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Preface

Dear reader,

Over the past months, I’ve had the opportunity to immerse myself in one of the more practical, yet
surprisingly layered, challenges in naval engineering: maintenance. It’s a topic that doesn’t often attract
attention outside engineering circles: no dramatic visuals, no grand innovations on display. Yet its
impact on operational readiness, cost control, system longevity, and even crew morale, is profound.
Especially within the Royal Netherlands Navy, where vessels are increasingly complex, budgets are
under pressure, and the stakes (mission success or failure) are too high to rely on routine or habit.

This thesis has been a journey through that complexity. It allowed me to combine theory, real-world
data, and input from professionals with decades of experience. The result is a decision support model
that enables a structured comparison between Corrective Maintenance, Time-Driven Scheduled Main-
tenance, and Condition-BasedMaintenance across different vessel types. What started as a straightfor-
ward comparison evolved into a deeper understanding of the trade-offs: the tension between availability
and efficiency, the hidden impact of man-hours, and the challenge of translating ideal maintenance con-
cepts into workable policy. Especially when you’re dealing with hundreds of thousands of maintenance
hours and multi-million-euro investments across a vessel’s life-cycle.

This process was not something I could or would have wanted to do alone. I’ve been fortunate to work
with people who not only supported this project but truly elevated it.

I would like to sincerely thank Dr. Ir. J.J. le Poole for his supervision on behalf of COMMIT. Joan has
been, without exaggeration, one of the most engaged and constructive supervisors I could have hoped
for. He was always available for questions, thought along with me in moments of conceptual or practical
deadlock, and provided clear, grounded feedback throughout. Beyond that, he managed to strike the
perfect balance between professional distance and personal accessibility. His guidance shaped the
quality of this thesis, but also made the work behind it more enjoyable.

I also wish to thank Dr. A.A. Kana from TU Delft for his academic oversight. Austin helped keep the
work anchored in academic rigor, while still allowing space for practical intuition and iteration. His
feedback was always thoughtful and sharp, and I truly appreciate the freedom he gave me to perform
this research, even when it sometimes meant reshuffling parts of the structure.

Thanks also go out to the many people within the maintenance departments of the Royal Netherlands
Navy. Despite full schedules, many were willing to sit downwith me and share their insights, frustrations,
and practical experience. Their input ensured that this research never drifted into abstraction. Instead,
it remained grounded in the reality of the work being done every day on board and ashore. Whether it
was help in interpreting SAP data, insights into BSMI structuring, or thoughts on CBM implementation,
their contributions were invaluable. I hope they’ll recognize some of their perspectives in these pages.

Lastly, I want to thank my friends and family, for keeping me grounded during the peaks and valleys
of this journey. Specifically, I would like to thank Casper, Harm, Loek, Sil, Tijn, Tjeerd and Tycho for
reading my work, providing feedback, and for being a generally supporting factor during my time at the
TU Delft.

I hope this work contributes to more structured decision-making in naval maintenance planning, and
above all, encourages future research that bridges technical insight with practical usability.

Enjoy reading.

Lars van Geffen
Delft, July 2025
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Summary

In an era where fleet readiness is critical and defense budgets are under careful examination, inefficien-
cies in maintenance routines can have significant strategic and economic implications. Historically, the
Royal Netherlands Navy (RNLN) has relied on standard scheduled maintenance practices designed to
prevent unexpected breakdowns. However, as ships have grown increasingly complex, these conven-
tional strategies have begun to show their limitations: fixed maintenance intervals often result in either
redundant work or unanticipated failures. The risks of unscheduled repairs, unexpected downtimes,
and the rising costs associated with emergency repairs have pushed the desire for more adaptive ap-
proaches. In response to these challenges, a new maintenance method has emerged that promises
to align maintenance actions with the real operating conditions of systems onboard.

This research is motivated by the need to develop a decision support tool that systematically compares
maintenance strategies so that the RNLN can optimize long-term cost and workforce efficiency. At
its core, the study addresses how to apportion maintenance activities among three distinct methods:
Corrective Maintenance (CM), Time-Driven Scheduled Maintenance (TDSM), and Condition-Based
Maintenance (CBM).

The model is built upon data obtained from the RNLN’s SAP system and furthermore on expert opinion.
By categorizing ship installations according to their codes, the model aggregates maintenance costs
and man-hours from related groups such as command systems, nautical systems, HVAC, and hull
structure. This grouping enables a level of analysis that is specific enough to capture system-specific
profiles while remaining applicable across different vessel types.

Scenarios are generated by altering the maintenance mix in predetermined increments through varying
the proportional contributions of CM, TDSM, and CBM in steps of 10%. In each scenario the model
projects the required lifetime maintenance costs and required man-hours by linearly, and at times non-
linearly, extrapolating data from an eight-year period to the entire service life of a vessel.

A sensitivity analysis forms an integral part of the research. The tests following from this analysis reveal
that for high-criticality system groups (i.e., command systems and power generation systems), the
model’s preferred maintenance mix remains stable even when CBM parameters experience significant
fluctuations. In contrast, for groups where the balance between CM and CBM is more subtly balanced,
shifts of 10% to 20% in the output maintenance mix are observed with moderate changes in input
values.

The analysis of model outputs is conducted on an installation group and vessel type basis. For in-
stance, in groups containing high-criticality installations, scenarios that incorporate a higher share of
CBM (typically ranging between 20% and 40%) tend to generate lower overall costs despite their initial
investment. Here the long-term savings stem not only from reduced emergency repair costs but also
from a smoother distribution over time.

Furthermore, when the model outputs are examined from the perspective of required man-hours, a
slightly different picture emerges. Although cost-efficient strategies generally advocate for increased
CBM usage in mission-critical groups, the model shows that man-hour efficiencies might favor a mod-
est increase in CM. This divergence can be attributed to how labor hours are recorded in SAP; for
certain maintenance actions, especially mission-critical repairs, the recorded man-hours capture only
the immediate “hands-on” work, neglecting preparation and logistical support. As a result, scenarios
with higher CM might appear more efficient in terms of labor even though they might conceal hidden
downtime costs.

Overall, this research shows that an optimized mix of CM, TDSM, and CBM can improve cost-efficiency
and can lead to reductions in man-hours and downtime.

iii



Contents

Preface ii

Nomenclature ix

1 Introduction 1
1.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Societal and scientific relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.5.1 Practical Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5.2 Scientific Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5.3 Societal Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.6 Structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 General challenges surrounding Dutch naval ship maintenance 4
2.1 External Parties for the Maintenance of Dutch Navy Ships . . . . . . . . . . . . . . . . . 4

2.1.1 Limited Control and Transparency . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 High Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.3 Operational Inefficiencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Challenges of Foreign Outsourcing . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Problems with Condition Based Maintenance . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Variable Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.2 Limited Data Availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Lack of Comprehensive Data Packages . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Infrastructure for Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Cultural challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Challenges of Overloading Maintenance Schedules: Impact on Efficiency and Error Rates 7
2.5 Need for Prioritization in Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Currently used maintenance methods 12
3.1 General maintenance methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1 Reactive maintenance policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.2 Proactive maintenance policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.1.3 Aggressive maintenance policies . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Maintenance Practices within the RNLN . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.1 Preventive Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2.2 Corrective Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2.3 Condition-Based Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Misconceptions in Maintenance Terminology . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Theoretical basis of model 19
4.1 Model Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Configuration of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Model Explanation: Corrective maintenance . . . . . . . . . . . . . . . . . . . . . 23
4.2.2 Model Explanation: Time-driven scheduled maintenance . . . . . . . . . . . . . 27
4.2.3 Model Explanation: Condition-Based Maintenance . . . . . . . . . . . . . . . . . 33

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

iv



Contents v

5 Application of the model 37
5.1 Usage of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Software choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Overview and scenario setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.2 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6 Application of the model for the RNLN 42
6.1 Findings per installation group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1.1 BSMI group A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.2 BSMI group I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
6.1.3 BSMI group B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.1.4 BSMI group H . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.1.5 BSMI Group E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.6 BSMI group G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.7 BSMI Group C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Total comparison for different scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.1 Costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 Man-hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Analysis of maintenance comparison 57
7.1 Sensitivity of CBM components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.1.1 CBM cost component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.1.2 CBM man-hour component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

7.2 Sensitivity of CM components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.1 CM M2 costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2.2 CM M2 man-hours . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8 Validation of the developed model 66
8.1 Theoretical Structural Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 Empirical Structural Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.3 Empirical Performance Validity (EPV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.4 Theoretical Performance Validity (TPV) . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

9 Conclusion 70
9.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
9.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
9.3 Scientific contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.4 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

References 75

A Verification steps 79

B Overview of all different relevant maintenance calls in SAP 82

C Data normalization example 83

D Overview of interviews 85



List of Figures

2.1 Impact of various factors on shipyard productivity. (McDevitt, Zabarouskas, and Crook,
2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Impact of various factors on error rates in ship repair. (McDevitt, Zabarouskas, and
Crook, 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 A scheme to determine whether a system is suitable for CBM, created by Tinga (2013). 10

3.1 Overview and classification of the different maintenance policies (Tinga, 2013). . . . . . 13
3.2 P-F interval. (Tinga, 2013) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3 Preventive Maintenance cycle of the RNLN (Mooij, 2023). . . . . . . . . . . . . . . . . . 15
3.4 Corrective Maintenance cycle at the RNLN (Mooij, 2023). . . . . . . . . . . . . . . . . . 16
3.5 CBM process at the RNLN (Mooij, 2023). . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 System pyramid within the RNLN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Representation of the model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 Representation of the CM-part of the model . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.4 Maintenance cost development for Preventive Maintenance and Corrective Maintenance

(Le et al., 2018). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.5 M2 cost growth curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.6 M2 man-hour growth curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.7 Representation of TDSM-part of the model . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.8 Effect of productivity of employees on shipyard productivity (McDevitt, Zabarouskas, and

Crook, 2003). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.9 Derived relationship between productivity and the amount of TDSM. . . . . . . . . . . . 30
4.10 The effect of workforce to infrastructure ratio on productivity. (McDevitt, Zabarouskas,

and Crook, 2003) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.11 Derived relationship between productivity and the amount of TDSM. . . . . . . . . . . . 31
4.12 Effect of infrastructure fatigue on productivity. (McDevitt, Zabarouskas, and Crook, 2003). 31
4.13 Derived relationship between infrastructure fatigue and productivity decline due to in-

creasing TDSM levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.14 Effect of worker experience on productivity (McDevitt, Zabarouskas, and Crook, 2003). 32
4.15 Derived relationship between worker experience and productivity. . . . . . . . . . . . . . 33
4.16 Representation of the CBM- part of the model. . . . . . . . . . . . . . . . . . . . . . . . 34

5.2 A sample of costs database (vessel types and numbers are randomized). . . . . . . . . 38
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 A sample of the costs database-output (vessel types and numbers are randomized). . . 39
5.4 The results for vessel type OPV and BSMI group 1200. . . . . . . . . . . . . . . . . . . 40
5.5 Vessel type comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.6 Scenario comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.1 SAP man-hour component comparison for BSMI Group A across vessel types. . . . . . 44
6.2 Maintenance registration process for on board installations. . . . . . . . . . . . . . . . . 46
6.3 SAP man-hour component comparison for BSMI Group B across vessel types . . . . . 46
6.4 SAP cost component comparison for BSMI Group E across vessel types . . . . . . . . . 48
6.5 SAP man-hour component comparison for BSMI Group E across vessel types . . . . . 49
6.6 SAP cost component comparison for BSMI Group G across vessel types . . . . . . . . 50
6.7 SAP man-hour component comparison for BSMI Group G across vessel types . . . . . 50
6.8 SAP cost component comparison for BSMI Group C, across vessel types . . . . . . . . 52
6.9 SAP man-hour component comparison for BSMI Group C, across vessel types . . . . . 52

vi



List of Figures vii

7.1 CBM cost sensitivity of Vessel Type 3 A. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.2 CBM cost sensitivity of Vessel Type 1 B. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 CBM cost sensitivity of Vessel Type 1 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 CBM man-hour sensitivity of Vessel Type 1 G. . . . . . . . . . . . . . . . . . . . . . . . 60
7.5 CBM man-hour sensitivity of Vessel Type 3 E. . . . . . . . . . . . . . . . . . . . . . . . . 60
7.6 CBM man-hour sensitivity of Vessel Type 3 C . . . . . . . . . . . . . . . . . . . . . . . . 61
7.7 M2 cost sensitivity of Vessel Type 2 G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.8 M2 cost sensitivity of Vessel Type 3 G. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.9 M2 cost sensitivity of Vessel Type 2 C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.10 M2 man-hour sensitivity of Vessel Type 2 G. . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.11 M2 man-hour sensitivity of Vessel Type 2 F . . . . . . . . . . . . . . . . . . . . . . . . . 64

8.1 Validation square by Pedersen et al. (2000) . . . . . . . . . . . . . . . . . . . . . . . . . 66
8.2 Efficiency loss comparison between (McDevitt, Zabarouskas, and Crook, 2003) and

(Chang and Sullivan, 2006) across varying levels of TDSM application. . . . . . . . . . 67

C.1 Data normalization example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



List of Tables

3.1 Description of each method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 BSMI Breakdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 A subset of the possible combinations of CM, TDSM and CBM. . . . . . . . . . . . . . . 38
5.2 Verification Steps 1–10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue)
and man-hours (orange), for BSMI Group A . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2 The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue)
and man-hours (orange), for BSMI Group I . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue)
and man-hours (orange), for BSMI Group B . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue)
and man-hours (orange), for BSMI Group H . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.5 The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue)
and man-hours (orange), for BSMI Group E . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.6 The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue)
and man-hours (orange), for BSMI Group G . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.7 The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue)
and man-hours (orange), for BSMI Group C . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.8 Overview of several cost-efficient scenarios. . . . . . . . . . . . . . . . . . . . . . . . . 54
6.9 Cost savings per BSMI group and vessel type when comparing the baseline to the most

cost-efficient scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.10 Man-hour (including downtime) savings per BSMI group and vessel type when compar-

ing the baseline to the most man-hour efficient scenario. . . . . . . . . . . . . . . . . . . 55

7.1 Table showing the conclusions from the sensitivity analysis . . . . . . . . . . . . . . . . 65

9.1 Reliability of model results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1 Verification steps for validating the cost model across CM, TDSM, and CBM. . . . . . . 79
A.2 Verification steps for validating the man-hour model across CM, TDSM, and CBM. . . . 80

B.1 Overview and classification of SAP maintenance notification types relevant to the Royal
Netherlands Navy, highlighting their function and scope within the research. . . . . . . . 82

D.1 Interview and communication sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

viii



Nomenclature

Abbreviations
Abbreviation Definition
AM Assisted Maintenance (scheduled maintenance period)
BO Benoemd Onderhoud (Scheduled Maintenance Period)
BSMI Beheersstructuur Materieel Instandhouding (Maintenance Man-

agement Structure)
CapEx Capital Expenditure
CBM Condition-Based Maintenance
CM Corrective Maintenance
CPA Condition and Performance Assessment
CSS Combat Support Ship
EPV Empirical Performance Validity
ESV Empirical Structural Validity
FTE Full Time Employee
JSS Joint Logistic Support Ship
LCC Life Cycle Cost
LCF Air Defence and Command Frigate
LPD Landing Platform Dock
M2 Maintenance call within SAP
M2* Corrected number of M2 calls
MF Multipurpose Frigate
MRC Material Replacement Costs
MTBF Mean Time Between Failures
MTTF Mean Time to Failure
MTTR Mean Time to Repair
OpEx Operational Expenditure
OPV Offshore Patrol Vessel
PdM Predictive Maintenance
PM Preventive Maintenance
RNLN Royal Netherlands Navy
SAP ERP system used by the RNLN
TCO Total Cost of Ownership
TDSM Time-Driven Scheduled Maintenance
TPM Total Productive Maintenance
TPV Theoretical Performance Validity
TSV Theoretical Structural Validity
WACC Weighted Average Cost of Capital
WP Work Package Call, a maintenance call within SAP

ix



1
Introduction

This chapter introduces the background, focus, and structure of the thesis. Section 1.1 defines the
central problem motivating this research. Section 1.2 outlines the boundaries and focus areas of the
study. The research approach is explained in Section 1.3, followed by the main research question and
supporting sub-questions in Section 1.4. Section 1.5 discusses the societal and scientific relevance of
the research. Finally, Section 1.6 provides an overview of the structure of the thesis.

1.1. Problem definition
The Royal Netherlands Navy (RNLN) is encountering growing complexity in the maintenance of its
fleet, driven by advances in technology, evolving operational requirements, and a greater emphasis
on cost-efficiency (Tinga, 2013; Mooij, 2023; Simion et al., 2021). Traditional preventive maintenance
strategies, which operate on fixed schedules rather than real-time system conditions, are increasingly
challenged in efficient resource use (Tinga, 2013; Mooij, 2023). At the same time, the potential advan-
tages of Condition-BasedMaintenance (CBM), aimed at optimizing maintenance timing through system
data, are not yet fully realized due to technical, organizational, and cultural factors (Mooij, 2023; Tinga,
2013; Simion et al., 2021; Karatuğ, Arslanoğlu, and Soares, 2023).

Another consideration is the structure of the Dutch naval maintenance market, where a limited number
of external providers are involved in major maintenance activities. This can pose challenges in terms
of maintaining transparency, controlling costs, and ensuring timely execution (Interview 1, 2024; Ford,
Housel, and Mun, 2012). Furthermore, the practice of bundling large volumes of Preventive Mainte-
nance into single periods can contribute to peaks in workload, which may affect efficiency and increase
the likelihood of delays (McDevitt, Zabarouskas, and Crook, 2003; Interview 1, 2024; Mooij, 2023).

In this context, the absence of a structured approach for determining the most appropriate maintenance
strategy for each system presents a further challenge (Goossens and Basten, 2015; Ibazebo et al.,
2023; Emovon, 2016). Current practices do not yet differentiate systems based on their operational
criticality, reliability impact, or suitability for CBM application. As a result, the allocation of maintenance
resources may not always be optimal, with implications for both required man-hours, downtime and
cost management.

With maintenance resources under increasing pressure and high fleet availability remaining a priority,
enhancing the selectivity and efficiency of maintenance planning is essential. A model that provides
a systematic evaluation of maintenance strategies per system can support better-informed decision-
making, helping to ensure that financial and human resources are employed effectively.

1.2. Scope
This thesis focuses on developing a model to support the RNLN in selecting the most suitable mainte-
nance strategy: Corrective Maintenance (CM), Time-Driven Scheduled Maintenance (TDSM), or CBM,
for individual ship systems. The model is designed to systematically compare these maintenance

1
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strategies based on cost-efficiency and man-hour efficiency.

The research will concentrate on three of the major surface combatants in the RNLN fleet and will
use historical maintenance data to perform the analysis. The model evaluates cost and man-hour
components but does not integrate real-time monitoring data, nor does it address the technical design
of sensors or the detailed failure mechanisms of systems.

1.3. Approach
This thesis adopts a model-based approach to support maintenance decision-making within the RNLN.
The model systematically compares maintenance strategies CM, TDSM, and CBM, on a per-system
basis, evaluating each based on two performance indicators: total maintenance costs and required
man-hours, including downtime, derived from historical records and expert input. The research begins
with an analysis of current maintenance challenges through literature review and interviews with RNLN
subject-matter experts. Next, historical data from the RNLN’s maintenance management system is
structured and cleaned to ensure the reliability of cost and man-hour estimates used in the model.
Maintenance scenarios are generated by systematically varying the shares of CM, TDSM, and CBM
in 10% increments, creating a set of mixed strategies. Finally, the model is applied to a selection
of representative ship types and installation groups to demonstrate its practical value. A sensitivity
analysis is conducted to assess the robustness of results under uncertainty in key inputs.

1.4. Research Questions
During the thesis the following main research question will be answered:

MQ: How to provide insights into the cost-effectiveness and vessel availability of different
maintenance methods for the Royal Netherlands Navy?

To answer this main question, the following sub-questions will be answered:

1. What are the general challenges surrounding RNLN ship maintenance? [Chapter 2]
2. Which maintenance methods are currently used within the Royal Netherlands Navy, and outside

the navy organization, and which are relevant to include in the cost determination? [Chapter 3]
3. How to provide insights into the maintenance costs and required man-hours per relevant mainte-

nance method for the Royal Netherlands Navy? [Chapter 4 and 6]
4. How can the model be verified and applied by the Royal Netherlands Navy? [Chapter 5 and 8]
5. How can the model help the Royal Netherlands Navy in their maintenance decision-making?

[Chapter 6 and 7]

1.5. Societal and scientific relevance
Every research project carries practical, scientific, and societal implications. This section discusses the
implications of developed model.

1.5.1. Practical Implications
By systematically comparing maintenance strategies per system, the developed model enables the
RNLN to allocate resources more effectively, resulting in lower maintenance costs, man-hours and
downtime. This supports the RNLN in meeting national defense and international mission commitments
with a leaner maintenance effort. The structured approach may also be adapted by other naval fleets
or government organizations facing similar maintenance challenges.

1.5.2. Scientific Implications
This research advances the scientific discourse on maintenance strategy optimization, addressing a
gap in naval applications where empirical studies are limited. While sectors like aviation and energy
have embraced data-driven maintenance, naval systems lag behind. By combining historical data
analysis with scenario modeling and sensitivity testing, this thesis offers a framework adaptable to
other complex, data-constrained technical systems, bridging theory and practical application.
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1.5.3. Societal Implications
Optimizing maintenance reduces resource consumption, minimizes waste, and extends the lifespan
of assets, aligning with sustainability objectives. Moreover, better maintenance planning supports the
safety of naval personnel by ensuring that systems are more reliable and less prone to unexpected
failures. In a broader sense, enhancing the efficiency of defense spending allows governments to
better balance defense budgets with other societal needs, contributing to both national security and
the responsible use of public funds.

1.6. Structure of thesis
This thesis is structured as follows. Chapter 2 outlines the general challenges in Dutch naval ship main-
tenance. Chapter 3 reviews the main maintenance strategies. Chapter 4 describes the development
of the model and its methodology. Chapter 5 covers the model’s implementation and validation. Chap-
ter 6 applies the model to selected ship systems. Chapter 7 presents a sensitivity analysis to test the
model’s robustness. Chapter 8 presents a validation. Finally, Chapter 9 concludes with findings and
provides recommendations for future research.



2
General challenges surrounding

Dutch naval ship maintenance

The maintenance of navy ships is a complex and essential task that ensures the operational capacity
and safety of the RNLN. The challenges faced by the RNLN are numerous and range from organiza-
tional complications and logistical difficulties to technical and strategic issues. This chapter describes
the major challenges in the maintenance of Dutch navy ships, with particular attention to the relation-
ship with external parties, the application of a certain type of maintenance policy, called CBM, and the
logistical complications of maintenance intervals. The chapter aims at providing an answer to the first
subquestion of this research, namely SQ1: ”What are the general challenges surrounding Dutch naval
ship maintenance?”

2.1. External Parties for the Maintenance of Dutch Navy Ships
An important consideration in themaintenance of Dutch navy ships is the current market structure within
the Dutch naval ship maintenance industry. At present, the RNLN primarily works with a single external
party for most of its major maintenance and repair projects for vessels larger than frigates (Interview 1,
2024). This concentrated market can sometimes pose challenges in terms of maintaining the desired
level of control, transparency, cost management, and operational efficiency.

