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Summary

Chemical process industries face challenges in monitoring and controlling complex operations. Current
‘visualization’ techniques require extensive data and computational efforts, which may not always be
feasible. Moreover, these techniques often lack detailed insights into the underlying physics. This thesis
explores an a priori integral approach that can reconstruct scalar or vector fields using sparse sensor
measurements. The approach is conceptually built on the mathematical constraints associated with
Helmholtz-Hodge Decomposition together with the physical laws. To illustrate this, temperature field
reconstructions are considered in steady heat transfer systems, including scenarios with either heat
generation or forced convection, using discrete data obtained from flow-following sensors.

A generalized framework is developed using hypothetical heat sources (potentials), with parameters
of the heat potentials being determined from the values of the temperature field measured at limited
discrete points. Infinitely many reconstructed solutions are possible and the arrangement, population,
intensity, and size of the hypothetical heat potentials are the issues of interest that influence the recon-
structed solution. Two concrete possibilities are presented for simplification (linearization) by limiting
the issues associated with these potentials. The optimal values of unknowns are determined using sparse
sensor measurements in a linear system of equations, with the help of ‘training’. The framework-assisted
reconstructed fields demonstrate accurate predictions of uniform and smooth temperature distribution,
while utilizing only a small number of sensor measurements, and minimal computational effort. This
validates the effectiveness of an integral approach.

In more complex situations, like locally uneven fields or sharp convective currents, the framework-
assisted reconstructions focus primarily on the dominant phenomena and do not capture specific (or,
local) characteristics. This highlights the inherent limitations associated with the simplification of a
non-linear problem. Potential improvements regarding the treatment of issues associated with heat
potentials are suggested for developing a more versatile framework.

The performance of the source framework developed in this work, based on an integral approach, is
compared with the Hidden Fluid Mechanics algorithm, a recently developed physics-informed neural
network framework, based on a differential approach. This comparison highlights the strength of the
source frameworks and the integral approach to ‘visualize’ simple and smooth domains, in terms of com-
putational expense and accuracy, particularly when dealing with a limited number of measurements.
Integrating physics-constrained field functions, developed in this work, into a neural network architec-
ture can present an intriguing avenue for framework optimization. Additionally, gradual enhancements
in domain complexity can be explored to expand the applicability of the framework.
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1
Introduction to Field Re-Construction

1.1. Introduction
Chemical industries often involve complex processes, with various unit operations and unit processes.

Monitoring and controlling such chemical processes is sometimes challenging due to several factors
such as non-linearity, fluctuations, field gradients, insufficient data availability, and computational re-
quirements. To overcome these challenges, engineers are leveraging technologies driven by the Fourth
Industrial Revolution (Industry 4.0) such as machine learning (ML) based algorithms among other in-
novations. These technologies are mainly data-driven and rely on large volumes of data to learn/train
and make informed decisions. However, when examining intricate physical, biological, or engineering
systems, the process of data acquisition is restrictive, leading to a challenge where we must draw con-
clusions and make decisions based on incomplete information. In such scenarios with limited data,
most cutting-edge machine-learning methods lack resilience and cannot ensure convergence [1]. Under-
standing the behavior of physical fields related to transport processes is a key element in the design
and optimization of engineering systems that involve these processes. Therefore, data collection and
its relevant treatment for the identification of physical phenomena become a fundamental aspect of
research.

The significant revolution in sensor technology has led to the development of flow-following sensors, al-
lowing us to capture spatial information such as pressure, temperature, pH, etc. within the (bio)reactors
[2]. These sensors have revolutionized the way data is acquired, providing a new perspective on dy-
namic processes by enabling variable measurements linked to a particular position and collecting data
from multiple locations. Data collected can be used for the identification of the overall flow character-
istics, such as circulation time and velocity field, and by analyzing how the process parameters change
over time and space [3]. These sensor nodes can retrace their position through mutual communication,
without the help of external base stations or beacons [4].

With smart sensor devices capable of generating spatial data, contemporary data-processing tech-
niques are simultaneously under development to maximize the information gained from collected data
and transform it into efficacious visualizations. Researchers Garcia et al. [5] proposed a technique to

1
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reconstruct the temperature and velocity fields in a natural convection setup via reduced-order approx-
imations. These approximations are expressed in terms of a globally defined basis function using the
proper orthogonal decomposition (POD) method, based on the algebraic structure of the finite element
method (FEM). While Gong et al. [6] suggested a combination of the reduced basis and limited sensor
measurements to systematically reconstruct a neutronic field. A convolutional neural network (CNN)-
based approach is undertaken by Ponciroli et al. [7] and illustrated by Leite et al. [8] to reconstruct
temperature field at any point in a heated channel driven by an incompressible fluid, from boundary
measurements and few measurements within the domain. The researchers formulated their reconstruc-
tion problem as a Boundary Value Problem (BVP), for which they implemented Boundary Element
Method (BEM) within a CNN framework. Incorporation of BEM into the neural network ensures nu-
merical estimation of Green’s function linked to the differential operator, for any arbitrarily shaped
domains.

Hidden Fluid Mechanics (HFM), a term coined by Raissi et al. [9], is a physics-informed machine
learning framework that addresses the challenges associated with the inference of velocity or pressure
fields directly from point measurements. This recent approach utilizes a dense point cloud of con-
centration data from Direct Numerical Simulations (DNS), and Navier-Stokes (NS) equations at once
to reconstruct hidden states of the system such as velocity and pressure fields. This method can be
viewed as an inverse CFD problem. Notwithstanding, for realistic experimental measurements or nu-
merical simulations, there is limited availability and non-uniform positioning of sensors resulting in an
unstructured data grid. A major challenge is the incompatibility of such grids for convolutional neural
network (CNN)-based techniques, which are conceptualized using well-organized uniform training data.
Further, these methods fail to grasp spatially moving sensors. In response to such issues, Fukami et al.
[10] recommended using Voronoi tessellation-assisted convolutional neural networks for global field re-
construction. Voronoi tessellation assists in mapping out scattered data onto a structured grid while
retaining local sensor information, which then allows utilizing current CNN methods to reconstruct the
field without any knowledge of physics. A common feature among the above-presented techniques is
the absence of an integral approach to yield global field reconstruction.

1.2. Motivation
In recent research, there is a substantial focus on exploiting machine learning techniques for solving

long-standing challenges in the topic of Field Re-Construction. In turn, such techniques rely on the
provision of wealthy data or naive ML techniques and lack an integrated approach. Moreover, it is not
viable to train these models for all practical situations [8]. In this thesis, the idea is to build a general
reconstruction framework with an integrated approach that can utilize a sparse sensor data set measured
at random positions within the domain. The reconstruction technique is based on the concepts from
Helmholtz-Hodge Decomposition [Chapter 2]. A generalized framework of sources can be developed for
which infinitely many reconstructed solutions exist that satisfy the information from sparse sensor data.
The situation of choosing the best solution from infinite possibilities is where ‘training’ will come in the
context of our algorithm. It is to be noted that for our technique there is no additional information
supplied on boundaries, initial state, or the nature of phenomena occurring within the domain. This
global reconstruction technique can be applied to achieve better process control and optimization. At
present, it is suitable for real-time analysis of a smooth field but can also be considered an efficient
post-processing tool. Such an algorithm is a feasible tool to develop a digital twin model which does
not rely solely on ML-based methods. This gives an opportunity to present an interesting case of
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performance comparison of our technique with the recent HFM approach [9] in Chapter 7. Figure
1.1 visually represents the general concept behind this thesis. This work is part of ongoing research
in the Transport Phenomena group of TU Delft, where a proof of concept is established on a simple
steady-state heat conduction problem by [11].

Figure 1.1: General conceptualization of this thesis

1.3. System Simplification and Specific Research Interests
Using the inverse of Helmholtz-Hodge Decomposition for field reconstruction is a yet novel method

and while it is under development, taking too many details into account at once can make the research
process complicated. For the same reasoning, the domain of study is simplified and assumptions on
sensor devices are presented in the next subsections 1.3.1 and 1.3.2, respectively.

1.3.1. Domain of Study
• Field Variable: Temperature considering Scalar Field Reconstruction. Here, temperature is cho-

sen to build upon work done by [11], but any other scalar or vector field can be chosen for
reconstruction.

• State of the Study: Steady-state; dT
dt = 0

• Heat Conduction with

o Case1: Heat Generation within the domain; q̇ ̸= 0

o Case2: Forced Convection with no Heat Generation; q̇ = 0

• Domain geometry specifications: A 3-D cubical geometry of size 1×1×1m3
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Figure 1.2: Specific objective for this thesis

Figure 1.2 helps to better visualize the domain of study and the objective of this thesis. Specific
research questions undertaken for exploration during this thesis are mentioned in subsection 1.3.2.

1.3.2. Assumptions on Sensor Devices
Assumptions on the flow-following sensors are mentioned in [11]. This work continues to follow these
assumptions which concern the sensor’s operation and measurements. Assumptions are as follows:

1. The sensor provides precise and error-free measurements.
2. The location of the sensor is known.
3. The sensors can move around freely without getting stuck within the area of operation.
4. The sensors are so small that they can be considered neutrally buoyant and treated as a single-

point measurement.
5. The presence of the sensor does not have a significant impact on the environment they are mea-

suring.

1.3.3. Thesis Research Questions
This work aims to build a reconstruction framework for the temperature field with either heat generation
or forced convection in the domain. Research interests include understanding the effects of localized
effects on this framework, estimating the accuracy of the framework with the varying numbers of sensor
measurements, and drawing parallels with a recently developed approach. These broad interests can be
framed and achieved with help of specific research goals presented as follows:

• Conceptual goals:

1. Establishing concepts to build a general reconstruction framework and explore different pos-
sibilities for the framework development.

• Numerical goals:

2. Evaluate framework performance across various distribution patterns: smooth variations,
locally uneven field, and sharp variations.

3. Evaluate framework performance under different physical mechanism: heat generation and
forced convection.

4. Determine the minimum requirement of sensor measurements to get a decent field prediction.
5. Compare the framework-assisted field predictions with the output of the Physics-informed

Neural Network [9], using equivalent (sparse) sensor measurements.

These goals are handled systematically in the upcoming chapters. The next section explains the orga-
nization of this thesis.
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1.4. Thesis Organization
The underlying conceptual background of this thesis is explained thoroughly in Chapter 2, whereas
Chapter 3 involves the description of frameworks that are used to optimize the governing field function
with a linear approach. Research Goal 1 will be handled in Chapters 2 and 3. Further in Chapter 4,
to test the ideas built with previous chapters, sensor and testing data sets are generated by perform-
ing virtual experiments. Results pertaining to steady-state heat conduction with heat generation are
presented in Chapter 5 while in Chapter 6 results from the case of steady-state heat conduction with
forced convection are analyzed. These chapters will handle Research Goals 2 to 4. In Chapter 7, results
from the built algorithms are compared with those obtained from the HFM/PINN-based approach [9]
using the same sparse sensor data set. This chapter will deal with Research Goal 5. Finally, conclusions
drawn from the obtained results are included in Chapter 8 with an outlook for the refinement of the
current work and its further development.



2
Conceptual Background

There have been several techniques in use for reconstructing a field as mentioned in the previous chap-
ter, however, all these techniques require some additional input a posteriori on the physical phenomena
within the domain or at the boundaries which result in the field and variations associated with it. How-
ever, the reconstruction ideas applied in this work are postulated with the knowledge of mathematical
and physical laws. With this chapter, the aim is to explain these building blocks involved in the devel-
opment of a field function constrained a priori. Such a function would act agnostic to the geometry or
any specific domain or boundary conditions.

2.1. Basic Concept behind Field Re-Construction
Field Reconstruction can be viewed as an interpolation technique, wherein a functional value is

not directly measured but estimated using the known values. Interpolation can be a useful tool for
making predictions or for visualizing data in a more continuous way. Interpolation can be of various
types like Linear Interpolation, Spline Interpolation, and Polynomial Interpolation among many other
techniques. The nature of the data, the desired level of accuracy, and the specific application determine
the correct choice of interpolation method. Considering a variable F varying with distance x. Now, F

Figure 2.1: Interpolation of a variable F varying with x

can be interpolated linearly or non-linearly with x as shown in Fig2.1. It can be also considered as a
combination of basis functions, for example, polynomials of different orders as in Eq. 2.1.

F =
∑

pn(x); (2.1)

where, 0 ≤ n ≤ ∞ and pn(x) is nth order polynomial in x

6
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While dealing with regular data, these interpolation techniques function as expected but for a data set
with underlying physical phenomena, such techniques might not be very sufficient without incorporating
insights from physics. For the same reasoning, this work forms the interpolating basis functions based
on the theoretical knowledge obtained from physical and mathematical laws. This approach helps in a
priori-constrained construction of the model field function. Reconsidering the above-presented example
in a 1-D space, which can also be visualized as an application of the Fundamental Law of Calculus. The
functional value F(x) at intermediate location x is a summation of functional values at the boundaries
and the integral of its functional derivatives, as depicted by Eq. 2.2 and illustrated in Fig 2.2.

Figure 2.2: Interpolation in 1-D space

F (x) =
1

2
[F (x1) + F (x2)] +

1

2

[∫ x

x1

dF

dx
dx+

∫ x2

x

dF

dx
dx

]
(2.2)

Extending this concept in a 3-D space, a vector v⃗ is present in a domain of volume V and bounded by a
surface S. The vector v⃗ consists of two components associated with the surface integral of the function
and the volume integral of function derivatives. This idea is illustrated in Fig 2.3 and given as Eq. 2.3.

Figure 2.3: Vector in a 3-D space

v⃗ =

∫
S

Function dS +

∫
V

Derivatives dV (2.3)

To formalize these ideas further in a 3-D space, the concepts presented by Helmholtz and Hodge are
referred to in the next section.

2.2. Helmholtz-Hodge Decomposition (HHD)
Helmholtz and Hodge delineated that any vector field (v⃗), which is continuous and differentiable twice,
has domain volume V and is bounded by surface S, can be represented as a three-component field such
that:

1. Irrotational or curl-free component (∇D), where D is scalar potential
2. Incompressible or divergence-free component (∇× R⃗), where R⃗ is vector potential
3. Harmonic component which is curl-free and divergence-free (∇H), where H is harmonic function
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v⃗ = ∇D +∇× R⃗+∇H (2.4)

Since Component 1 is curl-free, it can be said that

∇×∇D = 0 (2.5)

Similarly, Component 2 is divergence-free and so

∇ · (∇× R⃗) = 0 (2.6)

While for Component 3 is both curl-free and divergence-free, hence,

∇ · (∇H) = 0 (2.7)

∇×∇H = 0 (2.8)

Figure 2.4: Basic concept of Helmholtz-Hodge Decomposition

The scalar potential D(r), vector potential ⃗R(r), and harmonic function H(r) are expressed with fol-
lowing equations [12]:
Scalar potential D is given as

D(r) = − 1

4π

∮
V

∇′ ·
(−−→
v(r′)

)
|r − r′| dV ′ (2.9)

Vector potential R⃗ is given as
−−→
R(r) =

1

4π

∮
V

∇′ ×
(−−→
v(r′)

)
|r − r′| dV ′ (2.10)

Harmonic function H as

H(r) =
1

4π

∮
S

(
n̂′ ·

−−→
v(r′)

|r − r′|

)
dS′ − 1

4π

∮
S

(
n̂′ ×

−−→
v(r′)

|r − r′|

)
dS′ (2.11)

In the above expressions, v⃗ is the vector field of interest, ∇′ is a nabla operator with respect to r′, and n̂′

is the surface outward normal. The characteristics that determine these potentials are the surface and
volume integrals of the field and field derivatives (curl and divergence), respectively. From Equations
2.9, 2.10 and 2.11, it is also observed that the scalar and vector potentials are congruent with the volume
integrals whereas, the harmonic function is associated with the surface integral. Thinking conversely, it
can be safely concluded that a distinct vector field can be constructed if its underlying scalar and vector
potentials, along with boundary conditions (harmonic potential), are known. If a scalar field needs to
be reconstructed, then the scalar (S) is first converted into a vector by taking its gradient. Then, this
vector (∇S) can be (re-)constructed using the inverse of the HHD concept.
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2.3. Field of Interest
Building upon the work achieved in the previous master’s thesis [11], the research is further continued
on a scalar field reconstruction, where the scalar field of interest is temperature. Temperature is just
an example chosen for developing this conceptual study in a definitive way. However, the theoretical
ideas presented in the previous section could be applied to any scalar or vector field. So, moving
forward to build a distinct temperature field using the inverse of Helmholtz-Hodge Decomposition, ∇T

is considered as the vector. Therefore, the vector field v⃗ is given as

v⃗ = ∇T (2.12)

Using Eq. 2.12 and substituting in Eq. 2.4,

∇T = ∇D +∇× R⃗+∇H (2.13)

Finding curl and divergence of this vector to further estimate its potentials,
Divergence:

∇ · v⃗ = ∇ · (∇T ) = ∇2T (2.14)

Curl:
∇× v⃗ = ∇× (∇T ) = 0 (2.15)

Using Eq 2.12, 2.14 and 2.15 to simplify Eq. 2.9, 2.10 and 2.11 for the field of interest,
Scalar potential D can be given as

D(r) = − 1

4π

∮
V

(∇′ · ∇′T )

|r − r′| dV ′ = − 1

4π

∮
V

(∇′2T (r′))
|r − r′| dV ′ (2.16)

Vector potential R⃗ can be given as

−−→
R(r) =

1

4π

∮
V

(∇′ ×∇′T )

|r − r′| dV ′ = 0 (2.17)

Harmonic potential H can be given as

H(r) =
1

4π

∮
S

(
n̂′ · (∇′T )

|r − r′|

)
dS′ − 1

4π

∮
S

(
n̂′ × (∇′T )

|r − r′|

)
dS′ (2.18)

Hence, for the chosen field of interest, vector potential is zero which corresponds to the absence of
incompressible or rotational part. Eq. 2.14 therefore simplifies to Eq. 2.19

∇T = ∇D +∇H (2.19)

If there is knowledge on potentialsD andH, a unique temperature field T can be reconstructed. Further,
either of the following two main physical situations can be considered to evaluate these potentials:

1. When ∇2T = 0: Steady state with no heat generation or consumption (no change in internal
energy) and no flow. In this situation, the scalar potential D = 0, Eq. 2.19 then reduces to Eq.
2.20. Temperature T varies solely as a harmonic function and the temperature distribution within
the domain is imposed by physics on the boundaries.

∇T = ∇H (2.20)
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2. When ∇2T ̸= 0:

i. Steady state with either heat generation/consumption and/or fluid flow.
ii. Transient state with or without heat generation/consumption and/or fluid flow

Here, the physical situation corresponds to scalar potential D ̸= 0, where temperature T varies a
combination of scalar and harmonic functions as depicted by Eq 2.19.

Situation 1 (∇2T = 0) was explored by [11]. In this thesis, we extended the research scope and built
the concepts further for the case that primarily focuses on Situation 2(i) and the potentials involved in
it. The upcoming section illustrates the condition of ∇2T ̸= 0.

2.4. The System of Study
The physical condition of ∇2T ̸= 0 is studied as two sub-cases in this work. These sub-cases are ‘steady-
state heat conduction with heat generation’ and ‘steady-state heat conduction with forced convection
and no heat generation’, and are described individually in subsections 2.4.1 and 2.4.2.

