers throughout the pick circuit, to in-
crease the efficiency of the order picking process. This
is done by designing a tactical model that combines a
set of orders, SKUs, and pick carts to determine the
optimal FC operations. Therefore, it is determined
which SKUs need to go into which zone of the order
pick circuit. For this research, the specific place within
the zone is of no importance. As mentioned, MSL per
SKU are possible and its effects on reducing travelled
distance are measured. Also, the routing of the or-
der pickers is decided by establishing to which zone an
order picker needs to go in order to fulfil its assigned
orders. The routing within the zones is set by the one-
way S-shape heuristic. There can be multiple entry-
or exit points, dependent on SKUs that make up the
orders. Moreover, it is determined which orders are
the most beneficial to be batched together on a pick
cart, such that similarities between orders are used to
the advantage of the e-grocery retailer. This research
is done in collaboration with a European e-grocery re-
tailer which provides the necessary input data and cer-
tain operational constraints. The models are designed
for conventional FCs, that have a number of multiple

parallel aisles. There is no middle aisle to cross any
other aisles. This layout and routing is shown in Fig-
ure 3.

3.3 Problem Setting
This subsection describes the full problem setting,
what the output will look like and which assumptions
are made and used throughout the models. Moreover,
the operational constraints are discussed.

Input
The input data consists of three main sources:

• Order data: The order data comprises the orders,
all different SKUs that are present in each order
(i.e. the order lines per order, where an order
line consists of the SKU that needs to be picked
from the storage location and its quantity) and the
truck that is used to transport the order from the
regional FCs to the local hubs.

• SKU data: The SKU data contains all SKU char-
acteristics, such as dimensions, demand, storage
type, and current storage location. SKUs can be
stored on five different types of locations, being
locations for: (i) pallets, (ii) shelving units, (iii)
dollies, (iv) flowracks, or (v) roll containers. It is
dependent on the type of location how much space
an SKU takes up in the pick circuit.

• Additional data: Some data on the layout of the
different FCs, such as the number of aisles and
length of the pick circuit.

Output
The output of the models is threefold:

• Zone allocation per SKU: The storage assignment
problem is simplified to assigning SKUs to zones
and not to specific storage locations in a zone.
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Zone

Figure 3: The generic layout of the conventional FCs with multiple parallel aisles, no middle aisle, multiple entry- and
exit points, two zones, and one-way, S-shape routing.

A zone is comprised of several aisles in the FC.
Whilst it is not done for this research, it is possi-
ble to optimise the storage allocation within a zone
through the slotting service. This determines the
exact dimensions of the storage location.

• Zones to travel to per order picker/pick cart: Each
order picker takes one pick cart with them during
their pick round. The solution of the routing prob-
lem will be which zones the order pickers travel to.
The problem is defined with two zones, which will
always be visited in a set sequential order. Within
a zone the order picker will follow the one-way,
S-shape routing strategy, as set by the European
e-grocery retailer.

• Order allocation per pick cart: The batching prob-
lem is solved by grouping orders together on a pick
cart. The orders on the pick cart need to traverse
the same zone(s) and need to belong to the same
truck shipment. The solution shows which orders
are batched together on one pick cart.

Assumptions
Throughout the research, several assumptions are
made. They are in line with the observations made by
the FC of the European e-grocery retailer. First, it is
assumed that there is always a pick cart available for an
order picker. Since the number of pick carts is not lim-
ited, this can never constrain the solution. Moreover,

the assumption is that there is no congestion in the
order pick circuit despite multiple order pickers being
in the circuit simultaneously. Because of this assump-
tion it is possible to work with an average, empirical
speed for order pickers, such that the time spent on or-
der picking also can be calculated. With the time and
the hourly labour costs the potential cost savings can
be deduced. Next to this, it is assumed that there is
always enough stock available on the storage location
for the order picker to collect the SKU. This entails
that there are never any routes needed that deviate
from the set route determined at the start of the pick
round. As mentioned, this ensures that detours are not
needed and out of scope for the research. Also, it is as-
sumed that an SKU takes up storage space in relation
to its demand and volume. SKUs that have high de-
mand or are bigger will need more storage space than
an SKU that is hardly ever ordered or is small. How
this relationship works exactly will be outlined in the
mathematical model. There is no fragility constraint in
place, meaning that it is not necessary to place SKUs
that are fragile (such as eggs) in a zone previous to
SKUs that are not fragile (such as a bottle of water).
This is done because of the assumption that fragility
constraints can be satisfied within a zone itself.

Operational Constraints
The model is subject to several constraints to ensure
operational feasibility. They can be split into four
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Table 1: Overview of sets in the MILP model.

Sets
I Set of SKUs, indexed by i
Io Subset of all SKUs i in order o
Z Set of zones, indexed by z
O Set of orders, indexed by o
Oinc Set of orders that are incompatible with one another with regards to batching them on pick carts
P Set of pick carts, indexed by p

Table 2: Overview of parameters in the MILP model.

Parameters
Lz The length of a zone [m]
Cz The capacity of a zone [m2]
Di The daily demand of an SKU [# picks/day]
FFi The front facing surface of an SKU [m2]
MPi The storage type multiplication factor of an SKU [-]
SFi The storage type factor of an SKU [-]
PCmax The maximum number of orders that can be placed on one pick cart [#]
MPmax The maximum number of available SKU storage locations [#]

Table 3: Overview of decision variables in the MILP model.

Decision Variables
mp Continuous, the number of walking meters per pick cart p
ti,p Binary, unitary if SKU i is on pick cart p
ui,z Binary, unitary if SKU i is placed in zone z
vi,o,p Binary, unitary if SKU i from order o is on pick cart p
wo,p Binary, unitary if order o is on pick cart p
xp,z Binary, unitary if pick cart p travels to zone z
yi,p,z Binary, unitary if SKU i from pick cart p is taken from zone z

main categories: SKU constraints, order constraints,
zone constraints, and pick cart constraints. SKU con-
straints ensure that every SKU is assigned to at least
one zone and that there is a maximum number of avail-
able places for all SKUs. Multiplying storage locations
for one SKU has many of operational dependencies, so
this can only be done for a selected number of SKUs.
The order constraint needs to guarantee that each or-
der gets assigned to a pick cart. An order cannot travel
through the pick circuit "on its own", it needs to be an
order on a pick cart. Next, the zone constraint handles
the capacity of a zone. A zone cannot be filled with
too many SKUs in such a manner that it will exceed
its capacity. Therefore, the space needed for all SKUs
assigned to the zone must be calculated and be lower
than the capacity. Lastly, there are the pick cart con-
straints. These constraints make sure that the routing
of the pick cart happens correctly and set the limit for
the number of orders that can be batched together on
one pick cart. Also, these constraints ensure that an
SKU that has MSL is picked from one location only.
Moreover, these constraints take care of the fact that
all orders on a pick cart must belong to the same truck
shipment. This is done in order to make sure that an
order that is in the morning truck shipment cannot be
paired with an order that is in the evening truck ship-

ment. This is a loose way of applying a time constraint
to the orders on the pick cart.

4 Methodology
The methods used for this research are elaborated in
this section. First, the MILP model is discussed and
how this model leads to an exact optimal solution to
the problem. Next, the ALNS is described, along with
its destroy- and repair mechanisms.

4.1 Mixed Integer Linear Program-
ming Model

The exact model is formulated as a MILP model,
meaning that the decision variables of the problem
can be binary, integers, or continuous. The input data
of SKU characteristics and historic order data will
give an optimised SKU-to-zone, pick-cart-to-zone, and
order-to-pick-cart assignment. The sets, parameters,
and decision variables can be found in Table 1, Table 2
and Table 3, respectively. The mathematical formu-
lation of the MILP model is shown next. The MILP
formulation is solved by using a commercial solver.
This solver makes use of the branch & bound tech-
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nique, along with cutting planes, symmetry breaking
and search-techniques and can therefore also be called
a branch & cut technique. Branch & bound is a way of
structuring feasible solution space, such that only part
of the solutions need to be examined. Cutting planes
are used to tighten the MILP relaxations [Lawler and
Wood (1966)].

The objective function, Equation 1, minimises the
sum of the walking meters traversed by each pick
cart, i.e. the travelled distance of order pickers. This
objective is subject to twenty constraints in total.
Constraint (2) makes sure that each SKU is assigned
to at least one zone, whilst it may be more than
one zone. Constraint (3) ensures that the number
of storage locations used for all SKUs across all
zones is not above the threshold of maximum storage
places available in the entire pick circuit. Constraint
(4) guarantees that each order is assigned to a pick
cart, whilst Constraint (5) warrants the fact that the
capacity of a zone is not exceeded. This constraint is
split into several parts and is dependent on the type
of storage location. For example, if an SKU is stored
at a pallet location, the amount of space it takes up
is set and always the same. However, if an SKU is
on a shelving unit, the amount of space it takes up is
dependent on its volume and demand. This is handled
by the storage parameters of the SKU in Constraint
(5).

Constraint (6), (7), and (8) make sure that an SKU
from a pick cart is only taken from a zone if that
SKU is allocated to the zone, the SKU is allocated
to the pick cart and the pick cart is allocated to the
zone. Next, Constraint (9) establishes the maximum
number of orders that can be batched together on one
pick cart. Constraint (10) and (11) maintain that an
SKU can only be on a pick cart if the SKU is in an
order and that same order is on the pick cart.

To ensure that orders are only placed on a pick cart
together if they belong to the same truck shipment,
Constraint (12) is in place. This constraint makes
use of an incompatibility list for all orders. Then,
Constraint (13) ensures that if a pick cart is assigned
orders it needs to traverse zones to pick up the
needed SKUs. Furthermore, Constraint (14) gives the
definition of the walking meters per pick cart, i.e. the
travelled distance. If the pick cart travels to that zone,
the length of that zone is added to the overall distance
to calculate this. Lastly, Constraints (15) through
(21) deal with the values that the decision variables
can take.

min
∑
p∈P

mp (1)

subject to

∑
z∈Z

ui,z ≥ 1 ∀ i ∈ I (2)

−MPmax +
∑

z∈Z,i∈I

ui,z ≤ 0 (3)

∑
p∈P

wo,p = 1 ∀ o ∈ O (4)

− Cz +
∑
i∈I

(Di · FFi ·MPi + SFi) · ui,z ≤ 0 ∀ i ∈ I

(5)

− |I| · xp,z +
∑
i∈I

yi,p,z ≤ 0 ∀ p ∈ P, z ∈ Z (6)

yi,p,z − ui,z ≤ 0 ∀ i ∈ I, p ∈ P, z ∈ Z (7)

− ti,p +
∑
z∈Z

yi,p,z = 0 ∀ i ∈ I, p ∈ P (8)

− PCmax +
∑
o∈O

wo,p ≤ 0 ∀ p ∈ P (9)

vi,o,p − wo,p = 0 ∀ o ∈ O, i ∈ Io, p ∈ P (10)

− PCmax · |I| · ti,p +
∑
o∈O

vi,o,p ≤ 0 ∀ i ∈ I, p ∈ P

(11)

wo1,p + wo2,p ≤ 1 ∀(o1, o2) ∈ Oinc, p ∈ P (12)

− PCmax ·
∑
z∈Z

xp,z +
∑
o∈O

wo,p ≤ 0 ∀ p ∈ P (13)

mp −
∑
z∈Z

Lz · xp,z = 0 ∀ p ∈ P (14)

mp ≥ 0 ∀ p ∈ P (15)

ti,p ∈ {0, 1} ∀ i ∈ I, p ∈ P (16)

ui,z ∈ {0, 1} ∀ i ∈ I, z ∈ Z (17)

vi,o,p ∈ {0, 1} ∀ i ∈ I, o ∈ O, p ∈ P (18)

wo,p ∈ {0, 1} ∀ o ∈ O, p ∈ P (19)

xp,z ∈ {0, 1} ∀ p ∈ P, z ∈ Z (20)

yi,p,z ∈ {0, 1} ∀ i ∈ I, p ∈ P, z ∈ Z (21)

4.2 Adaptive Large Neighbourhood
Search Model

Solving the MILP model for large data instances is not
possible within acceptable time limits, due to the large
size of the problem and the memory needed. Therefore,
it is decided to use an alternative solution method as
well, i.e. an ALNS method. The MILP model can
provide a benchmark for the ALNS model, to show
that the performance of the ALNS model is up to par
for smaller instances and that the results for larger in-
stances can be deemed trustworthy. First, the gen-
eral ALNS model will be discussed and afterwards the
destroy- and repair mechanisms are explained.
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4.2.1 General ALNS

The ALNS model is an extension of the Large Neigh-
bourhood Search (LNS) as designed by Shaw (1998)
and was first introduced by Ropke and Pisinger (2006).
The "adaptive" part refers to the use of different
destroy- and repair mechanisms, instead of having only
one type. The ALNS approach is chosen because of this
specific characteristic, such that the heuristics that are
chosen as destroy- and repair mechanisms are suitable
for the problem. There are an infinite number of robust
and fast heuristics to use and novel ones can also be in-
corporated, hence making the model very versatile. It
is often hard to determine beforehand which heuristic
will be most suitable to the problem. It might be the
case that a heuristic is chosen, all instances are tested,
and bad results are achieved. The ALNS combats the
use of a bad heuristic by having multiple and adjust-
ing the probabilities based on its past successes. If a
heuristic is not successful in terms of the objective, the
probability that it gets used lowers. The algorithm of
the ALNS used in this research can be found in Algo-
rithm 1.
Algorithm 1: Adaptive Large Neighbourhood
Search

1 input: initial solution sbest = s ∈ {solutions},
q ∈ N

2 while stopping criteria is not met do
3 for i = 1,..., pupdate do
4 select r ∈ R and d ∈ D according to

probabilities p
5 s′ = r(d(s)) for q requests from s
6 if acceptation criterion is met then
7 s = s′

8 if f(s) < f(sbest) then
9 sbest = s

10 end
11 end
12 end
13 update weights w and probabilities p of the

heuristics
14 end
15 return sbest

For this research, there are two initial solutions for the
ALNS model. One is the current SKU-to-zone assign-
ment of the European e-grocery retailer from which
the data is obtained. This SKU-to-zone assignment
already has been optimised, mainly for replenishment
and fragility. Since these factors are not the subject of
this research, it is interesting to see how they will com-
pare. Moreover, the initial solution is of course already
feasible.

The other initial solution is based on the correlation
between SKUs. In this case, for each SKU combination
it is determined if they are correlated (often ordered
together) or not. Then, the SKUs with the highest
correlation will be located together in one zone, whilst
adhering to the capacity constraint of the zone. By
comparing the results of the ALNS for these two dif-
ferent initial solutions, the impact of the initial solution

on both computational time and performance can be
measured.

