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Summary

In this paper is discussed the design of an optimum screw propeller

model with endplates at the tips of the blades, based on a linear

optimization theory. Results of experiments are given.

1. Introduction
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AN OPTIMUM SCREW PROPELLER WITH ENDPLATES

We discuss the design of a screw propeller with endplates at the tips

of its blades. The method of design takes into account the interaction

of blades and endplates. The circulation around these lifting

surfaces is determined by the linear optimization theory as described in [i].

A draw back of endplates is that they move with a large velocity

through the fluid and hence give rise to relatively large viscous

losses. Besides this the tips of the blades have to be broad which also

increases the viscous losses. The gain in efficiency is caused by

spreadIng more evenly the tip vortices by which the loss of kinetic

energy E per unit of time becomes smaller. We can write E const. T2/q,

where T is the thrust and q is the quality number of the propeller. The

quality number)of the propeller we consider, varies from q ± 0.65 when

endplates are absent, to q = ± 0.84 when the "ratio of covering" (see

section 5) of the endplates is equal to 1. The formula shows that the

endplates will become more effective in case of a heavily loaded

propeller, because then T is large and E can be reduced by constructing

a propeller with a large quality number q. On the other hand larger

values of q demand endplates with a larger span, hence more viscous

resistance. So here also an optimum has to be sought.
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The theory we apply suffers from the disadvantage that it is a

linearized one and seemingly not adequate for heavily loaded propellers.

Nevertheless, for lack of a non-linear optimization theory, we have used

the linear one. Experiments show that the model designed by means of

this theory can at least compete with a corresponding three bladed

propeller from the B-screw series, which has the saine blade area ratio,

advance coefficient and thrust coefficient as our model propeller in its

design situation. For values of the velocity of advance which are below

the design value, while the rotational velocity of the propeller is kept

the same, thethrust increases andthen it is seenthat theefficiency

of the propeller with endpiates becomes significantly better than the

efficiency of the corresponding B-screw series propeller.

An argument which is sometimes heard against propellers with

endplates is that such a propeller does not behave well behind a ship.

This did not happen with our model propeller when it was tested in the

wake of a ship model.

2. Design criteria for the propellet módel

We first list the design criteria for the screw propeller model.

Diameter of propeller D 2R = 0.2 in,

Diameter of hub Dh 2R. = 0.04 in,

Number of blades Z = 3,

Revolutions per second N = 18.75/sec,

Thrust T = 200 Newton,

Velocity of advance U = 3 rn/see,

Blade area ratio A/iTR2 0.65,

Rake angle O

where Ae is the expanded blade area.

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)



3. The blade

We consider a cylindrical system (x,r,O) (figure 3.1).

With respect to this reference system we have an incoming flow parallel

Ii

u
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Fig. 3.1. Helicoidal surface H. with planform
b

of blade.

to the x-axis with the velocity U = 3 rn/sec and three rotating

helicoidal surfaces H.
J

2(j-1)Tr
e wt+ax=a., a.H. (x,r,O,t) =

- 3 , = 1,2,3, (3.1)

where w = 117.81 rad/sec and (2.6) a = w/U = 39.27/rn. These

surfaces do not disturb the parallel flow.

By the planform
b
of a blade we understand its projection on the

neighbouring helicoidal surface H., a profile of a blade at radius r is

the intersection of the blade with a cylinder of radius r around the

x-axis. An expanded blade is drawn in figure 3.2, its shape upto r/R 0.8 is

the same as that of the B-screw series but has a finite chordlength

(7.5 cm) at the tip, in order to be able to apply the endplate. The

thickness distribution of the profiles is the same as is used for the

B-screw series.



The maximum thickness h of the profiles is chosen to be a linear
mb

function of nR

hb (.) = (0.85 - 0.25 cm.

Hence at the root of the blade (nR = 0.2) the maximum thickness is

0.8 cm and at the tip (nR = i) it is 0.6 cm.

