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Abstract— An invariant formulation and finite volume discretization of the standard k—¢ turbulence model
in general curvilinear co-ordinates is presented. The k— model is implemented together with the
incompressible Navier-Stokes equations on staggered grids with contravariant flux components as
unknowns. A proof that k and ¢ are non-negative is given. Positive schemes in the implementation of the
k—¢ model are evaluated. Discretization of boundary conditions is considered. The numerical method is
applied to a turbulent flow across a staggered tube bank.

1. INTRODUCTION

During the past decade a number of numerical methods have been proposed for the solution of
the incompressible Reynolds-averaged Navier-Stokes equations in complicated geometries.
Closure of these equations is effected by a turbulence model. Most publications (e.g. [1-5]) adopt
a boundary-fitted curvilinear co-ordinate system and a k-« model. In these articles various
formulations (finite difference or finite volume, staggered or colocated grids, orthogonal or
non-orthogonal co-ordinates, Cartesian or contravariant velocity components) are chosen for the
development of the numerical method. A useful discussion of the advantages and disadvantages
of the various possibilities can be found in [2] and [6].

In [7-10] a co-ordinate invariant finite volume discretization on a staggered non-orthogonal grid
of the incompressible Navier—Stokes equations is presented. This discretization is formulated in
standard tensor nctation. As a consequence, the formulation contains Christoffel symbols, which
involve second derivatives of the co-ordinate mapping. Hence, inaccurate discretizations may result
on non-smooth grids. The main conclusions of these papers, however, are:

1. accurate results for 2D laminar flows were obtained on fairly smooth grids,

2. use of the contravariant flux components V* = \/gU *, where \/g is the Jacobian of the
co-ordinate mapping, as unknowns gives much better accuracy than the use of the
contravariant velocity components U“

This paper extends this work to the turbulent case, presenting a co-ordinate invariant discretization
of the standard high-Re k—¢ model with wall functions [11] in boundary-fitted co-ordinates using
tensor notation.

For physical reasons it is essential that the k—¢ model yields non-negative values for the turbulent
kinetic energy & and the dissipation rate of turbulent energy ¢. To the authors’ knowledge, a proof
that the k—¢ model has this property is not available. In this paper we shall prove that the model
with certain boundary conditions has only non-negative solutions.

The discretized turbulence equations should also possess the positivity property. Numerical
experiments have shown that negative values of k and ¢ are detrimental to the stability of the k—
model. Several measures have been proposed to enhance numerical stability [12-16]. For example,
the convective transport terms are often approximated with a highly stable low-order scheme,
which unfortunately can introduce numerical diffusion and hence high levels of numerical errors,
However, it is not possible to construct an accurate, non-diffusive scheme that produces
unconditionally non-negative solutions, especially on highly non-orthogonal grids. But false
diffusion should be kept to a minimum.
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The outline of this paper is as follows. In Section 2 the incompressible Navier-Stokes equations
and the high-Re k—¢ model are presented in tensor formulation. We prove that under certain
conditions this model has only non-negative solutions. In Section 3 we focus attention to the
discretization of the k—¢ equations for instationary turbulent flows in two dimensions by the finite
volume method. Positive difference schemes are treated. Discretization of the boundary conditions
often receives less attention than the discretization of the differential equations themselves, but this
is unwarranted. For that reason, details about the implementation of Dirichlet and Neumann
boundary conditions are given. In Section 4 the time discretization and a solution method are
briefly considered. Finally, in Section 5 we present an application of the method to a complicated
turbulent flow, namely turbulent flow through a sub-channel of staggered tube bundles.

2. TENSOR FORMULATION OF GOVERNING EQUATIONS

Many turbulent flows of practical interest are bounded by curved surfaces. To compute such
flows a boundary-fitted curvilinear co-ordinate system may be introduced. Consequently, the
partial differential equations governing incompressible turbulent flows must be transformed to this
co-ordinate system. For formulating the equations in general co-ordinates tensor notation is almost
indispensable. The essentials of tensor analysis can be found e.g. in [17, 18]. In this section we
summarize some basic facts. We restrict ourselves to the two-dimensional case.