2.4.1. Steady-State Heat Conduction with Heat Generation
Starting with the general heat equation assuming no fluid flow in 3D Cartesian coordinates, to inter-
pret the balance between heat being conducted through the fluid/material and any heat sources (heat
generation):

∂

∂x

(
k
∂T

∂x

)
+

∂

∂y

(
k
∂T

∂y

)
+

∂

∂z

(
k
∂T

∂z

)
+ q̇ = ρC

∂T

∂t
(2.21)

In vector notation:
∇ · (k∇T ) + q̇ = ρC

∂T

∂t
(2.22)

where,

• T is the temperature [Units: K or ◦C]
• k is the thermal conductivity [Units: W

mK ]
• ρ is fluid density [Units: kg

m3 ]
• C is the specific heat capacity of fluid [Units: J

kgK ]
• q̇ is a heat source term of any form. [Units: W

m3 ]

Assuming thermal properties remain constant, Eq. 2.22 can also be written as

∂T

∂t
= α∇2T +

q̇

ρC
(2.23)

where,

• α = k
ρC is the thermal diffusivity [Units: m2

s ]
• ∇2 is the Laplace operator given as ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

For a system in a steady state where the temperature does not change with time (∂T∂t = 0), Eq. 2.23
simplifies to

k∇2T + q̇ = 0 ⇐⇒ ∇2T ̸= 0 (2.24)
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2.4.2. Steady-State Heat Conduction with Forced Convection and No Heat Gen-
eration

The general energy conservation equation for incompressible fluids, in 3-D Cartesian coordinates (Eq
2.25), describes the conservation of energy in a fluid system by taking into account various transport
mechanisms by which energy can be transferred in the system, including conduction, convection, and
energy generation while assuming that the fluid and thermal properties remain constant.

k(
∂2T

∂x2
) + k(

∂2T

∂y2
) + k(

∂2T

∂z2
) + q̇ = ρC(

∂T

∂t
+ vx

∂T

∂x
+ vy

∂T

∂y
+ vz

∂T

∂z
) (2.25)

In vector notation:
k(∇2T ) + q̇ = ρC(

∂T

∂t
+ v⃗ · ∇T ) (2.26)

where,

• T is the temperature [Units: K or ◦C]
• k is thermal conductivity [Units: W

mK ]
• ρ is fluid density [Units: kg

m3 ]
• C is the specific heat capacity of fluid [Units: J

kgK ]
• q̇ is a heat source term of any form. [Units: W

m3 ]
• vx, vy, vz are velocity components [Units: m

s ]

Considering there is no heat generation and the system is in a steady state, after rearrangement, Eq.
2.26 reduces to

k∇2T − ρCp(v⃗ · ∇T ) = 0 ⇐⇒ ∇2T ̸= 0 (2.27)

When the variables in the above equation are non-dimensionalized, Eq. 2.27 transforms to Eq. 2.28:

1

Pe
(∇2T ∗)− (v⃗∗ · ∇T ∗) = 0 (2.28)

Here, Pe (= UL
α ) denotes Péclet Number, a non-dimensional quantity that gives a measure of the relative

importance of convective transport versus diffusive transport. U denotes flow velocity and L refers to
the characteristic length. A high Péclet number means that convective transport is much stronger than
diffusive transport, while a low Péclet number means that diffusive transport dominates over convective
transport. To sum up, Pe determines whether the heat transfer is dominated by convection or diffusion.
Therefore, it can be summarized from the subsections, 2.4.1 and 2.4.2, that ∇2T ̸= 0 for the physical
systems taken into account (Situation 2(i) in Section2.3). The next section brings insights on evaluating
the scalar D(r) and harmonic H(r) potentials for the development of a temperature field function.

2.5. Temperature Field Function
A field function refers to a mathematical function that describes the behavior of a physical field related
to transport processes, such as heat transfer, mass transfer, or fluid flow. In this thesis, a temperature
field function describes the distribution of temperatures within a system. This function can be viewed
as a combination of interpolating basis functions which are rooted in the scalar D(r) and harmonic
H(r) potentials (Eq. 2.16 and Eq. 2.18).
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A temperature field function T can be reconstructed using the Boundary Element Method (BEM),
wherein the given boundary conditions are utilized to fit the boundary values into the integral equation.
However, in this study, the boundary conditions are unknown. In such cases, a field can be estimated
using Convolutional Neural Network as approached in [7], [8]. Alternatively, this study assumes a
distribution of hypothetical heat sources (or heat potentials) in and around the domain of interest to
evaluate D(r) and H(r). These heat potentials have a uniform size R and unique intensity Q, and their
distributed presence influences the conditions within the domain and on its boundaries, resulting in
a temperature field. Figure 2.5 illustrates hypothetical heat potentials distributed in and around the
domain of interest.

Figure 2.5: Presence of hypothetical heat potentials influencing the temperature distribution within the domain.

The choice of number of heat potentials, associated unique intensity, size and its position determines
the basis function. When the distance, |r⃗|, between a heat potential and any point P in the domain
is greater than the size of heat potential R, the heat potential behaves as H(r⃗). H(r⃗) determines the
boundary conditions that influence the temperature within the domain.

Figure 2.6: Hypothetical heat potential is located such that the distance between the potential and point P in the
domain is greater than the radius of the potential.

H(r⃗) = T (r⃗) ∝ 1

|r⃗|
=

A

|r⃗|
; |r⃗| > R (2.29)

where,

• A is a constant denoting the unique characteristics (QR3) of the heat potential.
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• |r⃗| is the distance between the heat potential and any point P in the domain.

When the distance, |r⃗|, between a heat potential and any point P in the domain is less than or equal
to the size of heat potential R, the heat potential behaves as D(r⃗). D(r⃗) determines the temperature
distribution in the domain.

Figure 2.7: Hypothetical heat potential is located such that the distance between the potential and point P in the
domain is less than the radius of the potential.

D(r⃗) = T (r⃗) ∝ |r⃗|2 = B|r⃗|2; |r⃗| ≤ R (2.30)

where,

• B is a constant which denotes the unique intensity (Q) of the heat potential.
• |r⃗| is the distance between the heat potential and any point P in the domain.

There can be infinitely many possibilities on the choice of number of heat potentials, their intensity,
size and location which influence the field distribution within the domain. Hence, the temperature
at any point in the domain is governed by the presence of multiple heat sources. Eq 2.31 depicts a
temperature field function, which is a linear combination of basis functions given in Eq 2.29 and 2.30

T (r⃗) =
A1

|r⃗1|
+

A2

|r⃗2|
+ · · ·+ Am

|r⃗m|
+B1|r⃗1|2 +B2|r⃗2|2 + · · ·+Bn|r⃗n|2 + T0 (2.31)

where,

• m and n are the number of heat potentials.
• Ai are constants associated with source characteristics QiR

3
i

• Bi are constants associated with source intensity Qi

• ri are the distance between the heat potentials and any point within the domain.
• T0 is the reference temperature
• T is the temperature at any point in the domain
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Figure 2.8: 3D visualization of sources in and around the domain of interest.

In 3-D Cartesian space, Eq 2.31 transforms to Eq 2.32

T(x,y,z) =
A1√

(x− x1)2 + (y − y1)2 + (z − z1)2
+ · · ·+ Am√

(x− xm)2 + (y − ym)2 + (z − zm)2
+

B1[(x− x1)
2 + (y − y1)

2 + (z − z1)
2] + · · ·+Bn[(x− xn)

2 + (y − yn)
2 + (z − zn)

2] + T0

(2.32)

where,

• m and n are the number of heat potentials.
• Ai and Bi are constants associated with the unique heat source characteristics mentioned previ-

ously.
• (x1, y1,z1), .. , (xm, ym, zm)/(xn, yn, zn) are the location of the heat potentials.
• (x, y, z) is any point in the domain of interest
• T(x,y,z) is the temperature evaluated at point (x, y, z) in the domain

Equation 2.32 is a non-linear temperature field function. This function is influenced by many input
variables like the number of heat potentials/sources, their intensities, the size of the potential, and
their location in the space. Each unique choice of these variables is a reconstructed solution, and so
there are infinitely many reconstruction possibilities. Therefore, it is important to build a logical source
framework for simplifying the choice of variables. There can be several linear or non-linear optimization
approaches to develop such frameworks, out of which two techniques are discussed in the upcoming
chapter. The optimized solution for the field function is determined by minimizing the loss or error in
the predicted and true temperature values. This discussion will be elaborated in Chapter 5.



3
Source Frameworks

In the previous chapter, an understanding is developed on the hypothetical discrete heat potentials
(heat sources) that influence the temperature field in the domain, as shown in Figure 3.1. This concept
provided a platform to build a non-linear field function (Eq 2.32) having many degrees of freedom (DoF)
such as the number of heat sources, its intensity, size, and location. This indicates that there could be
infinitely many possibilities for field reconstruction. Thus, it is important to simplify the field function
in a logical manner by setting certain DoF in Eq 2.32. Source Frameworks assist in this regard. Two
out of many possible approaches for developing the source frameworks are discussed in this chapter.
The two source frameworks are just a form of optimization technique for framing the DoF associated
with the number, size, and location of the hypothetical heat potentials. These frameworks ultimately
determine the basis function and thus, the temperature field function for the reconstruction.

Figure 3.1: Simple representation of heat potentials with respect to the domain of interest.

Henceforth, there are three issues of interest for the source framework development:

• Issue 1: The total number of source potentials; m+ n

• Issue 2: The size (radius) of source potential; R
• Issue 3: The location of source potential; (xi, yi, zi)

15
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For the issues in interest, two specific approaches are described further for the framework development.
These methods distinguish themselves based on their relationship between the size of heat potential
and its corresponding position in the space (Link between Issue 2 and 3).

1. Generic Source Framework: Heat sources located in the domain have an (infinitely) large R, which
is always adequate to contain the domain within the source volume.

2. Partition Source Framework: Heat sources located in the domain have a localized (rigid) R, and
may not be always large enough to contain the entire domain within the source volume.

The above-presented frameworks will be explained in detail in the upcoming sections 3.2 and 3.3
with the help of illustrations. These frameworks are tested for their field reconstruction accuracy in
Chapter 5, 6, and 7. Prior to explaining different frameworks, it is important to understand the concept
of cut-planes and cut-domains, which are discussed in the next section. This concept is shared by both
frameworks and deals with Issues 1 and 3.

3.1. Cut-Planes and Cut-Domains
Both the Generic Source Framework and the Partition Source Framework share a common approach
for Issues 1 and 3 by incorporating the concept of cut-planes and cut-domains illustrated in Figure 3.2.
This concept is utilized to define the degrees of freedom (DoF) associated with the number and location
(arrangement) of heat sources.

Figure 3.2: Cut-planes and cut-domains.

Cut-Plane: A cut-plane is defined as a plane located parallel to the surface plane of the domain,
created by equidistant cuts along each axis of the plane [11]. Cut-planes are collectively known as
(external) source planes. Source planes are situated at a distance d perpendicular to the main domain’s
surface. The heat sources distributed outside the domain are located on the centroid positions of cut-
planes. Figure 3.3 visualizes the concept of cuts, cut-planes, and centroid positions. If a 1×1m2 source
plane is left uncut (0-cut), it will have only 1 cut-plane (1 centroid), and thus only 1 heat source.
When 1-cut is made along each axis of a source plane, 4 cut-planes each of 0.5×0.5m2 will be formed.
Therefore, 4 heat sources will be orderly distributed on a source plane. In general, if n cuts are made at
equidistant locations on a source plane, then (n+1)2 cut-planes will be formed, each having dimensions
of 1

(n+1)×
1

(n+1)m
2. There will be a total of (n+1)2 heat sources evenly distributed on the source plane

lying outside the domain.
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Cut-Domain: A cut-domain is a sub-domain created by making equidistant cuts along each surface
of the main domain. Figure 3.4 illustrates the concept of cuts and centroid positions on the domain of
interest for the arrangement of heat sources that are present within the domain. If a 1×1×1m3 domain
is left uncut (0-cut), it will have only 1 cut-domain, and thus only 1 heat source. When 1-cut is made
along all the planes at their center, 8 cut-domains each of 0.5×0.5×0.5m3 will be formed. Therefore,
8 heat sources will be orderly distributed in the domain. In general, if n cuts are made along every
plane at equidistant locations, then (n + 1)3 cut-domains will be formed, each having dimensions of

1
(n+1)×

1
(n+1)×

1
(n+1)m

3. There will be a total of (n+1)3 heat sources evenly distributed in the domain.

Figure 3.3: Conceptualization of cut-planes with their centroid positions.[11].

Figure 3.4: Conceptualization of cut-domains and their centroids where the sources will be placed.

Appendix A.3 includes Python scripts that generate centroid coordinates (source locations) on ex-
ternal source planes and in the domain by varying numbers of cuts and the distance of source planes
from the domain.

3.2. Generic Source Framework (GSF)
The concept of Generic Source Framework follows from [11], where the overall temperature field was
harmonic (∇2T = 0), and discrete hypothetical heat sources were only assumed outside the domain,
located on the centroid positions of source planes. The heat sources on the (external) source planes
influenced the temperature on boundaries and resulted in a scalar field within the domain. In the
current study, the hypothetical heat sources are also assumed inside the domain since ∇2T ̸= 0. The
scalar field is therefore influenced by the boundaries together with the conditions inside the domain.
Hence, the concept of cut-domains is introduced in addition to cut-planes. The total number of source
potentials (Issue 1) and their location (Issue 3) can be found by knowing the cuts on the source planes
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and domain (0-, 1-, 2-, or 3-cuts), and distance d of the source planes from the domain. All hypothetical
heat sources are positioned at the centroids of cut-domains and cut-planes, resulting in temperature
distribution within the domain.

Figure 3.5 illustrates the idea of Generic Source Framework. In this figure, we observe external
source planes having a 0-cut located at a distance d from the main domain which is also having a 0-cut.
To avoid complexity and have a clear understanding, the source planes in the front and back are not
included in the schematic but are present in the framework. Each source plane accommodates 1 heat
potential. Hence, there are 7 heat potentials in total, out of which 6 are lying on the source planes
around the domain and 1 inside the domain.

Figure 3.5: Generic Source Framework with 0-cut on external source planes and domain where sources are located at
centroids.

While in Figure 3.6, there is 1-cut on the external source planes and on the domain. Each source plane
accommodates 4 heat potentials. Hence, there are a total of 32 potentials with 4×6 = 24 heat potentials
distributed on the external source planes, plus 8 inside the domain. Furthermore, it is possible that the
external source plane and domain have dissimilar cuts, i.e., external source planes have a 0-cut but the
domain has a 1-cut. In that case, there are 14 heat potentials in total.

Figure 3.6: Generic Source Framework with 1-cut on external source planes and domain where heat sources located at
centroids.
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To handle Issue 2 in this source framework, the size R of every source potential located inside the
domain is considered large enough to contain the entire domain within the source volume. While the
size R of source potentials located around the domain is considered small enough such that the domain
is always outside the source volume. Issue 2 is linked with Issue 3 in this regard. This concept is
illustrated in Figure 3.7.

Figure 3.7: Basic idea for Issue 2 in Generic Source Framework.

Therefore, the source potentials on the external source plane are solved using Eq 2.29 and the sources
present in the domain are always treated using Eq 2.30. Together they give Eq 3.1 in Cartesian space
for Generic Source Framework. The unknowns in this equation are dependent on the number of cuts
on the external source plane, their distance d from the domain, and the cuts on the main domain.

T(x,y,z) =

m∑
i=1

Ai√
(x− xi)2 + (y − yi)2 + (z − zi)2

+

n∑
j=1

Bj [(x− xj)
2 + (y − yj)

2 + (z − zj)
2] + T0

(3.1)

where,

• m and n are the number of sources in cut-planes and cut-domains, respectively.
• Ai denotes the unique characteristics (QiR

3
i ) of the source potential on cut-plane.

• Bi denotes the unique intensity of potential present in cut-domain.
• (xi, yi, zi) and (xj , yj , zj) are the locations of the source potentials.
• T0 is the reference temperature.
• (x, y, z) is any measurement point in the domain of interest.

For a given number of cuts on source planes and domain, m and n are known. For given m and n,
the total number of unknowns will be m+ n+1. A global temperature field can be reconstructed once
the unknowns (Ai, Bj , and T0) are determined. In this regard, discrete sensor T measurements made
at random locations in the domain will be utilized. To derive an exact solution in a well-determined
system, m+ n+ 1 sensor measurements will be required. This will be explained further in section 3.4.
Appendix A.4 includes a Python script for solving unknown Ai, Bj , and T0 with an exact solution for
Generic Source Framework.
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An inherent disadvantage of this framework could be the ‘generic’ treatment of Issue 2. Due to this,
local details in the domain may be disregarded. Hence, there is an opportunity to build a new source
framework for the ‘specific’ treatment of Issue 2 based on its positioning in space.

3.3. Partition Source Framework (PSF)
Partition Source Framework is similar to Generic Source Framework considering Issue 1 and Issue 3,
however, they differ over Issue 2. In Partition Source Framework, the size of source potential is rigidly
defined. The spherical source potential lying in the domain is assumed to circumscribe around a cubical
cut-domain as shown in Figure 3.8. Hence, the size R0 of the potential is equivalent to the half-length of
body-diagonal (

√
3a
2 ) of the cut-domain having each dimension a. The source potentials in the domain

can be partitioned for every measurement point, depending on the source radius R and the distance
|r⃗| between the source and measurement point. When the distance between a source potential and any
point in the domain, |r⃗|, is greater than the size of the source potential R, the source potential behaves
as H(r⃗) governing the boundaries and is solved using Eq 2.29. The source potential behaves as D(r⃗)

when the distance between a source potential and any point in the domain, |r⃗|, is less than or equal
to the size of the source potential R and is solved using Eq 2.30. While the potentials on the external
source planes are considered to be small enough such that the domain is always outside. A configuration
with a 0-cut on the domain corresponds to PSF being equivalent to GSF.

Figure 3.8: Cubical cut-domain of length ‘a’ is inscribed in a spherical source potential (left) and 2-D representation of
the idea for a domain with 1-cut (right).

The ‘dynamic’ nature of the Partition Source Function is expressed with a general equation (Eq 3.2)
for estimating temperature at any point (x, y, z) in the domain.

T(x,y,z) = [Q0 × F0((x, y, z), (x0, y0, z0))] + [Q1 × F1((x, y, z), (x1, y1, z1))] + · · ·

+ [Qn × Fn((x, y, z), (xn, yn, zn))] + T0 (3.2)

where,

• (x, y, z) is the any measurement point in the domain
• Q0, Q1 ... Qn are the intensities associated with the source potentials present in and around the

domain
• (x0, y0, z0) ... (xn, yn, zn) are location of these source potentials
• Fi = η[(x− xi)

2 + (y − yi)
2 + (z − zi)

2] +
θR3

i√
(x−xi)2+(y−yi)2+(z−zi)2

* |r⃗| =
√
(x− xi)2 + (y − yi)2 + (z − zi)2

* R is the size of the source potential
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i When |r⃗| > R ; η = 0 and θ = 1

ii When |r⃗| ≤ R ; η = 1 and θ = 0

The concept can be illustrated with simplicity by considering two source potentials, as represented with
a 2-D schematic in Figure 3.9. The potentials have sizes R0 and R1 and are located at centroid positions.
Three measurement points (A, B, and C) are also considered. For source potential of uniform size R0,
point A lies within, and points B, C lie outside the radius of the source. While for source potential
with size R1, point B is within, and points A, C are outside the radius of the source.
Now, knowing

1. Temperature measurements TA, TB , and TC

2. Measurement locations (xA, yA, zA), (xB , yB , zB), and (xC , yC , zC).
3. Size R0 and R1, location (x0, y0, z0) and (x1, y1, z1) of source potentials

Figure 3.9: Basic idea for Issue 2 in Partition Source Function.

The temperature at point A can be given by Eq 3.3, at point B by Eq 3.4, and at point C by Eq
3.5.

TA = Q0[(xA − x0)
2 + (yA − y0)

2 + (zA − z0)
2] +

Q1R
3
1√

(xA − x1)2 + (yA − y1)2 + (zA − z1)2
+ T0 (3.3)

TB =
Q0R

3
0√

(xB − x0)2 + (yB − y0)2 + (zB − z0)2
+Q1[(xB − x1)

2 + (yB − y1)
2 + (zB − z1)

2] + T0 (3.4)

TC =
Q0R

3
0√

(xC − x0)2 + (yC − y0)2 + (zC − z0)2
+

Q1R
3
1√

(xC − x0)2 + (yC − y0)2 + (zC − z0)2
+ T0 (3.5)

Hence, the basis function of source potential varies in Partition Source Framework depending on the
source radius and location of the measurement point. In the above 3 equations, there are 3 unknowns
(Q0, Q1, and T0) which can be solved with an exact solution using matrix inverse multiplication, as
given in Python Script A.5. For n heat sources, there will be n+1 unknowns, and therefore, n+1 sensor
measurements will be required to derive an exact solution in a well-determined system. However, an
exact solution may not be very robust to the noise built-up (or oscillations) during the interpolation of
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larger datasets, when the number of heat potentials is higher in the domain. In such cases, it is rather
beneficial to find the best fit than the exact solution. A least-squares solution can be implemented
to suppress the noise and find the best fit (approximate solution) by solving under-, well- or over-
determined systems. This solution approach can be seen as equivalent to having an additional constraint
while solving the system of equations. Refer to Appendix A.5.3 for the Python Script solving unknowns
with a least-squares approach.

Partition Source Framework is a modified version of Generic Source Framework that entails a ‘specific
or rigid’ configuration of Issue 2 in link to Issue 3. PSF tailors the heat potentials in the domain to
avoid generalization, in an attempt that the local effects within the domain are not neglected. Section
3.2 and 3.3 are aimed to simplify the temperature field function (Eq 2.32) by setting the number, size,
and location of the heat sources. This leaves heat source intensity as the only DoF to vary. Again,
GSF and PSF are just two of many optimization possibilities for solving the reconstruction problem
considered in this study.

