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SAMENVATTING 

In de huidige studie is een wiskundig model (ESMOR) ontwikkeld voor de 
morfologische ontwikkelingen in estuaria. Het model is bedoeld voor goed 
gemengde estuaria aangezien het effect van dichtheidstromen niet in rekening 
is gebracht. Verder zijn de invloeden van de wind en van korte golven 
verwaarloosd. 

Het model ESMOR bestaat uit drie deelmodellen, namelijk het stromingsmodel, 
het sedimenttransport-model en het bodemniveau-model. Het stromingsmodel is 
opgebouwd uit het bestaande twee-dimensionale getij stromingsmodel DUCHESS, 
een eenvoudig snelheidsprofiel model en een vereenvoudigd secundair-
stromingsmodel. Het sedimenttransport is verdeeld in bodemtransport en 
zwevend transport. Het bodemtransport is berekend met een transportformule 
terwijl voor het zwevende transport een diepte-geintegreerd model is 
toegepast. Het bodemniveau is berekend uit het totale sedimenttransport-veld 
in een getijperiode gebaseerd op de massabalans. 

Speciale aandacht is geschonken aan het diepte-geïntegreerde modelleren van 
het zwevende sedimenttransport. Het model is afgeleid uit een asymptotische 
oplossing van de convectie-diffusie vergelijking zoals het model van 
Galappatti. De theorie van Galappatti is gegeneraliseerd en verbeterd. 

Een theoretische analyse is uitgevoerd op het diepte-geintegreerde model 
voor het zwevende sedimenttransport. Aandacht is vooral geschonken aan de 
convergentie van de asymptotische oplossing van de convectie-diffusie 
vergelijking en het morfologische gedrag van de verschillende modellen. Voor 
een paar geschematiseerde gevallen zijn de verschillende diepte-
geintegreerde modellen vergeleken met het exacte model. Een goed inzicht is 
verkregen in de geldigheid en de toepasbaarheid van het model. 

Het model ESMOR is geverifieerd door het met het meer geavanceerde volledige 
drie-dimensionale model SUTRENCH te vergelijken. Voor het toetsgeval is 
goede overeenkomst tussen de twee modellen verkregen. Verder levert de 
vergelijking tussen de twee modellen ook een toets voor de resultaten van de 
theoretische analyse. 

Tenslotte is het model ESMOR toegepast voor lange termijn morfologische 
berekeningen voor een gebied in het Yantze estuarium. Ondanks de vele grote 
moeilijkheden zijn bemoedigende resultaten bereikt. 
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ABSTRACT 

In the present study a mathematical model has been developed for the 
morphological development in estuaries (ESMOR). The model is aimed for well 
mixed estuaries since the density flow effect is not taken into account. 
Further the influence of the wind and short waves has been neglected. 

The ESMOR model consists of three submodels, viz. the flow model, the 
sediment transport model and the bed level model. The flow model is 
constructed from the existing two-dimensional tidal flow model DUCHESS, a 
simple velocity profile model, and a simplified secondary flow model. The 
sediment transport is divided into bed load and suspended load transport. 
The bed load transport is calculated with a transport formula while the 
suspended load transport is calculated from a depth-integrated model. The 
bed level change is calculated from the total sediment transport field in a 
tidal period based on the mass balance. 

Special attention has been paid to the depth-integrated modelling of the 
suspended sediment transport. The model is derived from an asymptotic 
solution of the convection-diffusion equation following the theory of 
Galappatti. The theory of Galappatti has been generalized and improved. 

A theoretical analysis has been carried out on the depth-integrated model 
for suspended sediment transport. Special attention has been paid to the 
convergence of the asymptotic solution of the convection-diffusion equation 
and the morphological behaviour of the different models. For some 
schematized cases different depth-integrated models have been compared with 
the exact model. Good insight has been gained into the validity and 
applicability of the model. 

The ESMOR model has been verified by comparing it with a more sophisticated 
fully three-dimensional model (SUTRENCH). For the test case good agreement 
has been obtained between the two models. Further the comparison provides 
also a test for the results from the theoretical analysis. 

The ESMOR model has been applied for long terra morphological prediction in a 
part of the Yantze estuary. Despite a lot of great difficulties some 
encouraging results have been achieved. 



-Vlll-

ACKNOWLEDGEMENT 

I am very grateful to Dr. H.J. de Vriend and Dr. J.S. Ribberink for their 
good advises, constructive comments on the work and many helpful 
discussions. I wish to thank Dr. L.C. van Rijn for providing information of 
the SUTRENCH computation. 

The field data used to apply the model in the Yantze estuary were- made 
available by the East China Investigation and Design Institute in Shanghai, 
Ministry of Water Resources and Electric Power. I wish to express my 
gratitude to the staff of this institute for their support and collaboration 
during my stay in Shanghai. 

I am indebted to Dr. G.J.H. van Nes for helping me making the figures 
8.11...8.16. 

The present study has been carried out at the Hydraulic Engineering 
Department of the Faculty of Civil Engineering, Delft University of 
Technology. I wish to thank De Stichting 'Het Laminga Fonds' for financing 
the main part of the study. 



-1-

Chapter 1 INTRODUCTION 

Estuaries are places where rivers meet the sea. Because of their special 
geographical positions most estuaries are very important for mankind. They 
provide water and possibilities for navigation and waste discharge, all 
economically important. It is certainly not a coincidence that many big 
cities are located at large estuaries. 

Estuaries are continually under morphological development, including sudden 
changes and gradual evolution. Sudden changes may be caused by e.g. tectonic 
movements or human interference such as dredging and land reclamation. 
Gradual evolution is the natural near-equilibrium process. In the present 
study only the gradual morphological development will be considered. 

Morphological development in estuaries can have beneficial as well as 
adverse effects. Sedimentation of estuaries has provided a lot of fertile 
land, but, on the other hand, sedimentation of the channels in estuaries can 
cause serious problems to navigation. Large amounts of money are spent by 
harbour authorities all over the world for maintenance dredging of 
navigation channels. When these activities are not effective, the harbour 
may decline in importance or even be abandoned altogether. It is therefore 
very important to be able to predict the morphological development, under 
natural conditions as well as due to human interference. However, a 
satisfactory technique to do this is not yet available. In fact, 
morphological modelling for estuaries, especially the mathematical 
modelling, is still in a early stage of development and requires a lot of 
further research. 

The morphological development of an estuary is a very complicated physical 
process. Morphological change is a result of the interaction between the 
water movement and the bed topography. Any influence on the water movement 
in the estuary will also induce morphological development. If the estuary is 
considered as a water body, then all these influences can be detected at the 
boundaries of this water body(see fig.1.1): at the upstream boundary the 
river inflow, at downstream boundary the saline water intrusion and the 
tidal motion, at the water surface the wind which generates waves and 



-2-

Fig.1.1 An illustration of an estuary and the influences 
on the morphological development in it. 

exerts forces on the flow, and the bed forms which induce resistance. All 
these influences together determine the hydraulic conditions in the estuary 
and thereby the morphological process. The morphological development in an 
estuary is also influenced by the sediment influx from the upstream river 
and the sediment exchange with the "downstream" sea, and by the properties 
of the sediment. After all, morphological changes, erosion and 
sedimentation, are results of non-uniformity of the sediment transport. 
Processes within the estuary, which can cause changes of the sediment 
properties, will thus also influence the morphological development. An ideal 
morphological model should take all these factors into account. 

Due to the insufficient understanding of the processes and the lack of 
sufficient facilities, developing such an ideal morphological model is still 
hardly possible. Simplifications are virtually inevitable, and consequently 
the model can only be applied to limited classes of problems. In the present 
study a mathematical model is developed for the morphological development in 
estuaries (ESMOR). In this model the density flow effect and the influence 
of short waves are not taken into account. Therefore the model will only be 
applicable to well-mixed estuaries. Furthermore the flocculation of cohesive 
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sediment particles is not included in the model, so the model cannot be 
applied for regions where flocculation is important. 

In the following chapter the general aspects of the model are discussed. The 
structure of the model is outlined, and the state of art of the subject is 
described. The two most important submodels in the morphological model, viz. 
the flow model and the sediment transport model, are described in chapter 3 
and chapter 4 respectively. In chapter 4 special attention is paid to the 
modelling of the suspended sediment transport. The approach is an extension 
of the model of Galappatti (1983) (also see Galappatti and Vreugdenhil, 
1985). Not only is his two-dimensional model extended to three dimensions 
but also the basic theory on the model has been generalized. The theory 
developed in chapter 4 is studied analytically in chapter 5. From this 
analysis a good insight into the validity and applicability of the suspended 
sediment transport model has been gained. In chapter 6 the numerical aspects 
of the model are discussed. The ESMOR model is verified in chapter 7 by 
comparing it with a more sophisticated fully three-dimensional model. 
Besides, the comparison provides a test for the results from the theoretical 
analysis in chapter 5. Chapter 8 describes a practical application of the 
ESMOR model to the Yantze estuary, which, despite a lot of great 
difficulties, gives some encouraging results. Finally the conclusions from 
the present study are summarized in chapter 9. 
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Chapter 2 GENERAL ASPECTS OF THE MODEL 

2.1 Structure of the Model 

The morphological process is in fact a mechanical process if only non-
cohesive sediment is considered. The whole process could thus be described 
completely by momentum and mass balances, applied to the water as well as to 
every sediment particle. The dependent variables would then be the flow 
variables and the positions of all sediment particles in motion. It is 
easily understood that this approach is unrealistic. In fact the 
investigation of the motion of a single particle only makes sense to obtain 
more insight into the sediment transport process(see e.g. van Rijn, 1984a). 
In morphological computations the dependent variables describing the process 
are the flow variables, the sediment transport and the bed level. In that 
case, the momentum balance is only applied to determine the flow field. This 
schematisation is applied in all mathematical models for morphology so far. 

The three groups of dependent variables, related to the flow, sediment 
transport and the bed level also depend on each other. When the system is 
not in equilibrium all these variables are continually changing in time. The 
water motion gives rise to sediment transport and when the sediment 
transport is not uniform, the bed level will change. The changed bed level 
will modify the flow field and hence the sediment transport pattern. In this 
way the whole system is always in development. Therefore a complete 
mathematical model for morphological development should be a set of coupled 
equations, the solution of which yields the time dependent flow field, the 
sediment transport field and the bed level (see fig.2.1). 

INITIAL STATE 

FLOW FIELD 
SEDIMENT TRANSPORT 

BEDLEVEL | 
Fig.2.1 Computation procedure of a 

morphological model without 
NEXT STEP simplifications. 
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Because of its complexity this approach has rarely been adopted. In most 
morphological models simplifications are made on the basis of two important 
assumptions. One is the low concentration assumption, stating that the 
influence of the suspended sediment on the flow can be neglected as long as 
the sediment concentration is not too high. The other one is the assumption 
of quasi-steadiness (de Vries 1959, 1965): from an analysis of the 
characteristics of the system it can be shown that for small Froude number 
the flow computation and the bed level computation can be carried out 
separately. This means that during the flow computation the bed level can be 
considered as invariant and during the bed level computation the flow is 
considered as invariant. With these two assumptions the morphological model 
can be schematized as in fig.2.2. 

INITIAL STATE 

■ 

FLOW FIELD 

SED. TRANSP. 

BED LEVEL 

NEXT STE 

■ 

P 
Fig.2.2 Computation procedure of a 

morphological model in quasi-
steady flows. 

In general the time step for the bed level computation can be much larger 
than the time step in the flow computation. In the case of quasi-steady flow 
this is easily realized by assuming that the flow field does not change 
during the time step of the bed level computation. In the case of tidal flow 
it is often assumed that the flow field and the sediment transport field 
remain periodic during several tidal periods. This means that the time step 
for the bed level is equal to a number of tidal periods (see de Vriend, 
1985). Furthermore, the bed level change after one time step is often small 
so that the modification of the flow field is so small that a simple flow 
adjustment model can be applied. An often used method is the continuity 
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correction method (Hauguel, 1978, de Vriend, 1985). In this method the 
distribution of the water discharge and the water level is assumed to be the 
same as those in the previous step (or tidal period). The water depth and 
the velocity field change only due to the bed level change. Hauguel (1978) 
developed a more sophisticated method in which the difference between the 
new and the old flow field is assumed to be a potential flow field. This 
method is more laborious than the continuity correction method but still 
much simpler than a completely new tidal flow computation. The simplified 
flow adjustment can be applied a number of times, depending on the rate of 
bed level change. When the bed level change exceeds some limit, the complete 
flow computation has to be carried out again. In fig.2.3 the morphological 
model is outlined for tidal flow situations. 

INITIAL STATE 

CURRENT FIELD IN 
ONE TIDAL PERIOD 

VELOCITY FIELD 

I CONCENTRATION FIELD 

I TRANSPORT FIELD 

| UPDATE TOTAL TRANSPORT 

— - T — 
BED LEVEL 

Fig.2.3 Computation procedure'of a morphological model 
in tidal regions. 
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2.2 State of the Art 

Mathematical modelling of morphological processes in estuaries is still in 
an early stage of development. Due to the amount of computational effort 
involved, the development of morphological computation methods has been 
dependent on the development of computers. It was only a few decades ago 
that the first one-dimensional morphological models, with quasi-steady flow 
and equilibrium sediment transport formulae were applied to river 
engineering problems (de Vries, 1959). Morphological computations for 
estuaries have hardly been carried out so far. 

As outlined in the previous section a mathematical model for morphological 
processes consists of a number of submodels. Therefore, reviews of previous 
work are given separately for each of the submodels and for the 
morphological model as a whole. 

Flow Model 

The many flow models developed for estuaries can be divided into two large 
groups, viz. density flow models and models without density flow effects. 
Only the last group is considered here since the present study only concerns 
well-mixed estuaries. 

Flow models can also be divided into one-dimensional, two-dimensional and 
three-dimensional models. The one-dimensional models such as the FLOWS model 
developed by Delft University of Technology (DUT, 1983) and the two-
dimensional models such as WAQUA (Stelling, 1983) and DUCHESS (DUT, 1986, 
1987) have already been operational for application as well as research 
purposes for some time. Nowadays three-dimensional flow models start also to 
be operational. 

The one or two-dimensional models only describe the depth-averaged flow 
fields. Velocity profile models are needed to calculate the vertical 
distribution of the flow velocity. The simplest profile model is assuming 
the logarithmic velocity profile. This model has been widely applied 
(Galappatti and Vreugdenhil, 1985, van Rijn, 1987). A more sophisticated 
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model for deriving velocity profiles from the depth averaged flow field is 
given by Davies (1986). 

The three-dimensional character of the flow field can be improved by adding 
the secondary flow to a depth averaged two-dimensional model. This has been 
particularly successful for describing flows in river bends (de Vriend, 
1976, 1977, 1981; Kalkwijk and de Vriend, 1980, Olesen, 1987). For the 
secondary flow in estuaries a model has been developed by Kalkwijk and Booij 
(1986, also see Booij and Kalkwijk, 1982). 

Sediment Transport Model 

The sediment transport problem has been studied for a long time. As early as 
1879, Duboys published a sediment transport formula. Many transport formulae 
can now be found in the literature. These transport formulae were derived 
for the equilibrium transport rate in a uniform flow. However, when 
suspended load transport is important the sediment transport rate is in 
general not equal to the equilibrium value. Therefore non-equilibrium 
transport models are needed for suspended load transport. 

The suspended sediment concentration in a flow is described by a convection-
diffusion equation. Based on direct numerical solution of this equation two-
dimensional vertical (2DV) models (e.g. Kerssens, 1974) and fully three-
dimensional (3D) models (van Rijn, 1987) are developed. Another approach is 
depth-integrated modelling. This kind of models is based on the solution of 
depth-integrated convection-diffusion equation (Lin et al, 1983, Lin and 
Shen, 1984). In these models empirical relations are needed, especially for 
the sediment exchange rate between the bed and the flow. 

Galappatti(1983, also see Galappatti and Vreugdenhil, 1985) presented 
another approach for depth-integrated modelling of suspended transport. An 
equation for the depth-averaged concentration is derived from an asymptotic 
solution of the convection-diffusion equation. This approach has the 
advantage of being flexible with respect to the bed boundary condition and 
of containing no extra empirical parameters in the depth-averaged 
concentration equation. 
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Bed Level Model 

When the sediment transport field is known the bed level can be calculated 
from the mass-balance equation for sediment. The major problem, in this 
submodel is the numerical solution technique. For the one-dimensional case 
the problem has been thoroughly analysed by Vreugdenhil (1982). A numerical 
diffusion term appears to be necessary to maintain stability of the 
computation when the equation is solved explicitly and the equilibrium 
transport model is applied (Vreugdenhil and de Vries, 1967). Physically it 
means that a bed gradient dependent transport has to be included. The same 
applies to two-dimensional problems (de Vriend, 1986, Olesen, 1987). 

Morphological Model as a Whole 

Depending on how the bed topography is schematized, a morphological model 
can either be one-dimensional or two-dimensional. Nowadays in river 
engineering one-dimensional models are commonly used whereas two-dimensional 
models are still in a developing stage. 

Distinction should also be made between models for non-tidal rivers and 
models for tidal regions. A recently developed two-dimensional model for 
non-tidal river bends is due to Olesen (1987, also see Struiksma et al, 
1985). For tidal regions only "initial models", predicting the initial bed 
level change rate, are widely applied in practice (Holz and Crotogino, 1984, 
McAnaly, 1986, van Rijn, 1987). One of the rare examples of long term 
morphological .predictions in tidal regions is reported by Hauguel (1978). 

Concerning the theoretical aspects the behaviour of the one-dimensional 
morphological models, at least those models with quasi-steady flow and 
equilibrium transport model, have been well understood (de Vries, 1981). 
However, the behaviour of the two-dimensional models is still far from 
understood. The theoretical analysis by de Vriend (1984, 1986) is the 
pioneering work in this area. Much remains to be done in order to gain a 
thorough understanding of the problem. 
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Chapter 3 THE FLOW MODEL 

3.1 Introduction 

The flow in an estuary is a very complicated physical phenomenon. It is 
unsteady since it is influenced by the upstream river flow and the tidal 
motion in the surrounding sea or ocean. The geometry of an estuary is often 
such that the geostrophic forces and wind can have a significant influence 
on the flow, and the flow must be considered as three-dimensional. Further 
the density flow effect caused by the density difference between the "saline 
sea water and the fresh river water is often important. It is unrealistic at 
present to include all these aspects in the morphological model to be 
developed. Only the most important aspects can be taken into account. 