The physical domain Q is mapped onto a rectangular computational domain G. It is assumed
that the mapping x = x(£):G — Q is regular, i.e. the Jacobian J of the transformation does not
vanish; x are Cartesian co-ordinates and ¢ are boundary conforming curvilinear co-ordinates.

The covariant and contravariant base vectors of the curvilinear co-ordinate system a, and a®,
respectively, are defined as follows:

&
aw:i’_‘_, a(a)=‘7_§_ ()
oEW ox
The covariant base vector a, is tangential to the co-ordinate lines £° = constant, whereas a® is
perpendicular to the surfaces on which ¢* is constant.
The covariant and contravariant metric tensors g,; and g* are defined by

8xp = Ay ' Ay, gaﬂ =a®-a® )

The square root of the determinant of the covariant metric tensor equals the Jacobian of the
transformation, given by

V& =T =2y (ap ray) )

Assuming right-handed co-ordinate systems x and &, J > 0.

A covariant derivative is a tensor which reduces to a partial derivative of a tensor field in
Cartesian co-ordinates. For a tensor of rank zero ¢, the covariant derivative is the same as the
partial derivative, and is denoted by

_ 09
=
It can be shown that a covariant derivative of a tensor of rank one and a covariant derivative of
a tensor of rank two are given by
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is the Christoffel symbol of the second kind. The summation convention holds for Greek indices.
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The incompressible Reynolds-averaged Navier-Stokes equations in general co-ordinates are
given by

UL =0 (8)

ous

ot

Here, U* is the contravariant mean velocity component, p is the pressure, F* is an external force
per unit volume and t* contains viscous and Reynolds stress tensors and is given by

+(U“U’),ﬁ+(g”’p),ﬂ—-'r:‘f=F“ )]

™= +v)gU,+ ghu) (10)
where v is the kinematic viscosity and v, is the isotropic eddy-viscosity which is given by
kl
v, = C“ ? (1 1)

Here, k is the turbulent kinetic energy per unit mass and ¢ is the turbulent energy dissipation rate
per unit mass, defined as

k=100, (12)
e=vgh 050, (13)

where U* and U, are the contravariant and covariant components of the velocity fluctuations,
respectively. The turbulence quantities k and ¢ are obtained from modeled transport equations
which read, in general curvilinear co-ordinates:

ok . Vi o _

E + (U k),‘, (akg k’ﬂ)., =P —c (14)
Oc . Vi €
% +(U%),, — ;‘g (¥ a =7 (€a Py — ci€) (15

P, is the production of turbulent kinetic energy, given by
Py =v,8,4(8"U% + g"U%) U4 (16)

Finally, ¢,, c,, ¢, 0, and o, are dimensionless constants which, respectively, are taken to be 0.09,
1.44, 1.92, 1.0 and 1.3 (following [11]).

The transport equations (14) and (15) have been modeled, which means that some unknown
terms in the exact transport equations for k and ¢ have been approximated in terms of quantities
that we can determine. The modeled transport equations should not be capable of producing
negative values of k and ¢, because of the definitions of these quantities [cf. (12) and (13)]. Such
a model is said to be realizable.

Unlike the Reynolds-stress closures, not much attention has been paid to the realizability of the
k—e modelling in the literature. Cardot et al. [19] claimed that if the k— model has a smooth
solution for given positive initial and Dirichlet conditions, then k and ¢ stay positive at later times.
However, it is not clear how they support this claim.

We shall now show that the k—¢ model has non-negative solutions at all times for any positive
initial conditions, positive Dirichlet and homogeneous Neumann boundary conditions, if the
empirical constant ¢, > 1. We assume that the solutions k and ¢ are sufficiently smooth. Let ¢, be
the first time that there exists a &, € G such that k(&m, ) = 0. Because the Dirichlet boundary
conditions on k is positive, it is necessary that &, € G\0Gp, where 0Gyp is the Dirichlet boundary.
If &, is the interior, then at (£, £,) the gradient of k is zero, because we have a minimum. This
is also true when ¢, lies on a Neumann boundary, because the normal component of the gradient
of k is zero. Furthermore, it can be shown that the time scale of turbulence @ = k [e is strictly
positive, V¢ >0 and V¢ € G, if ¢, > 1. The proof is given in the Appendix. Thus, we have

