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Abstract
Laughter is a complex multimodal behavior and
one of the most essential aspects of social interac-
tions. Although previous research has used both au-
ditory and facial cues for laughter detection, these
approaches are commonly afflicted with difficulties
in noisy, occluded, and privacy-sensitive settings.
This paper explores the potential of using body pos-
ture alone—captured through 2D keypoint estima-
tion as a robust signal for automatic laughter detec-
tion in naturalistic settings. We create a machine
learning pipeline using the ConfLab dataset, which
segments pose data, extracts motion-based features,
and trains Random Forest classifiers on various
annotation modalities (audio-only, video-only, and
audiovisual) and segmentation methods (fixed and
variable length). We show that, while variable-
length segmentation yields optimal performance,
it leads to overfitting. On the other hand, fixed-
duration segmentation with three-second windows
and audiovisual annotations achieves a pragmatic
compromise and reaches F1-scores (65%) com-
parable to earlier efforts in ideal environments.
Upper-body movement, especially head and arm
motion, is seen to be salient cues to laughter via
feature importance analysis. Annotation modality
is also found to significantly affect both classifica-
tion performance and relative pose feature impor-
tance. These findings demonstrate the viability of
pose-based laughter detection and reveal how an-
notation choices shape model behavior, offering in-
sights for affective computing in the wild.

1 Introduction
Laughter is a universal behavior and a fundamental build-
ing block of human interactions. Apart from its most well-
recognized function as a response to humor, laughter can also
occur in response to embarrassment, awkwardness, or agree-
ment, thus facilitating nuanced aspects of human nature [15].
Furthermore, laughter is a multimodal signal that combines
its characteristic sound, facial expressions, and body motions.
Darwin described excessive laughter as: “the whole body is
often thrown backwards and shakes, or is almost convulsed;
the respiration is much disturbed; the head and face become
gorged with blood; with the veins distended; and the orbicular
muscles are spasmodically contracted in order to protect the
eyes. Tears are freely shed.”[2][14] This richness in modality
makes laughter an important non-verbal social cue that has
attracted researchers from various disciplines [4].

With the growing development in fields such as cognitive
robotics and artificial intelligence, interactions between hu-
mans and machines are becoming increasingly common[7].
To facilitate natural communication, it is essential for auto-
mated systems to understand not only linguistic content but
also non-verbal cues like laughter. From here then arises the
need for reliable laughter detection systems[13].

Significant effort has already been devoted to detecting
laughter using its acoustic properties and facial expressions

[3][6][9]. While effective in controlled environments, these
approaches are often impractical in real-world (“in-the-wild”)
social interactions, where conversations are noisy, sponta-
neous, and participants may be partially occluded[5]. In such
settings, audio signals can be compromised and multiple cam-
era angles may be required to maintain consistent facial vis-
ibility. Pose estimation, however, offers a promising alterna-
tive. It enables laughter detection based on full-body motion,
which is often observable even when faces and voices are not
clearly captured. As a single camera can capture multiple
individuals, and occluded keypoints can be inferred from vis-
ible ones, pose estimation reduces system complexity and in-
creases robustness [9][6]. Moreover, pose-based methods are
more privacy-preserving, as body posture is generally consid-
ered less sensitive than facial imagery or voice recordings.

Another major challenge in laughter detection is its sub-
jectivity. While some instances of laughter are clearly
recognizable, others—such as smirks or restrained expres-
sions—may be more ambiguous.[1] This ambiguity compli-
cates annotation and often necessitates multiple annotators
per instance. However, the presentation modality during an-
notation (e.g., audio-only, visual-only, or audiovisual) can
significantly influence labeling outcomes [14], [8]. Given
that most annotations are performed with audio or audiovi-
sual input, it remains unclear how visual-only annotations
might differ—both in terms of label distribution and down-
stream model performance—especially when the features are
derived exclusively from pose data.[10]

This study seeks to answer the following research ques-
tion: How reliable is pose estimation in correctly identi-
fying laughter in the wild? In order to do that we drew in-
spirations from three different studies. First, we extend work
presented by Griffin et al. and Niewiadomski et al. in laugh-
ter detection based solely on pose estimation to in-the-wild
social contexts.[6][9] Second, we leverage the methodolog-
ical framework of Quiros et al. to analyze how annotation
modality affects model performance and feature importance
in pose-based laughter detection. [14] In doing so, this study
aims to uncover modality-specific biases in annotation and
assess whether pose estimation alone can serve as a reliable
signal for laughter detection.