2.1.1. Limited Control and Transparency
Because expertise is concentrated in a single external party, the RNLN has somewhat less direct over-
sight over the planning and execution of its maintenance work. This sometimes results in reduced
flexibility and transparency, which can make it more challenging for the RNLN to adjust plans or inter-
vene promptly when issues occur (Interview 1, 2024). In addition, installation managers who supervise
maintenance activities report that ensuring advanced and highly specialized systems are maintained to
the desired standard can be demanding. With new or complex technologies evolving rapidly, additional
time and resources may sometimes be needed to carry out thorough inspections and confirm that all
work is performed as intended (Interview 1, 2024).

2.1.2. High Costs
The limited competition in the Dutch naval ship maintenancemarket can lead to elevated base prices for
maintenance projects, as is in line with the general knowledge on monopoly and oligopoly economics
(Toppr, n.d.). The limited competition creates budgetary challenges for the RNLN. In addition to higher
base costs, unforeseen additional work often incurs extra charges, which may not be accounted for in
the initial financial plans (Interview 1, 2024). Strict interpretations of contracts and specifications can
further complicate budget management, leading to cost overruns in maintenance projects.
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2.1.3. Operational Inefficiencies
The working relationship between the Ministry of Defense and its external maintenance providers occa-
sionally presents operational challenges that can influence the overall effectiveness and timeliness of
maintenance projects. Some delays may be partially attributed to the inherent complexity of the tasks
involved and the level of coordination required for large-scale maintenance efforts (Interview 1, 2024).
Furthermore, while the inspection and approval processes are essential for ensuring quality, they can
be time-consuming and extend the duration of operations. Communication and coordination between
the RNLN and its external providers, although crucial, sometimes encounter difficulties that may further
affect project timelines and resource allocation (Interview 1, 2024).

2.1.4. Challenges of Foreign Outsourcing
There has been consideration of outsourcing maintenance to foreign parties, But, apart from the fact
that there is a Dutch public preference for keeping naval engineering knowledge in their own country
and stimulating their own country’s economy, this option presents logistical and operational challenges.
The cost of transport and the complexities of coordinating work over long distances can increase the
logistical burden. Additionally, cultural and language barriers pose risks of miscommunication, which
can reduce the overall effectiveness of maintenance efforts and delay project completion (Interview 1,
2024).

The relatively limited competition in the Dutch naval ship maintenance industry can present challenges
in maintaining tight control, managing costs effectively, and optimizing operational efficiency. These
factors, in turn, complicatemaintenance project planning and contribute to occasional delays and higher
expenditures.

2.2. Problems with Condition Based Maintenance
CBM is a maintenance method that uses prediction of failure of a system with system-data, like us-
age and load based data, which will be further explained in the next chapter. Although CBM involves
relatively high investment costs, this maintenance method offers significant potential for improving the
efficiency and effectiveness of maintenance processes, since it is ’predicted’ when a failure occurs (Ali
and Abdelhadi, 2022; Mooij, 2023; Su et al., 2015; Simion et al., 2021). But, it also presents consid-
erable challenges for the RNLN. One of the biggest issues is the enormous variability in the use of
systems on board navy ships. These ships operate under very diverse conditions, making it difficult to
collect and interpret reliable data (Interview 2, 2024; Interview 1, 2024; Tinga, 2013).

2.2.1. Variable Operating Conditions
The variable conditions under which ships operate, such as varying speeds, see state and weapon
usage, make it difficult to define consistent baselines for data analysis (Interview 2, 2024; Interview 1,
2024; Ellis, 2009; Nunes, Santos, and Rocha, 2023; Su et al., 2015). The intensity of system usage
varies greatly. During operations, some systems are used intensively, while others are less burdened,
complicating CBM. As noted by Interview 1 (2024): “These ships are either in port, or they sail, or they
sail at 10%, or they sail at 100%, or they are stationary, or they have headwinds. So many variables. I
worry about whether we can do predictions based on data at all.”

2.2.2. Limited Data Availability
Although there is one Combat Support Ship that collects data, collection of data by this single vessel
alone will not be enough to identify data patterns that apply for multiple ships in the fleet. More usage
data of systems is needed to identify patterns and norms (Interview 1, 2024; Interview 2, 2024; Ford,
Housel, and Mun, 2012; Mooij, 2023; Tinga, 2013; Nunes, Santos, and Rocha, 2023). Most existing
Dutch naval ships do not yet collect extensive operational data (Interview 1, 2024; Interview 2, 2024),
meaning it could take years to gather sufficient data to make CBM effective. In the automotive industry,
CBM is much more developed due to continuous and consistent data collection. For example, Tesla
vehicles constantly collect data and send it to the manufacturer for analysis (James, 2023;Wang, 2023).
This is possible because cars operate under more predictable and uniform conditions than navy ships
(apart from the fact that the size of cars is much smaller).
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2.2.3. Lack of Comprehensive Data Packages
A potential solution to a part of the data problem would be for suppliers of onboard systems, to pro-
vide data packages with their systems. This way, baselines for data analysis could be defined more
quickly (Interview 1, 2024; Nunes, Santos, and Rocha, 2023). However, no supplier currently includes
comprehensive data packages with their products (Interview 1, 2024), limiting the possibilities for CBM.
Without the necessary data packages, the Ministry of Defense cannot get a complete picture of the sta-
tus of these systems, and essential information for CBM is missing (Interview 1, 2024;Nunes, Santos,
and Rocha, 2023).

2.2.4. Infrastructure for Data Analysis
While more data is being collected, there is no comprehensive infrastructure for data analysis (Interview
1, 2024;Interview 2, 2024;Karatuğ, Arslanoğlu, and Soares, 2023;Mooij, 2023). Within the RNLN, there
is a lack of necessary algorithms and software to process and use the data effectively for CBM. No
standard methods have yet been developed to analyze and use the collected data for CBM, delaying
its implementation (Interview 1, 2024;Interview 2, 2024;Mooij, 2023).

Also it is unknown which systems are really suitable for application for CBM. To make a start with CBM,
the RNLN decided to put sensors on different systems within the vessel HNLMS Den Helder. However,
they have not been sure yet which systems are suitable to apply CBM to. It could be possible that
for some systems, application of CBM doesn’t yield a benefit in terms of costs and less downtime of
vessels (Interview 1, 2024).

All together, CBM offers potential benefits, but is hampered by variable operating conditions, limited
data availability, lack of comprehensive data packages from suppliers, and lack of knowledge which
systems are suitable for application of CBM. This lack of advancement in CBM within the RNLN is
reflected by Mooij (2023). Who uses the CBM maturity model, made by van de Kerkhof, Akkermans,
and Noorderhaven (2019) to compare the CBM maturity within the RNLN with other industries. This
CBM maturity model describes the CBM development stages on a scale from 1 to 5, as described
below

1. No CBM: Assets are not maintained or monitored at all.
2. Reactive CBM: Monitoring is not done regularly, but CBM can be used to identify problems when

they occur.
3. Scheduled CBM: CBM is used to boost maintenance efficiency, relying on simple, easy-to-use

tools and techniques.
4. Proactive CBM: The approach is aimed at enhancing the reliability and performance of key assets.
5. Top-tier CBM: The goal is to extract maximum value from the entire asset base through advanced

CBM methods.

According to Mooij (2023) the CBMmaturity within the RNLN is only 2.4, compared to an average CBM
development of 3.7 for other industries.

2.3. Cultural challenges
One observed challenge is the adoption of new maintenance methods. Many workers tend to favor tra-
ditional approaches, such as performing maintenance on a fixed schedule (i.e., once every five years),
rather than adopting predictive maintenance strategies (Interview 2, 2024; Mooij, 2023). This prefer-
ence may stem from a limited familiarity or comfort level with new CBM technologies. Additionally,
transitioning to CBM requires that workers acquire skills in data analysis and the use of new mainte-
nance tools. In some cases, there appears to be a need for more motivation, training, and educational
support among the maintenance staff, which could help facilitate a smoother and more effective use of
CBM (Interview 1, 2024; Interview 2, 2024; Mooij, 2023).

Good application of CBM requires smoother communication between different levels of the organiza-
tion (Interview 1, 2024;Interview 2, 2024;Mooij, 2023). Interview 1 (2024), Interview 2 (2024) and Mooij
(2023) note that there are communication gaps, especially between the ship crew and maintenance
engineers on land. This gap causes misunderstandings and inefficiencies in the maintenance process.
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Not all maintenance workers consistently log data or fully implement new procedures (Mooij (2023);
Interview 2 (2024)). This appears to be partly due to a natural tendency to rely on familiar routines.
Accurate data entry is essential for effective CBM, and as Ford, Housel, and Mun (2012) and Mooij
(2023) note, there are occasions when the data recorded in the RNLN’s maintenance registration sys-
tem is incomplete or contains errors. Addressing these challenges could help improve the reliability of
the data used for CBM (Ford, Housel, and Mun, 2012; Mooij, 2023).

2.4. Challenges of Overloading Maintenance Schedules: Impact on
Efficiency and Error Rates

Another major challenge in the RNLN naval ship maintenance is the current model of Preventive Main-
tenance. Preventive Maintenance means that maintenance is scheduled every couple of months and
years. For example, frigates undergo a maintenance period after four operational years, during which a
year is dedicated to comprehensive maintenance. During this four-year period, assistant maintenance
periods are also scheduled, lasting approximately four to eight weeks, during which all necessary main-
tenance is planned and performed (Interview 1, 2024;Interview 2, 2024;Mooij, 2023). A characteristic of
Preventive Maintenance is that systems are replaced, regardless of the actual condition of the system.
It is possible that the system could still function for years. This can result in increased expenditures
and inefficient allocation of labor.

With Preventive Maintenance many tasks are scheduled to be performed simultaneously (Interview 1,
2024)(Ford, Housel, and Mun, 2012). Carrying out a large number of maintenance tasks in a single
period is organizationally complex and logistically challenging. Concentrating a large number of main-
tenance tasks within a single period can lead to significant peaks in the demand for resources and
personnel. This increase in workload raises the likelihood of errors and can slow down the entire main-
tenance process (Interview 1, 2024; Ghamlouch, Fouladirad, and Grall, 2019;McDevitt, Zabarouskas,
and Crook, 2003; Vintr and Valis, 2006). McDevitt, Zabarouskas, and Crook (2003) highlight this
issue, showing that factors like worker fatigue, infrastructure strain, and imbalances in the labor-to-
infrastructure ratio directly affect productivity and error rates. When the workload becomes too high
compared to the available resources, these inefficiencies lead to delays, increased maintenance costs,
and a prolonged time for navy vessels to return to operation.

Figure 2.1 presents a visual of how productivity decreases as various factors (such as workforce fatigue,
infrastructure limitations, and workforce-to-infrastructure imbalances) increase. The X-axis in these
graphs represents the degree of fatigue, workforce ratio, or experience level, while the Y-axis shows
the corresponding effect on productivity, where values below 1 indicate a reduction in productivity.

1. Fatigue’s Impact on Productivity: As worker fatigue grows, the productivity multiplier declines,
meaning the more exhausted workers are, the less efficient they become.

2. Infrastructure Fatigue’s Role: As infrastructure fatigue increases, productivity decreases non-
linearly. Beyond a certain point, the infrastructure becomes inefficient at supporting the workforce,
reducing overall productivity.

3. Labor-to-Infrastructure Ratio: When the workforce outgrows the infrastructure’s capacity, produc-
tivity is further reduced. For example, if too many workers are using limited tools and spaces,
overcrowding and competition for resources slow down the work, reflecting a decrease in effi-
ciency.

4. Worker Experience: Conversely, productivity rises as worker experience increases. Experienced
workers are more adept at handling tasks efficiently, leading to fewer mistakes and quicker task
completion. With maintenance peaks, the number of experienced workers relatively reduces.

Figure 2.2 elaborates on this by illustrating how various factors affect error rates in ship repair. The
X-axis here represents variables such as worker fatigue, the workload-to-labor ratio, and experience,
while the Y-axis displays the error rate multiplier, where values above 1 indicate an increase in errors.

1. Fatigue and Errors: As workers become fatigued, the error rate climbs non-linearly. Tired workers
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Figure 2.1: Impact of various factors on shipyard productivity. (McDevitt, Zabarouskas, and Crook, 2003)

are more prone to making mistakes, which increases the need for rework and extends mainte-
nance time.

2. Workload-to-Labor Ratio: When the workload exceeds the available labor force, errors increase.
This often happens when shipyards are overburdened with too many maintenance tasks at once,
leading workers to rush and make more errors.

3. Labor-to-Infrastructure Imbalances: Similarly, when there is a mismatch between the size of the
workforce and the available infrastructure, error rates rise. Overloaded infrastructure results in
insufficient support for workers, causing more mistakes during repairs.

4. Worker Experience Reducing Errors: More experienced workers make fewer errors, as shown in
the graphs. This is a linear relationship, where increasing experience directly leads to a lower error
rate. Experienced workers are better at avoiding mistakes, leading to faster and more accurate
repairs.

Together, these findings emphasize that overloading the maintenance schedule leads to more errors
and delays, and thus higher costs and less vessel availability. By managing workloads and ensuring a
proper balance between labor and infrastructure, shipyards can minimize errors, optimize expenditures,
and shorten repair times (McDevitt, Zabarouskas, and Crook, 2003; Interview 1, 2024).

Also, the current model of Preventive Maintenance offers little room for adjustments based on the actual
condition of the systems (Interview 1, 2024;Barlow et al., 2021;Vintr and Valis, 2006). This means
that some maintenance tasks are performed unnecessarily early (leading to higher expenditures and
inefficent use of labor), while others may be postponed to the next maintenance period, potentially
reducing the reliability of the ships.

All together, the current Preventive Maintenance model, which bundles many tasks into a single period,
leads to organizational complexity, increased costs, and potential reductions in ship reliability due to
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Figure 2.2: Impact of various factors on error rates in ship repair. (McDevitt, Zabarouskas, and Crook, 2003)

the inflexibility of maintenance scheduling. An absence of CBM leads to a increase in the number of
workload peaks and the height of workload peaks (Interview 1, 2024;Bengtsson et al., 2004;Ghamlouch,
Fouladirad, and Grall, 2019).

2.5. Need for Prioritization in Maintenance
To make a start with CBM, the RNLN installed sensors on several systems, but without knowing which
systems are most relevant for CBM. This is logical, because one way of finding out whether CBM
works, is by trying. However, this approach leads to a lot of potentially unnecessary costs and does not
consider the varying importance of different systems (Interview 1, 2024). Not every system is critical
enough to warrant CBM. As Abels mentioned, “We have put sensors on all systems, and now we are
looking to see what will happen. This approach brings many extra costs, and not every system is
relevant to apply CBM to.” Tinga, 2013 describes how one of the most critical steps in the process is
determining which systems are suitable for CBM. This involves overcoming several key challenges to
ensure the selected systems benefit from CBM and justify the investment. This way, the least amount
of the limited resources the RNLN has (like data sensors, data engineers and data algorithms), would
be spilled (Interview 1, 2024;Alhouli, 2011;Interview 2, 2024;Mooij, 2023;Tinga, 2013;Pieterman et al.,
2011).The following sections outline these challenges in detail.

One of the primary challenges in implementing CBM is choosing the right parameters to monitor (Mooij,
2023;Tinga, 2013). These parameters must accurately reflect the system’s health and performance,
providing early warnings of potential failures. Selecting incorrect parameters can lead to unnecessary
maintenance or missed opportunities to prevent failures, which undermines the effectiveness of CBM.

Another significant challenge is ensuring sensor availability and proper placement (Mooij, 2023;Tinga,
2013). CBM relies on sensors to gather accurate data, but placing these sensors in optimal locations
can be difficult. Sensors must be suitable for the environment they operate in and must provide reli-
able data without being affected by interference or damage. This often involves dealing with physical
constraints and ensuring that sensors can withstand harsh operating conditions.
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Economic feasibility is another critical factor that must be considered. It’s essential to assess whether
implementing CBM is economically viable (Interview 1, 2024;Alhouli, 2011;Mooij, 2023;Tinga, 2013;Pieter-
man et al., 2011). This involves determining if the benefits of CBM, such as reduced maintenance costs
and improved system availability, outweigh the initial investment costs. These costs include purchasing
and installing sensors, hardware network to gather the data, developing data processing systems, and
creating failure prediction models. The goal is to ensure that the long-term savings and benefits justify
the upfront expenses.

Figure 2.3, shows the challenges that come with choosing which systems are suitable for CBM (Tinga,
2013). It outlines a process for picking the right parameters, placing sensors correctly, building phys-
ical failure models, and checking if CBM is more cost-effective than traditional maintenance methods.
Although formulating these questions is simple, trying to come up with an answer to these questions
can be challenging. Especially the question on ”A4)does application of CBM yield financial or safety
benefit?”. This question remains unanswered within the RNLN.

All together, the Navy’s approach of installing sensors on all systems without prioritization leads to
unnecessary costs and inefficiencies. The challenge is in determining which systems are relevant for
CBM.

Figure 2.3: A scheme to determine whether a system is suitable for CBM, created by Tinga (2013).

2.6. Conclusion
This chapter aimed to address the first sub-question of this research, SQ1: ”What are the general
challenges surrounding Dutch naval ship maintenance?”.

The maintenance of Dutch navy ships is confronted with a range of intricate challenges that span or-
ganizational and technical dimensions. Key issues include the reliance on an external partner, the im-



2.6. Conclusion 11

plementation of CBM, and the complexities associated with maintenance scheduling. The relationship
with external companies, characterized by a monopoly that limits control and transparency, increases
costs and operational inefficiencies. Meanwhile, the adoption of CBM, though promising, is hindered by
variable operating conditions, insufficient data, missing knowledge on CBM-suitable installations and in-
adequate infrastructure. Planning wise, challenges further complicate maintenance, particularly when
large volumes of tasks are scheduled simultaneously, leading to inefficiencies and potential reductions
in ship reliability. To cope with these challenges, it is important to understand which maintenance meth-
ods will yield the best financial benefit and least downtime of systems. This way the least amount of
the limited resources the RNLN has would be spilled. Meanwhile, the high maintenance peaks could
potentially be shaved.

Although the RNLN faces significant challenges in balancing maintenance costs with operational readi-
ness, especially in the context CBM, existing research and practical frameworks provide limited guid-
ance on how to select the most effective maintenance strategy at the system level. Most current
approaches either generalize maintenance planning across vessel types or focus narrowly on tech-
nological implementation without evaluating trade-offs between different maintenance methods. As a
result, there is a lack of decision-support models that enable comparison of maintenance strategies
across different shipboard systems in terms of both cost and downtime. This gap makes it difficult for
decision-makers to allocate limited resources efficiently and optimize maintenance schedules. There-
fore, further research is needed to develop a model that allows for systematic comparison of mainte-
nance approaches per system and vessel type to support evidence-based decision-making in naval
fleet maintenance.



3
Currently used maintenance methods

To identify which maintenance methods are yielding least downtime of vessels and least costs, first
needs to be determined which maintenance policies are relevant to compare. Therefore the second
sub question, SQ2: ”Which maintenance methods are currently used within the Royal Netherlands
Navy, and outside the navy organization, and which are relevant to include in the cost determination?”
will be answered. This is done by providing an overview of the various maintenance strategies cur-
rently employed by RNLN, as well as those used in other industries. It also examines how these
strategies are applied within the RNLN. Additionally, the chapter addresses common misconceptions
about maintenance terminology, specifically the differences between Preventive Maintenance, Time-
Driven Scheduled Maintenance, and Condition-Based Maintenance, to ensure a clear understanding
of the terms used in this report.

3.1. General maintenance methods
Across multiple industries, maintenance strategies can be divided into reactive, proactive, and aggres-
sive maintenance policies, each with specific methods and goals (Tinga, 2013;Alhouli, 2011;Goossens
and Basten, 2015;Emovon, 2016). An overview and classification of the different maintenance policies
can be seen in Figure 3.1.

3.1.1. Reactive maintenance policies
Reactive maintenance policies focus on fixing problems only after they happen. Corrective Mainte-
nance is a key part of Reactive Maintenance and involves repairing or replacing parts after they fail.
While this approach makes full use of the parts, it can lead to unexpected downtime and higher costs
due to the unplanned nature of the repairs. Detective Maintenance, another form of Reactive Main-
tenance, is used for hidden problems, particularly in protective devices like sensors (i.e., fire alarms).
Maintenance is only done when tests reveal a failure, which may have occurred long before it was
detected, potentially leading to safety risks.

3.1.2. Proactive maintenance policies
Proactive maintenance policies aim to prevent problems before they happen by monitoring or predicting
the condition of equipment. Preventive Maintenance is the most traditional form of Proactive Mainte-
nance and involves regularly scheduled activities such as inspections, part replacements, and routine
services to avoid unexpected breakdowns. CBM and Predictive Maintenance are key components of
Preventive Maintenance. CBM relies on real-time monitoring to decide when maintenance is needed
based on the actual condition of the equipment, while Predictive Maintenance uses historical data and
usage patterns to predict the best times for maintenance, reducing unnecessary work. An important
part of Predictive Maintenance is Time-Driven Scheduled Maintenance. This approach involves per-
forming maintenance tasks at predetermined intervals, based on elapsed time or operating hours, re-
gardless of the current condition of the equipment. The primary goal is to prevent failures by replacing
parts or servicing equipment before it is likely to fail. For example, the RNLN has a policy for ves-
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Figure 3.1: Overview and classification of the different maintenance policies (Tinga, 2013).

sels that are larger than frigates to undergo a major maintenance period called ”Benoemd Onderhoud”
(BO) after five operational years, with a year dedicated to maintenance (Interview 1, 2024;Interview 2,
2024;Mooij, 2023). Frigates undergo a BO after four operational years, during which a year is dedi-
cated to comprehensive maintenance. During this maintenance period, assistant maintenance periods
are also scheduled, lasting approximately four to eight weeks, during which all necessary maintenance
is planned and performed (Interview 1, 2024;Mooij, 2023). While this method helps avoid unexpected
breakdowns, it can also result in the replacement of parts that still have useful life left, leading to higher
maintenance costs and can lead to inefficient use of labor.

Opportunistic Maintenance
Opportunistic Maintenance is a strategy that is part of the Proactive Maintenance policy. The strategy
involves doing maintenance on a specific part when other work is being done on the same part, even if
the maintenance is not urgently needed (Tinga, 2013;Ibazebo et al., 2023) This saves time and money
by reducing repeated preparation tasks.

Condition Based Maintenance
Condition Based Maintenance (CBM) is a way of doing maintenance that uses the actual condition of
equipment to decide when maintenance should be done. This approach aims to perform maintenance
only when necessary, based on real-time data collected from the equipment.

CBM involves several key steps (Tinga, 2013).

1. First, data collection is done using sensors and monitoring devices that gather information on
things like vibration, temperature, pressure, and other signs of equipment health. This data is
collected continuously or at regular times to keep track of the equipment’s condition.

2. The next step is condition monitoring, where the collected data is collected to see the current
state of the equipment. Techniques like vibration analysis, thermography, and oil analysis are
commonly used to spot signs of wear and tear or possible failure.

3. Data analysis and interpretation come next. Here, the data is examined using statistical and
computer models to find unusual patterns and trends that show potential failures. Advanced
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Figure 3.2: P-F interval. (Tinga, 2013)

software tools help interpret the data accurately.
4. Based on the analysis, decisions are made about the timing and type of maintenance actions

needed. The goal is to domaintenance only when necessary, reducing unnecessarymaintenance
and preventing unexpected failures.