In the preparatory study (Wang, 1985) the question which aspects should be 
taken into account in the present study was investigated. It was decided to 
neglect the influence of density flow and short waves. This means that the 
model will only be applicable to well-mixed estuaries. 

It is not the intention of this study to carry out fundamental 
investigations on the flow or to develop new flow models. Therefore the flow 
model is constructed from existing models. 

The flow model has to satisfy the following requirements. 

* It has to be able to predict the flow field accurately enough for 
further use in morphological computations. The unsteady and three- , 
dimensional character should thus be taken into account. 

* It has to be a two-dimensional model based on some similarity 
assumptions. This is needed because a depth-integrated model will be 
applied to describe the suspended sediment transport. A depth-
integrated model should only be applied if the velocity profiles can be 
described by a small number of parameters. 

* It has to be available and not too expensive to use. 
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Based on these considerations the flow model has been constructed from two 
components, a main flow model and a secondary flow model. The main flow 
model consist of a tidal flow model and a simple profile model for the 
velocity distribution. For the tidal flow model the model DUCHESS developed 
at the Delft University of Technology is chosen. For the secondary flow 
model the approach of Kalkwijk and Booij (1986) is applied. It is assumed 
that the secondary flow has no influence on the main flow. The main and the 
secondary flow models are briefly described in the next two sections. 

3.2 Main flow model 

The depth-averaged flow field is calculated with the DUCHESS model-. This 
model is based on the two-dimensional shallow water equations. 

ë + T^ + TT 7 " ° <3-D 
dt dx dy 
3q. 
a r + k[\ D5) + fet/ q

x) - fc(DE fx{rr}) 
a [_ a fqxïl *H g Q qx . [DE f - f ^ y i + g D f + —2-2^ - fq = 0 (3-2) 
3yl 3y(.D }) & dx C

2
D

2 M y 

aq a r q _ y + i at a Ï(V ï) * fe£ v) - fe(» fe£B 
* f™ i J M l . „ „ « H . g Q qy ay[DE feM) + gD Sjl + ~^f + fqx = ° (3"2) 

C D 

Therein H = water level, 
q - discharge per unit width in x-direction, 
q - discharge per unit width in y-direction, 

q + q x y Q = 
t - t ime, 

x ,y = h o r i z o n t a l coord ina tes , 
g - g rav i ty acce l e ra t ion , 
C = Chezy coe f f i c i en t , 
f = c o e f f i c i e n t for geostrophic acce l e r a t i on , 
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D = water depth, 
E ■= horizontal diffusion coefficient. 

Equation (3-1) is the continuity equation and equations (3-2) and (3-3) are 
the momentum equations in x- and y- directions respectively. 

The Alternating Direction Implicit (ADI) method with a staggered grid (see 
fig.3.1) is applied for the numerical solution of equations (3-1) through 
(3-3). More information on the DUCHESS model is given in DUT(1986, 1987). 

m - - © - - © - - © - - © - - © - - © - - © - - © - - © 

«> O <> l> <> <! - -<> <> l> <l 

<>- - < > - - ( ! - " ( I - - < ! - - < > - - 0 - - 0 - - ( I - - ( I 

<>- -< ) <> <) — <> — <> — (> — O — <l — <) 

o - - o - - o - - o - - o - - o - - o - - o - - o - - o 

O - - O - - O - - O - - O - - O - - 0 - - O - - O - - 0 

h point 

q p o i n t x 

y point 

Fig.3.1 The staggered grid 

The DUCHESS model calculates only the water level and the current field 
(averaged velocity * water depth). For the vertical velocity distribution a 
simple profile model is applied, i.e. the velocity in the direction of the 
current is assumed to be distributed in the vertical according to the 
logarithmic law. Based on the logarithmic velocity distribution the 
normalized velocity profile above a distance z from the bed (fig.3.2) is 
derived by Galappatti(1983). 

p(f)..- — = 1 +■ rrKS-^-1] U K S 
(3-4) 

where B — z /h, a 
h = D - z , a 
u - velocity in the main flow direction, 

u = mean flow velocity above the bed boundary, 
r = (z -z b -z a ) /h , 
z. = bed level. b 

It should, be noted that by definition 
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J p<f) dr = ï 
o 

(3-5) 

This simple profile model is only applicable for gradually varying flow. 

^ '////////////////A*//////// 
Definition sketch 

■'//////////////////////////, 

Main flow velocity 

__ , — £ = ° 
■'///////////A?////////////, 
Sec, flow velocity 

Fig.3.2 Definition sketch and velocity profiles 

3.3 The Secondary Flow Model 

The secondary flow is the difference between the actual flow and the main 
flow. It is assumed that the secondary flow component in the direction of 
the depth averaged flow can be neglected. Thus the horizontal velocity 
component perpendicular to the direction of the depth averaged flow(the main 
flow) is the horizontal component of the secondary flow; the vertical flow 
is such that the secondary flow satisfies the equation of continuity, 
irrespective of the main flow. Only the horizontal component of the 
secondary flow will be considered here. 

There are many sources of secondary flow. The two most important sources are 
the main flow curvature and the geostrophic acceleration. The secondary flow 
velocity caused by the main flow curvature is directed towards the outer 
bend at the water surface and towards the inner bend at the bottom. The 
geostrophic acceleration causes a secondary flow directed towards the right 
(on the Northern Hemisphere and looking in the main flow direction) at the 
water surface and towards the left near the bottom. Both kinds of secondary 
flow are considered hereafter. 

Secondary flow has been studied for a long time. Well known works on this 
subject are van Bendegom (1947), Rozovskii (1961) and de Vriend (1981). The 
secondary flow model described in the' following is due to Kalkwijk and 
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Booij(1985) (see also Booij and Kalkwijk, 1984). It is based on the 
following main assumptions. 

* The flows considered are slowly varying and nearly horizontal. 
* The secondary flow field is quasi-steady. 
* The eddy viscosity is completely determined by the main flow. 
* The logarithmic velocity distribution applies to the main flow. 
* The friction in the vertical planes can be neglected. 
* All inertia terms except the centrifugal one can be neglected. 

Based on these assumptions the equation governing the secondary flow 
velocity turns out to be linear, so the two kinds of secondary flows can 
considered separately. 

u - u + u , (3-6) 
n nc nb 

where u = secondary flow velocity, 
u , = secondary flow due to curvature, 
u = secondary flow due to geostrophic acceleration. 

For both u and u a local equilibrium or fully developed value can be 
defined. It is determined by the local flow parameters only. 

„ _ fD f t!b Ü 1 
KC 

2u D (z-z, r 
„ L_ f b ii 
T>e 2„ b D ' KC 

K R v 
s 

(3-7a) 

(3-7b) 

where R = the radius of curvature of the streamline of the main flow s 
K = von Karman constant 

For the profile functions f, and f linear approximations are 'applied. 

W c - ^ - f c H 2 ^ - 1 ) ' ( 3 - 8 > 
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With this approximation equation (3-7a) and (3-7b) can be normalized as 

u = 1 q(D nee ceH w (3-9a) 

nbe h*«" (3-9b) 

where I and I are intensities of the fully developed secondary flow and q 
is the normalized profile function(see fig.3.2). 

q(f) i+/j (3-10) 

Due to the variation of the main flow in the main flow direction s, the 
actual secondary flow velocity will in general not be equal to the fully 
developed value. This effect is taken into account as follows. 

u - K u nc c nee (3-lla) 

nb D nbe (3-llb) 

These equations imply the assumption that the secondary flow velocity has 
the same vertical distribution everywhere. K and K, are functions of s and 
can be solved from the following differential equations respectively. 

i^r £-(K h) + K . 2 2 ds c c 2a K 
(3-12a) 

l-2a d fUshKb 
, 2 2 ds(. R 2a K v s \ (3-12b) 

(3-12c) 

Up to now only of the secondary flow velocity has been considered. However, 
secondary flow can also have influence on the bed shear stress. The bed 
shear stress due to the secondary flow is treated in a way similar to that 
for the velocity, only the relaxation length is smaller than for the 
velocity-
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T = T + T , (3-13) 
n nc nb 

r = K'r (3-14a) 
nc c nee 

'rib " «b'ribe <3"14b> 

r = -pa fü h (3-15a) 
nee s 

'nbe " 2 P « 2 ( 1 - « ) ^ < (3-15b) 

l-2a d_ 
dsv"c 

8a ie 
2—2 x:(K;h) + K; - 1 (3-16a) 

%K KJ = 1 (3-16b) l-2a d 
o 2 2 d sl R , 8a K v s ' 

In these equations 

T = bed shear stress due to the secondary flow (in the normal n 
direction), 

T ,= secondary bed shear stress due to curvature, 
T = secondary bed shear stress due to geostrophic acceleration, 
T . = equilibrium value of r , , nbe nb 
T = equilibrium value of r , nee nc 
p = density of the fluid, . 
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Chapter 4 THE SEDIMENT TRANSPORT MODEL 

4.1 Introduction 

The sediment transport model is the heart of the whole morphological model. 
The accuracy of the prediction of morphological development is mainly 
determined by the accuracy of the sediment transport model. 

Sediment transport is usually divided into bed load and suspended load 
transport. The bed load transport is defined as the transport of particles 
by rolling, sliding and saltating (Bagnold, 1956). The suspended load 
transport is defined as that in which the excess weight of particles is 
supported wholly by a random succession of upward impulses imparted by 
turbulent eddies (van Rijn, 1987). It should be noted that in natural 
conditions there will be no sharp division between bed load transport and 
suspended load transport. This division is introduced only because it is 
necessary for the mathematical representation. Therefore other definitions 
are possible(see e.g. Einstein, 1950). 

It is a widely accepted assumption that the bed load transport adjusts 
instantaneously to the local flow conditions. Under this assumption the bed 
load transport will only depend on the local conditions. This means that the 
transport rate can be written as 

S = f(flow param.,sediment param.,geometric param.) (4-1) 

The most important flow parameter is the bed shear stress, often expressed 
by the bed shear velocity u defined as -• ' 

(4-2) 

where p = density of water, ■ ■ • < ■> 
T = bed shear stress.-
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For non-cohesive sediment the grain size d and the density p are the most 
important sediment parameters. The geometric parameters are the parameters 
such as the bedlevel gradient. 

Many transport formulae have been developed by various researchers. Well 
known examples are the formulae of Einstein (1950), Bagnold (1956), 
Meyer-Peter and Muller (1948), and Engelund and Hansen (1967). A recently 
developed transport formula is the one proposed by van Rijn (1984). Here no 
specific choice is made. The model is built in such a way that different 
options can be chosen when it is applied. A special option is S=0, which 
means that bed load transport is neglected. 

For the suspended transport a local equilibrium transport rate can be 
defined in the same way as for the bed load transport. However, the actual 
transport rate is in general not equal to the equilibrium value, since the 
adjustment of the transport rate to the flow condition needs more time than 
in case of bed load transport. Various approaches are possible for modelling 
the suspended sediment transport. The simplest approach is assuming the 
transport rate to be in local equilibrium. The suspended transport rate is 
then calculated from the local conditions with a transport formula similar 
to that for the bed load transport. This approach can be applied only when 
the adaptation time and the adaptation length of the sediment transport rate 
are relatively small compared with the length and time scales of the 
phenomenon to be modelled. 

The most sophisticated approach is the fully three-dimensional model. In 
this model the convection-diffusion equation describing the suspended 
sediment concentration is solved to determine the sediment concentration 
field. The transport rate is then determined by integration. The basic 
theory for this approach will be outlined in the next section. 

In the ESMOR model an approach in between these two extreme cases is chosen. 
This is the depth-integrated model, which is often derived by integrating 
the convection-diffusion equation over the depth. However, as the 
convection-diffusion equation is in fact a mass balance equation, the 
integrated form of this equation remains a mass balance equation. This 
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integrated mass balance equation, and hence the morphological model are 
mainly based on an empirical relation for the exchange rate of sediment 
between the flow and the bed. This will be shown in subsection 4.2.6. A new 
approach for developing a depth-integrated model has been introduced by 
Galappatti(1983, also see Galappatti and Vreugdenhil, 1985). Based on an 
asymptotic solution of the convection-diffusion equation a linear 
differential equation is derived for the depth-averaged concentration. This 
equation can be solved instead of the convection-diffusion equation. In 
section 4.3 a generalized theory of this approach will be presented and 
section 4.4 gives some examples of models derived from this general theory. 
The model which will be used in the present study is described in section 
4.5. In section 4.6 the significance of the influences of secondary flow and 
horizontal diffusion is investigated. 

4.2 Basic Theory 

4.2.1 Convection-diffusion equation 

The sediment concentration in the flow is governed by the mass balance 
equation 

f^(psc) + div(pscused) - 0 (4-3) 

In this equation c and u . are instantaneous variables. 
sed 

p = sediment density, 
s J 

c = sediment concentration, 
u — local sediment velocity, 
sed J 

t = time. 

It is further assumed that the sediment density is constant and that the 
velocity of the sediment particles is equal to the local flow velocity 
except in the vertical direction, thus 

x j - u - w e (4-4) 
sed s z 
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in which u = local flow velocity, 
' w = fall velocity of sediment particles, 

-► e = the unit vector'in the vertical direction. z 

By applying the Reynolds procedure and introducing the eddy-viscosity 
concept equation (4-3) becomes 

3c 
at 

.,..-, a [ dc] a [ dc) 3c a f 3c] ,. _ + div(cu) - -E-\e -j- - -z- e -5- = w -r- + -5- e -r-\ (4-5) 3s L s 3sJ 3n^ n 3nJ s dz dz y z 3zJ 

In this equation c and u are averaged variables and 
r ; ' ■ 

e , e ,'e = turbulent diffusion coefficients, s n z 
s, n = horizontal coordinates in the main flow direction and the 

normal direction respectively, 
z = vertical coordinate. 

In many applications this equation is further simplified by assuming that 

* the convection term in the vertical direction can be neglected compared 
with the convection term in the main flow direction; 

* the horizontal diffusion term in the main flow direction s can be 
neglected compared with the convection term. 

Here the first assumption will be used while neglecting of the horizontal 
diffusion term will-be reconsidered, (see section 4.6). 

4.2.2 Boundary conditions 

For solving the convection-diffusion equation the following boundary 
conditions are needed. 

* Initial condition. 
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At t=0 the sediment concentration field c(t=0,s,n,z) has to be 
specified. Usually this condition is not very important, since its 
influence will disappear after some time. 

* Inflow boundary condition. 

At the inflow boundary the concentration c(t,z) has to be given. This 
is an essential condition, although the necessary information is seldom 
available in practice. 

* Outflow boundary condition. 

At the outflow boundary a condition is also needed due to the diffusion 
term. Often a weak condition of the form 

4 = 0 or |£-0 
3N 

is applied. Herein N is the coordinate normal to the boundary. This 
condition, if formulated properly, has little influence on the solution 
in the computational domain. 

* Closed boundary. 

Closed boundaries such as a river bank are assumed to be solid so there 
will be no sediment flux across the boundary. The condition can thus be 
written as 

* Water surface boundary condition. 

At this boundary it is assumed that there is no sediment flux across 
the water surface, or in equation form 

3c w c + e -z-S 2 07. 
„ = 0 (4-8) z=z,+D b 
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* Bed boundary condition. 

The bed boundary is located at a small height z above the bed level. 
The sediment transport below this boundary is assumed to be bed load 
transport. According to van Rijn(1987) z should be about half the bed 
form height. In this study z is chosen as a certain fraction of the 
water depth D. Thus 

z z 
P = g-S- ■= -^ = constant (4-9) 

a 

Based on an accuracy consideration van Rijn(1985) stated that /3 should 
not be too small(>0.01). On the other hand it should not be too large 
either because otherwise the adjustment at the boundary cannot be 
assumed instantaneous. In this study the /? value ranges from 0.01 to 
0.05. 

Mathematically the required condition can be satisfied by specifying 
either the sediment concentration, or the vertical concentration 
gradient or a combination of them at the bed. Practically this 
condition causes one of the biggest problems in the model. It is the 
most important boundary condition since it determines the magnitude of 
the sediment transport while the convection-diffusion equation 
determines the relative distribution of the sediment concentration in 
the flow. Nevertheless an exact condition at the bed can seldom be 
given because the mechanism of the sediment exchange between the bed 
and the flow is not well understood up to now. This problem is solved 
by assuming that the equilibrium state at the boundary is adjusted 
instantaneously. 

Two kinds of conditions are often applied at the bed boundary viz. the 
concentration type and the gradient type. The concentration type 
condition assumes that the sediment concentration at the bed boundary 
adjusts instantaneously to the equilibrium value: 

c(z=z, +z ) = C b a a (4-10) 
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The gradient type condition assumes that the upward sediment flux is 
only determined by the local conditions. 

dc 
E -5— 
z dz 

- -w C (4-11) z=z, +z s a b a 

In both equations C is the equilibrium bed concentration. This 
equilibrium bed concentration can be derived from the equilibrium 
suspended transport rate if the concentration distribution over the 
depth is known. It depends thus on the local flow parameters and 
sediment parameters. Many formulae for the equilibrium transport rate 
can be found in literature. At present no specific formula is chosen, 
different options can be used in the model. 

4.2.3 Turbulent diffusion coefficients 

Without any reasoning the convection-diffusion equation has been written as 
equation(4-5) in subsection 4.2.1. It should be noted that this equation 
implies the assumption that s, n, and z are the three principal directions 
of the diffusion tensor. In fact very little is known about the diffusion 
tensor in a three-dimensional flow. The assumption is based on the following 
two considerations. 

* For shallow water flow it is logical to assume that the vertical 
direction z is one of the principal directions. 

* Since little is known about the horizontal mixing it is convenient to 
assume that the mixing in the horizontal plane is isotropic (t =e ), so 
any direction in the horizontal plane can be considered as a principal 
direction. 