The aim of this paper can be further split into answering
the following sub questions:

1. Can body pose features alone suffice for laughter detec-
tion in in-the-wild settings?

2. How does the annotation modality influence classifier
performance?

3. How do we split the data in smaller chunks (segments)
to maximize classifier performance?

4. Do labeling modalities bias the importance of specific
pose features in the best performing model?

2 Related Work
The rich multimodal nature of laughter, as a social sig-
nal, has attracted the attention of researchers across var-
ious fields such as psychology, affective computing, and



human-computer interaction. It serves various social func-
tions, including affiliative bonding, tension diffusion, and
norm enforcement.[15] The social function and characteris-
tics of laughter have been rigorously studied highlighting its
vocal aspects as the most prevalent, but also recognizing that
laughter can affect facial expression, physiological changes
and distinctive body movements. [4] [3]

Traditional approaches to automatic laughter detection
have heavily relied on vocal cues and facial expressions. For
example, Schroder et al. emphasize the need for artificial
agents to recognize non-verbal cues like laughter for mean-
ingful social interaction.[13] Several systems have been pro-
posed to classify laughter based on acoustic features in con-
trolled environments.[12] However, these systems often fail
in real-world settings where occlusions, noise, and camera
limitations compromise data fidelity, as shown by Gillick et
all. when comparing the performance of audio-based laugh-
ter detection models in controlled and spontanious environ-
ments. [5]

To address these limitations, recent research has shifted to-
ward using body movement as a modality for laughter detec-
tion. Griffin et al. first showed that laughter could be detected
using pose estimation with accuracy relative to that of human
guess [6]. Similarly, Niewiadomski et al. expanded on their
work giving new settings and feature sets, training classifiers
like Random Forest and SVM and again achieving F1-scores
close to those of human annotators[9]. Those studies however
take place in a controlled environment with perfect visibility,
and as such we aim to translate their methods in more natural
settings.

Complementary to these efforts, Di Lascio et al. explored
laughter recognition through physiological and movement
data, collected via a non-invasive wrost-worn devises, col-
lected via non-invasive wrist-worn devices[3]. This provides
an alternative to pose estimation in laughter detection in terms
of a privacy-safe evaluation.

Dupont et al. provide a comprehensive review of mul-
timodal laughter research, highlighting the interdisciplinary
nature and technological challenges of detecting laughter
across modalities[4]. Building on this, the ConfLab dataset
represents a major step toward privacy-conscious and ecolog-
ically valid data collection in social settings. It enables robust
pose estimation even from overhead perspectives, thus facili-
tating the study of unscripted social behavior[11].

A key gap identified in the field is the subjectivity and am-
biguity in labeling laughter, especially when cues are subtle
or mixed with other emotional expressions. Quiros et al. in-
vestigated how annotation modality—audio-only, video-only,
and audio-visual—impacts the consistency of laughter labels
and subsequent model performance. They found significant
differences in inter-rater agreement and model accuracy de-
pending on the annotation source [14]. These findings sug-
gest that the modality presented to annotators can bias the
labeling process and potentially confound model training and
evaluation. Their study however does not investigate those
effects on pose estimation data and how different modalities
affect the accuracy of those methods - a question we aim to
answer in this paper.

3 Methodology
To investigate the reliability of laughter detection using
pose estimation, we construct a complete machine learning
pipeline comprising the following stages:

1. Preprocessing: We begin with pose estimation data
from various participants in several videos.

2. Segmentation: The data set is divided into sub-parts;
segments.Each segment contains:

• 2D keypoints for each frame,
• video id,
• participant’s id,
• start and end frame indices,
• a binary label indicating if any of the frames in the

segment are annotated as laughter.

To achieve this result we utilize two segmentation ap-
proaches:

• Continuous segmentation: Generates variable-
length segments that are label-pure (all frames
share the same label).

• Fixed-length segmentation: Generates segments of
fixed duration (1s, 3s, or 5s); shorter segments are
padded to desired length.

3. Feature Extraction:: From each segment, we extract a
12-dimensional feature vector of the keypoints across its
frames.

4. Classification: We use a Random Forest classifier for
training. One model for all combinations of:

• segmentation strategy (variable-length, 1s, 3s, 5s),
and

• modality (no audio (video-only), audio only, audio-
visual),

resulting in 12 unique model configurations. Ap-
pendix A contains a more detailed diagram of the
methodology.

3.1 Data Preprocessing
The experiments draw upon the ConfLab1 dataset that cap-
tures natural social interactions in a relaxed environment with
multi-camera over-head video. The data we are concerned
with consists of eight video segments with length of around
two minutes[11]. Each segment is shot by 4 different cam-
eras at 60 fps and contains up to 17 body keypoints for every
participant at every frame. We select the optimal camera an-
gle for each video-participant-frame triple (we refer to this
combination as an instance from now on) to avoid copying of
the same behavior. Each instance is independently labeled
by three annotators for each modality (audio-only, visual-
only, and audiovisual), totaling to 9 annotations per instance.
To construct a ground truth label, we use a majority label-
ing strategy: whenever two out of three annotators from any
modality marks the instance as laughter, it is considered a
positive sample instance for this modality. In case of a tie we

1https://data.4tu.nl/collections//6034313



consider the instance as positive. This approach increases the
amount of labeled laughter instances and reduces noise.