The camber of the profiles follows by lifting surface theory from

the calculated optimum circulation distributions in spanwise direction

along blades and endplates, from the chosen load distribution in chordwise

direction, from the thickness distributions and from the geometry of

blades and endplates.
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Fig. 3.2. Expanded blade with broad tip; line of maximum thickness ---;

B-screw series, chord wise multiplied by 0.95

(3.2)



4. The endplate.

The planform
t'e

of an endplate is the projection of the endplate on

the cylinder with radius r = R = 0.1 in which passes through the tips of

the propeller blades and of which the axis coincides with the x-axis. A

profile of the endplate is the intersection of the endplate with a
* *

helicoidal surface O + ax = O for some value of O , where we take t = O
*

in (3.1). By the chordlength of a profile at a certain value of O we

understand the length of the helicoidal line, which is the intersection
*

of the helicoidal surface O + ax = O and the cylinder r = R = 0.1, in

between the leading edge and the trailing edge of the endplate. In

contradistinction with the helicoidal planform of the blade, the

cylindrical planforn-t of the eridplate can be developed. An endplate has

two sides, the inner side which is directed towards the axis of the

propeller, the other side we call the outer side.

-5-

Fig. 4.1. Developed basic planform of endplate.

The chosen shape of the developed basic planform of an endplate is

drawn in figure 4.1. The length of the mid-chord (AB) is 7.5 cm is
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equal to the chord length of the tip profile of a blade. This mid-chord

is in the three dimensional space, part of one of the helicoidal lines

(3.2) with r = 0.1 m. The developed basic endplate possesses a leading

edge which is a semi-circle of radius 3.75 cm. The trailing edge

consists of two quarter circles of radius 1.875 cm and tangent to them a

straight line segment of length 3.75 cm. The straight tips have a

chordlength of 1.875 cm. The total span is 7.5 cm.

In the realization of the screw propeller with endplates we will

consider endplates of which, in view of their viscous resistance

(section 6), the span is smaller than 7.5 cm. These planforms will have

a developed shape which follows from the developed basis planform of

figure 4.1, by multiplying the dimensions of figure 4.1, perpendicular

to (AB) by some positive number p < 1.

-U,bLö m

X

Fig. 4.2. Developed cylinder r = 0.1 m, with basic planform of endplate;

path of blade tip (AB) , paths of the two other tips

and ----.

We first determine (figure 4.2) the distance i between the path of

blade tip (AB) and the paths of the two other blade tips. We find

i = iD j- {(irD)2
(u)2}_

5.17 cm. (4.1)

- O,16 m

i
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Hence when we take i.' = 5.1717.5 0.689 and multiply the transverse

dimensions of the developed basic planform by this value then, in the

linearized theory, the tip vortices of one endplate will coincide behind

the propeller with the adjacent tip vortices of the other two. In other words,

the helicoidal strips behind the spans of the endplates just "cover"

together the whole cylinder of radius r = 0.1 m. When we take p < 0.689,

then only part of this cylinder is covered. The total span of the

endplate is denoted by 2E = 7.5 p cm.

We now consider the thickness distribution w of the endplate. We

introduce the length parameter a in spanwise direction along the

endplate, perpendicular to the helicoidal lines on the cylinder

r = 0.1 m, with a = O at the midchord (AB), O < a < E at that half of

the endplate which is at the low pressure side of the blade and

-E < a < O at the other half of the endplate.

Independently of the span of the endplate, hence independently of the

value we give to the factor p, the maximum thickness limp of a profile of

the endplate at the midchord (AB) is 0.25 cm and the maximum thickness

of the profile at the tip of the endplate is 0.1 cm. This maximum

thickness changes in between midchord and tip linearly with a, hence

h (2)=(0.25;0.15)cm , a> 0.
mp E

* *
Along each profile of the endplate we choose a parameter s , with s = O

*
at the leading edge, s = i at the trailing edge and which varies

linearly with length. The thickness distribution h(s) of all profiles

of the endplate is the same namely the "Naca 66-006, basic thickness form'1,

*
Table 4.1. Thickness distribution h (s ), Naca 66-006.

p

(4.2)

0.0000 0.0050 0.0075 0.0125 0.0250 0.0500 0.0750 0.1000 0.1500 0.2000 0.2500 0.3000 0.3500
0.000. 0.461. 0.554. 0.693 0.918 1.257 1.524 1.752 2.119 2.401 2.618 2.782 2.899

5 0.4000 0.4500 0.5000 0.5500 0.6000 0.6500 0.7000 0.7500 0.8000 0.8500 0.9000 0.9500 1.0000
2.971 3.000 2.985 2.925 2.815 2.611 2.316 1.953 1.543 t.107 0.665 0.262 0.000
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which is given in table 4.1, where the maximum thickness is 3. Hence we

find for the thickness distribution w of the endplate
p

= .1 h (s h (2h) cm.w(,s 3 p mp Z

Herewith, for some choice of the factor i, the planform of the

endplate and its thickness distribution is determined.