Figure 3.2 explains the idea of the PF interval, which is a crucial part of the CBM process. The PF
interval is the time period between noticing a potential failure (P) and the point where a functional failure
(F) happens. Where P is the point at which a problem or anomaly is first noticed through condition
monitoring. At this stage, the equipment is still working, but there are signs that a failure is likely to
happen soon. F is the point at which the equipment stops performing its intended function. Functional
failure leads to downtime and usually requires immediate repair.

The importance of the PF interval is that it allows for early detection of potential failures, enabling main-
tenance actions to be scheduled before the failure becomes serious. By understanding the length of the
PF interval, maintenance can be done at the best time, maximizing equipment uptime and minimizing
disruptions. Additionally, knowing the PF interval helps in better planning and allocation of maintenance
resources, ensuring that parts and personnel are available when needed.

While CBM can help minimize the misallocation of resources by predicting when an installation is likely
to fail, it does require a relatively high upfront investment, due to investment in IT infrastructure, sensor
allocation and sensor installation.

3.1.3. Aggressive maintenance policies
Aggressive maintenance policies take things a step further by focusing on improving the system design
to reduce the number of problems. Total Productive Maintenance (TPM)is an example of this approach,
emphasizing the involvement of all employees in maintenance activities with the goal of achieving zero
breakdowns and defects through continuous system improvements (Alhouli, 2011;Tinga, 2013).

3.2. Maintenance Practices within the RNLN
The RNLN follows a structured approach to maintenance, with a strong focus on preventive measures.
Within the RNLN, a distinction is made between Preventive Maintenance, Corrective Maintenance,
and CBM (Interview 1, 2024;Interview 2, 2024;Mooij, 2023). Also in other naval industries, a distinction
is made between those three maintenance methods (Alhouli, 2011;Tinga, 2013). However, CBM is
considered a subset of Preventive Maintenance, as demonstrated by the theoretical models outlined
by Tinga, Alhouli, and Goossens in section 3.1. In the RNLN, Preventive Maintenance is commonly
referred to as Time-Driven Scheduled Maintenance.

3.2.1. Preventive Maintenance
Preventive Maintenance is the most traditional and widely practiced strategy within the RNLN (Inter-
view 1, 2024;Mooij, 2023). It is characterized by the planning and scheduling of maintenance activities
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Figure 3.3: Preventive Maintenance cycle of the RNLN (Mooij, 2023).

based on time intervals rather than the actual condition of the equipment. The RNLN has a policy for
vessels larger than frigates to undergo a major maintenance period (BO period) after five operational
years, with a year dedicated to maintenance. Frigates undergo a BO period after four operational years,
during which a year is dedicated to comprehensive maintenance. Apart from this significant overhaul
every couple of years, there are also two other maintenance periods: short-term maintenance tasks
performed aboard the ship and long-termmaintenance every three monthsm, also called assisted main-
tenance, lasting approximately four to eight weeks (Interview 1, 2024;Interview 2, 2024;Mooij, 2023).
Preventive maintenance accounts for about 80% of the RNLN’s maintenance activities (Interview 1,
2024; Interview 2, 2024; Interview 3, 2024; Interview 6, 2024; Mooij, 2023), reflecting its key role in
keeping the fleet ready for action.

Figure 3.3 demonstrates how the preventive maintenance process is structured, involving both short-
term and long-term cycles. The diagram highlights the interaction between various stakeholders, such
as maintenance engineers, ship crews, and installation managers. The flow diagram begins and ends
with oval-shaped symbols, representing the start and end of the process. Square shapes indicate
processes or actions, while diamond shapes represent decision points. Arrows illustrate the flow of
the maintenance process. The graph also shows how the maintenance plan is adapted based on the
crew’s feedback, leading to a final maintenance plan.

3.2.2. Corrective Maintenance
CorrectiveMaintenance is donewhen equipment fails unexpectedly (Interview 1, 2024;Mooij, 2023;Ibazebo
et al., 2023;Wahid et al., 2018). This type of maintenance is important for fixing problems that preven-
tive measures might have missed. When a system on board a ship fails, operational engineers are
first called in. They determine the cause of the problem and what is needed to fix it. If they cannot
resolve the issue, a specialist is brought in. If the problem cannot be solved on-site, the ship is brought
to a maintenance facility, or an external company is involved to carry out the repair (Interview 1, 2024).
Corrective maintenance makes up about 15% of the RNLN’s maintenance activities (Interview 1, 2024;
Interview 2, 2024; Interview 3, 2024; Interview 6, 2024; Mooij, 2023).

Figure 3.4 shows the Corrective Maintenance cycle used by the RNLN, focusing on how breakdowns
are managed. The flow diagram begins with an oval-shaped start symbol and ends with an oval-shaped
end symbol, with various steps in between. Squares represent processes or actions, while diamonds
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Figure 3.4: Corrective Maintenance cycle at the RNLN (Mooij, 2023).

indicate decision points. Arrows show the flow of themaintenance process, with blue squares indicating
actions within the maintenance registration system. The Corrective Maintenance process begins with
the detection of a breakdown, which is reported to the head of technical services and registered in
the maintenance registration system. The breakdown is then prioritized, and repairs are conducted
by shipboard mechanics, the RNLN maintenance department, or outsourced to external companies
(Mooij, 2023).

3.2.3. Condition-Based Maintenance
Condition Based Maintenance (CBM) is a newer approach within the RNLN, focusing on maintenance
based on the actual condition of the equipment (Interview 1, 2024;Mooij, 2023;Ibazebo et al., 2023;Wahid
et al., 2018. CBM involves regular monitoring using techniques like vibration analysis and fluid inspec-
tions. These measurements are taken approximately every four months and analyzed by the Condition
and Performance Assessment (CPA) department to provide maintenance recommendations based on
the current state of the equipment (Interview 1, 2024;Mooij, 2023). CBM is a newer practice and ac-
counts for about 5% of the RNLN’s maintenance efforts (Interview 1, 2024; Interview 2, 2024; Email
communication 1, 2024; Mooij, 2023). A relatively new ship, the HNLMS Den Helder, is equipped
with more sensors that collect data on the systems on board (Interview 1, 2024). Though data is be-
ing collected, interpreting and using it for predictive maintenance is still under development. Drawing
conclusions from the acquired data requires enough data and software that can analyze the data and
provide meaningful insights.

Figure 3.5 shows the CBM cycle within the RNLN. The flow diagram begins with an oval-shaped start
symbol and ends with an oval-shaped end symbol, with various steps in between. Squares represent
processes or actions, while diamonds indicate decision points. Arrows show the flow of the mainte-
nance process, with blue squares indicating actions within the maintenance registration system. The
CBM process begins with condition monitoring, where data is collected through vibration and liquid anal-
yses conducted by the CPA department approximately every four months. The gathered data is then
analyzed, and maintenance recommendations are made. The ship’s crew receives this information
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Figure 3.5: CBM process at the RNLN (Mooij, 2023).

and decides whether to act on it (Mooij, 2023).

3.3. Misconceptions in Maintenance Terminology
As can be concluded from Sections 3.1 and 3.2, Alhouli (2011), Tinga (2013) and Goossens and Basten
(2015) use different terms for Preventive Maintenance than the RNLN. In everyday language within the
RNLN, Preventive Maintenance is often understood as Time-Driven Scheduled Maintenance which
misses the fact that true Preventive Maintenance includes both Time-Driven Scheduled Maintenance
ánd Condition-Based Maintenance, as described by Alhouli (2011), Tinga (2013) and Goossens and
Basten (2015).

In this report, there will be made distinct according to Alhouli (2011), Tinga (2013) and Goossens and
Basten (2015), as described in section 3.1. In other words, a distinction will be made between Correc-
tive Maintenance, Time-Driven Scheduled Maintenance and Condition Based Maintenance.

3.4. Conclusion
This chapter aimed to address the sub-question SQ2: ”Which maintenance methods are currently used
within the Royal Netherlands Navy, and outside the navy organization, and which are relevant to include
in the cost determination?”

To answer this question, various maintenance strategies employed both within RNLN and in other indus-
tries were explored. These strategies are broadly categorized into reactive, proactive, and aggressive
maintenance policies. In the broader ship industry, these categories encompass methods such as
Corrective Maintenance, Time-Driven Scheduled Maintenance, and CBM. The RNLN predominantly
uses these three approaches: Corrective Maintenance to address unexpected failures, Time-Driven
Scheduled Maintenance as part of its preventive maintenance strategy, and CBM, which is still being
developed and implemented more widely.

Additionally, this chapter highlighted a common confusion within the RNLN regarding maintenance
terminology, specifically the difference between Preventive Maintenance and CBM. For clarity in this
report, the definitions provided by Alhouli (2011), Tinga (2013) and Goossens and Basten (2015) are
followed, where Preventive Maintenance encompasses both Time-Driven Scheduled Maintenance and
CBM.

Since the maintenance methods currently used within the RNLN are Corrective Maintenance, Time-
Driven Scheduled Maintenance, and CBM, all these methods are relevant to include in the cost and
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reliability comparison, as they each play a critical role in ensuring the reliability and readiness of naval
assets. An overview of the (dis)advantages of each method is given in Table 3.1.

It is now known which maintenance methods will be compared on costs and vessel reliability. The next
step is to identify how these maintenance methods can be compared on financial benefits (least costs)
and vessel reliability (least downtime). This will be explained in Chapter 4.

Table 3.1: Description of each method

Maintenance
method

Resource-related description

Corrective
Mainte-
nance

No scheduled expenditure on work or materials until an installation fails. This ap-
proach can be very economical, but an unexpected breakdown during a mission may
lead to significant, unpredictable expenses and substantial downtime.

Time-Driven
Scheduled
Mainte-
nance

Maintenance is performed at predetermined intervals. While this strategy avoids un-
expected failures, it may result in workload surges and the premature replacement
of installations, which can lead to inefficient resource utilization.

Condition-
Based Main-
tenance

Maintenance is scheduled based on real-time condition monitoring, enabling peak
workload shaving and more efficient resource use by avoiding unnecessary replace-
ments. However, it demands higher initial investments in IT infrastructure, special-
ized personnel, and sensors.



4
Theoretical basis of model

Chapter 2 outlined themain challenges in Dutch naval ship maintenance and the research gap. Chapter
3 identified the relevant maintenance methods to include in this research. This chapter describes the
theoretical foundation of a model that enables such a comparison. The model is designed to evaluate
the total costs and man-hours, including downtime, associated with different maintenance distributions
over the lifespan of a naval vessel.

This chapter starts with an explanation of the structure of the model and its in-depthness, in Section
4.1. Section 4.2 describes how raw maintenance data and expert input is transformed into cost and
man-hour projections for different distributions of CM, TDSM, and CBM.

4.1. Model Development
Following on the research gap identified in Chapter 2, the following model requirements were derived:

1. Applicability Across Different Ships
The model needs to work for all major ships in the RNLN fleet, including OPVs, M-Frigates, LCFs,
LPDs, JSS, and the CSS. If the installation breakdown is too detailed, it might only work for certain
ships, making it less useful.

2. Model complexity
Themodel should not be too complex. Focusing too much on individual parts of installations could
lead to a “Christmas tree effect”, where too much detail makes it hard to manage and understand
the results.

3. Providing Useful Insights
The model should enable clear conclusions about the optimal maintenance strategy for different
onboard systems.

To develop the model, twelve interviews were held with fourteen experts from RNLN’s maintenance
department, DMI. The interviewees included, among others, weapon system managers, data analysts,
engineers, and maintenance planners. An oversight of the interviews and other personal communica-
tion is given in Appendix D. These conversations helped to understand how maintenance is done and
what factors affect the costs and man-hours needed for maintenance. From these interviews, it was
found that the RNLN’s maintenance activities can be divided into three levels:

1. Macro Level:
Macro level is about maintenance planning for the whole fleet, focusing on using financial and
labour resources efficiently across different ships (Interview 3, 2024; Interview 7, 2024).

2. Meso Level:
Meso level looks at maintenance for individual ships. (Interview 3, 2024; Interview 6, 2024; Email
communication 5, 2024).

19
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Figure 4.1: System pyramid within the RNLN.

3. Micro Level:
Micro level is the most detailed level, focusing on maintenance of specific systems and parts
onboard. It covers everything from large groups of systems like sensors and weapons to small
parts like engines, cannons, and even screws and bolts. (Interview 1, 2024; Interview 3, 2024;
Interview 4, 2024; Interview 5, 2024; Interview 6, 2024; Email communication 2, 2024)

A view of these maintenance levels is shown in Figure 4.1. The studies of Moussault (2020) and Carlo
and Arleo (2013) can also be seen. These studies did calculations on the involved costs of maintenance
as well. And these studies were performed by looking at the top of micro-level maintenance.

Since macro and meso levels focus on fleet-wide and ship-wide planning, respectively, these levels
were not considered in this research. Instead, this study focuses on costs, man-hours and downtime
at micro level, where individual and groups of installations can be analyzed.

All onboard systems were categorized using BSMI codes. Each system on board has its own BSMI
code, such as 2121 for the SONAR system on an LCF. Through usage of these codes, systems were
grouped into broad categories, such as propulsion (1200), sensors (2100), and weapons (2200), as
summarized in Table 4.2.

The model focuses primarily on the first two digits of each BSMI code. These digits are consistent
across all major RNLN vessel types (including OPVs, M-Frigates, LCFs, LPDs, the JSS, and the CSS)
ensuring broad applicability. A focus on the full four-digit codes would make the model too specific and
reduce its value as a fleet-wide decision-making tool. In some cases, such as the 1100 (Hull), 1300
(Power Systems), and 1600 (Piping and Electrical Systems) categories, A/B subdivisions were intro-
duced only when clear functional differences existed and without reducing cross-vessel applicability.

This level of detail is visualized by the red line in Figure 4.1. The model zooms in just below the top of
the micro level, avoiding very detailed component-level modeling (like individual engines or cannons),
but still offering specific enough insights to differentiate between major onboard systems.

This design directly addresses the model requirements set in Section 4.1:

• Limited complexity is maintained by grouping systems at a high enough level to prevent overcom-
plication.

• Applicability across vessel types is ensured by using consistent BSMI code groupings common
to all major ships.
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• Usefulness for decision-making is achieved by enabling system-level analysis of cost and man-
hours, including downtime, without getting lost in unnecessary detail.

In conclusion, by using BSMI-based system groupings and focusing on the first two digits, the model
strikes the intended balance between detail and simplicity. This makes it broadly usable across the
RNLN fleet, while still supporting relevant maintenance insights.

BSMI Description of Installation and Components BSMI Specification

110A Hull (e.g., structure with bulkheads and decks, hull plating, deck-
houses, bridge, etc.)

BSMI 1100 to 1169
+ 1190 to 1199

110B Paint System (mainly Chemical) BSMI 1170 to 1189
1200 Propulsion (e.g., diesel engines, gas turbines, electric motors,

PODs, converters, propellers, shafts, gearboxes, etc., including
pipelines mounted on these main components)

BSMI 1200 to 1299

130A Power Generation (mechanical, rotating parts) such as diesel
generators, including some construction (foundations)

BSMI 1300 to 1329

130B Power Distribution (mainly electrical parts) such as switchboards
and distribution panels, including some electronics and construc-
tion (cable ducts, panel foundations)

BSMI 1330 to 1399

1400 HVAC (e.g., ventilation, air treatment, fans, AC units, ducts, filters,
valves, tanks, foundations, pumps, motors, etc.)

BSMI 1400 to 1499

1500 Fluid Piping Systems for liquids, including compressors, cen-
trifuges, motors, and control/monitoring systems

BSMI 1500 to 1599

160A Gas and Workshop Piping Systems, including mechanical and
construction elements (workshop equipment and lifting tools)

BSMI 1600 to 1619
+ 1630 to 1639
+ 1680 to 1699

160B Lighting, Control, Monitoring, and Signaling (e.g., lighting installa-
tions, switches, cables, and electronic components like sensors
and display units)

BSMI 1620 to 1629
+ 1640 to 1679

2100 Sensor Systems (e.g., radars, optical, NBC) with mechanical,
electrical (motors and power cables), and electronic components

BSMI 2100 to 2199

2200 Weapon Systems (e.g., EOV weapon systems, guided weapon
systems, underwater defense systems)

BSMI 2200 to 2299

2300 Command Systems (e.g., information processing systems, com-
munication systems like UHF/VHF, CCTV, video conferencing)

BSMI 2300 to 2399

2400 Nautical and Hydrographic Systems (e.g., compass, log, mete-
orological equipment, satellite navigation, wind measurement in-
struments, barometers)

BSMI 2400 to 2499

Table 4.2: BSMI Breakdown

Based on discussions Interview 4 (2024), installation manager for sonar systems and with Interview 5
(2024), head of the maintenance production department, an understanding of the repair process when
a critical system on board fails during a mission was obtained. In these situations, quick repairs are
required to ensure that the mission can continue. The repair process involves several steps:

• Preparing for the repair and assembling a maintenance team.
• Sending the maintenance team to the ship.
• Transporting the necessary equipment to the ship.
• Performing the repair work on board.
• Additional port time required for the vessel.
• Dockyard time for further repairs, if necessary.
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Each of these factors contributes to the overall repair costs. However, according to Interview 4 (2024)
and Interview 5 (2024), the exact values of these factors vary significantly from one situation to another.
It all depends on the specific failure and circumstances. This variability makes it difficult to create a
fixed mathematical model that accurately predicts the costs and man-hours required for CM.

Moreover, this variability is not unique to sonar systems; it applies to other types of installations as well
(Interview 5, 2024; Interview 6, 2024). The unpredictable nature of CM makes it challenging to apply a
standardized cost calculation method.

As a result, developing a comparison model solely based on expert interviews is not feasible. While
expert input provides valuable qualitative insights, a structured mathematical approach requires addi-
tional data sources, such as maintenance records and cost breakdowns. This is why the model also
incorporates historical data. The data source comes from SAP. SAP is the enterprise resource planning
(ERP) software used for the central administration of maintenance by the RNLN. For administration of
these maintenance tasks, the SAP system divides maintenance tasks into different call types, each
representing a different kind of maintenance (Interview 3, 2024; Interview 6, 2024; Email communica-
tion 1, 2024; Interview 12, 2025; Email communication 7, 2025; Email communication 8, 2024; Email
communication 9, 2024; Personal Communication 1, 2025; Personal Communication 2, 2025).

• M1 Calls:
For systems that fail during missions but can be fixed later during scheduled maintenance.

• M2 Calls:
For mission-critical systems that must be fixed immediately during a mission.

• M4 calls:
Are manually created by maintenance personnel. They typically concern maintenance tasks
based on usage or time, such as engine checks after a certain number of operating hours or
starts, or replacing fire extinguishers based on expiration dates.

• M8 Calls:
Are generated automatically by SAP. These immediately triggers a maintenance order, without
requiring a separate notification step. The trigger is also usage-based (i.e., a cannon after a
certain number of shots or an engine after a number of starts). Compared to the M4 process,
the main advantage of the M8 process is that it enables maintenance staff to track which specific
objects have been checked, repaired, or approved. Without this feature, individual maintenance
notifications would have to be created for each object separately.

• Work Package (WP) calls Administrative activations of planned maintenance tasks based on time
intervals. Tied to BO or AM periods.

Each maintenance call in SAP is broken down into four components: material costs, salary costs,
external party hiring costs, and the required man-hours. M5 calls were excluded from this research
because they refer to non-BSMI-specific work. Additionally, M6, M7, and M9 calls focus on design
changes rather than regular maintenance and were therefore not considered in this analysis. For a full
explanation of all SAP call types, see Appendix B.

How these maintenance calls are applied for CM and TDSM is explained in Sections 4.2.1 and 4.2.2,
respectively. For CBM, it is different, since it is a relatively new method for the RNLN and, as explained
in Section 3.2.3, not applied for more than five percent of the total maintenance. Therefore, there is
not enough data in SAP to model it properly. To fill this gap, the model uses estimates for CBM based
on studies and expert opinions. All together, this model is based on a combination of data from SAP
and components identified through experts their experience.

4.2. Configuration of the model
Figure 4.2 gives a view of how the model works. The model consists of three main steps.

1. Input Determination:
In the first step, maintenance data from SAP for the years 2017 to 2024 is used. This eight-
year period was chosen because it is only since 2017 that the RNLN started to gather data per
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maintenance call in SAP for each vessel (Email communication 1, 2024; Email communication 7,
2025). The input includes the costs and man-hours needed for each type of maintenance.

2. Baseline Calculation:
In the second step, the eight-year data is used to estimate the total costs and man-hours for the
entire life of a vessel. This is done through a linear calculation that scales the eight-years of
available data up to represent the entire expected lifetime of the vessel.
Within this second step, the costs over the entire lifetime of the vessel are calculated for a specific
amount of maintenance that is being applied. In case of CM, this is 15%. Since, 15% of the entire
maintenance within the RNLN is done through CM, as was explained in Section 3.2.2 In case
of TDSM, this would be 80%. Since 80% of the total maintenance within the RNLN is applied
through TDSM, as was explained in Section 3.2.1. For CBM, this is different. Currently there is
not enough CBM applied within the RNLN to use corresponding data. Therefore assumptions
need to be made where different amounts of CBM are applied. That explains the X% in step 2 of
CBM.

3. Optimization:
The last step in the process involves going from costs andman-hours over the entire lifetime of the
vessel for a specific amount of maintenance, to a different amount of maintenance of CM(Y1%),
TDSM(Y2%), and CBM(Y3%). This step also incorporates downtime.

Figure 4.2: Representation of the model

In Sections 4.2.1, 4.2.2 and 4.2.3, each maintenance method will be discussed in more detail.

4.2.1. Model Explanation: Corrective maintenance
The entire costs and required man-hours for CM can be defined by the sum of M1 and M2 calls from
SAP. In Figure 4.3, the step-by-step structure of the CM model is visualized, illustrating how costs and
man-hours are calculated. It follows the same steps as explained the previous paragraph (Section 4.2).
While SAP also breaks down call types into salary costs, external party costs, and material costs, things
are simplified by not showing these details.

• For M1 calls, the model incorporates the impact of productivity changes when scaling CM levels
(when going from step 2 to step 3). Since M1 maintenance tasks are scheduled during BO and
AM periods, variations in CM levels affect workload distribution. Increasing CM leads to higher
maintenance demands during these periods, which in turn reduces productivity due to workforce
fatigue and resource constraints. Conversely, reducing CM reduces workload pressure and im-
proves productivity. This productivity effect is discussed in detail in Section 4.2.2. Because of
these productivity dynamics, the transition from Step 2 to Step 3 follows a nonlinear pattern, as
represented in Figure 4.3.

• For M2 calls, the model assumes that costs and man-hours follow an exponential growth pattern.
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Figure 4.3: Representation of the CM-part of the model

Urgent mission-critical repairs require immediate action, leading to significantly higher expenses
associated with emergency labor, transportation of personnel and materials, and unscheduled
port calls (Interview 5, 2024; Interview 4, 2024; Email communication 1, 2024; Interview 9, 2025;
Interview 10, 2025). The exponential nature of M2 development is why Figure 4.3 visually repre-
sents a nonlinear transition from Step 2 to Step 3.