Despite removing noise there is still a stark difference in
inter-agreement between modalities. 83.5% of laughter in-
stances have only one modality for which the participant in
the frame is considered laughing (positive instance); 14.2%
have two modalities labeling them as positive, while only
2.3% have all three modalities consider the instance positive.
The figures below illustrate this trend - Figure 1 showcases
the variety of modality-unique instances (instances that are
positive only for a single modality), while Figure 2) high-
lights the lack of agreement between any two modalities, and
to even lesser degree between all three. As we can see both
from the data and figures, the amount of instances, which only
one modality considers as laughing is significantly greater
than the amount in which there is agreement between any of
the modalities. To that extend we can take this data as sup-
port to the claim that modality of annotation would affect the
performance of the models and as such is worth investigating.
After filtering and aligning all of the pose data, it was time to
segment it.

Figure 1: Annotation agreeness across modalities. Highlights
frames labeled as containing laughter by only one of the modali-
ties. Blue for no-audio segment, green for with audio segments, and
orange - only audio segments.

Figure 2: Annotation agreeness across modalities. Shows segments
where there are two (blue) or three (red) modalities that agree that a
given frame contains laughter.

3.2 Segmentation Strategies
To train temporal classifiers, we segmented the data into
smaller chunks to construct a final dataset containing both
positive and negative samples. Since the goal is to identify
laughter, each sample must be sufficiently descriptive, cap-
turing not only the laughter itself but also the transitional
states before and after. With this objective—and consider-
ing the characteristics of our dataset—we made several key
decisions.

First, because human reactions are not instantaneous, we
introduced a delay to the segments. Prior research estimates
the average human reaction time at approximately 200 ms
[16]. Accordingly, all laughing segments were padded with
an additional 12 frames (1/5 of a second) at the beginning,
compensating for delayed human responses to laughter.

Second, to reduce noise caused by brief and potentially am-
biguous events, we excluded sequences of 20 frames (exclud-
ing the delay) or fewer from the set of positive samples. Such
short instances were treated as noise rather than valid positive
episodes in the segmentation techniques described below.

Third, we introduced a two second gap between any posi-
tive and negative segments. By doing so we ensure maximal
separability between different types of annotation. Moreover
we ensure all transitional behavior is associated with identi-
fying laughter, allowing the model to learn not only the ex-
pected behavior once laughter is present but also the preced-
ing and residual motion in case the latter is more prominent
than the former.

Finally, to maintain segment purity and avoid mixtures of
positive and negative instances, we chose not to use sliding
windows, as they tend to introduce impurity by blending dif-
ferent classes within a segment. Instead, we focused on iden-
tifying positive instances and build our segments from them.
To that extent we explored two segmentation strategies, each
trying to find a balance between interpretability, data cover-
age, and annotation purity

Variable-Length Continuous Uniform Segmentation is
the first segmentation technique focuses entirely on purity
of the segment. Segments are formed by grouping sequen-
tial positive instances of the same label. This ensures all in-
stances in a given segment belong to the same type of behav-
ior making labeling the segment itself trivial. On one hand,
this preserves natural episode lengths and is especially suit-
able for learning organic behavior. On the other it creates a
dataset with non-uniform segments. Moreover as shown by
Figure 3) the laughter segments are much shorter then their
non-laughter counterparts.

Figure 3: Length distribution of laughter episodes (left) and the
whole dataset(right) using sequential laughter segmentation.

Table 1 shows more in depth statistics into the laughing
segments only. As we see there is a big discrepancy between
the lengths across modalities but also in single modalities as
well.

In order to better address this issue we decided along with
the uniform segmentation to introduce fixed window length
segmentation, which ensures consistency by splitting the
dataset into segments of equal length. Our second segmen-
tation techniques builds off of the first by grouping all se-
quential positive instances, and then pad them to a number of
frames that is divisible by the chosen segment length. For ex-
ample, if participant x is annotated as laughing from frames



Table 1: Laughter Segment Length Statistics (in frames) Across An-
notation Modalities

Modality Mean 50% 75% 100%
No Audio 81.43 55.00 96.00 606.00
With Audio 69.16 46.00 78.00 550.00
Only Audio 58.36 45.00 71.00 429.00

100 to 145, we obtain an initial segment of 46 frames. After
adding the 12-frame delay, the segment becomes 58 frames
long. To reach the fixed window length of 60 frames, we pad
one frame on each side. In case the original length exceeds
the window length we pad it and then divide into smaller mul-
tiple smaller segments.