3.4. Sensor and True Datasets
3.4.1. Sensor Dataset (Sensor Measurements)
The temperature field at any location in the domain can be estimated once the unknowns in Eq 3.1
(Ai, Bi, and T0) or in Eq 3.2 (Qi and T0) are solved for a given number of cuts and ‘d’. Flow-following
sensors provide sparse temperature measurements at arbitrary locations within the domain to solve
for unknowns. This helps in forming a linear system of equations. The required number of sensor
measurements depends on the type of system (under-determined, well-determined, or over-determined)
and solution technique used: Exact or Least-Squares.

Following the assumptions in subsection 1.3.2, the measurements from the sensor devices are con-
sidered precise, and error-free, and the sensor location is always known. Random sensor measurement
positions are generated such that sensor locations remain within the domain of interest. A Python
script is given in Appendix A.2 for generating random sensor positions as shown in Figure 3.10. Using
these arbitrary positions, the temperature measurements will be drawn out from virtual experiments
(presented in the next chapter) and can be viewed as a sensor dataset. Utilizing different sensor datasets
for the same task would have a minimal impact on the final results due to the random distribution of
the sensors.

Figure 3.10: 15 Random Sensor Positions.
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3.4.2. True-Mapping Dataset (Actual Temperature Values)
The optimal values of unknowns are determined with the help of ‘training’. The number of cuts on the
domain and source plane and the distance ‘d’ are varied to find the best combination of basis functions
and minimize the loss between predicted temperature and true (actual) temperature values. This is
known as the ‘training’ of the source frameworks. Training a framework fixes three issues involved:
the number, size, and location of heat potentials. For this purpose, true temperatures must be known
to calculate the error/loss. Actual temperature values are also extracted from the virtual experiments
(described in Chapter 4). These values are known as ‘True-Mapping Dataset’. The error metrics are
presented in Chapter 5.

Figure 3.11: Representation of 3-D True Datagrid

For error minimization, the domain is assumed to be evenly spaced with a 3-D array of grid points,
similar to [11]. The true and predicted temperature values are assessed on a 21×21×21 grid evenly
spaced within the range of [0,1]. While higher data points could be used to represent a finer grid, this
was not done to avoid computational complexities. Figure 3.11 shows a 3-D grid where true values and
predicted temperature values will be compared. Appendix A.6 includes a Python script for generating
21×21×21 grid points and True-Mapping Dataset. The entire process of the field reconstruction in this
thesis is illustrated with the help of Figure 3.12.
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Figure 3.12: Flow diagram illustrating the process of field reconstruction applied in this work.



4
Virtual Experiments

The concepts built in the previous chapters are tested with the help of virtual experiments, which give
an expectation of a true (actual) temperature field for comparison. In this chapter, various types of
virtual experiments are described which enable gathering random sensor datasets and true datasets.
Sensor data is utilized to compute the unknown source intensities. While the true dataset is used to
compare with the source framework-predicted values, to train the framework for optimal prediction,
and assess the performance of source frameworks.

In principle, the sensor measurements could be collected using physical experiments. However, since
the concepts are under development, for the sake of simplicity virtual experiments are conducted. These
virtual experiments are performed using COMSOL Multiphysics 5.6 as a numerical solver. Further, any
commercial numerical solver could be used. To be consistent and be able to compare situations from
previous work, COMSOL was selected for this study. Moreover, the base setup of current virtual
experiments is kept the same as Virtual Reality-3 (VR-3) in [11]. The results from VR-3 act as a
reference for this thesis to have a fair assessment of the ideas on heat sources built further in the
current study. The details on Virtual Reality-3 set-up are given in Appendix B.1.

In this thesis, three cases are considered for setting up the virtual experiments. Virtual Experiment 1
(Section 4.1) deals with smooth temperature variations. It includes two sub-cases, one with a constant
heat source (Subsection 4.1.1) and one with a Gaussian source located in the center of the domain
(Subsection 4.1.2). Virtual Experiment 2 (Section 4.2) involves localized temperature variations and
has a combination of Gaussian heat sources where one of the sources is dominant, generating localized
effects towards one edge of the domain. Virtual Experiment 3 (Section 4.3) describes forced convection
setups with two fluids, air, and water. Sub-case 3.1 (Subsection 4.3.1) with air has a low Péclet number,
having a similar temperature profile to Virtual Reality-3 in [11]. Sub-case 3.2 (Subsection 4.3.2) with
water has a high Péclet number, generating sharp temperature variations in the domain.

4.1. Virtual Experiment 1: Smooth Temperature Variations
In this virtual experiment, smooth field variations are achieved with a heat source q̇ present in the
domain of interest. Heat source q̇ is either a constant or varies as a Gaussian function. The surfaces of

25
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the extended domain are given constant temperature values, such that surfaces lying in the same plane
have the same temperature, similar to the situation depicted in VR-3 (Refer to Figure B.1). Figure 4.1
encapsulates the set-up configuration with a 3-D schematic.

Figure 4.1: 3-D representation of Virtual Experiment 1.1 and 1.2 configurations.

4.1.1. Virtual Experiment 1.1: Constant Heat Source
Smooth field variations are attained with the presence of a constant heat source of q̇ = 500 W

m3 in the
domain, and the surfaces of the extended domain are given constant temperature values in a range of
30 to 80◦C, such that surfaces lying in the same plane have the same temperature. Figure 4.2 is a 3-D
multi-slice temperature plot from COMSOL to summarize the region of interest and region of extended
boundary in the virtual environment. Information on COMSOL setup is given in Appendix B.2.

(a) (b)

Figure 4.2: 3-D multi-slice temperature plot of Virtual Experiment-1.1 showcasing (a) domain of interest and region
with extended boundaries (b) cropped to the domain of interest.

Source Frameworks-predicted temperature values will be compared to the XY temperature planes
cropped to the domain of interest in Virtual Experiment 1.1. The 2-D temperature profiles are pre-
sented below in Figure 4.3 and are considered the ‘reality’ of our domain of interest. The temperature
across these planes varies in the range of 70-130◦C. The YZ and XZ planes are given in Appendix
B.2.3.
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(a) At z=0 m (b) At z= 0.5m

(c) At z=1 m

Figure 4.3: True XY Temperature Plots of Virtual Experiment 1.1

Figure 4.4 depicts a temperature along a line passing through the center of the domain, on the x-axis,
at y= 0.5m and z=0.5m, confirming that the temperature variations are indeed smooth where the heat
source is present.

Figure 4.4: Temperature Line Graph for Virtual Experiment 1.1 from x=0 to 1m, at y= 0.5m and z=0.5m.

4.1.2. Virtual Experiment 1.2: Gaussian Heat Source
Temperature variations are kept smooth but now with the presence of a 3D Gaussian heat source
varying as q̇ = c · exp[− (x−xs)

2+(y−ys)
2+(z−zs)

2

σ2 ] Wm3 . The source is located at the center of the domain
with (xs, ys, zs) = (0.5, 0.5, 0.5). Similar to the previous experiment, the surfaces of the extended
domain are given constant temperature values in a range of 30 to 80◦C, such that surfaces lying in the
same plane have the same temperature. The characteristic values of the Gaussian function in Virtual
Experiment 1.2 are chosen such that the source spans across the domain and temperature values in the
domain lie in a similar range as in Virtual Experiment 1.1, Hence, the values are set as follows:

c = 20
W

m3
(xs, ys, zs) = (0.5, 0.5, 0.5) σ2 = 2m2
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Figure 4.5 is a 3-D multi-slice temperature plot from COMSOL to give an outline of the domain of
interest in the virtual environment. Information on geometry, mesh, and physics setup is given in
Appendix B.3.

Figure 4.5: 3-D multi-slice temperature plot for the domain of interest in Virtual Experiment 1.2.

Figure 4.6 represents the reality as XY temperature profiles cropped to the domain of interest for
Virtual Experiment 1.2. The temperature values vary in the range of 65-110◦C. These profiles are
utilized for comparison with source framework-predicted temperature values. The YZ and XZ planes
are given in Appendix B.3.3.

(a) At z=0 m (b) At z= 0.5m

(c) At z=1 m

Figure 4.6: True XY Temperature Plots of Virtual Experiment 1.2.

Figure 4.7 represents a temperature line graph along the x-axis, at y=0.5m and z=0.5m. This confirms
that a smooth temperature field can exist in the domain even when the heat source is not constant and
varies as a Gaussian function that spans across the domain.
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Figure 4.7: Temperature Line Graph for Virtual Experiment 1.2 from x=0 to 1m, at y= 0.5m and z=0.5m.

4.2. Virtual Experiment 2: Localized Temperature Variations
The motive behind this virtual experiment is to test the framework performance in the presence of
sudden spikes (discontinuities) in an otherwise smooth temperature distribution. The discontinuities
are aroused by an arbitrary combination of two Gaussian heat sources. This combination is additive,
such that one of the sources is dominant and generates localized effects towards one of the domain
edges. Each heat source in the combination varies as q̇ = c · exp[− (x−xs)

2+(y−ys)
2+(z−zs)

2

σ2 ] Wm3 . Figure
4.8 helps to visualize the configuration with a schematic. It is to be noted that this schematic does not
correspond to the actual situation in the virtual experiment 2 and is just for illustration purposes.

Figure 4.8: 3-D schematic of Virtual Experiment 2 configuration.

The characteristics of two Gaussian functions in Virtual Experiment 2 are as follows:

• Heat Source 1: This heat source exhibits a higher intensity and less spread compared to Heat
Source 2 such that it generates acute local effects in the system.

c1 = 125
W

m3
Location(xs1, ys1, zs1) = (0.5, 0.25, 0.75) Spread(σ2

1) = 0.0034m2

• Heat Source 2: This heat source has lower intensity with higher spread, such that the region is
influenced more by the surrounding boundaries rather than its internal characteristics. It results
in a comparatively lower impact on the system.

c2 = 25
W

m3
Location(xs2, ys2, zs2) = (0, 0, 0) Spread(σ2

2) = 0.0208m2
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Figure 4.9 includes a 3-D multi-slice temperature plot from COMSOL to summarize virtual experiment 2.
Figure 4.10 represents the reality as XY temperature profiles for this experiment. These 2-D temperature
profiles are cropped to the region of interest. Details on COMSOL setup are given in Appendix B.4.
True YZ and XZ temperature planes for this experiment can also be referred to in Appendix B.4.3.

Figure 4.9: 3-D multi-slice temperature plot for the domain of interest in Virtual Experiment 2.

(a) At z=0 m (b) At z= 0.5m

(c) At z=0.75 m (d) At z=1 m

Figure 4.10: True XY Temperature Plots of Virtual Experiment 2.

Figures 4.10a, 4.10b, and 4.10d showcase temperature profiles similar to VR-3 from [11] (Appendix
B.1). However, when Figure 4.10c is taken into careful consideration, the local effects can be observed.
This can be further supplemented by YZ and XZ planes in Appendix B.4.3. A line is considered passing
along the z-axis near the center of dominating source, at x= 0.5m and y=0.25m. Temperature variation
along this line is plotted as a line graph in Figure 4.11 which confirms the presence of localized effects.
Source framework-predicted temperature values will be interesting to compare for this experiment and
the results will be elaborated on in Chapter 5.
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Figure 4.11: Temperature Line Graph for Virtual Experiment 2 from z=0 to 1m, at x=0.5m, y= 0.25m.

4.3. Virtual Experiment 3: Temperature Variations in a Forced Con-
vection Setup

Virtual experiments 3.1 and 3.2 depict the physical setup for forced convection phenomena. These
experiments are built for evaluating the concept of “ρC(v⃗ ·∇T ) acting as a heat source q̇conv” presented
in Section 2.5. Two extreme cases based on the Péclet number are considered for the study. Péclet
number measures the relative significance of advection versus diffusion; with higher values indicating
domination by advection and lower values indicating a conductive/diffusive flow. The velocity is a
constant and equal in both cases. This velocity value is chosen such that the flow is laminar. Figure
4.12 encapsulates the setup configuration with a 3-D schematic for visualization purposes.

Figure 4.12: 3-D representation of Virtual Experiment 3.1 and 3.2 configurations.

4.3.1. Virtual Experiment 3.1: Forced Convection Setup with Air
Virtual experiment 3.1 setup with air as fluid signifies low Péclet number (Pe ≈ 57). This Péclet number
is based on the characteristic length of the domain of interest and fluid injection velocity. The velocity
value is selected such that the flow is laminar in the domain. This can be supplemented by the XZ
velocity plane of the extended domain and the domain of interest in Appendix B.5.3. Furthermore,
Appendix B.5.4 includes a plot of q̇conv,air (= ρairCair(v⃗ · ∇T )) which shows that most of the region
has nearly negligible source intensity effect (0.008 W

m3 ). The highest (convective) heat source intensity in
the domain locally exists near the inlet and is only about 35 W

m3 . A small negative intensity is observed
near the outlets, indicating that as the fluid flows out, it carries away heat from the system. This
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negative value signifies the outflow of heat along with the fluid. A system with a low Péclet number
indicates that the convective effects are not significant. As a consequence, it can be noticed from Figure
4.14 that the temperature distribution in this experiment is alike to VR-3 from [11] where only heat
conduction was considered. Minor field differences observed are at the place of the inlet in the domain.
The temperature varies in the range of 45-65◦C which is identical to the temperature variations in VR-3.
Therefore, the heat transfer in the current domain of interest can be observed to be dominated by the
conductive flow.

Figure 4.13: 3-D multi-slice temperature plot for the domain of interest in Virtual Experiment 3.1.

Fig 4.13 illustrates a 3D multi-slice temperature plot to summarize the experimental situation. At
z=0 in Fig 4.14a, there is a minor temperature variation near the inlet which differentiates Experiment
3.1 from VR-3. Details for setting up Experiment 3.1 in COMSOL are given in Appendix B.5. YZ
and XZ temperature planes are presented in Appendix B.5.5. Figure 4.15 showcases the temperature
variations in Experiment 3.1 through a line graph along the x-axis just above the inlet, at y=0.5m and
z=0.05 m.

(a) At z=0 m (b) At z=0.5m

(c) At z=1 m

Figure 4.14: True XY Temperature Plots of Virtual Experiment 3.1.
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Figure 4.15: Temperature Line Graph for Virtual Experiment 3.1 along the x-axis, at y=0.5m and z=0.05m.

4.3.2. Virtual Experiment 3.2: Forced Convection Setup with Water
Virtual experiment 3.2 setup with water as fluid signifies a high Péclet number (Pe ≈ 8200). Similar
to the previous experiment, this Péclet number is based on the characteristic length of the domain of
interest and fluid injection velocity. The flow is laminar in the domain, which is supplemented by the
XZ velocity plot of the domain of interest in Appendix B.6.3. The difference between the Péclet number
in the two forced convection cases is observed in their velocity plots.

Similar to VE 3.1, there is a plot of q̇conv,water (= ρwaterCwater(v⃗ · ∇T )) in Appendix B.6.4 which
shows that the highest (convective) heat source intensity in the domain is in the order of 105 W

m3 which
is found near the inlet. This source intensity is substantially higher than in the previous experiments.
Moreover, there is a negative value of the same order signifying the outflow of heat along with the exit of
the fluid from the outlet of the domain. The average convective source intensity in the domain is about
45.5 W

m3 . A high Péclet number indicates the higher order of incoming and outgoing intensity (q̇conv)
explaining the dominance of convection over conduction and the resulting sharper variations observed
in Fig 4.16.

Figure 4.16: 3-D multi-slice temperature plot for the domain of interest in Virtual Experiment 3.2

The XY temperature planes are presented in Fig 4.17, where the temperature varies in the range of 25-
55◦C but rather intensely. Separate YZ and XZ temperature planes for this experiment can be referred
to in Appendix B.6.5. The temperature planes are cropped to the region of interest. Furthermore, Fig
4.18 illustrates the temperature variations along the y-axis near the outlets, at x=0.5m and z= 0.9m.
It can be observed from this plot that temperature changes are far from being smooth, moreover, there
is a sudden jump of nearly 3.5◦C as we move toward the boundaries. Details for setting up Experiment



4.3. Virtual Experiment 3: Temperature Variations in a Forced Convection Setup 34

3.2 in COMSOL are given in Appendix B.6.

(a) At z=0 m (b) At z=0.5m

(c) At z=1 m

Figure 4.17: True XY Temperature Plots of Virtual Experiment 3.2.

Figure 4.18: Temperature Line Graph for Virtual Experiment 3.2 along the y-axis, at x=0.5m and z=0.9m.



5
Results: Virtual Experiment 1 and 2

The aim of this chapter is to test and evaluate the performance of source frameworks in predicting
temperature. The frameworks are based on Equations 3.1/3.2, which involve the selection of three
issues of interest. These include the total number of source potentials, their size (radius), and their
location in the space. The issues can be adjusted via a variety of cuts on the domain and on the source
planes arranged around the domain. The only ’unknowns’ in the equations are the source intensities,
which are evaluated with the help of random sensor data in an exact or a least-squares solution technique.
Once the unknowns are solved, the equations can make temperature predictions at any point lying in
the domain. These resulting predictions are then compared to the actual values obtained from Virtual
Experiments using COMSOL. In this chapter, we assess the source framework performance for Virtual
Experiments 1 and 2. To provide context, Virtual Experiments 1 and 2 both involved the presence of
heat source(s), with the nature of the source being either constant or Gaussian. Experiments 1.1 and 1.2
showed that the resulting temperature field variations were smooth and uniform throughout the domain.
However, in Virtual Experiment 2, a sudden temperature spike occurred in an otherwise smooth field
due to the dominant effects of a local heat source. To ensure a fair comparison of performance among all
cases, both the actual (true) and predicted temperature values are normalized in the following manner:

Tnd =
(T − Tmin)

(Tmax − Tmin)
(5.1)

The performance of the source frameworks can be evaluated using conventional error metrics like
Mean Absolute Error (MAE) or Root Mean Square Error (RMSE). Mean Absolute Error (MAE) rep-
resents the average absolute difference between the actual values and the model-predicted values, while
RMSE represents the square root of the average of the squared differences between the predicted and
actual values. However, when the data is normalized, MAE is generally considered a superior error
metric compared to RMSE. The reason is that RMSE is more sensitive to outliers than MAE. Since the
data is normalized, the range of the data is limited and outliers are less likely to occur. Therefore, the
added sensitivity of RMSE to outliers is not necessary and can lead to over-penalization of the model’s
performance. For this work, Mean Absolute Error (MAE) is calculated using Eq 5.2. It will provide
a measure of how far the predictions deviate from the actual output. A low MAE value is desired
for overall good predictive capabilities. However, it is important to note that MAE, being an average
measure, may mask localized errors within the domain. Although the overall MAE value may be low,
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specific regions may exhibit higher errors than the average. To ensure comprehensive analysis in this
study, absolute error plots are employed alongside MAE values to identify and assess these localized
errors accurately.

MAE =
1

N

N∑
i=0

|Tr,i − Tp,i| (5.2)

where,

• Tr,i is the true or actual value at a point i
• Tp,i is the model-predicted value at a point i
• N is the total number of points where the absolute error is calculated, which corresponds to the

true grid points mentioned in subsection 3.4.2.

5.1. Results: Virtual Experiment 1.1 - Constant Heat Source
In this experiment, smooth field variations are attained with the presence of a constant heat source of

q̇ = 500 W
m3 in the domain, the surfaces of the extended domain are given constant temperature values

in the range of 30 to 80◦C, such that surfaces lying in the same plane have the same temperature.

5.1.1. Field Predictions using Generic Source Framework
The optimal values of source intensities in Eq 3.1 of Generic Framework are achieved with the help

of ‘training’, as described in subsection 3.4.2. The Framework is trained by varying its characteristics:
the number of cuts on the domain, the cuts on external source planes, and the distance ’d’ of these
source planes. Every combination of these values specifies a distinct set of the source potentials present
in the framework and the basis function associated with them. This results in a unique temperature
field function giving a distinct reconstructed solution. It might not be the finest reconstruction, but it
is still a solution that satisfies a particular sensor dataset. The optimum characteristic values (giving
optimum reconstruction) are chosen where the MAE value across the domain is the lowest.