A distinction should be made between vertical and horizontal mixing. For the 
vertical mixing the information gained from the studies in the two-
dimensional flows can be used. Since Schmidt (1925) introduced a general 
equation for the equilibrium suspended sediment concentration profile, one 
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of the most used expression for the vertical diffusion coefficient for 
sediment is the parabolic function 

D KU.D (4-12) 

where T is a constant. For T=l this agrees with the eddy viscosity . 
coefficient for fluid momentum, leading to a logarithmic velocity 
distribution in uniform shear flow. In other words,. F is the ratio between 
the diffusion coefficient of sediment and that of the fluid (turbulent 
Schmidt number). 
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•Fig.4.1 Vertical diffusion coefficient for momentum and 
sediment 

Here the parabolic-constant sediment diffusion coefficient introduced by 
Kerssens (1974, 1977, also see van Rijn, 1987) is applied. This diffusion 
coefficient distribution is based on the experimental data of Coleman(1970). 
ln: equation form this distribution reads"' 
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z-z, 
« = 4. — ^ z max D 

This distribution is depicted in fig.4.1, together with the parabolic 
distribution. 

Relatively little is known about the horizontal diffusion: coefficient. In 
studies on two-dimensional problems the horizontal diffusion is often 
neglected. Most information about horizontal mixing in the literature is 
related to dispersion rather than to diffusion. Dispersion includes not only 
horizontal diffusion, but also convective effects introduced by the depth 
averaging process. The dispersion concept was first introduced by 
Taylor(1954) for non-buoyant matter and later it was applied by Elder(1959) 
for sediment particles. Since then the gradient type ,model has been widely 
applied to describe dispersion of matter in flows. The dispersion 
coefficient is often used as calibration parameter. 

Based on the examination of data from the literature (mostly on dispersion) 
van Rijn (1987) states that the horizontal diffusion coefficient is in the 

2 
range 0.1 to 1 m /s. Compared with the vertical mixing coefficient this is 
relatively large. According to equation (4-12) for u =0.05 m/s and D=20 m, 
the maximum value of the vertical diffusion coefficient is 0.1 m /s. Further 
van Rijn assumes that the horizontal diffusion coefficient is constant in 
the whole flow field. Here it is assumed that the horizontal diffusion 
coefficient is related to the vertical diffusion coefficient according to . 

£ = <r = A£ + B (4-14) 
s n z v ' 

where A and B are constant coefficients. This rather complicated formulation 
is chosen in order to keep the model as flexible as possible, especially for 
being able to make ideal comparisons with other models. This is thus only 
done for research purposes. For practical application it may be sufficient 
to assume that the horizontal diffusion coefficient is constant. 

for < 0.5 (4-13b) 
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4.2.4 Suspended sediment transport 

The suspended sediment transport consists of a convective part and a 
diffusive part. In formula, the transport vector can be written as 

z,+D z,+D 
r - r 

S ■= cu dz - e grad(c) dz (4-15) z.+z z,+z b a b a 

where S - the suspended sediment transport vector, 
u — the horizontal velocity vector, 

grad(c) - the horizontal gradient of c. 

4.2.5 The Equilibrium Concentration Profile 

When the left hand side of the convection-diffusion equation (4-5) vanishes 
the equilibrium concentration profile results. This approach of determining 
the equilibrium sediment concentration profile was first applied by Schmidt 
(1925). For this special case the two types of the bed boundary conditions 
give the same result. Integrating the equation with respect to z once and 
applying the water surface boundary condition (4-8) yields 

w c + e ^ = 0 (4-16) 
s z dz 

The general solution of equation (4-16) with boundary condition (4-10) is 

f 
c = C exp e a H dr (4-17) 

in which the subscript e is for equilibrium and 

z-z, -z 
f £ — * (4-18) 

6' = — £ (4-19) w n s 
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This i s the general equ i l ib r ium concent ra t ion p r o f i l e . I t can be normalized 

as 

ce = V* o ( f ) (4-2°) 

where c = the depth averaged equi l ibr ium concent ra t ion , 

a0 = the normalized equi l ibr ium concentra t ion p r o f i l e . 

I t should be noted t h a t according to the d e f i n i t i o n 

l 

Ja0(f) df = 1 (4-21) 
o 

4.2.6 Integrated Form of the Convection-Diffusion Equation 

Integrating the convection-diffusion equation (4-5) over the depth gives 

|^(hc) + div(S) = E (4-22) 

where E is the sediment exchange rate at the bed boundary. 

8c W C + £ ^— S Z ÖZ z=z a 

It should be noted that this equation is nothing else than the mass balance 
equation for the suspended sediment. The exchange rate E is also present in 
the mass balance equation for the layer under the bed boundary, which is 
applied for determining the bed level change rate. 

3z. 
a r - - ÏTp (E - div(Sb)) (4-23) 

where S is the bed load transport vector and P is the porosity of the bed. 
Equation (4-22) has been used by many researchers (see e.g. Lin et al, 1983, 
Lin and Shen 1984) to construct a depth-integrated model for suspended 
sediment transport. To do this the sediment transport rate S and the 
sediment exchange rate at the bottom E have to be formulated in terms of the 
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mean concentration c. The exact expressions are unknown until the original 
convection-diffusion equation is solved. Therefore empirical expressions 
have to be applied for S and E in this kind of depth-integrated models. 
Obviously integration of the convection-diffusion equation itself does not 
provide any more information. The depth-integrated models derived in this 
way are in fact only based on the empirical expressions used for S and E. 
Most of the expressions used have the following form 

S -= a uh c (4-24) 

E - 0 w (c - c) (4-25) 
s e 

Herein a = shape factor , 
Tp = constant coefficient. 

Two examples of this kind of models are given in the following. Lin et al 
(1983) derived a one-dimensional depth-integrated model for the suspended 
sediment transport in the Qiantang estuary and later Lin and Shen (1984) 
extended the model to two dimensions using the following expressions. 

a = 1 (4-26) 

c ^ J 

e 

where T = constant coefficient used as' a calibration factor, 
d = sediment grain size.' 

This results in the following equation for the mean concentration. 

t M + k [\h'c]+ h [\hi\+ 7 i i W s H e ) - ° <4-28> 
This model has been successfully „applied to .calculate the sediment 
concentration in the, Qiantang estuary. It should be noted that (4-26),can 
only bemused for very fine sediment as present in the Qiantang estuary.-
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Vermaas (1984) derived the following more complicated expressions for S and 
E with the help of a series of two-dimensional computations (in the vertical 
plane) for steady unidirectional flow. 

S = a0ühc - 4.3uh |^ (4-29) 

S c-c 
E = T r-̂  (4-30) 

c 

This results in the following equation for the mean concentration c. 

2. s 
de - d e e anuh -r— - 4. 3uh —5- = r r—• D 3x 2 h dx 

where c*0 is the value of o when the equilibrium concentration profile is 
present, and V is a coefficient which is a function of the parameters w /u 
and u/ut. 

It should be noted that the mean concentration equation derived with the 
model of Galappatti (1983, also see Galappatti and Vreugdenhil 1985) is 
similar to the equations (4-28) and (4-31). The only difference is that in 
this model no empirical expression has been used: the coefficients in the 
equation are determined with an asymptotic 'solution of the original 
convection-diffusion equation. A comparison between these models has been 
carried out by Wang(1984). • . 

4.3 A General Asymptotic Solution of the Convection-Diffusion Equation 

4.3.1 Normalization of the Equation 

Written in s-n-z system of coordinates the convection-diffusion equation 
(4-5) combined with the continuity equation for water yields 

c -c e (4-31) 
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n[£n 3nJ = Ws dz 3z[£z 3zJ (4-32) 

For convenience the following normalized system of coordinates is 
introduced. 

3_ = h_ 3_ 
3r W 3t s 

(4-33a) 

. u h 
3 s 3_ 
3£ w 3s 
s s 

(4-33b) 

3_ _ Ih d_ 
dn w 3n s 

(4-33c) 

<L h L 3f 3z (4-33d) 

Substituting these equations into equation (4-32) yields 

w 3c , ... 3c , ._. 3c w 3c s 3 
s u s 

- £s 3? 

s 3 
I 3r; * - i£ 

I n drj 
dc 

3rl ez 35; J (4-34) 

where p = — - the normalized main flow velocity profile, 
u s u 

q = — = the normalized secondary flow velocity profile, 
I = the intensity of the secondary flow, 
é' = —=- = normalized diffusion coefficient, s u,h 

n u,h 

z w h s 

normalized diffusion coefficient, 

normalized diffusion coefficient. 

The expression for p(f) and q(f) have already been given in the previous 
chapter. 
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In this study only gradually varying flow will be considered, therefore the 
following assumptions are used. 

* The vertical component of the flow velocity is neglected. Thus w = 0. 

* The variation of the normalized equilibrium concentration profile <f>0 

with time and with the horizontal coordinates can be neglected, i.e. 

d4>0 d<j>0 d(j>0 

8T d£ 3r; 

For reasons of brevity, equation(4-34) will further be written as 

( 4 - 3 5 ) 

L[c] = D[c] (4-36) 

Thus 

14 ] - f - + p ( f , k + q ( f ) k + ̂ k -
s ' u 

"_s a_ r * e, a_ 
I 3r;[ I n 8i| 

s a_ 
a? - S a? 

■°"-f?'*(- ;§?) 

(4-37a) 

(4-37b) 

Written in the normalized coordinate-system the water surface boundary 
condition becomes 

, 3c 
Ez 3f. f-1 = 0 (4-38) 

4.3.2 Asymptotic Solution 

The asymptotic solution developed here is a generalization of the asymptotic 
solution presented by Galappatti (1983, also see Galappatti and Vreugdenhil, 
1985). Firstly, the three-dimensional problem is considered instead of the 
two-dimensional one. Secondly, for the two-dimensional problem the 
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asymptotic solution given by Galappatti is a special case of the asymptotic 
solution presented here. 

The asymptotic solution presented here is based on the same principal 
assumption as the one by Galappatti (1983) : the terms in the left hand side 
of the convection-diffusion equation (4-34) are an order of magnitude 
smaller than the terms in the right hand side. Obviously, this assumption 
can only be true if the two terms on the right hand side of the equation 
have the same order of magnitude and opposite signs. Such a condition can 
only be satisfied when the variation of the flow condition is not too rapid 
or in other words the time scale and -the horizontal length scale of the 
variation are relatively large, as stated by Galappatti (1983) after an 
analysis of the order of magnitude of the terms in the two-dimensional 
convection-diffusion equation. Under this assumption equation (4-34) can be 
solved asymptotically as follows 

c - .|0 c. (4-39) 

where c. is the jth order term which is an order of magnitude smaller than 
the term c. 

J-l 

The equation governing the term c. can be derived by substituting equation 
(4-39) into equation (4-34) or (4-36) and collecting the terms of the same 
order of magnitude. 

D[c.' J' 

' 0 for j=0 , 
(4-40) 

Lfc. ,1 for i>0 J-l J 

The additional conditions to be satisfied by the solution (4-39) are the 
boundary condition at the water surface 

[ \ c. + e' \ !_~cl "'2 o"" ""'' ' ■ " (4-41) 

and the bed boundary condition 
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•§n c-(f-O) = C (4-42) 
j-O j s a 

It should be noted that for the time being only the concentration type bed 
boundary condition is considered. The type of the bed boundary condition has 
no influence on the structure of the asymptotic solution. It will only have 
influence on the equation for the depth integrated variables as will be 
shown in section 4.4 

For n>0 equations (4-40), (4-41) and (4-42) together form an under-
determined system. This means that they do not provide sufficient 
information for determining all the terms c . More assumptions are thus 
needed in order to have a well posed system. 

In literature (see e.g. Nayfeh, 1973) on asymptotic solutions of 
differential equations this problem is in general solved by treating the 
boundary conditions in the same way as treating the differential equation. 
Collecting the terms of the same order of magnitude in equations (4-41) and 
(4-42) yields 

c. + e' f- c.1 . = 0 for all j (4-43) 
J z 3f jjf-l J 

-(O) 
C for j=0 
a (4-44) 
0 for j>0 

The terms in equation (4-39) can now be solved. The asymptotic solution 
derived in this way will be called the conventional asymptotic solution. It 
will be shown later that this solution does not allow for any initial 
condition or for any boundary condition in the horizontal plane. 

Galappatti (1983) also applies assumption (4-43), but instead of (4-44) he 
assumes that only the zero order term contributes to the depth averaged 
concentration c. Thus 

J- Ci df o 
f o r J=0 (4-45) 
for j>0 
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This assumption introduces a new unknown variable c, the mean concentration, 
but the bed boundary condition is not used yet. Equations (4-39), (4-40), 
(4-43) and (4-45) together give an asymptotic solution with the unknown c in 
it as a parameter. By applying the bed boundary condition, an equation for c 
is obtained. For solving this equation certain boundary conditions 
corresponding to the operator L[ ] are required. It will be shown later that 
this solution is more sophisticated than the conventional asymptotic 
solution, but it still does not always converge to the complete solution of 
the original problem (Wang and Ribberink, 1986). 

The general solution for the terms in (4-39) satisfying (4-40) and (4-43)) 
can be derived as follows. 

The zero order term: 

For j=0 equation (4-40) and (4-43) become 

D[c0] - 0 (4-46) 

3c, 
cn + e' z ds j r= i 

(4-47) 

Integrating equation (4-46) twice and applying the boundary condition (4-47) 
give 

c0 = c0 a0 . (4-48) 

where a0 is the normalized equilibrium concentration profile and c0 

is the so far unknown depth-averaged value of c0. 

The first order term: 

For j=l equation (4-40) and equation (4-43) become 

D[cJ = L[c0] (4-49) 
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c. + e' 
1 <7 

dc1 

z af Jf-i (4-50) 

With equation (4-37a) in mind substituting equation (4-48) into equation 
(4-49) yields 

df + 3f 
3cj 

"z W~. 
3c„ 3c„ 3cn 

»o sT + pa° aT + qa° W 

u* 9c° 
~ a ° £ s aT u s 

w 9 
s a_ 

I dri 

u* 3c° 
ir a°en a T 

(4-51) 

The solution of this equation can formally be written as 

3c0 
d7~ 

3c„ 3cn w 
+ a, + a, 3£ 3 ar? 

s 3_ 
a? 

u* 3cc 

where 

w s 

a l -

a 
3r, 

D 

u * ras 

[ a 0 ] 

3 c 0 

a2 = D [pa0] 

a3 = D" [qa0] 

a4 = D" [e'a0] 

as = D [£naol 

(4-52) 

(4-53a) 

(4-53b) 

(4-53c) 

(4-53d) 

(4-53e)-

and Cj is the unknown depth-averaged value of c l . For convenience the same 
profile functions as in the model of Galappatti (1983) are used as far as 
possible. 

The operator D~ [ ] is defined by Galappatti(1983) as follows. 
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f(f) = D_1[g(f)l (4-54) 

if and only if 

D[f] - g (4-55a) 

afl f + e a, r=1 = 0 , (4-55b) 

l 
|f df = 0 (4-55c) 

Galappatti(1983) shows that 

l l 
D'^g] - J g df +. a0 J jj- df + Ba0 (4-56) 

where B is a constant defined by condition (4-55c). 

It should be noted that the assumption (4-35) implies in general also that 

da4 3as 
_ _ „ = 0 (4-57) 

so that a4 and a5 in the last two terms in equation (4-52) can be placed 
outside the derivative sign. 

Higher order terms: 

In the same way as above the second order term in the asymptotic solution 
can be determined from the first order term, and so on. 

The generalized assumption ■, , 

In the nth order asymptotic solution n+1 unknown variables c. (0<j<n) are 
present, n+1 equations are . thus required to determine these variables. 
However, there is only one equation available, i.e. the bed boundary 
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condltion (4-42) . Fór n>0 there are thus not enough equations to determine 
all unknown variables in the asymptotic solution. In the conventional 
asymptotic solution and the solution of Galappatti (1983) this problem is 
solved by making the assumptions (4-44) and (4-45) respectively. Here a more 
general assumption is made. Choose a set of test functions 

* = «!• <t>2 4n) (4-58) 

For each <t>, i t i s assumed t h a t k 

Lh 
j = k ° 

4>, df = 0 fo r k - 1 n ( 4 - 5 9 ) 

This assumption means that only the first k terms in the asymptotic solution 
contribute to the internal product of the concentration vertical and the kth 
component of $. 

Together with the bed boundary condition (4-42) n+1 equations are now 
available for the n+1 variables c , so the asymptotic solution is 
determined. For each chosen set of functions $ a particular asymptotic 
solution can be constructed. In the following section various examples are 
presented. It will be shown that the conventional solution as well as the 
solution of Galappatti (1983) can be derived by choosing a specific set of 
$-functions. 

It should be noted that for each <f>, a weighted average concentration can be 
defined: 

l i 

J<4kc df = J«Sk g x c df (4-60) 
...- 0 0 

which can be calculated when the asymptotic solution is determined..However, 
it is also possible to eliminate the n+1 variables c. from (4-60) with the 
help of equations (4-42) and (4-59), resulting in a system of n equations 
for the n weighted average concentrations. Solving this system instead of 
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the n+1 equations for c. has two advantages. Firstly the weighted average 
concentrations have often important physical meanings. Secondly the initial 
and upstream boundary conditions can easier be expressed in terms of the 
weighted average concentrations than in terms of c . 

4.4 Examples of Various Models 

For reasons of simplicity and to facilitate a comparison with the model of 
Galappatti (1983) the operator L[ ] will be restricted to its two-
dimensional form 

Lt 1 = §7 + P B
M (4-61) 

in this section. This is exactly the case considered by Galappatti. It is 
easily extended to the general case. 

4.4.1 The Conventional Solution 

Define a delta function 5(f) such that 

5(f) -
for f=0 

for f>0 
(4-62) 

and 

l 
| 5(f) df = 1 (4-63) 
o 

With the choice * = (5(f), 5(f) 5(f)) or 

<f> = 5(f) for l<k<n ' (4-64) 

the" assumption (4-59) and the bed boundary condition (4-42) together give 

c . ( o ) H 
C for j=0 
a (4-65) 

for j>0 
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which is exactly the same as equation (4-44). This means that the 
conventional asymptotic solution is obtained by this choice of $. 

The zero order term is obtained by applying (4-65) for j=0 to equation 
(4-48). 