kz
v,=c”?=c,,k@=0 att =1, an

CAF 4/3—C
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By writing out the diffusion term one sees that

i

ap
(—g“ﬁk,p) =& (kpvi+ vk,,)=0 atr=¢, (18)
Ok 2 %k

From (16) and (17) it is clear that the production of turbulent kinetic energy is zero at ¢t =f,in &,,.
Hence, the equation (14) reduces to 0k/0r = —e. Because k is decreasing at (&,,, 1), 0k/dt must
be negative or zero. Therefore, ¢ > 0. Moreover, k =0 and k/e > 0. Hence, the only way to
avoid a contradiction is to have ¢ =0, and we conclude that 0k /0t = 0. So, if k vanishes, its
time derivative also vanishes. Furthermore, it can be shown by taking the time derivative of
left- and right-hand sides of equation (14) and using the fact that k = k,=0k/ot =0
that 0%/01>>0 at 1 =1, in &,. We conclude that k =0 is a local minimum and therefore,
the turbulent kinetic energy cannot become negative. From the fact that V¢ > 0:k >0 and k /e >0,
it is clear that € >0, V¢ > 0.

A discussion of the specification of boundary conditions for the momentum equations can be
found in [9]. Additionally, in the case of turbulent flows, in near-wall regions wall functions
(described by Launder and Spalding [11]) are used in order to avoid integration through the viscous
sublayer and to obtain a logarithmic velocity profile:

T = M u-t (19)
*TI(EYD)
where
1/4
Yi= %\/__k—_’ (20)

Here, x is the Von Karmén constant (~0.4) and E is a roughness parameter, approximately equal
to 9.0 for a smooth wall. The subscript P refers to the center of a cell adjacent to the wall. The
location of the first grid point away from the wall must be such that ¥} > 11.3 in which the
wall-law (19) is valid. The tangential velocity along the wall expressed in terms of contravariant
components reads:

8
g!l

ut= U, t=1or2 210

Finally, the normal distance Y, is evaluated as follows, see Fig. 1:

AB:a®
Y,=iABn="t="_ n—1or2 Q2
2 gﬂ’!

where A and B are some points on cell faces whose co-ordinates can be obtained by linear
interpolation from the co-ordinates of cell vertices, which are assumed to be given.

Fig. 1. Calculation of distance between near wall point and the wall,
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In order to account for near-wall effects on the turbulent energy, the production of turbulent
kinetic energy in the first grid point away from the wall is approximated by

Pk = thP (23)

whereas the dissipation rate of turbulent energy is evaluated as follows:

In(EY}
c=pup e @9
Finally, the flux of k through the wall is set to zero and ¢ is given in point P by
3j4g 32
= Sik? 25)

KYP

3. FINITE VOLUME DISCRETIZATION OF TURBULENCE EQUATIONS

Equations (14) and (15) are convection-diffusion equations with source terms. Hence, for their
discretization the following equation will be considered in the remainder of this paper:

a
X U9 .- (K%)=, as)

where ¢ denotes a scalar and S, a source term which depends on ¢ and U° Furthermore,
K*=xg? with x a diffusion coefficient. It is assumed that both source term and diffusion
coeflicient are sufficiently smooth.

As mentioned in the previous section, the physical domain € is transformed to a rectangle G
in which a uniformed grid G, is defined. It is assumed that only co-ordinates x(&) of the vertices
of the cells are known. A staggered grid is used. Figure 2 shows a part of the staggered grid in
the computational plane. Scalars ¢ are given in the cell centers and U® is given in centers of cell
faces connecting vertices with equal values of &=

In the following section we consider the space discretization by means of the finite volume
method of each term in (26) separately. It is an essential requirement that a numerical scheme for
the turbulence equations yield non-negative values of k and e. An important reason to require this
is that several numerical experiments have shown that negative values of k and ¢ tend to be
amplified and can destabilize the computations by nonlinearities and coupling. Suppose that
discretization of (26) (without source term) results in

17
a?(}) ;:];H= Z a; 7:1:.j+l+ ¢7/ 27
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' t
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Fig. 2. Arrangement of the unknowns for a staggered grid.
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with

ay=1+ 3 a¥, (28)
kI%0

for all points (i, j) in the computational grid G,. It can be shown that unconditionally positive
solutions will result if af} > 0 and Vk 0, V/ % 0: 2% > 0. A scheme (27) satisfying these sufficient
conditions is said to be positive or monotone. With respect to the accuracy of a positive scheme,
it can be shown by Taylor series expansion that this scheme is at best first order accurate, unless
the grid is orthogonal and mesh-Péclet numbers are smaller than 2, as will be seen later in the next
section. In that case the scheme can be both second order accurate and positive.