5. Optimum circulation distribution and bound vorticity.

We start with a discussion of the optimum circulation distributions

around the blades and around the endplates. The linear optimization

theory for this type of propeller is discussed in [i]. We shortly

recapitulate the results.

Consider the three helicoidal strips, which are passed through by the

planforms of the three blades, and which are described by the equations

(n-1)
O + ax + 2n = O; - < x < ; 0.02 m < r < 0.1 ni; n = 1,2,3. (5.1)

3

Next consider the three strips at the cylinder r = 0.1 m, passed through

by the planforms of the endplates,

(n-1)

- ax - -
< O < - ax

-
2 + O; - <x< ;

r = 0.1 ru; n = 1,2,3, (5.2)

SS

where O is a measure for the half span Z of the endplate. It follows

from figure 4.2 that = 1.45 liir/3 rad = 1.52 p rad. Finally we assume

the hub to be a two sided infinite cylinder

(4.3)

r=0.02m; -<x<c. (5.3)
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We translate with a velocity X the surfaces (5.1), (5.2) and (5.3) in

the direction of the x-axis, as rigid impermeable surfaces in an

unbounded inviscid and incompressible fluid. Then we calculate by

solving a Neumann problem, the vorticity on these surfaces. This problem

has to be solved under the condition that the cirulation along a

contour which encircles the whole configuration, is zero. By this the

Neumann problem has a unique solution and yields vorticity which is

proportional to X. Giving an appropriate value to X, as will be

discussed directly, the vorticity on the surfaces (5.1) and (5.2) is the

free vorticity shed by the optimum propeller of which the specifications

are given in section 2.

The calculation of this vorticity has been carried out by the vortex

lattice method. On the surfaces (5.1), (5.2) and (5.3) are situated a

finite number of suitably placed concentrated helicoidal vortices. In

between these vortices and on the surfaces are placed the collocation

points at which the boundary conditions for the impermeability of the

surfaces is satisfied. By the "helicoidal symmetry" this has to be done

at one cross-section of the surfaces (5.1), (5.2) and (5.3) by a plane

perpendicular to the x-axis (figure 5.1). It is shown in [i] that only

within or where it occurs at the boundary of the denoted angle of 600,

the vorticity has to be considered as unknown. The vorticity at the

Fig. 5.1. Cross section of the surfaces (5.1), (5.2) and (5.3).

remaining surfaces or at parts of them follow by symmetry or

anti-symmetry.
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By calculating the momentum of the fluid in the x-diretion caused by

the mentioned vorticity, the unknown factor X can be determined so that

theoretically the desired thrust of 200 Newton will be delivered.

Integrating in an appropriate way the now known shed free vorticity, the

circulation r (r) around the blades and the circulation r (a) around the
b p

endplates is obtained.

We now introduce the ratio of covering k of the cylinder of radius

r = R = 0.1 m through the tips of the blades, by the strips given in

(5.2)

From figure 4.2 we find the values of i.', Z and k which correspond to

each other, they are given in table 5.1.

Table 5.1, Corresponding values i, Z and k.

i2
Tb m2/sec

(a.)

-10-

cm

(1) .D2 T m2/sec.
(2)

10

c&)

(1)

2 i rcm 0 0.65 1 1,,3 194 2.58 3

Fig. 5.2. Optimum circulation distributions; (a), Fb along blades; (b),

I' along endplates, (1) k = 1.00; (2) k = 0.75; (3) k = 0.50;

(4) k = 0.25.

C cm

0.689 - 0.517 0.345 0.172

Z 2.58 1.94 1.30 0.65

k 1.00 0.75 0.50 0.25

k= O <k < 1. 5.4)
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For k = 1, 0.75, 0.50, 0.25, we have calculated the optimum

circulation distributions Fb(r) for the blades and r (o) = - F (-a) for

the endplates. These are drawn in figure (5.2) and their numerical

values are given in tables 5.2 and 5.3.