For our negative sample set we follow a similar strategy.
We remove all frames that are part of laughter segments, in-
troduced the gap, mentioned eariler, and divide the remainder
of the space into window length chunks. Figure 4 depicts the
segmentation of three participants for a part of a video and
lustrates our two main goals in this strategy. First, different
label segments are far not close by ensuring separability. Sec-
ond all transitional behavior is noted as laughter preserving as
much purity as possible.

Figure 4: Illustration of segmentation strategy for participants(y-
axis) 1,2,3 and frames (x-axis) 2650-5300 of vid2seg8 for no audio
annotation and a window size of 60. The light blue show segments
eligible to be in the negative dataset away from laughing segments
noted in gray. Yellow show the actuall laughing frames annotated as
laughing in the dataset.

The window lengths we chose for this experiments:

• 60 Frames - One second segments; the closest to the
mean of all modalities and still bigger than the median
ensuring most laughter segments are unbroken

• 180 Frames - Three second segments; Bigger than 75%
of the segments, enough to capture some transitive be-
havior but still close to the mean

• 300 frames - Five second segments; Bigger than 90%
of the segments so almost no segments will be broken
into smaller chunks ensuring preservability of laughter,
while also capturing more transitive behavior. Quite
larger than the mean, however which can also lead to
some non-laughter behavior being caught as well.

Each approach is a compromise between temporal align-
ment and segment consistency. Before continuing on all seg-
ments are stored inside a pandas dataframe with the follow-
ing columns: Video id, participant id, modality, start frame
id, end frame id, label. For each of those segments we then

took the keypoints for each frame and performed feature ex-
traction.

3.3 Feature Engineering
With the work of Niewiadomski et al. [9] as a foundation,
we extracted a collection of kinematic and postural features
based on the 2D pose estimates. Our final feature collection
includes:

• Kinematic Features: Velocities, accelerations, and dis-
placements of major joints per frame.

• Postural Dynamics: Trunk rocking, shoulder shaking,
and symmetrical features.

• Temporal Rhythmicity: Frequency patterns identified
through peak detection techniques.

Figure 5: Feature extraction pipeline adapted from Niewiadomski et
al.[9]. Each feature corresponds to a particular body motion consist-
ing of multiple joints.

While our feature engineering is inspired by the work of
Niewiadomski et al., shown in Figure 5, there are important
adaptations required due to the constraints of the ConfLab
dataset. First of all, our features are annotated in a 2d plain
requiring small adjustments to the calculations mainly in f1
and f2 - head movements. Second, as our dataset consists
of only 17 keypoints which are less then the ones used by
Niewiadomski et al. we removed entirely f5 abdomen shak-
ing, as there were no sufficient keypoints to calculate. Finally,



as a point of reference, we also introduced a statistical based
feature vector. For every keypoint we recorded the total dis-
tance traveled, mean speed, max speed, and speed variance.
This enables us to study whether motion variability in itself
is capable of distinguishing laughter from neutral behavior.

3.4 Classification and Evaluation
We trained a Random Forest (RF) classifier from scikit-
learn2 to distinguish laughter from non-laughter segments
based on the features that we extracted. The use of RF
classifier is particular fitting as not only it has proven to
be the best performer so far in other laughter detection
experiments[6] []niewiadomski2016automated[14], but it is
also scale-invariant, efficient with limited data, and provides
insight into feature importance. We used the following proto-
col:

Participant-Disjoint Splits: Ensured that no participant
is present in both train and test sets (75-25 split), prevent-
ing identity leakage. Figure 6 showcases the distribution of
laughter to non-laughter segment based on each participant.
From it we can deduce that there are enough subsets of partic-
ipants to form different test sets for each model, Furthermore
each participant’s segments will only be present in one of the
two sets, ensuring variability and better generalization of the
model.

Stratified Cross-Validation: Done to deal with class im-
balance and preserve the laughter/non-laughter ratio.

Hyperparameter Tuning: Grid search over RF parame-
ters such as tree numbers, max depth, minimum sample split,
etc. with 10-fold cross-validation.

Figure 6: Amount of segment distribution per participant for three
second with audio annotated segments.

We trained and evaluated for every labeling modality and
segmentation strategy combination ten times and provided
average accuracy, F1-score, and feature importance (via mean
decrease in Gini impurity). Additionally as our aim was also
to distinguish between different feature importance we also
trained models on two subsets of the features: upper body
(f1, f2, f9, f10, f11, f12, f13) and lower body(f3, f4, f6, f7,
f8) as labeled in Figure 5. We can then determine if there
is any discrepancy in combining many features or if there is

2https://scikit-learn.org

benefit in focusing only on certain parts of the body, saving
efforts in keypoint extraction.