3.1. Discretization in the interior

For convenience we introduce the local cell co-ordinates given by Fig. 2. The mapping x = x(&)
is chosen such that A¢' = Aé2=1.

The diffusion term
Integration over a finite volume Q with center (0, 0) gives, using the Gauss divergence theorem

¢ 3¢ |00 8¢ o
| &= ,dQ:—j k? 22 ar, ~ — Jgkn 22\ _ Jgxnd® 29
L( @), X 5 VEK 2l oV | @

The right-hand side of (29) has to be approximated further. This is done by central differences.
For example

o¢
73
It is clear that this approximation contributes to a positive scheme. However, this is not true for

terms associated with mixed derivatives (K'>=xg'2#0). For example, if we approximate
0¢ [0&% 1) by central differences and bilinear (4-point) interpolations

o¢
3¢’

X oo — Poo 30
(1.0

o ~ Doy + Doy — do—n— be.-2) (31
then the coefficients corresponding to ¢, _, and @, _,, get the wrong sign, if g'2> 0. On the other
hand, if g'? <0 then the coefficients corresponding to ¢ and du2 will get the wrong sign.
However, these coefficients are usually small relative to other coefficients, but, in some circum-
stances, for example when the grid is highly non-orthogonal, they become significant. For that
reason many authors (e.g. [5, 6, 12, 14, 16]) treat the mixed derivative explicitly, evaluating it at the
previous time level. This method does not lower the accuracy of the scheme in the steady state case,
but may affect its convergence rate. This method is most frequently used. Schemes for approxi-
mation of mixed derivatives which produce non-negative coefficients were also evaluated. One of
these schemes, proposed in [12], is based on 2-point rather than 4-point interpolation. For example,
suppose that g'2> 0, then the following approximation is made:

o¢
oE? ~ dan—da-n= %(d)(0,0) + Gz — %(d’(o.—z) + daoy) (32)
(1,0)
Similarly, if g'> <0
o )
253 X ADoy + Deo — Pooy — Pa-2) (33)
&% q)

This scheme produces unconditionally non-negative coefficients of the nodes corresponding to
points (—2, —2), (2, 2), (2, —2) and (—2, 2). However, this is not true for the nodes corresponding
to points (0, —2), (—2,0), (2,0) and (0,2). It can be shown that these coefficients will stay
non-negative if the following condition is satisfied

lg" < min(g ", g?) (34
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provided that the diffusion coefficient « is locally uniform and the metric tensors g'? at center of
each of cell-faces are approximately equal. Another example is a scheme, which uses one-sided
rather than central differences. This gives, taking a cell face with center at (1,0) as an example

d )
9 % dan+ibon— oy if £750 (35)
a{ (1.,0)
or
_a_i ~ 1 1 if g2 36
3~ oo —i%e-n—1%0-5 ifg?r<0 (36)
aé (1,0)

Obviously, this decreases the accuracy to order one, but the scheme is unconditionally positive.
Nevertheless, in many turbulent flows the turbulence quantities k and ¢ are often dominated by
source terms and hence the mixed derivatives are of minor importance.