Table 5.2. lO2Fb(r) m2/sec, along span of blade.

Table 5.3. iO2r(a/Z) m2/sec, along span of endplate.

We now consider a flat actuator disk perpendicular to the x-axis

consisting of a circular ring with outer radius r = R = 0.1 m

and with inner radius r = R. = 0.02 m, hence its area A = 0.0302 m2.

The disk has the same velocity of advance U = 3 rn/sec as our propeller

model and yields the same total thrust T = 200 Newton, which is

uniformly distributed over the area of the disk. We denote the energy

loss per sec of our screw propeller by E and the energy loss per sec of

the disk by E. Then we define the quality number q of our screw propeller

r cmk 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 6.25 6.75 7.25 7.75 8.25 8.75 9.25 9.75

LOO 8.089 8.632 9.260 9.862 10.40 10.88 11.28 11.62 11.91 12.16 12.35. 12.51 12.63 12.72 12.76 12.70

0.75 8.177 8.724 9.357 9.962 10.50 10.97 11.37 11.71 11.98 12.20 12.37 12.50 12.58 12.62 12.63 12.58
0.50 8.484 9.049 9.699 10.32 10.86 11.33 11.71 12.02 12.25 12.40 12.49 12.49 12.43 12.29 12.12 12.03

0.25 9.098 9.699 10.39 11.03 11.59 t2.O5 12.42 12.68 12.84 12.89 12.83 12.62 12.26 11.72 11.04 10.39

k 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.9375

t.00 6.052 5.387 4.757 4.123 3.490 2.857 2.227 1.600 0.982 0.434

0.75 6.013 5.511 5.009 4.494 3.972 3.442 2.898 2.330 1.719 1.044

0.50 5.770 5.364 4.947 4.518 4.088 3.610 3.118 2.582 1.970 1.241

0.25 4.985 4.679 4.361 4.028 3.675 3.297 2.885 2.422 1.874 1.196
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(5.5)

From [i] it follows first, that q is independent of the thrust T, second,

that q < 1 and third, that Ea is equal to

- 221 Newton m/sec.

Then the potential theoretical efficiency r of the screw propeller can

be written as

TU
E

-1 T -1 0.368 -1
ri = TU + E

- (1
+

(i
+ 2

= (1
+ q

s 2qU Aa

We note that the efficiency is always the efficiency in the design

situation, with the exception of section 8 where also or even mostly

experimental results for off-design conditions are given.

From the optimum circulation distributions as given in tables 5.2 and

5.3 it is possible to calculate the lost kinetic energy E and hence the

quality number q as a function of for instance the ratio of covering k.

The results are given in table 5.4 where we added the value of q for

k = 0, hence when no endplates are applied. Also in this table we give

Table 5.4. Quality number q and efficiency '.

(5.6)

the efficiency ' (inviscid fluid) of the screw propeller. From this table

it follows that q and for the fixed value of T also ri increase with k. However

it follows from (5.7) that the increas-c of the efficiency' becomes more

important for larger values of the demanded thrust T. Hence endplates

become more important for heavily loaded propellers, unfortunately then

k 1.00 0.75 0.50 0.5 0.00

q 0.838 0.827 0.793 0.734 0.648

0.695 0.692 0.683 0.666 0.638 T = 200 Newtonl

T2
E

= 2PUAa
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our linearized theory becomes less reliable.

Finally we discuss how the optimum circulation distributions Fb and

r as given in tables 5.2 and 5.3, are distributed as vorticity
1b

and

respectively, per unit of length in chordwise direction, where or

is the component of the local vorticity at blade or endplate which is

perpendicular to the direction of the chord. This has been done both for

the profiles of the blades and for the profiles of the endplates in the

same way, as is drawn in figure 5.3. If the chordlength is c, then

or y) increases linearly from O at the leading edge to its maximum

value at the point 0.1 c. The vorticity then remains constant upto

A1 trailing
H edge

teading
edge O.1C

Fig. 5.3. Chordwise distribution of vorticity.