For an exact solution, the required number of sensor measurements increases with every increase
in a cut. For a systematic increase, first, a cut on domain surfaces is fixed, and then cuts on source
planes and their distance from the domain are varied. The changes in the MAE of predicted values
are observed across the entire domain (MAE), as shown in Figure 5.1a. The source plane distance ‘d’
is incrementally adjusted, between 1 to 9m with a step size of 1m (Fig 5.1b[i]), to assess the optimal
plane location. Fig 5.1b[ii] zooms in between 0.1 to 1m with a step size of 0.1m, similar to the approach
followed by [11].

In Figure 5.1a, each colored line indicates the number of cuts on the domain. Whereas, round marking
on a line indicates cuts on the external plane in increasing order from bottom to top (as in, 0, 1, 2,
and 3 cuts). It is evident from this figure that with the least number of sensor measurements, it is
possible to achieve minimum MAE across the domain. For this case, as observed from Fig 5.1, with
just 8 sensor measurements (i.e., a combination of 0-cut on the domain surfaces and 0-cut on source
planes, and d=0.7m), a minimum MAE of 0.013 is achieved. We can also observe that for a given cut
on the domain, increasing cuts on the external source planes increases the MAE. The possible reason
for this increase could be the over-fitting of the data [11]. Further, we can notice that increasing the
number of cuts on the domain also does not improve the error.
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(a) (b)

Figure 5.1: Optimal GSF settings for Virtual Experiment 1.1 (a)A plot of MAE with the varying number of cuts on the
domain and source planes (equivalently varying Sensor Measurements). (b)A plot of MAE with varying source-planes

distances ’d’ for 0-cut on the source-planes and domain; [i] between 1 to 10m [ii] zoomed in between 0.1 to 1m.

Figure 5.2 represents the true and reconstructed normalized temperature plots. Alongside, respective
absolute error plots |Tactual−Tpredicted| on an XY plane are demonstrated. True values from the virtual
experiment are extracted as a grid of (21 x 21 x 21) points, described in subsection 3.4.2, to give an
expectation for the reconstructed field. The length of 1 m in COMSOL plots is now discretized with
a grid size of 0.05 m, meaning that x=20.0 in the true plot represents the temperature at x=1m in
reality. The predictions are also evaluated on the same grid points. Due to normalization (Eq 5.1), the
temperature range [65, 130]◦C observed in Figure 4.3 is now transformed to the range [0, 1]. A Python
script written for generating these plots can be referred to in Appendix A.6.3, A.7.3, and A.8.5.

As we can observe from these plots, Generic Source Framework is able to re-construct the field with a
minimum requirement of sensor measurements. It is capable of identifying smooth temperature trends
sufficiently well. This general observation is in line with the VR-3 results from [11], where smooth
temperature variations were considered in the absence of a heat source. In Figure 5.2f, at z=0.5m we
can also observe the error is almost negligible where the heat source strength is strongest. However, while
going towards the domain surface (boundaries), predictions suffer a higher error in the range of [0.05-
0.08], also supported by Figures 5.2c and 5.2i at z=0 and 1m. The error near the boundaries is relatively
higher in the presence of a heat source compared to the case without a heat source in VR-3 (Refer to
Appendix C.1). This observation suggests a potential conflict arising from the imposition of boundary
conditions from external source planes and the sources within the domain. These source potentials yield
many different solutions depending on the basis function (Eq 2.29 or 2.30), their population, size, and
location. However, these solutions may not be strongly interconnected, leading to a higher error near
the boundaries.
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(a) True field plot at z=0 m (b) Predicted field plot at z=0 m (c) Absolute error plot at z=0 m

(d) True field plot at z=0.5m (e) Predicted field plot at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field plot at z=1 m (h) Predicted field plot at z=1 m (i) Absolute error plot at z=1 m

Figure 5.2: True (Fig a,d,g) and GSF-reconstructed (Fig b,e,h) normalized temperature XY planes with respective
temperature error plots (Fig c,f,i) for Virtual Experiment 1.1. The optimal global field prediction requires only 8 sensor

measurements.

5.2. Results: Virtual Experiments 1.2 – Gaussian Heat Source
In Virtual Experiment 1.2, smooth field variations are attained with a Gaussian heat source of the form:
q̇ = 20 · exp[− (x−0.5)2+(y−0.5)2+(z−0.5)2

2 ] in the domain; the surfaces of the extended domain are again
given constant temperature values in the range of 30 to 80◦C, such that surfaces lying in the same
plane have the same temperature. The strength and spread of the source are chosen such that there
are smooth temperature variations spanning across the domain.

5.2.1. Field Predictions using Generic Source Framework
The heat source varies as a Gaussian function in the virtual experiment, increasing DoF associated with
it. Such heat sources exhibit a characteristic where their strength gradually decreases with increasing
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distance from the center. However, Generic Framework will continue to use the same functional form
(Eq 3.1) and a ‘generic’ approach to address the Issue 2 for the field reconstruction. Similar to the
previous case, the training entails a systematic increase in characteristic values of the framework. First,
a cut on domain surfaces is fixed and then cuts and distance of the source plane are varied. The required
number of sensor measurements increases with increasing cuts for an exact solution. The changes in
MAE are observed with varying cuts as shown in Figure 5.3a. While Figure 5.3b shows the incremental
adjustment of the source plane distance ‘d’.

(a) (b)

Figure 5.3: Optimal GSF settings for Virtual Experiment 1.2 (a)A plot of MAE with the varying number of cuts on the
domain and source planes (equivalently varying Sensor Measurements). (b)A plot of MAE with varying source-planes

distances ’d’ for 0-cut on the source-planes and domain; [i] between 1 to 10m [ii] zoomed in between 0.1 to 1m.

Analogous to the observations made for the previous experiment, for a given cut on the domain,
increasing cuts on the external source planes generally increases the MAE. And, also increasing the
number of cuts on the domain doesn’t improve the error. For this case, with 15 sensor measurements
(1-cut on the domain, 0-cut on source planes with d=9m), an optimal global reconstruction is achieved
with a minimumMAE of 0.050. Figure 5.4 showcases the true and reconstructed normalized temperature
field on XY plane. Alongside, respective absolute error plots |Tactual − Tpredicted| on an XY plane are
depicted.

The predictions by Generic Framework are fair at the center XY plane (z=0.5m), where the heat
source is located. However, towards the surface at z=0m, the noise built-up increases. This noise is not
observed when the heat source is constant (VE 1.1). The error distribution in Fig 5.4c, 5.4f and 5.4i
suggest that the error tends to be higher (0.10-0.12) towards the boundaries of the domain. While near
the location of Gaussian source, the error is considerably low. These findings provide further support
for the conclusions drawn in the previous case. The probable hypothesis described in the previous
section regarding the infinite solution possibilities is reinforced. Many solution possibilities arising from
outside and inside source potentials lead to conflicting boundary conditions which causes a higher error
towards the boundaries.
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(a) True field plot t z=0 m (b) Predicted field plot at z=0 m (c) Absolute error plot at z=0 m

(d) True field plot at z=0.1m (e) Predicted field plot at z=0.1m (f) Absolute error plot at z=0.1 m

(g) True field plot z=0.5 m (h) Predicted field plot at z=0.5 m (i) Absolute error plot at z=0.5 m

Figure 5.4: True (Fig a,d,g) and GSF-reconstructed (Fig b,e,h) normalized temperature XY planes with respective
temperature error plots (Fig c,f,i) for Virtual Experiment 1.2. The optimal global field prediction requires just 15 sensor

measurements

Moreover, the error near the boundaries is greater compared to the case of a constant heat source
(VE 1.1), despite both cases exhibiting similar temperature ranges. This remark, combined with the
presence of noise built-up, can be attributed to the ‘generic’ approach employed to address Issue 2 when
the heat source varies as a Gaussian function.

The Generic Framework works adequately for reconstructing a smooth field. This provokes an interest
to unravel the framework’s performance in reconstructing a locally uneven field. The upcoming section
touches upon this discussion.
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5.3. Results: Virtual Experiment 2 – Localized Heat Source
To recall, this experiment had a sudden spike in otherwise smooth field variations. This discontinuity
was attained with a combination of Gaussian heat sources. The heat sources in the combination varied
as q̇1 = 125 · exp[− (x−0.5)2+(y−0.25)2+(z−0.75)2

0.0034 ] and q̇2 = 25 · exp[− (x−0)2+(y−0)2+(z−0)2

0.0208 ] in the domain.
q1 has greater intensity and less spread compared to q2. The surfaces of the extended domain are given
constant temperature values in the range of 30 to 80◦C, such that surfaces lying in the same plane have
the same temperature. The resulting temperature variations are generally smooth everywhere, similar
to VR-3 [11], except at the locations of heat sources. The presence of a dominant heat source manifests
as a localized, abrupt increase in temperature within the field.

5.3.1. Field Predictions using Generic Source Framework
The heat sources (q̇1 and q̇2) in the experiment vary as a Gaussian function, where the strength

decreases with increasing distance from the center. The decrease in strength is gradual or abrupt
depending on the spread of the source. However, the Generic Framework adopts a generalized approach
to tackle Issue 2 and relies on Eq. 3.1 to capture the exponential attribute involved with these sources
and continues to based on Eq 3.1.

(a) (b)

Figure 5.5: Optimal GSF settings for Virtual Experiment 2 (a)A plot of MAE with the varying number of cuts on the
domain and source planes (equivalently varying Sensor Measurements). (b)A plot of MAE with varying source-planes

distances ’d’ for 0-cut on the source-planes and domain; [i] between 1 to 10m [ii] zoomed in between 0.1 to 1m.

The framework is trained with a systematic variation in its characteristic values to find the best
combination of the number and location of the hypothetical heat potentials. Figure 5.5 represents a
plot of MAE versus the number of sensor measurements. Observations gained from Figure 5.5 are
consistent with those discussed in the previous cases, in terms of increasing cuts and changes in MAE
over the domain. In general, increasing the number of measurements does not improve the predictions
and rather suffers an increase in MAE over the domain. Generic Framework-assisted reconstructed XY
planes are depicted in Figure 5.6, with 0-cut on the domain and on external source planes (optimally
located at d= 1m from the domain). With 8 sensor measurements, an MAE of 0.032 is achieved over
the entire domain. Figure 5.6 showcases the true and reconstructed normalized temperature field on the
XY plane. Alongside, respective absolute error plots |Tactual − Tpredicted| on an XY plane are depicted.
On observing Fig 5.6d and 5.6j, the temperature profiles at z = 0.5 and 1m looks equivalent to that in
VR-3 in [11]. However, the XY planes at z = 0 and 0.75m in Fig 5.6a and 5.6g reveal the local spikes
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from the heat sources involved in this experiment.

(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=0.75 m (h) Predicted field at z=0.75 m (i) Absolute error plot at z=0.75 m

(j) True field at z=1 m (k) Predicted field at z=1 m (l) Absolute error plot at z=1m

Figure 5.6: True (Fig a,d,g) and GSF-reconstructed (Fig b,e,h) normalized temperature XY planes with respective
temperature error plots (Fig c,f,i) for Virtual Experiment 2. The optimal global field prediction requires 8 sensor

measurements.
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The reconstructed XY plane in Fig 5.6e suggests that GSF is able to retain smooth and symmetric
variations. However, it fails to recognize the local temperature spike as observed in Fig 5.6h. Instead,
the framework homogenizes the local pattern while making predictions. This detail again refers back
to the ‘generic’ treatment and oversimplified approach to deal with Issue 2 in the Generic Framework.
An oversimplified model may underestimate the role of local factors. In addition, such a model can
conceal important interactions or relationships in the data as noticed in this example. This can lead to
inaccurate or incomplete conclusions.

Even though the heat sources vary as a Gaussian function similar to VE 1.2, the predictions do not
exhibit noisy behaviour. This difference can be linked to the dissimilar characteristics of the Gaussian
functions in both experiments. Although the strength of q̇1 and q̇2 is higher than the source in VE 1.2,
their spread is much narrower in comparison. Hence, the field variations are primarily governed by heat
conduction. For this reason, the Generic Framework gives predictions much like VR-3 in [11], without
any noise. Furthermore, it is worth noting that the average error is comparatively lower compared to
VE 1.2, attributed to the same underlying reason. Absolute error plots for the XY planes (Fig 5.6c, 5.6f,
5.6i, 5.6l) reveal that error is higher near the boundaries and near the local heat sources, in the range of
[0.10-0.35]. It is noticed that even though the average absolute error across the entire domain was low
(≈ 0.03), the local error came out significantly high (≈ 0.25 to 0.35). A local high error was expected
as the framework did not identify the sudden field variations at all. YZ and XZ reconstructions are
supplemented in C.2.1 for reference.

The limitations arising from the Generic Framework-assisted predictions can be pointed towards the
non-specific treatment of Issue 2. A hypothetical source potential distributed in the Generic Framework
is either infinitely large or small, depending on its position in space. This leads to the oversimplification
of the model. Eventually, the local effects are not identified by the framework-assisted field predictions.
This paved the way for testing the Partition Source Framework, where the Issue 2 is addressed more
specifically. The predictions using PSF for Virtual Experiment 2 are presented in the next subsection.

5.3.2. Field Predictions using Partition Source Framework
A PSF configuration set-up with just a 0-cut on the domain will be similar to a 0-cut Generic Framework
since only one source would be present in the center of the domain. And so, the training does not
include the 0-cut on the domain. Training with 3-cuts and higher was avoided since the computational
complexities were increasing considerably. Moreover, increasing the number of cuts on external source
planes may not be beneficial or effective based on the foregoing experience. Therefore, certain decisions
are made regarding the training of the Partition Framework. The training process involves either
implementing a 1-cut or 2-cut on the domain, accompanied by the variation of the source plane distance
‘d,’ while maintaining 0-cuts on the source planes.
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Partition Source Framework (Exact Solution Approach)

Table 5.1: PSF Exact Solution for VE 2: MAE values and optimal distance of external source planes for 1-cut and
2-cuts on the domain.

Cuts on the Domain Cuts on the Source Plane
Distance ‘d’ of the Source Plane

from the domain
MAE

1-cut 0-cut 2 m 0.053
2-cut 0-cut 1 m 0.116

Figure 5.7: PSF-Exact Solution for VE 2: A plot of MAE with varying source-planes distances ’d’ for 0-cut on the
source-planes and 1-cut on the domain; [i] between 1 to 10m [ii] zoomed in between 0.1 to 1m.

The optimal framework configuration is selected as 1-cut on the domain and 0-cut on the external
source planes (located at d= 2m) around the domain (Table 5.1). A mean absolute error (MAE) of
0.053 is achieved for the overall domain. Figure 5.8 presents the true and reconstructed normalized
temperature field on the XY plane using the Partition Framework.

The reconstruction plots in Figure 5.8 reveal a conspicuous cross-like pattern, which is also observed
in the error plots and could be interpreted as noise. However, the noise present in the GSF predictions
did not exhibit similar cross patterns. Hence, this occurrence of the pattern in PSF results can be
attributed to the rigid (and complex) formulation of Issue 2 in link with Issue 3 within the (Partition)
Framework. Additionally, the utilization of an exact solution technique on a complex model can lead
to overfitting. Overfitting occurs when a model memorizes the training data instead of learning the
underlying patterns, it may produce noisy predictions when presented with new data.

The error plots at z=0m and 1m, in Fig 5.8b and 5.8l, suggest that the absolute error near the
boundaries (domain surfaces) is higher; in the range of [0.18-0.30]. This observation supports the
‘conflict of boundary conditions’ hypothesis. The issue of local error continued to persist as depicted in
Figure 5.8i. Although, the framework at least attempts to identify the local effect by bringing down the
error to [0.20-0.30] (from [0.25-0.35] in GSF). In an attempt to enhance the predictions, a combination
of different cuts on the domain and source planes (e.g., 0-cut + 2-cut) was implemented. However, this
approach did not yield any improvement in the predictions. Supplementary reconstructed YZ planes
can be referred to in Appendix C.2.2 to support all the observations made above.
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(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=0.75 m (h) Predicted field at z=0.75 m (i) Absolute error plot at z=0.75 m

(j) True field at z=1 m (k) Predicted field at z=1 m (l) Absolute error plot at z=1 m

Figure 5.8: True and Partition Framework-Exact Solution assisted predictions: XY Temperature Plots of Virtual
Experiment 2 and respective error plots.
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The implementation of a ‘rigid’ approach to tackle Issue 2 in Partition Framework introduces com-
plexity to the model (Eq 3.3). To prevent overfitting, field reconstruction with a least-squares solution
approach is attempted. The results from this approach are presented below.

Partition Source Framework (Least-Squares Solution Approach)
The domain configuration was fixed with 1-cut on the domain and 0-cut on external source planes. For
obtaining optimal least-squares solution,

1. The number of sensor measurements varied from 8 to 160. This range was chosen to match the
range of sensor measurements involved in the training for Generic Framework.

2. For each number of measurements used, the source-plane distance was varied to find the optimal
location ‘d’ from the domain.

(a) (b)

Figure 5.9: Optimal framework settings for Virtual Experiment 2 using PSF: Least Squares Approach (a)A plot of
MAE with the varying sensor measurements. (b)A plot of MAE with varying source-planes distances ’d’ for 0-cut on the

source-planes and 1-cut on the domain; [i] between 1 to 10m [ii] zoomed in between 0.1 to 1m.

Figure 5.9a shows a graph where for every number of sensor measurements, the corresponding
optimal MAE is plotted. It can be concluded that after reaching a certain number of measurements,
the optimal MAE remains almost the same. Figure 5.9b shows the incremental adjustment of the source
plane distance ‘d’. For the particular case of 1-cut on the domain and 0-cut on the source planes, the
optimal MAE of 0.018 is achieved with 48 measurements, and the external planes are located at d = 2m.
While transitioning from an exact solution to a least-squares solution, the minimum MAE is reduced
from 0.053 to 0.018 by using additional 33 measurements. Figure 5.10 includes the reconstructed
temperature field on XY planes for which the least-squares approach is implemented with 48 sensor
measurements.

The conspicuous cross-like pattern noticed in Fig 5.8 is no longer observed in Fig 5.10. The least-
squares technique, therefore, assists in the reduction of noise by providing an approximate solution
and preventing overfitting. It gives flexibility to a complex model for not having an exact solution. In
addition, it also assists in the error reduction to [0.06-0.20] near the boundaries, compared to [0.10-0.35]
in GSF and PSF-Exact Solution. However, the local error does not diminish entirely, and yet the sudden
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field spikes are not clearly detected. The technique was also applied to a configuration with 2-cuts on
the domain, but it did not achieve any better results (0.020 with 89 measurements) than the 1-cut
configuration. Consequently, the ‘rigid’ formulation of Issue 2 does not effectively address the challenge
of ‘homogenized predictions’ for local effects. This highlights the inherent limitation of linearizing a
non-linear problem with confined choices (in this case, source frameworks). In the present context, it
may be more appropriate to retain the field function (Eq 2.32) in its non-linear form, allowing Issues to
be resolved by a non-linear solver. In future studies, incorporating a priori knowledge of heat sources
or heat generation into the framework development could aid in enhancing the accuracy of predictions
for local effects.

(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.75 m (e) Predicted field at z=0.75 m (f) Absolute error plot at z=0.75 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1 m

Figure 5.10: True and Partition Framework-Least Squares Solution assisted predictions: XY Temperature Plots of
Virtual Experiment 2 and respective temperature error plots.
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5.4. Key Conclusions
Overall, the Generic Source Framework appears to be a promising approach for reconstructing smooth

temperature fields with a relatively small number of sensor measurements, while still maintaining a
reasonable level of accuracy. The average error is about 0.013-0.050 on a scale of 0-1. For all the cases
considered, the error near the boundaries is higher than in the remaining regions. This can be attributed
to the existence of multiple (uncoupled) solutions from different hypothetical source potentials in the
framework and their internal conflict while delivering boundary predictions.

In the Generic Framework, the radius of heat sources (Issue 2) is chosen generally and can have only
two extremes. It can be either infinitely large or small (with respect to their position). This general
treatment of Issue 2 is incapable to identify the sudden spikes present in reality (Virtual Experiment
2). This feature instead smoothens out the local variation resulting in a high local error. Therefore,
the Generic framework selectively captures and retains information solely from the dominant physical
mechanism that occurs within the domain.