The convection term
Integration over a finite volume Q with center (0, 0) gives

L (U"$), 40 = Ln U dL, ~ V|00 + V2|80, 37

where V* = \/EU“. Since ¢ is only given in the center of a cell, further approximation is needed.
Consider only the first part of the right-hand side of (37). The second part will be treated in the
same way. Because of the fact that in many turbulent flow situations the mesh-Péclet number is
several higher than order of one, positive schemes are needed to approximate the face values ¢.
In numerous publications the well-known hybrid central/upwind scheme [20] has been adopted.
The approximations to the face values are then given by

b0 = {1 —s(Pe0))}dclag + s(Pefy0)bul 0 (38)
P10 = {1 —s(Pe(_10)}Pcl (10 + s(Pel_10))¢ul(-10) (39)
where ¢¢lqo is given by
bclwn =3P 10+ Pu+10)) , (40) . . .
and ¢yl g by
bulwoy=3{1 +5i80(V i)} By 10+ 3{1 — sign(V o))} b 4 10) 41

where k = + 1. The mesh-Péclet number Pej; , is defined by

Vi

28 KiEn + 5/ 8 Kby — Vei-n K0}
(no summation over «)

Here, k, 1 € {—1,0, 1}. For convergence reasons, the switching function s(Pe) is defined as follows

|Pel

This switching function is obtained by requiring that off-diagonal matrix elements corresponding
to convection and diffusion terms are non-positive.

In many 2D flow problems, the grid lines are not aligned with streamlines. As a consequence
excessive numerical cross-flow diffusion occurs with the hybrid scheme. Moreover, in convection
dominated flows the result of the hybrid scheme is that first-order upwind scheme is employed
everywhere, irrespective of whether positiveness problems arise or not. In fact, most higher-order
non-monotone schemes produces wiggles only in regions where steep gradients of turbulence
quantities occur. There are many alternatives to developed higher-order monotone schemes. An

s(Pe)=1-— min{l, L} (43)
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overview can be found in [21]. In the present paper a TVD/MUSCL scheme with the ‘minmod’
limiter is applied to approximate the convective turbulence transport accurately. The approxi-
mation of the face value ¢ at point (1, 0), for example, is given by

b0 = oo + ; Minmod(Poo — b_20> P — booy) if Vg =0 (44)
a0 = oo -3 minmod(¢u.g — b0y Do) — o) if Vig<0 (45)

where
minmod(p, ¢) = sign(p)max{0, min(lp|, g sign(p)]} (46)

For further details we refer to [22). Because the limiter is nonlinear, this TVD/MUSCL scheme is
implemented in a deferred correction manner:

il =i + (DI — D) 47)

where n represents the time level and “U™ and “T”” indicate a first-order upwind and TVD/MUSCL
scheme, respectively.

The source term and the time derivative
The source term and the time derivative of ¢ in equation (26) are approximated by the midpoint
rule in the following manner

J‘n S 5 dQ ~ \/é 0.0) S¢(o.0) @

and
d¢ d¢
—dQ =~ =
J; ot oo,

One of the source terms is the production of turbulent energy (16) which must be evaluated. The
discretization of this term is carried out at the centre of a scalar cell with central differencing. Since
we use V* = \/§U “ as unknowns, the covariant derivative of the contravariant velocity components
must be expressed in terms of flux components. Using tensor analysis one can show that the

following formula holds:
1 [ove y o )
g (2 Vet v 30
=Gt o) o

Hence, the production term contains Christoffel symbols which do not allow us to use non-smooth
grids. But experience shows that the approximation of this term gives good results on fairly smooth
grids.

(49)

(0,0)

3.2. The boundary conditions

In this section we consider the implementation of the boundary conditions, which is crucial for
the final solution. Because the equation (26) is elliptic, boundary conditions must be specified at
all boundaries. At inlets, values of turbulence quantities, which are essentially non-negative, are
specified. At outlets, zero normal gradient conditions for turbulence quantities may be imposed.
The same holds for symmetry boundaries. At walls, wall functions, which consist of Dirichlet
and homogeneous Neumann conditions, are applied. Hence, we consider both Dirichlet and
homogeneous Neumann boundary conditions:

¢ given and =0 &1))

o9
on
Here, n denotes the outward normal to dQ. The implementation of these boundary conditions must
be such that it results in a positive scheme.

We restrict ourselves to the left boundary of Q, i.e. ¢! = 0. The other boundaries can be treated
in exactly the same way. Again, the diffusion and convection terms of (26) will be handled
separately.