4 Results
4.1 Performance of Classification
The main part of the research aims to investigate wether
pose estimation is really suitable for in the wild laughter de-
tection and as such the performance of the classifiers is of
biggest concern. Table 2 summarizes the average classifi-
cation statistics over 10 runs for each of our twelve models
(each trained on different segmentation-modality pair ). The
results are sorted according to their F1 score. We have added
Niewiadomski’s RF classifiers as a baseline to which we can
compare our results. The relative performance of Random
Forest classifiers across segmentation strategies and annota-
tion modalities reveals a clear trend: continuous variable-
length segmentation performs considerably better to fixed-
length segmentation.

It is immediately obvious from the table that the variable
length windows have incredibly high results compare to the
rest of the models. In fact, they are the only segmentation
technique that achieved higher F1 score than our baseline.
This however is immediately undermined by the observed
correlation between feature movement and labeling. Most
of the features show weak negative correlation but some in
the case of arm rocking (r = −0.299) and weight shift
(r = −0.273), which are usually associated with laughter.
This suggests overfitting on the length of the segments and
thus we will focus on the other model for performance for the
rest of this section.

The primary performance metric considered is the F1
score, which balances precision and recall. Among all con-
figurations, the best F1 score of 0.638 was achieved with
Fixed Three Second segmentation and With Audio annota-
tions, closely followed by the Fixed Five Second With Au-
dio setup with an F1 score of 0.630. These results sug-
gest that moderate-length segments (three seconds) combined
with richer multimodal annotations (audio and video) yield
the most effective laughter detection performance in terms of
balancing precision and recall.

tab:performance does not paint the full picture however
in terms of performance. Figure 7 shows that there are two
extreme outliers in this particular model which decrease the
mean significantly. Since other models do not have such big
discrepancies we can conclude that the Fixed three second
audio-visual model performs considerably the best if we ex-
clude the outliers.

Comparing annotation modalities more broadly, the With
Audio annotation consistently outperformed both No Audio
and Only Audio across all segmentation lengths. Moreover,
among those using fixed length segmentation, the best are
precisely the one using With Audio annotation, proven by
Table 2. We can further see that there is a significant dif-
ference in the performance of models using that annotation
and the other ones. For example, in the Fixed One Second
setting, With Audio achieved an F1 score of 0.634, outper-
forming No Audio (0.622) and Only Audio (0.610). A similar
trend is observed in the Three and Five Second segmenta-



Table 2: Average classification performance across segmentation strategies and annotation modalities.

Segmentation Modality Accuracy F1 Score Precision Recall
Variable Length Windows With Audio 0.880 0.860 0.850 0.860

Only Audio 0.840 0.830 0.820 0.820
No Audio 0.830 0.810 0.790 0.800

Niewiadomski’s RF - - 0.72 0.73 0.73

Three Seconds With Audio 0.642 0.638 0.644 0.642
One Second With Audio 0.645 0.634 0.655 0.620
Five Seconds With Audio 0.639 0.630 0.644 0.623
One Second No Audio 0.651 0.622 0.677 0.588
Five Seconds No Audio 0.635 0.618 0.648 0.593
Three Seconds No Audio 0.632 0.598 0.658 0.553
One Second Only Audio 0.616 0.610 0.619 0.607
Three Seconds Only Audio 0.612 0.608 0.615 0.607
Five Seconds Only Audio 0.611 0.540 0.658 0.468

Figure 7: F1 score metric for all the fix sized window models across
10 runs. Three second with audio model (second from lef to right)
performs the best and with significant outliers which drop its mean
further down.

tions. This suggests that the inclusion of both audio and vi-
sual cues in annotations provides more informative training
signals for the model, resulting in improved generalization.
In contrast, Only Audio annotations generally performed the
worst, particularly in longer segments (e.g., F1 of 0.540 in
the Five Second condition), indicating that No Audio labeling
may not adequately capture the nuanced nonverbal expres-
sions of laughter visible in body pose dynamics.

These trends highlight the importance of both annotation
richness and temporal context in training effective laughter
detection models based on pose data. This is of particular
importance in order for us to better understand how annota-
tion modalities can really impact the performance of models.
The results also indicate that extending segment duration be-
yond one second can enhance performance—especially when
annotations are derived from multimodal sources—though
gains may plateau or diminish if the segment length becomes
too long.

4.2 Feature Importance
To further understand how pose estimation models behave we
narrow our focus to the specific movements that matter. In
this particular section we focus solely on the best perform-
ing model to keep results digestible. Adding to the already
trained three second, with audio model, we also evaluated the
performance of two other models trained on the subsets of the

whole feature set - one only on upper body, the other only on
lower. Figure 8 highlights the the difference in performance.
Note that in this diagram we have removed the two outliers
we had before on the model, containing the whole feature set,
which increased it’s average f1 score to around 0.66. This is
still better than the upper body model - 0.65 and considerably
better than the lower body one - 0.625.