When analyzing M2 related man-hour data from SAP, several significant limitations must be ac-
knowledged. The registration of M2 man-hours only accounts for the actual repair time performed
on board the vessel. This excludes a substantial portion of the total workload. As highlighted by In-
terview 4 (2024), Interview 9 (2025), Interview 10 (2025), and Interview 11 (2025), a considerable
number of hours are spent on preparation activities prior to boarding the vessel, such as trou-
bleshooting, team coordination, and logistical planning. This preparation phase demands more
man-hours than the repair itself (Personal Communication 1, 2025; Interview 11, 2025; Interview
9, 2025).

Additionally, SAP does not register travel time to and from the vessel as working hours, even
though engineers do consider this time part of their working schedule. As a result, a key compo-
nent of their workload is structurally underrepresented. Interview 9 (2025) further points out that
in practice, multiple engineers may be dispatched to a mission-critical repair, while only the hours
of one engineer are logged in SAP. Moreover, hours spent on transporting specialized tools or
components to the vessel are also omitted from the database.

In summary, while SAP maintains consistent records, it systematically excludes major segments
of the actual maintenance effort for M2 tasks. This leads to an underestimation of total man-hours
(and thus costs) and, without adjustments, the SAP data is unreliable for modeling CM.

To address this, the model applies a multiplication factor of 10 to the man-hours and salary costs
reported under M2 calls. This estimate is based on the understanding that SAP captures only ac-
tive ‘hands-on’ time, whereas the full workload also includes travel time (often involving multiple
engineers), preparation efforts, and logistical handling of materials. This adjustment is substanti-
ated by expert input from Interview 4 (2024), Interview 9 (2025), Interview 10 (2025), and Interview
11 (2025). Although this factor is admittedly a coarse approximation, it reflects a more realistic
picture of the true labor investment associated with mission-critical repairs. It remains impossi-
ble to precisely quantify M2 maintenance due to the case-specific nature of such interventions
(Interview 4, 2024; Interview 11, 2025; Interview 5, 2024; Interview 9, 2025; Interview 10, 2025).
Nonetheless, applying this correction enhances the model’s reliability when estimating the cost
and workload implications of CM.
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Figure 4.4: Maintenance cost development for Preventive Maintenance and Corrective Maintenance (Le et al., 2018).

M2 cost development
A question arises how the M2 costs develop over the amount of applied CM. To answer this question,
Figure 4.4 illustrates that there is an optimal balance between Corrective Maintenance and Preventive
Maintenance (PM), where PM includes TDSM. The optimal balance differs per sector. According to
Hamasha et al. (2023), the ideal percentage of CM varies between 15% and 30%, depending on the
industry:

• Transportation Sector: 25% CM and 75% PM
• Oil and Gas Sector: 20% CM and 80% PM
• Manufacturing Sector: 30% CM and 70% PM
• Power Generation: 35% CM and 65% PM
• Healthcare Sector: 15% CM and 85% PM

Additionally, other sources such as Legát et al. (2017) and Smith and Mobley (2008) indicate that the
optimal maintenance strategy is around 20% CM and 80% PM.

Further research by Stenström et al. (2016) highlights that any increase in CM beyond the optimal level
has a significant impact on total maintenance costs. Specifically, every 1% rise in CM above the optimal
level results in a cost multiplication factor of 3.3.

Also, Interview 4 (2024) and Interview 5 (2024) revealed that certain cost components associated with
corrective maintenance (such as port calls, dockyard work, urgent transportation of replacement parts
and the deployment of personnel to the vessel’s location) tend to be significantly more expensive com-
pared to scheduled maintenance costs. The urgent nature of CM, especially for M2 tasks, requires
rapid mobilization of resources, leading to higher expenses.

Combining these different factors: the cost-growth pattern combined with the understanding that the
optimal CM-to-PM ratio generally lies between 15% and 30% , along with qualitative insights from
expert interviews, provides the basis for defining the cost development curve for M2 maintenance. It
is shown in Figure 4.5. The figure illustrates how costs escalate as CM increases. At 15% CM, the
associated costs remain at the baseline level (100%). However, at 30%CM, costs increase significantly
to approximately 330% of the baseline, and at 60% CM, the cost multiplier reaches nearly 1000%. The
steep rise in costs highlights the exponential nature of cost increases as more CM is applied.

That the curve increases exponentially is in line with the expectations. Relying solely on corrective
maintenance would lead to excessively high costs to keep vessels operational. The lack of preventive
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Figure 4.5: M2 cost growth curve.

measures would result in frequent unexpected failures, each requiring costly emergency repairs and
logistical efforts.

Based on the optimal maintenance point along with the absence of literature about the cost develop-
ment of corrective maintenance beyond this optimal range, it was determined that scenarios exceeding
60% CM are not relevant for further analysis. This decision is supported by the practical limitations of
corrective maintenance. Applying more than 60% CM would lead to an unsustainable maintenance
strategy, as the operational and financial impact of frequent unplanned repairs would become unman-
ageable. The lack of preventive measures at such high levels of CM would likely result in excessive
failures, requiring an impractical allocation of resources to emergency repairs.

M2 man-hour development
So far, the discussion has primarily focused on the cost multiplier associated with M2 tasks. However,
another equally critical factor is the man-hour component.

In addition to the direct financial costs of corrective maintenance, sudden repair activities also demand
significant labor time. Tasks such as port calls, dockyard work, urgent transportation of replacement
parts, and the deployment of personnel to the vessel all consume substantial man-hours. Furthermore,
as the share of corrective maintenance increases, vessel downtime rises accordingly, further amplifying
the labor burden.

To estimate the total man-hours, including those tied to downtime, a correction factor is required. Sev-
eral sources in the topic of Reliability Engineering like Birolini (2017), Woo (2020) and Blanchard (1995)
explain the relation between downtime and CM. However, for CM application above 30%, this is difficult
to quantify. Therefore, the multiplier effect is assumed to be as follows:

• 20% CM:
Represents the current CM level within the RNLN. Sudden repairs occur occasionally, but these
can still be absorbed within existing planning structures.

• 30% CM:
Unplanned maintenance begins to impact planning stability. Resource allocation becomes less
efficient, and downtime during missions starts to emerge as a visible operational risk. This results
in four to five times higher man-hours compared to 20% CM.

• 40% CM:
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CM becomes a dominant factor in the maintenance workload. Emergency repairs increasingly
disrupt scheduled tasks, reduce vessel availability, and strain logistics and personnel coordination.
This results in six to seven times higher man-hours, compared to 20% CM.

• 50%+ CM:
High reliance on reactive repairs leads to significant operational instability. Cumulative down-
time, crew saturation, and overstretched support systems result in severe efficiency loss. At this
point, vessel availability trends toward zero. The man-hours of CM are eight to 10 times higher,
compared to 20% CM. Scenarios above 60% CM are considered operationally infeasible.

These multiplier effects are incorporated into the model to construct the M2 man-hour growth curve,
shown in Figure 4.6. The curve visually reflects how required man-hours escalate as the proportion
of CM increases, especially due to the indirect labor caused by logistical complexity and operational
disruption.

Figure 4.6: M2 man-hour growth curve.

In conclusion, the exponential increase in man-hours associated with rising CM is a crucial part of the
model. It highlights how even small shifts toward more corrective maintenance can trigger a dispro-
portionate rise in total workload and cost, underscoring the operational risks of relying too heavily on
unplanned maintenance.

4.2.2. Model Explanation: Time-driven scheduled maintenance
Figure 4.7 shows how the model works for TDSM. TDSM can be calculated entirely by taking the sum
of the following components.

• M4 Calls
• WP Calls
• M8 Calls
• BO and AM preparation: The scheduled maintenance periods BO and AM are being prepared
by a maintenance planner. Based on experts this preparation is taking 1.5 year of 2 Full Time
Employee (FTE) (Email communication 4, 2024; Email communication 5, 2024).
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Figure 4.7: Representation of TDSM-part of the model

In accordance with what was described in Section 4.2, the following steps are taken:

• Step 1:
The model first compiles the total costs and required man-hours associated with M4 calls, WP
calls, M8 Calls and preparation tasks over a eight-year period.

• Step 2:
A straight-line estimation is applied to project the total costs and man-hours over the vessel’s
entire lifespan, assuming a maintenance strategy with 80% TDSM. This assumption aligns with
the current maintenance distribution within the RNLN, where 80% of all maintenance is scheduled-
based.

• Step 3:
The model evaluates different levels of TDSM application and their impact on costs and man-
hours.

– For BO and AM preparation, the transition from Step 2 to Step 3 follows a linear relationship.
This means that adjusting TDSM levels from 80% to any other percentage results in a pro-
portional increase or decrease in BO and AM preparation time. Given that TDSM consists
primarily of scheduled maintenance actions, early-life and end-of-life equipment failures are
not considered, making a linear extrapolation appropriate.

– However, for M4 calls WP and M8 calls, the transition from Step 2 to Step 3 is nonlinear
due to productivity effects, which will be further explained in this section. Changes in TDSM
influence workforce fatigue, infrastructure efficiency, and overall operational effectiveness,
making the relationship between TDSM levels and maintenance costs more complex. This
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Figure 4.8: Effect of productivity of employees on shipyard productivity (McDevitt, Zabarouskas, and Crook, 2003).

is why Figure 4.7 shows a nonlinear effect when transitioning from Step 2 to Step 3 for M4,
WP and M8 maintenance.

The impact of TDSM on productivity plays a role in the model. As mentioned in Section 2.4, TDSM is
directly linked to productivity levels. This is because themaintenance tasks from these calls are planned
within BO and AM periods. When the workload during these periods increases, productivity decreases
due to higher pressure on resources and personnel. On the other hand, reducing the workload in BO
and AM periods leads to improved productivity, as maintenance teams can work more efficiently with
fewer bottlenecks. It is assumed that productivity is directly connected to both costs and required man-
hours. As a result, the model adjusts costs and man-hours in proportion to productivity changes. This
approach makes sense since productivity measures how much output is achieved for a given amount
of input (costs and man-hours). By scaling productivity up or down based on workload, the model
provides a more realistic estimation of maintenance efficiency under different TDSM levels.

Impact of Fatigue on Productivity
One of the main factors leading to reduced productivity at high levels of TDSM is fatigue (Panuwat-
wanich, Mohamed, and Abualqumboz, 2013; Mahmud and Ahmad, 2011; McDevitt, Zabarouskas, and
Crook, 2003). Fatigue refers to both physical and mental exhaustion, which directly impacts the quan-
tity and quality of work performed by employees. Figure 4.8 illustrates the relationship between fatigue
and productivity as described by McDevitt, Zabarouskas, and Crook (2003). On the vertical axis, the
productivity factor can be seen. Ranging from 0.6 to 1. On the horizontal axis, the workload factor
can be seen, ranging from 1 to 2. The reduction in productivity aligns with the findings of Herdiana
and Sary (2023), reinforcing that increased workload can lead to decreased efficiency. This effect is
incorporated into the model to account for the impact of fatigue on productivity.

In the model, it is assumed that applying 80% TDSM corresponds to a workload factor of 1.5 in Figure
4.8. This assumption allows for a slight increase in productivity if TDSM decreases, aligning with
expectations that reducing scheduledmaintenance can lessen fatigue and improve efficiency. However,
beyond a certain point, the productivity gains stabilize, as there is only so much flexibility in adjusting
work shifts.

Similarly, an increase in TDSM results in lower productivity, as higher maintenance workload leads
to greater fatigue and reduced efficiency. This pattern is consistent with real-world scenarios, where
excessive scheduled maintenance can place increased strain on personnel. A clearer visualization of
productivity changes due to variations in TDSM application is presented in Figure 4.9, which represents
Figure 4.8, with the assumption that 80% TDSM corresponds to a workload factor of 1.5. This relation-
ship is integrated into the model to account for the effects of changing TDSM levels on productivity.
As with other productivity factors, the model assumes that productivity directly influences costs and
required man-hours, meaning that an increase or decrease in productivity is proportionally reflected in
overall maintenance efficiency.
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Figure 4.9: Derived relationship between productivity and the amount of TDSM.

Figure 4.10: The effect of workforce to infrastructure ratio on productivity. (McDevitt, Zabarouskas, and Crook, 2003)

Effect of Workforce to Infrastructure Ratio on Productivity
The ratio of the current workforce to the available infrastructure also influences productivity (Hasan et
al., 2018; Duggal, Saltzman, and Klein, 1999; McDevitt, Zabarouskas, and Crook, 2003). This refers
to the balance between the number of workers and the resources (like equipment, workspaces, and
support systems) available to them. If the workforce is too large for the available infrastructure, it leads
to:

• Overloading: More workers sharing the same resources causes delays.
• Coordination Problems: Toomany workers can lead to inefficiencies in task planning and workflow
management.

• Higher Error Rates: Limited resources can make it harder to maintain quality checks and super-
vision.

In Figure 4.10 the effect of workforce to Infrastructure Ratio on productivity, according to McDevitt,
Zabarouskas, and Crook (2003) can be seen. On the vertical axis, the productivity factor can be seen.
Ranging from 0.5 to 1. On the horizontal axis, the workload factor can be seen, ranging from 1 to 3.
The effect is used in the model to accommodate the productivity effect of workforce to infrastructure
ratio.

In the model, it is assumed that a workload factor of 1.5 corresponds to an 80% application of TDSM.
This assumption allows for an increase in productivity when TDSM decreases, as well as a decline in
productivity when TDSM increases. This pattern aligns with real-world expectations, as a reduction
in TDSM frees up resources, reduces coordination issues, and lowers the likelihood of errors, all of
which contribute to improved productivity. Conversely, an increase in TDSM leads to greater strain on
resources, more coordination challenges, and higher error rates, ultimately reducing productivity.
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Figure 4.11: Derived relationship between productivity and the amount of TDSM.

Figure 4.12: Effect of infrastructure fatigue on productivity. (McDevitt, Zabarouskas, and Crook, 2003).

By integrating this effect into the model, the relationship between workforce distribution, infrastructure
availability, and TDSM application is captured, ensuring that maintenance planning reflects realistic
operational constraints and efficiency trends.

Based on the assumption that a workload factor of 1.5 corresponds to an 80% application of TDSM, ta
relationship between productivity and the amount of TDSM is established. This is visually represented
in Figure 4.11.

Impact of Infrastructure Fatigue on Productivity
Another factor is infrastructure fatigue, which refers to the loss of efficiency whenmachines, workspaces,
and other support systems are overused or not properly maintained (Hasan et al., 2018; Duggal, Saltz-
man, and Klein, 1999; McDevitt, Zabarouskas, and Crook, 2003). When infrastructure becomes worn
out, several problems arise:

• Slower Processes: Equipment works less efficiently, making tasks take longer.
• More Breakdowns: Worn-out machines fail more often, causing work stoppages.
• Safety Risks: Old or damaged infrastructure can lead to accidents or unsafe working conditions.
• Lower Productivity: Workers cannot perform at their best when they have to deal with faulty
equipment.

Figure 4.12 illustrates the influence of infrastructure fatigue on productivity, as described by McDevitt,
Zabarouskas, and Crook (2003). The vertical axis represents the productivity factor, ranging from 0.5
to 1, while the horizontal axis represents the workload factor, ranging from 1 to 3. This relationship is
incorporated into the model to account for the impact of infrastructure wear and degradation on overall
maintenance efficiency.
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Figure 4.13: Derived relationship between infrastructure fatigue and productivity decline due to increasing TDSM levels.

Figure 4.14: Effect of worker experience on productivity (McDevitt, Zabarouskas, and Crook, 2003).

In the model, it is assumed that a workload factor of 1 corresponds to an 80% application of TDSM.
This assumption is based on the fact that infrastructure and equipment are currently optimized for this
maintenance level. When TDSM increases beyond 80%, productivity declines due to increased infras-
tructure strain, more frequent maintenance activities, and a higher likelihood of inefficiencies caused
by overuse of equipment and resources.

To represent this relationship more clearly, Figure 4.13 has been developed, showing how productivity
decreases as TDSM increases.

Impact of Worker Experience on Productivity
The experience levels of workers also play a role in productivity (Hasan et al., 2018; Duggal, Saltzman,
and Klein, 1999; McDevitt, Zabarouskas, and Crook, 2003). More experienced workers can work
faster, make fewer mistakes and solve problems more quickly. On the other hand, a less experienced
workforce leads to lower productivity, more mistakes and efficiency loss during rapid expansion.

Figure 4.14 illustrates the impact of worker experience on productivity, as described by McDevitt,
Zabarouskas, and Crook (2003). The vertical axis represents the productivity factor, ranging from
0 to 1.2, while the horizontal axis represents the workload factor, ranging from 1 to 2. This relationship
is incorporated into the model to account for how varying levels of experience influence efficiency and
overall maintenance performance.

In the model, it is assumed that a workload factor of 1 corresponds to an 80% application of TDSM.
Based on this assumption, the relationship between TDSM and productivity is further refined. As shown
in Figure 4.15, reducing TDSM to approximately 62.5% could increase productivity to 120%. However,
this growth is limited, as productivity gains diminish beyond a certain point. Conversely, if TDSM is
increased to 100%, productivity declines to around 60%.
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Figure 4.15: Derived relationship between worker experience and productivity.

This pattern aligns with real-world expectations, where a more experienced workforce enhances pro-
ductivity by improving efficiency, reducing errors, and optimizing task execution. However, excessive
maintenance demands can still lead to resource overload, personnel fatigue, and diminishing efficiency.

To visually represent this trend, Figure 4.15 has been developed, showing how productivity changes
as TDSM levels vary. This relationship is integrated into the model to ensure that the effects of worker
experience on productivity are accurately reflected in maintenance cost and efficiency estimations.

Summary
In summary, the impact of TDSM on productivity is influenced by fatigue (both workers and infrastruc-
ture), work force to infrastructure-ratio and worker experience.

Each of these factors affects productivity in different ways and is accounted for within the model. It is
assumed that productivity changes directly influence both costs and required man-hours, ensuring that
variations in TDSM application are reflected in the model’s calculations.

4.2.3. Model Explanation: Condition-Based Maintenance
Unlike CM and TDSM, there is limited data available for CBM within SAP. As explained in Section 3.2.3,
only 5% of maintenance activities are classified as CBM (Interview 1, 2024; Email communication 2,
2024; Email communication 1, 2024). Because historical data on CBM is scarce, the model relies on
expert interviews to define the key cost and man-hour components.

Model Structure for CBM
Figure 4.16 provides a visual representation of the CBM model.

• Step 1:
Summing up costs and man-hours over 8 years of data.

• Step 2:
Projecting these costs and man-hours over the vessel’s lifetime, using a linear approach for most
components but treating one-time costs (i.e., sensor infrastructure) separately.

• Step 3:
Testing different levels of CBM.

Cost Components and Assumptions
Unlike CM and TDSM, CBM cannot rely on historical data from SAP in the same way. This is because
only around 5% of the current maintenance is done through CBM, which results in too few data points
to build a reliable baseline.

As a result, Step 2 of the model (the baseline projection over the vessel’s lifetime) does not use a fixed
reference point like 15% CM or 80% TDSM. Instead, each CBM-related cost or man-hour component
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Figure 4.16: Representation of the CBM- part of the model.
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is handled differently, depending on how much data or insight is available for that specific component.
This explains the usage of X*% in the green part (step 2) of Figure 4.16.

This tailored approach allows the model to still represent CBM realistically, even without a consistent
baseline percentage like in the other methods. The following cost and man-hour components have
been identified and estimated:

• Material Replacement Costs (MRC):
These costs account for replacing parts based on sensor data predictions. To determine a ref-
erence value for MRC, an assumption is made that 100% CBM application would mean CBM
covers the full scope of material replacement costs. This means:

100%CBMMRC = 100%MRC = M1MRC +M2MRC +M4MRC +M8MRC +WPMRC (4.1)

This assumption is justified by the fact that M3 and M5 calls are not installation-specific,and M6,
M7, and M9 calls deal with modifications rather than maintenance.

Model Steps for MRC:

– In Step 1, the total MRC over eight years is determined.
– In Step 2, this value is projected over the vessel’s entire lifetime for a scenario where 100%
of maintenance is CBM.

– In Step 3, the MRC is linearly scaled to different CBM levels (i.e., 80% CBM corresponds to
80% MRC).

• Salary Costs:
Similar to material replacement costs, salary costs for CBM are assumed to follow the same
scaling approach.

This linear scaling approach is also applied to man-hours.
• Data Analysis Hours and Costs:
These hours and costs relate to the analysis of sensor data to predict failures. Based on expert
input:

1. One full-time equivalent (FTE) is required for every 100 installations. This estimate is verified
by Email communication 2 (2024) and Email communication 3 (2024). Initially, this 1 FTE is
needed to set up the data software and develop efficient analysis methods.

2. According to Email communication 3 (2024), in the future, AI and automated software will
reduce the need for manual data analysis. For now, this model assumed that the entire
data-analysis will take a tenth of a single FTE.

3. It is assumed that 100 installations represent approximately 25% of total maintenance re-
quirements, as there are around 400 installations per vessel (Email communication 2, 2024;
Email communication 3, 2024).

4. The number of required data analysts scales directly with CBM application (i.e., 25% CBM
= 1 FTE, 50% CBM = 2 FTE).

• Scheduled Maintenance Preparation Hours and Costs:
Since maintenance tasks predicted by CBM are often scheduled during planned maintenance
periods, there are additional preparation man-hours and costs. (Email communication 4, 2024;
Email communication 5, 2024). The following assumptions are made:

1. Scheduled maintenance preparation currently accounts for 80% of total maintenance, in line
with RNLN’s current maintenance distribution.

2. The preparation costs scale linearly with CBM application. If 100% of scheduled mainte-
nance preparation equals 80% of maintenance, then 50% scheduled maintenance prepara-
tion corresponds to 40% maintenance.

• Software Costs for Data Analysis:
CBM-related software is assumed to cost €100,000 per year, regardless of the level of CBM
applied (Email communication 2, 2024; Email communication 3, 2024). Because this cost remains
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constant regardless of CBM application, Figure 4.16 marks this component as ’not applicable’
(n.a.) when transitioning from Step 2 to Step 3 in the CBM model.

• Sensor Installation Hours and Costs:
Sensor installation consist of two parts:

1. Initial Infrastructure Installation:
This includes sensors, data cables, and supporting infrastructure (Email communication 2,
2024; Email communication 3, 2024). These costs represent a one-time investment, mean-
ing they do not scale over the vessel’s lifetime. Consequently, Figure 4.16 marks this com-
ponent as ‘not applicable’ (n.a.) when transitioning from Step 1 to Step 2 in the CBM model.

2. Sensor Replacement Costs:
Sensors must be replaced approximately every six years according to Redi-Sensor (2022).
These replacements involve both material costs and the required man-hours for sensor in-
stallation and removal.

For modeling purposes, it is assumed that installing sensors on 100 installations covers 25% of
total maintenance requirements. In other words, 100 installations = 25% CBM.

Productivity effects with application of CBM
A question that may arise is why productivity effects are not considered within the CBM part of the
model. The reason is that CBM is assumed to contribute to a more evenly distributed workload. In
other words, the application of CBM is expected to lead to peak-shaving, reducing sudden peaks in
maintenance workload and ensuring a more balanced distribution of tasks over time (Interview 1, 2024;
Bengtsson et al., 2004; Ghamlouch, Fouladirad, and Grall, 2019).

Since the effects of TDSM on productivity (both increases and decreases) are already incorporated
into the model, including productivity adjustments for CBM would be redundant.

Summary
The CBM model is built on expert insights rather than historical SAP data. This is because CBM is still
in the early stages of implementation within the RNLN, meaning there is currently not enough recorded
data in SAP to support a reliable analysis. By defining and estimating the key cost components through
expert interviews, the model still allows for an assessment of CBM’s impact on total maintenance costs
and system availability. A sensitivity study in Chapter 7 will show whether the assumptions are robust.