A characteristic of the LNS is that a large neigh-
bourhood is searched, as the name implies. Although
this may increase the run time of the algorithm, it pre-
vents the algorithm from getting stuck in local optima
- to an extent. Another part of this is that also wors-
ening solutions can be accepted and that the search
is for solutions in the neighbourhood of s, instead of
solely focusing on the neighbourhood of sbest. For the
acceptance of solutions that are worse than the previ-
ous solution, a simulated annealing approach is used
as designed by Van Laarhoven and Aarts (1987). The
equation to calculate the probability that a worsening
solution is accepted is seen in Equation 22.

psa = exp−(
c(s)−c(s′)

T ) (22)

To use this probability, the initial temperature must be
set. This is done by solving the equation with the ini-
tial solution and a new solution that is w% worse, for
an unknown temperature and setting the probability
to 0.5. The 0.5 represents an acceptance probability of
50%. This entails that the first worsening solution that
is exactly w% worse than the initial solution is accepted
with a probability of 50%. w is the start temperature
control parameter. The temperature is then cooled for
every iteration by a factor c, the cooling rate, following
a geometric decay.

As can be seen in Algorithm 1, destroy- and repair
mechanisms are chosen according to their probabilities
p. These probabilities and weights are updated every
update period, which is set at 50 iterations. To calcu-
late the probabilities, weights have been designed for
the heuristics. The weights for each heuristic is de-
termined by their previous successes. The weight of a
heuristic can be decided by Equation 23, where wij is
the weight of heuristic i that is used throughout up-
date period j. The reaction factor r determines how
strongly the weights are adjusted for their past suc-
cesses. Next to that, πi is the success score of the
heuristic, which is calculated by summing σ1, σ2 and
σ3 of the heuristic. When these factors are assigned to
the success score can be found in Table 4. The num-
ber of times the heuristic has been used over the last
update period is depicted by θi.

wi,j+1 = wij(1− r) + r · πi

θi
(23)

From the weights, the probabilities for each heuristic
can be determined by using the roulette wheel selec-
tion principle. If there are n heuristics with each a

Table 4: Score factors.

Parameter Description
σ1 New solution is the new sbest
σ2 New solution improves the

current solution
σ3 New solution does not improve the

current solution, but is accepted
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weight wi, the probability that heuristic j is chosen is
as depicted in Equation 24.

pj =
wj∑i=1
n wi

(24)

It is decided to apply no noise to the objective func-
tion. Noise should randomise the insertion heuristics
to discourage the same local moves. However, research
shows that adding noise has little to no effect [Grimault
et al. (2017)].

4.2.2 Destroy Mechanisms

The ALNS model uses three destroy mechanisms, or
removal heuristics: (i) random removal, (ii) worst re-
moval, and (iii) fast-mover removal. All three heuris-
tics take a solution as an input, as well as the integer q.
This integer depicts the number of requests that need
to be removed and is determined by q = ξ · |R|. Here,
ξ represents a percentage, thus q is a percentage of all
requests.

For random removal the procedure is quite straight-
forward: remove q requests and choose them randomly.
It might not seem that this will quickly yield good solu-
tions, however it provides diversification which is car-
dinal to exploring a very large search space.

The next destroy mechanism is called worst removal.
For all requests it is calculated what the costs of the
request is. This is determined by subtracting the cost
of the solution without the request from the cost of the
solution with the request. This is ordered in an array
and through the parameter pworst the removal of re-
quests is randomised, to avoid the same requests being
removed more often than others. The pseudocode of
the algorithm can be found in Algorithm 2.

Algorithm 2: Worst Removal Heuristic
1 input: solution s ∈ {solutions}, q ∈ N, p ∈ R
2 while q > 0 do
3 create array L: all requests sorted by

descending c(i, s)
4 create number y: random number in interval

[0, 1)
5 determine request r : L[yp · |L|]
6 remove request r
7 q = q − 1

8 end
9 return sdes

Lastly, there is fast-mover removal. This is a novel
heuristic and is designed with e-grocery fulfilment oper-
ations in mind. This heuristic sorts the requests based
on the number of times it is requested and then chooses
a request of the top 60% at random. Again, this is to
diversify the search. This heuristic is created with the
thought in mind that requests that are often visited
have a high impact on steering the objective. Making
sure that these get removed and inserted at new loca-
tions will allow the algorithm to determine their best

locations. The algorithm is seen in Algorithm 3.
Algorithm 3: Fast-Mover Removal Heuristic

1 input: solution s ∈ {solutions}, q ∈ N
2 create array F: all requests sorted by visit

frequency
3 while q > 0 do
4 create number y: random number in interval

[0, 0.6 · |F |)
5 determine request r : F [y]
6 remove request r
7 q = q − 1

8 end
9 return sdes

The heuristic gets it name fast-mover removal from the
fact that certain requests, or SKUs, are so-called fast-
movers: SKUs that are often ordered and therefore
"move fast" through the FC. The choice is made to
use this characteristic of an SKU due to the Pareto
principle that also applies to SKUs. Analysis of the
orders showed that the 20% most ordered SKUs are
found in around 80% of the orders. Therefore, moving
them will have a big influence on the objective.

4.2.3 Repair Mechanisms

Next to destroy mechanisms there are repair mecha-
nisms. The repair mechanisms used in this research are
all parallel insertion heuristics, meaning that routes are
build at the same time, without having to recalculate
for each insertion. Again, three heuristics have been
used: (i) random insertion, (ii) cheapest insertion, and
(iii) swap insertion.

Random insertion is very similar to random removal.
The removed request is taken and inserted into the so-
lution at a new, random location.

Cheapest insertion is very similar to the destroy
heuristic of worst removal. The algorithm decides what
the costs are to insert a request at its best position, by
comparing it to the costs without the request. Then,
all requests are inserted at their minimum cost position
and the new solution is returned. The pseudocode is
seen in Algorithm 4.
Algorithm 4: Cheapest Insertion Heuristic

1 input: solution s ∈ {solutions}, q ∈ N, ir ∈ I
2 create array I: all removed requests i, sorted by

descending c(i, s) at their best new location
3 while q > 0 do
4 determine request r : I[q]
5 insert request r at best location
6 q = q − 1

7 end
8 check feasibility
9 return s′

Swap insertion is also a relatively simple insertion
heuristic. It swaps the locations of removed requests.
For example, if removed request a was at location x
and removed request b was at location y, the repaired
solution consists of request a at location y and request
b at location x. The algorithm can be found in Algo-
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rithm 5.
Algorithm 5: Swap Insertion Heuristic

1 input: solution s ∈ {solutions}, q ∈ N, ir ∈ I
2 for removed requests do
3 if previous location of request = x then
4 insert request at location x+ 1
5 end
6 else if previous location = |x| then
7 insert request at location 0
8 end
9 end

10 check feasibility
11 return s′

For each algorithm it holds that the feasibility of the
new solution needs to be checked. This is done by ex-
amining the total number of storage locations used and
the zone capacities. The truck constraint is already ad-
hered to by the way the cost function is constructed.
If a solution is not feasible, it gets (randomly) decon-
structed and rebuild until it is.

5 Computational Experiments
This section describes the computational experiments.
First, the test instances and their differences are laid
out. Next, the parameter tuning is discussed and the
final parameters used for the test instances are de-
scribed. For the computational experiments the mod-
els are implemented in Python and the MILP model
is solved through the commercial solver Gurobi, ver-
sion 9.5.1, in combination with Python version 3.10.
The models are run on a Dell Latitude 5411, with 32
GB of RAM and an Intel(R) Core(TM) i7 processor.
Running the experiments on this laptop did not always
yield even a feasible solution for larger instances within
the specified computational time. Therefore, a server
was used to increase computational power. The server
is a dual AMD EPYC 7551 server with 64 cores, 128
threads and 256 GB of RAM and was made available
by Delft University of Technology. The time limit that
is set for all experiments is 7200 seconds, or two hours.

5.1 Test Instances
Several instances were used to test the performance of
the models. The instances are chosen due to the diver-
sity on three fronts: diversity in terms of instance size,
i.e. number of orders, diversity in FCs, and diversity in
the type of day. The first front will affect the computa-
tional time needed for the models to solve the instance.
From this it can be gathered how the models are af-
fected by differing instance sizes. The next two fronts
should not lead to differing results and to test this hy-
pothesis the different instances are used. Especially the
type of day is important to watch, since routing, order
batching, and SKU storage assignment are things that
cannot be changed daily. Hence, ensuring that these
are near optimal regardless of the day of the week, is
cardinal. Differences between FCs may happen, how-

ever, standardised practices across FCs are preferred
from an operational point of view. The instances and
their characteristics can be found in Table 5. For all
instances the number of MSL is set to 50, in line with
operational feasibility.

The data is provided by the European e-grocery re-
tailer and the characteristics of two of their actual FCs
have been used as input parameters. The FCs have
been named and ordered randomly.

Table 5: Names, definitions and characteristics of the
different test instances.

Instance FC # of
orders Day # of

ols
fcA_50_s FC A 50 Sunday 683
fcB_50_s FC B 50 Sunday 512
fcA_100_m FC A 100 Monday 1035
fcB_100_m FC B 100 Monday 1149
fcA_400_w FC A 400 Wednesday 4106
fcB_400_w FC B 400 Wednesday 4162
fcA_600_t FC A 600 Thursday 6666
fcA_600_f FC A 600 Friday 6635
fcA_3000_s FC A 3000 Sunday 32493
fcB_3000_s FC B 3000 Sunday 34230

5.2 Parameter Tuning
Before results of the models can be shown and anal-
ysed, the correct parameters need to be set for the
ALNS model. An overview of all parameters is seen in
Table 6.

Table 6: Parameters and their definition.

Parameter Definition

pupdate
Update period for
weights and probabilities

ξ
Percentage of the neighbourhood
that is destroyed and repaired

w
Start temperature control parameter
for the simulated annealing

c
Cooling rate of the temperature
for the simulated annealing

σ1
Success of a heuristic for new
best found solution

σ2
Success of a heuristic for
improving solution

σ3
Success of a heuristic for
worsening solution but accepted

r
Reaction factor that controls the
adjustment of weights to changes

pworst
Parameter for randomisation of
worst removal heuristic

The choice has been made to only tune the param-
eters of ξ and w for small instances and to choose the
values used in Ropke and Pisinger (2006) for the re-
maining parameters. This is done to limit the time
spent on parameter tuning and to focus on the param-
eters that could influence the performance the most as
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observed during testing. For the two parameters that
will be tuned the same approach is used as the ap-
proach used by Žulj et al. (2018). A good parameter
setting that was identified during testing is set as the
initial parameter setting. Then, a single parameter is
changed, whilst the other remains fixed. Five runs are
performed for the test instances and the setting with
the best average result is chosen. Then, the same is
repeated for the next parameter with the previously
determined parameter fixed at its best setting.

First, the parameter tuning is done for ξ, whilst fix-
ing w at 0.05. The parameter ξ is changed between five
values and the results are shown in Table 7.

Table 7: Varying ξ for the test instances, results are the
rounded averages of five runs. Best result per instance is

in bold. w is set at 0.05.

Instance 0.05 0.1 0.2 0.3 0.4
fcA_50_s 878 805 829 793 793
fcB_50_s 798 779 760 760 760
fcA_100_m 1537 1624 1476 1512 1512
fcB_100_m 1368 1254 1254 1292 1254
fcA_400_w 6722 6697 6636 6612 6612
fcB_400_w 4142 4180 4104 4104 4142

Table 8: Varying w for the test instances, results are the
rounded averages of five runs. Best result per instance is

in bold. ξ is set at 0.3.

Instance 0 0.01 0.025 0.05
fcA_50_s 805 829 793 793
fcB_50_s 798 760 798 760
fcA_100_m 1475 1487 1559 1512
fcB_100_m 1216 1216 1277 1292
fcA_400_w 6649 6636 6600 6612
fcB_400_w 4123 4142 4104 4104

The trend for ξ is not very pronounced. Both the val-
ues of 0.2 and 0.3 seem good contenders. Since some
instances have a large number of SKUs, it is decided
to choose 0.3 for ξ, to keep the neighbourhood suffi-
ciently large. This value is set and the tuning for w is
continued in Table 8. Recall that w is the start temper-
ature control parameter. If this is set at 0.05 it entails
that an early solution that is 5% worse than the initial
solution in terms of the objective function will be ap-
proved with a probability of 50%. Changing this value
can change the time that is spent on worsening solu-
tions. For w four different values have been tested, one
of which is 0. Setting w to zero effectively means that
the simulated annealing approach is not used and that
solutions are only accepted if they have a positive effect
on the objective. From Table 8 it can be seen that the
trend for w is even less pronounced than for the pre-
vious parameter. However, on average the results are
better for higher values of w. Of the higher values 0.05
is chosen, because of how the objective is determined.
Since the objective is dependent on entire zones of the
pick circuit being skipped (or not), a solution that is
very close to the current best solution can have quite a
higher objective value. Because of this reason it makes
more sense to adopt a less strict simulated annealing
acceptance. With this, all parameters have been set

and the results can be found in Table 9. With this pa-
rameter setting for the ALNS model all test instances
are be run.

Table 9: Parameter values used for the ALNS model.

Parameter Value
pupdate 50

ξ 0.3
w 0.05
c 0.99975
σ1 33
σ2 9
σ3 13
r 0.1

pworst 3

6 Results
This section will show the results that were obtained
by running the computational test instances from the
previous section. First, the results of the MILP model
and ALNS model with different initial solutions are
depicted. Afterwards, the managerial insights that are
gathered from these results are discussed.

6.1 Computational Results
For all different instances, the MILP model is compared
to the ALNS model, that has the current SKU-to-zone
set up from the European e-grocery retailer as initial
solution. The results can be seen in Table 10.

Figure 4: Results that show to which zone an SKU is
assigned. In the example two SKUs have MSL, being olive

oil and bananas.

Apart from the computational results, it is interest-
ing to see the results of the SKU-to-zone assignment.
Part of these results are seen in Figure 4, with an
example of an SKU with MSL. From the results in
Table 10 it can be seen that the MILP is computa-
tionally efficient for small instances, yet can take what
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Table 10: Results of the computational experiments for the MILP model and ALNS model with current SKU-to-zone
assignment as initial solution. Best incumbent (B.I.), lower bound (L.B.), optimality gap (O.G.) and time to best

(T.T.B) are shown for the MILP model. For the ALNS model the best found solution (B.F.S), the computational time
(C.T.), the rounded average (Avg), and standard deviation (S.D.) of five different runs are given. Not applicable (N.A.)

is when no solution was obtained. *: instance run on the server of the Delft University of Technology for the MILP
model.