Figure 8: Performance of model when split into upper and lower as
well.

Diving a level deeper we also performed feature impor-
tance analysis of the top-performing model, which revealed
many strong features responsible for detecting laughter. Fig-
ure 9 depicts our findings:

• head horizontal, head vertical, and arm straight-
ening—indicating dominant directional movements in
upper-body articulation patterns.

• weight shift, knee bending, and trunk straighten-
ing—capturing posture modulation behaviors that dif-
ferentiate laughter from neutral stance.

• Temporal rhythmicity features—derived through peak
detection, showing periodic bodily movement in syn-
chronization with laughter.

Visual-only and audio-only training models gener-
ated importance shifts: visual-only heavily favored arm
straightening and arm throwing, while audio-only em-
phasized more nuanced body signals like knee bending
as shown in Figure 10. Comparing all three however
paints a clear picture: the most important features are arm



Figure 9: Feature importance of With Audio annotation.

straightening and head movement. While other fea-
tures vary in their specific importance we can still catego-
rize head horizontal, head vertical, weight shift,
knee bending, trunk straightening, trunk rocking,
arm shaking and arm straightening as significantly im-
portant. The remaining features hold less importance to the
overall model.

Figure 10: Feature importance of other two annotations.

5 Discussion
The results of this study reveal an important caveat in the
design of laughter detection systems based solely on body
pose data. While initial metrics suggest that variable-length
segmentation yields significantly higher classification scores,
closer inspection of the data, feature correlations, and model
behavior points to substantial overfitting.

5.1 Overfitting in Variable-Length Segmentation
Initial results showed that variable-length segment models
were achieving high F1-scores (0.86), surpassing even mod-
els from previous works, but this was subsequently recog-
nized as overfitting. All laughter segments although 100%
pure were considerably shorter than the non-laughter seg-
ments which lead to the duration of the segment itself be-
coming a proxy for the label. This is reflected in the strong
negative correlation between some features (e.g., arm rock-
ing, weight shift) and laughter categorization. This comes as
a surprise, as laughter is typically categorized by a dynamic
burst of movements. Therefore due to discrepancy in their
length, laughter segments do not have enough time to accu-
mulate high enough values to counter for natural movement.
This combined with the unusually high results can lead us to
determine that the model picks up characteristics of the data
that are not in the feature set, leading to overfitting. As such
we cannot determine its results of accurately representing the
ability of pose estimation to be used in laughter detection.

5.2 Fixed-Length Segmentation and Model
Realism

On the other hand, fixed-length segmentation better resem-
bles the real-world inference scenario in which laughter must
be extracted from a stream of continuous input with noisy
temporal boundaries. Though lower on raw performance
(e.g., F1-scores of 0.61–0.64), the fixed-length models were
more balanced in precision and recall and less sensitive to
motion amplitude or duration. This suggests that they are
learning more generalizable features.

The best-performing model was a realistic trade-off be-
tween sufficient context and noise reduction. Moreover this
duration offers good balance in capturing transition behavior.
However, the performance difference between this model and
the variable-length one, although large in size, is less mean-
ingful in light of the overfitting risks inherent to the latter.

Niewiadomski et al. obtained F1-scores comparable to the
level of human performance (0.73) on rich 3D motion cap-
ture data with dense keypoint coverage.[9] Contrastingly, this
study operated using 2D pose data with sparse 17 keypoints
and required some adaptations as removing features and deal-
ing with non-available joints. Our model obtained relative
score of 0.64 is comparable to that of previous research. It
has deteriorated in performance as expected due to the imper-
fect conditions and lack of ground truth. The results are still
considerably better than blind guessing and point to the con-
clusion that even in imperfect conditions pose estimation is
still a viable technique for detecting laughter. This results also
support fixed length segmentation as the more adequate seg-
mentation technique to the continuous variable one answering
another of our questions.

5.3 Impact of Annotation Modality
Shifting focus from segmentation techniques and purely an-
swering if pose estimation is reliable enough to detect laugh-
ter to the more nuance topic of modality’s affect on the per-
formance. Annotation modality had a consistent, though
secondary, impact on performance. Audiovisual-annotated
models performed best overall for all types of segmentation,
with no-audio second, and only-audio annotations perform-
ing worst. These results are consistent with prior work [14],
which suggests that multimodal annotation improves label
quality and inter-rater agreement.