C C 
C° = 7^0) a ° ( r ) = T0

 a ° ( f ) = ^ e a ° ( r ) (4"66) 

where c is the equilibrium mean concentration. e 

The first order term can be determined by applying (4-65) for j=l to (4-52) 
and so on. Generally the nth order conventional asymptotic solution can be 
written as 

n+1 j aj-l-
c = ■> > b.. (f) —r-j ^ T (4-67) 

j=l k=l ° ÖK 

in which b..(f) are profile functions defined by 

b n = a0 (4-68a) 

bjl"D*1[bj-l,l] (4"68b) 

bjk = D*1[Pbj-l,k-l+bj-l,j] (4"68C) 

bjj - D^Ipb.^.^] (4-68d) 

_i _i 
Herein the operator D [ ] is defined similarly as the operator D [ ] , but 
with condition (4-55c) replaced by 

f(0) = 0 (4-69) 

. l It can be shown that equation (4-56) also applies to D [ ] , although now B 
is determined by condition (4-69) instead of (4-55c). It is not difficult to 
show that if 
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and 

f - D - ' t g ] 

f * = Kli 

then 

f* - f - sffêy ^ n (4-70) 

It should be noted that the bed boundary condition is already satisfied by 
the present asymptotic solution (4-67) . The mean concentration as well as 
the sediment transport rate can be found by integrating this solution . 

n+1 j , j - l 3J c 
c = | cd f = L E ^ A n ■' (4"71) 

j - l k - l 
3rJ 9? 

i n+1 j a j - l -

s - uhfpc dr - ah ^ Yl >jk . j - k J - ' i (4"72) 

° j - i k - i a "t 

Herein 

l 
5., = lb. Jk J J k df (4-73) 

l, 

Jk "jk " J p b^ df (4"74) 

Equations (4-71) and (4-72) are not differential equations since c is a 
known function of r and £ via the bed boundary condition. This model is thus 
quite easy to apply. 

For n-»<= this asymptotic solution, if "convergent, satisfies the convection-
diffusion equation and both boundary conditions corresponding to-the 
operator D[ ], i.e. the water surface boundary condition and the bed 
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boundary condition, but in most cases it does not satisfy any boundary 
condition corresponding to the operator L[ ], i.e. the initial condition and 
the upstream boundary condition. This is because that equations (4-71) and 
(4-72) are not differential equations. The mean concentration and the 
sediment transport rate can be calculated respectively from these two 
equations directly since c follows from the bed boundary condition. 

4.4.2 The Solution of Galappatti 

The solution of Galappatti(1983, also see Galappatti and Vreugdenhil, 1985) 
is obtained by choosing $ = (1, 1, 1 1), or 

0 = 1 for l<k<n (4-75) 

Substituting this equation into (4-59) and (4-60) yields 

1 

[c df = • 
J J 
0 

c 

_ 0 

for j=0 

for j>0 
4-76) 

This is exactly the same as the assumption made by Galappatti. 

This solution can be written as 

n+1 j j x 

j-=l k-1 

in which a., are the profile functions 

'11 " "0 (4-78a) 

a = D " 1 ^ ^ ] (4-78b) 

a.. = D" [pa. , + a. .] (4-78c) 
jk lr J-l,k-l J-l.J 
a.. - D_1[pa. - . ,] (4-78d) 
JJ J-l.J"1 
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In the solution (4-77) the unknown mean concentration c is present as a 
parameter. When the bed boundary condition is applied in this solution an 
equation is obtained for the mean concentration. Substituting (4-77) into 
(4-10) yields 

n + 1 j - i 

j - i k = i ° "K 

with 

7 j k - aJk(0) (4-80) 

The solution for n->», if convergent, satisfies the convection-diffusion 
equation and the boundary conditions corresponding to the operator D[ ]. The 
boundary conditions corresponding to the operator L[ ] are only satisfied in 
the integrated form, i.e. only as far as the depth mean concentration is 
concerned (Wang and Ribberink, 1986) . 

For the application of this model the mean concentration equation (4-79) is 
solved first and the sediment transport is then calculated from 

n+1 j . , 8 - * E Lv rtói 
]=1H 3*J a * 

w i t h 

l 

*. . = p a . 
jk r J 

1, 

df ( 4 - 8 2 ) 
o 

This model is more complicated but also more accurate than the conventional 
solution. 

Further information about this model is given by Galappatti (1983), 
Galappatti and Vreugdenhil (1985) and Ribberink (1986). 
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4.4.3 A General Second Order Solution 

It should be noted that the nth order solution is only influenced by the 
first n components of $, so a general second order solution can be obtained 
by choosing $=(^:, ^ 2 ) . The second order solution can be written as 

c - c0 + c! + c2 (4-83) 

with 

co = co an (4-84a) 

ci = azi j 7 + a22 g^~ + V u (4-84b) 

+ a, "-2 "3 1 2 T "32 a-ae T "33 2 T 

dr ° ? 9? 

SCj 3cj 
+ a2i a7" + a22 g|- + V n (4-84c) 

Herein the profile functions a., are the same as in the solution of 
Galappatti. Thus 

'11 a0 (4-85a) 

a2i = D'^an] (4-85b) 

a22 = D" [paxl] (4-85c) 

a31 = D_1[a21] (4-85d) 

. l 
a32 - D [pa21+ a22] (4-85e) 

a33 = D_1[pa22] (4-85f) 
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Substituting equation (4-84) into (4-59) and (4-60) yields 

A*nco - Bi (4-86) 

3cr 
^11C0 + ^21 ff- + ^22 Jf + CllCl " B (4-87) 

i 3c0 ! ac0 ! 1 30! ! 3Cj 
J*21 a 7 " + ^22 af~ + Ml l^ i + M n C 2 + M21 g7~ T M22 + M22 ^ + 

2 . 2 . 2_ 
i 3 c 0 1 3 c 0 ! 3 c 0 

3r ara? 3? 
(4-88) 

2 a C j 2 ^C j 

a~T C l l C 2 + ^2 1 flT~ + ^22 gê~ + M31 r 
3r 

+ M3 3r3£ 

+ M33 — 2 -
3? 

- 0 (4-89) 

where 

\ - Kc <* (4-90) 

1 
k L 
u. . = 0. a. . 

df (4-91) 

Four equations are now available for five variables (c0, c p c2, Bt , and 
B 2). The fifth equation is obtained by applying the bed boundary condition. 

Ca - 7n(c 0 + Cj + c2) + 72i 
3c0 3Cj 
dr 8T + 72 

'3c0 3c,' 
IT + W. 

2 . 
a c. 

2 . a cn 
2. a c„ 

+ 731 2 + 732 gT3£ + ^33 2 (4-92) 
3r 3? 
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By eliminating c 0 , c, and c 2 two equations for R1 and B 2 can be obtained 
from these five equations. 

In order to obtain more insight into the behaviour of this general second 
order solution two specific choices for <j>2 are investigated in the 

3c following. For simplicity the steady (-r-=0) case is considered. 

Case I 

4>1 = 1 (4-93a) 

<t>2 - P(f) (4-93b) 

For this case the assumption (4-59) has the physical meaning that only the 
zero order term in the solution contributes to the depth averaged 
concentration and that only the zero order and first order terms contribute 
to the sediment transport rate. Further 

(4-94a) 
1 

B, = c df = c 
0 

l 
B2 - [pc df - -?- - c 

{ üh 

"jk " Jajk ^ " { I 
0 

1 
\i.. = pa., df = a Jk y Jk jk 

for j-1, k=l 
for j^l or k̂ l 

(4-94b) 

(4-95a) 

(4-95b) 

The equations governing c and c can be shown to be 

"?22 dc
s 

c + Tc + 
T33 °22 T22 
L7ll <*u 7 lJ ^-4 - c (4-96) 

3? 
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Q22 a c
s 

c - c + — + 
s Qll a? 

'33 

«11 

2 
d c 

2 
si 

- o (4-97) 

If c is constant, the solution of this system of equations can be written 

f > 
c 

c 

I s J 

m 

r -i 
c e 

0 
+ 

f -\ 

A i 

A2 

exp(A£) (4-98) 

where A is determined by 

f73 3 Q2 2 73 3 

Det 

t ' 3 3 Q 2 2 '33~1 2 ' 2 
A — 

7 n « i i 7 n J 7 i 

1^33 f"22") "I 2 ™ 2 2 

l Q l l U l l J J "11 

( 4 - 9 9 ) 

If p(0 represents the logarithmic velocity profile, this equation appears 
to have three real roots, two positive and one negative, the latter about 
the same as the one in the model of Galappatti. The number of negative roots 
determines the number of the boundary conditions which have to be applied at 
the upstream boundary. In the original problem the upstream boundary 
condition is the concentration vertical at the boundary. In the depth-
integrated model the upstream boundary conditions can be applied in the 
weighted average form of (4-59). The number of conditions available is thus 
equal to the number of test functions in the model. For the general second 
order solution two upstream boundary conditions are thus available, viz. c 
and c . However, at present it is not possible to apply both upstream 
boundary conditions because equation (4-99) has only one negative root. 

Case II 

= 1 

(4-100a) 

(4-100b) 
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The basic elements in $ in this case are the same as in case I and so is the 
physical meaning of the assumptions (4-60a) and (4-60b). Therefore it can be 
expected that the infinite order solutions (with <j> —<f>2 for k>2) in the two 
cases will be exactly the same. However, there is an essential difference 
between the two cases, viz. the linear dependence between the two components 
of $, characterized by the value of 

o 

j*i df j*i df 

For case II this value is zero which means that <t>x and tj>2 are linearly 
independent, or in other words that $ is a set of orthogonal functions. In 
case I this value is nearly equal to unity. 

In the present case the equations governing c and cx become 

T22 
7n 

3cil 3̂3 / ê 3c (4-101) 
a? 

3cj 2 
3 'c n + a,, — 0 = U (1 - a l l ) c l + a22 -^- T- 1*33 — j - (4-102) 

The solution of this system is still (4-98) but A is now determined by 

Det 

T22 T33 2 722 
1 + A + A A 

T11 T H T11 
(4-103) 

This equation has three roots, one positive and two negative, one of which 
is nearly equal to the one in the model of Galappatti. Now the two available 
boundary conditions can both be applied, so that a more accurate solution 
can be expected. 
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From the comparison between case I and case II it can be concluded that the 
linear dependence between the components in $ can have influence on the 
behaviour of the model. The best result seems to be obtained if $ is an 
orthogonal set. 

The influence of * on the asymptotic solution will further be analysed in 
the next chapter. 

Case III 

^! - p (4-104a) 

<t>2 = 1-p (4-104b) 

This case is similar as case III. Therefore it will not be described in 
detail. However, it should be emphasized that 'i>1=p is essentially different 
to 0J-1, especially for the first order solution. Physically the assumption 
(4-59) means then that only the zero order term contributes to the sediment 
transport. In the first order solution c is then to be determined in stead 
of c. In the following subsection it will be shown that this choice should 
be preferred. 

Remarks: 

* The general asymptotic solution developed in this section can also be 
applied for ordinary differential equations. By studying the ordinary 
differential equations insight can be gained into the solution 
technique. 

* Although not mathematically proved it is suggested that for n-x» the 
asymptotic solution converges to the exact solution if and only if the 
system of functions $ is a complete system. This suggestion is based on 
the observation of the behaviour of the various models described in 
this section. 
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4.4.4 Discussion on the Choice of $ 

In the previous subsection it has become clear that the test functions * 
should together form a orthogonal system. When an orthogonal system is 
chosen the test functions automatically form a complete system for n-+<». The 
question remains which functions should be chosen for the orthogonal system. 

It should be noted that the internal products of the test functions and the 
sediment concentration are the unknown variables in the system of equations 
from the model. From the nth order solution a system of equations can be 
derived for the 'depth-integrated' variables 

UjC df, j-1 n 
o 

The upstream boundary conditions for this system of equations should also be 
expressed in these internal products. Obviously, from a practical 
consideration, the test functions should be such that the internal products 
of them with c have significant physical meanings. 

In the conventional solution the internal products between <j>1 (=42=. . . . <f> ) 
and' c is the bed concentration, which is specified as bed boundary 
condition. Therefore no differential equation needs'to be solved in this 
solution, and no upstream boundary condition can be applied. 

In the model of Galappatti (1983) the mean concentration c is introduced by 
making the assumption (4-45). This has led to an equation for c, for solving 
which the upstream boundary condition-has to' be related to c, which is the 
internal product of <f>1(=<fi2= <j> ) and c. 

In morphological computations the purpose of the sediment transport model is 
to derive the sediment transport rate. Therefore it is logical to chose 
^j-p, of which the internal product with c represents the sediment transport 
rate. This choice has clearly some advantages over the one of Galappatti 
(1983) as shown in the following for the case of steady one-dimensional 
uniform flow. 
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L[ ] - P a? 
According to the model of Galappatti the mean concentration c and the 
transport rate S are governed by the following equations 

- ^ '2 dc 
C = C + -jj- (4-105) 

c ",.' f - 3c"| 
S = uh a0c + a2 ^-H (4-106) 

According to the present approach the variables c and S are governed by the 
equations 

c = c + se s 
7 2 

To 
dc 

£ (4-107) 

S = uhc (4-108) 

It is clear that the procedure for calculating the transport rate is now 
easier than that in the model of Galappatti. 

Another advantage of the present approach becomes clear when the two models 
are applied for the case that the water flowing in contains no sediment at 
the upstream boundary. From the model of Galappatti it follows 

c = c - c exp e e 
7o 
'2 

(4-109) 

S = uh anc + a0 

TV 
7 2 

(c - c) (4-110) 

From the present model it follows 

S - S - S exp e e 
7oQo 

7oQ2-ao72 
(4-111) 
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The two solutions are depicted in fig.4.2. The model of Galappatti appears 
to give a negative transport at the upstream boundary, while the present 
model gives the realistic transport rate zero. Although these are only some 
minor aspects of the model, it is clear that the approach given here should 
be preferred. 

c-0 

Se 

ESMOR.. - ;; 

Galappatti 

Fig.4.2 Adaptation from clear water 

4.5 Model for the Three-dimensional Case 

4.5.1 Equations in the Model 

For the present approach the set $ is chosen as 

* = (p. q-xp ) (4-112) 

where 

P(f)q(f) df 

x = — (4-113) 

| p ( f ) p ( 0 dr 
o 
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This is an orthogonal system and the first two components of the internal. 
product between c and $ represent the convective sediment transport in s and 
n directions respectively. 

For unsteady three-dimensional problems no more than the first order 
solution can be applied in practice. Therefore only the first order solution 
will be outlined here. The second component of $ will thus not influence the 
model in practice. 

The first order solution reads 

c = cn + c. (4-114) 

with 

c0 = co ao(0 (4-115a) 

dc0 dc„ dc„ 
+ *2 d£ + &3 "" " a" dv 

s a 
at 

s 
- 3? 

s 

s d_ 
a" i at) (4-115b) 

The conditions (4-60) and (4-59) now become 

c
s - J C P dr - J coP df - a o c o 

0 0 
(4-116) 

3c„ 3c„ 3c, "° ° s a 
+ a, ,. + a, -T - a 3T 2 3£ 3 Tr, ' "" - 3? u dt 

*4 I dr, 
u* 3Co 
I dr) + CjQ0 - 0 (4-117) 
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in which 

a. = pa. dC 
o 

(4-118) 

Applying the bed boundary condition gives 

cn + c. + 
7i 3c0 7 2 dc0 7 3 3c0 

1 7 0 3T 7 0 ac 7 0 dn 

7o - 3? 
u* 3col 

7 0 I 3») I Sr; (4-119) 

Eliminating c0 and Cj with (4-116) and (4-117) gives 

c = c + se s 
7i 
7o 

<3c 
a7~ 

7 2 

7o 
3c 

£ 
3? 

7 3 

7o 
3c 

s 

7o "c 
s 3 
3? 

u, oc * s 
31 7o I 3rj 

W ÖC 
s s (4-120) 

This is then the equation for c in which 

c = anc se u e (4-121) 

After this equation has been solved c0 and Cj can be calculated by 
substituting c into equations (4-116) < 

solution is then completely determined. 
substituting c into equations (4-116) and (4-117), so the asymptotic 
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oin <*„ ar 

s 3 
I dr, 

u. 9c 
* c 

I dr) (4-122) 

The sediment transport rates in s- and n-direction are calculated by 
substituting the asymptotic solution into equation (4-15). 

u he - — u.h 3? 
Mo 
— c 
an s 

Mi ai Mo 3c 
s 

37" 

M2
 a2 Mo 

"o Qo Qo 

dc M3
 a3 Mo 

«0 Q0 Q 0 

3c 
E 

a4 Mo 
»n «n Or 

^ d_ 
u, 3c * s 

3? 

M4
 Q4 Mo 

a0 a0 a0 

s 3 
T~ Irj 

u. 3c * s 
I dr) (4-123) 

Ih-
0o f0i "i 0o 

37" 
<*2 0o 

«n On On 

3cc 
W 

a3 00 
On <*n Q, 

3c 
s 

3?" 
'04 «4 0o] W, s 3_ 

3? 
u. 3c * s 

3? 