Instance MILP ALNS
B.I. [m] L.B. [m] T.T.B. [s] O.G. [%] B.F.S. [m] C.T. [s] Avg [m] S.D. [m]

fcA_50_s 610 610 50 0 793 164 793 0
fcB_50_s 570 570 17 0 760 158 760 0
fcA_100_m 1220 1220 343 0 1464 390 1512 80
fcB_100_m 950 950 1203 0 1140 459 1292 159
fcA_400_w 8296 3485 324 58 6588 877 6612 33
fcB_400_w 4180 3800 6153 9 3990 926 4104 170
fcA_600_t* 11163 5307 6181 52 9882 1463 10089 153
fcA_600_f* 10919 5307 6823 51 9455 2137 9686 175
fcA_3000_s* N.A. 50081 6459 50386 342
fcB_3000_s* N.A. 46930 5811 47082 159

is considered to be a long time to optimise for large
instances. This occurs because of the solution space
grows in size for large instances, i.e. there are more
solutions to investigate before the optimal one can be
chosen. Because of the computational complexity, the
optimal solution was not found for all instances within
the set time limit. The ALNS model is not necessarily
quicker than the MILP model when it comes to small
instances, however it is very close to the optimal objec-
tive. The performance regarding the objective value of
the ALNS is good. The computational time advantage
does come into play for bigger instances. For bigger
instances (>100 orders) the ALNS takes, on average,
14.8% less time to reach 12.5% better solutions. For
bigger instances the ALNS does become a bit more
volatile. This can be explained by the fact that there
are much more options for the model and the random-
ness of the algorithm has more influence.

How the objective value changes over time for the
MILP can be seen in Figure 5 for two small instances.
It is seen that the model converges quite quickly, yet
that there are many big "steps" in lowering the objec-
tive. This can be explained by the fact that the objec-
tive value is based on the travelled distance per pick
cart and a pick cart needs to traverse at least one zone.
Adding or removing one pick cart entails that at least
the entire length of one zone is added to or removed
from the objective function.

A comparison also can be made between the ALNS
models with different initial solutions. As mentioned,
there are two types of initial solutions for the ALNS
model: the SKU-to-zone assignment as currently used
by the European e-grocery retailer or the SKU-to-zone
assignment based on the correlation between SKUs.
The computational results for the ALNS with the lat-
ter initial solution can be seen in Table 11. It is seen
that the objective values are not necessarily better, yet,
the results are obtained quicker.

Figure 5: Objective value over time for the MILP for
fcA_50_s and fcB_50_s.

Table 11: Results of the computational experiments for
the ALNS model with correlated SKU-to-zone assignment

as initial solution. This table can be compared to the
right hand side of Table 10.

Instance B.F.S.
[m]

C.T.
[s]

fcA_50_s 610 136
fcB_50_s 760 119
fcA_100_m 1464 293
fcB_100_m 950 407
fcA_400_w 6588 623
fcB_400_w 3990 1020
fcA_600_t 9943 1198
fcA_600_f 9455 1843
fcA_3000_s 50081 4287
fcB_3000_s 47120 5311
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Figure 6: Sensitivity analysis of the number of MSL on
the travelled distance.

6.2 Managerial Insights

From a managerial perspective, the results are interest-
ing regarding the SKUs that have MSL. The outcome
of this is that the SKUs that have MSL in the best
found solutions are generally fast-mover SKUs. This
result was expected since they make up a significant
portion of the orders. It is also shown that the mod-
els are applicable to different FCs, by changing a few
input parameters. This entails that e-grocery retailers
that have multiple FCs can use the models across all
FCs and still maintain robust results.

To make a business case from these results they can
be compared to the actual travelled distance by order
pickers of the European e-grocery retailer for the same
set of orders. This comparison yields an average im-
provement of 18%. These distance savings, together
with an average pick speed of order pickers and their
hourly labour costs, can be converted to cost savings.
However, data for average pick speed and hourly costs
of an order picker is confidential and the actual cost
savings are therefore not shared.

When looking at this research from an operational
point of view, the models show that there is still a lot of
unexplored potential left regarding order picking, espe-
cially when using MSL. However, order picking is not
the only process that is happening throughout fulfil-
ment operations. It might be the case that gains that
are yielded in the order picking part are nullified or
severely lowered by disadvantages upstream of order
picking in the supply chain. These effects should be
quantified to draw solid conclusions on whether to in-
corporate MSL or not. One of the biggest upstream
disadvantages that can take place is in the receiving
and replenishment process. The receiving operation
consists of accepting the goods of the suppliers at the
docks and scanning them in order to move on to the
replenishment, the restoration of stock to a threshold
level. However, if there are MSL for the SKU, the de-
cision needs to be made on how to split the stock that
comes into the FC. It should be known which percent-
age of the stock needs to go where and how the stock

splitting will go, if it is at the dock or during the re-
plenishment rounds. For these problems, the choice is
between developing heuristics or using an exact model
based on the forecasted demand of the SKUs.

A small sensitivity analysis has been executed to
study the effect of the number of MSL on the reduc-
tion of travelled distance. For this, the number of MSL
have been varied from 0 to 50. The results are shown
in Figure 6.

It is seen increasing the number of SKUs that may
have MSL has a positive effect on the reduction of trav-
elled distance of order pickers. There are, however,
some "tipping point". These tipping points show that
further reduction of walking meters is only obtained
when the possibility for MSL is above that tipping
point. For operations it is important to know where
the tipping point is, such that good decisions can be
made on how many MSL to introduce. An FC does not
want to add more MSL when operational complexity
is increased because of this and no (further) reduction
of travelled distance is realised.

7 Conclusions
This paper presented an integral approach to the SAP,
OPRP, and OBP, whilst applying MSL for a select
number of SKUs. An exact MILP model was cre-
ated that could find a solution for instances up to
600 orders within acceptable time. Next to that, an
ALNS model was created to find solutions for larger in-
stances that are frequently occurring at e-grocery FCs
in significantly less computational time. The models
were tested on the problems for different instances and
achieved good results in an appropriate time.

When comparing the models, it can be seen that the
ALNS outperforms the MILP model in terms of time,
whilst finding near-optimal solutions. The results show
that travelled distance can be reduced by introducing
MSL and taking an integral approach to order picking
problems by, on average, 18%, with regards to current
operations of an European e-grocery retailer. This ul-
timately can lead to an increase in efficiency, which
could serve the e-grocery retailers that want to offer
more supply but are constrained by their order picking
capacity. The proposed SKUs that will have MSL are
the fast-moving SKUs, showing that their placing and
characteristics have such an impact on order picking
efficiency that they cannot be underestimated.

Regarding the models, methodological or algorith-
mic improvements to both are possible. For the MILP
model, there is the case of symmetry. Because the
objective value is dependent on the routes of the pick
carts, that can have more than 150 SKUs, changing the
storage location of one SKU has little to no effect on
the entire route of the pick cart. Therefore, many solu-
tions exist where SKUs are reshuffled without affecting
the objective value. For ALNS models, it holds that
the increasing the neighbourhood size can help with
this. For the MILP model, it could be beneficial to
introduce symmetry-braking constraints, for example
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defining index precedence constraints among different
SKU locations to limit equivalent combinations. Fur-
thermore, the performance in terms of computational
time of the ALNS is dependent on the initial solution.
The initial solution where correlated SKUs are placed
together in a zone is preferred over the initial solu-
tion where the current SKU-to-zone assignment of the
European e-grocery retailer is taken, that has been op-
timised for replenishment and fragility. Ensuring that
an initial solution is well-suited to the problem is there-
fore of importance to the performance of the ALNS.

Whilst these results show promise in regards to or-
der picking, it must be acknowledged that there may be
disadvantages to other parts of the fulfilment processes
because of this. Replenishment of the SKUs that have
MSL is much more difficult than SKUs that have only
one storage location. Adjustment of the WMS should
be considered for this. Also, because of several assump-
tions of the model such that there is always available
stock, the reduction of travelled distance may be higher
in theory than they would be in reality. It is important
to test the models in practice at an e-grocery retailer
that has similar characteristics as the one studied in
this research, and retrieve empirical results that can
be cross-referenced with the theoretical ones. In this
way, the true impact of the propositions of the model
can be measured.

For future research it would be very interesting to
assess the impact of MSL on congestion of the order
pickers. The hypothesis is that MSL will split the de-
mand of an SKU over multiple locations and therefore
less order pickers need to be at the same spot at the
same time to collect that specific SKU. This warrants
less congestion at certain locations. Although this hy-
pothesis cannot be validated with the current models,
it is very important to investigate when looking at the
productivity of an FC. Further interests lies in seeing
if adjusting the bin packing problem of SKUs to or-
ders would increase the reduction of travelled distance.
Since the models worked with a fixed set of orders, ad-
justing the order content (i.e. which SKUs are in the
order) to make each order more suitable for the de-
termined SKU-to-zone allocation could yield even bet-
ter results. Moreover, if there would be more freedom
in terms of splitting orders over multiple pick carts,
further potential might be gained. The problem size
of the OBP does grow because of this, however one
can use the similarities between (parts of) orders to
their advantage. Furthermore, developing a matheuris-
tic combination of the MILP and ALNS model would
be of interest. A matheuristic approach is one that
has both an exact part and a (meta-)heuristic part. If
the ALNS would be performed first up to a certain,
acceptable, time limit, this could be used as an input
for the MILP model. This could potentially reduce the
computational time needed for the MILP model, whilst
an optimal solution is reached. Lastly, seeing how the
length of each zone influences the overall performance
can be of interest. If zone length was dependent on
the number of SKUs that were assigned to it, the mod-
els would become much more dynamic and this would

give more managerial insights into how the FC layout
in terms of zones should look like.
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1
Introduction

The rise of the online markets has grown extensively since the start of the new millennium, together
with the rise of the internet and the availability of personal computers. Nowadays, it is possible to order
almost everything and anything online, from electronics to furniture to groceries. Currently, the market
of online groceries, or e-groceries, is still relatively small. Only around 8% of all the grocery shopping
in The Netherlands is done online [1]. Of the supermarkets that offer online services, newcomer Picnic
has a market share of around 20% [2]. The competition between supermarkets for their online market
share is fierce, with also big retailers like Albert Heijn and Jumbo competing. The reason for a fierce
competition is partly due to the big increase of the market as well due to the continuous growth. In
2020 the market grew with 65% in comparison to the previous year, to a total of 2.5 billion euros in
The Netherlands alone [2]. With this growth in online ordering, there is also a rise in the number of
fulfilment centres (FCs) or warehouses that need to accommodate for the offered services. FCs are dif-
ferent from warehouses, of which the main function solely is storing products. FCs handle all the stages
of the order fulfilment, such as, but not limited to, storage, order picking and dispatching [3]. These
operational processes in the FCs require time as well as funds. Therefore, often the main objective for
management is optimising the FC processes, to decrease both of these objectives simultaneously.

Designing an FC and its layout is considered to be a very complex task, that can be very specific for
each different FC [4]. This becomes more difficult as well as more important when the number of prod-
ucts in the FC grows. There are many possibilities and strategies on where to place which product
and how much space in the FC is dedicated to certain operational activities. When looking at the case
of an e-grocery FC, the number of products are usually very high, thus making it a complex problem.
Out of all the operational processes taking place in the FC, order picking is the most labour-intensive
operation. Order picking is the process of retrieving products from storage in response to a specific
customer request [5]. Routing the order pickers from product to product is a form of the travelling
salesman problem, which has been heavily studied [6]. The retrieval of products can either be done
manually or automatically, with people or through machines. Another part of the design of a FC is the
storage assignment, or the product placement within the FC. While this is not an operational process
itself, the efficiency of the operational process of order picking is dependent on it. The combination of
product placement within the FC (storage assignment) and the routing from product to product (order
picking) are intertwined and an important factor for the operational efficiency.

Because of the big impact that both these problems, the storage assignment problem and the order-
picker routing problem, have, improving them can have significant impact on the performance and
productivity of an FC. In many FCs, the storage assignment is based on certain storage policies and
rules, without relying on a specific algorithm [7]. Especially, having duplicate, or multiple, storage
locations for the same product has not been implemented or researched. Therefore, the objective of
the research is:

Improving the storage location assignment by using multiple storage locations in an e-grocery
fulfilment centre, such that the routing of order pickers can be done in the most efficient way in terms

of time.
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The first model that will be developed will be an exact model. This entails that the model will search
for the absolute best solution. There are different kind of exact formulations to develop a model, such
as mixed integer linear programming (MILP), binary programming (BP) and non-linear programming
(NLP) formulations. The solution techniques that can be used for these formulations are for instance
column generation or branch & bound algorithms [7]. In this research the focus is on a MILP formula-
tion, where the objective and constraints are all linear equations. However, some variables are integers,
whilst others are non-integers, hence the mixed integer name. The different solution techniques that
exist for a MILP model will be discussed and compared, to decide which technique is the most effective
in solving the model. Since the problem size is very large, meta-heuristics are also considered. Meta-
heuristics do not necessarily give the absolute best solution, yet can come very close to the optimal
solution within a limited amount of time because of some simplifications [8]. Since there are many types
of meta-heuristics with different advantages and disadvantages, these are analysed and discussed to
chose the best approach for the problem at hand.

The goal of this project and this report is to give an overview of the currently available literature on both
the storage assignment problem and the order picking problem and their respective solution techniques.
This is done in order to provide more in-depth analysis on the research topic before answering the final
research question. In this report, the literature research is structured as follows. First, the research
outline is given in Chapter 2. This mentions the research question and the structure of the full research
plan. Afterwards, how the Picnic process of order picking works is explained in detail in Chapter 3. The
existing literature on the online market of groceries is discussed in Chapter 4. Next, the most relevant
exact solution techniques that can be used for the problem are laid out in Chapter 5. In Chapter 6 the
literature on meta-heuristics used for similar problems is mentioned in detail.



2
Research Outline

This chapter gives the outline of the research on multiple storage locations in an e-grocery FC. Sec-
tion 2.1 gives the full definition of the research problem. Afterwards, the objective of the research is
given in Section 2.2. At the end, the main research question and the sub questions can be found in
Section 2.3

2.1. Research Problem
The largest operation in FCs is the operation of order picking [5]. When order picking, order pickers
walk from storage location to storage location, to retrieve all the number of items of products that make
up multiple orders. The storage locations are combined in the picking circuit, which looks like your av-
erage grocery store: different aisles parallel to each other where shelves hold all the items. For Picnic,
an online grocery retailer, the process of order picking and storage location assignment currently is a
sequential process. First, items are allocated to storage locations and next the items are picked to fulfil
the orders coming in. Each item only has one storage location in the picking circuit. Order pickers walk
past every storage location to ensure that they are able to pick all the items needed. Storage locations
of items are changing, due to seasonal trends (Easter eggs are only available from February to April for
instance), demand differentiation and because of practical reasons. Practical reasons would be that
the heavy items are placed first in the picking circuit, before lighter or more fragile items. This ensures
that the heavy or robust items are first loaded into the client order and that they will not crush more
fragile items, and it prevents the order picker from having to readjust the different items. Next to this
fragility constraint, contaminating items such as cleaning products are often kept separate from fresh
items.