5.4 Feature Importance
The final part of our aim to better understand how pose es-
timation can be used in laughter detection led us to exam-
ine how much influence each feature had on the final output.
The first step to that consisted of breaking the feature set into
two parts - upper and lower body. The lower body provided
the worst performance, but more interesting is comparing the
other two. Even though the model trained on the full fea-
ture set still performed better than the one which was trained
on only the upper body features, the difference attributes to
1%. This suggest that lower body features are still important
too and can’t be easily discarded for maximum performance.
Such a small difference however also means that in more
extreme and congested situations, especially with overhead



cameras when lower body features might be harder to catch,
capturing the movement only of the upper body (head and
arms) might not compromise the performance of the model.

The results of comparing the models are further supported
by a more in depth analysis of the feature importance of the
model adopting the whole feature set. The features bearing
the highest significance are all upper body features - head
movement and arm straightening. Furthermore if we look
down the next most significant features they are all lower
body features - weight shift, knee bending and trunk straight-
ening. This further compliments the above results and as-
sumptions as it shows that there are some lower body features
that contribute and are more correlated with laughter and we
can’t undermine their importance if we want to maximize per-
formance. Other features are more neglectable with none of
them reaching a higher mean decrease of impurity of more
than 5%.

Combining our focus in modality attention and feature im-
portance also offers interesting insights. To summarize the
results, audiovisual models prefers more upper body move-
ment with noticeable difference between the top three fea-
tures and the following two. Visual features however move
past this differences and while still prefering the upper body
more we can see that difference is a lot smaller while audio-
only features are completely opposite-expressing preference
in lower body movements. This indicates that there is a corre-
lation between feature importance and annotation modality in
pose estimation. Since pose estimation is more connected to
the visual aspect of laughter detection, audio-annotations pro-
vide interesting insights into movement that can be correlated
to laughter but not particularly well visible. We often asso-
ciate laughter with the facial features and upper body, thus
we can neglect the movements of the lower boddy, and the
preference of the audio only modality towards exactly those
features proves that there are hidden for the human eye con-
nections.

6 Conclusions and Future Work
This study set out to determine if full-body pose estimation
alone can reliably detect laughter in natural, in-the-wild so-
cial interactions.To that extend, we needed to understand how
accurate pose estimation is in detecting laughter. Delving a
layer deeper, we set out to understand more in depth what
circumstances in terms of modality annotation and segmenta-
tion techniques allowed for the best performance. Finally, in
order to fully understand the reliability of pose estimation as
a method we needed to understand what features contributed
the most. In tackling all these problems we reached the fol-
lowing conclusions:

First, to answer the question simply: pose estimation can
be used to effectively detect laughter even imperfect in the
wild conditions. Despite a drop of classification performance
of 8% from previous research we can still use pose estima-
tion, even one collected in crowded rooms with sometimes
limited visibility and annotated in 2d coordinates instead of
3d ones.

Second, segmentation strategy has a strong effect on the
model performance.Various length segments although best

on paper have a tendency to overfit. Fixed length segmenta-
tion, on the other hand, although more reliable still provide
a dilemma in choosing the specific length. In our particu-
lar cases choosing the three second window worked the best.
This is significant as it proves that choosing a length that cap-
tures most whole laughter segments without breaking them,
but also capturing some transitional behavior works better
then going in either end of the spectrum.

Third, annotation modality has a large impact on both
model performance and representations learned. Audio-
visual annotations consistently yielded higher quality model
results than audio-only or vision-only labels. This indicates
richer sensory cues, improve labeling quality and thus model
training. It also cemented results from previous researches
and provided insights into ways to cheaply collect data with-
out hindering performances.

Finally, feature importance provided us with core in-
sights into understanding pose estimation models in gen-
eral. It showed that, although all data is important we could
still use only the upper part of the human body to annotate and
would still get comparable results. This opens new questions
and allows for more detailed investigations into only that part
of the body, which may increase the accuracy of the model
further. On top of that combining modality effect with feature
importance opened the door to some interesting discoveries.
Despite pose estimation being mostly a visible way of storing
information without containing any audio in itself there was
some strong correlation between audio-only annotation and
lower body features.

Collectively, these results establish that pose estimation
is an effective modality for detection of laughter, especially
when paired with high-quality annotation and realistic seg-
mentation methods. The trained models adequately identified
laughter-relevant patterns in movement, in accordance with
the social and physiological understanding of laughter as a
full-body phenomenon.

Future Work
Building on such findings, future research would be able to
create adaptive segmentation techniques that preserve tempo-
ral realism while suppressing label leakage. Moreover, ex-
pansion of the dataset in size to cover a broader range of so-
cial settings and individual behavior would facilitate greater
generalizability. On that topic, choosing a different feature
set or combining different features would also be beneficial
as it would provide even more clearance on the nuance of
body movement in laughter. Finally, integration of temporal
modeling structures like RNNs or transformers may enhance
the ability of the model to learn complex dynamics over time
and better capture the true structure of laughter during con-
versation.