On the other hand, Partition Source Framework has a specific treatment of Issue 2 with respect to the
number of cuts on the domain. It adds stiffness to the framework making it difficult to fit the data with
an exact solution. Therefore, the framework delivers noisy predictions with cross-like patterns while
using an exact solution approach. The difficulty is solved by finding an approximate solution using a
least-squares solution. This delivers satisfactory results. The error values in the critical regions reduce
relatively. However, similar to Generic Source Framework, the Partition Source Framework captures the
dominant phenomena in its predictions, but it is insufficient for accurately identifying localized effects.
Primarily, these frameworks only serve as one of many tools for linearizing the non-linear field function
(Eq 2.32), allowing temperature predictions to be made with ease throughout the domain. However,
it is important to recognize that this elementary approach has its limitations in accurately predicting
local effects. Therefore, in order to improve the prediction of such localized effects, it may be necessary
for the current frameworks to withhold from fully linearizing the field function and instead leave certain
Issues to be evaluated by a non-linear solver. For instance, instead of imposing pre-determined Issue 2
or Issue 3, allowing them to remain ‘unknown’ in the framework.

The following research objective is to investigate the framework performance specifically in the case of
a combined forced convection and heat conduction mechanism. This evaluation is crucial as it assesses
how well the frameworks can handle situations where the convective term behaves like a heat source
(q̇conv). The intensity of the convective term can lead to temperature variations that can be either
gradual or sharp. Therefore, in the upcoming chapter, the performance of these frameworks will be
further tested on the forced convection setups.



6
Results: Virtual Experiment 3

The purpose of this chapter is to assess the effectiveness of elementary source frameworks in predicting
temperature field in a forced convection setup, as given in Virtual Experiment 3, and ascertain the
concept of “ρCp(v⃗ · ∇T ) acting equivalent to heat source q̇conv”. To recollect, Virtual Experiment 3
involved a forced convection setup with two sub-cases, air (VE 3.1) and water (VE 3.2). The geometry
of the domain is modified to include fluid flow in the experiments as shown in Fig B.13. The sub-
case with air was smooth in terms of temperature field variations and was comparable to the case
of VR-3 from [11] where only heat conduction was involved. While in the sub-case with water, due
to dominating convective phenomena, sharp variations were observed in the field. Again, the true and
predicted temperature values presented in this chapter have been normalized to ensure a fair comparison
of performance among all cases.

6.1. Virtual Experiment 3.1: Forced Convection Setup with Air
In Virtual Experiment 3.1, the fluid medium is air with a low Péclet number, indicating that the
convective effects were not significant. As a result, temperature variations in the field were primarily
governed by conductive phenomena and the trends were similar to those observed in VR-3 from [11].
Minute field differences observed were near the inlet of the domain.

6.1.1. Field Predictions with Generic Source Framework
A similar approach to the previous cases considered in Chapter 5 is followed for the training of the
Generic Framework. First, a cut on domain surfaces is fixed, and then cuts on the source planes and
their distance from the domain are varied. Changes in the mean absolute error (MAE) can be observed
for the field predictions over the entire domain as shown in Figure 6.1. Increasing cuts on the source
planes does not relieve the average error across the domain. This outcome is consistent with the earlier
observations.

49
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(a) (b)

Figure 6.1: Optimal GSF settings for Virtual Experiment 3.1 (a)A plot of MAE with the varying number of cuts on the
domain and source planes (equivalently varying Sensor Measurements). (b)A plot of MAE with varying source-planes

distances ’d’ for 0-cut on the source-planes and domain; [i] between 1 to 10m [ii] zoomed in between 0.1 to 1m.

With 8 sensor measurements, a minimum MAE of 0.027 is obtained. Hence, for reconstruction, this
corresponds to a 0-cut on the domain and 0-cut on the external source planes (located at d=3 m). The
true and reconstructed normalized temperature field on XY planes are plotted in Figure 6.2, along with
respective Temperature Error Plots. Additionally, true and reconstructed YZ and XZ planes can be
referred to in Appendix C.3 for comparison. On close observation of the XY plane at z=0m (Fig 6.2a),
we can notice the inlet is present in the center.

The predictions exhibit a reasonable level of accuracy; however, there are some notable observations.
At the inlet (z=0m), the reconstructed plane does not clearly distinguish the inlet region, which is
supported by the error plot (in Fig 6.2c) where the local error shoots up to 0.14. Additionally, higher
errors are observed near the outlet (z=1m), approximately reaching up to 0.10 (Fig 6.2i). These
locations correspond to the areas where the local heat effects (q̇conv) are present, as depicted in Fig
B.15. Yet again, GSF tends to homogenize the local temperature differences, recognizing only the
dominant phenomena in the domain.

The error plots also indicate higher errors towards the domain’s edges and surfaces, ranging in
[0.08-0.11]. These findings support the hypothesis of a ‘solution conflict’ at the boundaries from the
hypothetical source potentials. The temperature variations in the current predictions can be compared
with those in VE 2, as both cases are primarily governed by the heat conduction mechanism. The
average error values in both cases (with GSF) are comparable. However, the local error values in the
current case are lower than the GSF-predictions for VE 2. This difference can be attributed to the lower
intensity of the heat source in the present experiment. All the results align with the observations made
in the previous chapter. Consequently, in the next step, the study proceeds to test the predictions of
the Partition Source Framework for this virtual experiment.
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(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 6.2: True (Fig a,d,g) and GSF-reconstructed (Fig b,e,h) normalized temperature XY planes with respective
temperature error plots (Fig c,f,i) for Virtual Experiment 3.1. The optimal global field prediction requires 8 sensor

measurements.

6.1.2. Field Predictions with Partition Source Framework
We concluded in Chapter 5 that Partition Source Framework is too rigid to apply the exact solution
approach. It delivers the output with some noise build-up. In order to avoid noise build-up, Partition
Source Framework will only utilize the least-squares approach to solve for ’unknown intensities’. To
obtain an optimal least-squares solution for VE 3.1, the adjustments are kept similar to VE 2. The
domain configuration is kept consistent with 1-cut on the domain and 0-cuts on external source planes,
and

• The number of sensor measurements was adjusted between 8 to 160 to match the range of sensor
measurements used in the training process for the Generic Framework.

• For each number of measurements used, the source-plane distance was varied to identify the
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optimal location ’d’ from the domain.

(a) (b)

Figure 6.3: Optimal PSF settings for Virtual Experiment 3.1 (a)A plot of MAE with the varying Sensor
Measurements. (b)A plot of MAE with varying source-planes distances ’d’ for 0-cut on the source-planes and 1-cut on

the domain; [i] between 1 to 10m [ii] zoomed in between 0.1 to 1m.

Figure 6.3a depicts a graph displaying the optimal mean absolute error (MAE) for each number of
sensor measurements. It can be inferred that after reaching a certain number of measurements, the
optimal MAE remains nearly constant without significant changes. This observation is in agreement
with the result observed in Figure 5.9a for Virtual Experiment 2. For this particular case, a minimum
MAE of 0.015 is obtained using 142 sensor measurements, and source planes are located at d= 1 m.
Alternatively, only 50 sensor measurements could also be utilized to achieve an MAE of 0.016 with
source planes located at the same distance from the domain. The average error comes down from 0.027
in GSF-assisted predictions to 0.016 using the PSF-Least Squares technique.

Figure 6.4 represents the true and reconstructed normalized temperature field on XY planes for
which the PSF-Least Squares approach is implemented with 50 sensor measurements. Appendix C.3.2
shows the reconstructed YZ planes. The application of the least-squares technique proves effective in
mitigating noise accumulation and leads to a reduction in error values near the boundaries. In the GSF
results, the error range near the boundaries was observed to be [0.08-0.14]. With the utilization of the
PSF-LS approach, it reduces to half, i.e. [0.04-0.07].

The error comes down to 0.07 near the inlet and only about 0.01 near the outlets. Although the
local error does not completely disappear, the framework approximately identifies the majority of the
physical effects in the domain. These characteristics of the GSF and PSF predictions are consistent
with the observations made in the predictions for VE 2, where the local heat source effects are present.
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(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 6.4: True (Fig a,d,g) and PSF-reconstructed (Fig b,e,h) normalized temperature XY planes with respective
temperature error plots (Fig c,f,i) for Virtual Experiment 3.1. The optimal global field is reconstructed with 50 sensor

measurements.

6.2. Virtual Experiment 3.2: Forced Convection Setup with Water
In Virtual Experiment 3.2, the fluid medium used was water and the remaining parameters were kept
the same as in VE 3.1. This resulted in a high Péclet number indicating that the convective effects
were now significant. As a result, temperature variations in the field were primarily governed by strong
convective currents.

6.2.1. Field Predictions with Generic Source Framework
In GSF training, for every cut on the domain, the cut on the source planes is varied to train the frame-
work algorithm with the corresponding number of sensor measurements. The resulting MAE measured
over the entire domain is then plotted against the number of sensor measurements as represented in
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Figure 6.5a.

(a) (b)

Figure 6.5: Optimal GSF settings for Virtual Experiment 3.2 (a)A plot of MAE with the varying number of cuts on
the domain and source planes (equivalently varying Sensor Measurements). (b)A plot of MAE with varying

source-planes distances ’d’ for 0-cut on the source-planes and 1-cut on the domain; [i] between 1 to 10m [ii] zoomed in
between 0.1 to 1m.

As we can observe from this plot in Fig 6.5a, the mean error consistently varies in the range of [0.11,
0.15] for almost all the cut combinations, except for 0-cut on both domain and source planes. The
minimum mean absolute error (MAE) of 0.116 is obtained with 15 sensor measurements (1-cut domain
and 0-cut on source planes, located at d=8 m). Moreover, Fig 6.5b has oscillatory behaviour which
suggests overfitting. Such a high average error reveals that the source framework is insufficient to capture
substantial convective effects and that the reconstruction would not be satisfactory. The error near
critical regions is expected to be worse than this average value. To validate our prognosis, reconstructed
temperature XY planes and corresponding error plots are depicted in Figure 6.6. This figure also
includes the true temperature XY planes to give an expectation for the temperature field which reflects
the existing sharp variations in the temperature profile. Supplementary true and reconstructed YZ and
XZ planes can be referred to in Appendix C.4.

Generic Framework does not attempt to identify the temperature trends in a forced convection setup.
The error plots in Figure 6.6 support this observation. The error rises as high as 0.7 near the domain
surfaces (boundaries). Additionally, predictions suffer from noisy response. This noise could be at-
tributed to the convective currents present in the domain, causing the input data to be too complex for
fitting with our elementary source frameworks. Appendix C.5 showcases a table with MAE of Generic
Framework results for hypothetical fluids varying in Péclet range between extremes of air and water.
The velocity is maintained constant in all cases. These values indicate that the resulting acute tempera-
ture variations, with increasing Péclet number, are not predicted well using Generic Framework. In the
upcoming subsection, we test the Partition Source Framework-Least Squares technique’s performance
for a convection-dominated domain.
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(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 6.6: True and GSF-reconstructed normalized temperature XY planes with respective temperature error plots
for Virtual Experiment 3.2.

6.2.2. Field Predictions with Partition Source Framework
The configuration for testing this framework with the least-squares approach remains similar to the
prior setup. The domain configuration is kept consistent with 1-cut on the domain and 0-cuts on
external source planes. The number of sensor measurements varied between 8 to 160. For each number
of measurements used, the source-plane distance was altered to identify the optimal location ’d’ from
the domain.

Figure 6.7a shows the mean absolute error (MAE) varying with each number of sensor measurements.
Even though the optimum is achieved with 39 sensor measurements (source plane distance d = 9m),
more oscillatory behaviour is observed. In the earlier cases, the error became nearly constant but it is
not the same in this case. In essence, this oscillatory behaviour hints that the implementation of this
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framework is not suited to achieve a satisfactory reconstruction of a strongly convective field.

(a) (b)

Figure 6.7: Optimal PSF settings for Virtual Experiment 3.2 (a)A plot of MAE with the varying Sensor
Measurements. (b)A plot of MAE with varying source-planes distances ’d’ for 0-cut on the source-planes and 1-cut on

the domain; [i] between 1 to 10m [ii] zoomed in between 0.1 to 1m.

Figure 6.7b displays the variations in MAE as the source plane distance from the domain changes.
Contrary to previous observations, the MAE continues to decrease until a distance of 9m from the
domain. It is possible that the MAE could potentially decrease further beyond 9m, but this range
was not tested in order to maintain uniformity in the configuration of the source plane distance across
different examples. True and reconstructed temperature fields on XY planes with their corresponding
temperature error plots are presented in Figure 6.8.

While PSF shows some improvement compared to GSF, its predictions are still inadequate in captur-
ing the present temperature trends accurately. The error near the domain surfaces continues to remain
high, in the range of [0.35-0.4]. Despite applying the least-squares technique, the output showcases
significant noise build-up. Least-squares solution with 2-cuts on the domain did not improve the results
(MAE=0.1020 with 123 measurements), rather more oscillatory behaviour was observed and substan-
tially high computational effort was required. Additional true and reconstructed YZ planes may be
referred to in Appendix C.4.
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(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 6.8: True and PSF-reconstructed normalized temperature XY planes with respective temperature error plots
for Virtual Experiment 3.2. 39 sensor measurements are used for reconstructing the field.

6.3. Key Conclusions
The Generic and Partition Source Frameworks exhibit a reasonable level of efficiency in predicting

smooth temperature fields in the low Péclet range. Framework-assisted predictions capture the dominant
variations within the domain. Among the two frameworks, the Partition Source Framework, particularly
when complemented with the least-squares solution technique, surpasses the Generic Source Framework
in reducing noise, achieving lower average error values, and improving accuracy near the boundaries.
However, both frameworks face limitations when it comes to accurately reproducing local effects or
sharp temperature variations, especially in regions dominated by convective effects.

It is important to acknowledge that each framework-assisted reconstruction is still a solution satisfy-
ing a random sensor dataset. These frameworks primarily serve as a way to linearize the non-linear field
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function (Eq 2.32). Frameworks address certain Issues involved in this equation, enabling convenient
temperature predictions throughout the domain. Nevertheless, it is essential to recognize the inher-
ent limitations of this simplistic approach in accurately predicting localized or acute effects. Future
advancements in these frameworks could involve leaving the hypothetical source potential positions
and/or sizes open to a non-linear solver. Established optimization techniques can be implemented to
enhance prediction accuracy. Supplementing with a priori information on the nature of the heat source
(for example, heat generation in an exothermic reaction) or on the velocity field in a forced convection
case can provide further sophistication.



7
Comparison with Hidden Fluid

Mechanics Algorithm

This chapter covers an investigation conducted into the effectiveness of Physics-Informed Neural Net-
works, and their performance was compared to the results obtained from our source frameworks. In
recent years, there has been growing interest in using physics-based knowledge to enhance machine
learning algorithms. This led to the emergence of the field of physics-informed machine learning. One
of the key approaches in this field is the use of physics-informed neural networks (PINNs). PINNs inte-
grate physical laws into the neural network architecture to improve their predictive capabilities. Such
physics-informed neural networks are developed into an algorithm known as “Hidden Fluid Mechanics
(HFM)” [9] and can be utilized to extract information from different fields from a point cloud of passive
scalar data.

7.1. Introduction to the HFM Algorithm
While experimental fluid mechanics has made significant progress, accurately determining fluid ve-
locity and pressure or stress fields through measurements remains a complex and challenging task.
Applications of HFM have been demonstrated by Raissi et al. [9] for the extraction of quantitative
information where direct measurement techniques are not feasible. The HFM algorithm consists of a
physics-uninformed deep neural network to approximate (t, x, y, z) → (c, u, v, w, p), which is followed
by a physics-informed neural network (t,x,y,z) → (e1, e2, e3, e4, e5), where the Navier-Stokes equations
are incorporated into outputs as residuals ei. e1 represents the residual of the transport equation for the
passive scalar c, while e2, e3, and e4 pertain to the momentum equations in the x, y, and z directions.
Lastly, e5 corresponds to the residual of the continuity equation. u, v, w represent velocity components
in the x, y, and z directions, and p stands for pressure. Figure 7.1 illustrates the concept behind this
neural network architecture.
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Figure 7.1: Schematic of Physics-Informed Neural Network retrieved from [9]

To minimize the prediction errors, the residuals (ei) are also included into the loss function while
learning. The loss function is given as Mean Squared Error (MSE). This technique is also agnostic of
geometry, providing freedom to apply this concept to any domain of interest. Figure 7.2 shows an exam-
ple of an intracranial aneurysm sac from [9], where reference and regressed fields for the concentration
variable c are presented as contours on XY and YZ planes. The HFM algorithm is also said to have
robustness to low-resolution input data. The authors examined the spatial-temporal resolution of the
training data in detail for which spatial resolutions ranging from 250 to 15,000 data points, and time
resolutions ranging from 3 to 201 time frames were explored. The results indicated that the proposed
algorithm is highly resilient to variations in the spatial-temporal resolution of the data point cloud.

Figure 7.2: An example of aneurysm sac where reference and regressed concentration fields are shown as contours on
XY and YZ planes (Retrieved from [9]).

Albeit, the above-described approach is completely different (differential approach), the end motive
of flow visualization has similarities to this thesis. Hence, a comparative study was pursued to evaluate
HFM capabilities against source frameworks for temperature field predictions; using the same limited
sensor dataset. For this performance comparison, the HFM algorithm is retrieved from [13] and modified
for a steady-state situation to test on Virtual Experiments 3.1 and 3.2. Results are then compared to
source framework results presented in Chapter 6. It is worth noting that for this study, we solely focussed
on temperature and did not assess the velocity or pressure prediction capabilities of the algorithm.
Additionally, only the time component is excluded, and the training data is constrained to a range
of 8-15 measurements to check algorithm resilience beyond its tested range. However, the remaining
aspects, such as the algorithm training methodology, remain unchanged from Raissi et al.’s original
work in [9],[13].

7.2. Virtual Experiment 3.1: HFM Predictions
To recall briefly, the temperature variations for Virtual Experiment 3.1 are nearly smooth everywhere

except near the inlet. Generic and Partition Frameworks identified the patterns satisfactorily except
for the inlet position, where the local error shot up. The HFM algorithm is trained by inputting sensor
measurements in a similar range as provided to train the Generic and Partition Source Framework for
a fair comparison. For VE 3.1, initially, 8 and 119 sensor measurements were utilized to train the HFM
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algorithm for temperature predictions. The predictions were tested on the grid presented in subsection
3.4.2. The predicted temperature values were normalized to aid the comparison process.

The algorithm was unable to capture the field with just 8 measurements, as shown in Figure 7.3,
where the regressed temperature field and corresponding absolute error plots are depicted on various
XY planes. The mean absolute error is measured to be 0.228 throughout the domain, which is high.
The absolute error also rises to 0.5 locally in certain regions within the domain. In this scenario, even
with just 8 sensor measurements, both the Generic and Partition Frameworks are at least capable of
capturing the fundamental features of the domain, except for the inlet.

(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 7.3: HFM Algorithm assisted predictions: XY Temperature Plots of Virtual Experiment 3.1 and respective
temperature error plots. 8 sensor measurements were used for the training.

Subsequently, the input training data was increased to 119 measurements to evaluate whether this
would lead to improved predictions. At this stage, the HFM predictions are equivalent to the results
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obtained using source frameworks. However, it does not clearly identify the inlet position in the domain.
This can be realized with the help of XY planes presented in Figure 7.4. The mean absolute error falls
down to 0.009. Even, locally the error is not higher than 0.06. Although, when the computational efforts
are compared, HFM is considerably more expensive than Source Frameworks for achieving equivalent
quality results.

(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 7.4: HFM Algorithm assisted predictions: XY Temperature Plots of Virtual Experiment 3.1 and respective
temperature error plots. 119 sensor measurements were used for the training.

Later, a larger training data set was utilized, and HFM delivers the output with accurate values
and even lower MAE. However, even with nearly 9000 training data input, it could not specifically
predict the location of the inlet as shown in Figure 7.5. Additionally, generating a larger training set
in a short period requires many sensor devices. It is not desirable to have many sensor devices in a
flow process since it could hinder the physical phenomena. It also increases the computational time to
make sufficient iterations required for training. In this situation, the source frameworks are a better
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alternative for making decent predictions.

(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

Figure 7.5: HFM Algorithm assisted prediction: XY Temperature Plot of Virtual Experiment 3.1 and respective
temperature error plot at z=0 m. Approximately, 9000 sensor measurements were used for the training.

7.3. Virtual Experiment 3.2: HFM Predictions
In this experiment, the convective currents are prominent. Generic and Partition Framework were

too primitive to identify such acute variations in the field. It is interesting to assess HFM’s predictive
capabilities for this experiment with the same sensor dataset and check if it delivers satisfactory output.
Here, 15 and 161 sensor measurements were used to train the HFM algorithm.