The fact that all order pickers need to walk through the full pick circuit is, however, very inefficient. They
are walking past every item, even though they only have to pick or collect a very small amount of items.
If order pickers could skip part of the order picking circuit, their walking meters would be significantly
reduced and subsequently the time spent per pick round would be reduced. This of course reduces
the costs, if the same amount of orders can be picked in less amount of time. Yet, it also gives room
for productivity increase. In the same amount of time, an order picker can then pick more orders than
before. Skipping part of the circuit can only be done if items are strategically placed throughout the
picking circuit and the routing is adjusted accordingly. This problem is called the storage assignment
problem (SAP). This research aims to solve the SAP, to be able to have more efficient routing in the
FC. This is done by using multiple storage locations for the same item.

Using more than one storage location has been studied by Jiang et al. (2021) [9], where they make
use of duplicate storage locations to minimise walking distance. However, in their studies, a storage
location is considered to be a location for only one item, and it is only possible to have duplicate stor-
age locations. Moreover, the routing that is considered in their paper is unconstrained, whilst there
are often routing rules in FCs due to space restrictions as well as certain logic for the order pickers
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to follow. The research of this report is focused on storage locations that hold multiple items (of the
same product), as well as having the possibility to use multiple storage locations for one item, instead
of only duplication. This gives more freedom and possibilities, but also increases complexity. Yet, the
routing is more constrained than in the previous research as well as the sequence of the picking of
items due to the fragility and contamination as explained before. It is expected that optimising the SAP
by using multiple storage locations and adjusting the routing of the order pickers accordingly, will signifi-
cantly increase the efficiency of order picking activities, hence contributing to a much more efficient FC.

2.2. Research Objective
In the previous section the problem of the research was stated, and the explanation of why the problem
currently exists. Having this in mind, the objective of the research is, as mentioned in Chapter 1, to im-
prove storage location assignment by using multiple storage locations in an e-grocery fulfilment centre,
such that the routing of order pickers can be done in themost efficient way in terms of time. To reach this
objective, likely an exact model will be developed, which will as a benchmark for a meta-heuristic model
to include more realistic scenarios. Assigning storage locations can be done in multiple ways, such as
class-based storage, random storage or dedicated storage [7]. At Picnic previously class-based stor-
age was used along with manual practical changes to the storage assignment. With around 7,000
different stock keeping units (SKUs) in the FCs, this will never yield an optimal solution. Hence, the
goal is to develop a model that can provide an optimal solution. The model will be tested with historic
data from Picnic on order picking activities and customer orders. With this data, a benchmark solution
can be established, to later evaluate the model performance by comparison with the meta-heuristic
model.

2.3. Research Question
The main research question has been defined as follows:

How can the time spent on order picking rounds be improved with regards to current operations by
using multiple storage locations and optimal routing in an e-grocery fulfilment centre?

The usage of multiple storage locations to achieve more efficient routing has not been adapted in an
e-grocery FC before, hence the research question is focused on this predicament. To answer the
main research question, several sub-questions have been posed as well. The answers to these sub-
questions will provide the answer to the main research question. The sub-questions can be found
below.

1. Which constraints need to be taken into account when assigning new storage locations
and adjusting existing routing?
Within an e-grocery FC, especially within existing ones, there are certain constraints that need
to be accounted for in order for the outcome of the model to be feasible and realistic. These
constraints need to be determined in order to account for them. Constraints come into play when
discussing items, as well as when discussing locations. Certain locations can only house pallet
items for instance and certain items are considered fragile. Also, for the routing there are a lot of
safety constraints and operational constraints which need to be determined.

2. Which items need to be multiplied in which zones?
From an in-depth potential analysis it is expected that the items that need to be multiplied can be
determined. It is not possible to duplicate or multiply all items, since there is a space constraint
in terms of the building that houses the FC. Determining where these items need to be placed,
before or after cut-off points, is the next step in reaching the desired efficiency. On which decision
variables the selection is made needs to be determined and also correlation between items needs
to be considered.
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3. What other parts of the fulfilment operations influence the efficiency and how can they be
adapted accordingly?
Other parts of fulfilment operations are for instance the batching of orders. Orders are batched
together to also account for more efficient routing. The batching of orders can influence the order
picking operation and this needs to be quantified. Once that is done, these operations can be
altered to better fit the order picking operation and its turn also increase the overall efficiency.
Also, replenishment of multiple storage location need to be considered, since an order picker will
need to make more decisions during order picking, or they need to be decided for the order picker.

4. How can congestion in the order picking process be avoided?
Having multiple order pickers working together in the same pick circuit can cause congestion.
Congestion is disastrous for efficiency and therefore must be avoided. Having a certain storage
strategy and deciding when an order picker picks an item from either one or the other location
could benefit the flow of order pickers and therefore must be investigated and analysed within the
model.

2.4. Research Planning
In total, the project consists of four phases. These phases can be found below and are visualised in
Figure 2.1. A more in-depth view of all different phases and exact time planning can be found in the
Gantt-chart in Appendix A, Figure A.1.

1. Phase 1
Phase 1 consists of a literature study and creating a research plan. The outcome is a literature
report as well as a report with a research plan. This phase is called the literature phase.

2. Phase 2
This phase consists of two parts, themodel preparation and themodel development, and is named
the initial phase. This part focuses on sub-questions 1 and 2 and starts with a kick-off meeting
with the thesis committee. The initial phase ends with a midterm meeting, halfway during the
thesis. The performance thus far will be evaluated and feedback is given, to be taken care of in
the subsequent phase.

3. Phase 3
Phase 3 focuses on sub-questions 3 and 4 and handles the model validation, results and conclu-
sion. It is the final phase. This phase starts after the midterm meeting and ends with a green light
meeting. This meeting is the final meeting before the graduation and gives room to present final
results. Again, feedback is given to incorporate in the final version.

4. Phase 4
The last phase, phase 4 or graduation phase, handles the last feedback and improvements that
needs to be made before the graduation day. There are no new developments of the model in
this phase, only handling of previous matters.

Figure 2.1: Thesis project planning.



3
The Picnic Supply Chain

This research is in collaboration with Picnic, a Dutch online grocery retailer with fierce competition, like
mentioned in Chapter 1. Before the research discusses on different solution techniques, the Picnic
supply chain will be explained, along with all the processes that take place in an FC of Picnic. First,
the general and full overview Picnic supply chain will be given in Section 3.1. Afterwards, a deep dive
into the technical systems and their components is given in Section 3.2. Lastly, in order to be able to
measure performance, the key performance indicators (KPIs) of the Picnic supply chain are laid out
and elaborated in Section 3.3.

3.1. Overview Supply Chain
Picnic has a relatively uncluttered supply chain and calls itself the modern milkman. The Picnic supply
chain is unique in The Netherlands since it is specifically designed for e-groceries, unlike other supply
chains for grocery stores which need to combine online and offline sales. Picnic does not have any
physical stores and customers can only order groceries through an online application on their mobile
devices. The supply chain consists of three parts:

1. Inbound process
2. Outbound process
3. Last-mile delivery

Both the inbound and outbound process take place at the FCs [10]. From the FC the groceries move to
the hub via truck transport. The last mile delivery happens between the hubs and the customers and the
transport of this phase is handled by electric Picnic vehicles (EPVs). An overview of the supply chain
can be seen in Figure 3.1. Which activities belong to the inbound process and which to the outbound
process is displayed in Figure 3.2. The inbound process starts with receiving: receiving items from the
suppliers or distribution centres (DCs) at the docks. The suppliers are also pictured in Figure 3.1. Next,
the put away process starts, which is the process of putting the received goods away at their storage
locations or buffer locations (reserve locations). Replenishing consists of retrieving the items from their
buffer location and storing them at their order pick location. From this location, the items are directly
picked by order pickers, which is not the case for buffer locations. However, for Picnic it is often the
case that put away and replenishment are the same process, because products do not always move
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Figure 3.1: An overview of the Picnic supply chain. Figure 3.2: Inbound and outbound processes.

to a buffer location but directly to their order pick location. Afterwards, the outbound process begins.
The main part of the outbound process is order picking, the collecting of items to fulfil customer orders.
Once the orders are collected, they are loaded into dispatch frames which is called the dispatching
frame loading. The dispatch frames are loaded into trucks, after which shipping to the hubs can take
place.

During the processes within the FC there are several pieces of equipment which are used by order
pickers. Some of these can be seen in Figure 3.3. These types of equipment are explained below:

• Tote: a crate filled with groceries, which is used for storing the ordered products after they are
picked by the order picker. In one tote there are three different compartments, which all house
one plastic bag in which the groceries are placed. Red totes are used for items in the ambient
section (room-temperature items) and grey totes are used for items in the chilled section (fridge
and freezer items).

• Pick cart: a motorised cart, which holds 21 totes. The order pickers steer these carts throughout
the pick circuit.

• Dispatch frame: an aluminium frame that stores either 24 or 18 totes (depending on its height),
which is used for the truck and EPV transport.

• Roll containers (RCs): high containers that are used to transport items in bulk from one place
to another, such as from their buffer location to their order pick location.

• Scanner: an electric scanning device that tells the order picker which items to pick from which
locations. The scanner is controlled by the Warehouse Management System (WMS).

(a) A tote with the three compartments (b) A motorised pick cart with 21 totes (c) Two different size dispatch frames

Figure 3.3: Equipment used by order pickers for the FC processes.

Next to the equipment used by order pickers, there is also equipment used to store all the groceries, to
be seen in Figure 3.4. Within ambient and chilled there are three different kinds of storage equipment
pieces:
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• Shelving units: the most common storage equipment, consisting of shelves of different height
and width, due to dividers that can be picked up and moved to a different place. Items are placed
and stacked at the shelves and any boxes that group items together have already been removed.

• Flow racks: aluminium racks with wheels can house crates instead of single items. Especially
suitable for fresh products such as fruits and vegetables, since they are often already delivered
in these crates by the suppliers. Once an empty crate is removed at the front, the crate behind it
automatically flows or glides to the front again.

• Pallets: a pallet consisting of a wooden or plastic base, designed to be easily transported with
the help of (fork)lifts. They often house drinks or bulkier items and are stored without having the
boxes or plastic around them removed.

(a) Shelving units (b) Flow racks (c) Pallets

Figure 3.4: Equipment used to store products within the FC.

The focus of this research is on the order picking process by adjusting storage locations. This ad-
justment has an effect on the receiving, put away and replenishment processes (inbound processes),
however the changes needed on the inbound side are outside the scope of the research. Therefore, ef-
ficiency gains and results are also only considered for the outbound process of order picking. Whether
the efficiency gain on the side of order picking outweighs the efficiency loss in the inbound processes
(due to extra handling tasks), is interesting to look at from an operational and business point of view,
but will not be discussed.

3.2. Technical Systems
Within Picnic there are several technical systems that have been developed in-house. Since Picnic
likes to brand itself as a technical company, they store a lot of data and use algorithms to guide their
processes. For the in- and outbound processes there are two very important systems: the Warehouse
Management System (WMS) and the Master Planning Process (MPP). The MPP starts with planning
after an order is placed, whilst theWMS starts being active last-minute before the order picking process.
These systems and the algorithms that are used to build the systems need to be adjusted in order to
account for having multiple storage locations and making the optimal use of them. Therefore, the
systems will be explained, starting with the MPP in Section 3.2.1 and WMS in Section 3.2.2.

3.2.1. Master Planning Process
TheMPP ismade up of five sub-problems in total, which all have different objectives, such asminimising
time or costs for instance. The processes are outlined below:

1. Tote allocation service: This service determines which items are placed into which totes. A tote
has both a volume and a weight limit, which needs to be considered. The service is aimed at
minimising the total number of totes and minimising the number of zones a tote travels through
in the picking circuit.

2. Dispatch frame allocation: This algorithm ensures that a tote gets a place in a dispatch frame.
The dispatch frames are filled with totes in the FC and two dispatch frames (ambient and chilled)
fill up one EPV. This allocation needs to ensure that totes that are delivered by the same EPV
end up in the same dispatch frame as well.
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3. Drop duration calculation: The drop duration calculates how long a drop or a delivery will take.
This takes into account the house type, for instance if the front door is at the ground floor or on
the fifth floor, as well as the weight of the delivery and the number of totes.

4. Trip planning: The trip planning ensures that all deliveries are assigned to a certain trip with an
EPV, while minimising the total number of EPVs and the time that is spent driving. It also assigns
the available Runners (the employees who handle the deliveries) to the trips, taking availability
break time and experience into account.

5. Estimated time of arrival calculation: The estimated time of arrival is calculated once all trips
have been planned, taking the routing into consideration and the time slots that the customers
have chosen to deliver their groceries.

For the research, problems two up to and including five are considered fixed and there are no changes
needed. These problems are handled by the Distribution team of Picnic and do not influence the fulfil-
ment processes. However, the tote allocation system is important when considering multiple storage
locations, since this could give the problem more flexibility and hence yield higher results in terms of
efficiency.

3.2.2. Warehouse Management System
The WMS, just like the MPP, consists of several sub-problems. The WMS handles all the processes
that are taken care of in the FC, from small to big. Examples include the replenishing of items, receiv-
ing, creating buffers, keeping stock, guiding the order pickers, amongst others. Below, only the most
important and biggest sub-problems are discussed.

1. Slotting: The slotting algorithm determines at which location an SKU is placed and how much
space it gets. This is determined by certain picking categories and dividing those over the aisles
of the pick circuit.

2. Order picking: The order picking service does not calculate anything itself, instead relays the
information from previous tasks and algorithms to the order picker, such that the order pickers
knows which items to grab and place into their respective totes.

3. Tote to pick cart: This algorithm decides which tote is placed on which pick cart. Having totes
with similar items together on one pick cart reduces the amount of stops by the order pickers.
Also, the number of zones the pick cart in its totality needs to traverse through is minimised.

4. Tote position on pick cart: This algorithm decides the divide between the 18 or 21 positions
that are on a pick cart for all totes. The totes that have the most items are placed in the ’golden
zone’, such that the order pickers limit the number of times they need to bend down. Also, totes
that share more similar items are placed close together.

For the research of the project at hand, sub-problems one to three are of importance. The slotting
algorithm needs to be adjusted in order for it to be able to handle multiple storage locations for the
same SKU. Order picking will be changed, since there are new routing possibilities of which the order
pickers need to be informed about. Also, the tote to pick cart allocation will be altered, in order to have
the totes with similar zones together on one pick cart.