0.6 c and then decreases linearly, to zero at the trailing edge. The

value y has to be chosen such that the integral of y equals the known

circulation F or F
b p

6. On the influence of viscosity on the span of the endplates

In this section we investigate, be it in an approximate way, the

influence of the span of the endplates on the efficiency when viscosity

is taken into account. From table 5.4 it follows that the potential

theoretical efficiency '(k) of the screw propeller in its design

situation increases when the span of the endplates 2E with O < E <2.58 cm

and hence the ratio of covering k, increases. However when the span 2E

increases also the viscous resistance of the endplates becomes larger,

hence the physical" efficiency n of the propeller will not increase as

O,6C C



-14-

fast as is suggested by the increase of . In fact it can be expected

that for k = i - 6, 0 < 6 « 1, the viscous losses increase faster than

the potential theoretical gain. The reason is that in the neighbourhood

of the maximum of the potential theoretical efficiency k1), this

efficiency probably behaves as (k) = (1) - 0(62). Hence a gain is

possible only of 0(62). However the viscous losses increase by 0(6) for

k - 1, which is certainly larger when 6 is sufficiently small. We will

investigate the influence of the viscosity on the efficiency somewhat

more closely.

We calculate the viscous resistance of the endplates approximately

by using a plate resistance formula. We divide the half span (3.75 cm)

of the basic planform (figure 4.1) in 5 equal intervals. Then we

consider the chordlines through the endpoints of these intervals,

which are parallel to (AB). These lines divide the area of the

half endplate into five parts with area's ES (n=1,2,...,5), where

is next to (AB). These area's are

= 5.6, ES2 = 5.48, = 5.23, = 4.66, ¿S5 = 3.22 : cm2.

(6.1)

The mean values of the chordlengths of these area's are

c1 = 7.49, c = 7.35, c = 6.94, c4 = 6.30, c5 = 4.50 : cm. (6.2)

Next we consider the Reynolds numbers Rey (n=1,... ,5), these area's

with respect to their mean chordlengths c, namely

U +wR}2 2 2 1/2
def

Vc

= 1,...,5), (6.3)Rey = c
n y n

where we take for the kinematic viscosity of water y = 1.2 106m2/sec.

The viscous resistance of one strip of area S can approximately be

written as
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2 V2
0.075

ES Newton,

- (101og Rey _2)2 n

n

where the first factor 2 is because the strip has two wetted sides. Now

suppose we have a ratio of covering k then we have to multiply (see

table 5.1) each strip area LS by 0.689 k. It follows from (6.4) that we

can write the total viscous resistance F(k) of one endplate as

2
2S

n
F(k) = 0.689 kp V 0.075 Z

10 2
n=1 C log Rey -2)

n

- 2.54 k Newton, (6.5)

where now the factor 2 under the summation sign is because each endplate

consists of two halves. This resistance acts in the direction (AB) of

figure 4.2.

We calculate the extra power E needed for the rotation of the

propeller, caused by the viscosity of the water. For that purpose we use

the components of the resistance of the endplates perpendicular to the

x-axis. We find

LE = wRTrD{(TD)2 + ()2}3F(k) = 86.99 k Newton rn/sec. (6.6)

There is also the power needed to overcome the viscous resistance of the

blades. In our approximation this power is independent of k and

therefore it is not important for the following, we denote it by tEb.

Then we find the power Ett needed to rotate the propeller

E

E = + E + ÊE } - 86.99 k + EE ) Newton rn/sec.
tot q p b q b

(6.7)

We now calculate for which value of k the right hand side of (6.7) is

minimum, q = q(k) depends also on k (table 5.4).

k = 1.00, 0.75, 050, 0.25, 0.00,

(E - Eb) = 351 , 333 , 322, 323 , 341 , Newton rn/sec. (6.8)
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It follows that a minimum of E occurs for a ratio of covering k in
tot

between k = 0.5 and k = 0.25.

We mentioned already that endplates become more appropriate for

larger values of the thrust. For instance when we take T = 300 Newton,

then using (5.6) we find instead of (6.7)

E - 2L + 86.99 k + LEb} Newton m I sec.
tot q

By this (6.8) changes to (note that q = q(k) is independent of T),

k = 1.00, 075, 0.50, 0.25, 0.00,

(E - ìEb) = 680 , 667 , 671 , 699 , 767, Newton rn/sec.

From (6.10) it is seen that now a minimum of Ett occurs for a larger ratio

of covering k, in between k = 0.75 and k = 0.5.