As CBM adoption within the RNLN increases and more data becomes available, the assumptions can
be gradually replaced with real operational data, enhancing the model’s accuracy and reliability over
time.

4.3. Conclusion
In Chapter 2, the need for a structured approach to compare different maintenancemethods for different
installations on board different navy vessels was established. In response to this, the current chapter
introduces a mathematical model designed to estimate maintenance costs and required man-hours,
including downtime, across different maintenance strategies used within the RNLN. While this model
lays the groundwork for answering the following research question, the actual insights will be derived
in chapters 5 and 6 through practical application and testing.

3. How to provide insights into the maintenance costs and required man-hours per relevant
maintenance method for the Royal Netherlands Navy?

The model integrates historical SAP maintenance data and expert input to define financial and labor
components for CM, TDSM and CBM. It projects these elements over the lifetime of a vessel and
includes factors such as the productivity impact of TDSM and the exponential growth associated with
M2 maintenance. For CBM, due to limited available data, expert-derived assumptions were used to
estimate relevant drivers such as sensor installation, data analysis, and material replacement.

With the theoretical basis now established, Chapter 5 will proceed with the implementation and verifi-
cation of the model, followed by the application of the model (Chapter 6) to generate insights to directly
answer Sub-Question 3.



5
Application of the model

This chapter describes the practical implementation, input-output structure, interpretation, and verifica-
tion of the model. It therefore tries to further answer Research Question 3 and 4:

• 3: How to provide insights into the maintenance costs and required man-hours per relevant main-
tenance method for the Royal Netherlands Navy?

• 4: How can the model be verified and applied by the Royal Netherlands Navy?

Section 5.1 begins with a description of the software selection. The structure of the model is then
outlined, from the scenario generator to the analysis. Section 5.2 details how the model has been
tested step by step to confirm that it calculates and behaves as expected under different inputs and
assumptions.

5.1. Usage of the model
In this section, the choice of software is discussed first. This is followed by an explanation of the model’s
inputs and outputs.

5.1.1. Software choice
The model must be accessible to a broad and diverse group of professionals. Intended users include
personnel from the cost-analysis team within COMMIT, maintenance engineers within DMI, vessel man-
agers, and members of the data and maintenance analysis departments at DMI. Given this diversity in
background, technical expertise, and daily responsibilities, and considering that advanced numerical
computing tools are not always readily available within (some of these) departments, it was decided
to develop the model using Microsoft Excel. This ensures broad accessibility, ease of use, and com-
patibility with existing workflows. The use of Python as software choice was considered. But since not
many professionals within DMI are familiar with Python, it was decided to use Excel.

5.1.2. Overview and scenario setup
Figure 5.1 shows the complete setup of how different maintenance methods are compared. On the
left of Figure 5.1, “(1) Scenario Generator” is displayed. To make sure that all possible combinations
are considered, a wide range of scenarios was created. Each scenario represents a different ratio of
CM, TDSM, and CBM, increasing in steps of 10%. The total percentage always adds up to 100%. For
example, one scenario could consist of 30% CM, 50% TDSM, and 20% CBM. This approach allows
the model to calculate the outcome for every realistic maintenance mix. However, scenarios with more
than 60% CM were excluded, as was explained in Section 4.2.1. A sample of the scenarios can be
seen in Table 5.1.

37
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Figure 5.2: A sample of costs database (vessel types and numbers are randomized).

Figure 5.1: Setup

Table 5.1: A subset of the possible combinations of CM, TDSM and CBM.

Scenario CM TDSM CBM
1 0% 0% 100%
2 0% 10% 90%
3 0% 20% 80%
4 0% 30% 70%
5 0% 40% 60%
... ... ... ...
51 60% 0% 40%
52 60% 10% 30%
53 60% 20% 20%
54 60% 30% 10%
55 60% 40% 0%

At the top of the figure, “(2) Model” is shown. This is the model as described in Section 4.2. Next, at
the bottom of Figure 5.1, “(3) Database” is shown. This database contains all the cost and man-hour
data that is retrieved via SAP. Every maintenance call, for each ship type and every BSMI group, is
included. In Figure 5.2, a sample of the costs database can be seen.

In addition to data, the model uses several fixed input values. These include the expected lifespan of
each ship type and the standard hourly wage for maintenance work. When the input database and
model calculations are combined, the results are stored in “(4) Data Table.” This table contains all
calculated data for every ship type, and BSMI group. From this table, combined with the scenario
generator, an output dataset is created in “(5) DatabaseOutput”. This output set contains all data for
every scenario, ship-type and BSMI group. A sample of the database-output is shown in Figure 5.3.
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Figure 5.3: A sample of the costs database-output (vessel types and numbers are randomized).

Finally, the output is passed to “(6) Analysis”. This section transforms the output-data into insights. One
of those insights is which maintenance strategy leads to the lowest costs or fewest required man-hours.
An example of such a result can be seen in Figure 5.4. The figure shows the costs (y-axis) of CM,
TDSM, CBM and their total per scenario (x-axis) for vessel type OPV and BSMI group 1200. From this
figure can be concluded that scenario 9 (80% TDSM and 20% CBM) is the most cost-efficient strategy.
Due to confidentiality requirements, the values shown are normalized. The actual costs are divided
by the combined total of CM, TDSM, CBM, and overall costs. This preserves the relative proportions
between cost categories. Additionally, for confidentiality reasons, these figures are not presented in
Chapter 6 or anywhere else in this report.

Another capability of the model lies in its ability to compare different vessel types across BSMI groups
within a single maintenance scenario. This allows for an understanding of how various ship types per-
form relative to each other under identical maintenance strategies. An example of such a comparison
is shown in Figure 5.5, which visualizes the cost distribution (y-axis) across BSMI groups (x-axis) for
three different vessel types. Due to confidentiality requirements, all values have been randomized. For
the same reason, these types of figures are not included elsewhere in the report.

In addition, the model supports comparison between different maintenance scenarios for a single ves-
sel type. This shows how resource demands across BSMI groups change in different scenarios. An
example is shown in Figure 5.6, which illustrates man-hour requirements (y-axis) for the OPV across
different BSMI groups (x-axis) under various scenarios. Again, all values are randomized to preserve
confidentiality and are not intended to reflect actual distributions. These types of visual analyses further
demonstrate the flexibility and comparative insight that the model offers.
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Figure 5.4: The results for vessel type OPV and BSMI group 1200.

Figure 5.5: Vessel type comparison

Figure 5.6: Scenario comparison

5.2. Verification
A verification was conducted. The process, including the predicted and actual results, is detailed in
Table 5.2.
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# Action Hypothesis Outcome Verified?
1 Set all costs and man-

hours to 0
Total cost and man-hours
= 0

Total cost and man-hours
became 0

✓

2 Set salary costs to 0 Total cost decrease Salary costs removed, to-
tal cost decreased

✓

3 Set material cost to 0 Total cost decrease Material costs removed,
total cost decreased

✓

4 Set external party cost
to 0

Total cost decrease External party costs
removed, total cost de-
creased

✓

5 Set wage- and exter-
nal party components
at 0

TDSM costs and man-
hours increase linearly

Result matched ✓

6 Increase External
Party Costs

Total costs for M1, M2,
M4, WP increase

Costs increased accord-
ingly

✓

7 Increase hourly wage
by 50%

All wage-based costs in-
crease

Observed ✓

8 Set M8 material costs
to 0

CBM costs decrease with
decrease in M8 material
costs

Result matched ✓

9 Set WP and M4 cost to
0

Only BO-prep remains for
TDSM

Result matched ✓

10 Remove BO-prep
(FTE) costs

Linear reduction in TDSM
costs

Linear drop confirmed ✓

Table 5.2: Verification Steps 1–10

Table 5.2 shows only part of the verification steps to keep things clear and easy to read. The full list
of all 60 checks for costs as well as man-hours is included in Appendix A. With the verification actions
performed and verified, it can be said that the model works as intended.

5.3. Conclusion
In this chapter, the model developed to compare different maintenance strategies (CM, TDSM, and
CBM) was implemented and tested. Microsoft Excel was selected as the platform due to its availability,
usability, and compatibility with existing workflows within the RNLN. The model structure includes a
scenario generator (covering all realistic maintenance mixes), a cost and man-hour input database
sourced from SAP, and a calculation engine that produces outputs for each scenario, ship type, and
BSMI group. These outputs are then analyzed to provide insight into which maintenance strategy yields
the lowest cost or fewest man-hours.

Verification of the model was performed by testing each part, as shown in Table 5.2 and detailed further
in Appendix A. These tests confirmed that the model reacts logically to changes in inputs, such as costs
and component selections.

Sub-question 4 How can the model be verified and applied by the Royal Netherlands Navy? is largely
addressed in this chapter. While full validation being done in Chapter 8, the model has been verified
through scenario testing and input manipulation. It has been structured to be accessible to stakeholders
across the RNLN, including engineering personnel, analysts, and maintenance planners.



6
Application of the model for the RNLN

This chapter applies the model to the operational context of the RNLN. The goal is to assess how the
model can inform decisions about maintenance distribution across vessel types and system groups.

The chapter is structured into two main sections. First, Section 6.1 presents findings for several BSMI
groups. Although this model is applicable to all major vessels within the fleet (JSS, MF, LPD, LCF and
OPV), the results are shown for three different vessel types within the RNLN, showing both expected
and unexpected trends. Unfortunately, for reasons of confidentiality, the specifics of the vessel types
can not be shared. Next, the chapter assesses cost- and man-hour reduction potential by comparing
the current (baseline) maintenance strategy with optimized scenarios in Section 6.2.

This chapter serves a dual purpose. It not only answers sub-question 5: How can the model help
the Royal Netherlands Navy in their maintenance decision-making?, but also validates the model’s
behavior against known system characteristics.

6.1. Findings per installation group
This section presents the model outcomes for several BSMI groups. The analysis is conducted per sys-
tem group and per vessel type, enabling a comparison of maintenance strategies across vessel types.
Each subsection begins with a description of the criticality of the systems involved in the group, followed
by the expected outcomes. The actual model results are then presented and evaluated against these
expectations. Where discrepancies occur, possible explanations (often related to SAP data quality) are
provided.

It was chosen to start this section with the BSMI groups that are expected to show results that have
a contrast with the current applied level of maintenance within the RNLN. The increasing group ID (A
to N) corresponds to a decreasing order of criticality, reflecting the prioritization of systems based on
their operational impact. For reasons of confidentiality, the specifics of each BSMI group have not been
shared. Neither are the absolute numbers for costs and man-hours in the data shared. Instead, the
costs and man-hour data are normalized by dividing each single value by the sum of all values of each
SAP component. The values within each SAP component consist of the value for each BSMI group,
for each vessel type. An example of this normalization is given in Figure C.1. It shows the different
BSMI groups for each vessel type and the corresponding normalized value for the M1 component. This
normalization makes it possible to compare internal distributions without revealing absolute figures.

Normally, results from the model are displayed in a graph showing all 60 maintenance scenarios. An
example is shown in Figure 5.4. However, due to confidentiality reasons, these graphs are not included.
Instead the five most efficient scenarios are visualized in a table. These represent the strategies with
the lowest total costs or man-hours (with downtime included), offering a view on the most relevant
outcomes.

In terms of expectations on what the results will look like per installation group, the hypothesis is based
on the relationship between system criticality and the preferred maintenance approach. For groups

42
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with a high number of mission-critical systems, such as sensors or weapon systems, it is expected that
strategies with a higher application of CBM will prove most efficient. This is because failures in these
systems during missions can lead to disproportionally high CM costs and man-hours. CBM, despite
requiring additional investments, can prevent such failures and spreadsmaintenance effort more evenly
over time. This is in contrast to TDSM, which tends to create concentrated workload peaks.

In contrast, BSMI groups composed of systems that are less critical, such as lighting, paint, or distri-
bution panels, are more suited to CM-heavy strategies. Failures in these systems are less disruptive
and can be resolved at lower cost and with fewer man-hours at a later time. In these cases, CBM
adds limited value and is not expected to feature prominently among the most efficient maintenance
approaches.

The following hypotheses are formulated to assess how system criticality and repairability influence the
efficiency of maintenance strategies across vessel types and BSMI groups:

• H1:
For BSMI groups with a high share of mission-critical systems, targeted use of CBM (20-50%)
is expected to reduce both resource expenditures and downtime because proactive condition
monitoring prevents the costly and disruptive effects of unexpected failures.

• H2:
For BSMI groups with low-criticality systems, a higher reliance on CM (20-60%) is anticipated to
lower overall expenses and labor requirements since these systems can be repaired cheaply and
their failure does not critically disrupt operations.

• H3:
For BSMI groups where systems are of moderate to high criticality yet easily repairable onboard,
an elevated use of CM (20-60%) is likely efficient because the inherent low repair complexity
offsets operational expenditures associated with reactive maintenance.

• H4:
The most man-hour efficient strategies are expected to employ a higher proportion of CM (10%-
30%) than the most cost-efficient strategies (0%-20%) because, in the model, CM incurs a lower
labor burden compared to TDSM and CBM when it comes to man-hours.

6.1.1. BSMI group A
Among all groups, BSMI Group A contains one of the highest concentrations of mission-critical systems
on board. Therefore, the results are expected to match H1.

For all three vessel types, both the most cost- and man-hour efficient scenario’s including its breakdown
are presented in Table 6.1. All five scenarios for costs (in the blue part of the table) feature CBM
application levels between 10% and 50%. These results align well with H1 and suggest that CBM
contributes to optimal maintenance strategies for this high-criticality group. Next, the five most man-
hour efficient scenarios for Vessel Type 1 and 3 are similar, with CBM applications ranging between
20% to 40%, and therefore in line with H1. On the contrary, the man-hour efficient scenario’s for Vessel
Type 2 show CBM application ranging between 0 and 20%, while CM ranges from 20% to 40%. This is
not in line with H1. The reason for this difference can be explained through the man-hour data. Figure
6.1 showsman-hours in the dataset for all different data components. The registeredM2 data for Vessel
Type 2 is noticeably lower than for the other vessel types. Since M2 man-hours are low, the multiplier
curve has less effect and thus total required man-hours (including downtime) for CM remains low. This
explains the higher preference for CM. However, it remains uncertain whether these results, showing
a high application of CM, are fully realistic. It is plausible that M2 man-hours for Vessel Type 2 are
significantly underreported, and the model may not fully correct for this underregistration, which would
reduce the calculated burden of CM and distort the model outcomes. Additionally, it is possible that
downtime effects are not sufficiently captured in the current version of the model. A 40%CM application
level could, in practice, result in considerably more downtime than the model currently reflects. Due to
the absence of both literature and empirical data on the required man-hours and downtime associated
with higher CM applications (above 30%), the model cannot be further refined to correct for these
potential inconsistencies.
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Table 6.1: The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue) and man-hours (orange), for
BSMI Group A

Type #Costs CM% TDSM% CBM% #Man-hours CM% TDSM% CBM%
9 0% 80% 20% 17 10% 60% 30%
10 0% 90% 10% 18 10% 70% 20%
8 0% 70% 30% 27 20% 60% 20%
7 0% 60% 40% 16 10% 50% 40%

Vessel Type 1

6 0% 50% 50% 7 0% 60% 40%
9 0% 80% 20% 38 30% 70% 0%
8 0% 70% 30% 37 30% 60% 10%
7 0% 60% 40% 28 20% 70% 10%
18 10% 70% 20% 47 40% 60% 0%

Vessel Type 2

6 0% 50% 50% 27 20% 60% 20%
8 0% 70% 30% 27 20% 60% 20%
7 0% 60% 40% 28 20% 70% 10%
9 0% 80% 20% 17 10% 60% 30%
18 10% 70% 20% 18 10% 70% 20%

Vessel Type 3

17 10% 60% 30% 26 20% 50% 30%

Figure 6.1: SAP man-hour component comparison for BSMI Group A across vessel types.

6.1.2. BSMI group I
BSMI Group I contains no mission-critical installations. Therefore, it is expected that H2 will be con-
firmed. The rationale is as follows: repair for installations within this group is relatively inexpensive,
and failures do not jeopardize operational capabilities. As such, scenarios that favor CM applications
of 30% and higher are likely to be among the most efficient scenario’s.

The most efficient scenarios can be seen in Table 6.2. The scenarios all share a common structure:
CM percentages range from 10% to 60%, while TDSM varies from 50% to 90%. Notably, none of these
top-performing strategies include CBM, which confirms H2.

This consistency across vessel types is notable but must be interpreted with caution. One important
detail stands out: for Vessel Type 2 and 3, the model records no CM costs nor man-hours for BSMI
Group I. This is due to the absence of anyM1 or M2maintenance calls in the SAP data for these vessels.
As a result, the model assumes CM costs to be zero. Consequently, scenario 65, which applies the
highest level of CM, emerges as the most cost-efficient simply because the model interprets CM as a
cost-free option. In reality, this is misleading, since higher application of CM would not increase CM
costs. While the model results provide a useful comparison, they must be weighed against operational
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Table 6.2: The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue) and man-hours (orange), for
BSMI Group I

Type #Costs CM% TDSM% CBM% #Man-hours CM% TDSM% CBM%
29 20% 80% 0% 65 60% 40% 0%
38 30% 70% 0% 56 50% 50% 0%
47 40% 60% 0% 47 40% 60% 0%
20 10% 90% 0% 38 30% 70% 0%

Vessel Type 1

56 50% 50% 0% 29 20% 80% 0%
64 60% 30% 10% 65 60% 40% 0%
56 50% 50% 0% 56 50% 50% 0%
47 40% 60% 0% 47 40% 60% 0%
38 30% 70% 0% 38 30% 70% 0%

Vessel Type 2

29 20% 80% 0% 29 20% 80% 0%
65 60% 40% 0% 65 60% 40% 0%
56 50% 50% 0% 56 50% 50% 0%
47 40% 60% 0% 47 40% 60% 0%
37 30% 60% 10% 38 30% 70% 0%

Vessel Type 3

29 20% 80% 0% 29 20% 80% 0%

experience and data limitations. In reality, a scenario that reflects the current maintenance strategy for
BSMI Group I specifically would be more realistic.

6.1.3. BSMI group B
Given the critical importance of installations within BSMI Group B, maintenance expectations for this
group closely align with those for BSMI Group A: it is expected that H1 will be confirmed.

During the analysis of BSMI Group B, it was found that some of the most cost-efficient scenarios
showed negative values for TDSM. This caused scenarios with high levels of TDSM to appear more
cost-efficient, simply because increasing TDSM would lower the total cost in the model. Of course,
negative maintenance costs are not realistic.

After investigating the data in SAP, the cause of this issue was identified. For each vessel, the WP
material costs are negative. This raised the question: how can there be negative costs in SAP?

The answer is shown in Figure 6.2. In the example, a certain installation is removed from the ship to
undergo maintenance. At the time of removal (step 1), it is registered in SAP with a negative value,
which is standard procedure in the RNLN to reflect the system leaving the vessel. After removal, the
system is sent to the maintenance hall (step 2), where maintenance is carried out. According to policy,
the system should then be returned and re-registered in SAP with a positive value (step 3), just before
being reinstalled on board (step 4). However, this final registration step is often skipped due to time
pressure or administrative oversight (Interview 11, 2025; Interview 10, 2025; Interview 9, 2025). This
skipped step is marked in the figure with a red line. Because the return is not recorded, the maintenance
costs stay negative in SAP. This registration issue mostly affects M4, WP and M8 maintenance types,
which are usually done during BO or AM maintenance periods. Since systems within BSMI Group B
are often physically removed for this kind of maintenance, this group is especially vulnerable to this
type of data error.

Further review of the dataset showed that the negative WP costs for all three vessel types were caused
by the same installation. Due to reasons of confidentiality, the exact installation can not be further
explained. Since the negative values corresponding to this specific installation are not realistic, and
clearly the result of a data entry issue, it was decided to adjust the negative values in the dataset with
the height of the costs of the installation. This is in line with the process described through Figure 6.2
and improves the reliability of the model results. Also, other negative entries for other BSMI groups
were adjusted based on the height of the negative costs for certain installations.

The updated outcomes are included in Table 6.3. After correcting the data, the cost results show what
was originally expected: all three vessel types now favor maintenance scenarios with a relatively high
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application of CBM (10% to 50%) and a low application of CM (0% to 10%). Therefore, H1 is confirmed.

While the conclusions for cost-efficiency are clear, they do not apply in the same way to man-hour
efficiency. The results for man-hours are also shown in Table 6.3. It can be seen that the most man-
hour efficient scenarios generally have 10% to 40% CM and CBM application between 10% and 30%.
In addition, the preferred man-hour strategies differ across vessel types. The underlying reasons for
these differences can be traced to the man-hour composition of the data. As shown in Figure 6.3 M1
and M2 man-hours for Vessel Type 2 are lower than for the other vessels. This explains why Vessel
Type 2 favors a relatively high application of CM (30% to 50%), while Vessel Type 1 and Vessel Type
3 lean more towards lower CM percentages. Between these two, Vessel Type 1 tends to favor 10% to
30% CM, whereas Vessel Type 3 prefers an even lower range of 0% to 10%. This is also supported
by the data: Figure 6.3 shows that Vessel Type 1 has up to four times higher costs for M4, WP and
M8 maintenance compared to Vessel Type 3. These findings highlight how optimal scenarios vary not
only per BSMI group, but also between cost and man-hour perspectives, and between different vessel
types.

All together, the most efficient costs-scenarios confirm H1, but the man-hours do not. Instead, the
man-hours confirm H4.

Figure 6.2: Maintenance registration process for on board installations.

Figure 6.3: SAP man-hour component comparison for BSMI Group B across vessel types

6.1.4. BSMI group H
While some systems in BSMI Group H are mission-critical, they are generally straightforward to re-
pair. Most of the equipment can be fixed quickly on board without the need for support from external
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Table 6.3: The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue) and man-hours (orange), for
BSMI Group B

Type #Costs CM% TDSM% CBM% #Man-hours CM% TDSM% CBM%
8 0% 70% 30% 27 20% 60% 20%
7 0% 60% 40% 37 30% 60% 10%
9 0% 80% 20% 17 10% 60% 30%
6 0% 50% 50% 26 20% 50% 30%

Vessel Type 1

18 10% 70% 20% 28 20% 70% 10%
8 0% 70% 30% 47 40% 60% 0%
18 10% 70% 20% 56 50% 50% 0%
9 0% 80% 20% 37 30% 60% 10%
7 0% 60% 40% 46 40% 50% 10%

Vessel Type 2

19 10% 80% 10% 38 30% 70% 0%
9 0% 80% 20% 17 10% 60% 30%
8 0% 70% 30% 18 10% 70% 20%
7 0% 60% 40% 16 10% 50% 40%
10 0% 90% 10% 7 0% 60% 40%

Vessel Type 3

6 0% 50% 50% 8 0% 70% 30%

Table 6.4: The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue) and man-hours (orange), for
BSMI Group H

Type #Costs CM% TDSM% CBM% #Man-hours CM% TDSM% CBM%
29 20% 80% 0% 38 30% 70% 0%
38 30% 70% 0% 47 40% 60% 0%
47 40% 60% 0% 28 20% 70% 10%
56 50% 50% 0% 37 30% 60% 10%

Vessel Type 1

20 10% 90% 0% 29 20% 80% 0%
47 40% 60% 0% 65 60% 40% 0%
55 50% 40% 10% 56 50% 50% 0%
65 60% 40% 0% 47 40% 60% 0%
37 30% 60% 10% 38 30% 70% 0%

Vessel Type 2

29 20% 80% 0% 29 20% 80% 0%
29 20% 80% 0% 20 10% 90% 0%
20 10% 90% 0% 19 10% 80% 10%
38 30% 70% 0% 10 0% 90% 10%
47 40% 60% 0% 29 20% 80% 0%

Vessel Type 3

19 10% 80% 10% 9 0% 80% 20%

maintenance teams (Interview 9, 2025). Therefore H3 would be expected to be confirmed.