3.3. Key Performance Indicators
For warehousing in general, as well as for Picnic, there is a big scope of KPIs. Within Picnic these KPIs
are used to measure performance for each FC, hub or DC and to be able to compare performances. In
order to have a scientifically significant result, it is important to establish which KPIs are of importance
to the problem at hand and how they are calculated. Since this research is focused on optimising
the performance of the order picking process, only the KPIs that influence this process are discussed.
An overview of all the different KPIs can be found in Table 3.1. Below these KPIs are discussed and
some further explanation about them is given. These KPIs are also used throughout literature, which
is referenced accordingly. There are many more KPIs that are used to measure performance, yet the
ones mentioned are the ones of importance to the research, since they all use a measure of time.
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Table 3.1: Key performance indicators of significance to the order picking process.

KPI Abbreviation Unit
Seconds per item SPI Seconds
Units per hour UPH Units/hour
Picking productivity PP Order lines/hour

Seconds per item (SPI): This KPI gives the average handling time per item and is used to measure
productivity. The time span starts when an item is scanned and ends when the next item is scanned.

Units per hour (UPH): UPH is also a productivity measure, and UPH can be expressed in SPI and
vice versa. It gives the total number of units (items) that have been handled in one hour. The average
UPH lies somewhere between 80 and 120 points for FCs that are at full capacity.

Picking productivity (PP): The picking productivity is measured in the number of order lines per hour.
This differs from the UPH, since UPH takes single items into account, whilst one order line can contain
several items. Hence, the PP tends to be lower than the UPH.



4
Literature on E-Groceries

E-groceries have been a fairly new topic in literature, since it has only existed for the last twenty to
thirty years, along with the rise of the internet [11]. However, during the most recent years online gro-
cery shopping has been flourishing, and the interest from the people has been increasing, with surveys
showing more than half of the people participating are willing to order groceries online in the future
[12]. With the increase in e-grocery shopping, the literature has also been growing, which will be dis-
cussed in this chapter. First, Section 4.1 mentions the definition of e-groceries and what falls under this
umbrella term. Next, Section 4.2 describes the common problems that researchers encounter when
investigating e-groceries and what they entail.

4.1. E-Groceries in General
The concept of e-groceries has been adapted in many countries worldwide, especially in North-America,
Asia-Pacific and Europe [13]. There are many terms that refer to the same thing as e-groceries, such
as e-retail, e-commerce grocery shopping, online retailing or online grocery shopping, amongst others.
In this report, the term e-groceries is used throughout, and it is defined as ”the sale of grocery goods via
the internet or other online channels, for personal or household use by consumers” [14]. Hence, this is
a business-to-consumer (B2C) concept. Any groceries that are sold to businesses online (B2B), are not
included in the definition of the term e-groceries. The ’other online channels’ that are mentioned in the
definition include mobile applications, which is the use case for Picnic as well. Note that the term only
includes the sale of grocery goods, meaning that whether the goods are delivered to the consumers’
house or are being picked-up (click-and-collect) does not matter. This definition is broader than the one
set by Kolesar and Galbraith [15], where it is mentioned that e-groceries need to check three boxes:
(i) having an online product search function, which entails detailed information on all the products; (ii)
having an online purchase function; and (iii) the capability to deliver products to distribute the products
to the consumers. Hence, the third condition is not necessary for the definition of e-groceries as laid
out in this report.

Table 4.1: Advantages and disadvantages for e-grocery retailers compared to traditional grocery retailers.

Advantages Disadvantages
Unlimited trading hours Bigger workload
Faster transactions More logistic processes
Shortened product cycles Lower margins
Enhanced customer service

There are several advantages and disadvantages to e-groceries compared to traditional or regular
grocery shopping, both on the retailer and the consumer side. Some of these advantages and disad-
vantages hold for online retailing in general, whilst some are only relevant for the e-grocery market.
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The most important advantages and disadvantages for the retailer can be found in Table 4.1, whereas
the same from the consumer perspective are found in Table 4.2.

Whilst there is the possibility to process more sales for e-groceries due to unlimited trading hours [16],
this brings a bigger workload for the retailer. Not only because of the bigger volume that is possible,
also because one sale for a traditional retailer requires less work than one sale for an e-grocery retailer.
This is because the products are packed by the company instead of the consumer and they often need
to be delivered as well. These extra processes require more logistic operations in the supply chain
and therefore can become more complicated quite quickly [17]. However, since there is much more
tracking of the processes used to fulfil the customer order, the customer service is often found to be
better [18].

Table 4.2: Advantages and disadvantages for e-grocery consumers compared to traditional grocery consumers.

Advantages Disadvantages
Convenience No immediate delivery
Time savings Delivery costs
Home delivery Lack of control for perishable goods
Economic value Inadequate or no substitutions for out-of-stock items

The main advantage that consumers mention is the convenience that e-groceries bring [13]. A con-
sumer does not have to travel to the store, spend time walking around and checking whether items are
in stock or not. Everything is handled by the e-grocer. However, it is needed to plan in advance, since
a lot of e-groceries have a minimum order amount such that you cannot order a single or a few items.
Besides, it cannot be immediately delivered [19]. For Picnic, that is the reason why families are their
target audience, since these usually plan ahead and have less time due to balancing work and family
life [20]. Even so, the e-grocery market continues to grow, which indicates that for a lot of consumers
the benefits outweigh the drawbacks [21].

There have been a number of literature studies on e-groceries and operational processes within these
warehouses, such as Martín et al. (2019), Gong et al. (2011), Gu et al. (2010), De Koster et al. (2007),
Cormier et al. (1992), amongst others [22] [23] [24] [5] [25]. Martín et al. describe the different research
topics that there are in e-groceries and the current trends via their literature review. This review shows
that the total number of papers or different documents on the topic have grown significantly since 1992,
with the most popular topics being inventory management, last-mile delivery, return management and
also the (beneficial) environmental effects of e-groceries. However, gaps still exist predominantly in
the section of consumer behaviour and experimental design [22].

4.2. Common Problems in E-Groceries
There are quite some problems within the e-groceries research domain that are popular, or have been
researched more often. However, the researchers have used a different approach to the same problem,
or the general problem is the samewhilst there are some differences in constraints. Themost prominent
problems that are found in the literature are mentioned below in random order and will be discussed in
the subsections afterwards. This research focuses mainly on the storage assignment problem (SAP)
and the order picker routing (OPR), however it cannot be completely separated from the other problems.
It holds that researchers often look into a combination of the mentioned problems, in order to increase
positive effects and tackle multiple things at once, and since the problems can be connected throughout
the supply chain.

1. Storage Assignment Problem (SAP)
2. Last-Mile Delivery Problem (LMDP)
3. Order Picker Routing (OPR)
4. Order Batching Problem (OBP)
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4.2.1. Storage Assignment Problem (SAP)
The SAP is a problem that occurs not only in the e-grocerymarket, but also in any other e-retailer market.
However, the difference is that for e-groceries the number of storage locations is often bigger, items
are much more volatile in terms of popularity and there is a high correlation between certain items. The
definition of the SAP as set by Reyes et al. (2018) is: ”the allocation of products into a storage space
and optimisation of the material handling costs or storage space utilisation” [7]. It is classified as an
NP-hard problem, because of the large number of products and the different FC storage characteristics
[26]. NP-hard stands for non-deterministic polynomial-time hard and is called as such if every problem
in NP reduces to it [27]. It holds for these problems that there are no polynomial-time algorithms yet
discovered that are capable of solving them, since the solution space is sized exponentially [28].

There are several approaches to the SAP, which can be a mathematical approach or not. The solution
methods most often found in literature include exact methods, storage policies and rules, heuristics,
meta-heuristics and simulation. For exact formulations, the most often used approach is through a
MILP formulation, of which the model developed by Le-Duc et al. (2005) is an example [29]. Their goal
is to minimise the travel distance of a pick round by solving the SAP, whilst the problem is constrained
by five constraints in total. The first is about the length of the aisle that cannot be exceeded. The
second is about the storage space for each class (group of items) that cannot be exceeded. The third
set of constraints is about the relationship between the probability of an item being placed in a certain
aisle and the length of the aisle. The fourth constraint is focused on the layout of the picking circuit,
ensuring that it remains symmetrical since they are using a parallel aisle FC, that has a cross-aisle
as well. Lastly, the fifth constraint is to ensure that the decision variables of the length of an aisle is
non-negative. It can be seen that this is a MILP, since linear functions are used. Even so, the decision
variables are not constrained to be integers. Solving such a model can be done through programming
or commercial solvers, such as Gurobi or CPLEX [30] [31]. There is a certain linear objective to adhere
to that either needs to maximised or minimised, however the constraints ensure that a solution is only
possible if it is within the feasible space.

Another way to solve a problem that is formulated as a MILP is through heuristics or meta-heuristics.
Heuristics and meta-heuristics might seem very similar, and they do share some similarities. Instead
of searching for an exact solution, the solution that these methods offer is an approximation of the
exact solution [32]. The best heuristics or meta-heuristics will give an answer to the problem that is as
close to the exact solution as possible. However, there is one big difference between regular heuristics
and meta-heuristics. Heuristics are problem specific, whilst the same meta-heuristic can be applied
to multiple problems [33]. An example of a heuristic that was developed is in a paper by Battini et al.
(2015), where they offer a decision-making process for both the manual picker-to-parts system and
the storage assignment [34]. They have developed a heuristic titled the storage assignment and travel
distance estimation (SA&TDE) joint method. This heuristic can be used at different ’levels’ in the FC,
such as on area (multiple aisles) level or on aisle level. A flowchart of how this heuristic work is shown
in Figure 4.1, along with the corresponding mathematical model.
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Figure 4.1: SA&TDE joint procedure with multinomial probability distribution flowchart [34].

Often used meta-heuristics include tabu search and genetic algorithms [7]. One example of a tabu
search is one by Chen et al. (2010), in which they use this meta-heuristic to tackle the relocation of
items, which means moving an item from one storage location to another storage location [35]. A tabu
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search begins with an initial solution and iterates from this solution to another until a certain termination
criterion is met. It searches within the neighbourhood of the current solution and each iteration or
operation is called a move. However, besides this, the algorithm also has a short- and long-term
memory in which the tabus are stored, to avoid visiting the same solution twice. A tabu is a prohibited
move [36]. This affects the computational time that is needed to solve the problem, since the same
solution will not be visited over and over again. More information about tabu searches is given in
Section 6.1. The tabu search algorithm employed by Chen et al. is summarised as follows:

Step 1: Initialise the problem through an initial solution and an empty tabu list.
Step 2: Apply a neighbourhood search strategy, determine the set of swap operations and select the

best non-tabu move. With this a new neighbourhood is determined and a new tabu list, which
serves as the starting solution for the next iteration.

Step 3: If the relocation time is smaller than the previous relocation time, update the solution, reset the
iteration counter for improved solution and repeat from step 2.

Step 4: Terminate the algorithm if there is no improvement of the best solution after a set number of
iterations, or if the total number of iteration reaches a maximum, predetermined value.

Approaches to the SAP that do not involve mathematics are storage policies and rules. An example of
storage policies and rules is the class-based storage, as used by Fontana and Cavalcante (2014) [37].
Other policies and rules include random-based storage, dedicated storage or closest-open location,
amongst others [7]. Fontana and Cavalcante use class-based storage to solve the SAP, meaning that
all items that are housed in the FC are divided into classes and each class has a designated storage
area. Which storage area a class is assigned to can be determined by some characteristics that the
class might share. For example, the cube-per-order index (COI) can be defined per class of products,
after which the designated space for each class is based on their COI. Belkaid et al. (2010) also use
class-based storage, based on the total demand of an item, for which they have used an ABC-analysis
[38]. Dependent on what the characteristics of the FC are and what is needed from an operational point
of view, storage policies and rules can be a very efficient way to tackle the SAP.

Lastly, simulations can be used to tackle the SAP. Simulations can be present in many forms, but
one that was used for the SAP is agent-based simulation, for example by Elbert and Müller (2017)
[39]. Here, the agent visits every location from their order in the order that is determined by the rout-
ing policy, with the pick cart as means of transportation. The time of this pick round is subsequently
calculated, and 1000 different tours were simulated using different routing and different storage. From
these simulations, comparisons and conclusions based on the time as set by the simulation were drawn,
showing that turn manoeuvres can heavily influence the operating strategy regarding routing, especially
in smaller FCs. Hence, assigning storage as to minimise turns might have a beneficial effect. Simu-
lation is often used to compare different types of policies or storage methods and draw conclusions
based on the time spent on completing orders of customers.

4.2.2. Last-Mile Delivery Problem (LMDP)
Within e-groceries that offer home delivery services, the LMDP is a problem that has been studied very
often. It is a classic case of a vehicle routing problem (VRP) and is considered to be very important to
the e-grocery business, since it is the only direct interaction between the company and the consumer
[40]. The LMDP handles the problem of given a depot, or hub, a set of vehicles, or EPVs, and their
characteristics, and a set of customers, what is the most efficient routing to deliver all orders at the
corresponding customers? This problem is related to the other operational problems, like the order
batching problem discussed in Section 4.2.4, because it determines which orders need to be grouped
together for delivery. Next to that, it determines at what time orders will be picked and hence which
orders have higher priority in the fulfilment operations due to the delivery window the retailing company
needs to adhere to.

According to a literature study done by Mangiaracina et al. (2019), there are three different per-
spectives to approach the LMDP found in literature: (1) environmental sustainability perspective; (2)
effectiveness perspective on a customer service level; and (3) the efficiency perspective in terms of
costs [41]. The focus in this report is on the efficiency perspective, since that is the perspective that
approaches the problem as a VRP. The LMDP is also classified as an NP-hard problem and therefore
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has similar solution methods as the SAP, where the focus is on finding the optimal route to deliver all
the orders to the customer, given constraints such as the range and capacity of the delivery vehicle [42].
A visualisation of the LMDP/VRP can be found in Figure 4.2, where the depot (d1) can be considered
to be a hub of an e-grocer and the trucks depicted as EPVs, in the case of Picnic.

Figure 4.2: Visualisation of a vehicle routing problem [43].

There are many examples in literature that solve the LMDP for e-groceries, such as Leyerer et al.
(2020), who look at new ideas to minimise the costs, or Waitz et al. (2018), which also take the per-
ishable products into consideration [44] [45]. Even though the LMDP is straightforward as to what kind
of problem it is and how it can be solved (also through exact methods, heuristics, meta-heuristics or
simulations), there are still innovative ways to tackle the problem and increase the efficiency. Some of
these solution includes reception boxes installed at either public places or at houses, using drones or
robots (self-driving vehicles) or making use of underground delivery [46] [47] [48] [49].

4.2.3. Order Picker Routing (OPR)
Since order picking is the most labour-intensive process in an FC, this has been a field of interest for
a lot of researchers [50]. For this research, the focus is on the picker-to-parts system, where the order
picker walks along the aisles to pick the items of orders. This is also the most common used system,
since it requires less investment costs than an automated system for instance [51]. The focus is also
only on low-level picking, meaning that the items are stored at a low level and the order pickers are
able to grab the items whilst standing. Contrary to low-level picking, high-level picking uses high stor-
age racks, for which a crane or a lift is needed to reach all the items [5]. The OPR problem handles
the problem of given a set of orders to retrieve and their location, what is the most efficient routing to
retrieve all orders from the corresponding storage locations.