'04 «4 0o] W 

an a n Q r 

s 3 
I 3r7 

u. 3c * s 
I dr, 

w a S , 0 
I * dr) 

Mo 

Mi «i Mo 
"o Qo ao 

3c 
37" 

M2
 a2 Mo 3c 

C 

w 
M3

 a3 Mo 
OLr, CCn a „ 

3 C c u, 3c * s 
3? 
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at Mc s 3 
I drj 

u. 3c * s 
I 3n (4-124) 

where 

ï 

3. = qa. dr (4-125) 

1 1 
ii. = «' a. dC - e'a. dC J J s j J n j (4-126) 

In the original coordinate-system these equations become 

c + s 
Ti 
To 

h s 
w~ at-

T 2 " «2 

To Qo 

u h S c s s 
w 3s -
s 

T3 

To 
,, 3c In s 
w 3n s 

T4 

To 3s 
\x/h dc 

* s w 3s s 

T4 

To 3n 
u,h 3c * s 
w 3n (4-127) 

S = u he -u.h r̂— s s s * 3s 
Mo 
— c + 
an s 

Mi "i Mo 
On «n O, 

h s 
w~ at 
s 

M2 *2 Mo 
*o Qo 

u h 3c s s 
w 3s s 

M3
 a3 Mo T, 3c Ih s 

w 3n s 

«4 Mo 
a„ a„ ar 

as 

u_h 3 c * s 
w 3s s 

M4 at Mo 
an an ac 

3n 
u.h dc * s 
w 3n s 

(4-128) 
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Ih-
Pi «i Po , 3c h s 

w at 
s 

f>2 
a0 

Po) u h de s s 
w 3s s 

Q 3 Pd TV. 3C 

Ih s w 3n s 

04 °4 Po 
3s 

u.h 3e * s 
w 3s s 

Pi "4 Po 

3n 
* 
w s 

3c 1 s 
3n 

v.2 3 , 
U* h 3n^ 

Mo 

°i Mo h s 
w~~ 3t~ s 

M2 
Qo 

Mo u h 3c s E 
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4.5.2 Profile Functions and the Coefficients in the Model 

In order to apply the depth-integrated model developed here the knowledge of 
the coefficients 7., a., B. and u. is required. All coefficients are related 

J J J . J ■ ■ , . 
to the profile functions a.. In order to' determine the coefficients in the 

J 
model these profile functions have to be determined first. The analytical 
expressions for the profile functions as well as the coefficients are 
already given in the text. It should be noticed that all the profile 
functions are determined by four elementary profile functions, viz. 

- the normalized equilibrium concentration profile' a0, 
- the normalized main flow velocity! profile p, 
- the normalized secondary flow velocity profile q, 
- the normalized horizontal diffusion.coefficient e'. 
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These elementary profile functions depends on the parameter /3=z /h, in 
addition to which a0 depends also on the parameter w /u , and p depends on 
the parameter u /u . These three dimensionless parameters are the elementary 
parameters of the model. All profile functions in the model can be 
determined when these three parameters are known. Thus all coefficients in 
the model are functions of these three parameters. When the model is applied 
the parameter /8 is usually kept constant, so the coefficients are then only 
functions of the parameters w /u and u /u . 

The profile functions a. are determined with the numerical procedure . 
described by Galappatti (1983). The description of this procedure is not 
repeated here. Only some results are reported. In fig.4.3 the four 
elementary profile functions are shown, while fig.4.4 depicts the first 
order profile functions in the model. 

When the profile functions in the model are determined the coefficients are 
easily obtained. Some examples of the coefficients in the model are shown in 
fig.4.5. 
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4.6 Influence of the Secondary Flow and Horizontal Diffusion 

4.6.1 General - ' . . ^ 

Compared with the two-dimensional problem there are two new components in 
the present three-dimensional problem, i.e. the secondary flow and the 
horizontal diffusion. In fact the horizontal diffusion is also present in 
the two-dimensional problem but it has been neglected (Galappatti, 1983). 

Two influences of the secondary -flow and the horizontal diffusion have to be 
distinguished, viz. the influence on 'the concentration field and the 
influence on the transport field. That one 'of the influences is negligible 
does not necessarily imply that the other one can also be neglected. 

The influences of both the secondary flow and the horizontal diffusion are 
studied by analyzing the magnitude of the terms in the corresponding 
equations in the following subsection. In 4.6.3 the behaviour of the depth-
integrated model with respect to the secondary flow and the horizontal 
diffusion is further analysed. 

4.6.2 Analyzing the Equations 

Mathematically-the significance of'the secondary flow and/or the horizontal 
diffusion for the concentration field and the transport field is represented 
by the importance of the corresponding terms in the following equations. 

3 C + u ■ ^ + u ^ - ~\c- ^ 1 - S-|e_ £ 1 = w. ^ + i-|« ^ 1 • (4-130) at 

s 
s 

3c . dc a. ( . acl a f dc] ac a f dc] , .. ..,-, U ■ ■=- + U -3- - -T- £ -r- - -T- £ -T-\ = W — + — \e -r-\ (4-130) s 3s n 3n 3s ̂  s 3sJ 3n(̂  n 3nJ s 3z dz^ z 3zJ 

+D z,+D 
u c dz - f ^ (4-131) 

J s J s 3s z +z. z +z, a b a b 

z,+D z,+D 
b #- b [ u c d2 - f ( ^ -■ (4-132) 

n J n J n 3n z +z, z +z, a b a b 
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The importance of the different terms in these equations can be examined by 
comparing their order of magnitude. Suppose that the flow under 
consideration can be characterized by the following scales 

L = length scale in the main flow direction, 
L = length scale in the normal direction, 
H - length scale in the vertical direction, 
T = time scale, 
U - scale for the main flow velocity, 
s J 

U = scale for the secondary flow velocity, 
E = scale for the horizontal diffusion coefficients, n 
E = scale for the vertical diffusion coefficient: 

The convection-diffusion equation (4-130) may then be made dimensionless as 
follows: 

HU HU „ E„H 

E„H 

JL 3c_ _^s , ac_ _^V , ac_ yr_ d__( , acj 
w T 3 t ' L w u s 3s' + L w un 3n' T

2 3 s ' l £ s 3s ' I = s s n s w L v 
s s 

HH 3 f , 3c 1 3c Ev 3 f , 3c 1 . . n , , s 
- ^ 3n^n 8^\=3^ + ^ti 8^[ez 8^\ ( 4 " 1 3 3 ) 

w L v J s y J 
s n 

where all quantities marked with a prime have been made dimensionless with 
the corresponding scale. 

The principal assumption on which the asymptotic solution is based implies 
that the two terms on the right hand side have the same order of magnitude 
and that all terms on the left hand side are an order smaller in magnitude 
than the two terms on the right hand side, thus 

E 
— - - 1 (~ reads has the order of magnitude of) (4-134) w H s . 

HU HU E„H E H s n H c v , . , , , . . 2 - S 7 r n (4-135) w T L w Lw T
2 wH s s s n s w L s s n 
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with S « 1 

It should be noted that the diffusion term in the main flow direction is in 
general much smaller than the other terms, since L » L . However, if this 

s n 
term is not taken into account while the diffusion term in the normal 
direction is taken into account the diffusion tensor in the horizontal plane 
is no longer isotropic. This may cause complexities in the numerical 
modelling. Therefore only the diffusion term in the normal direction is 
considered in the analysis but both horizontal diffusion terms are always 
taken into account or neglected together. 

In order to examine the importance of the secondary flow and the horizontal 
diffusion the convection term in n-direction and the horizontal diffusion 
term are compared with the longitudinal convective term. 

The ratio between the two convective terms is 

HU HU U L 
1 1 . S n S // T3£\ 

T : T = TT T (4-136) L w L w U L n s s s s n 

From the secondary flow model described in the previous chapter it follows 
that 

r - s (4"137) 

s 

where R is the radius of curvature. So the ratio in (4-136) becomes 
(4-138) 

For the length scale in the main flow direction it is reasonable to assume 
that L ~R, and for the length scale in the normal direction the river width 
B may be taken, so the ratio becomes H/B which is small in the cases 
considered in this study. According to Booij and Kalkwijk (1982) the 
secondary flow model described in chapter 3 may not even be used unless 

U L n s H 
U L R s n 

L s 
L n 

L s 
R 

H 
L n 
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H/B<1/15. The conclusion is thus that the influence of the secondary flow on 
the concentration field can in general be neglected. 

The importance of the diffusion term is examined by comparing it with the 
convective term in the normal direction. 

E H H U n H E H H 

-f- ^ ■ - V - ï f l r 1 (4-139) 
w L L w L U H L s n n s n n n 

It is reasonable to assume that E„ -U.H and U -U,. so E„/U H-l, thus the 
H * n * H' n 

diffusion term is even unimportant compared with the convective term in the 
normal direction. Therefore it can be concluded that the influence of the 
horizontal diffusion on the concentration field is negligible. 

The influence of the secondary flow and the horizontal diffusion on the 
sediment transport field is represented by the transport component in the 
normal direction S . Compared with the transport rate in the main flow 
direction S this is in general small since 

S U 
S 2 " O 2 « 1 (4-140) 
s - s 

However, the component S causes a deviation of the direction of the 
transport vector to the main flow direction. This deviation, although small, 
can have striking effects on the morphology for e.g. river bends. Besides it 
is relatively easy to take the influence of both the secondary flow and the 
horizontal diffusion on the transport field into account. Therefore this 
influence should be taken into account earlier than the influence on the 
concentration field. 

The significance of the secondary flow and the horizontal diffusion can also 
be examined by'comparing the order of magnitude in the depth integrated 
equations (4-127) through (4-129). The comparison can be carried out in the 
same way as above, so it is not described here in detail. Only the 
conclusions from this comparison are summarized in the following. 
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* In the concentration equation (4-127) the secondary flow term as well 
as the horizontal diffusion terms are not important compared with the 
convection term in the main flow direction. This agrees with, the 
conclusion drawn above. 

* In the equation (4-128) for the transport rate in the main flow 
direction the terms due to the horizontal diffusion can be neglected. 
So this equation can be simplified as 

u he s s (4-141) 

* In the equation (4-129) for the transport in the normal direction the 
first order terms in the diffusion part can be neglected. Thus this 
equation can be simplified as 

S. = Ih n 
00 
— c + an s 

01 «i 0o h s 
w at 
s 

<*2 00 u h dc s s 
w 9s 

03 <*3 00 Ih s 
w 3n 

04 <*4,-0O 3_ 
3s 

uji dc -_*_ s 
w 3s s 

9n 
u.h 3c * s 
w 3n s 

2 ^0 g "J1 — -^~ c 
* a0 dn s (4-142) 

4.6.3 The Behaviour of the Depth Integrated Model with Respect to the 
Secondary Flow and Horizontal Diffusion 

In this subsection the behaviour of the depth integrated model with respect 
to the secondary flow and horizontal diffusion is analysed.' The main purpose 
of this analysis is to gain some insight into the interaction of the 
influences of the secondary flow arid the horizontal'diffusion. 

In'order to simplify the problem a steady uniform main flow (e.g. a 
circulating'flow field with closed streamlines) is considered'. For this 
situation 
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T r ï 3 s 3 
L[ ] = q ^ " r JÏ 

. • 5 -
n dr, 

(4-143) 

Further the velocity of the main flow, which is not involved in the present 
problem, is assumed to be uniformly distributed over the vertical (p=l). The 
first order solution in the present model is then the same as that in the 
model of Galappatti (1983). 

In the previous subsection it has been shown that the diffusion term in 
equation (4-143) is relatively unimportant compared with the convective 
term. However, the two terms may interact with each other, therefore the 
significance of the horizontal diffusion term is reconsidered. 

The equation for the mean concentration c (=c in this case) with and 
without the diffusion term are respectively 

(without diffusion) (4-144) 

(with diffusion) (4-145) 

If c and the 7 coefficients are constant then the solution of the two e 

equations are respectively. 

c = c + A exp(Ar;) (without diffusion) (4-146) 

c = c + A exp(A1r/) + B exp(A.r)) (with diffusion) (4-147) 

The constants A and B have to be determined from the boundary conditions. 
Obviously two adaptation lengths are found when the diffusion term is taken 
into account while only one adaptation length is found if the diffusion term 
is neglected. The exponential coefficients A, At and A2 are respectively 
shown in fig.4.6 and fig.4.7. Comparison shows that the difference between 
the two figures is very large. This means that taking the diffusion term 
into account can influence the solution in the depth-integrated model 
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Fig.4.6 The first order solution without horizontal 
diffusion 
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Fig.4.7 The first order solution with horizontal 
diffusion (u^/I - 1,' 0 = 0.01) 
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significantly even though the diffusion term has a relatively small 
magnitude. 

Remark : 

When the second order solution is applied two adaptation lengths are found 
even without the diffusion term. This is illustrated in fig.4.8 with the 
model of Galappatti (1983). For the second order solution the influence of 
the diffusion term is probably less important. However, the second order 
solution is further not considered since it is not applied in practice. 

-20 

1.00 

Fig.4.8 Second order solution without horizontal 
diffusion 

It is remarkable that A changes sign at a certain value of w /u . Obviously 
the sign of A represents the direction of the convection velocity in the 
mean concentration equation. Direct integration of the original convection-
diffusion equation over the depth (see 4.2.6) shows that the convection 
velocity should have the direction of the sediment transport. The secondary 
flow has a small mean velocity in the direction of the flow in the upper 
half of the depth because the bed boundary is at a small distance above the 
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bed. So for small w /u the transport in n-direction will be positive. For 
larger value of w /u the transport will change sign because of the'non-
uniform distribution of the concentration over the depth. The sign of A 
agrees with this tendency. 

Obviously the diffusion term should be taken into account in the first order 
solution if the secondary flow is taken into account. It is interesting to 
know whether this applies also to the exact model. The exact form of the 
original convection-diffusion equation without horizontal diffusion term is: 

q |^ = D[c] ■ (4-148) 

The solution of this equation can be written as 

c = 2 Aj « y n exp(:y) (4-149) 

where A. are constant coefficients while A. and é. are respectively 
J J J 

eigenvalues and eigenfunctions of the following problem 

D[^] = A q</. (4-150a) 

^(0) = 0 (4-150b) 

Ml + e a,-z df r=t 
(4-150c) 

It should be noted that the secondary flow velocity changes direction in the 
middle of the depth. This means that the "upstream" boundary of the upper 
half and the lower half of the flow are at the different places. When the 
original convection-diffusion equation is solved the boundary conditions ' 
should be applied at two different sides for the two halves of the flow. 
Based on such a simple physical consideration it is concluded that the 
eigenvalues A. can be divided in two groups, one group with positive real 
parts and the other group with negative real parts, although it is not 
mathematically proved. It is thus clear that the diffusion term in the 
original' equation will not influence the solution significantly if its 
magnitude is not very large. The significant influence of the horizontal 
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diffusion term is due to the shortcoming of depth-integrated modelling that 
only the first order solution is applied. 

To illustrate the behaviour of the different models further the following 
artificial case is considered (fig.4.9). The flow is uniform with a linear 
velocity distribution. The vertical diffusion coefficient is constant over 
the depth. 

e =0.1 uJD z * (4-151) 

The bed boundary condition is applied at the bottom z-0. This is allowed for 
this case because the vertical diffusion coefficient does not vanish at the 
bottom. Also the horizontal diffusion coefficient is supposed to be constant 
in the whole area, having the same value as the vertical diffusion 
coefficient unless it is set to zero. 

c-1000 Un 

h-D 

î Ca-1000 
c-0 

Fig.4.9 Situation sketch 

It can be shown that this problem is completely characterized by two 
parameters, viz. 

s , n — and jT-u, in 

A simple numerical model is set up to calculate the two-dimensional 
solution. The upstream boundary conditions as well as the bed boundary 
condition for this two dimensional model are shown in fig.4.9. When e is 

° n 
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not equal to zero the following condition is applied at the outflow 
boundaries. 

2 
d c 

2 
3r, 

(4-152) 

The two-dimensional numerical result is compared with the depth-integrated 
model in fig.4.10 and fig.4.11 for two cases. It should be noted that for 
the depth-integrated model it is not clear what the upstream boundary 
conditions are. Therefore the mean concentration computed from the two-
dimensional model is applied. 
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The following conclusions are drawn from this exercise. 

* The result of the depth-integrated model agrees better with the two 
dimensional solution when the horizontal diffusion coefficient is 
larger. 

* The difference between the first'order solution and the second order 
solution is large when the horizontal diffusion is not taken into 
account. The second order solution is acceptable. 

* If the horizontal diffusion term is taken into account the first order 
solution is acceptable. 
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Chapter 5 THEORETICAL ANALYSIS 

5.1 Introduction 

In the previous chapter a general asymptotic solution is developed for the 
convection-diffusion equation. From this solution a series of depth-
integrated models for the suspended sediment transport can be developed. All 
these models are easier to be applied and less sophisticated than the fully 
three-dimensional model but more complicated and sophisticated than the 
simple transport formula. Before a depth-integrated model can be chosen and 
applied the following questions should be answered first.. 

a) Is the depth-integrated model sufficiently accurate to replace ,the 
three-dimensional model? 

b) Is it worthwhile to apply the depth-integrated model replacing the 
simple transport formula? 

In this chapter attempts are made to answer these questions by means of a 
theoretical analysis. Based on the results of the analysis a choice is also 
made from the different models. The following section gives an analysis on 
the behaviour of the exact solution of the convection-diffusion equation. In 
section 5.3 the convergence of the asymptotic solution is.studied. The 
morphological behaviour of the models is investigated in section 5.4 
followed by a comparison of the different models in section 5.5. Finally in 
section 5.6 the applicability of the models is further discussed and a 
choice is then made. 

For reasons of simplicity the flow velocity is assumed to be uniformly 
distributed in the vertical (p=l),<unless otherwise specified. Under this 
assumption the first order solution presented in section 4.5 is the'same as 
the first order solution of Galappatti (1983) when the two-dimensional case 
is considered. 
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5.2 Behaviour of the Exact Model 

According to the three-dimensional model (the exact model) the sediment 
concentration field has to satisfy 

* the convection-diffusion equation, 

L[c] = D[c] (5-1) 

* the boundary conditions corresponding to the operator D[ ], i.e. the 
water surface boundary condition and the bed boundary condition (the 
concentration type is chosen as example for the analysis in this 
chapter), 

a. <3c 

f-l - ° (5-2) 

c(f-O) = 7nc e (5-3) 

* the boundary conditions corresponding to the operator L[ ] i.e. the 
initial condition and the upstream boundary condition, 

c(0,e,»7,f) = CT=0(£,r,,D (5-4) 

c(T,0,r?,f) = c (r,,,f) (5-5) 

c(r.f ,0,f) = ^ ( r . f . f ) (5-6) 

* Further when the horizontal diffusion is taken into account some weak 
conditions have to be applied at the downstream boundary. However, it 
is assumed that these conditions will not influence the solution 
significantly, therefore they are not considered in this chapter. 