Invariant discretization of the k—¢ model 217

The diffusion term
Suppose we have a Dirichlet boundary condition ¢ =g, >0 at &' =0, Then the following
approximations are made:

0
N IR N/ SN 52
(=1

and

d¢
KIZ ]
\/£ 3¢?
In (52) we use one-sided differences, while in (53) central differences are used. From (52), it is clear
that the coefficient of ¢, is positive. Equation (53) contains only known terms and does not
influence the positivity of the scheme.
In the case of the homogeneous Neumann boundary condition at ¢' =0 we have

~ \/EKuh—m)(gD(—m) —8p(-1.-1)) (53)

(~ 1.0

o0¢ K% o¢
Ka-— —*—,_.gnggﬁ—o (54)
Hence, the finite volume integration of the diffusion term of {26) becomes
dd bl o
—| K¥%p,) . dQ~ — JgKY¥ = - [gKk¥2| + . [gK¥ 2] 55
J:)( ), \/g ol \/‘E &\ oy & 74 P 9)

where the local numbering of Fig. 2 is used. The terms of the right-hand side of (55) can be
approximated in exactly the same way as in the previous section. However, this approximation
introduces two virtual unknowns at the points (—2, 0) and (—2,2) or (—2, ~2) depends on the
sign of g'% These virtual unknowns can be eliminated by means of the Neumann condition. For
example, ¢ _,, can be eliminated as follows

4’(—2.0> = 4’(0.0) (56)

It is clear that this approximation produces a positive scheme, because the coefficient of D20y 18
negative, and with (28) the coefficient of ¢ becomes therefore positive.

The convection term

The upwind schemes, as treated in the previous section, introduce just one virtual unknown near
a boundary. In the case of the left boundary this virtual unknown is ®(-20), Where the local
numbering of Fig. 2 is used. With both Dirichlet and homogeneous Neumann conditions this
virtual unknown can be eliminated using linear extrapolation. In the case of a Dirichlet boundary
condition ¢_,, can be eliminated by

200 = 28p(-10) — Doy 57

Because the coefficient of ¢_,, is negative, the contribution to the coefficient of ® o) is positive.
If we have the homogeneous Neumann boundary condition then (56) is used to eliminate D _20)-

4. TIME DISCRETIZATION AND SOLUTION METHOD

The spatial discretization of the convection—diffusion equation with source term (26), explained
in the previous section, yields a system of ordinary differential equations of the following form
d¢
E+T(V)¢=F+S¢, (58)
where V and ¢ denote algebraic vectors containing the velocity and scalar unknowns, respectively.
T represents the discretization of convection and diffusion terms, F contains the right-hand side
term arising from the boundary conditions and S, represents the source term and is nonlinear. Time
discretization takes place with the so-called 8-method:
¢n+l — ¢n

—ay  TOT¢" ' +(1-0)T"=F +6S;*' + (1 - 6)S; (59)
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where n denotes the preceding time level and n + 1 the new time level, For § = 1 we obtain the
first-order implicit Euler scheme, for § =1 the second-order Crank—Nicolson scheme, which is
required for calculation of an unsteady turbulent flow. In order to solve the system of equations
(59) the standard Newton linearization of the source term is used:

aS:’ n+1 n

py (p""' —¢") (60)

For both the & and ¢ equations the following inequalities hold:

S xS+

n

oS
S:>0 and a¢°’<o (61)

which preserves the positivity of the solutions. Here, we have assumed that the eddy-viscosity v,
(occurring in the production term) has been frozen at time level »n.

The system of linear equations is solved by an iterative GMRES method [23] with precondition-
ing. This method is very suitable for non-symmetric matrices and has a relatively good rate of
convergence. More details can be found in [24].

The spatial and temporal discretizations of the incompressible Navier-Stokes equations are
described in [9]. It should be noted that the convection terms in the momentum equations are
approximated with central differencing. To ensure a divergence-free velocity field a second order
pressure-correction method as described by Van Kan [25] is used. To solve the nonlinear system
of equations we use the Newton linearization with the iterative GMRES method. After solving the
continuity equation and the momentum equations, the equations for k and ¢ are solved in a
decoupled way, as described before.

5. AN APPLICATION

Turbulent flow across a bank of staggered tubes is very interesting because of practical
importance in the context of heat exchangers. From physical point of view, this flow type is more
challenging, because the flow across tubes is undergoing stagnation, acceleration and separation.
Ideally, a turbulence model in complex geometries should be able to respond correctly to those
features. Therefore, the experimental arrangement of Simonin and Barcouda [26], as shown in
Fig. 3, was set up as a testcase in the Second ERCOFTAC-IAHR Workshop on Refined Flow
Modelling organized by UMIST in Manchester in 1993. Results obtained by various calculation
methods, including the present one, can be found in [27].