The five most efficient scenarios per vessel type are listed in Table 6.4. It can be concluded that all
these top-performing scenarios are characterized by high CM application (ranging from 10% to 50%)
and low CBM application (between 0% and 20%). This outcome confirms H3.

6.1.5. BSMI Group E
BSMI Group E contains installations that are considered mission-critical due to their role in essential
onboard processes. Therefore, H1 would be expected to be confirmed.

The breakdown for the five most efficient scenarios per vessel type is listed in Table 6.5. It can be
concluded that Vessel Type 1 and Vessel Type 3 follow similar patterns in their most cost-efficient
scenarios, with CM ranging between 0% and 10%, and CBM ranging from 10% to 40%. Thereby
confirming H1. In contrast, Vessel Type 2 leans more heavily on CM, with application levels between
20% and 50%, while CBM remains limited to 0% to 10%, disconfirming H1.

This difference in maintenance strategy can be directly linked to the cost data from SAP, as illustrated
in Figure 6.4. The figure shows that M1 and M2 costs for Vessel Type 2 are three to five times lower
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than those for Vessel Type 1 and Vessel Type 3. Since M1 and M2 are the primary cost drivers for CM,
this lower baseline makes CM-heavy strategies more attractive for Vessel Type 2. Meanwhile, Vessel
Type 1’s M1 costs are elevated due to multiple installations making high-CM scenarios less favorable.

A similar trend is visible in the man-hour data. The results confirm H1 for Vessel Type 1 and Vessel
Type 3, while it disconfirms H1 for Vessel Type 2. Vessel Type 2 results lean more towards confirmation
of H2. Figure 6.5 shows that M2 man-hours for Vessel Type 2 are roughly four times lower than for
Vessel Type 1 and up to eighteen times lower than for Vessel Type 3. This substantial difference in
labor effort explains why the most man-hour efficient strategies for Vessel Type 2 also lean toward
higher CM usage.

It is possible that Vessel Type 2 genuinely benefits more from CM due to its operational characteris-
tics. However, it is plausible that the relatively high application of CM observed in the model results
is influenced by data limitations. Specifically, the registration of M2 maintenance actions (both costs
and man-hours) for Vessel Type 2 is significantly lower than for the other vessel types. This aligns with
findings from (Email communication 5, 2024), who argues that Vessel Type 2 is equipped with less ad-
vanced systems and therefore exhibits lower failure sensitivity. As a result, less reactive maintenance
is needed, which may explain the reduced volume of CM-related data. This lower registration of CM
calls, especially under M2, leads to a reduced multiplier effect in the model, keeping the total estimated
costs and labor for CM low. Consequently, scenarios with high CM application (above 30%) appear
more efficient than they may be in practice. It is important to recognize that such results could be
unrealistic, as the model does not currently compensate enough for potential underregistration of CM
data. Additionally, it is uncertain whether the model accurately captures the full impact of downtime at
these high CM levels. A more realistic maintenance strategy for Vessel Type 2 may involve increased
application of TDSM. If so, the current output could represent a model limitation that warrants further
examination. Chapter 7 and Chapter 8 will further explore these concerns through sensitivity analysis
and validation.

Figure 6.4: SAP cost component comparison for BSMI Group E across vessel types
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Table 6.5: The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue) and man-hours (orange), for
BSMI Group E

Type #Costs CM% TDSM% CBM% #Man-hours CM% TDSM% CBM%
9 0% 80% 20% 27 20% 60% 20%
8 0% 70% 30% 28 20% 70% 10%
7 0% 60% 40% 18 10% 70% 20%
19 10% 80% 10% 17 10% 60% 30%

Vessel Type 1

18 10% 70% 20% 26 20% 50% 30%
38 30% 70% 0% 38 30% 70% 0%
29 20% 80% 0% 28 20% 70% 10%
47 40% 60% 0% 37 30% 60% 10%
28 20% 70% 10% 47 40% 60% 0%

Vessel Type 2

55 50% 40% 10% 29 20% 80% 0%
8 0% 70% 30% 8 0% 70% 30%
9 0% 80% 20% 7 0% 60% 40%
7 0% 60% 40% 18 10% 70% 20%
18 10% 70% 20% 17 10% 60% 30%

Vessel Type 3

19 10% 80% 10% 6 0% 50% 50%

Figure 6.5: SAP man-hour component comparison for BSMI Group E across vessel types

6.1.6. BSMI group G
BSMI group G consists of systems that are critical to ship operations. Meanwhile, they typically have
onboard spare parts and can often be repaired by the crew without external support. For this reason,
it is expected that H3 will be confirmed.

The maintenance distributions for the most efficient scenarios per vessel type are presented in Table
6.6. It can be seen that the most cost-efficient scenarios for Vessel Type 1 involve low CM application
(0% to 10%) and moderate to high CBM application (20% to 50%). In contrast, Vessel Type 2 and
Vessel Type 3 show a preference for higher CM levels (10% to 40%) and lower CBM levels (0% to
20%). This difference is explained by the SAP data presented in Figure 6.6, which breaks down the
total maintenance costs by component. It becomes clear that M2 cost, which is the main contributor to
CM in the model, is at least two times higher for Vessel Type 1 compared to Vessel Type 2 and Vessel
Type 3. As a result, high-CM scenarios are less attractive for Vessel Type 1, pushing the model toward
CBM-heavy strategies.

When looking at man-hours, Table 6.6 shows that both Vessel Type 1 and Vessel Type 3 favor low CM
application (0% to 10%), whereas Vessel Type 2 shows a preference for CM levels between 10% and
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30%. This difference is supported by the SAP man-hour data in Figure 6.7, which shows that Vessel
Type 2 has at least three times fewer M2 man-hours compared to Vessel Type 1 and Vessel Type 3.
The same figure also shows that Vessel Type 1 has more than eight times the number of M4, WP and
M8 man-hours compared to Vessel Type 3. This helps explain the relatively low use of TDSM in Vessel
Type 1 scenarios (40% to 70%), whereas Vessel Type 3 favors much higher levels (70% to 90%).

Once again, these variations across vessel types underline a key point: the optimal maintenance strat-
egy is not uniform, but depends strongly on the vessel type specific cost and man-hour data. With
regards to Vessel Type 2 (both costs and man-hours) and Vessel Type 3 (costs), H3 is confirmed. On
the contrary, for Vessel Type 1 (both costs and man-hours) and Vessel Type 3 (man-hours), the results
tend to confirm H1.

Figure 6.6: SAP cost component comparison for BSMI Group G across vessel types

Figure 6.7: SAP man-hour component comparison for BSMI Group G across vessel types

6.1.7. BSMI Group C
Installations within BSMI Group C are considered highly critical to mission success and operational
coordination. As such, H1 is expected to be confirmed.

Table 6.7 lists the five most efficient scenarios for each vessel type. A comparison of the cost results
reveals that Vessel Type 1 and Vessel Type 3 show similar behavior, aligning with the expected pat-
tern: scenarios with minimal CM (0 to 20%) and high CBM application (20% to 50%) dominate the top
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Table 6.6: The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue) and man-hours (orange), for
BSMI Group G

Type #Costs CM% TDSM% CBM% #Man-hours CM% TDSM% CBM%
8 0% 70% 30% 17 10% 60% 30%
9 0% 80% 20% 16 10% 50% 40%
7 0% 60% 40% 18 10% 70% 20%
6 0% 50% 50% 7 0% 60% 40%

Vessel Type 1

18 10% 70% 20% 15 10% 40% 50%
38 30% 70% 0% 27 20% 60% 20%
47 40% 60% 0% 28 20% 70% 10%
28 20% 70% 10% 37 30% 60% 10%
18 10% 70% 20% 38 30% 70% 0%

Vessel Type 2

27 20% 60% 20% 18 10% 70% 20%
29 20% 80% 0% 19 10% 80% 10%
20 10% 90% 0% 9 0% 80% 20%
19 10% 80% 10% 10 0% 90% 10%
38 30% 70% 0% 20 10% 90% 0%

Vessel Type 3

9 0% 80% 20% 18 10% 70% 20%

positions. Thereby confirming H1. In contrast, Vessel Type 2 displays a deviation from this trend. Its
most cost-efficient scenarios are characterized by relatively high CM levels (10–30%) and lower CBM
usage (0–20%).

This deviation can be explained by examining the SAP cost data shown in Figure 6.8. As illustrated,
Vessel Type 2 exhibits a significant spike in WP material costs, approximately seven times higher than
those of Vessel Type 1 and more than twice as high as those of Vessel Type 3. This peak is caused
by maintenance on a specific installation within Group E that causes 65% of the total costs in this
SAP component. Since WP costs are included in both TDSM and CBM, this anomaly leads to inflated
cost estimates for these methods on Vessel Type 2. Consequently, the model favors maintenance
scenarios with a heavier reliance on CM, as they appear more cost-efficient due to elevated CBM and
TDSM costs.

Regarding man-hours, the results show a different pattern. For both Vessel Type 1 and Vessel Type
2, CM is applied at a moderate level, typically between 10% and 30%. CBM also falls within a similar
moderate range of 10% to 30%. Thereby disconfirming H1 and showing more balance between CM
and CBM, therefore confirming H4. In contrast, Vessel Type 3 exhibits a low application of CM (0 to
10%) and a relatively high application of CBM (20% to 50%). Therefore confirming H1 again.

This difference can be explained by examining the man-hour data in Figure 6.9. Vessel Type 3 shows
a more prominent peak at M2, compared to Vessel Type 1 and Vessel Type 2. As explained in Section
4.2.1, the multiplier effect of M2 significantly increases total man-hours when CM is heavily applied.
Consequently, to avoid this spike, scenarios for Vessel Type 3 tend to maintain a low level of CM
application.
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Figure 6.8: SAP cost component comparison for BSMI Group C, across vessel types

Figure 6.9: SAP man-hour component comparison for BSMI Group C, across vessel types

6.1.8. Summary
The application of the model across various BSMI groups has provided insight into the costs and labour
of different maintenance strategies for different vessel types within the RNLN. The results show a
correlation between the criticality of systems and the preferred maintenance approach. As expected,
groups with a high share of mission-critical systems, such as BSMI groups A and B tend to favor
strategies with higher CBM application compared to minimal reliance on CM. In contrast, groups with
lower operational risk, such as BSMI groups H and J are more cost-efficient when CM plays a bigger
role ranging from 10% to even 50%. However, results showing a high application of CM should be
interpreted with caution, as they may stem from under registration of M2 costs or man-hours. This
highlights a limitation in the model: when the dataset contains little to no M2 data, the multiplier curve
described in Section 4.2.1 has limited effect. As a result, even at CM applications of 40–60%, CM
remains relatively inexpensive compared to TDSM and CBM. This can lead to unrealistic outcomes
with CM being the most preferred maintenance method with application of 30% and higher.

A noteworthy trend is the deviation observed in Vessel Type 2 results compared to those of Vessel
Type 1 and Vessel Type 3. Across multiple BSMI groups, Vessel Type 2 consistently shows a higher
reliance on CM. This can be traced to lower M1 and M2 registration in the SAP data, which reduces the
modeled cost and labor impact of CM. This aligns with the fact that Vessel Type 2 has less advanced
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Table 6.7: The 5 most efficient scenarios (top to bottom, #) per vessel type, for both costs (blue) and man-hours (orange), for
BSMI Group C

Type #Costs CM% TDSM% CBM% #Man-hours CM% TDSM% CBM%
8 0% 70% 30% 27 20% 60% 20%
7 0% 60% 40% 37 30% 60% 10%
9 0% 80% 20% 26 20% 50% 30%
6 0% 50% 50% 17 10% 60% 30%

Vessel Type 1

18 10% 70% 20% 36 30% 50% 20%
29 20% 80% 0% 28 20% 70% 10%
38 30% 70% 0% 27 20% 60% 20%
28 20% 70% 10% 38 30% 70% 0%
18 10% 70% 20% 37 30% 60% 10%

Vessel Type 2

19 10% 80% 10% 18 10% 70% 20%
17 10% 60% 30% 17 10% 60% 30%
7 0% 60% 40% 16 10% 50% 40%
18 10% 70% 20% 18 10% 70% 20%
27 20% 60% 20% 7 0% 60% 40%

Vessel Type 3

8 0% 70% 30% 15 10% 40% 50%

systems and thus lower failure sensitivity, resulting in fewer reactive maintenance actions. However,
this reduced data input weakens the multiplier effect and may lead the model to overstate the efficiency
of CM-heavy strategies (above 30%). As a result, such outcomes may not fully reflect operational
reality, especially as downtime effects may be underrepresented.

During the data review, some entries with negative values were identified, prompting further investi-
gation into the SAP system. It was determined that these negative values stemmed from registration
errors. To address this, the dataset was adjusted by offsetting the negative costs of installations against
the original entries.

The man-hour results show a relatively higher application of CM compared to the cost-driven outcomes.
This could potentially reflect reality, as CM might require fewer man-hours than preventive methods.
However, it can also be influenced by the quality of the SAP man-hour data. Despite the applied
corrections the dataset may still underestimate the actual labor effort required for CM. Especially the
consequences of downtime. Therefore, the observed trend should be interpreted with caution, as it
may result from residual data limitations.

6.2. Total comparison for different scenarios
In addition to identifying the most efficient scenarios per BSMI group, it is also insightful to assess how
total maintenance costs and man-hours may be reduced when shifting from the current maintenance
strategy (referred to here as the baseline) to the most efficient scenario. The baseline costs were
calculated by summing all maintenance costs recorded in SAP, supplemented with the costs for AM
and BO preparations, which are not included in SAP. A breakdown of these scenarios is presented in
Table 6.8.

6.2.1. Costs
The results of the cost-part of the analysis are shown in Table 6.9. While cost savings are observed
across multiple BSMI groups, some outcomes warrant careful interpretation.

Reviewing Table 6.9, BSMI groups I, J and L exhibit cost reductions exceeding 45%. These savings
stem from the near-absence of corrective costs in the baseline, which causes CM-heavy scenarios
(47 and 65) to appear unrealistically efficient. As discussed in Section 6.1, such inflated benefits re-
quire cautious interpretation. By contrast, more moderate cost reductions, ranging from 3% to 29%
(averaging 18%), are achieved in groups A, B, C, D, E and F, driven by CBM application intensities of
10%–30%.
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Table 6.8: Overview of several cost-efficient scenarios.

Scenario %CM %TDSM %CBM
7 0% 60% 40%
8 0% 70% 30%
9 0% 80% 20%
17 10% 60% 30%
18 10% 70% 20%
20 10% 90% 0%
29 20% 80% 0%
38 30% 70% 0%
47 40% 60% 0%
65 60% 40% 0%

Table 6.9: Cost savings per BSMI group and vessel type when comparing the baseline to the most cost-efficient scenario.

Ship + BSMI Scenario #1 Reduction(%)
Vessel Type 1 A 9 60%
Vessel Type 1 B 9 25%
Vessel Type 1 C 8 10%
Vessel Type 1 D 9 23%
Vessel Type 1 E 9 11%
Vessel Type 1 F 9 3%
Vessel Type 1 G 9 29%
Vessel Type 1 H Baseline -
Vessel Type 1 I Baseline -
Vessel Type 1 J 47 52%
Vessel Type 1 K Baseline -
Vessel Type 1 L 20 21%
Vessel Type 1 M Baseline -
Vessel Type 2 A 9 25%
Vessel Type 2 B 8 6%
Vessel Type 2 C Baseline -
Vessel Type 2 D 47 17%
Vessel Type 2 E Baseline -
Vessel Type 2 F Baseline -
Vessel Type 2 G 38 1%
Vessel Type 2 H 47 13%
Vessel Type 2 I 65 54%
Vessel Type 2 J 65 99%
Vessel Type 2 K 47 11%
Vessel Type 2 L Baseline -
Vessel Type 2 M Baseline -
Vessel Type 3 A 8 12%
Vessel Type 3 B 9 47%
Vessel Type 3 C 17 4%
Vessel Type 3 D 7 13%
Vessel Type 3 E 9 27%
Vessel Type 3 F 7 2%
Vessel Type 3 G Baseline -
Vessel Type 3 H 20 1%
Vessel Type 3 I 65 51%
Vessel Type 3 J 65 61%
Vessel Type 3 K Baseline -
Vessel Type 3 L 29 60%
Vessel Type 3 M Baseline -
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6.2.2. Man-hours
The results of the man-hour analysis are shown in Table 6.10. While man-hour reductions are observed
across various groups, some outcomes require careful interpretation.

Looking at Table 6.10, BSMI groups H, I, J and M display reductions exceeding 45%. This is caused
by the near absence or complete lack of registered M2 man-hours in SAP for these groups. As a re-
sult, scenarios with high CM application (20% to 60%) appear most efficient. As discussed in Section
6.1, this limitation inflates the apparent benefit of CM-heavy scenarios and calls for caution when inter-
preting these reductions. By contrast, more moderate man-hour reductions, ranging from 1% to 45%
(averaging 22%), are observed in groups A, B, C, D, F and G, driven by CBM application intensities of
10%–30%.

Table 6.10: Man-hour (including downtime) savings per BSMI group and vessel type when comparing the baseline to the most
man-hour efficient scenario.

Ship + BSMI Scenario #1 Reduction (%)
Vessel Type 1 A 17 5%
Vessel Type 1 B 27 0%
Vessel Type 1 C 27 2%
Vessel Type 1 D 37 5%
Vessel Type 1 E 27 2%
Vessel Type 1 F 18 2%
Vessel Type 1 G 17 19%
Vessel Type 1 H 38 8%
Vessel Type 1 I 65 90%
Vessel Type 1 J 65 58%
Vessel Type 1 K Baseline -
Vessel Type 1 L 47 14%
Vessel Type 1 M 38 10%
Vessel Type 2 A 38 2%
Vessel Type 2 B 47 23%
Vessel Type 2 C Baseline -
Vessel Type 2 D Baseline -
Vessel Type 2 E 38 9%
Vessel Type 2 F Baseline -
Vessel Type 2 G 27 1%
Vessel Type 2 H 65 91%
Vessel Type 2 I 65 92%
Vessel Type 2 J 65 59%
Vessel Type 2 K 38 8%
Vessel Type 2 L 29 41%
Vessel Type 2 M 29 24%
Vessel Type 3 A 27 5%
Vessel Type 3 B 17 5%
Vessel Type 3 C 17 10%
Vessel Type 3 D 17 19%
Vessel Type 3 E 8 39%
Vessel Type 3 F 19 64%
Vessel Type 3 G 65 45%
Vessel Type 3 H 20 44%
Vessel Type 3 I 65 98%
Vessel Type 3 J 65 45%
Vessel Type 3 K 29 6%
Vessel Type 3 L 37 1%
Vessel Type 3 M 56 54%



6.3. Conclusion 56

6.3. Conclusion
This chapter demonstrated the model’s application within the RNLN, providing insights into costs and
labour across seven BSMI groups and three vessel types for various maintenance strategies (CM,
TDSM, CBM).

The findings confirm that system criticality plays a role in shaping optimal maintenance approaches. For
high-criticality groups like A and B, CBM consistently emerges as themost effective strategy. In contrast,
less critical groups such as H and J are more suited to CM-heavy strategies, confirming the formulated
hypotheses. This model shows reductions in costs ranging between 1-99%, with 28% on average.
For man-hours, the model shows reductions from 1% to 98%, with 31% on average. Meanwhile, for
results showing high application of CM, these results should be interpreted with caution. Since, these
results can be a consequence of low administration of M2 data. As a consequence, the multiplier curve
as described in Section 4.2.1 does have limited effect and therefore high application of CM (ranging
between 30-60%) becomes the most preferable outcome. Therefore, it could be possible that these
kind of results do not reflect reality.

A consistent observation is Vessel Type 2’s higher reliance on CM across BSMI groups. This is primarily
driven by significantly lower registration of M2 costs and man-hours in SAP, which reduces the modeled
impact of CM. While this may partially reflect the vessel’s simpler systems and lower failure sensitivity,
it also weakens the multiplier effect in the model and may cause CM-heavy strategies (above 30%)
to appear more efficient than they are in practice. As such, these outcomes must be interpreted with
caution, as they may not fully represent operational reality.

Cost-driven and man-hour-driven strategies diverge as well: man-hour efficient scenarios favor CM
more often than the cost part. This suggests CM appears less labor-intensive, though limitations in
SAP’s man-hour data, despite corrections like M2, may still affect accuracy, regardless of the applied
correction.

Chapter 4 began addressing Sub-Question 3 on providing maintenance cost and man-hour insights.
This chapter completes it by showing how the model quantifies the impact of CM, TDSM, and CBM
strategies by system group and vessel type, confirming its value for maintenance planning.

Sub-Question 4: How can the model be verified and applied by the Royal Netherlands Navy? was
partially addressed in Chapter 5. This chapter further answers this sub question by showing the model’s
practical use in identifying optimal strategies and data issues. The rest of the sub qeustion will be fully
answered in Chapter 8.

In addition, this chapter offers a first answer to Sub-Question 5: How can the model help the Royal
Netherlands Navy in their maintenance decision-making?. The results show the model’s practical value
by identifying optimal maintenance mixes, revealing cost and man-hour saving opportunities, and ex-
posing inconsistencies in the underlying data. These insights contribute to more transparent, data-
driven maintenance planning. A full exploration of this question will follow in Chapter 7.

Overall, the findings presented here show that the model is ready to support decision-making. Its
accuracy, however, is strongly dependent on the quality of input data. Chapter 7 will further test the
reliability of certain results through sensitivity analysis, evaluating how robust the conclusions remain
under input variations.



7
Analysis of maintenance comparison

This chapter presents a sensitivity analysis to evaluate how uncertainty in key inputs affects the model
outcomes. It examines how variations in cost andman-hour component for both CBM and CM influence
the most efficient maintenance scenarios. A sensitivity factor, ranging from 0.0 to 2.0 in steps of 0.2, is
applied to each component, proportionally scaling its original value while keeping other inputs constant.

To clarify some of the parameters used in this sensitivity analysis, Figure 7.1 is used as an example.
As shown in this figure, the values on the y-axis are normalized. For confidentiality reasons, all values
are normalized. This means that for each vessel type and corresponding BSMI group, the value is
expressed as the quotient of the scenario’s value and the sum of all scenario values within that same
vessel type and BSMI group.

In addition, all graphs in this chapter include error bars that represent a 10% deviation from the most
efficient scenario. This 10% margin is applied to assess whether scenarios fall within close proximity
of each other. If multiple scenarios remain within this range, it cannot be determined which one is most
efficient. The 10% threshold is chosen to account for general model uncertainty.

Besides checking whether scenarios fall within this 10% range, this analysis also investigates the pres-
ence of critical tipping points, where small changes in input lead to significant shifts in the preferred
scenario.