It should be noted that equation (5-1) and (5-2) are the same for all 
problems and for a particular case the concentration field is completely 
determined by the conditions (5-3) through (5-6). The concentration field 
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consists of two parts, one contributed by the initial and upstream boundary 
condition and the other by the bed boundary condition. For the analysis on 
the convergence of the asymptotic solutions it is convenient to make a 
distinction between these two contributions. Mathematically this distinction 
can be formulated as follows. 

c(»- ,e .«?,r) = Cj + C l I (5-7) 

c is due to the bed boundary condition. It satisfies the convection-
diffusion equation (5-1) and the boundary conditions corresponding to the 
operator D[ ] (5-2) and (5-3) in the whole r-̂ -rj space (-«Kr, £, i7<°°) 

L[Cl] = D[cx] (5-8a) 

3c, 
c ar Jr-i 

Cj(f-O) = 7 n C e 

= o (5-8b) 

(5-8c) 

Remark 

The extension of the domain to the whole r-£-rj space implies the 
assumption that the bed boundary condition (c ) is differentiable 
and ri up to infinite order at the corresponding boundaries. 

c is due to the initial and upstream boundary conditions. It satisfies the 
convection-diffusion equation, the boundary conditions corresponding to the 
operator D[ ] in homogeneous form, and the adapted initial and upstream 
boundary conditions. 

L[c n] = D[c n] 

, 3 C H 

c (f-0) = 0 

f-1 - 0 

(5-9a) 

(5-9b) 

(5-9c) 
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cTT(0,£,T7,r) = c(0,?,^,O - cT(0,|,i?,r) . (5-9d) 

cII(r10,fj,r) - c(r,0,r,,f.) - . c^r ,0,, r,, f) - (5-9e) 

c ^ r ^ . O . f ) = c(T,?,0,f) - CjCr.l.O.D , (5-9f) 

It is not difficult to verify that (5-7) is the solution of the original 
problem (5-1) . . . (5-6) . 

The contribution of the bed boundary condition c. will be the.complete 
solution if the complete T-.£-»/ space is, taken into consideration. Therefore 
c will also be called the dynamic equilibrium concentration, c _ is in fact 
due to the deviation of the actual concentration field from this dynamic 
equilibrium concentration at the boundaries. Further c is only important 
near these boundaries. It is thus a kind of boundary layer. 

In order to clarify the problem further the simple case 

L[ ] - f7 (5-10) 

is considered as an example. For this case it can be shown that 

C l I = j|1Ajexp(Ajr)^(r) . (5-11) 

c'= cT +.S1B.exp(A.T) , , • (5-12) 

where A., B. and A. are constant coefficients, é.(C) ave profile functions 
i J J J ' 

and c (T) is completely determined by the function c (r). 

There are thus two kind of time scales in this simple problem. The first 
kind is the time scale characterizing the variation of c (T) and the ;second 

' i e .. ■ 

kind is the time scale inherent in the system itself characterized by the 
exponential coefficients A.. 
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For the general case 

U 1 - §7' + P(ST) ft + «1(f). f^ • (5-13) 

there is another kind of time and/or length scales characterizing the 
variation of the initial and upstream boundary conditions. 

To analyse the asymptotic solutions all three kinds of time and/or length 
scales have to be considered. However, as will be shown later, all can be 
investigated in a similar way. 

5.3 Convergence of the Asymptotic Solutions 

5.3.1 Convergence Radius (A Simple Case) 

Consider the case 

L[ ]. - f- .. . (5-14) 

with the following bed boundary condition 

7nC - exp(ar) (5-15) 

where a is a complex coefficient. 

The exact solution for the the dynamical equilibrium concentration in this 
case can be written as 

c - f(r)exp(ar) (5-16) 

where f(5") is the solution of the following boundary, value problem: 

D[f] = o f ( 5 - 1 7 a ) 

[ f + £ f ] f = l = ° .' . (5"17b) 
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f(0) = 7 M (5-17c) 

The mean concentration is obtained by integrating equation (5-16) 

c - exp(ar) Jf(f) df 
o 

(5-18) 

According to the model of Galappatti the mean concentration is governed by 

7 n c + 7 2 1 TT + + 7 n + 1 x — - exp(ar) (5-19) 

The dynamical equilibrium concentration is then the particular solution of 
this equation. 

_ exp(ar) 

1=1 'll 
i-1 (5-20) 

The conventional asymptotic solution for this case is (see eq(4-71)) 

n+1 j-1-
dJ c 

E f iji-zrf- e x p ( o o^ji° r l"1 
j - i 

(5-21) 

It is clear that the asymptotic solution (5-20) and (5-21) will converge if 
and only if the series in these two equations converge. Both series are 
power series, so a convergence radius R can be defined for each solution. 

R = lim 7J-1,1 
7i,l 

for the model of Galappatti (5-22) 

R = lim Vi . i 
5 j , l 

for the conventional model (5-23) 

It should be noted that a represents a time scale of the variation of the 
bed boundary condition which is related to the variation of the flow. That 
the asymptotic solution is only convergent if |a| < R means in fact that 
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the depth-integrated models are only valid for relatively slowly varying 
flow or when the time scale is relatively large, as can be expected. 

From a mathematical analysis (Wang, 1984) it can be shown that the limit in 
(5-22) is equal to the absolute value of the largest eigenvalue of the 
following problem. 

D[^] = \<j> (5-24a) 

[< +«'ff] r-l-° <5-2*b> 
U(f) df - 0 (5-24c) 
o 

For the case that e' is constant this eigenvalue is 

2 2 
•(1+4* e' ) 

4<r' (5-25) 

Analogously the limit in equation (5-23) is equal to the absolute value of 
the largest eigenvalue of the following problem. 

(5-26a) 

(5-26b) 

(5-26c) 

D[rf] 

4> + 

HO) 

= \<f> 

,a<f 

= 0 

r-i 

For the case that e' is constant this eigenvalue is 

2 2 
(l+4b1e' ) (5-27) 

1 4e 

where bl is the smallest positive root of the equation (see fig.5.1) 

tg(b) = -2e'b (5-28) 
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It is clear that b<?r. This means that the convergence radius of the model of 
Galappatti is larger than that of the conventional model. Figure 5.2 gives 
the convergence radii of the two asymptotic solutions for the case that the 
diffusion coefficient is constant. 

u* 
'' = 0-1 „- (5-29) 

s 

5.3.2 Convergence Domain (A more general case) 

In the previous subsection the convergence of different asymptotic solutions 
has been studied for a simple case. It has been shown that the convergence 
domain for a in equation (5-15) is a circle in the complex plane with radius 
R . In the general case more directions are involved in which the bed 
boundary condition can vary. Along the way outlined in the previous 
subsection a convergence radius can be determined for each direction 
separately, but the question remains whether the different directions 
involved will interact with each other. In this subsection it is attempted 
tó answer this question by considering the more general case 

L[ ] -§7 + p(f) h (5;30) 

with the bed boundary condition 

cg = 7llexp(ar + /3f) (5-31) 

where a and /3 are complex numbers. 

The exact solution for this case can be written as 

c =■ f(f) exp(ar+/30 (5-32) 
so' 

l 
.c = exp(ar+£0 jf(f) df • -, . (5-33) 
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where f is determined by 

D[f] = af + 0pf (5-34a) 

[ f + £'ff]r=i = 0 (5"34b) 

f(0) - 7ll (5-34c) 

The conventional model gives for this case the following solution for the 
mean concentration 

c = exp(ar+#)2ij fc^c^'V1 (5-35) 

and according to the model of Galappatti 

. l 

c = exp(ar+#)J gjj | 17 k ja k'V" 1] (5-36) 

It is clear that the conventional asymptotic solution will converge if and 
only if the double series in equation (5-33) converges. Similarly the 
asymptotic solution of Galappatti will converge if and only if the double 
series in equation (5-36) converges. The two asymptotic solutions can thus 
be studied in exactly the same way. Therefore only the conventional model 
will be studied in the following. 

The convergence of the double series in equation (5-35) can be well studied 
for the simplified case p=l. For this case it is not difficult to show that 
(see equations 4-68 and 4-73) 

«icj - «id( ? : i ) ( 5 - 3 7 ) 

f k-l 1 
where ■ -i expresses the binomial coefficients. Equation (5-35) can then 
be written as 

c - exp(ar + PO^\skl(c+^'1 (5-38) 
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This is again a power series and the convergence radius of a+f} is thus 

R „ = lim k-1 1 
'kl 

(5-39) 

This is exactly the same as the convergence radius for the simple case 
studied in the previous subsection. This conclusion applies also for the 
asymptotic solution. 

There are clearly interactions between the different directions. For a=-p~ 

the asymptotic solution always converges without any restriction, while the 
critical case is a=/3 for which the effective convergence radius is only one 
half of R . All cases between these two extreme cases are possible. In 
fig.5.3 the interaction between the two directions is depicted for three 
cases. This figure shows that the interaction between the two directions 
depends on the angle between a and {) in the complex plane. The larger this 
angle the larger the convergence limits. The two extreme cases can be 
represented by the two extreme values 7r and zero of this angle. In general 
it can be said that if this angle is smaller than JT/2 the convergence limits 
of a and 0 are both smaller than R . If this angle is larger then 2w/3 at 
least one of the convergence limits can be larger than R „. 

a+p 

e< 2 

/ x 
/ p \ i X 

e = 

Im 

Lp\\ 

h e>-2r-

Fig.5.3 Interaction between a and 

5.3.3 Further discussions 

It should be noted that in the previous two sections only the dynamic 
equilibrium concentration field has been considered. The boundary layer can 
be studied in a similar way. 
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For the simple case studied in subsection 5.3.1 the boundary layer c can 
be written as (see Wang and Ribberink,1986) 

' c n " k£iVf> e xP (V> i 

in which A are the eigenvalues of problem (5-26). 

\ ~ '(1+4V'2) (5-40) 

The solution consists thus of components of exponential functions in time. 
It is clear that an asymptotic solution can only converge to those 
components in (5-40) of which the exponential coefficients are inside the 
convergence domain. In fig.5.1 it can be seen that inside the convergence 
domain of the model of Galappatti (1983) only one of the A, is. present (b2 > 
n > bj). This means that the asymptotic solution of Galappatti can only 
converge to the .first component in (5-40). The same conclusion has also been 
drawn earlier from a different analysis (Wang and Ribberink, 1986). Further 
none of the eigenvalues A, is inside the convergence domain of the 
conventional asymptotic solution (|Aj| - convergence radius). Therefore the 
conventional asymptotic solution does not converge to any component of c 
This explains why no upstream boundary condition at all can be applied in 
this model. 

For a more general case such as the case considered in 5.3.2 not only more 
boundary layers are involved but there is also another kind of variation 
such as the variation of the upstream boundary condition in time. Such a 
variation will interact with the corresponding boundary layer. This 
interaction can be analysed in exactly the same way as in subsection 5.3.2. 
This analysis is not repeated here. 

Up to now only the conventional solution and the solution of Galappatti have 
been considered. For the general asymptotic solution the convergence domain 
cannot easily be .determined. However, it has been shown above that the 
number of components of c to which a asymptotic solution converges to is 
equal to the number of A coefficients inside the convergence domain of the 
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solution and also equal to the number of initial conditions which can be 
applied in the infinite order solution. This reasoning might also be used to 
estimate the convergence radius of a asymptotic solution. If M initial 
conditions can be applied in the infinite order solution in a model then the 
model should converge to M components in c thus the convergence radius 
should can be supposed to be larger than the absolute value of A according 
to (5-40). In the previous chapter it has been shown that if an orthogonal 
system is chosen for the test functions two upstream boundary conditions can 
be applied in the second order solution (see 4.4.3, case II). It is 
presumable that if the test functions form a complete system, an infinite 
number of upstream boundary conditions can be applied in the infinite order 
solution so the asymptotic solution converges to the complete solution of 
the original problem. Thus it is conjectured that the convergence radius of 
the asymptotic solution is infinitely large when the test functions form a 
complete system. 

5.4 Morphological Behaviour of the Models (A Linear Analysis) 

In order to study the morphological behaviour of the different models.a 
linear analysis is carried out. The propagation characteristics of a small 
disturbance in a one-dimensional flow are derived analytically'from the 
conventional model, the model of Galappatti and the exact model. 

Consider a steady uniform flow where the suspended sediment transport is 
dominant and in equilibrium. Let all the quantities in this equilibrium 
state be denoted by the subscript 0 (e.g. u0 for the mean velocity, h0 for 
the water depth, etc.). Consider a disturbance in the bed level 

z = z0 + z' ', (5-41) 

where . , . 

z' = Z exp(At + ikx) (5-42) 

This will cause perturbations in other quantities. 
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(5-43a) 

(5-43b) 

(5-43c) 

c = c0 + c' (5-43d) 

For the analysis the following assumptions are made. 

* The variation with t and x of the coefficients in the depth-integrated 
models can be neglected. 

* The discharge remains constant, thus 

üh = u0h = q (5-44) 

* The water surface level remains unchanged, this is the rigid lid 
assumption. Thus 

! !* = §h 
at "at 

The c o n t i n u i t y equation for the sediment can then be w r i t t e n as 

* the sediment t r anspor t capacity i s governed by the power law 

s = a u (5-46) 

e 

so the equilibrium mean concentration becomes 

-b 
c - a - ^ — (5-47) 
e Q l lq 

With the help of equation (5-44) equation (5-47) can be linearized as 
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'• f1 ' K-) c
e = co |1 " — I (5-48) 

Thus 

a; = - ̂ 1 c0 (5-49) 

s; - - ̂  s0 (5-50) 

The sediment transport s can now be determined from different models, and 
the propagation characteristics can be derived from equation (5-45) which 
can also be written as 

g'-tr 
The conventional model 

According to the conventional model the transport rate is (see chapter 4) 

n+1 . .. ai-l-

The perturbation of the transport rate is then 

3J "h' 

Substituting this equation into equation (5-51) gives 

3h' 
at 

b s0 r -' î-iCn ^J"1 flJ-k' ^Y W"1^ (5-53) 
ho L^ <*nlwJ .1-1 j . i - ax-

Together with equation (5-42) this gives 



-90-

bs, n+1 

ii, L « u i w J 
J-I 

j - i 
(5-54) 

The model of Galappatti 

In the model of Galappatti the mean concentration c has to be determined 
first before the sediment transport rate s can be determined. The equations 
governing c and s are (see chapter 4) 

n+1 
c = e 

j - 1 

n+1 !J-1 J; 
U JJ USJ axJ 

(5-56) 

(5.-57) 
j-l 

From equation (5-56) the perturbation of the mean concentration is shown to 
be 

bc0 
c' = -T- h' ho 

n+1 

I j - i 

j - i 
(5-58) 

Substituting this into equation (5-57) gives 

n+1 b c n , . a. . l J - 1 \—■ 7< 
s ' h o L . a n l «SJ Z_̂  7ii l V 

j - l 
( 5 -59) 

Substituting this into equation (5-51) gives 

Oh 
at 

, n+1 
bc„ < , a,, , 

■ i ( n + 1 • i 

h o / L « n l v L 7 U l WSJ 
j - i I J-i 

ah' 
ax (5 -60) 

Together with equation (5-42) this equation gives 
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n+1 
bc„ ^—. a. . , 

. ■, f n + 1 
i J - 1 \—' 1,tl x = . ik — V^ -iifikSL] Y^ -üfikM 

n o Z _ ^ a n l wj Z_^7nl w j 
j -1 l j -1 

j - 1 
(5-61) 

The exact model 

According to the exact model the concentration and the transport rate are 
governed by the following equations. 

pff-D[c] 

s = q jp(f) c(D df 
o 

(5-62) 

(.5-63) 

Together with the boundary conditions 

, 3cl _ 

c(f-O) = 7 n C 0 

(5-64) 

(5-65) 

Substituting equation into the equation (5-62), (5-64) and (5-65) shows that 
c' is governed by 

Pff'-DM 
, 3c' c + e T7 ar Jf-i 

c(r-o) = 7nc' 

- 0 

(5-66a) 

(5-66b) 

(5-66c) 

The solution of this boundary value problem can be shown to be 

c' = cetf(f) (5-67) 

where <f> is a complex function governed by 

ik 3- p«S = D[c] w s 
(5-68a) 
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r + e' % Jr-i = ° (5-68b> 

^(f=0) =■ 7ll (5-68c) 

From equation (5-63) it follows then 

\ bc° r 
s' = q Jp(f)c'(f) df - - -g- h'jp(D^(0 df (5-69) 

o o 

Equation (5-51) can now be written as 

bs l-§h 
a 
h' ° 3h'f 
-t - -~r0k ]*«»«> df (5-70) 

Substituting equation (5-42) into this equation gives 

A £- ik jp(f)^(f) df (5-71) 

It should be noted that if the sediment transport were only bed load the 
result would be 

A r— ik (5-72) 
"o 

which is the same as the zero order solution from both depth-integrated 
models. 

Further the convergence of the propagation factor A from the asymptotic 
solutions can also be analysed as in the previous section. The same 
conclusions can be drawn as in the previous section. If p=l then 

P . . = S. . for all j (5-73a) 
JJ JJ 
an = 1 (5-73b) 
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a.. - O for j > 1 (5-73c) 
JJ J 

For this case the results will even be exactly the same with a=ikq/w . The 
convergence radius gives thus also a limit of wave length in the river bed 
for which the asymptotic solution is just convergent. The models are 
compared with each other in the following section. 

5 . 5 Comparison Between the Models 

In section 5.3 the convergence domains of the different asymptotic solutions 
are studied. Inside the convergence domain the asymptotic solution will 
converge to the exact solution. However, for practical applications only the 
first few terms in the asymptotic solution can be taken into account. 
Therefore not only the convergence domain but also the convergence rate of 
an asymptotic solution is important. 

In this section comparisons are made between the low order asymptotic 
solutions and the exact solution, inside as well as outside the convergence 
domains. In order to avoid unnecessary complications only two simple cases 
are considered. The first case is the case considered in 5.3.2 with a is 
real, and the second case is the case studied in section 5.4. For further 
simplification of the problem the diffusion coefficient is assumed to be 
constant and the flow velocity is assumed to be uniformly distributed. 

u* e' = 0.1 — (5-74a) w s 

P(f) = 1 (5-74b) 

Case I a is real 

For this case the exact solutions as well as all the asymptotic solutions 
are real. For the comparison the different solutions can better be depicted 
as function of b with 
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The exact solution can then be written as 

, - 27lle'tg(b) 
2e'b + tg(b) (5-76) 

The conventional solution and the solution of Galappatti (1983) are already 
given in 5.3.2, see equations (5-20) and (5-21). In order to examine the 
asymptotic solution with an orthogonal set of test functions the second and 
third order solution with the following test functions are considered. 