It may be assumed that the flow in a region relatively far from the entrance becomes fully periodic
and steady. Therefore, we focused on a sub-channel, identified as the shaded area in Fig. 3, in which
the flow repeats itself in an anti-symmetrically manner. The diameter of the tube is D = 21.7 mm,
the transverse pitch is taken to be PT = 45.0 mm and the longitudinal pitch is set to PL = 22.5 mm.
The Reynolds number based on the tube diameter and the average entrance velocity ¥, = 1.06 m/s

PL
Fig. 3. Staggered tube bank geometry.
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is given as 18,000. Due to the incompressibility constraint, the average inlet velocity equals
PT{(PT — D)V, = 1.93V,. However, experiments suggest that ¥, = 1.55 Vs, which implies that the
flow rate at the inlet is about Q = 0.02 m%/s.

As mentioned before, after several rows of tubes the flow becomes periodic and the computation
can be reduced to a minimal inter-tube space using symmetry and anti-periodic inlet/outlet
conditions. It is assumed that at planes of symmetry the tangential stress and normal velocity are
both zero, whereas for turbulence quantities homogeneous Neumann boundary conditions are
imposed. The wall functions are applied at curved smooth walls. Anti-symmetrical periodic
conditions as described in [28] are employed at the sections X = 0 mm and X = 22.5 mm. Here, the
velocity components and turbulence quantities as well as geometrical quantities are adapted to the
periodicity in anti-symmetrical manner. Furthermore, in order to have a fiow, the pressure at
X =22.5 mm differs an unknown constant from the pressure at X = 0 mm. This constant can be
determined from the imposed flow rate Q at X = 0. In fact, this constant can be considered as a
Lagrange multiplier that enforced an overall mass balance. It is thus natural to extend the pressure
correction method with this additional constraint in order to “correct” the pressure such that the
velocity field satisfy overall continuity. For time discretization the implicit Euler scheme (8 = 1)
has been selected.

The grid employed in the computations is given in Fig. 4. The number of grid points is 80 x 32.
Grid dependence test were performed with three different grids: 30 x 20, 55 x 28 and 80 x 32 cells.
To ensure that the computational points near the tube walls have a non-dimensional wall distance
of Y* > 11, no more than about 30 grid points in Y-direction were taken. The results of the test
are presented in Fig. 5 where the wall shear stress (which is very sensitive) around one half of the
tube is plotted for different grids (where « is the angle measured from the front stagnation point).
There is very little difference between the two finest grids. Hence, it may be concluded that fully
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Fig. 4. A 80 x 32 grid for the flow through a tube bank sub-channel.
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Fig. 5. Grid dependence test.

grid-independent solutions are nearly achieved on the 80 x 32 grid and thus will be presented in
further detail below. The calculations on the 80 x 32 grid took 115 time steps (At = 0.001 s) and
consumed 8 CPU minutes on a HP 9000/735 workstation. Here, the momentum and turbulence
equations are solved with the GMRES method combined with an ILUD preconditioner, whereas
the pressure system is solved with the GMRES method postconditioned by an ILU factorization.
As stopping criterion the inequality [ ]l,/r, ], < 10~* is used for the momentum and turbulence
equations, while |7]|,/r,l, < 10~* is used for the pressure system. Here, r, and r are the initial
residual norm and a given residual norm, respectively.
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Fig. 6. Streamlines for flow across staggered tube bank.
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Fig. 7. Isobars for flow across staggered tube bank.
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Fig. 8. Turbulence intensity Jk/ V, for flow across staggered tube bank.
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Fig. 9. Crosswise velocity profile at X = 11 mm.

Contour plots of streamlines, isobars and turbulence intensity (defined as \/IE /Vy) are shown in
Figs 6, 7 and 8. They show clearly the increase of pressure as the flow approaches the impingement
region and the steep gradients of turbulence levels near the tube. Furthermore, the standard k—¢
model inhibits separation and is expected to overestimate the levels of turbulent energy at
impingement zones, because of a misrepresentation of strain effects when the exact production
terms are modeled with the isotropic eddy-viscosity concept. Also the turbulence levels in the wake
behind the tube are assumed to be rather underestimated.