The algorithm fails to predict the field with 15 measurements training, as represented in Figure 7.6,
where the regressed temperature field and corresponding temperature error plots are depicted on various
XY planes. The mean absolute error is measured high throughout the domain and is equal to 0.1614.
There is no specific trend observed in the error plots to identify the exact regions in the domain for
poor field prediction. With 161 measurements training, the MAE reduces to 0.113, as expected with
an increase in input data. However, it continues to remain in the higher error range. At this error
level, the algorithm generates distorted predictions on the field. This can be noticed in Figure 7.7. One
difference between HFM and Source Frameworks is that the HFM predictions are noise-free even at
such high error values. As observed earlier, GSF and PSF predictions show considerable noise build-up
in the predicted field plots at the same error range.
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(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 7.6: HFM Algorithm assisted predictions: XY Temperature Plots of Virtual Experiment 3.2 and respective
temperature error plots. 15 sensor measurements were used for the training.
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(a) True field at z=0 m (b) Predicted temperature at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 7.7: HFM Algorithm assisted predictions: XY Temperature Plots of Virtual Experiment 3.2 and respective
temperature error plots. 161 sensor measurements were used for the training.

After training the algorithm with a smaller dataset, a larger training input of approximately 9000
data points was used to assess its predictive performance. The results are presented in Figure 7.8, which
shows the predicted XY temperature planes and the respective temperature error plots. The predictions
capture the convective currents well. The mean absolute error (MAE) across the domain is as low as
0.0183, indicating that the algorithm performs well in predicting the temperature field. However, as
mentioned earlier, generating a large training set in a short time span requires many sensor devices. This
may not always be desirable in a flow process, as it may interfere with the physical phenomena being
studied and also increase the computational time required for sufficient training iterations required for
the HFM technique.
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(a) True field at z=0 m (b) Predicted field at z=0 m (c) Absolute error plot at z=0 m

(d) True field at z=0.5m (e) Predicted field at z=0.5m (f) Absolute error plot at z=0.5 m

(g) True field at z=1 m (h) Predicted field at z=1 m (i) Absolute error plot at z=1m

Figure 7.8: HFM Algorithm assisted predictions: XY Temperature Plots of Virtual Experiment 3.2 and respective
temperature error plots. Approximately, 9000 sensor measurements were used for the training.

7.4. Comparison: HFM versus Source Frameworks Predictions
The study by Raissi et al. [9] showed that their algorithm can provide accurate predictions when
trained on large datasets. The lowest spatial resolution tested by the researchers was 250 data points.
The present study challenged the HFM algorithm’s resilience by reducing the input data below the
tested spatial-temporal resolution. It is found that the algorithm breaks down at such reduced sensor
measurements, which is supported by Figures 7.3, 7.4, 7.6, and 7.7. In contrast, source frameworks
require minimal data input for delivering decent predictions with as low as 8 sensor measurements for
smooth fields. However, as the problem complexity increases, source frameworks tend to have noisy
output, while the HFM algorithm provides broken but noise-free outputs.
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The HFM algorithm has not been implemented for predicting the systems that involve sources, con-
sumption, or reactions in the governing equations. While the source frameworks involve the presence
of source potentials in the domain to predict heat effects. The HFM technique is developed to han-
dle conduction-convection systems and source frameworks are not yet sufficiently developed for con-
vective domains. Furthermore, the source frameworks can utilize physical experimental data using
flow-following sensors, whereas HFM is not guaranteed the same. Even if it may, a higher number of
sensor devices are required to generate sufficient datasets in a given time frame compared to the sensors
required for generating source framework training datasets.

A TU Delft Desktop, equipped with an Intel Core i5 (64-bit) processor and 8GB RAM, required
approximately 40 hours to complete nearly 31,500 iterations for the HFM algorithm. Utilizing Google
Colab with a T4 GPU as a hardware accelerator completed an equivalent number of HFM training
iterations in just 4 hours. In contrast, the GSF-assisted predictions could be generated within a maxi-
mum of 15 minutes, while the PSF-LS predictions took up to 2 hours on the TU Delft Desktop. Hence,
HFM is considerably more computationally expensive than the source frameworks, including additional
computational efforts required for the generation of training data.

The HFM technique and its neural network architecture are promising, with an ingeniously structured
loss function. However, it is not possible to make predictions outside the training domain, and it is
also not viable to train the algorithm for all practical situations. Moreover, it does not seem to have
added benefits in terms of gaining knowledge on a problem for which state-of-the-art ‘forward’ solutions
exist (i.e., CFD). Utilizing HFM for a problem may therefore be a futile exercise when the existing
‘forward’ solution set is fed as training data to the algorithm for generating an ‘inverse’ solution. From
our perspective, it is an addition to the computational expense. Alternatively, neural networks can
be useful in the optimization of the source frameworks. In place of Navier-Stokes Equations, source
frameworks can be incorporated into the network architecture. Such networks can then utilize sensor
data to determine the size (Issue 2) or location (Issue 3) of the hypothetical source potentials. This
would then be our version of ‘Physics-informed Neural Networks’.



8
Conclusion and Outlook

Chemical industries often deal with complicated processes involving various unit operations and pro-
cesses. Monitoring and controlling these processes can be challenging at times, which provided the
motivation for this thesis. This study aimed to visualize scalar (or, vector) fields in physical systems
using an integral approach for field reconstruction. As an example, temperature field visualizations
were studied in heat-generative and forced convection setups with the help of sparse sensor measure-
ments. To realize this broad objective, certain conceptual and numerical goals had been identified and
discussed in Section 1.3.3. This chapter concludes with an overview of the findings and future prospects
for physics-constrained and data-driven field reconstruction.

8.1. Conceptual and Numerical Goals
An a priori integral approach is implemented to build a temperature field function. The field function
comprises a combination of basis functions. These basis functions are rooted in the Helmholtz-Hodge
Decomposition (HHD) and its inverse. Certain assumptions are considered for the system studied as
mentioned in Section 1.3.1. With these system specifications, the temperature field is deduced to vary
as a harmonic-scalar potential function. In such a system, conditions inside the domain and on the
boundaries influence the overall temperature distribution in the domain.

To examine the harmonic-divergent temperature field, a distribution of hypothetical heat potentials
is assumed. The basis functions are associated with the nature of the heat potentials. As a harmonic
potential, the temperature is inversely proportional to the distance from the source (Eq 2.29). While
as a scalar potential, the temperature is directly proportional to the square of the distance from the
source (2.30). The resulting temperature field function is a non-linear equation that is simplified into a
linear equation with the help of Source Frameworks. Source Frameworks tackle Issues relating to the
number, size, and location of these hypothetical potentials. Sparse sensor measurements are used to
evaluate the remaining ‘unknowns’ in a linear function.

Finally, framework-assisted temperature predictions are carried out for a few virtual experiments.
Results indicate that uniform smooth temperature fields, without any sudden spikes or acute variations,
are well predicted with minimal error and computational efforts. Fair predictions can be achieved with
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as low as 8 sensor measurements. This brings confidence in the a priori integral methodology applied
to build this technique.

However, as the domain complexity increases, such as in the case of a locally uneven field in VE2,
this simplistic approach proves inadequate in capturing the specific characteristics of the heat source
and only recognizes the dominant phenomena within the domain. The frameworks homogenize the
local effects. When dealing with a weak convective field, the predictions are similar to those of a local
heat source, where in both situations heat conduction becomes the dominant mechanism. While in
strong convective systems, the temperature variations become sudden and sharper, falling beyond the
framework’s ability to identify them accurately.

In the end, an interesting case on framework performance comparison with the HFM algorithm (a
recent development based on a differential approach) is included. Utilizing HFM for a simple problem
with a limited sensor dataset is concluded to be a futile exercise in comparison to the source framework
capabilities. With a considerably large dataset and higher computational expense, HFM is capable to
deliver lower error values and better predictions.

8.2. Potential Improvements and Outlook
While the source framework assisted in achieving good predictions of the smooth well-distributed tem-
perature field, it is not sufficient to identify local effects or sharp variations. Framework possibilities
need to be looked at for the sophistication of this generalized reconstruction technique. There is a
potential of developing these frameworks more versatile by not pre-fixing Issues, for e.g. the radius
or location of the hypothetical sources. These Issues will be then solved by a non-linear optimization
technique using sensor measurements. Additionally, some a priori information can provide more intel-
ligence to hypothetical heat sources. For e.g., exothermic chemical reactions in the heat source cases or
velocity field in forced convection cases. Complexities can be added on gradually, like introducing tran-
sient state or chemical reactions in the domain of interest. Another compelling pursuit for framework
optimization could be developing a smart variety of Physics-Informed Neural Networks combined with
concepts from this work. This can be achieved by incorporating our physics-constrained field function
into the network’s architecture and (or) loss function.
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A
Python Codes

A.1. Python Libraries
The list of Python libraries utilized for developing algorithms in this study is as follows:

1 import numpy as np
2 print("Successfully imported %s -- Version: %s"%(np.__name__ ,np.__version__))
3 import scipy
4 print("Successfully imported %s -- Version: %s"%(scipy.__name__ ,scipy.__version__))
5 import matplotlib.pyplot as plt
6 print("Successfully imported %s"%plt.__name__)
7 import pandas as pd
8 print("Successfully imported %s -- Version: %s"%(pd.__name__ ,pd.__version__))
9 import sympy as sym

10 print("Successfully imported %s -- Version: %s"%(sym.__name__ ,sym.__version__))
11 from scipy import optimize
12 print("Successfully imported %s"%optimize.__name__)
13 from numpy import linalg as LA
14 print("Successfully imported %s"%LA.__name__)
15 from mpl_toolkits import mplot3d
16 print("Successfully imported %s"%mplot3d.__name__)
17 import scipy.interpolate
18 import math
19 import statistics
20 print("Successfully imported %s"%stat.__name__)
21 import plotly.graph_objects as go
22 import plotly.io as pio
23 import random
24 from itertools import product
25 import itertools as it
26 from tqdm import tqdm

A.2. Random Sensor Locations and Sensor Dataset
A.2.1. Generating Random Sensor Locations in the Domain of Interest
Using Python, random sensor measurement positions are generated such that sensor movement remains
within the domain of interest. These locations are written into a .txt file which can be imported into
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COMSOL for finding temperature measurements associated with these positions.

1 #Generating Random Sensor Positions
2 N = 15 # Number of sensors positions to be generated
3 length = 1
4

5 sensor_positions = []
6 while len(sensor_positions) < N:
7 x = round(2*length*random.uniform(0.05, 0.95)/ 2, 1)
8 y = round(2*length*random.uniform(0.05, 0.95)/ 2, 1)
9 z = round(2*length*random.uniform(0.05, 0.95)/ 2, 1)

10 position = [x, y, z]
11 if position not in sensor_positions:
12 sensor_positions.append(position)
13

14 n = len(sensor_positions)
15

16 if n == N:
17 print('No duplicate sensor positions')
18 print('No. of Sensors =', N)
19 else:
20 print('Duplicate sensor positions')
21

22 #Writing random positions into a text file for importing into COMSOL
23 with open("SensorLocation_15Sensors.txt", "w") as o:
24 for line in sensor_positions:
25 print ("{} {} {}". format(line[0], line[1], line[2]), file=o)

A.2.2. Generating Sensor Dataset
The .txt file containing unique sensor positions is loaded in COMSOL and the temperature values are
evaluated at these positions, which are then exported to an Excel file. This Excel file contains Sensor
Dataset (Discrete temperature measurements at random locations in the domain), which is read in
Python using the pandas library.

1 # Reading Data from COMSOL
2 data = pd.read_excel('Sensordata_HS12_Q -2.xlsx', sheet_name='Sheet1-Q1+Q2')
3 data = np.round(data, 4)
4

5 NSensors = 15
6

7 Temp = data.iloc[:, 0].tolist()
8 x = data.iloc[:, 1].tolist()
9 y = data.iloc[:, 2].tolist()

10 z = data.iloc[:, 3].tolist()
11

12 S1 = Temp[:NSensors]
13 sensor_position = list(zip(x[:NSensors], y[:NSensors], z[:NSensors]))
14

15 print(S1)
16 print(sensor_position)
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A.3. Hypothetical Heat Source Locations
A.3.1. Defining Source Locations on External Source Planes
This script is an optimized version of the version in [11] and is used to generate external plane source
locations.

1 #Generating the Source Positions on External Source Plane for Generic and Partition Framework
2

3 def cutplane_centroids(length, cuts):
4 l = (2*length)+1
5 n = cuts # number of cuts in each axis
6 N = n+2 # number of points in each axis
7 X = -length
8 Y = 1+length
9 P = (X, Y)

10 p = np.linspace(X, Y, n+2)
11 Area = (l*l)/((n+1) ** 2)
12

13 # Defining all the surfaces
14 s = []
15 for k in range(2):
16 A = list(product(p, repeat=2))
17 A = [[p[i], p[j], P[k]] for j in range(len(p)) for i in range(len(p))]
18

19 for i in range(N-1):
20 i = N*i
21 for j in range(N-1):
22 q = i + j
23 s.append([A[q], A[q+1], A[q+N], A[q+1+N]])
24

25 for i in range(2):
26 A = list(product(p, repeat=2))
27 A = [[P[i], p[j], p[k]] for k in range(len(p)) for j in range(len(p))]
28

29 for i in range(N-1):
30 i = N*i
31 for j in range(N-1):
32 q = i+j
33 s.append([A[q], A[q+1], A[q+N], A[q+1+N]])
34

35 for j in range(2):
36 A = list(product(p, repeat=2))
37 A = [[p[i], P[j], p[k]] for k in range(len(p)) for i in range(len(p))]
38

39 for i in range(N-1):
40 i = N * i
41 for j in range(N-1):
42 q = i+j
43 s.append([A[q], A[q+1], A[q+N], A[q+1+N]])
44

45 NS = len(s) # number of surfaces
46

47 # Centroid of each surface
48 cs = []
49 for i in range(NS):
50 coords = np.array(s[i])
51 centroid = np.round(np.mean(coords, axis=0), 4)
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52 cs.append(centroid)
53

54 return np.asarray(cs)
55

56

57 def extframework(length, cuts):
58 cent = cutplane_centroids(0, cuts)
59 n = cent.shape[0]
60 for i in range(n):
61 if i<(n//6):
62 cent[i][2] -= length
63 elif i>=(n//6) and i<(2*n//6):
64 cent[i][2] += length
65 elif i>=(2*n//6) and i<(3*n//6):
66 cent[i][0] -= length
67 elif i>=(3*n//6) and i<(4*n//6):
68 cent[i][0] += length
69 elif i>=(4*n//6) and i<(5*n//6):
70 cent[i][1] -= length
71 elif i>=(5*n//6) and i<n:
72 cent[i][1] += length
73

74 return np.round(cent, 2)
75

76 extsource_position = extframework(1, 1)
77 #print(extsource_position)

A.3.2. Defining Source Locations in the Domain
Using this Python Script, source locations inside the domain at centroid positions can be generated.
This script is used by both source frameworks (GSF and PSF) to define source locations within the
domain.

1 #Defining centroid positions in the domain with varying cuts for Generic and Partition Source
Framework

2

3 def intframework(n):
4

5 p0=np.array([0,0,0])
6 p1=np.array([1,1,1])
7 l=1
8 cut0=l/((2*n)+2)
9 cut=[]

10 for i in range(n+1):
11 cut1=(2*i+1)*cut0
12 cut.append(cut1)
13

14 points=it.product(cut,repeat=3)
15 pc=[]
16 for j in list(points):
17 pc.append(j)
18

19 ncubes=np.power((n+1),3)
20 print('Coordinates of Centroids for {d} sub-cubes with {e}-cuts along each axis:'.format(

d=ncubes, e=n), pc)
21 return pc
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22

23 intsource_position=intframework(1)
24 #print(intsource_position)

A.4. Generic Source Framework: Exact Solution
Sensor datasets can be used to solve for the unknown source intensity terms by generating a system
of linear equations. These equations are formulated by the Generic Framework (Eq. 3.1) and can be
solved with an exact solution technique (matrix inverse multiplication) as follows:

Tsensor = Dist · C (A.1)

C = Dist−1 · Tsensor (A.2)

where,

• Tsensor contains sensor temperature measurements; matrix size: (NSensors x 1)
• Dist contains computed 1

r and r2 values between sensor measurement point and source locations;
matrix size: (NSensors x NSensors)

• C contains all the unknowns (Ai, Bi, and T0) to be solved; matrix size: (NSensors x 1)

1 def exactsolution(NSensors, S1, extsource_position, intsource_position):
2 dista=[]
3 for j in range(NSensors):
4 for n in range(np.shape(extsource_position)[0]):
5 r_inv= 1/math.dist(sensor_position[j],extsource_position[n])
6 dista.append(r_inv)
7

8 dista= np.resize(dista,(NSensors,np.shape(extsource_position)[0]))
9 #print(dista)

10 #print(np.shape(dista))
11

12 distb=[]
13 for k in range(NSensors):
14 for m in range(np.shape(intsource_position)[0]):
15 r_2=np.square(math.dist(sensor_position[k],intsource_position[m]))
16 distb.append(r_2)
17

18 distb= np.resize(distb, (NSensors, np.shape(intsource_position)[0]))
19 #print(distb)
20 #print(np.shape(distb))
21

22 distc= np.ones((NSensors ,1))
23 #print(distc)
24 #print(np.shape(distc))
25

26 dist= np.concatenate((dista,distb,distc), axis=1)
27 #print(np.shape(dist))
28 T_Sensor = np.array(S1)
29 T_Sensor = np.resize(T_Sensor,(NSensors ,1))
30 #print(T_Sensor)
31 C= np.linalg.solve(dist, T_Sensor) #C contains intensities' values
32

33 A=C[0:np.shape(extsource_position)[0]] #A contains all outside sources' intensity values
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34 B=C[np.shape(extsource_position)[0]:(NSensors -1)] #B contains all inside sources'
intensity values

35 T0=C[-1] #T0 Reference Temperature
36 return C, A, B, T0
37

38 A= exactsolution(NSensors,S1, extsource_position, intsource_position)[1]
39 B= exactsolution(NSensors,S1, extsource_position, intsource_position)[2]
40 T0= exactsolution(NSensors,S1, extsource_position, intsource_position)[3]

A.5. Partition Source Framework
A.5.1. Defining Inside and Outside Source-Sensor Distance for Partition Source

Framework

1 #Defining Inside and Outside Source-Sensor Distance for Partition Source Framework
2 def psf(sensor_position, intsource_position, extsource_position, int_cuts):
3 #int_cuts are cuts on the domain
4 l=1
5 l= (1/(int_cuts+1))
6 R0 = (np.sqrt(3)/2)*l
7

8 dist_int=[]
9

10 for i in range(np.shape(intsource_position)[0]):
11 for j in range(np.shape(sensor_position)[0]):
12 r=math.dist(sensor_position[j], intsource_position[i])
13 if (r <= R0):
14 r2= np.power(r,2)
15 dist_int.append(r2)
16 else:
17 r_inv= 1/r
18 R0_rinv1= (np.power(R0,3))*(r_inv)
19 dist_int.append(R0_rinv1)
20

21 dist_int =np.reshape(dist_int, ((np.shape(sensor_position)[0]), (np.shape(
intsource_position)[0])))

22

23

24 dist_ext=[]
25 for j in range(np.shape(sensor_position)[0]):
26 for n in range(np.shape(extsource_position)[0]):
27 r_inv= 1/math.dist(sensor_position[j],extsource_position[n])
28 #R0_rinv2= (np.power(R0,3))*(r_inv)
29 dist_ext.append(r_inv)
30

31 dist_ext= np.reshape(dist_ext, ((np.shape(sensor_position)[0]), (np.shape(
extsource_position)[0])))

32

33 d = np.concatenate((dist_int, dist_ext), axis=1)
34 I= np.ones((np.shape(sensor_position)[0],1))
35 dist= np.concatenate((d, I), axis=1)
36

37

38 return dist_int, dist_ext, dist
39
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40 di=psf(sensor_position, intsource_position, extsource_position, 2)[0]
41 de=psf(sensor_position, intsource_position, extsource_position, 2)[1]
42 d= psf(sensor_position, intsource_position, extsource_position, 2)[2]

A.5.2. PSF: Exact Solution
1 def psfexactsolution(NSensors, S1, d):
2 T_Sensor = np.array(S1)
3 T_Sensor = np.resize(T_Sensor,(NSensors ,1))
4 ES= np.linalg.solve(d, T_Sensor) #ES contains unknown intensities' values
5 return ES
6

7 ES= psfexactsolution(NSensors, S1, d)
8 A= ES[0:(np.shape(intsource_position)[0])]
9 B= ES[(np.shape(intsource_position)[0]):(-1)]

10 T0= ES[-1]

A.5.3. PSF: Least Squares Solution
For finding the least-squares solution, np.linalg.lstsq from numpy library is utilized. It solves the equa-
tion Dist · C = Tsensor by computing a vector C that minimizes the Euclidean 2-norm (or, L2 norm)
||Tsensor − Dist · C||. The equation may be under-determined or over-determined (i.e., the number
of linearly independent rows of a can be less than or greater than its number of linearly independent
columns). In case, Dist is a full-rank square matrix, then C (excluding round-off error) is the ‘exact’
solution of the equation. If there are multiple minimizing solutions, the one with the smallest 2-norm
||C|| is returned.