$ = (1, q, r, ...) (5-77a) 

with 
q - 4f-2 

r = 6f -6f+l 

(5-77b) 

(5-77c) 

The second order and third order solution are then respectively 

.(00!-/S„> c 7 0 det(A2) "(second order) (5-78a) 

with 

70+7ia+72a 7I<* 

£2" <*/8i-£o 

and 

2 2 
:(^2Q' -M0)/3i«-()82a +/8iQ+/3o)(/ii°->o) ' 

7o — ^ ^ - } — (third order) 

(4-78b) 

(5-79a) 

with 
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2 3 2 
7o+7ia+72a +T3 a 7i°+72a 

3 2 2 
/ 8 3

a +/32" P2
a + ^ l « - ^ 0 

M3a »2a 'Po /^i^-Mo 

( 5 - 7 9 b ) 

I n t h e s e , e q u a t i o n s 

7 . = an . n ( 0 ) 
' j 1,1+1v ' 

1 

8 j = h a i , i+ id f 

J. 

"j = } r a i , j + i d ^ 

In fig.5.4 the conventional solution is compared with the exact solution. It 
can clearly be observed from this figure that for Q<0 -the asymptotic 
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solution does not converge outside the first singular point in the exact 
solution. The first singular point determines thus the convergence radius. 
This agrees with the analysis in 5.3.2. 

The solution of Galappatti is compared with the exact solution in fig.5.5. 
In this asymptotic solution there is one singular point for a<0. It can be 
observed that this singular point is an estimation of the singular point in 
the exact solution. Outside the singular point the solution does no more 
change sign, so the first zero point in the exact solution defines the 
convergence radius of this asymptotic solution. This agrees with the result 
in 5.3.2. 

In fig.5.6 the solution with the orthogonal test functions is compared with 
the exact solution. In this solution there are n singular points in the nth 
order solution, but the way it behaves outside the first singular point does 
not agree with the exact solution. This fact indicates that this asymptotic 
solution does not have a infinite large convergence radius as suggested 
earlier. No definitive conclusion can be made for the convergence of this 
solution at this moment. 

Further the following conclusions are drawn from the comparisons. 

* The agreement between the model of Galappatti and the exact model is 
better than that between the conventional model and the exact model. 
The convergence radius is apparently also a measure for the accuracy of 
the corresponding depth-integrated model. 

* In the model of Galappatti as well as in the conventional model the 
smaller w /u the higher the convergence rate. This may be explained 
by the variation of the convergence radii of the two models with w /u 
(see fig.5.2) . 

* Within the convergence domain the higher order solutions improve the 
accuracy while outside the convergence domain this is not necessary the 
case. The first order solution of Galappatti gives also a good 
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■estimation for the 'exact solution' outside 'the convergence domain when 
Q>0 . 

Remark: 

The phenomenon of resonance occurs in the exact solution if a is equal 
to one of the eigenvalues of problem (5-26). This is then.called a 
singular point. In such a point the boundary value problem (5-17) has 
no solution, which in fact means; that the exact solution cannot be 
written in the form of equation (5-16). In asymptotic solutions a •■ 
singularity occurs when the numerator is zero. 

Case 'II 8 is purely imaginary 

The coefficient A derived in the previous section is a important parameter 
indicating the morphological behaviour of the corresponding model. It gives 
information on the characteristics of the development of the disturbance on 
the bed. Both the real and the imaginary part of A have important physical 
meanings, i.e. 

-Im(A)/k = propagation velocity 
Re(A) = damping coefficient 

The propagation velocity as well as the damping coefficient according' to the 
different models are compared with each other in fig.5.7 and fig.5.8 for two 
w /u values. The following conclusions have been drawn from the comparison. 

* The model of Galappatti gives a good estimation for the exact solution 
(both the propagation velocity and the damping coefficient) even when 
kq/w is slightly larger than the convergence radius. Within the 
convergence domain the agreement between this model and the exact model 
is better when a higher order solution is applied, when the wave number 
is smaller and when w /u is smaller, as can be expected. 

* The conventional- asymptotic solution gives also good estimation for the 
exact solution when kq/w is small(<2). However, for larger wave 



numbers the deviation between the two models increases rapidly. The 
agreement between this model and the exact model does not depend on 
w /u. . s 

* Higher order solutions can only improve the agreement with" the exact 
solution within the convergence domain. This applies for both 
asymptotic solutions. 

* Concerning the overall agreement with the exact solution the first 
order solution in the model of Galappatti which in the present case is 
the same as the applied solution seems to give reasonable results. 

Further it has been observed that 

* the propagation velocity according to the exact model decreases as the 
wave number increases; it is always smaller than that in the case of 
bed load transport which is the zero order solution; 

* the damping coefficient is always negative(damping) and its absolute 
value increases with the increasing wave number (note that the damping 
coefficient in fig.5.7 has been.made dimensionless with the wave number 
k). A consequence of this is that bed forms cannot be maintained in a 
uniform flow if only suspended transport is present; 

* for k-x» the damping coefficient becomes infinitely large and the 
propagation velocity becomes zero which agrees with the characteristic 
analysis. 

It should be noted that for k-»<*> the disturbance is infinitely small so the 
results from the linear analysis should provide the same information as the 
characteristic analysis. From fig.5.7 it can be seen that according to the 
exact model the propagation velocity becomes zero for k-*». For p=l as in 
fig. 5.7 the first order^solution in the model of Galappatti gives the same 
result. 
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a22Tll S0 
lim (-Im(A)/k) = — — - b r- (5-79) 
K-KX> a l l 7 2 2 "O 

However, this is always negative if the velocity is logarithmically 
distributed over the depth, although the absolute value is small. This means 
that a boundary condition at the downstream side is needed for the 
morphological computation if no bed load transport is present, which is of 
course physically unrealistic. 

This problem is avoided in the present model ($ = (p,...)). The first order 
solution for the case under consideration becomes then (see chapter 4) 

a n f a 2 2 a n ] a c
s 

c = cs =77 + h - =77 d sr (5"80) 

The result of the linear analysis becomes then 

" n+1 
A = -ik -r-

hn DÏ-3K)1"1 
I j - i 

(5-81) 

instead of (5-61). The celerity becomes then 

jLim (-Im(A)/k) = 0 (5-82) 

the same as the exact model. This supports the choice of the first component 
of the test functions made in the previous chapter. 

5.6 Concluding Discussions 

The depth-integrated models are developed to fill the gap between the simple 
transport formula and the complicated three-dimensional model. A depth-
integrated model can only be applied if affirmative answers are given on 
both questions posed in section 5.1: 

a) Is the depth-integrated model sufficiently accurate to replace the 
three-dimensional model? 
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b) Is it worthwhile to apply the depth-integrated model replacing the' 
simple transport formula? 

After the theoretical analysis in the previous sections it is now possible 
to answer these two questions. Take for example case II considered in the 
previous section. The morphological behaviour of the' different models are 
clearly shown in fig.5.7. Obviously for k'=-kq/w >1' the1'application of the J 

simple transport formula will cause significant errors', so it is then 
worthwhile to apply a more complicated model. From the same figure it can' 
also be observed that the limit on k' below which the depth-integrated 
models are applicable is much larger than .1. This'means that there is indeed 
a gap between the sophisticated three-dimensional model and the simple 
transport formula, which can be filled by a depth-integrated model, or in 
other words there are certainly cases for which both questions posed in the 
beginning of this chapter have a positive answer. 

In the previous chapter it has been shown that a series of depth-integrated 
models can be developed based on the general asymptotic solution of the 
convection-diffusion equation. However, when the unsteady three-dimensional 
problem is concerned only the first order solution can in general be applied 
since the higher order solutions will be too complicated for application, 
except the conventional approach. For the conventional model the application 
of higher order solutions means only to calculate higher order derivatives 
of c (t,s,n). As mentioned in the previous chapter the first order solution 
in the general asymptotic solution is only influenced by the first component 
in the,set of functions <S. For the two dimensional case the first order 
solution in the model of Galappatti. is an example of 'the general first order 
solution with 41=1. There areithus only two possibilities'remaining to be 
chosen, viz. the conventional model and the model based on the general ; 
first order solution. From the comparisons carried out in the previous 
section it has been concluded that the first order solution in the model of 
Galappatti performs much better than the conventional asymptotic solution 
(see fig.5.4...fig.5.7). Therefore the general first order solution is 
chosen. . . ... ■ ' .,; ..;■'. ' 
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In the comparisons made in the previous section simplifications have been 
made on the velocity profile and the turbulent diffusion coefficient. The 
same comparison can also be carried out for the more realistic velocity 
distribution (logarithmic) and diffusion coefficient(parabolic-constant). 
The solutions will then also depend on the location of the bed boundary 
condition (̂ ) and the parameter u/u The conclusions drawn in the previous 
section apply also for this comparison, only the influence of the parameter 
w /u is now more important. The smaller this parameter the more accurate 
the model. 

Up to now the analysis only concerns the two-dimensional flow case. However, 
it can be expected that the conclusions drawn from the analysis apply also 
for the three-dimensional cases. 

//// 
T 7 7 7 7 

<?//// 

► X 

Fig.5.9 

In realistic situations the bed level will be irregular, but the result of 
the linear analysis can still be applied for examining the applicability of 
a model after a Fourier analysis. As an example the sedimentation of a 
trench (fig.5.9) is considered. For such a case the bed level z, (x) can be 
developed into a Fourier series. 

z,(x) =. S A. exp I1 VJ (5-83) 

The result of the linear analysis can now be applied to each component in 
this equation. 
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For numerical models it should be noted that the shortest wave which can 
enter the system has the length 2Ax and the longest wave has the length 2L, 
if Ax is the space step and L is the length of the region under 
consideration. In other words 

=j >- k , I (5-84) 

Examining the agreement between the depth-integrated and the exact model in 
the region defined by (5-84) one can thus obtain a good impression about the 
accuracy of the model. 

Examples of applications of the results from the analysis in this chapter 
are given in chapter 7 and chapter 8. 
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Chapter 6 NUMERICAL MODELLING 

6.1 Introduction 

As described in chapter 2, the morphological model considered at present can 
be divided into three submodels, viz. the flow model, the sediment transport 
model and the bedlevel model. The flow model used at present is an existing 
model, therefore only the numerical aspects of the sediment transport model 
and the bedlevel model are considered in this chapter. 

6.2 The concentration Equation 

The main numerical problem in the sediment transport model is the solution 
of the sediment concentration equation (4-147). For convenience this 
equation is written as 

2 2 
dc dc dc 3 c 8 c c -c 

J 8x 8y a 

where U = effective velocity in x-direction, 
V = effective velocity in y-direction, 
D = diffusion coefficient, 
T = adaptation time. a 

Two numerical schemes for this equation are considered, one with central 
space discretization for the convective terms and the other one with 
upstream discretization. 

The Central Scheme 

The central scheme is applied in combination with the predictor corrector 
method (PCM). Thus for the predictor the forward-time central-space (FTCS) 
scheme is applied while for the corrector the Crank-Nicolson (C-N) scheme is 
employed. In equation form these schemes read 
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Predictor 

n n c . . -, , -c . n n c . , , -c * n 
sjk sjk n ^sj+l.k ^sj -l,k n *~sj ,k+l ^sj ,k-l 

At jk 2Ax + Vjk 2Ay 

n „ n , n 
c . . . , -2c ., +c 

„ n n -2c . , + c 
Dn s j + l , k s j k s j - l , k + Q n s j , k + l s j k s j , k - l + 

j k Ax j k Ay 

n n c . . - c ., 
+ se j k s j k 

a j k 

C o r r e c t o r 

( 6 - 2 ) 

** 
c ., - c * n 

c ., -c s j k s j k s j k s j k 
Kï (1'e) S t — 

* 
- c . n+1 s j + l , k s j - l , k 

j k 2Ax 

* * * * * 
, „n+1 s j , k + l s i , k - l ^n+1 s i + l , k s i k s i - l , k + V.. — ^ ^ - — ^ - D., —* '■ i J — + j k 2Ay j k A x = 

* „ * * n+1 * , , c . . , , -2c ., +c . , , c ., -c .. _n+ l s j , k + l s j k s j , k - l s e j k s j k 
j k Ay2 + ^l 

J a j k 

( 6 - 3 ) 

This corrector can be applied for a number of times, where c for every time 
is the last estimation for c. 

This numerical method has already been analysed by Wang (1984) for the one-
dimensional case. The analysis for the two-dimensional case discussed here 
is completely analogous. Therefore the analysis will not be described in 
detail here, only the important results are summarized below. 

For the initial state 

c (0, x, y) = exp(ik x + ik y) s J r x yJ' (6-4) 

the complex propagation factor is 
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p = 1 + J x eJ'lZJ (6-5) 

Ith 

Z - A cos£ + A cosn - A - X - B - ia sin£ - ia sinn (6-6) x s y x y r x ^ y 

£ - k Ax 
* x 
n - k Ay 

-y J 

_ 2DAt x " T^ Ax 

2DAt 
y 2 
J Ay 

UAt 
x Ax 

A 

VAt 
a _ ___ 
y Ay 

At 
T 

M = the number of iterations, v 

$ = constant coefficient. 

The condition for numerical stability 

|p| < 1 , (6-7) 
defines a stability domain which can be described by the following two 
relations. 

2(Ax + Ay) + fi < fM(tf) (6-8) 

a + a < gu(6,B,X ,A ) (6-9) 
X y "M X y 
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Fig. 6.1 Stability domain of 
PM with three 
iterations (source 
term explicit 9=0.5 
A =A =A) x y 

0.0 0.2 

Fig.6.2 Stability domain of PM with three iterations 
(source term implicit, 0=0.5, A =A =A) 

x y 
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For M>1 the functions f„ and g are too complicated to be written in 
analytical form. It has been shown that M=3 gives the largest stability 
domain (Wang, 1984). This stability domain is shown in fig.6.1 for 0=0.5 and 
A =A =A. It can be observed from this figure that the parameter fi can give x y 
negative influence on the stability when A is not too small. This can cause 
serious problems in very shallow water regions where P becomes large. This 
problem can easily be solved by treating the source term in equation (6-1) 
implicitly instead of explicitly as in (6-2). The last term in (6-2) and 
(6-3) becomes then ' . ' ' ■ ' 

n+1 n+1 c .. -c .. sejk sjk 
Tn+1 
ajk 

The whole scheme remains effectively explicit, but the stability domain is 
enormously enlarged, as can be seen from fig.6.2. 

Another problem with the central scheme is the spatial oscillation. A 
condition for suppressing oscillation for the one-dimensional flow case is 
that the cell-Reynolds number should be smaller than 2 (Vreugdenhil,1979) . 

^ f < 2 (6-10) 

Suppose that 

D = aUh 

then the condition becomes 

Ax < 2ah (6-11) 

Since a has the order of magnitude 1 this condition will in general lead to 
a unrealistically small Ax. So serious oscillation problems can be expected 
with the central scheme. 
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The Upstream Scheme 

The upstream scheme introduces such a numerical diffusion that spatial 
oscillation problem will no more occur. In equation form this scheme reads 

n+1 n n n n n 
C s j k " ° s j k + ^n ° s j , k " ° s j - l , k + y n ° s j , k " ° s j , k - l _ 

At j k Ax j k Ay 

n „ n n n _ n n c . , , -2c . , + c . , , c . , , - 2 c . , + c . , , ^n s l + l , k s i k s i - l , k , „n s i , k + l s j k s i , k - l = D., — J -4 - — + D., —"*-* % ^ + 
J Ax J Ay 

n n 
+ % e j k ^ s j k 

a j k 

i f U and V a r e p o s i t i v e . I t s h o u l d be n o t e d t h a t t h e s o u r c e t e rm i s t r e a t e d 

i m p l i c i t l y i n o r d e r t o improve t h e s t a b i l i t y o f t h e scheme. The complex 

p r o p a g a t i o n f a c t o r f o r t h i s scheme becomes 

' - Ï Ï* t1 - Ax- V Kl - l*yl + <vKi)C0S? + 

+ (A +\a |)cosr7 - i\a |sin^ - i|a |sin£ (6-13) 

The stability domain can be described by 

(k xl + k yl + |AXI + |Ay|) < 1 + 0.5^ (6-14) 

and is shown in fig. 6. 3. 

The truncation error in the central scheme is of second order while that in 
the upstream scheme is of first order. Thus the central scheme is in general 
more accurate than the upstream scheme. However, the spatial oscillation 
problem makes this scheme unapplicable for most estuary problems, since the 
space step is in general much larger than the water depth. Therefore most 
computations in the present study have been carried out with the upstream 
scheme. 
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Fig.6.3 Stability domain for the upstream scheme 
(source term implicit, 0=0.5, A =A =A) t- x y 

The upstream scheme introduces a substantial numerical diffusion in the 
computation. However, an analysis on the order of magnitude of terms in the 
mean concentration equation (Wang, 1984) shows that the source term is 
dominating. Therefore the upstream scheme is accepted for solving the 
present mean concentration equation. 

6.3 The Bed Level Equation 

The bed level in the model is calculated from the integrated sediment 
transport field as follows 

7 - z n TXn TXn TYn - TYn 

f l . P ) fjk fik + 1+7 ' .k j - V 2 , k +
 1 Y i , k + 7 2 i Y j , k - 7 2 _ 

N Ax Ay Ay 

x f n „ n n 1 y f n „ n n 1 , , , , . 
2N h - l , k "2Zjk " Zj+l,kJ + 2N h , k - l "2zjk " Zj,k+lJ ( 6" 1 5 ) 

In this equation 
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P — porosity of the bed, 
TX,TY = x- and y- components of the total transport in one tidal period 
N = number of tidal period in one morphological step, 
a , a = artificial viscosity in x- and y-direction. 
x y J J 

Analysis on this scheme has to be carried out in combination with the 
sediment transport model. This will be very, complicated for a realistic 
estuary case. Therefore it has been decided to carry out an analysis with 
the following simplifications. 

- The flow is one-dimensional. 
- The flow is quasi-steady. 
- The sediment transport model can be described as 

3c c -c ^ = ̂ P (6"16) 
a 

S - qc (6-17) 

- The water level remains the same as in the initial state (rigid lid). . 