This is another version of the travelling salesman problem (TSP), which is formulated in the same
way: ”given a set of cities and the distance of travel between each possible pair, the TSP is to find
the best possible way of visiting all the cities and returning to the starting point that minimise the travel
distance (or cost)” [52]. However, there still remain a couple of differences between OPR and the TSP,
since for OPR there are a number of nodes that do not have to be visited, but still can be visited. Subse-
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quently the nodes that do need to be visited, such as the pick locations, are allowed to be visited more
than once. Therefore, the OPR can be classified as a Steiner TSP, which is generally not solvable in
polynomial time [53]. However, there have since been multiple algorithms that are able to solve the
problem, such as De Koster et al. (1998) [54].

Most often OPR is solved by using heuristics, since there are operational difficulties when using optimal
routing. Optimal routing may not always be the most logic route for the order pickers, which can make
them deviate from the route [55]. Also, congestion is not taken into account by using optimal routing
even though it can significantly impact the efficiency of the routing [56]. An example of a heuristic used
to tackle OPR is one developed by Chen et al. (2019), in which they made a routing model to minimise
the travel distance of picking an order and subsequently minimise the time spent on order picking [57].
They develop multiple heuristics based on existing heuristics and compare these, to determine which
would work best in a narrow-aisle FC that also has access restrictions regarding the picking carts. Their
paper illustrates that there are multiple solutions to the problem, and it is dependent on the objective to
rank the solutions. Widely-spread heuristic methods for OPR are the S-shape method, return method,
the mid-point method and the largest gap method. The first two methods are both studied by De Koster
et al. (2007). The S-shape method is widely used and is one of the simplest heuristics, which sees
the order pickers walking one-way and for any aisle that contains a pick location the complete aisle is
traversed. The return method entails that the order picker both enters and leaves each aisle from the
same end [5]. The mid-point method uses the mid-point of the order picking circuit and divides the area
of the circuit in two halves. Picks are accessed either via the back or front cross aisle, depending on
whether the pick is located in the half of the back cross aisle or in the half of the front cross aisle [56].
The largest gap method is a strategy that sees the order picker walking from both sides of the aisles,
where the largest gap is the portion of the aisle that the order picker does not cross through, whilst still
entering and exiting an aisle from the same side [58]. Visualisations of these four heuristics can be
seen in Figure 4.3.

Figure 4.3: Four different heuristics used for order picker routing [59].
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The OPR is also something that can easily be simulated, as has been done often such as by Shetty et al.
(2020). They show that significant improvements can bemade from the traditional heuristic approaches
by implementing the best practices from simulation [59]. Another application for simulation with OPR
is for researching congestion, which is an important factor in the OPR and its success [60]. One of the
remaining important difficulties with OPR is that there still is a human factor that needs to be taken into
consideration. Humans can make the decision to deviate from the route that is laid out for them and
hence follow a suboptimal route. This has been studied by Elbert et al. (2017) also through simulation,
from which it is concluded that route deviations often occur in practice, with the main reason being that
the optimal route seems illogical to the order pickers. This significantly affects the performance of the
routing policies and its efficiency [61].

4.2.4. Order Batching Problem (OBP)
The OBP is an important problem in terms of impact in the FCs. The solution to the OBP determines
which orders are batched together, in order to increase efficiency. In the case of Picnic for instance
21 totes are placed together at one pick cart, which can be considered to be one batch. The OBP
needs to decide which totes belong to one pick cart, such that the productivity of the order pickers is
maximised. It needs to be the case that the tour that is needed to retrieve all items for the batch of
orders is shorter than the tours that are needed to retrieve all orders separately [62]. This entails that
again the objective is to minimise total distance and subsequently time. The OBP is classified as a
clustered TSP or a capacitated VRP, since the order batches can be considered clusters and the pick
locations as cities, which need to be visited contiguously [63].

Again, this problem can be solved through exact methods, as has been done by Bozer and Kile (2008),
who formulated the problem as a MILP and found optimal solutions for smaller instances [64]. However,
they also took a look at heuristic approaches, such as the first fit-envelope based batching, developed
by Ruben and Jacobs (1999) [65]. In this heuristic each order gets an index based on the minimum
and maximum aisle number visited. The orders are sorted by this index and batched together in the
same manner, until the capacity of the batch (or pick cart) is reached. Other heuristics also exist,
some already developed last millennium, which have a decent performance. Another exact approach
is done by Gademann and van de Velde (2005). They present a branch & price algorithm for the OBP
which they solve through column generation [55]. However, this model can also only provide optimal
solutions for very small instances, which are not close to real instances. This tends to be the case for
exact solutions to the OBP [66]. Meta-heuristics that can be used to tackle the OBP are ant colony
optimisation, tabu search and genetic algorithms amongst others [67] [68] [69]. Simulation methods
seem to be less used for the OBP than for the other problems described.
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Exact Solution Methods

Like mentioned, there are multiple solutions to the SAP and OPR. These solutions can be either exact
or (meta-)heuristics are used, to improve computational time. This chapter focuses on the different type
of exact solution methods there are to a MILP, since both the problems can be formulated to a MILP and
this is the most common formulation in existing literature [7]. The objective functions and constraints
are linear, whilst some variables are constrained to be integers and others can also be non-integers.
There are many existing solution methods, yet the focus in this chapter is on the methods that are used
most frequently. These are branch & bound, branch & price, branch & price & cut and column genera-
tion [70]. They will be discussed in Section 5.1, Section 5.2, Section 5.3 and Section 5.4 respectively.
Afterwards, Section 5.5 mentions the different solvers that are available to solve the problem and their
advantages and disadvantages.

5.1. Branch & Bound
Branch & bound is one of the most general approaches to find the solution of an optimisation problem,
especially when it is constrained. Branch & bound is a way to structure the search of the feasible
solution space [71]. A branch & bound method is often used for the TSP, hence it can be used for the
OPR and OBP for instance [72]. However, this method is not limited to MILPs, it can be applied to
a number of different integer programming problems. The branch & bound approach is based on the
fact that the total set of feasible solutions can be divided into smaller sets of the solution, in subsets.
Then, the smaller subsets are evaluated systematically, until the best solution is found [73]. This entails
that the problem is structured in a clever manner, such that only part of the feasible solutions need to
be examined instead of all feasible solutions. It consists of three processes, branching, bounding and
fathoming. Branching starts with the relaxed linear programming solution (the integer restrictions are
relaxed) as a node, from which further branches are ’built’.

Figure 5.1: A visualisation of branch & bound method, including the nodes, branches and solutions [74].
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Bounding is the process of limiting the solution space to an upper bound and a lower bound. For max-
imisation models, the upper bound is the value for the relaxed solution and the lower bound is the value
for the rounded-down solution from the relaxed solution. The optimal solution needs to be in between
these two bounds. From this, new branches are created within the two bounds. Branching keeps
happening from the node with the maximum upper bound. This continues until there are no feasible
solutions found, and one integer solution is the optimal one, being called the ending node. The same
goes for a minimisation model, yet the relaxed solutions and upper- and lower bounds are reversed.
Fathoming is the process of cutting of a branch and dismissing it from further consideration, if one of
the fathoming tests is passed. A visualisation of how the branch & bound process works can be seen
in Figure 5.1.

The branch & bound method is often used to solve the warehouse location problem in e-commerce,
which handles the question about at which location to build a warehouse in order to satisfy customer
demand in the most optimal manner [75]. However, there are also examples of using branch & bound
algorithms for the OPR. The paper by Hahn and Scholz (2017) is one of these, where they use a trun-
cated branch & bound algorithm, in order to minimise the time spent waiting for order pickers [76]. A
truncated branch & bound algorithm still uses the branching approach, however a heuristic method is
used to cut off certain branches to reduce the computational time needed to solve the problem [77].
Because of this, an optimal solution cannot be guaranteed to be the outcome. The model was tested
and validated for 200 customer orders and with an S-shape strategy, after which the reduction of total
waiting time could be determined. The average reduction of waiting time was 72.6%, which is a large
improvement.

Another example of a branch & bound approach to e-grocery related topics is the research con-
ducted by Muppani and Adil (2008), where they use the algorithm to determine the class based storage
location assignment, a version of the SAP [78]. They split up the algorithm in three main steps, by first
forming the search tree, subsequently computing the bounds and then tackling the process of fathom-
ing. To test the algorithm, a distribution warehouse that houses 45 items is considered. By using the
new algorithm and adjusting storage accordingly, costs are reduced by 10% whilst computational time
is less than eight seconds. Therefore, the authors argue that their algorithm can handle large real life
problems efficiently as well. This was not tested, yet the problem grows exponentially when adding
more items. Selling only 45 items is not realistic when comparing it to current e-groceries and their
assortment sizes.

The approach of a branch & bound algorithm is found more often in past literature than in recent
literature, probably due to the rise of meta-heuristics and its performance. Singh and van Oudheusden
(1997) used a branch & bound algorithm for the travelling purchaser problem (TPP) [79]. A general
approach was used, where problem size, computational time and costs varied. Afterwards, the appli-
cations to real life situations are discussed, where they mention that their approach can also be used
for the OPR problem as a special case of the TPP.

5.2. Branch & Price
Branch & price is used to solve integer linear programming models that have many variables. It is a
method that combines the branch & bound technique mentioned in Section 5.1 and the column gener-
ation method, which will be discussed in Section 5.4. Barnhart et al. (1996) present a general method-
ology for the branch & price algorithm, by using the generalised assignment problem (GAP) and crew
scheduling problem as examples [80]. For this solution technique, columns may be added to the re-
laxed linear programming model at each node of the branch & bound method. First, the problem is
reformulated by using the Dantzig-Wolfe decomposition for example, to give the reduced master prob-
lem (RMP) and from this problem branches are created. More information about how the Dantzig-Wolfe
decomposition works can be found in the work of Vanderbeck and Savelsbergh, amongst others [81].
Afterwards, columns are added to improve the previously found optimal solution, yet not all columns
are needed since many decision variables will have a trivial solution. Which columns need to be added
is determined by solving the pricing problem. The pricing problem identifies a column that has the
maximum reduced cost. If this number is greater than zero, the column needs to enter. Otherwise, the
solution at hand is the optimal solution.
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The branch & price solution technique is often used when the relaxed model is very weak and the model
cannot be solved using the branch & bound approach except for very small instances [82]. Hence, the
Dantzig-Wolfe decomposition is used, and column generation is applied since the number of variables
is so large. This entails that the branch & bound problem has been transferred into a branch & price
problem. A flowchart of the technique to solve the location-routing problem with time windows, which
is a version of the LMDP, can be found in Figure 5.2.

Figure 5.2: A flowchart of the branch & price method to solve the location-routing problem with time windows [83].

The branch & price solution technique is frequently applied to the GAP, like mentioned. The GAP is the
problem of finding the minimum cost assignment of n jobs to m agents, such that each job is executed
by exactly one agent. The SAP can be considered to be a version of the GAP, where a job is an item
and an agent is a location. Examples of research on the GAP through branch & price include work from
Ceselli et al. (2006), Firat et al. (2016) and Wang et al. (2021), amongst others [84] [85] [86]. However,
when looking at the branch & price technique in e-groceries the most often use for it is to solve the
LMDP and routing strategies in general. An example of this is the work by Azi et al. (2010), where they
use the algorithm to solve a VRP with time windows and multiple use of vehicles [87]. They develop a
search- and a branching strategy, and test it on different instances. This has different effects on costs,
the number of iterations needed, driven distance and the computational time. However, the model is
limited by the fact that the algorithm can only solve instances of 25 customers, and a few instances
of 50 customers. Therefore, they conclude that using (meta-)heuristics are still the best way to solve
these problems and determine strategies, since instances can be solved that are closer to real life.

A different problem was tackled by Gademann and van de Velde (2005), where they assess the
OBP through a branch & price approach [55]. The objective is to minimise the order picking time. They
develop all the five different components of a branch % price technique, the integer linear programming
formulation, the approximation algorithm to form the initial solution, the pricing algorithm, the column
generation algorithm and a strategy for the branching. These are discussed, and the results show for
different instances that the algorithm gives a good performance both for the order picking time and for
computational time needed. The authors strongly believe that their algorithm could also work on larger
instances and yield similar performances.
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5.3. Branch & Price & Cut
The branch & price & cut solution technique is again a mix of methods, this time between the branch
& price method and the branch & cut method. Again, this technique can be used to solve linear pro-
gramming models with a very high number of variables. However, it is noted that the problems are
usually only solvable if the percentage of coefficients in the functional constraints that are zeros needs
to be very big and therefore do not all have to be considered [73]. This technique relies on the method
of using a cutting plane, or a cut. A cut is a new constraint that further reduces the feasible region
for the relaxed model, without eliminating feasible solutions for the integer programming model. There
are multiple techniques to come to relevant cutting planes. Once more, it holds that this technique is
used to limit the search space and hence find the optimal solution quicker, as well as to obtain stronger
relaxations [88]. A visualisation of how cutting planes work is found in Figure 5.3.

Figure 5.3: A visualisation of cutting planes [31].

Examples of this technique in the e-grocery business can be once again found most often as a solution
to the VRP. Archetti et al. (2015) use the algorithm to solve the VRP where customers request multiple
commodities [89]. Again, multiple instances were tested, and computational results were obtained
for small and mid-size instances, up to 40 customers. In 50% of the instances they succeeded to
improve or compute the best known upper bound values. However, like many, they state that for real
life instances a heuristic should be applied. Another example of this is the paper by He et al. (2019),
where they also use a branch & cut & price technique to solve the VRP with time windows, which is
comparable with the LMDP [90].

For automated warehouses in e-groceries, the branch & cut & price method is often used for the
multiagent pathfinding problem. This is the problem of defining the path for (automated) agents, such
that they all reach their goal and avoid collisions with one another, whilst cost is minimised [91]. A good
example of this is the algorithm from Lam et al. (2022), where they show that their approach reaches
more solutions than state-of-the-art existing solvers used in the field of artificial intelligence [92]. They
approach the problem through four steps: (i) creating a master problem, (ii) creating a pricing problem,
(iii) adding separation problems as constraints and (iv) applying branching rules for their search tree.
A lot of different conflicts are defined and worked out and implemented into the problem as constraints.
Since the algorithm is of such high performance, the authors note that it would be interesting to see
what the combination of communities from mathematical optimisation and artificial intelligence could
yield in terms of scientific advances.
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5.4. Column Generation
Column generation was introduced in 1958, by Ford and Fulkerson [93]. Same as for the other tech-
niques mentioned, the key to this method is that not the entire search space has to be considered, only
a part of it and is therefore especially suitable for large linear programming problems [94]. There are
different methods within the column generation technique, yet all begin with defining an RMP. Which
columns are selected to take part in the algorithm is what defines the differences between the methods.
Each column is related to a decision variable and is added to the problem in case it yields higher results.
Since a lot of the decision variables will be zero, not all decision variables need to be considered and
hence the search space can be reduced. In this way, only decision variables are added that have a
positive effect on the optimal solution. If there are no decision variables left that improve the current so-
lution, then the optimal solution is reached [95]. A flowchart of a typical column generation technique is
seen in Figure 5.4. Airline crew scheduling is an often used example for the column generation method,
however job scheduling, vehicle routing and bin packing are also amongst the popular problems that
can be solved with column generation [94].