7. Camber of profiles of blade and endplate

From section 5 we know the bound vorticity distribution over blades

and endplates. This is the component of the vorticity which is perpendicular

to the helicoidal lines on the planforms of the blades and on the planforms

of the endplates, respectively. Then because the vorticity is free of

divergence also the vorticity component along these helicoidal lines is

known and also the shed vorticity on the helicoidal lines behind the

blades and endplates. This means that all the vorticity is known. The

source and sink distributions at the planforms of blades and endplates

follow from their thickness distribution.

By this knowledge we are able to formulate a linearized lifting surface

theory which yields the camber of the profiles. This has been done by

means of the well known vortex and source lattice method.

(6.9)

(6.10)
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We still make a remark about the hub. Because we did not put

vorticity at the geometrical hub cylinder, the component of the velocity

induced by the vorticity and sources, perpendicular to the cylinder will

not be zero. From this normal component we can calculate the slope of the

flow along a helicoidal line at the hub cylinder. By intergrating this

slope we find the shape of the hub for which the camber of blade and endplate

profiles as calculated above, will be correct. It is however to be expected

that in the working parts of the screw propeller the error will be small

when we still take a circular hub for our model used in the experiments.

Some results of the calculation, for the ratio of covering k = 0.75, are

given in figures 7.1, 7.2, and 7.3. It can be seen that the camberlines of

the profiles of the endplate at the low pressure side and at the high

pressure side of the blade, are different. This difference of the profiles

close to the tip of the blade (figure 7.2, a1 = 0.05 and figure 7.3,

= -0.05) will cause a ridge in the middle of the outer side of the endplate.

However by keeping the trailing edge of both halves of the endplate at

the same level, this ridge is only pronounced in the leading edge region of

the midchord of the endplate as can be seen in the photograph of the

propeller model (figure 7.4).



(b)

(a-)

Fig. 7.1. Profiles of screw blade; (a) nR = 0.225 ;(b) nR = 0.625;

(c) t/R = 0.99375. Camberlines and thickness distributions.
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(C)

(b) /

Fig. 7.2. Profiles of end plate, low pressure side of blade; (a) a/E 0.05;

(b) a/E = 0.45; (c) a/E = 0.9375. Camberlines and thickness

distributions.



(b)

(C)
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Fig. 7.3. Profiles of endplate, high pressure side of blade; (a) a1 = -0.05;

(b) o/E = -0.45; (c) a/E = 0.9375. Camberlines and thickness

distributions.
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Fig. 7.4. Photo of model screwpropeller.
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In figure 4.1 we gave the developed basic planform of the endplate.

The endplate we will use in our model propeller is for a ratio of

covering k = 0.75. This is larger than the value of k which follows from

(6.8). The reason for this is that we first intended to make a number of

propellers with decreasing values of the span Of the endplates. Due to

difficulties in the manufacturing of the propellers we have at our

disposal only the propeller with k =0.75. However it turns Out in

section 8 that this one is not bad at all. It follows from table 5.1

that the factor by which the transverse dimensions of the developed

basic planform of the endplate have to be multiplied is p= 0.517. This

results in the shape drawn in figure 7.5 where also the calculated tip

A2
r-

high pressure

[ow pressure

Fig. 7.5. Developed planform of endplate (k = 0.75) with tip profile of

blade, I(AB)I = 7.50 cm, I(CD)I = 3.88 cm.
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profile of the blade is drawn (figure 7.1 (c)).

We now discuss some difficulties which arise from the assumptions

made in the linearized theory with respect to the positions of the

profiles of blades and endplates, in other words by satisfying the

boundary conditions at the planforms of blades and endplates. In the

linearized theory it is assumed that the rather thick and cambered tip

profile of the blade coincides with the infinitely thin helicoidal line

(AB) in figure 7.5, which forms the tip of the planform of the blade and

which is a straight line in the developed planforni of the endplate. A

profile of the "developed" endplate lies in a plane perpendicular to the

plane of drawing of figure 7.5, it coincides in the linear theory for

instance with the developed helicoidal line (A2B2) which is straight and

parallel to (AB). When (A2B2) is too close to (AB) it cuts the

calculated tip profile of the blade tip and passes from its high pressure

side to its low pressure side. Of course this makes no sense.