7.1. Sensitivity of CBM components
In the model, CBM components are assumed to behave linearly and independently. Therefore, by
varying one representative component while keeping the others constant, its impact can be extrapolated
to similar CBM components. This allows the analysis to focus on a single cost and a single man-hour
component. Since CBM relies more on expert judgment and limited data compared to TDSM and
CM, testing its robustness is especially important. Since CBM variation will have the biggest influence
on scenarios where CBM application is relatively high (30-50%), the sensitivity analysis focuses on
installation groups within that range.

7.1.1. CBM cost component
The CBM component ’Material costs’ is selected, as it represents 40–60% of total CBM costs in every
scenario involving CBM, making it a key contributor to the CBM cost structure.

The first case concerns Vessel Type 3, BSMI group A. Figure 7.1 shows the five most efficient scenarios
for this group. As stated earlier in this chapter, the values are normalized by taking the quotient of each
scenario’s value and the sum of all values for this vessel type within the same BSMI group.

From the figure, it can be observed that Scenario 8 (0% CM and 30% CBM) remains the most efficient
scenario across the entire sensitivity factor range. In addition, Scenarios 7 (0% CM and 40% CBM), 9
(0% CM and 20% CBM), and 18 (10% CM and 20% CBM) all stay within the 10% margin from the most
efficient scenario. Since these scenarios lie within this margin, it is not possible to determine which one
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Figure 7.1: CBM cost sensitivity of Vessel Type 3 A.

Figure 7.2: CBM cost sensitivity of Vessel Type 1 B.

is truly the most efficient. However, since all of these scenarios involve at least 20% CBM, it can be
concluded that a minimum CBM application of 20% is preferred for this BSMI group.

This conclusion is further supported by the fact that Scenario 19 (10% CM and 10% CBM), the first
scenario with less than 20%CBM, consistently deviates by at least 14% from the most efficient scenario
across the full range of the sensitivity factor.

The second case involves Vessel Type 1, BSMI group B. Figure 7.2 displays the five most efficient
scenarios for this group, along with Scenario 28 (20% CM and 10% CBM) for comparison. Based on
the error bars shown in the figure, it can be concluded that Scenarios 6 (0% CM and 50% CBM), 7 (0%
CM and 40% CBM), 8 (0% CM and 30% CBM), and 9 (0% CM and 20% CBM) all fall within the 10%
uncertainty margin. Therefore, no definitive conclusion can be made about which of these is the most
efficient.

However, since all four of these scenarios include at least 20% CBM, it can be confidently stated that a
minimum application of 20% CBM is preferred for this BSMI group. This conclusion is reinforced by the
performance of Scenario 28 (20% CM and 10% CBM), which is the first scenario containing less than
20% CBM. It consistently shows a deviation of at least 49% from the most efficient scenario across the
full sensitivity factor range.

The final case concerns Vessel Type 1, BSMI group C. Figure 7.3 presents the five most efficient
scenarios for this group, along with Scenario 19 (10% CM and 10% CBM) for reference. According
to the error bars shown, Scenarios 7 (0% CM and 40% CBM), 8 (0% CM and 30% CBM), and 9 (0%
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Figure 7.3: CBM cost sensitivity of Vessel Type 1 C.

CM and 20% CBM) all lie within the 10% uncertainty margin. As a result, no conclusion can be drawn
about which of these is the most efficient.

However, since all three of these scenarios share at least 20% CBM, it can be confidently concluded
that a minimumCBM application of 20% is favourable for this BSMI group. This conclusion is reinforced
by the performance of Scenario 19 (10% CM and 10% CBM), which is the first scenario containing less
than 20% CBM. It consistently deviates by at least 18% from the most efficient scenario across the full
sensitivity factor range.

In all three cases, the most efficient scenarios consistently include at least 20% CBM across the full
sensitivity factor range. This indicates that for installation groups with relatively high CBM application,
the model outcomes are robust against uncertainty in CBM cost estimates. No critical tipping points
were observed within the tested cost range.

Since these groups are the most sensitive to CBM cost variation, it follows logically that installation
groups with little or no CBM are even less affected. In those cases, the preferred scenario remains
unchanged even when CBM material costs vary between 0 and 200% of their estimated values. This
confirms that the model is generally insensitive to CBM cost uncertainty and maintains stable outcomes.

Therefore, results showing a high preference for CBM (typically 20-50%) can be considered reliable.

7.1.2. CBM man-hour component
The CBM component ’Man-hours for replacement / repair of installations’ is selected for this purpose.
These costs make up between 40-60% of the total CBM man-hours in every scenario that includes
CBM, making them one of the most significant contributors to the CBM man-hour structure.

The first case is Vessel Type 1, installation group G. Figure 7.4 shows the five most efficient scenarios
for this group, along with Scenario 28 (20% CM and 10% CBM). Scenario 17 (10% CM and 30% CBM)
includes upward-reaching error bars representing a 10% deviation. From the figure, it is clear that
Scenarios 7 (0% CM and 40% CBM), 16 (10% CM and 40% CBM), and 17 (10% CM and 30% CBM)
all remain within a 10% margin of each other across the entire sensitivity range. Therefore, it cannot
be concluded which of these is the most efficient.

However, Scenario 28 (20% CM and 10% CBM), which is the first scenario with less than 20% CBM,
only comes within the 10% margin at a sensitivity factor of 1.9. Its influence is negligible across the full
range. This supports the conclusion that an application of at least 20% CBM is preferred for this BSMI
group.
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Figure 7.4: CBM man-hour sensitivity of Vessel Type 1 G.

five most efficient scenarios for this group, along with Scenario 28 (20% CM and 10% CBM), which is
the first scenario containing less than 20% CBM. Scenarios 7 (0% CM and 40% CBM), 8 (0% CM and
30% CBM), 17 (10% CM and 30% CBM), and 18 (10% CM and 20% CBM) all remain within a 10%
margin of each other over the full sensitivity range. Therefore, it cannot be determined which of these
is the most efficient.

However, since Scenario 28 (20% CM and 10% CBM) never falls within this 10% range, it can be
concluded with confidence that an application of at least 20% CBM is favourable for this BSMI group.

Figure 7.5: CBM man-hour sensitivity of Vessel Type 3 E.

The third and final case is Vessel Type 3, installation group C. Figure 7.6 displays the five most efficient
scenarios for this group, along with Scenario 19 (10% CM and 10% CBM), which is the first scenario
containing less than 20%CBM. From the figure, it can be seen that Scenarios 7 (0%CMand 40%CBM),
16 (10% CM and 40% CBM), and 17 (10% CM and 30% CBM) consistently lie within a 10% margin of
each other. Therefore, it cannot be concluded which of these is the most favourable scenario.

However, Scenario 19 (10% CM and 10% CBM) remains outside the 10% range across the entire
sensitivity domain. This leads to the conclusion that, for this BSMI group, an application of at least 20%
CBM is certainly favourable.

The sensitivity analysis of the CBM man-hour component shows that, as is the same with the CBM
cost part, for BSMI groups containing top five scenario’s all having 20% application of CBM or higher
are stable. It can not be concluded which of the top five scenario’s is most favourable. As they often
are within a 10% range of each other. However, it can be said for certain that at least 20% application
of CBM is favourable and remains stable.

The sensitivity analysis of the CBM man-hour component shows a similar pattern to that of the CBM
cost component. For BSMI groups where the top five scenarios all include at least 20% CBM, the
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Figure 7.6: CBM man-hour sensitivity of Vessel Type 3 C

results remain stable across the full sensitivity range. Although it cannot be determined which specific
scenario is the most favourable, since they consistently fall within a 10% margin of each other, it can
be concluded with certainty that an application of at least 20% CBM is favourable and robust against
variations in man-hour estimates.

7.2. Sensitivity of CM components
This section examines how uncertainty in M2 costs and man-hours affects model outcomes. As dis-
cussed in Section 4.2.1, M2 data, both costs and man-hours, is limited in reliability. The analysis
therefore focuses on how variations in M2 inputs influence scenario results.

Scenarios with high CM application (30–60%) and those with high CBM application (30–50%) are ex-
cluded from the analysis. For these installation groups, either M2 data is unreliable (in the case of
high CM), or the influence of CM is limited (in the case of high CBM). The analysis therefore targets
installation groups where the most efficient scenarios fall within moderate CM application (0–20%) and
moderate CBM application (0–20%).

7.2.1. CM M2 costs
The first case concerns Vessel Type 2, installation group G. Figure 7.7 shows the five most efficient
scenarios for this group. Error bars of 10% (both upward and downward) are applied to the line repre-
senting Scenario 28 (20%CM and 10%CBM).When the sensitivity factor reaches 0.8, all five scenarios
fall within a 10% range of each other. Therefore, no definitive conclusion can be drawn about which
scenario is the most efficient within that range.

The outermost scenarios in this group—Scenario 8 (0% CM and 30% CBM) and Scenario 38 (30% CM
and 0% CBM), demonstrate that the results are highly sensitive to changes in the M2 cost input. How-
ever, outside the 0.8–1.2 sensitivity factor range, the most efficient scenarios become clearer. Below
a factor of 0.8, Scenario 38 (30% CM and 0% CBM) emerges as the most efficient. Beyond a factor
of 1.2, Scenarios 8 (0% CM and 30% CBM), 17 (10% CM and 30% CBM), and 18 (10% CM and 20%
CBM) become the most efficient options.

A similar pattern is observed for Vessel Type 3, installation group G. Figure 7.8 shows the five most
efficient scenarios. Within the sensitivity factor range of 0.8 to 1.2, all scenarios remain within a 10%
margin of each other. As a result, it is not possible to determine which scenario is the most efficient in
that interval.

This reflects high sensitivity, as the outermost scenarios in this top five include Scenario 9 (0% CM
and 20% CBM) and Scenario 29 (20% CM and 0% CBM). Outside the 0.8–1.2 range, clearer trends
emerge. For sensitivity factors below 0.8, Scenario 29 (20% CM and 0% CBM) is the most efficient.
For values above 1.2, Scenarios 9 (0% CM and 20% CBM) and 10 (0% CM and 10% CBM) gradually
become the most favourable options.

The final case is Vessel Type 2, BSMI group C. Figure 7.9 presents the five most efficient scenarios for
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Figure 7.7: M2 cost sensitivity of Vessel Type 2 G.

Figure 7.8: M2 cost sensitivity of Vessel Type 3 G.
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Figure 7.9: M2 cost sensitivity of Vessel Type 2 C.

this group. Within the sensitivity factor range of 0.6 to 1.4, all scenarios remain within a 10% margin
of each other. Therefore, it is not possible to determine which scenario is the most efficient within this
range.

Notably, the outermost scenarios in this group—Scenario 18 (10% CM and 20% CBM), with the lowest
CM and highest CBM, and Scenario 38 (30% CM and 0% CBM), with the highest CM and no CBM, are
both plausible candidates. This further illustrates the model’s sensitivity in this zone. Outside the 0.6–
1.4 range, however, the results become more distinct, with Scenario 18 and Scenario 38 separating
and becoming more clearly favourable in different parts of the domain.

Overall, it can be concluded that when the model indicates moderate levels of both CM (0–20%) and
CBM (0–20%), it is not possible to determine which of the top five scenarios is the most efficient. The
most efficient options often differ by up to 20% in their CM or CBM application, highlighting sensitivity
in this range. This also means that it becomes difficult to draw firm conclusions about whether the
application of CBM in these cases reflects realistic or reliable results.

When M2 costs decrease, scenarios with higher CM application tend to become more favourable. Con-
versely, as M2 costs increase, scenarios with greater CBM application become more clearly preferred.

7.2.2. CM M2 man-hours
The first example is Vessel Type 2, installation group G. Figure 7.10 shows the five most efficient sce-
narios for this group. Error bars representing 10% deviations in both directions are applied to Scenario
27 (20% CM and 20% CBM). Around a sensitivity factor of 1.0, all scenarios lie within a 10% range of
each other. Therefore, no clear conclusion can be drawn about which scenario is the most efficient in
that range.

This indicates a high level of sensitivity, especially considering that the outermost scenarios in this group
are Scenario 18 (10% CM and 20% CBM) and Scenario 38 (30% CM and 0% CBM). As the sensitivity
factor moves toward the outer bounds of the tested range, the most efficient scenarios become more
distinct.

A similar pattern is observed in Vessel Type 2, installation group F. Figure 7.11 presents the five most
efficient scenarios. Around a sensitivity factor of 1.0, all scenarios, except for Scenario 29 (20% CM
and 0% CBM), fall within a 10% margin of each other.

The outermost scenarios in this group are Scenario 28 (20% CM and 10% CBM) and Scenario 17 (10%
CM and 30% CBM). This again reflects a variation of up to 20% in CM or CBM application among the
most efficient scenarios, underlining the sensitivity of the results in this range.

Comparable sensitivity behavior is observed in Vessel Type 1, installation groups E and K. In both
cases, the top five scenarios show that around a sensitivity factor of 1.0, the results differ by less than
10%. However, within this narrow range, the scenarios still vary by up to 20% in their CM or CBM
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Figure 7.10: M2 man-hour sensitivity of Vessel Type 2 G.

Figure 7.11: M2 man-hour sensitivity of Vessel Type 2 F
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application. This again highlights sensitivity. As a result, no definitive conclusions can be drawn about
whether the application of CBM is actually more efficient for these installation groups.

7.3. Conclusion
To further answer RQ5, a sensitivity analysis was conducted.

RQ 5: How can the model help the Royal Netherlands Navy in their maintenance decision-making?

This chapter tested the robustness of the model’s recommendations under uncertainty by varying four
key input components: the cost and man-hour components for both CBM and CM. These components
were selected because they are the largest contributors to total maintenance effort and cost, and be-
cause underlying data for especially CBM and M2 is limited in precision. A sensitivity factor between
0.0 and 2.0 was applied to each component individually, to assess whether changes in these inputs
affect which maintenance scenario is considered most efficient.

The analysis evaluated each scenario on its normalized total value, where results were interpreted
using a 10% deviation margin to account for model uncertainty. Scenarios falling within this 10% band
are considered indistinguishably efficient.

For installation groups with high CBM application (30–50%), the outcomes remained consistent across
the full sensitivity range. Scenarios with at least 20% CBM remained among the most efficient, regard-
less of variations in CBM-related cost or man-hour components. No tipping points were observed. This
confirms the reliability of model recommendations favouring 20–50% CBM in these cases.

In contrast, installation groups with moderate CM and CBM levels (0–20%) showed significantly more
variation. Even small changes in input led to shifts in the most efficient scenario, often by as much as
20% in CBM or CM allocation. This higher sensitivity indicates that recommendations for these groups
should be interpreted with more caution, and cannot be considered robust.

Table 7.1 summarizes these findings.

Table 7.1: Table showing the conclusions from the sensitivity analysis

Strategy Reliability of results
CM 0-20% and CBM 0-20% Results show variability of 0-20% in applica-

tion of CM and CBM
CBM 20-50% Results consistently indicate that applying at

least 20% CBM remains favourable across
the full sensitivity range.
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Validation of the developed model

This chapter presents an assessment of the validity of the methodology developed in this thesis, follow-
ing the framework proposed by Pedersen et al. (2000), known as the “validation square”. This approach
is designed to evaluate both the internal consistency and practical relevance of the model, aiming to
determine its overall usefulness for its intended application.

Usefulness here means not only that the methodology works as intended (effectiveness), but also that
it provides relevant results (efficiency). The validation square offers a structured process for assessing
both, using both qualitative and quantitative criteria.

The validation is organized into four main types, as can be seen in Figure 8.1. Theoretical Structural
Validity (TSV) examines the soundness of individual elements and the consistency with which they are
integrated, based on the strength of the underlying sources and logical connections. Empirical Struc-
tural Validity (ESV) tests whether these elements, once theoretically validated, perform as expected
when applied to known example problems. Empirical Performance Validity (EPV) addresses the prac-
tical usefulness of the methodology in meeting its objectives, focusing on how well the model and its
parts contribute to achieving its intended results in real or case-based scenarios. Theoretical Perfor-
mance Validity (TPV) considers the extent to which the methodology’s usefulness can be generalized,
looking at whether its principles and outcomes hold beyond just isolated cases.

Figure 8.1: Validation square by Pedersen et al. (2000)

8.1. Theoretical Structural Validity
Key elements like data inputs, CBM, TDSM, CM modeling, and cost and man-hour calculations were
built using multiple sources and verified by expert input.

CBM parameters and efficiency effects were cross-checked with several experts and based on both
recent and older literature (i.e., (McDevitt, Zabarouskas, and Crook, 2003); (Hasan et al., 2018)). SAP
maintenance call meanings were only included after consensus from at least three sources. The BSMI
breakdown was constructed from classification sheets and refined through review by RNLN experts.
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The M2 multiplier was developed from literature and expert opinion. While its core is well-founded, its
behavior after 30% CM is assumed and can not be validated, therefore this is the only part of the model
that does not contain TSV. Throughout, flowcharts (see Figure 4.2 to Figure 4.16) ensured internal
consistency in all calculation steps.

8.2. Empirical Structural Validity
In this thesis, ESV is primarily assessed through two elements: the applied effects in the M2 multiplier
and the use of external models on efficiency loss.

Figure 8.2 shows the difference in modeled efficiency between the productivity loss curve by (McDevitt,
Zabarouskas, and Crook, 2003) and the workload ratio model by (Chang and Sullivan, 2006). Both
were used to underpin the assumptions in this thesis. In the operational range of TDSM application,
from 49% to 94%, the discrepancy in predicted efficiency remains within 10%, indicating consistent
behavior across sources. At the outer ends (97% and 100% TDSM), deviations rise to 12.8% and
17.6% respectively, suggesting increasing model sensitivity near the limits of full scheduling.

As described in Section 4.2.1, the M2 multiplier models the exponential growth in cost and man-hours
as CM increases beyond the optimal range. With regards to the costs-part of the model, literature
sources (i.e., (Hamasha et al., 2023); (Le et al., 2018)) identify this optimal CM-to-PM ratio between
15% and 30%, while Stenström et al. (2016) quantifies cost growth with a multiplier of 3.3 for every 1%
CM beyond that point.

Figure 4.5 illustrates this steep rise, which reflects the urgent and resource-intensive nature of M2 tasks.
The curve is capped at 60% CM due to practical infeasibility and limited supporting data. While the
central range is well-founded, outcomes beyond 30% CM remain theoretical and should be interpreted
with caution.

In addition to cost, the model also assumes that required man-hours for M2 tasks grow exponentially as
CM increases. This assumption is based on expert input showing that SAP data does not fully reflect
the actual workload. While SAP registers the time spent on repairs on board, it leaves out important
tasks like troubleshooting, coordination, travel, and logistics. To correct for this, the model applies a
multiplication factor of 10 to the reported M2 man-hours. This estimate is supported by multiple RNLN
experts and based on repeated observations in practice (Interview 4, 2024; Interview 9, 2025; Interview
10, 2025; Interview 11, 2025).

Although the factor of 10 is a simplification, it helps the model give a more realistic view of the full work-
load linked to M2 tasks. It does not aim to be exact, but it tends to show the trend. In the middle range
of the curve, the results are supported by data and expert opinion. Beyond 30% CM, the outcomes
become more uncertain and should be seen as indicative, not precise.

Figure 8.2: Efficiency loss comparison between (McDevitt, Zabarouskas, and Crook, 2003) and (Chang and Sullivan, 2006)
across varying levels of TDSM application.



8.3. Empirical Performance Validity (EPV) 68

8.3. Empirical Performance Validity (EPV)
EPV assesses the practical usefulness of the model in solving the specific problem it was designed
for, as well as its value in real-world application (Pedersen et al., 2000). In this thesis, usefulness is
interpreted as the degree to which the model enables the identification and evaluation of cost- and
man-hour efficient maintenance strategies for different system groups within the RNLN fleet.

Throughout this research, it is demonstrated that the effectiveness of a maintenance approach is highly
dependent on the interplay between system criticality, maintainability, and the underlying SAP cost data.
At the outset, it was uncertain whether the model would consistently capture these nuanced relation-
ships or simply reflect dominant cost drivers in the SAP data. The systematic analysis of each BSMI
group showed, however, that the model is capable of distinguishing between cases where CBM, TDSM,
or CM provide the greatest benefit. For example, groups containing mission-critical systems consis-
tently showed that increased CBM application led to more cost-efficient outcomes, as anticipated. In
contrast, non-critical groups (i.e., paint or lighting systems) revealed that a reactive, CM-heavy strategy
is often preferable.

Moreover, the model facilitated scenario-based comparisons that go beyond simply reproducing histor-
ical costs and man-hours, providing insight into the potential reductions achievable through targeted
changes in maintenance strategy. Chapter 6 illustrates how the model’s outputs, validated against ex-
pectations and operational experience, support informed decision-making for resource allocation and
maintenance planning.

Importantly, the model’s outputs also highlighted the influence of data quality, such as registration errors
in SAP, which can affect perceived cost-efficiency. These findings reinforce the necessity of robust data
practices for reliable model application and interpretation.

Overall, the model proved empirically useful for the RNLN context. It not only identified cost-effective
maintenance strategies per system group and vessel type, but also revealed where further improve-
ments in data quality and maintenance registration are required. This supports both the specific goal
of optimizing RNLN maintenance and the broader purpose of advancing practical knowledge in main-
tenance strategy comparison for complex naval systems.

8.4. Theoretical Performance Validity (TPV)
Theoretical Performance Validity (TPV) concerns the extent to which the methodology and its results
can be generalized beyond the specific cases or datasets analyzed (Pedersen et al., 2000).

In this research, the model was designed with flexibility in mind, enabling systematic comparison of
maintenance strategies (CM, TDSM, CBM) across a wide variety of system groups and all major vessel
types within the RNLN. The core principles, which relates maintenance cost and man-hour impacts to
system criticality, maintainability, and historical cost data, are not limited to a single installation group
or platform. Instead, the model structure allows for adaptation to other vessels in the fleet, as well as
to other organizations with comparable data.

However, there are also boundaries to the generalization. The model’s effectiveness is dependent
on the availability and reliability of detailed maintenance and cost data, as well as a clear distinction
between maintenance types in the source data (CM, TDSM, CBM). Additionally, the current implemen-
tation treats each BSMI group as a homogeneous unit, which may obscure sub-group differences in
risk or repairability. While the methodology could in principle be refined to include further granularity
or even applied outside the RNLN, this would require careful recalibration and validation against local
data and operational realities.

Despite these limitations, the model’s underlying approach, using cost and availability impacts to guide
maintenance policy selection, can be adapted to support decision, making for other naval organizations,
or even for different industries where similar maintenance challenges exist.

8.5. Conclusion
This chapter assessed the validity of the developed comparison model using the framework of the
validation square. By evaluating four types of validity (TSV, ESV, EPV, and TPV), both the internal
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consistency and practical relevance of the model have been examined. This provides confidence in the
model’s capability to compare maintenance strategies based on cost and man-hour efficiency across
different system groups and vessel types. This provides the last piece of the answer to sub-question
5:

RQ5: How can the model be verified and applied by the Royal Netherlands Navy?



9
Conclusion

Growing pressure on maintenance budgets and the ongoing need for high fleet readiness make it
essential for the Royal Netherlands Navy to improve maintenance efficiency. Traditional approaches
such as TDSM are not always sufficient for increasingly complex systems, while CBM is still under
development. This context formed the motivation for this research, which investigates how different
maintenance strategies can be systematically compared.

This chapter summarizes the key outcomes of the research. Section 9.1 addresses the principal limi-
tations encountered during the study. In Section 9.2, the main conclusions are presented. Section 9.3
details the scientific contributions made by this work. Finally, Section 9.4 offers suggestions for future
research directions.