Figure 5.4: A flowchart of the column generation technique [96].

Column generation in e-groceries is often used to solve the VRP, but also as a base for certain heuristic.
Examples of the latter include the work of Ardjmand et al. (2020), in which they develop a novel hybrid
column generation heuristic, to minimise the makespan in manual order picking [97]. The heuristic is
applied at the pricing step of column generation. Instead of solving the routing problem for order picking
multiple times during each simulation, they use an estimation of the length of the route and solving the
exact length at a later stage. By doing so, the column generation heuristic outperforms other tested
against heuristics. However, since a heuristic is used it cannot be guaranteed that the optimal solution
is found.

When looking solely at exact use of the column generation technique, the work of Moccia et al.
(2008) studies the dynamic GAP through column generation [98]. It is mentioned that this problem had
application in the management of warehouses when assigning storage to a certain location. A pricing
routine needs to be determined to find the path with negative reduced costs. This is tested against
certain heuristics that use the column generation as a base as well, which show that the heuristics
outperform the exact solution technique.

Another application of the column generation technique is for the OBP and the scheduling of order
pickers, which has been researched by Muter and Öncan (2021) [99]. They use the column generation
technique to create order picker schedules, which correspond to a set of order batching, which both
satisfy the operational time limits of the order pickers. This problem increases exponentially when the
number of orders is increased. The objective is to decrease the amount of time it takes to collect all
orders and to decrease the makespan of the orders. By comparing two column generation algorithms
which prioritised one or the other of the two objectives. After computational experiments for all different
routing policies considered, it was concluded that the order batching part of the problem is the non-trivial
part, and they were able to find exact solutions for instances with up to 100 orders.
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5.5. Commercial Solver Software
Solving MILPs by exact solution techniques is also possible through solvers. Solvers can be both com-
mercial and non-commercial and they apply one of the algorithms mentioned in the previous sections,
instead of a user having to create the entire model themselves. A comparison will be made between
five solvers, CPLEX, Gurobi, LINDO, LP_SOLVE and SoPlex. An overview of these solvers and their
characteristics can be found in Table 5.1.

Table 5.1: Solvers used for MILPs and their characteristics [70] [100].

Solver Algorithms used Features Specifications Modelling languages

CPLEX Branch & cut algorithms and
dynamic search algorithms

Capable of
calculating multiple
optimal solutions and
have the solutions
stored in a solution
pool.

Version: 12.8.0
Website: http:// www.ibm.com
/analytics/cplex-optimizer
License: proprietary

C, C++, Java, .NET,
MATLAB, Python,
Microsoft Excel

GUROBI Cutting planes algorithms,
heuristics and search-techniques

MILP solver that is
designed with modern
multicore processing
technology to obtain
an optimal solution.

Version: 3.0
Website: www.gurobi.com
License: proprietary

C++, Java, .NET, Python

LINDO
Different forms of cutting planes
algorithms and different node
selection rules

Significantly faster on
large quadratic models.
Improved handling of
models with
discontinuous functions.

Version: 10.0
Website: www.lindo.com
License: proprietary

C, Visual Basic, MATLAB,
Microsoft Excel

LP_SOLVE Branch & bound algorithm

Advanced pricing using
Devex and Steepest Edge
for both primal and dual
simplexes. Provides
different scaling methods
to make the model
more numerical stable.

Version: 5.5.2.11
Website: http://lpsolve.
sourceforge.net/5.5/
License: open source for
academic use

Java, R, Python, MATLAB,
Scilab, amongst others

SoPlex Primal and dual revised
simplex algorithm

Presolving, scaling,
exploitation of sparsity,
hot-starting from any
regular basis.

Version: 6.0.0
Website: soplex.zib.de
License: open source
for academic use

C++

There has been multiple research done on the advantages and disadvantages of certain solvers and
for which kind of problems one should use what solver. One example of this is the study done by
Meindl and Templ (2012), where both the open-source and commercial solvers mentioned in Table 5.1
are assessed [100]. Usually, open-source solvers have their code available, which makes it easy to
implement in other modelling languages or on different platforms. Even though every problem that is
researched in the scientific world is different and has specific requirements where open-source solvers
can be very useful, there has been far more research done with commercial solvers and in a lot of
instances they outperform the open-source solvers.

For the problems at hand, the SAP and the OPR, there has been a lot of research done with commercial
solvers. For both there are instances where CPLEX was used and instances where GUROBI was
used. Weidinger and Boysen often use GUROBI in their research to find optimal solutions, for both
exact techniques as well as for meta-heuristics [101]. They prove that for large instances GUROBI is
still able to have an acceptable computational time. However, the same can be said for CPLEX, which
can also be used to solve for optimal solutions. This is also often done to find intermediate solutions
for larger problem sizes, since these solvers do not have enough memory to give the exact solution for
very big instances [102]. Both these solvers can be used in Python which is the preferred modelling
language for this research. This cannot be said for LINDO.



6
Meta-heuristic Methods

Next to the exact methods to MILP formulations, there are also a plethora of meta-heuristic solution
techniques to solve the SAP and OPR. Dependent on their quality, they come very close to the optimal
solution. Since they use their memory or different techniques, they do not have to evaluate the full
solution space, they cut some corners and hence are much faster computationally than exact meth-
ods. As mentioned before, meta-heuristics can be applied to multiple problems, instead of heuristics
that are problem-specific. Even though there are many meta-heuristics, this chapter focuses only on
the most frequently used ones. These are tabu search, discussed in Section 6.1, genetic algorithms,
discussed in Section 6.2, ant colony optimisation, discussed in Section 6.3, and large neighbourhood
search, discussed in Section 6.4.

6.1. Tabu Search
The meta-heuristic technique of tabu searching was developed by Fred Glover in 1986 as a way of
solving integer programming problems [103]. Tabu is another word for prohibited, and a tabu search
thus prohibits certain moves from solution to solution being made [104]. It is mentioned that one of
the pitfalls of heuristics can be to get stuck at local optima [105]. This, of course, needs to be avoided
and hence, Glover tried to find a method that escapes the local optima. Tabu search is an extension
of another meta-heuristic of local neighbourhood searches. Tabu search improves the performance
of local neighbourhood searches by being able to accept moves that do not bring an improvement if
there is no improving move as an option. It has three different types of memory to search through
and base decisions on, (i) short term memory: the list of solutions that have been considered recently
which include certain tabu moves and is used for exploration, (ii) intermediate term memory: includes
intensification rules, and lastly (iii) long term memory: includes diversification rules [106]. Keeping this
in mind, the general steps of a tabu search algorithm are as defined below.

Step 1: Determine a starting solution.
Step 2: Create a candidate list of moves from the starting solution to neighbouring options.
Step 3: Choose the best candidate from the list and make it the new solution. The best candidate is

the most improving candidate, or if there are no improving candidates the least worsening one.
Step 4: Evaluate the stopping criterion and stop if a certain number of iterations has been met, if con-

tinuing update tabu list and criteria and repeat from step 2.
Step 5: Stop algorithm or transfer through the intermediate or long term memory, to initiate intensifica-

tion or diversification.

This process can also be seen in the flowchart of Figure 6.1. As mentioned, mainly the diversification
phase is what makes a tabu search an often used option and is one of the big advantages. A variable
can be set to determine the amount of time spent diversifying. However, one of the main disadvantages
of tabu searches is that it cannot guarantee convergence, and it is very dependent on the chosen initial
solution [107]. Therefore, researchers continue to work on the tabu search algorithm and try to improve
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it.

Figure 6.1: A flowchart of the tabu search technique [106].

When looking at tabu search research that relates to the SAP and the OPR, there are several examples.
One of them has been discussed in Section 4.2.1, the research done by Chen et al. (2010) [35]. Other
works include those of Xie et al. (2015), where they use a restricted neighbourhood tabu search to
tackle the SAP [108]. They compared their algorithm to a genetic programming algorithm and tested
twenty instances, for which the tabu search algorithm outperformed the genetic programming algorithm
in all instances for both computational time and fitness, albeit with small margins. These margins be-
came more significant if the problem size, or the number of items, increased.

Yet, the problem that is even more often tackled by the tabu search algorithm is the OPR problem.
The work of Cortés et al. (2017) is a prime example of this, where they use a tabu search approach
to solve the OPR for both large- and medium-sized FCs [109]. They use the general tabu search as
well as two hybrid variations of the algorithm, to be able to compare them. The set-up that is used
in their paper is very similar to set-ups of Picnic FCs, where a customer order cannot be split, there
is a maximum storage capacity per storage location, the FC has a rectangular layout and there is a
constraint set for the available inventory. For the experimental design the FC consisted of 200 storage
locations along with 4 parallel aisles, where two-sided picking in an aisle is allowed. With regard to
order picking time, the hybrid variation of the tabu search algorithm does outperform the general tabu
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search algorithm, albeit by no more than 7%. The performance of the general tabu search algorithm
lies closer to the two benchmark algorithms that were also used, which consisted of a genetic algorithm
and a simulated annealing approach. The outcome of this research underlines the fact that whilst tabu
search is a very valid approach to this problem, there are still many adaptations that can be made to
enhance the performance of the algorithm even further.

6.2. Genetic Algorithms
The genetic algorithm was inspired from the evolution theory as developed by Charles Darwin, as
have been many so-called evolutionary computation methods, and was invented by John Holland in
the 1960s [110]. It is a method that has been applied at Picnic for many uses as well and several
master theses have also used this approach [111]. A genetic algorithm is a stochastic population-based
algorithm, that uses operators like mutation, crossover and selection, which all have been inspired by
nature [112]. A genetic algorithm starts with a random population, where each individual has a certain
set of properties (chromosomes), which can be mutated. For each iteration that is done in the genetic
algorithm, a new generation is determined. For each iteration the fitness of all individuals is evaluated,
which is determined by the objective function of the MILP. These are then selected to continue with or
not and a new generation is formed. The three main operators of mutation, crossover and selection
are visualised in Figure 6.2. The operator mutation handles the alteration of the certain properties.
This keeps diversity within the population due to certain randomness and hence avoids getting stuck
in local optima. The mutation rate can be set by the creator of the algorithm. Crossover is the operator
that handles the formation of a child solution from two parent solutions, how that also would happen
in nature. There are multiple techniques that can be used for the crossover operations, two of which
are shown in Figure 6.2b. Lastly, there is the operator of selection. This handles which individuals and
their respective properties are selected for the future generations. Again, there are multiple techniques
for this, one of which is shown in Figure 6.2c. This selection technique can be compared to a roulette
wheel. The shares of individuals that have a higher fitness in terms of the objective function have a
bigger share in this wheel and therefore a bigger chance of reproducing into the next generation [113].

(a) Mutation (b) Crossover

(c) Selection

Figure 6.2: Visualisation of the main operators used in genetic algorithms [113].

With this in mind, a step-by-step approach to a genetic algorithm can be determined, which is found
below.
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Step 1: Initialise the population randomly.
Step 2: Evaluate the fitness of the current population to the objective function.
Step 3: Check if the stop condition is met, which can be set to a number of iterations or a level of fitness

that is reached.
Step 4: If the stop condition is not met, select individuals for the new generation, perform crossover

and mutation, and determine a new population. Repeat from step 2.
Step 5: If the stop condition is met, retrieve the final population and end the algorithm.

Genetic algorithms are often used in e-grocery research or in warehouse operations research in gen-
eral. One of the application is to the OBP in FCs, as has been researched by Koch and Wäscher
(2016) [114], to decrease the total length of all the pick rounds that are undertaken by order pickers.
Each chromosome of an individual represents a batch of customer orders and since batches do not
all have the same size, chromosomes are of different length as well. This entails that one individual is
made out of several batches of customer orders. Selection, mutation and crossovers are applied, and
it is checked whether all customer orders are included in the generation. This algorithm was tested in
a warehouse, where experiments showed that the new developed algorithm decreased the total tour
length by, on average, 3.15% compared to a previously developed genetic algorithm with a different
approach (order based instead of group based). Next to that, computational time was also within rea-
sonable limits. The authors draw the conclusion that a genetic algorithm is a verified good approach
to the OBP, yet it remains very important to choose a genetic algorithm in such a manner that it is the
most suitable for the problem, dependent on the characteristics of the problem.

Pan et al. (2015) also used the basis of a genetic algorithm for their approach to the SAP in a zone-
picking FC, meaning that an order picker is responsible for a zone in which certain items are picked
and then passes these picked items to an order picker in the next zone, who takes care of the item
picking there [115]. With this, they try to determine which items need to be located into which zones.
Here, an individual is a zone and the chromosomes represent certain items that are placed in that zone.
After developing functions for the fitness, selection, crossover and mutation, a correction mechanism
is also added to ensure a certain zone does not overflow in terms of maximum capacity. They test
their algorithm in an FC with 60 racks and twenty units per rack, with different instances in terms of
amount of picking zones. The objective is to minimise the time spent on order picking. The results
show that certain bottleneck zones highly influence the performance, yet the algorithm performs better
than storage policies and rules.

6.3. Ant Colony Optimisation
Just like a genetic algorithm, ant colony optimisation takes it inspiration from nature, from certain ant
species. These ant species mark favorable paths with certain pheromones, such that other ants of
the same colony know to follow the path as well. Ant colony optimisation belongs to the bigger group
of swarm intelligence techniques, which are used more often to tackle optimisation problems [116].
Figure 6.3 shows the basic principle that ant colony optimisation is built upon.

Figure 6.3: Ant colony optimisation and the shortest route that is chosen [117].
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As can be seen from the figure, ant colony optimisation can be used especially for routing problems.
Ant colony optimisation consists of three main phases, (i) construction, (ii) pheromone update, and (iii)
daemon action, which is an optional phase. During the first phase, the construction phase, ants are
created. Ants depict a set of variables and they move through different states of the problem by building
paths, just like normal ants. By moving through the different states, the ants are construction solutions
to the optimisation problem during the first phase. Once a solution is built, the ant will evaluate the
solution and will deposit a pheromone trail for the other ants to follow. Pheromone updates, phase two,
will take place over time and it decreases the pheromone left by the previous ants. This is to avoid
getting stuck in local optima. Afterwards, daemon actions can be used to take actions that cannot be
executed by a single ant, to check global information. As such, it can check the paths formed by all the
ants and deposit additional pheromone on the most favourable one [118]. From this, the step-by-step
approach to ant colony optimisation can be formulated as per the below.