Another difficulty is that the streamlines just above the endplate

and just below it are not nearly parallel but cross each other. The

reason is that the disturbances caused by the blade at the inner

side of the endplate are rather strong. This means that the concept of a

profile of the endplate is lost to some extent.

It follows from the above that our linear results cannot be applied

without adaptions to the geometry we used up to now for the endplate.

In order to cope with the above mentioned difficulties we have

remodelled the endplate by putting its profiles along the mean

streamlines above and below the endplate. In the neighbourhood of the

blade they follow exactly the blade tip profile.



8. Experimental results

First we give some general considerations. We use the following

dimensionless quantities

cV
r

J = U/ND, 1T = T/pN2D4, KQ = Q/pN2D5, Rey -
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(8.1)

where Q is the moment exerted at the propeller axis, c iS the

chordlength of the blade at r = 0.85 R = 0.0085 m and V = {U2+w2(0.85)2}

is the velocity of that chord. The value of nR is taken somewhat larger

than is usual for ordinary screw propellers because here the working

part of the blade is more in the neighbourhood of the tip. The demanded

theoretical design condition corresponds to J = 0.8 and KT = 0.356. From

dimension analysis it follows that for similar screw propellers acting

in an unbounded incompressible viscous fluid when cavitation does not

occur, we have the relations.

n = n(J,Rey), KT = K(J,Rey), K = KQ(J,Rey). (8.2)

Consider a propeller which is working in an inviscid fluid and which

is optimum with respect to our linear theory. Its diameter is D1, its

number of revolutions per second is N1, its velocity is U1 and its

delivered thrust is T1. Then we consider another propeller which originates

from the previous one by multiplying all dimensions by o, where o is some

positive number. Hence it is similar to the previous one and its diameter

D2 = aD1. Suppose that the rotational velocity of this latter propeller

N2 = TN1, where T is some positive number. Then hen its velocity U2 =

it can be shown that the new propeller is again optimum, its

thrust T2 = 04T2T1 and its quality number q is the same.

For both propellers of the preceding paragraph J has the same value,

hence in an inviscid fluid it follows from (8.2) that KT is the same,

which is in agreement with the two mentioned thrusts T1 and oT2T1. That

the second propeller is also optimum is of importance for the

application of our results to real propellers.
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The model of the screw propeller with endplates, which has a diameter

D 0.2 m has been observed in a cavitation tunnel with a cross section

of 0.3 m by 0.3 m. The velocity of the tunnel flow, the number of

revolutions per second of the propeller and the ambient pressure in the

tunnel, have been adjusted to give a good impression of the shed

vorticity in approximately the design condition. The hub vortex which

occured was quite normally visible. Tip vortices of the endplates however

could be made visible with difficulty by lowering strongly the ambient

pressure in the tunnel and only at those half endplates which are at the

high pressure sides of the blades. Probably the reason for the

difficulty in showing the tip vorticity is that the endplates were

designed to have distributed shed vorticity which is important for

optimization. Sheet cavitation could be created at the low pressure

sides of the blades, but it did not continue on the adjacent parts of

the inner sides of the endplates. Also sheet caviation could be realized

at the outer sides of those half-endplates which are at the low pressure

sides of the blades.

Next we describe some open water tests, hence with the propeller

moving in undisturbed water. The axis of the propeller was 24 cm below

the water surface, which turned out to be sufficiently deep to avoid free

surface effects. There has been carried out two different series of

measurements. One for smaller velocities hence for smaller values of Rey,

with N 5.50/sec and another for larger velocities, hence for larger values

of Rey, with N 18.75/sec. The results have been drawn in figure 8.1.

From the two series of experiments we consider in each one that

experiment of which the value of J is close to the design value J = 0.8.