Comparisons with the experiments are shown in Figs 9-12. These figures represent the
normalized velocity and turbulent stresses profiles along X = 11 mm (across the recirculation region
behind the lower tube and the impingement region in front of the upper tube) and Y = 22.5 mm
(along upper plane of symmetry), respectively.

It is seen that the standard k—¢ model does not produce a significant recirculation zone
and generates excessive levels of turbulent energy (in particular the streamwise normal stress
component u’?/V3) at the impingement zone.

The qualitative trends are well resolved by the present method. The mean velocity profiles are
generally better predicted than turbulent stresses. According to the Workshop, the same conclusion
can be drawn for other turbulence models, including the Reynolds-stress type. Furthermore, the
agreement between the present predictions and the results of other contributors of the Workshop
using the same models can be said to be satisfactory.
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Fig. 10. Shear stress profile at X = 11 mm.
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Fig. 11. Streamwise velocity profile at ¥ = 22.5 mm.

1 T T
Present prediction —
0.8 Experiment o
0.6 4
u/'Z/VOZ
0.4 -
0.2 ° |
o]
0 L L o—4é—o6—6—ol-o—o
0 5 10 15 20 25
X [mm]

Fig. 12. Streamwise normal stress profile at ¥ = 22.5 mm.

6. CONCLUSIONS

An invariant formulation and discretization in general co-ordinates of the high-Re k—¢ model
including boundary conditions has been presented. Furthermore, it has been shown that if the k—¢
model has a smooth solution for given positive initial conditions, positive Dirichlet and homo-
geneous Neumann boundary conditions, then k and ¢ stay positive at all times.

An important desirable property of a difference scheme for the k—¢ model is positiveness,
implying that physically non-negative turbulence quantities are never negative numerically. For
highly convective turbulent flows in non-orthogonal grids, care must be taken in discretizing k—¢
equations. For that reason the convection term is approximated with a second-order TVD/MUSCL
scheme, whereas the mixed derivatives in diffusion terms should be approximated according to (32)
and (33) or (35) and (36), in the case of highly non-orthogonal grids. Otherwise, to keep false
diffusion to a minimum, equation (31) is appropriate as a differencing scheme for the mixed
derivatives,

For time discretization the 6-method has been applied. Linearization of the nonlinear systemi~ v v o

of equations has been carried out with standard Newton method, which is found to avoid negative
coefficients in the scheme. The resulting linear systems of equations are solved with a GMRES-type
iterative method with preconditioning.
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The tube bank case has demonstrated the capabilities of the numerical method to handle

problems in which both the geometry and the flow are complicated. Predictions for the tube
bank are found to compare well qualitatively with experimental data. However, appreciable

di

flerences between the predictions and data has been observed, probably due to weaknesses of

the k— model.
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APPENDIX

Theorem

If the initial and the Dirichlet conditions for © =k/e are positive, the normal gradient of @ is zero at Neumann
boundaries and ¢, > 1 then

Viz0. >0

For the proof of this theorem we need an equation for €. Equations (14) and (15) can be combined to yield the following
equation
30 c, 00 dk

m +(U*8) .= 20,028%8,4(1 = c,\) +¢co—1 +g¥-t6

¢, ok 36
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where
A =%(g°”U,’,+g”’U;',), Sep= %(U,J,+ Us) (A2)

are the contravariant and covariant components of the mean rate of strain tensor, respectively.

Proof of the Above Theorem
By contradiction. Let 1, be the first time that there exists a £ € G such that 6%, 1) =0. Since 6(§,1)>0 for £ <4,

26
5 SO ati=g (A3)

Because we have a minimum, at (&, £,) with & € G\dG,, the gradient of @ is zero; this holds also at Neumann boundaries
because of the homogeneous Neumann condition. Thus, equation (A1) reduces to 36 /0t = ¢, — 1 > 0. This inequality
contradicts the inequality (A3) and we conclude that V¢ >0: € >0. O