1 def lstsqsolution(NSensors, S1, d):
2 T_Sensor = np.array(S1)
3 T_Sensor = np.resize(T_Sensor,(NSensors ,1))
4 ES, *_= np.linalg.lstsq(d, T_Sensor) #ES contains intensities' values
5 return ES
6

7 ES = lstsqsolution(NSensors, S1, d)
8 A= ES[0:(np.shape(intsource_position)[0])]
9 B= ES[(np.shape(intsource_position)[0]):(-1)]

10 C= ES[-1]

A.6. True Data-grid and True-Mapping Dataset
A.6.1. True Data-grid
For generating a true data grid of temperature values (mentioned in Section 3.4.2), the following code is
implemented to form a (21 x 21 x 21) grid of data points, this will be later written into a .txt file. The
.txt file is loaded onto COMSOL for evaluating the temperature values at the grid points. The evaluated
values are then exported as an Excel file which contains our ‘True Mapping Dataset’ for comparison.

1 #Code for True Temperature Data-Grid for Comparision
2 def ComparisionGrid(cuts):
3 gridpoints=np.linspace(0,1,cuts)
4 E=[]
5 for i in range(np.shape(gridpoints)[0]):
6 for j in range(np.shape(gridpoints)[0]):
7 for k in range(np.shape(gridpoints)[0]):
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8 p=[gridpoints[k],gridpoints[j],gridpoints[i]]
9 E.append(p)

10 return E
11

12 grid= ComparisionGrid(21)
13

14 #Writing into a text file for COMSOL- RUN ONLY ONCE
15 with open("XYZGrid_ComparisionPoints.txt", "w") as o:
16 for line in ComparisionGrid(21):
17 print ("{} {} {}". format(line[0], line[1], line[2]), file=o)

A.6.2. True-Mapping Dataset
The Excel file containing True-Mapping Dataset is read with the help of the pandas library. The true
values are normalized between 0 to 1 so that it is easier to compare results across different virtual
experiments.

1 #Actual Temperatures (Expected Temperature Field) for Comparision
2 data2=pd.read_excel("Sensordata_HS12_Q -2.xlsx",sheet_name ='Sheet2-Q1+Q2')
3 TR= data2.values.tolist()
4 #print(np.shape(TR))
5

6 TRmin= min(TR)[0]
7 TRmax= max(TR)[0]
8 trnd= TRmax- TRmin
9 ndTR = []

10

11 for i in range(len(TR)):
12 TR[i] = TR[i][0] - TRmin
13 nondimTR = TR[i]/trnd
14 ndTR.append(nondimTR)
15

16 ndTR = np.resize(ndTR, (9261,1))
17 #print(np.shape(ndTR))
18 #print(max(ndTR))

A.6.3. True (Actual) Normalized Temperature Field Distribution on an XY Plane

1 def true_plot(Z):
2 x = np.linspace(0.0, 1.0, 21, endpoint=True)
3 y = np.linspace(0.0, 1.0, 21, endpoint=True)
4 z = Z
5

6 g = np.linspace(0.0, 1.0, 21, endpoint=True)
7 I = g.tolist().index(z)
8

9 TR1 = ndTR[441 * I:441 * (I + 1)]
10 data = TR1
11

12 data = [data[n:n+21] for n in range(0, len(data), 21)]
13

14 fig, ax = plt.subplots(figsize=(10, 8))
15 im = ax.imshow(data, cmap="jet", interpolation='lanczos')
16 ax.set_ylim(0, 20)
17 ax.set_xlabel("X-Axis", fontsize=18)
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18 ax.set_ylabel("Y-Axis", fontsize=18)
19 ax.tick_params(axis='both', which='major', labelsize=16)
20 cbar = plt.colorbar(im)
21 cbar.ax.tick_params(labelsize=16)
22 plt.show()
23 return I, plt.show()
24

25 tp = true_plot(0.75)

A.7. Source Framework-predicted Temperature Field Distribution
Once the unknowns in the framework-formulated temperature field function are solved and known,
the temperature at any position within the domain can be evaluated. Such evaluations are known as
‘Predicted Temperature’ or ‘Temperature Predictions’. Similar to the true dataset, the predicted dataset
is also normalized.

A.7.1. Generic Framework: Predicted XY Temperature Field

1 #Generic framework-predicted temperature
2 def predictedT(grid, A, B, T0):
3 T_pred1=[]
4 for y in tqdm(range(np.shape(grid)[0])):
5 position=grid[y]
6 def dis(source):
7 return 1/math.dist(position, extsource_position[source])
8

9 def dis1(pcp):
10 return np.square(math.dist(position, intsource_position[pcp]))
11

12 T=T0
13 for k in range(np.shape(extsource_position)[0]):
14 T=T+(A[:][k]*dis(k))
15 T=np.round(T,2)
16

17 for h in range(np.shape(intsource_position)[0]):
18 T=T+ (B[:][h]*dis1(h))
19 T=np.round(T,2)
20

21 T_pred1.append(T)
22

23 Tpred_min= min(T_pred1)
24 Tpred_max= max(T_pred1)
25

26 tprednd= Tpred_max - Tpred_min
27

28 T_pred = (T_pred1 - Tpred_min)/tprednd
29 return T_pred1, T_pred
30

31 Tpred=predictedT(grid,A,B,T0)[1]
32 #print(max(Tpred))
33 #print(np.shape(Tpred))

A.7.2. Partition Framework: Predicted XY Temperature Field
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1 #Partition framework-predicted temperature
2 def predictedT(grid, intsource_position, extsource_position, A, B, T0, ES):
3 disr= psf(grid, intsource_position, extsource_position, 2)[2]
4 di=psf(grid, intsource_position, extsource_position, 2)[0]
5 de=psf(grid, intsource_position, extsource_position, 2)[1]
6 T_pred1= np.dot(di, A) + np.dot(de, B) + C
7 #Alternatively, the temperature can be predicted with the below equation also
8 #T_pred1 = np.inner(disr, ES.T)
9

10 Tpred_min= min(T_pred1)
11 Tpred_max= max(T_pred1)
12

13 tprednd= Tpred_max - Tpred_min
14

15 T_pred = (T_pred1 - Tpred_min)/tprednd
16 return disr, T_pred1, T_pred
17

18 Tpred=predictedT(grid, intsource_position, extsource_position, A, B, T0, ES)[2]

A.7.3. Predicted Temperature Field Distribution on an XY Plane

1 #(Predicted) Plot at any XY Plane
2 x = np.linspace(0.0, 1.0, 21, endpoint=True)
3 y = np.linspace(0.0, 1.0, 21, endpoint=True)
4 z = 0.5
5

6 g = np.linspace(0.0, 1.0, 21, endpoint=True)
7 T = predictedT(grid, A, B, T0)[1] #When using GSF
8 #T = predictedT(grid, intsource_position , extsource_position , A, B, T0, ES)[2] #When using

PSF
9 I = g.tolist().index(z)

10

11 data = T[441 * I:441 * (I + 1)]
12 data1 = [item for sublist in data for item in sublist]
13

14 print("Mean Temp:", np.round(statistics.mean(data1), 2))
15 print(np.round(min(data1), 2))
16 print(np.round(max(data1), 2))
17 data = [data1[n:n+21] for n in range(0, len(data1), 21)]
18 trace = go.Heatmap(z=data, colorscale='jet', zsmooth='best', colorbar=dict(title='T range'))
19 data2 = [trace]
20

21 layout = go.Layout(
22 xaxis=go.layout.XAxis(title=go.layout.xaxis.Title(text='XAxis', font=dict(size=18))),
23 yaxis=go.layout.YAxis(title=go.layout.yaxis.Title(text='YAxis', font=dict(size=18))),
24 height=700,
25 width=700
26 )
27

28 fig = go.Figure(data2, layout=layout)
29 fig.update_layout(font=dict(size=16))
30

31 pio.show(fig)
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A.8. Error Metrics and Absolute Error Distribution
A.8.1. Mean Absolute Error (MAE)
Mean Absolute Error (MAE) across the domain is calculated using the following Python script.

1 #Error Analysis: MEAN ABSOLUTE ERROR
2 def error(Tpred, ndTR):
3

4 ER=[]
5 for k in range(np.shape(ndTR)[0]):
6 err=0
7 err=err+np.abs(Tpred[k]-ndTR[k])
8 ER.append(err)
9

10 sumerr=0
11 for k in range(np.shape(ER)[0]):
12 sumerr=sumerr+ER[k]
13

14 mae=(sumerr/np.shape(ER)[0])
15 return mae
16

17 mae= error(Tpred, ndTR)
18 print(mae)

A.8.2. Root Mean Square Error (RMSE)
1 #Error Analysis: ROOT MEAN SQUARE ERROR
2 def rmse(Tpred, ndTR):
3 SE=[]
4 for k in range(np.shape(ndTR)[0]):
5 err=0
6 err=err+np.square(Tpred[k]-ndTR[k])
7 SE.append(err)
8

9 MSE= np.mean(SE)
10 RMSE= np.sqrt(MSE)
11

12 return RMSE
13

14 rmse0 = rmse(Tpred, ndTR)
15 print(rmse0)

A.8.3. MAE with varying source plane distance `d' from the domain
For a given cut on the domain and source planes, the distance ‘d’ can be varied to find the optimum
positioning of the source planes where the MAE is the least. The example considered here includes a
1-cut on the domain and a 0-cut on the source planes.

1 me = []
2 me1 = []
3 intsource_position=intframework(1)
4 d1= np.linspace(0.1, 0.9, num=9)
5 d2= np.linspace(1, 9, num=9)
6 d = np.concatenate((d1, d2), axis=0)
7

8 for i in d:
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9 extsource_position = extframework(i, 0)
10 A, B, T0 = exactsolution(NSensors, S1, extsource_position, intsource_position)[1:]
11

12 grid = ComparisionGrid(21)
13 Tpred = predictedT(grid, A, B, T0)[1] #When using GSF
14 #T = predictedT(grid, intsource_position , extsource_position , A, B, T0, ES)[2] #When

using PSF
15

16 mae1 = error(Tpred, ndTR)
17 me.append(mae1)
18

19 rmse1 = rmse(Tpred, ndTR)
20 me1.append(rmse1)
21 #print(me)
22 #print(me1)
23

24

25 print('Minimum MAE=', min(me))
26 print('Minimum RMSE=', min(me1))
27 print('Minimum MAE and RMSE at d=', d[me.index(min(me))], 'm')
28

29 #Plotting MAE versus source plane distance 'd'
30

31 fig, (ax1, ax2) = plt.subplots(2, figsize=(8, 6), dpi=150)
32 ax1.plot(d[0:9], me[0:9])
33 ax2.plot(d[9:18], me[9:18])
34 ax2.set_xlabel('distance of source plan, d [meter]', fontsize=12)
35 ax2.set_ylabel('Mean Absolute Error, MAE', fontsize=12)
36 ax1.tick_params(axis='both', which='major', labelsize=10)
37 ax2.tick_params(axis='both', which='major', labelsize=10)
38

39 plt.tight_layout()
40 plt.show()

A.8.4. Optimum Number of Sensor Measurements for Least-Squares Solution
It is important to find the optimal number of sensor measurements which give the best approximate
solution using the least-squares technique. Hence, this code varies the number of sensor measurements
from 8 to 160, determining the corresponding MAE. The optimum number of measurements is deter-
mined when the MAE across the domain is minimized. Furthermore, the distance of source planes ‘d’
is varied, however, the cuts are fixed; 1-cut on the domain and 0-cut on source planes.

1 data3= pd.read_excel('Sensordata_HS12_Q -2.xlsx', sheet_name='Sheet1-Q1+Q2')
2

3 d1= np.linspace(0.1, 0.9, num=9)
4 d2= np.linspace(1, 9, num=9)
5 ext_d = np.concatenate((d1, d2), axis=0) #Distance 'd' of source planes from the domain
6

7 n = np.arange(8,161,1) #No. of Sensor Measurements
8

9 min_mae=[]
10 min_mae_d=[]
11

12 for i in tqdm(range(np.shape(n)[0])):
13 NSensors, S1, sensor_position1 = sensordata(n[i], data3)
14 me=[]
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15 for j in ext_d:
16 extsource_position= extframework(j,0)
17 d= csf(sensor_position1, intsource_position, extsource_position, 1)[2]
18 disr= csf(grid, intsource_position, extsource_position, 1)[2]
19 di=csf(grid, intsource_position, extsource_position, 1)[0]
20 de=csf(grid, intsource_position, extsource_position, 1)[1]
21 ES= lstsqsolution(NSensors, S1, d)
22 A= ES[0:(np.shape(intsource_position)[0])]
23 B= ES[(np.shape(intsource_position)[0]):(-1)]
24 T0= ES[-1]
25 grid= ComparisionGrid(21)
26 Tpred=predictedT(grid, intsource_position, extsource_position, A, B, T0, ES)[2]
27 mae1= error(Tpred, ndTR)
28 me.append(mae1)
29 minmae= min(me)
30 ext_d_min= ext_d[me.index(min(me))]
31 min_mae.append(minmae)
32 min_mae_d.append(ext_d_min)
33

34

35 Least_MAE=min(min_mae)
36 NS_optimum=n[min_mae.index(min(min_mae))]
37 NSensors_optimum = sensordata(NS,data3)[0]
38 print(NSensors_optimum)
39

40 plt.xlabel('Number of Sensor Measurememts, N')
41 plt.ylabel("Mean Absolute Error, MAE")
42 plt.plot(n, min_mae, label='PSF with 1-cut on Domain')
43 plt.ylim(0.01, 0.10)
44 #plt.axvline(x=48, ymin=0, ymax=0.10, ls='--', linewidth=0.85, color='k')
45 #plt.axhline(y=0.01897501, xmin=0, xmax=0.285, ls='--', linewidth=0.9, color='k')
46 #plt.annotate('Min MAE=0.01897 with 48 Measurements', xy=(48,0.01897),xytext=(50,0.0125))
47 plt.legend()
48 plt.show()

A.8.5. Absolute Error Distribution on an XY Plane
Absolute Error Plot aids in the identification of local regions with poor predictions.

1 i#Absolute Error Plot at any XY Slice
2 x = np.linspace(0.0, 1.0, 21, endpoint=True)
3 y = np.linspace(0.0, 1.0, 21, endpoint=True)
4 z = 0.75
5

6 g = np.linspace(0.0, 1.0, 21, endpoint=True)
7 I = g.tolist().index(z)
8

9 T_R1 = ndTR[441 * I:441 * (I + 1)]
10 T_11 = predictedT(grid, A, B, T0)[1] #When using GSF
11 #T_11 = predictedT(grid, intsource_position , extsource_position , A, B, T0, ES)[2] #When using

PSF
12 T_1 = T_11[441 * I:441 * (I + 1)]
13 errorxy = np.abs(T_R1 - T_1)
14

15 data_xy = [errorxy[n:n+21] for n in range(0, len(errorxy), 21)]
16 dataxy = np.concatenate(data_xy).tolist()
17 dataxy = [item for sublist in dataxy for item in sublist]
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18 data_xy1 = [dataxy[n:n+21] for n in range(0, len(dataxy), 21)]
19

20 print("Mean Temp:", np.round(statistics.mean(dataxy), 2))
21 print(np.round(min(dataxy), 2))
22 print(np.round(max(dataxy), 2))
23

24 trace = go.Heatmap(z=data_xy1, zsmooth='best', colorbar=dict(title='Error in T'))
25 data1xy = [trace]
26

27 layout = go.Layout(
28 xaxis=go.layout.XAxis(title=go.layout.xaxis.Title(text='XAxis', font=dict(size=18))),
29 yaxis=go.layout.YAxis(title=go.layout.yaxis.Title(text='YAxis', font=dict(size=18))),
30 height=700,
31 width=700
32 )
33

34 fig = go.Figure(data1xy, layout=layout)
35 fig.update_layout(font=dict(size=16))
36

37 pio.show(fig)



B
Virtual Experimental Setups

B.1. Virtual Reality-3 (VR-3)
A virtual reality environment is created by constructing an extended domain with dimensions of
1.6×1.6×1.6m3 containing the domain of interest. The origin of this extended domain is positioned at
(−0.3,−0.3,−0.3). The domain of interest is represented by a cube with dimensions 1×1×1m3 such
that it is centered at (0, 0, 0) as represented in Fig B.1.

Figure B.1: 3-D representation of Virtual Reality-3 from [11].

The specifications for extended-domain and domain of interest based on arbitrary choices for Virtual
Reality-3 are as follows:

• Shape: Cube
• Dimensions: Domain of Interest L×W ×H: 1 × 1 × 1 m3

• Dimensions: Extended Domain L×W ×H: 1.6 × 1.6 × 1.6 m3

• Medium: Water initially at 0◦C(273.15K)

• Temperature at Surfaces of Extended Domain:

85
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o S1, S3: Temperature of 50◦C(323.15K)

o S2, S4: Temperature of 30◦C(303.15K)

o S5, S6: Temperature of 80◦C(353.15K)

• V 1, V 2, V 3, V 4, V 5, V 6, V 7, V 8 are the 8 vertices of the domain of interest, with vertex V 1 posi-
tioned at coordinates (0, 0, 0)

• There are no heat sources within the domain.

Through the incorporation of an extended domain, the boundary temperatures are shifted away
from the region of interest by a distance of 0.3m. This adjustment aims to achieve a more uniform
distribution of temperature, eliminating sudden variations near the edges. The purpose of this Virtual
Setup is to create a domain of interest with smoother temperature profiles along its boundaries, as
opposed to the previous versions (VR-1 and VR-2) [11].

B.1.1. Physics, Study, and Mesh
Under the Model Wizard option, 3D is selected as the Space Dimension. Then under the Heat Transfer
module, Heat Transfer in Fluids interface is added as Physics. In the next step, Stationary Study is
selected to solve for steady-state condition explained in subsection 1.3.1.

Once the Physics and Study are chosen, the Geometry and Material for the medium, boundary
conditions are incorporated as per the specifications listed above. A Mesh Refinement Study (MRS)
was also performed by [11] on this domain to identify the meshing refinement required based on the
element size. MRS results suggested that with Finer element size the mesh converged, indicating that
the temperature values are not affected by further refinement of mesh.

B.1.2. Results: XY, YZ and XZ Temperature Planes

(a) At z=0 m (b) At z=0.5m (c) At z=1 m

Figure B.2: True Temperature XY Planes of Virtual Reality-3

(a) At x=0 m (b) At x=0.5m (c) At x=1 m

Figure B.3: True Temperature YZ Planes of Virtual Reality-3
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(a) At y=0 m (b) At y=0.5m (c) At y=1 m

Figure B.4: True Temperature XZ Planes of Virtual Reality-3

B.2. Virtual Experiment 1.1: COMSOL Set-up
The domain specifications remain the same as Virtual Reality-3 (B.1), except that there is a constant
heat source (Q = 500 W

m3 ) present within the domain.

B.2.1. Physics and Study
The settings for Physics and Study remain the same as mentioned for Virtual Reality-3. Additionally,
the heat source is added as a user-defined General Source in the Heat Source settings available in Domain
drop-down menu under the Physics tab.

B.2.2. Mesh Refinement Study
A Mesh Refinement Study is conducted for this virtual experiment to determine the level of mesh
refinement (in terms of element size) needed to ensure that the results are not affected by further
refining the size of the mesh. MRS is executed using the Parametric Sweep function in COMSOL. The
sizes of the mesh elements for different refinement types (e.g., coarse, fine, finer) are defined in Table
B.1, and these values are provided as input to COMSOL through a text file using the Load from File
option in Settings for Parametric Sweep.