7 Responsible Research
In this section we will go over matters related to the integrity
of the conducted research such as proper data handling, re-
producibility and use of generative AI.

In our research we used a third party dataset. We have the
approval of the original authors and owners of the dataset to



use the dataset for the required purpose of investigating the
possibility of laughter detection in in-the wild social settings.
For the duration of the project the dataset has always been
present on the remote server, on which it originates from, and
whenever we accessed it, it was from the TU Delft’s grounds
connected to a VPN. Additionally privacy of the participants
in the original data collection has been kept both by the own-
ers of the dataset and by us. Each participant is referred by a
special id which is only used as a link to the pose estimation
itself. The data itself also cannot be used to identify any of
the participants by itself.

The research and methodology have both been clearly out-
lined in our paper. Using those instructions it should be clear
to a reader how if they have been allowed access to the data
set to conduct the exact same research, or given a different
dataset how they can replicate the pipeline to check the gen-
eralizability of our methods. The code itself is posted to a
public GitHub3 repository, although for privacy concerns we
removed all display of data from the dataset.

In this project use of generative AI was primarily done in
order to format the code and paper structure. In the paper We
predominantly used AI for structuring sections in LaTeX for-
mat. Occasionally, we also used AI to paraphrase sentences
that seemed long or convoluted, although such occurrences
were rare. We never used AI to write original content and
even in the events which we used it to paraphrase the final
product was also edited by us. In the code base we predomi-
nantly relied on such tools to generate us plots for the already
computed results and for formatting code and documentation.
All the ideas were based on literature reviews and our own
reasoning. We also used it to quickly translate results from
csv files to LaTeX-ready tables. In summary AI was pre-
dominately used for formatting and slight improvements, but
never for novel and significant contributions. I have uploaded
example prompts in Appendix B.

A Methodology Diagram
B Generative AI Prompts
The following lists presents example prompts we have used
in the project:

• Table generation: Hello, I have a python, pandas
dataframe containing metrics for the performance of a
Random Forest classifier. There are twelve models in to-
tal paired with the columns ”segmentation” and ”modal-
ity” serving as a group key. Please generate me a box
plot in python for each of the metric in the data frame,
so I can compare their performance.

• Data transfer: The attached csv file contains the results
of my research. Please convert it to a LaTeX table. DO
NOT ALTER ANY VALUES AND PRESENT THEM
EXACTLY AS THEY ARE IN THE FILE!

• Docs and code reformatting: Refactor the provided code
to make it neater and less repetitive. Generate documen-
tation for the explicit methods and write in-line com-
ments for important points. Code: *pasted code*

3https://github.com/vguenov/RP-laughing-pose-estimation

Data Preprocessing

Use the Conflab dataset: 8 videos; 60fps; 4 camera
angles for each; 17 keypoints annotated 
Tree modalities: audio-only, video-only, audio-visual
Used Majority voting technique for establishing truth
Used only the optimal camera for each video-
participant pairing

Segmentation

Separate the original videos in smaller chunks for the
model
Postive segment - containing some frames that are
annotated as laughter
To preserve purity we focus on starting from frames
that contain laughter
Laughing episodes of 20 frames or less are considered
noise rather than full fleshed episodes
12 frame delay appended to the start of the segment to
compensate for slow reation
Separability - 2 second gap between different labels

Continous Segments

Gather sequential chunks of laughter
frames to form positive instances, the rest
use for negative instances
Produces segments of variable length, but
contains 100% purity

Fixed Length Segments

Pad all instances of laughter to fixed
window lenght to form positives;  split the
rest into same sized chunks for negatives
Ensures all segments are of identical length
Chosen segments of length 1, 3 ,5 seconds

Features

Adapted from Niewiadomski et al. 
Transformed from 3d to fit in with Conflab’s 2d setting
Abdomen shaking removed as lack of adequate points
Kinematic - velocity, acceleration
Postural - symmetry, sway
Temporal rhythmicity - frequency

Models Classification

Use RF classifiers; 
1 model trained for each segment-modality pair = 12
,models
Participant - Disjoint sets - all  segments of any given
participant should only belong to one of the
training/test sets
1 Model trained 10 times using 10 fold cross validation;
results are aggregiated for better generazability

Figure 11: A detailed diagram explaining our methodology



• Text paraphrasing: The following sentence is too long
and hard to understand for a reader who do not know the
field of my research in depth. Please paraphrase it in a
more digestible manner. Sentence: *pasted sentence*

• LaTeX help: To following diagram is behaving not as
intended. It goes all the way down after reference. I
want it placed exactly in the place I have placed in; can
you help? *paste figure code*
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