9.1. Limitations
While the developed model offers valuable insights into maintenance strategy optimization, several
limitations must be acknowledged.

First, the model’s accuracy is highly dependent on the quality and completeness of the input data
sourced from the RNLN SAP system. Instances of missing, inconsistent, or outdated cost, man-hour
and downtime registrations, particularly in the recording of M2, have affected the reliability of the out-
puts for certain BSMI groups. For example, in cases where no M2 records were available, the model
defaulted to scenarios with very high CM shares, which are unlikely to represent realistic maintenance
strategies. For this reason, cost reductions due to CM application above 30% should always be inter-
preted with caution and are deemed unreliable.

Second, the assumed maintenance strategy mixes do not always reflect realistic operational scenarios.
While useful for theoretical exploration, pure strategies (for example, 100% TDSM or 0% CM) are
rarely feasible in practice. This highlights the need for a more nuanced interpretation of the model’s
outcomes: extreme values in maintenance allocation should be approached with caution. For instance,
if the model suggests an optimal scenario of 100% TDSM, a more realistic configuration might be closer
to 5% CM, 90% TDSM, and 5% CBM.

Third, the grouping of systems into broad BSMI categories, while practical for analysis, may mask
variations in risk profiles and maintenance demands within groups. A more granular approach might
yield deeper insights but would make applicability of the model for the entire fleet impossible.

Moreover, it is uncertain whether the model’s treatment of M2 maintenance does fully capture the op-
erational downtime caused by corrective maintenance. As a result, scenarios with high CM application
may incorrectly appear more favorable in terms of man-hour efficiency. This risks underestimating
the operational consequences of high CM reliance. Therefore, again, results showing CM application
above 30% should always be interpreted with caution.

An important limitation lies in the divergence between cost-optimal and man-hour-optimal strategies.
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The model shows that the scenarios which minimize total maintenance costs do not always correspond
with those that minimize required man-hours. This highlights an inherent trade-off between financial
efficiency and labor efficiency. As such, the model does not offer a one-size-fits-all recommendation
for each BSMI group.

This trade-off implies that decision-making must consider the Navy’s current priorities. In periods where
reducing man-hours and minimizing downtime are more critical (for example, during staffing shortages
or heightened operational readiness), strategies with slightly higher costs but lower labor demands
may be preferable. Conversely, in times of budgetary pressure, the Navy might choose to prioritize
cost savings even if that results in increased man-hour demands. The model does not resolve this
tension but instead provides insights to support these strategic decisions.

Lastly, the model does not explicitly incorporate system availability or operational readiness metrics,
focusing instead on costs, man-hours and downtime. While lower maintenance hours generally con-
tribute to better availability, this relationship is indirect and could lead to suboptimal decisions when
using this model for drawing conclusions on vessel availability.

9.2. Conclusion
The thesis aims to provide an answer to the main research question:

MQ: How to provide insights into the cost-effectiveness and vessel availability of different
maintenance methods for the Royal Netherlands Navy?

Throughout the chapters of this thesis, the main research question is answered with several sub-
questions. First, this thesis addresses the first sub-question:

SQ1: What are the general challenges surrounding RNLN ship maintenance?

The RNLN primarily collaborates with a single external partner for major vessel maintenance, fostering
continuity but limiting competition and flexibility. This dependence can challenge cost management
and lead to occasional scheduling delays.

In addition, several challenges specific to CM were identified. CM is by nature reactive and typically
involves unplanned interventions after failures occur. This can lead to long downtimes, logistical ineffi-
ciencies, and higher operational disruption.

While CBM has potential for optimizing maintenance through predictive data, adoption is hindered by
operational variability, unavailability of supplier data, and an underdeveloped data analysis infrastruc-
ture. Uncertainty about which systems are most suited for CBM further slows progress.

Additionally, the current reliance on TDSM leads to periods of organizational overload, decreasing
productivity and vessel availability while increasing costs.

With maintenance resources under increasing pressure and high fleet availability remaining a priority,
enhancing the selectivity and efficiency of maintenance planning is essential.

Building on these findings, the next sub-question explores the maintenance methods that need to be
taken into account in order to enhance selectivity and efficiency in maintenance:

SQ2: Which maintenance methods are currently used within the Royal Netherlands Navy, and
outside the navy organization, and which are relevant to include in the cost determination?

Maintenance strategies can be broadly classified as reactive, proactive, and aggressive. In the RNLN,
three methods are used:

• CM addresses failures after they occur, and while essential for unforeseen breakdowns, it can
cause higher downtime and expenses (≈15% of activities).

• TDSM uses fixed intervals irrespective of condition to prevent failures, though it may lead to
premature replacement of components (≈80% of activities).

• CBM relies on real-time data to trigger maintenance only when needed, potentially reducing un-
necessary actions, though it is still under development and involves higher investment costs (≈5%
of activities).
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Following these insights, Sub-Question 3 addresses how a model can be developed that compares the
three identified maintenance methods to enhance selectivity and efficiency in maintenance:

SQ3: How to provide insights into the maintenance costs and required man-hours per relevant
maintenance method for the Royal Netherlands Navy?

A model was developed that allocates maintenance data and metrics defined through expert opinions
across the three maintenance methods. The model systematically applies varying combinations of
CM, TDSM, and CBM strategies across each BSMI group and vessel type, enabling the evaluation of
different maintenance scenarios in terms of cost and man-hour efficiency. System criticality is identified
as a key driver for the preferred maintenance method. High-criticality systems are more cost efficient
under CBM-heavy strategies. For man-hours the results showed higher reliance on CM, which could
be a consequence of underestimation of CM man-hours and downtime in this model.

Results show promising cost reductions especially for BSMI groups A, B, D and E with costs reductions
between 13-60% and 25% on average.

Building on these findings, the next sub-question explores the verification, application and validation of
the developed model.

SQ4: How can the model be verified and applied by the Royal Netherlands Navy?

To ensure practical use within the RNLN, the model was built in Microsoft Excel for broad accessibility.
It combines a scenario generator, database, and an analysis engine to evaluate CM, TDSM, and CBM
mixes.

Verification through systematic input testing confirmed consistent, logical behavior. Validation using
Pedersen’s framework showed the model is structurally sound, performs reliably on historical data, and
effectively identifies cost-efficient strategies. While tailored to the RNLN, the approach is adaptable to
similar contexts with comparable data. However, uncertainties remain regarding the registration of M2
which could influence the reliability of results showing applications of CM ranging between 20-60%.

Building on these findings, the last sub-question answers:

SQ5: How can the model help the Royal Netherlands Navy in their maintenance decision-making?

The model provides the Royal Netherlands Navy with a systematic approach to assess maintenance
strategies across vessel types and system groups based on costs and required man-hours.

It shows that, with regards to costs, high-criticality systems are best maintained through CBM-heavy
approaches.

Sensitivity analyses confirm that for systems with high CBM application (30-50%), the model’s recom-
mendations remain robust under varying input assumptions. Systems with both moderate CM and CBM
application (0–20%) show that the five most efficient scenarios often fall within a 10% deviation range
from each other. However, the variation between these scenarios can be as large as 20% in terms of
CM and CBM allocation. This indicates a relatively high level of sensitivity in this application range. As
a result, it becomes more difficult to determine with confidence which maintenance strategy is truly the
most efficient or realistic. Therefore, conclusions in these cases should be drawn with caution.

Moreover, the model highlights areas for improvement in data registration. Inconsistencies in SAP
records, such as occasional negative values, typographical errors, and variations in the registration of
M2 hours, can influence the results. By bringing these aspects to light, the model not only supports the
optimization of maintenance strategies but also provides insights that can help enhance data quality
and registration practices within the RNLN.

With the sub-questions individually addressed, the main research question is revisited:

MQ: How to provide insights into the cost-effectiveness and vessel availability of different
maintenance methods for the Royal Netherlands Navy?

The objective of this research was to develop a model that provides the RNLN with improved insights
into maintenance costs and vessel-availability across maintenance strategies, consisting of CM, TDSM
and CBM, for different vessel types and system groups.
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The developed model showed potential improvements both for costs and also reductions in man-hours.
With potential cost reductions for BSMI groups ranging between 1-99%, with an average of 28%. And
potential man-hour reductions of 1-98%, with an average of 41%. However, not all results are always re-
liable, depending on the advised maintenance strategy. A summary of the reliability of results following
from the model can be seen in Table 9.1.

With regard to vessel availability, an initial attempt was made to assess this by analyzing man-hours
combined with downtime, under the assumption that a reduction could indicate improved availabil-
ity. However, because the combination of man-hours and downtime does not directly reflect vessel
availability, and given the limitations in the quality of the downtime data, this research cannot provide
definitive conclusions regarding vessel availability.

Table 9.1: Reliability of model results

Strategy Reliability assessment
CM > 30% Results are considered unreliable due to low registration of M2.
CM 0–20% and/or CBM 0–20% Sensitivity analysis shows variability of 0-20% in application of

CM and CBM; results should be interpreted with caution.
CBM 30-50% Results consistently indicate that applying at least 20% CBM is

favourable.

9.3. Scientific contributions
This study has resulted in several scientific contributions, summarized as follows:

• Development of a decision-support model for naval maintenance strategy optimization:
A model was developed that systematically compares maintenance strategies for different vessel
installations for different vessel types, enabling cost and man-hour, combined with downtime,
evaluation per system group and vessel type within the RNLN.

• Integration of real-world SAP data with maintenance modeling:
The model integrates historical SAP data with expert-validated cost and man-hour factors, en-
abling evaluation of maintenance strategies.

• Identification of system criticality as a driver for maintenance strategy selection:
The analysis confirmed that system criticality significantly influences the optimal maintenancemix,
with high-criticality systems benefiting from CBM-heavy strategies, or favoring less application of
CM.

• Contribution to maintenance modeling for naval fleets:
By combining practical data and expert input, the study advances the methodology for mainte-
nance strategy assessment in military contexts. The model’s structure also offers potential for
adaptation to other fleets or industries with similar maintenance challenges.

9.4. Recommendations
Based on the findings of this research, the following recommendations are proposed for the RNLN:

• Early integration of CBM for new vessels:
For vessels entering the fleet, it is recommended to integrate CBM capabilities during the design
and construction phase. This ensures that condition-monitoring infrastructure is built into the ship
from the outset, avoiding costly retrofitting later. Priority should be given to implementing CBM
for system groups A, B, D and E which the model identifies as the most promising candidates for
cost reductions through CBM application.

• Scaling up CBM and data collection for future readiness:
As the model calculates over the full service life of a ship and does not assess immediate cost
benefits, it is recommended to begin comprehensive data collection for all existing onboard instal-
lations within BSMI groups A, B, D and E being highest priority. Followed by BSMI groups C, F
and K This will build the foundation for effective CBM application for future vessels.
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• Improve M2 data registration practices:
While SAP data quality is relatively good, the recording of M2 man-hours is currently not realistic
as a standalone factor. Moreover, repair processes where weapon systems are temporarily re-
moved and reinstalled without proper administration lead to negative maintenance entries. It is
recommended to avoid these inaccuracies.

• Improve downtime registration:
Currently, downtime caused by mission-critical system failures is registered in SAP, but not accu-
rately. Although the start date of a downtime event is often recorded, the end date is frequently
missing or incorrectly logged. This results in unrealistically long downtime durations, sometimes
spanning several years, making the current downtime data unreliable and unusable for analysis.
It is therefore recommended to improve the registration process by accurately logging both the
start and end times of downtime events caused by maintenance-related mission interruptions.
A more reliable downtime record would allow better integration of availability metrics into future
models and provide deeper insights into the operational impact of system failures.

• Expand the model to include availability metrics:
Although the current model focuses on cost and man-hour (combined with downtime) reductions,
ship availability is a critical metric for naval operations. Future research should extend the model
to incorporate availability calculations by integrating downtime effects.

• Adopt more granular system groupings:
Introducing more detailed classifications could provide sharper insights into which specific sys-
tems are truly mission-critical and drive maintenance costs or man-hours. Although this would
make the model inapplicable for fleet-wide analysis, it would offer deeper, system-specific recom-
mendations.

• Introduce a new SAP maintenance call type (e.g., M10) for CBM:
To better capture maintenance actions arising from CBM, it is recommended to introduce a new
maintenance call type in SAP, for instance, M10. Unlike M8, which is triggered based on hours of
operation, number of rounds fired, or time-based lifespans, M10 would specifically represent pre-
dictive maintenance based on deviations in monitored parameters from their expected baselines.
For example, abnormal vibration levels in a mechanical system could trigger an M10maintenance
event. This distinction will improve data quality and support more accurate future analysis of CBM
effectiveness.
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A
Verification steps

Table A.1: Verification steps for validating the cost model across CM, TDSM, and CBM.

# Action Hypothesis Outcome Verified?
1 Set all costs to 0 Total cost = 0 Total cost became 0 ✓
2 Set wage cost to 0 Total cost decrease Wage costs removed, to-

tal cost decreased
✓

3 Set material cost to 0 Total cost decrease Material costs removed,
total cost decreased

✓

4 Set external party cost
to 0

Total cost decrease External party costs
removed, total cost
decreased

✓

5 Set wage- and exter-
nal party components
at 0

TDSM costs and man-
hours increase linearly

Result matched ✓

6 Increase External
Party Costs

Total costs for M1, M2,
M4, WP increase

Costs increased accord-
ingly

✓

7 Increase hourly wage
by 50%

All wage-based cost in-
creases

Observed ✓

8 Set M8 material costs
to 0

CBM costs decrease with
decrease in M8 material
costs

Result matched ✓

9 Set WP and M4 cost to
0

Only BO-prep remains for
TDSM

Result matched ✓

10 Remove BO-prep
(FTE) costs

Linear reduction in TDSM
costs

Linear drop confirmed ✓

11 Set M2 costs and man-
hours to 0

Only lineair increase in
costs and Man-hours for
CM

Results matched ✓

12 Set sensor installation
to 0

Initial CBM cost drops Matched ✓

13 Turn off sensor re-
placement

CBM cost decreases with
reduction in sensor re-
placement costs

Result matched ✓

14 Remove data analysis
costs for CBM

CBM total cost decreases
by the amount associated
with FTEs for data analyt-
ics; no change in other
methods

Output correctly shifted ✓
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# Action Hypothesis Outcome Verified?
15 Change share of CBM

to 0%
CBM costs and man-
hours = 0

CBM output = 0 ✓

16 Change share of CM
to 0%

CM costs and man-hours
= 0

CM output = 0 ✓

17 Change share of
TDSM to 0%

TDSM costs and man-
hours = 0

TDSM output = 0 ✓

18 Set TDSM = 100%,
CM = 0%, CBM = 0%

Only M4, WP, and BO-
prep show results

Only those components
showed results

✓

19 Apply base values:
15% CM, 80% TDSM,
5% CBM

Model shows baseline val-
ues for CM and TDSM

Baseline behavior ob-
served

✓

20 Set CBM to 100% CBM costs become domi-
nant

CBM costs > all others ✓

21 Change share of CM
to 60%

M2 cost grows exponen-
tially

M2 cost increase ob-
served

✓

22 Change share of
TDSM to 100%

Total costs of TDSM in-
crease non-linearly

Result matched ✓

23 Set productivity factor
to 1.0

No nonlinear man-hour
changes; linear effect

Linear behavior confirmed ✓

24 Set ship lifetime to 1
year

Long-term costs drop sig-
nificantly

Costs dropped ✓

25 Set ship lifetime to 50
years

Long-term costs increase Costs increased ✓

26 Increase recurring
CBM software cost

Total CBM cost increase
with increase of software
costs

Increase observed ✓

27 Increase number of
sensor-covered instal-
lations from 100 to
200

CBM costs (sensor
installation, analysis,
replacements) roughly
double due to proportional
scaling.

Results matched ✓

28 Set number of installa-
tions groups to 0

No results will be pro-
duced

There are no results pro-
duced

✓

29 Set number of sce-
nario’s to 0

no results are produced No results were produced ✓

30 Increase sensor life-
time from 6 to 10 years

Fewer replacements; cost
and man-hours decrease

Correct ✓

Table A.2: Verification steps for validating the man-hour model across CM, TDSM, and CBM.

# Action Hypothesis Outcome Verified?
1 Set all man-hour val-

ues to 0
Total man-hours = 0 Output showed 0 man-

hours
✓

2 Set only M1 man-
hours to 0

Drop in CM man-hours,
rest unchanged

Only CM man-hours
dropped

✓

3 Set only M2 man-
hours to 0

CM man-hours reduce
significantly

CM dropped, others un-
changed

✓

4 Set BO and AM prep
man-hours to 0

TDSM man-hours de-
crease

TDSM output dropped ✓

5 Set WP, M4, M8 man-
hours to 0

All scheduled mainte-
nance effort gone

TDSM man-hours near
zero

✓

6 Set M8 man-hours to 0 CBM man-hours related
to usage drop

CBM man-hours dropped ✓
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# Action Hypothesis Outcome Verified?
7 Set sensor installation

man-hours to 0
CBM start-up man-hours
disappear

One-time CBM drop ob-
served

✓

8 Set sensor replace-
ment man-hours to
0

CBM man-hours de-
crease for recurring
intervals

Reduction matched ✓

9 Set data analysis man-
hours to 0

CBM effort decreases
slightly

Small reduction confirmed ✓

10 Set all CBM man-
hours to 0

CBM total = 0, others un-
affected

Output matched ✓

11 Increase M2 share to
30%

Total CM man-hours in-
crease exponentially

Exponential growth con-
firmed

✓

12 Increase M2 share to
50%

Man-hour multiplier effect
results in 8–10× increase

Man-hour growth aligned
with exponential curve
and multiplier

✓

13 Apply 10× factor to M2
man-hours

Total CM man-hours grow
sharply

Confirmed steep rise ✓

14 Set productivity factor
to 1.0

TDSM man-hours scale
linearly

Linear output confirmed ✓

15 Increase productivity
to 1.2

TDSM man-hours de-
crease

Higher productivity led to
fewer hours

✓

16 Decrease productivity
to 0.6

TDSM man-hours in-
crease

Output grew as expected ✓

17 Set TDSM = 100% All man-hours allocated to
TDSM components

Confirmed TDSM domi-
nance

✓

18 Set TDSM = 0% No M4, WP, M8 or BO/AM
work

TDSM man-hours
dropped to 0

✓

19 Set CM = 0% No M1 or M2 man-hours CM output dropped ✓
20 Set CBM = 100% All man-hours tied to sen-

sors, analysis
CBM output increased ✓

21 Set sensor-covered in-
stallations = 200

CBM installation and
replacement man-hours
double

Confirmed doubling ✓

22 Set installations = 0 No CBM hours required Output confirmed ✓
23 Remove data analysis

effort
Drop in recurring CBM
man-hours

Observed expected drop ✓

24 Add 2 FTE for data
analysis

CBM man-hours rise pro-
portionally

Linear increase observed ✓

25 Set CBM = 0% All CBM man-hours = 0 Output matched ✓
26 Set CBM to 50%,

TDSM to 50%, CM to
0%

Only CBM and TDSM
man-hour components re-
main active

CM disappeared, CBM
and TDSM active

✓

27 Remove productivity
effects

TDSM man-hours be-
come linear

Output changed accord-
ingly

✓

28 Disable infrastructure
fatigue multiplier

Slight TDSM productivity
gain

Minor man-hour reduction
seen

✓

29 Increase TDSM from
80% to 100%

All productivity factors
apply negatively, lead-
ing to max man-hour
inefficiency

Sharp man-hour increase
confirmed

✓

30 Disable all amplifying
effects

Model becomes fully lin-
ear

Smooth and proportional
changes observed

✓



B
Overview of all different relevant

maintenance calls in SAP

Notification Purpose / Description
M1 Failures during missions that can be fixed

later during scheduled maintenance. Falls un-
der CM.

M2 Mission-critical failures requiring immediate
resolution during the mission. Falls under
CM.

M3 Quick fix without tools, lasting less than 2
hours. Not administratively processed. Falls
under CM.

M4 Manually created by maintenance staff. Falls
under TDSM. Examples include scheduled in-
spections, routine checks, or servicing every
250 operating hours.

M5 Engineering preparation for a modification
(e.g., cannon replacement planning). Out of
scope.

M6 Other maintenance for non-BSMI systems.
Out of scope.

M7 Execution of a Navy-initiated modification (fol-
lows M5). Out of scope.

M8 Automatically generated by SAP. Directly cre-
ates a maintenance order. Falls under TDSM.
Examples include: fire extinguisher replace-
ment after expiry, engine checks, or cannon
maintenance after specific usage.

M9 Execution of a modification from an external
request (e.g., government). Out of scope.

WP Administrative conversion from Primavera to
SAP for BO. Contains hours and costs. Falls
under TDSM.

Table B.1: Overview and classification of SAP maintenance notification types relevant to the Royal Netherlands Navy,
highlighting their function and scope within the research.
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Data normalization example
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Figure C.1: Data normalization example



D
Overview of interviews

Table D.1: Interview and communication sources

Reference Function / Role Topic
Interview 1 (2p) Weapon System Manager

CSS / Johan de Witt and the
Weapon System Manager of the
M-Frigates

Maintenance methods in the RNLN

Interview 2 (2p) Engineer within the de-
partment ’Data for Mainte-
nance’(RNLN) and Condition
monitoring advisor within the
same department.

Data templates and conversion to opti-
misation models

Interview 3 Weapon System Manager Small
Navy Vessels

Maintenance planning and CBM inte-
gration

Interview 4 Installation Manager SONAR SONAR maintenance and onboard re-
pair process

Interview 5 Head of DMI Production Depart-
ment

Team deployment and CM-related cost
components

Interview 6 Head of Engineering, Small
Navy Vessels

SAP system use and maintenance
planning

Interview 7 Navy Portfolio Manager Macro-level maintenance and resource
coordination

Interview 8 Owner, Copernicos / WSM Dy-
namics

Development of WSM Dynamics main-
tenance model

Interview 9 Submarine Fleet Work Planner Interpretation of model results, M2 data
quality

Interview 10 Head of Engineering, Small
Navy Vessels

Validation of M2 man-hour underregis-
tration

Interview 11 Data Analyst, RNLN SAP man-hour registration reliability
(M2 focus)

Interview 12 Operational Engineer, Bureau
PO FF&OPV

M4 and M8 SAP notification workflows

Phone communication 1 Installation Manager SONAR WP notification structure and interpre-
tation

Phone communication 2 Head of DMI Production BO/AM WP notification clarification
Email communication 1 Data Analyst Explanation of SAP component struc-

ture
Email communication 2 Data Advisor CBM cost and man-hour drivers
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Reference Function / Role Topic
Email communication 3 Weapon System Manager CSS CBM assumptions and scope discus-

sion
Email communication 4 Project Planner, DMI Duration and cost factors of AM main-

tenance
Email communication 5 Weapon System Manager M-

frigates
Planning and budgeting of AM tasks

Email communication 6 Owner, Copernicos A/B classification logic in BSMI groups
Email communication 7 Weapon System Engineer, Sub-

marines
SAP M1, M4, WP notification clarifica-
tion

Email communication 8 Operational Management Offi-
cer, FF & OPV

Incident type linkage to WP categories

Email communication 9 BO Coordinator, FF & OPV WP report classification and practice
Email communication 10 Data Analyst, RNLN Explanation of cost anomaly in BSMI

1156 and SAP analysis method for
identifying incorrect labor entries
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