This is for the series with the small velocities, J = 0.801, U = 0.882

m/sec, N = 5.51/sec hence Rey = 0.25 io6 and for the series with the

large velocities J = 0.805, U = 3.025 m/sec, N 18.79/sec hence Rey =

0.85 io6. For these two cases we find from the measurements KT = 0.294,

ri = 0.575 and KT = 0.297, n = 0.601, respectively. Hence there is an

increase in efficiency of about 2.5% caused by increase in the

Reynolds number by a factor 3.4.
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K1, lOKq;11
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Fig. 8.1. n,KT and KQ open water test,

N = 18.75/sec , N = 5.50/sec

It follows from these results that for the design condition with J =

0.8, the value of 0.30, which corresponds to a thrust of 168

Newton. It can be calculated easily by the method of section 6 that

there is a viscous loss of thrust wich approximately amounts to

i T = 6 + 1.88k = 7.4 Newton. Hence the delivered potential theoretical

thrust of our model screw can be taken as 168 + 7.4 175 Newton. This

is 25 Newton less than the demanded thrust of 200 Newton. It seems that

this deficiency has to be attributed to the shortcomings of the

linearized theory, which we hope to correct in the future.
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We now accept our model propeller with its thrust of 168 Newton and

look for a B-screw series propeller with 3 blades, with the same blade

area ratio = 0.65 and which has for J = 0.8 the same value K,1, = 0.3 as

our model propeller. This is the screw propeller with HID = 1.372 where
*

H is its pitch. This propeller we call the B propeller and our

propeller we call the G propeller. The values of ri nd K.r of the B and

the G propeller are drawn in figure 8.2, where for the G propeller we

took the values measured with the larger values of Rey (N = 18.75/sec).

0.8

0.7

0,6

0.5

0,4

0,3

0.2

0.1

O

K1;'T

0,1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1,6

*
Fig. 8.2. n,KT open water test, G propeller , B propeller

It turns out that for J = 0.8 the efficiency of our G propeller is
*

slightly larger than that of the B propeller. The B-screw series however

have been tested for Rey 2 106 which is a factor 2.35 larger than the

value Rey = 0.85 io6 for which the G propeller was measured (J=0.8). This

means that this difference in efficiency would have been somewhat more

in favour of the G propeller (about 1.5%), if the G propeller also had

been measured with Rey = 2 io6. We note that, because the G propeller

has its endplates at the tip of its blades, it increases more in
6 *

efficiency when it is considered at Rey = 2 10 than the B
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propeller decreases in efficiency when it is considered at Rey = 0.85

iü6. It can be expected that a propeller with endplates will have more

advantage of the large Reynolds number when it is used as a real

propeller, than a B-screw series propeller.

When we consider both propellers for values of J < 0.8 then KT

increases and hence also the thrust. Then it can be expected that the

endplates become more effective and that the efficiency of the C
*

propeller will become significantly larger than the efficiency of the B

propeller. That this is true follows from figure 8.2, where we have to

notice that for values of J < 0.8 the value of of the G propeller is

even larger than the value of KT of the B propeller. Hence for larger

loading the propeller with correctly shaped endplates seems indeed to be

favourable. Probably this effect would have been smaller when we had

taken the ratio of covering k between k = 0.25 and k = 0.5 as follows

from (6.8), instead of k = 0.75 as we did.

Finally we give some measurements carried out with the propeller with

endplates working behind the model of a tanker with a block coefficient

of 0.8. The length of the model was 3 m, its breadth 0.4 m, its

immersion at the stern was 20 cm and at the bow 13 cm. This tanker model

was positioned in front of the experimental set up which was used for

the open water tests. Because the propeller was somewhat too large for

the tanker model, it was placed in the plane of the propeller of the

tanker but with its axis at the somewhat lower level of 17 cm below the

water surface. The number of revolutions per second of the propeller was

N = 5.5/sec.

The resùlts of this experiment are given in figure 8.3. Suppose that

the ship model moves with the velocity W and that the value of the

thrust coefficient is K.. The screw behind the ship encounters the water

with "in the mean" a velocity W < W. This velocity W we define by

using the experiments of the open water tests in the following way. We

put W equal to the velocity in the open water test (for N = 5.50/sec),

for which the same value KT occurs as behind the ship model.
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Fig. 8.3. (1) n of screw behind tanker model; (2) n open water test N =

18.75/sec; (3) n open water test, N = 5.50/sec.

An approximation of the effective wake factor (W_Wa)/W for our ship

model is

(W_Wa)/W = 0,1 + 0.081 WIND. (8.3)

The efficiency n, curve (1) in figure 8.3, follows from

where KT and KQ belong to the velocity W of the tanker model and J =

W IND, where W corresponds to W in the way as we described above.
a a

(8.4)
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