Mesh No. of elements Max. element size Min. element size Max. element
growth rate

Curvature factor Resolution of
Narrow Regions

Coarser 3257 0.280 0.060 1.7 0.8 0.3
Coarse 4168 0.240 0.042 1.6 0.7 0.4
Normal 16142 0.160 0.032 1.5 0.6 0.5
Fine 38634 0.120 0.014 1.45 0.5 0.6
Finer 103940 0.086 0.0065 1.4 0.4 0.7
Extra fine 870584 0.043 0.0018 1.35 0.3 0.85
Extremely fine 2142064 0.032 0.00042 1.3 0.2 1.0

Table B.1: Different mesh properties for Mesh Refinement Study on Virtual Experiment 1.1

The steady-state or stationary solution obtained from the Parametric Sweep study is presented as the
Mesh Refinement Study (MRS) results in Table B.2. Temperature values were measured along points
on a body diagonal extending to the center of the domain, as depicted in Fig B.5. This measurement
approach ensures coverage of both the boundary region and the core region, while considering the
symmetric temperature distribution within the domain. The temperature values have been rounded
to one decimal place for clarity. The results indicate that the mesh converges with an Extremely fine
element size.
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Figure B.5: Temperature measurement points in the domain for Mesh Refinement Study (a) 3D view (b) 2D view

Mesh Temperature (degC) at
(0.05, 0.05,0.05)

Temperature (degC) at
(0.15,0.15,0.15)

Temperature (degC) at
(0.3,0.3,0.3)

Temperature (degC) at
(0.5,0.5,0.5)

Coarser 72.4 89.6 114.0 126.4
Coarse 72.4 88.2 113.1 126.8
Normal 72.6 91.2 115.1 128.4
Fine 72.9 91.8 115.8 129.3
Finer 73.5 92.0 116.1 129.7
Extra fine 73.7 92.2 116.5 130.2
Extremely fine 73.7 92.2 116.5 130.3

Table B.2: Mesh Refinement Study Results for Virtual Experiment 1.1

B.2.3. Additional Results: YZ and XZ temperature planes

(a) At x=0 m (b) At x=0.5m (c) At x=1 m

Figure B.6: True Temperature YZ Planes of Virtual Experiment 1.1

(a) At y=0 m (b) At y=0.5m (c) At y=1 m

Figure B.7: True Temperature XZ Planes of Virtual Experiment 1.1

B.3. Virtual Experiment 1.2: COMSOL Set-up
The domain specifications continue to remain the same as Virtual Reality-3 (B.1), additionally there is
a Gaussian heat source (q̇ = C · exp[− (x−0.5)2+(y−0.5)2+(z−0.5)2

2 ]) present within the domain.

B.3.1. Physics and Study
The settings for Physics and Study remain the same as mentioned previously. To add a Gaussian heat
source, first, a Gaussian function is added as a Variable (Q) under the option Definitions. The heat
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source is added with the same variable name in the user-defined General Source option in the Heat
Source settings available in Domain drop-down menu under the Physics tab.

B.3.2. Mesh Refinement Study
The sizes of the mesh elements for different refinement types (e.g., coarse, fine, finer) remain the same
as defined in Table B.1, and these values are provided as input to COMSOL through a text file using
the Load from File option in Settings for Parametric Sweep.

Temperature values are measured as the same points as illustrated in B.5. MRS Results are presented
in Table B.3. The results suggest that the mesh converges with an Extremely fine element size.

Mesh Temperature (degC) at
(0.05, 0.05,0.05)

Temperature (degC) at
(0.15,0.15,0.15)

Temperature (degC) at
(0.30,0.30,0.30)

Temperature (degC) at
(0.5,0.5,0.5)

Coarser 71.0 83.0 100.6 111.80
Coarse 70.9 81.7 100.0 111.57
Normal 71.1 83.3 101.3 112.6
Fine 71.1 83.6 101.6 112.9
Finer 71.4 83.7 101.8 113.1
Extra fine 71.4 83.8 102.0 113.3
Extremely fine 71.4 83.8 102.0 113.4

Table B.3: Mesh Refinement Study Results for Virtual Experiment 1.2

B.3.3. Additional Results: YZ and XZ temperature planes

(a) At x=0 m (b) At x=0.5m (c) At x=1 m

Figure B.8: True Temperature YZ Planes of Virtual Experiment 1.2

(a) At y=0 m (b) At y=0.5m (c) At y=1 m

Figure B.9: True Temperature XZ Planes of Virtual Experiment 1.2

B.4. Virtual Experiment 2: COMSOL Set-up
The domain specifications remain the same as Virtual Reality-3 (B.1) generating smooth temperature
variations in most of the domain. In this experiment, there are two Gaussian heat sources (q̇1 =

125 · exp[− (x−0.5)2+(y−0.25)2+(z−0.75)2

0.0034 ] Wm3 and q̇2 = 25 · exp[− (x−0)2+(y−0)2+(z−0)2

0.0208 ] Wm3 ) present within
the domain that result in sudden spikes in an otherwise smooth temperature distribution.
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B.4.1. Physics and Study
The settings for Physics and Study remain the same as mentioned previously. Gaussian heat sources
are added as Variable with a unique variable (Q1 and Q2) name under the option Definitions. The heat
sources are then inputted with their unique variable name in the user-defined General Source option in
the Heat Source settings available in Domain drop-down menu under the Physics tab.

B.4.2. Mesh Refinement Study
The sizes of the mesh elements for different refinement types (e.g., coarse, fine, finer) continue to remain
the same as defined in Table B.1, and these values are provided as input to COMSOL through a text
file using the Load from File option in Settings for Parametric Sweep.

Temperature values are measured as the points near the boundaries and heat source locations as
showcased in Fig B.10. MRS Results are presented in Table B.4. The results suggest that the mesh
converges everywhere with an Extremely fine element size, except near the heat source locations. Further
refinement will increase computational expense, and so the mesh refinement is not pursued beyond this
stage for achieving grid independence. Hence, Extremely fine element size is chosen for this experiment.

Figure B.10: Temperature measurement points in the domain for Mesh Refinement Study of Virtual Experiment 2 (a)
3D view (b) 2D view

Mesh Temperature (degC) at
(0.05,0.05,0.05)

Temperature (degC) at
(0.5,0.25,0.75)

Temperature (degC) at
(0.5,0.5,0.5)

Temperature (degC) at
(0.95,0.95,0.95)

Coarser 58.3 59.8 54.9 54.1
Coarse 58.2 59.2 54.8 54.1
Normal 58.8 60.0 54.8 53.9
Fine 59.0 61.3 54.7 53.9
Finer 59.3 61.7 54.7 54.0
Extra fine 59.4 62.5 54.7 54.0
Extremely fine 59.5 62.8 54.7 54.0

Table B.4: MRS Results for Virtual Experiment 2

B.4.3. Additional Results: YZ and XZ temperature planes

(a) At x=0 m (b) At x= 0.5m (c) At x=1 m

Figure B.11: YZ Temperature Plots of Virtual Experiment 2.
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(a) At y=0 m (b) At y= 0.25m

(c) At y=0.5 m (d) At y=1 m

Figure B.12: XZ Temperature Plots of Virtual Experiment 2.

B.5. Virtual Experiment 3.1: COMSOL Set-up
In this experiment, there is laminar fluid flow involved and there is no separate heat generation. The
domain specifications remain the same as Virtual Reality-3 (B.1), except the medium of fluid. In this
experiment,

• Medium: Air at 20◦C
• Velocity: 0.0012 m

s

The geometry is modified from VR-3 to include fluid inlet and outlet as shown in Fig B.13. The setup
is kept simple as the concepts are still exploratory. The Inlet and Outlets are built as Cylinders in
COMSOL. Their dimension and location specifications are as follows:

• Inlet: Radius: 0.05m and Height: 0.4m (along the z-axis) positioned at coordinates (0.5, 0.5,
-0.35).

• Outlet 1: Radius: 0.05m and Height: 0.4m (along the z-axis) positioned at coordinates (0.25,
0.5, 0.95).

• Outlet 2: Radius: 0.05m and Height: 0.4m (along the z-axis) positioned at coordinates (0.75,
0.5, 0.95).

Figure B.13: The (extended-) domain geometry in Virtual Experiments 3.1 and 3.2 to include fluid flow.
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B.5.1. Physics and Study
The settings for Study remain the same as mentioned previously. Laminar Flow interface is added along
with Heat Transfer in Fluids interface in Physics. The walls along with the interior walls should be
supplied with No-slip boundary condition. Velocity is inputted in Inlet settings. Pressure is given as a
boundary condition in Outlet settings.

B.5.2. Mesh Refinement Study
The sizes of the mesh elements for different refinement types (e.g., coarse, fine, finer) are defined in
Table B.5, and these values are provided as input to COMSOL through a text file under the Global
Parameters section.

Mesh Max. element size Min. element size Max. element
growth rate

Curvature factor Resolution of
Narrow Regions

Coarser 0.224 0.048 1.70 0.80 0.30
Coarse 0.164 0.030 1.60 0.70 0.40
Normal 0.124 0.022 1.50 0.60 0.50
Fine 0.10 0.012 1.45 0.50 0.60
Finer 0.082 0.0054 1.40 0.40 0.70
Extra fine 0.042 0.0018 1.35 0.30 0.85
Extremely fine 0.020 0.00022 1.30 0.20 1.00

Table B.5: Different mesh input values for MRS for Virtual Experiment 3.1 and 3.2

MRS Results are presented in Table B.6. The results suggest that the mesh converges with a Finer
element size.

Mesh Temperature (degC) at
(0.5,0.5,0.1)

Temperature (degC) at
(0.25,0.5,0.9)

Temperature (degC) at
(0.75,0.5,0.9)

Temperature (degC) at
(0.5,0.5,0.5)

Temperature (degC) at
(0.5,0.1,0.5)

Temperature (degC) at
(0.5,0.9,0.5)

Coarser 51.1 51.1 51.1 53.5 60.6 60.5
Coarse 51.1 51.1 51.1 53.6 60.7 60.7
Normal 51.1 51.1 51.1 53.7 60.8 60.8
Fine 51.1 51.1 51.1 53.6 60.8 60.8
Finer 51.0 51.1 51.1 53.6 60.8 60.8
Extra fine 51.0 51.1 51.1 53.6 60.8 60.8
Extremely fine 51.0 51.1 51.1 53.6 60.8 60.8

Table B.6: Mesh Refinement Study Results for Virtual Experiment 3.1

B.5.3. Additional Results 1: XZ velocity planes

(a) (b)

Figure B.14: XZ Velocity Plot of Virtual Experiment 3.1 at y=0.5m (a) extended domain (b) cropped to the main
domain of interest
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B.5.4. Additional Results 2: XZ q̇conv plane

Figure B.15: XZ Plot of Convective Heat Source Term (Qconv = ρairCair(v⃗ · ∇T )) at y=0.5m for Virtual Experiment
3.1

B.5.5. Additional Results 3: YZ and XZ temperature planes

(a) At x=0 m (b) At x=0.5m (c) At x=1 m

Figure B.16: YZ Temperature Plots of Virtual Experiment 3.1.

(a) At y=0 m (b) At y=0.5m (c) At y=1 m

Figure B.17: XZ Temperature Plots of Virtual Experiment 3.1.

B.6. Virtual Experiment 3.2: COMSOL Set-up
The domain geometry and specifications are the same as in Virtual Experiment 3.1, except for the
medium of fluid. In this experiment, the Medium is Water at 20◦C.

B.6.1. Physics and Study
The settings for Study, Physics interfaces along with the boundary conditions remain the same as in
Virtual Experiment 3.1.
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B.6.2. Mesh Refinement Study
The sizes of the mesh elements for different refinement types (e.g., coarse, fine, finer) are defined in
Table B.5, and these values are provided as input to COMSOL through a text file under the Global
Parameters section.

MRS Results are presented in Table B.7. The results suggest that the mesh converges with an
Extremely fine element size. Further refinement is not pursued to avoid computational expenses.

Mesh Temperature (degC) at
(0.5,0.5,0.1)

Temperature (degC) at
(0.25,0.5,0.9)

Temperature (degC) at
(0.75,0.5,0.9)

Temperature (degC) at
(0.5,0.5,0.5)

Temperature (degC) at
(0.5,0.1,0.5)

Temperature (degC) at
(0.5,0.9,0.5)

Coarser 28.5 33.6 33.6 33.4 36.0 35.9
Coarse 28.3 33.5 33.6 32.8 37.0 36.3
Normal 28.0 33.6 33.6 32.8 37.8 37.6
Fine 28.0 33.7 33.7 31.8 40.6 39.4
Finer 27.8 33.7 33.7 31.4 40.7 41.3
Extra fine 27.5 33.6 33.6 29.6 46.3 46.3
Extremely fine 27.2 33.6 33.7 27.8 47.0 47.0

Table B.7: Mesh Refinement Study Results for Virtual Experiment 3.2

B.6.3. Additional Results 1: XZ velocity planes

Figure B.18: XZ Plane Velocity Plot at y=0.5m for Virtual Experiment 3.2

B.6.4. Additional Results 2: XZ q̇conv plane

Figure B.19: XZ Plot of Convective Heat Source Term (Qconv = ρwaterCwater(v⃗ · ∇T )) at y=0.5m for Virtual
Experiment 3.1



B.6. Virtual Experiment 3.2: COMSOL Set-up 95

B.6.5. Additional Results 3: YZ and XZ temperature planes

(a) At x=0 m (b) At x=0.5m (c) At x=1 m

Figure B.20: YZ Temperature Plots of Virtual Experiment 3.2

(a) At y=0 m (b) At y=0.5m (c) At y=1 m

Figure B.21: XZ Temperature Plots of Virtual Experiment 3.2



C
Supplementary Results

C.1. Virtual Reality-3 (VR-3)
VR-3 Results in [11] were not presented in non-dimensional form. Hence, for an accurate comparison,
here we have included non-dimensionalized results of VR-3. The results were achieved with the same
cut-configuration (0-cut on the source planes located at d=2m) as mentioned in [11].

(a) True Plot at z=0 m (b) Predicted Temperature at z=0m (c) Absolute Error Plot at z=0m

(d) True Plot at z=0.5 m (e) Predicted Temperature at z=0.5m (f) Absolute Error Plot at z=0.5m

Figure C.1: True and Predicted Normalized Temperature XY Planes along with their Absolute Error plots for Virtual
Reality 3 (VR3)

The minimum MAE obtained was 0.015. The absolute error was noted to be higher towards the

96
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boundaries of the domain, in the range of [0.03-0.05].

C.2. Virtual Experiment 2 (VE 2)
C.2.1. Predictions: Generic Framework

(a) True field at x=0 m (b) Predicted temperature at x=0 m (c) Absolute error plot at x=0 m

(d) True field at x=0.5m (e) Predicted temperature at x=0.5m (f) Absolute error plot at x=0.5 m

(g) True field at x=1 m (h) Predicted temperature at x=1 m (i) Absolute error plot at x=1 m

Figure C.2: Generic Framework assisted predictions: YZ Temperature Plots of Virtual Experiment 2 and respective
error plots.
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(a) True field at y=0 m (b) Predicted temperature at y=0 m (c) Absolute error plot at y=0 m

(d) True field at y=0.25m (e) Predicted temperature at y=0.25m (f) Absolute error plot at y=0.25 m

(g) True field at y=0.5 m (h) Predicted temperature at y=0.5 m (i) Absolute error plot at y=0.5 m

(j) True field at y=1 m (k) Predicted temperature at y=1 m (l) Absolute error plot at y=1 m

Figure C.3: Generic Framework assisted predictions: XZ Temperature Plots of Virtual Experiment 2 and respective
error plots.
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C.2.2. Predictions: Partition Framework (Exact Solution)

(a) True field at x=0 m (b) Predicted temperature at x=0 m (c) Absolute error plot at x=0 m

(d) True field at x=0.5m (e) Predicted temperature at x=0.5m (f) Absolute error plot at x=0.5 m

(g) True field at x=1 m (h) Predicted temperature at x=1 m (i) Absolute error plot at x=1 m

Figure C.4: Partition Framework-Exact Solution assisted predictions: YZ Temperature Plots of Virtual Experiment 2
and respective error plots.
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C.2.3. Predictions: Partition Framework (Least Squares Solution)

(a) True field at x=0 m (b) Predicted temperature at x=0 m (c) Absolute error plot at x=0 m

(d) True field at x=0.5m (e) Predicted temperature at x=0.5m (f) Absolute error plot at x=0.5 m

(g) True field at x=1 m (h) Predicted temperature at x=1 m (i) Absolute error plot at x=1 m

Figure C.5: Partition Framework-Least Squares Solution assisted predictions: YZ Temperature Plots of Virtual
Experiment 2 and respective temperature error plots.
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C.3. Virtual Experiment 3.1
C.3.1. Predictions: Generic Framework

(a) True field at x=0 m (b) Predicted temperature at x=0 m (c) Absolute error plot at x=0 m

(d) True field at x=0.5m (e) Predicted temperature at x=0.5m (f) Absolute error plot at x=0.5 m

(g) True field at x=1 m (h) Predicted temperature at x=1 m (i) Absolute error plot at x=1m

Figure C.6: Generic Framework assisted predictions: YZ Temperature Plots of Virtual Experiment 3.1 and respective
temperature error plots.
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(a) True field at y=0 m (b) Predicted temperature at y=0 m (c) Absolute error plot at y=0 m

(d) True field at y=0.5m (e) Predicted temperature at y=0.5m (f) Absolute error plot at y=0.5 m

(g) True field at y=1 m (h) Predicted temperature at y=1 m (i) Absolute error plot at y=1m

Figure C.7: Generic Framework assisted predictions: XZ Temperature Plots of Virtual Experiment 3.1 and respective
temperature error plots.



C.3. Virtual Experiment 3.1 103

C.3.2. Predictions: Partition Framework (Exact Solution)

(a) True field at x=0 m (b) Predicted temperature at x=0 m (c) Absolute error plot at x=0 m

(d) True field at x=0.5m (e) Predicted temperature at x=0.5m (f) Absolute error plot at x=0.5 m

(g) True field at x=1 m (h) Predicted temperature at x=1 m (i) Absolute error plot at x=1m

Figure C.8: Partition Framework-Exact Solution assisted predictions: YZ Temperature Plots of Virtual Experiment
3.1 and respective temperature error plots.
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C.3.3. Predictions: PSF (Least Squares Solution)

(a) True field at x=0 m (b) Predicted temperature at x=0 m (c) Absolute error plot at x=0 m

(d) True field at x=0.5m (e) Predicted temperature at x=0.5m (f) Absolute error plot at x=0.5 m

(g) True field at x=1 m (h) Predicted temperature at x=1 m (i) Absolute error plot at x=1m

Figure C.9: Partition Framework-Least Squares Solution assisted predictions: YZ Temperature Plots of Virtual
Experiment 3.1 and respective temperature error plots.
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C.4. Virtual Experiment 3.2
C.4.1. Predictions: Generic Framework

(a) True field at x=0 m (b) Predicted temperature at x=0 m (c) Absolute error plot at x=0 m

(d) True field at x=0.5m (e) Predicted temperature at x=0.5m (f) Absolute error plot at x=0.5 m

(g) True field at x=1 m (h) Predicted temperature at x=1 m (i) Absolute error plot at x=1m

Figure C.10: Generic Framework assisted predictions: YZ Temperature Plots of Virtual Experiment 3.2 and respective
temperature error plots.
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(a) True field at y=0 m (b) Predicted temperature at y=0 m (c) Absolute error plot at y=0 m

(d) True field at y=0.5m (e) Predicted temperature at y=0.5m (f) Absolute error plot at y=0.5 m

(g) True field at y=1 m (h) Predicted temperature at y=1 m (i) Absolute error plot at y=1m

Figure C.11: Generic Framework assisted predictions: XZ Temperature Plots of Virtual Experiment 3.2 and respective
temperature error plots.
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C.4.2. Predictions: Partition Framework (Least Squares Solution)

(a) True field at x=0 m (b) Predicted temperature at x=0 m (c) Absolute error plot at x=0 m

(d) True field at x=0.5m (e) Predicted temperature at x=0.5m (f) Absolute error plot at x=0.5 m

(g) True field at x=1 m (h) Predicted temperature at x=1 m (i) Absolute error plot at x=1m

Figure C.12: Partition Framework assisted predictions: YZ Temperature Plots of Virtual Experiment 3.2 and
respective temperature error plots.
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C.5. Generic Framework Results for Hypothetical Fluids
To investigate the influence of convective heat source intensity (q̇conv) on GSF predictions, various
hypothetical fluids were generated with different Péclet Numbers while maintaining a constant velocity
across all cases.

Fluid Péclet Number (Pe) MAE
Air 57 0.027

Hypothetical Fluid 1 665 0.070
Hypothetical Fluid 2 1330 0.080
Hypothetical Fluid 3 1560 0.081
Hypothetical Fluid 4 2400 0.091

Water 8200 0.116

Table C.1: Generic Framework: varying MAE with changing Péclet Number in the domain of interest.
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