Step 1: Initialise the problem with a set of ants.
Step 2: Let a random ant start construction and building a solution.
Step 3: Update the pheromone trail of the ant and add it the overall structure.
Step 4: Let the pheromone evaporate over time.
Step 5: (Optional) Perform a daemon action.
Step 6: Assess the stop condition in terms of the number of ants or a set termination criteria.
Step 7: If stop condition is not met, start with a new ant from step 2.
Step 8: If stop condition is met, evaluate best solution from the ant colony.

As mentioned, ant colony optimisation is very commonly used to solve the VRP and hence can be used
to solve the OPR. This is exactly what the research conducted by Li et al. (2017) did, yet the authors
combined the OBP with the OPR [119]. They adjusted the ant colony optimisation algorithm by adding
a local search after a promising path was found. With an experiment of over 2000 SKUs and different
order size instances (up to 10,000 orders) and the objective to minimise the order picking distance,
their algorithm was evaluated. The algorithm improved, or reduced, the distance up to 80% compared
to the traditional routing and batching of the FC. The authors mention that their algorithm shows very
promising improvements and can handle large instances, however the actual problem keeps growing
with continuing rise in demand and online sales. Therefore, existing meta-heuristics continuously need
to be adapted and improved to still be able to solve the real life problems.

6.4. Large Neighbourhood Search
Large neighbourhood searches are commonly used in routing and scheduling problems. The large
neighbourhood search was first introduced by Paul Shaw in 1998 [120]. Like the other methods, a
large neighbourhood search starts from an initial solution which is gradually improved. This happens
by continuously destroying and repairing the solution until a stop condition is met [121]. Before this, a
(large) neighbourhood needs to be defined, in which the optimal solution needs to be found through
the destruction and repair processes. Within the destruction part, or the relaxation part, there usually
is a stochastic element, such that different parts of the solution are taken down. After the solution is
rebuild, or re-optimised, it needs to be determined if the new solution will be accepted or not, usually
dependent on if the solution is improving or not. One iteration of the destruction and repair of certain
positions is corresponding to the examination of one neighbourhood move. There are multiple options
to choose how the positions are destroyed and repaired, hence making the algorithm very flexible [122].
Figure 6.4 shows an example of the destruction and repair process. The process of a large neighbour-
hood search can be described with the steps as outlined below.

Step 1: Start with an initial solution.
Step 2: Destroy part of the solution by removing certain positions, based on a previously determined

method.
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Step 3: Repair paths to the just removed positions, based on a previously determine method.
Step 4: Evaluate the new solution and determine if it is better than the current solution and the best

solution that is saved.
Step 5: Assess the stop condition in previously set terms of time and/or iterations.
Step 6: If better than the current solution, keep the solution and start with this as a new solution from

step 2. Save the solution as the best solution if that is the case.

Figure 6.4: An example of destruction and repair, where the top left figure shows an initial solution, the top right the solution
after a destroy operation and the bottom figure the solution after a repair operation [121].

One version of the large neighbourhood search is the adaptive large neighbourhood search, which was
proposed by Ropke and Pisinger (2006) for a version of the LMDP [123]. The algorithm was tested
against more than 350 known instances from literature, for which it showed improvement for more
than 50% of the problems. Different from the normal large neighbourhood search, the adaptive large
neighbourhood search allows for the use of multiple destroy and repair methods, instead of only one.
Via a weight distribution it is determined how often the method is attempted during the neighbourhood
search. These weights are adjusted or adapted throughout the search, such that it makes a very dy-
namic algorithm. Often, it is also needed to determine a trade-off between the time consumption of a
certain method and the optimality of the solution, to avoid the algorithm from only favouring complex
repair methods.

For problems within e-commerce, (adaptive) large neighbourhood searches are often chosen as meta-
heuristic. One of which was the research done by Chabot et al. (2017), which shows that the adaptive
large neighbourhood search is an excellent candidate to solve OPR with the objective to reduce order
picking distance [124]. When comparison is made between their adaptive large neighbourhood search
and classic heuristics such as the S-shape or largest gap method, as described in Section 4.2.3, the
adaptive large neighbourhood search consistently outperforms the heuristic methods.

Another example is the paper of Kuhn et al. (2021), where they use an addition to the adaptive
large neighbourhood search for the integrated OBP, OPR and VRP of delivery to reduce tardiness
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[125]. When testing this algorithm, it performs better than the traditional adaptive large neighbourhood
search in the objective of decreasing tardiness, which is the same as decreasing time or improving
efficiency. Hence, adjusting the adaptive large neighbourhood search to fit to a problem can still show
significant improvements and are worth the investigation, especially in e-groceries.
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Figure A.1: Gantt chart of the project.
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1
Model Verification

Before conducting computational experiments for the research, the models should be verified. This entails
checking whether the models respond the way they are designed to behave. This is tested with a very small,
simplified data set to determine the effects.

There are three scenarios that are verified, being the MSL possibility, the minimisation of travelled dis-
tance, and the capacity constraint of a zone.

MSL possibility
The possibility for MSL is embedded into the models and this entails that they should allow for SKUs to be
stored in more than one zone if the pick circuit. If the number of MSL that may be present is set to one and
it is tried with a very small data set, Figure 1.1 shows that indeed all SKUs are assigned to one location, with
one SKU being assigned to more than one location.

Figure 1.1: MSL of one SKU.

Minimisation of travelled distance
The goal of the models is to minimise the travelled distance of order pickers. This comes down to minimising
the number of zones a pick cart has to visit and minimising the total number of pick carts. Therefore, it holds
that if there is ample storage capacity in a zone and none in the other, all SKUs should be placed in that zone
such that the pick carts only need to visit one zone. Figure 1.2 shows that if all products are placed in one
zone, the pick carts indeed only visit that zone. Not the full SKU list is shown for the sake of readability. Also,
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if there are only a small amount of orders, the orders should be placed on the same pick cart to minimise the
travelled distance. That the models adhere to this is evident by Figure 1.2 as well.

Figure 1.2: Minimisation of travelled distance.

Capacity constraint
The capacity constraint ensures that not more SKUs are placed in a zone than there is space available. If the
capacity is very large and there are no restrictions on MSL, Figure 1.3 shows that all SKUs have MSL. However,
if the capacity is too small for all SKUs, the models become infeasible which is also desirable behaviour.

Figure 1.3: Capacity constraint.



2
Case Study

As mentioned in the previous sections of this thesis, a case study was conducted at Picnic Technologies,
a Dutch e-grocery retailer. Picnic provided a data set which is explained in section 2.1. Even though this
research only focused on the processes related to order picking, there are other processes that are influenced
as well. How they are influenced and which matters must be taken into account is discussed in section 2.2.

2.1. Picnic Data Set
The data set from Picnic is obtained from their Data Warehouse (DWH) and queried via Structured Query
Language (SQL). Two data sets are used, one for all data of the orders and one for all data of the SKUs. The
respective examples of these data sets can be seen in Table 2.1 and Table 2.2. Please note that the data in
these examples is not real.

Table 2.1: Data set (simplified and randomised) example of order data, obtained from Picnic DWH.

Order ID SKU ID Truck ID
1 15 1
1 23 1
1 4 1
2 8 1
2 2 1
3 15 2
3 8 2

Table 2.2: Data set (simplified and randomised) example of SKU data, obtained from Picnic DWH.

SKU ID Name Aisle Height Width Length Front surface Demand
Storage

type
Storage
factor

Storage
multiply

factor
1 Komkommer D 5 5 30 25 325 1 975 0
2 Toiletpapier 3laags A 30 40 10 1200 212 1 975 0
3 Pasta penne 500 g B 10 5 4 50 105 2 0 0.05
4 Volkoren brood C 9 13 28 117 89 3 0 0.05
5 Pepsi Cola 6fl A 23 8 8 184 126 1 975 0

In reality, Picnic offers more than 8000 different SKUs and certain FCs can handle up to 5000 orders per day.
Picnic has multiple FCs throughout several countries, yet their generic set-up is the same. If the models pro-
vide results for one FC, they can provide results for all Picnic FCs provided that some FC-specific character-
istic parameters are changed. Setting up a live connection between the models and the DWH with automatic
pre-processing of the data would enable operational leadership to change the SKU allocation on any given
time. For example, the (two-)weekly order forecast could be used in the models to give the best SKU alloca-
tion.
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Table 2.2 shows that there are multiple storage types. These are mentioned in the scientific paper as being
(i) pallets, (ii) shelving units, (iii) dollies, (iv) flowracks, and (v) roll containers. The combination of these five
types might be unique to Picnic, however the models can handle more and/or different combinations of stor-
age types. These storage types are important when it comes to determining the needed capacity for storing
all the SKUs. It is set in such a way that if a SKU is stored on a specific storage type, such as a pallet, it takes
up a predefined amount of space. However, if a SKU is stored on a flexible storage type, such as a shelving
unit, the amount of space it takes up is determined by its demand and volume. Figure 2.3 through Figure 2.5
shows the different storage types.

Figure 2.1: Pallets. Figure 2.2: Shelving units.

Figure 2.3: Dollies. Figure 2.4: Flowracks.

Figure 2.5: Roll containers.
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2.2. Influence on Other Operational Processes
When looking at the SAP, OPRP, and OBP, the situation as laid out by the models is very similar to the current
operational situation in the Picnic FCs. One big difference and new initiative would be the introduction
of MSL. MSL would entail a multitude of changes to the WMS of a Picnic FC and also to some operational
processes. Because of this reason, MSL are not yet implemented or tested into an FC, hence there are no
empirical results. During the research all needed changes were assessed and ideas for implementation were
created. This section discusses the changes on the order picking side and the replenishment side.

2.2.1. Order Picking Changes
During the order picking process there are some changes in the WMS when introducing MSL. This happens
at two stages: during the planning of the pick round and during the actual pick round.

During the planning of the pick round it needs to be determined from which location a MSL SKU is taken.
The goal is to minimise the travelled distance, hence the optimal location of the SKU should be chosen and
that is dependent on the other SKUs in the order. One thing that does come into play is the current amount
of stock. If during the planning stage of the pick round there is not enough stock to pick the SKU from a
certain location, that location is not considered possible to visit. This is done in order to prevent sending
order pickers to a location where there is no stock.

During the pick round the route is already set. When a SKU has MSL and multiple of them are passed, it
needs to be determined from which location the SKU is actually picked. This is determined by the picking
category of the MSL SKU and the other SKUs in the order. There is an order of picking categories, the pick
sequence, which ensures that heavy SKUs are placed before fragile SKUs. The MSL SKU is picked from the
location where it does not interfere with the pick sequence. This is most often the primary location. If the
case presents itself that there are multiple locations that the SKU can be picked from and there is no difference
between them, the SKU will be taken from the location that has the most stock at that moment. Despite these
measures, the scenario can occur that an order picker is sent to a location where there is no stock available.
If the other location is still to be passed in the same pick round, the WMS needs to adjust for this fact and add
the pick at the later location.

2.2.2. Replenishment Changes
Replenishment is the restoration of a SKU to a former level or condition [3]. Replenishment of SKUs that
have one location is straightforward: move the incoming stock to the storage location and anything that is
superfluous gets moved to a so-called buffer location. This changes when a SKU has MSL, since there needs
to be a divide made between all incoming stock. This divide is dependent on the expected number of picks
per location of the SKU and is based on a forecast. An additional challenging part of this is when SKUs are
highly perishable and the Best-Before-Date (BBD) must be taken into account. The challenge of the BBD will
not be tackled in the first version of WMS adjustments to MSL and is therefore not discussed further.

A heuristic is developed to decide which quantity of the stock goes to which storage location in case a
SKU has MSL. The heuristic has two parts, based on whether or not the demand for a location is known. The
semi-urgent demand is where the number of orders needed to pick the SKU and the composition of the or-
ders is known. Non-urgent demand is when there is no information on orders and demand. For both these
cases the concept of a primary location is introduced. The primary location is the location where if there
is a choice, the SKU is picked from. This primary location is based on the picking category of the SKU. For
example, bread is a very fragile SKU and it is better to pick this SKU near the end of the pick round. Then the
bread is not smashed by other, heavier SKUs. Therefore, if bread is present at MSL, the primary location will
be the location that is closest to the end of the pick circuit.

Semi-urgent demand

1. Determine for all non-MSL SKUs from which zone in the pick circuit they are taken.

2. If all non-MSL SKUs are taken from the same zone, determine that the MSL SKU also is taken from that
zone.

3. If all non-MSL SKUs are taken from different zones, determine that the MSL SKU is taken from the
primary location.

4. Set the number of picks as the demand, determine the demand split and use the same split for the
stock.
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Non-urgent demand

1. Set the initial demand for the primary location at 15%.

2. Determine, based on historic data, for each zone the number of pick rounds that only travel to that
specific zone.

3. Determine, based on the same historic data, the number of pick rounds that travel to more than one
zone.

4. Set the number of visits to a specific zone as the demand, with 15% additional demand for the primary
location. Determine the demand split and use the same split for the stock.

5. Any leftover stock is distributed evenly over all locations.

This heuristic should ensure that a SKU can always be picked from the best possible location in terms of
reducing travelled distance and that the order pickers should not encounter empty storage locations. First,
the semi-urgent demand is handled and if enough stock has come in, the non-urgent demand is also handled.



Bibliography

[1] René de Koster, Tho Le-Duc, and Kees Jan Roodbergen. Design and control of warehouse order picking:
A literature review. European Journal of Operational Research, 182(2):481–501, 10 2007. ISSN 03772217.
doi: 10.1016/j.ejor.2006.07.009.

[2] Arkadiusz Kawa. Fulfillment service in e-commerce logistics. Logforum, 13(4):429–438, 12 2017.
ISSN 18952038. doi: 10.17270/J.LOG.2017.4.4. URL http://www.logforum.net/volume13/issue4/
abstract-4.html.

[3] Chan-Ju Lee and Suk-Chul Rim. A mathematical safety stock model for ddmrp inventory replenishment.
Mathematical Problems in Engineering, 2019, 2019.

[4] Seidel Saskia, Nora Mareï, and Corinne Blanquart. Innovations in e-grocery and logistics solutions for
cities. Transportation Research Procedia, 12:825–835, 2016.

75

http://www.logforum.net/volume13/issue4/abstract-4.html
http://www.logforum.net/volume13/issue4/abstract-4.html

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	I Scientific Paper
	II Literature Study previously graded under AE4020
	III Supporting work
	Model Verification
	Case Study
	Picnic Data Set
	Influence on Other Operational Processes
	Order Picking Changes
	Replenishment Changes


	Bibliography