For this case the numerical solution for c and z follow from 
s 

c .-c . , c .-c . 
sj s j -1 = sej sj 

Ax = L 

z n + 1 - z n S n , , „ - S n 

( 6 - 1 8 ) 

/-i m j J , J + l / 2 J - l / 2 at I n 0 n n , , 1 0 . 
( 1 - P ) At + Ax = 2EÏ i Z j - l - 2 2 j - Z j+lJ ( 6 " 1 9 ) 

With 

Vl/2 " " ^ " ^ (6"20) 

this equation can be written as 

n+1 n n n 
z . - z . c . , - c . . r -. 

( 1 " P ) At + q ' 2AX " 2AT h - 1 " 2 z j " Z j + l J ( 6 " 2 1 ) 
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Examine the development of the following disturbance in the bed level 

A A 

Z = z exp(ikx) - z exp(ik jAx) (6-22) 

where k is the wave number. 

Suppose that the equilibrium transport rate can be written as 

S - q c - aub ' " ' (6-23) 
e se , . . 

With a linearization it can be shown that the disturbance in the equilibrium concentration c is se 

Cse'"" Cse exP(ik'JAx) ' " (6-24) 

with 

;se " b ¥ * <6"25> 

where H is the undisturbed water depth. 

From equation (6-18) it can be shown that the disturbance in c is 

Cs = cs exp(ik jAx) - i . ^ p ^ . ^ y cseexp(ik jAx) . (6-26) 

with 

P = ^ ■ (6-27) 

From (6-20)...(6-27) it can be derived that 

Z n + 1 = p Z n (6-28) 
J J 

where p is the amplification factor 
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2 
i , o0 i s i n f , , „ „ . p - 1 - a + a c o s £ - rr—3—K , . . , (6-29) l-/9-cos?+isin£ 

with 

S° At ^ b r - (6-30) 

The stability criterion is again |p|<l. In contrast with the case with 
equilibrium transport model the scheme can be stable for a=0. For this case 
the stability condition is 

a/ < 2 (6-31) 

I t is interesting that not only the Courant number is important but also the 

ratio between the space step and the adaptation length is important for the 

stability. It should further be noted that for £-ir 

p = l-2a (6-32) 

This means that for a=0 waves with length 2Ax will not be damped. 

Although Q = 0 is allowed for the stability according to the analysis above, 
computations for realistic estuary situations have shown that a small but 
non zero value of a is required for maintaining stability of the 
computation. However, a much smaller value is required than in the case of 
equilibrium transport model. Furthermore a a value larger than one is 
allowed in contrast with the equilibrium transport model (see equation 
6-31). 
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Chapter 7 VERIFICATION OF THE MODEL 

7.1 Introduction 

Any model for sediment transport, mathematical or physical, needs to be 
verified before it can be applied in practice. The applicability of the 
present model has already been studied theoretically in chapter 5. In this 
chapter the model is further verified by comparing it with a more 
sophisticated three-dimensional model. 

Verification of the model for the one-dimensional case has already been 
carried out by comparison with two-dimensional computations as well as with 
laboratory experiments (Wang, 1984, Wang and Ribberink, 1986). In these 
comparisons only uniform flows were considered. In this chapter the 
verification is extended to the three-dimensional case by considering a more 
realistic test case. 

The present model is a simplification of the three-dimensional model. 
Therefore a comparison with a three-dimensional model provides a perfect 
verification of the model if the two models are based on the same basic 
theories. Van Rijn (1987) reports a three-dimensional computation for a 
partially closed channel with the SUTRENCH model. This model is based on the 
same basic theories as described in chapter 4. Therefore this case has been 
chosen as the test case. 

The case concerns a unidirectional flow in a channel of constant width 
(=1000 m) and a horizontal bed. The channel is partially closed by a dam 
with a length of 400 m and a width of 100 m as shown in fig.7.1. The 

3 

discharge is 4000 m /s and the water depth at the outlet boundary is 6 m. 
The bed material is assumed to be sand with dso=200 /jm and d9O=300 fim. 

The case chosen at present is an artificial case rather than a practical 
case. However, the comparison between the depth-integrated model with the 
three-dimensional model still can provide useful information about the 
applicability of the model. It is a step between the theoretical analysis 
and the test of the model with a case from practice. Together with the 
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theoretical analysis in chapter 5 this step should help one to distinguish 
the errors due to the procedure of depth-integrating from other causes. 

grid points of concentrations in middle of cells 

Fig.7.1 Grid schematization of the SUTRENCH computation. 
After van Rijn and Meijer (1986). 

In the following section the applicability of the depth-integrated model for 
the present case is considered theoretically. This is an application of the 
results obtained in chapter 5. The comparison between the two models for 
this case will also provide a verification for the results of the 
theoretical analysis. In order to keep the computations with the two models 
comparable with each other, the same flow field should be applied in the two 
computations. Since the grids in the two models are not the same, a 
transformation procedure has to be applied in order to obtain the flow field 
for the present computation. This is considered in section 7.3. In section 
7.4 the input parameters and the differences between the two models are 
summarized. The computational results are reported in section 7.5 and 
finally section 7.6 summarizes the conclusions drawn from this exercise. 
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7.2 Theoretical Considerations 

Before the computation with the' present model is carried out the results of 
the theoretical analysis can be applied in order to obtain an idea about the 
validity and applicability of the model for the present case. 

A simple examination of the applicability of the model can be made by 
considering the basic length scales. According to Wang and Ribberink (1986) 
the depth-integrated model can only be applied when the length scale of the 
problem is relatively large compared with the-length scale uh/u . At present 
the length of the dam may be considered as the characterizing length scale 
of the problem, thus L=400 m. The water depth is about 6 m and the roughness 
hight is k =0.25 m, so 

° s 
12D ,, „ °.s 

s 
C = 18 log =±Z = 44.5 m ' /s 

T* 
C = 1 4 . 2 

— h = 85 m 

Based on this consideration it can be concluded that the depth-integrated 
model should be applicable for the present case but it has to be kept in 
mind that this schematisation is very rough so the conclusion is not a firm 
one. .. -

A more detailed consideration can be made by using the result of the 
analysis presented in chapter 5, with the help of the result from the 
SUTRENCH computation presented by van Rijn (1987). The equilibrium transport 
rates along the streamlines B and C (fig.7.3) may be presented in terms of 
sine functions (via Fourier series). The characterizing wave length for the 
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Fig.7.2 Equilibrium transport along Streamline B and C. 
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streamline B 
1 

streamline C 
1 

— , 

Fig.7.3 Location of the streamlines (after van Rijn and Meijer, 1986) 

two streamlines are respectively 1500 m and 2000 m (see fig.7.2). Based on 
this information the equilibrium concentration may be presented as 

c = c exp(l =— s) se se L (7-1) 

c = c exp(ik'f) se se (7-2) 

with 

k- -p. -a L w s 
(7-3) 

Equations (5-18) and (5-20) (a=ik') can now be applied to determine the 
actual concentration, according to the exact solution and the first order 
solution respectively. Both solutions can be written in the form 

c = c exp(ik'£ - iS) (7-4) 

Compared with the equilibrium concentration (7-2) there is a damping c /c 
and a phase lag S. The damping coefficient and the phase lag according to 
the exact and the present model are shown in table 7.1. for the two 
streamlines (fig.7.3). 
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INFORMATION DAMPING PHASE LAG 

L w /u # k' EXACT ESMOR EXACT ESMOR 
(km) 

B 1.0 6 . 0 1.5 0 .18 2 . 0 0 . 5 7 4 0 .559 0 .383 0 . 4 7 5 

C 0 . 9 6 . 0 2 . 0 0 . 2 0 1 .35 0 . 7 0 0 . 7 1 5 0 .368 0 . 4 3 0 

Table 7.1 Analytical Results 

The figures in this table show that the present depth-integrated model give 
similar results as the exact (2DV) model. Therefore it can be concluded with 
confidence that the model is applicable for the present case. 

It should be noted that the damping coefficient can be interpreted as the 
ratio between the maximum value of the non-equilibrium transport rate and 
the maximum value of the equilibrium transport rate. The phase lag can be 
written as 

6 = k'? - ^ As (7-5) 

where As can be estimated as the distance over which the actual transport is 
equal to the equilibrium value at a certain site. It is thus also possible 
to compare the .results from the theoretical analysis with the computation 
results. This will be.done in section 7.5 when the computation results are 
presented. 

STREAM- GENERAL 
LINE 

NR. U H 

(m/s) (m) 
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7.3 Grid Schematisation and the Flow Field Transformation 

The grid schematisation of the SUTRENCH computation is shown in fig.7.1.It 
has 20*40 grid points. The ESMOR model is based on a rectangular staggered 
grid as shown in fig.3.1. In order to make the computations with the two 
models comparable with each other, the grid size in the ESMOR computation 
should be about the same as the minimum grid size in the SUTRENCH 
computation. Therefore Ax=Ay=25m is chosen which leads to 41*125 grid 
points. 

Special attention has been paid to the schematisation of the dam. It is not 
possible to obtain the smooth form of the dam with the ESMOR grid. The 
schematisation can be seen in e.g. fig.7.4. According to this schematisation 
the dam is some what too small. 

The flow field in the SUTRENCH computation was calculated with the WAQUA 
model. The ESMOR model is connected with another flow model, viz. the 
DUCHESS model. In order to keep the two computations comparable it was 
decided to derive the flow field in the ESMOR grid from the result of the 
WAQUA model with a transformation procedure. 

The flow field transformation is not such an easy problem as it seems to be. 
The transformation procedure consists of three steps. First the stream 
function is calculated on the SUTRENCH grid. In the second step the stream 
function on the present grid is determined via bi-linear interpolation. 
Finally the flow field is then determined by differentiation. The derived 
flow field is shown in fig.7.4 together with the original flow field. 
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»— 1.0 m/s 
(a) In the SUTRENCH computation. 

(b) In the ESMOR computation. 

Fig.7.4 The velocity field. 
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7.4 Input Parameters and Differences Between the Two Computations 

The basic data in the ESMOR computation are 

the flow field h, q , q as described in the previous section, 
roughness 
particle size of the bed material 

particle fall velocity of suspended material 
relative density of sediment 
constant of von Karman 
horizontal diffusion coefficient 
porosity of bed material 
location of the bed boundary 
time step 

Further the coefficients in the ESMOR model have been calculated with 
exactly the same vertical diffusion coefficient and the flow velocity 
profile as in the SUTRENCH computation. 

The following differences can be detected between the two models. 

1. The upstream boundary condition 

SUTRENCH c = c e 

k s 
d 5 0 
d 9 0 
w s 
A 
it 

€ X 
P 
P 
At 

= 
-
= 
-
= 

-
= 
-
= 

0.25 m, 
200 pm, 
300 /an, 
0.0125 m/s 
1.65, 
0.4, 

2 0.5 m/s, 
0.4, 
0.0082, 
10 s. 

ESM0R |£ . JLl! 

This difference is not significant since for the eventually steady case 
3c/at=0, so c=c . 

' e 

2.' The closed and the outlet boundaries 

SUTRENCH c = c e 
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ESMOR | ^ - 0 
öN 

The present condition is more realistic but van Rijn has shown that this 
condition does not influence the results very much. 

3. The location of the bed boundary 

SUTRENCH z = 0.05 m a 

ESMOR p = z /h = 0.05/6.09 - 0.0082 

The difference is negligible since the water depth only varies from 6.00 u 
to 6.18 m. 

A. The vertical velocity 

SUTRENCH included 

ESMOR excluded 

The vertical flow velocity is not large so this difference will not be very 
important 

5. Initial condition 

SUTRENCH c(t=0) = c 
e 

ESMOR c(t=0) - 20 ppm = constant 

This difference is insignificant since only the steady situation is of 
interest. 
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7.5 Computational Results 

Concentration 

The ESMOR model is a depth-integrated model, so it does not produce 
concentration profiles as in the SUTRENCH model. It gives only the transport 
concentration which is defined as 

- P ( D c (o dr (7-6) 

The contour lines of c as well as its equilibrium value c are shown in s n se 
fig.7.5. It can be observed from this figure that there is clear damping and 
phase lag. Further the small disturbances present in c have been damped 
out in c . 

(a) Equilibrium (interval = 40 ppm) 

(b) Non-equilibrium (interval^ 20 ppm) 

Fig.7.5 The computed sediment concentration field. 
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It should be noted that c is not equal to c. This makes the comparison with 
the SUTRENCH model rather difficult. However, the comparison can perfectly 
be carried out for the transport rate and the bedlevel change rate. 

Transport Rate 

The sediment transport field from the present computation as well as from 
the SUTRENCH computation are shown in fig.7.6. Comparison between the two 
computations based on this figure is difficult because of the different plot 
routines used in the two computations. However, a close examination on the 
numerical output shows that the agreement between the two computations is 
quite good. Only in the direct vicinity of the dam head the ESMOR 
computation seems to give a too small transport rate. This is at least 
partly caused by the fact that the dam in the ESMOR computation is too small 
and the velocity at the dam head is therefore too small. 

• 25kg/sm 

(a) The SUTRENCH model. 

(b) The ESMOR model. 

Fig.7.6 The computed sediment transport field. 
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A better comparison can be made for the transport rate along a particular 
streamline. In fig.7.7 this is done for streamline B(see fig.7.3). In this 
figure the 2DV SUTRENCH computation is also presented in addition to the 3D 
SUTRENCH and the ESMOR computation. The 2DV computation is based on the two-
dimensional model along the streamline. According to van Rijn(1987) the 2DV 
and 3D computations should give almost the same result since the horizontal 
diffusion for the present case is not very important. Fig.7.7 shows that the 
difference between the ESMOR computation and the 3D computation has the same 
order of magnitude as the difference between the 2DV and 3D computations. 
This means that the agreement between the ESMOR model and the SUTRENCH model 
is almost perfect. The same applies also for streamline C as shown in 
fig.7.8. 

In table 7.2 the different computations are evaluated in terms of damping 
coefficient and phase lag (see section 7.2). The phase lag from the 
computations is the averaged value at the increasing part and at the 
decreasing part. Although the schematisation of the equilibrium transport 
rate as a sine function of the distance along the streamline is"a very rough 
one, the analytical results agree with the computation results quite well. 
The present case gives thus not only a test for the depth integrated model, 
it also provides a verification for the theoretical analysis. 

STREAM- ANALYSIS COMPUTED COMPUTED ANALYSIS COMPUTED 
LINE 2DV 3D 2DV 1DH 2DH 

SUTRENCH ESMOR 

B 
B 

C 
C 

DAMPING 
PHASELAG 

DAMPING 
PHASELAG 

0.547 
0.383 

0.700 
0.368 

0.42 
0.28 

0.65 
•0.28 

0.47 
0.40 

0.64 
0.40 

0.559 
0.475 

0.715 
0.430 

0.42 
0.36 

0.73 
0.36 

Table 7.2 Comparison between analytical results and computations 
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Bedlevel Change Rate 

The bedlevel change rate from the ESMOR computation is shown with contour 
lines in fig.7.9. The result of the SUTRENCH model is represented in 
fig.7.10. The erosion as well as the sedimentation pattern from the two 
computations agree very well with each other. By examining the numerical 
output it has been found that the maximum erosion rate is 43 mm/h and the 
maximum sedimentation rate is 10.5 mm/h. The values reported by van Rijn are 
respectively 100 mm/h and 25 mm/h. This large difference is only present in 
the direct vicinity of the dam head. It is probably partly due to the 
disturbance in the flow field introduced during transformation and partly 
due to the error introduced by the depth integrated modelling. 

(a) Erosion (interval = 4 mm/h) 

(b) Sedimentation (interval = 2 mm/h) 

Fig.7.9 Bed level change calculated from the ESMOR model 
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Fig.7.10 Bed level change calculated from the SUTRENCH model 

Computation time 

SUTRENCH: CPU time for the 40x20(xl0) grid is about 90 s for 100 time steps 
on a CDC CYBER 855 computer (van Rijn, 1987). 

ESMOR : CPU time for the 125x41 grid is about 90 s for 200 time steps on a 
IBM 3083-JX1 computer. 

The two computers mentioned above have about the same computation speed. 
apparently the ESMOR model will be about 10 times faster than the SUTRENCH 
model if they are both used on a same horizontal grid. This is logical 
because the SUTRENCH computation uses 10 grid points in the vertical 
direction. 
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7.6 Summary and Conclusions 

A computation has been carried out with the ESMOR model for a partially 
closed channel which has already been calculated with the SUTRENCH model. A 
comparison between the two models has been perfectly possible since they 
have exactly the same theoretical background. Before the computation is 
carried out the results of the theoretical analysis have been applied with 
some schematizations. The conclusions from the theoretical analysis are 
verified with the computation results. 

The main findings from this study are summarized in the following 
conclusions 

* Transformation of the flow field from one grid to another grid is not 
such an easy problem. It should be done via the stream function when 
ever possible. 

* The theoretical analysis shows that the depth-integrated model is 
applicable for the present case. The conclusions of the theoretical 
analysis are supported by the computation results. 

* The agreement between the results from the depth-integrated model and 
the SUTRENCH model is quite good. 

* The computation cost of the ESMOR computation is much lower than that 
of the SUTRENCH computation if the two models are both used on a same 
horizontal grid. The ratio between the computation costs depends on the 
number of grid points in the vertical direction in the SUTRENCH 
computation. 
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Chapter 8 A PRACTICAL APPLICATION OF THE MODEL 

8.1 Introduction 

After the verification of the morphological model in the previous chapter it 
is logical to test the model further for field conditions. Testing the model 
by applying it for a practical problem is not such a easy task. For the 
application of the model a lot of field data are required which are often 
not available. Special adjustment to the model and assumptions have to be 
made for the. absent data. It should also be noted that the model cannot be 
applied to every estuary due to the simplification made. In fact the model 
can only be applied for well-mixed estuaries because the density flow effect 
is not taken into account. This makes the choice of a test problem even more 
difficult. Despite these difficulties attempts are made in this chapter to 
apply the model to a estuary. For this purpose the Yantze estuary is chosen. 
In section 8.2, it is argued that the model is applicable for that case. 

Fig.8.1 The tidal region of the Yantze River. 

The Yantze River (Changjiang in Chinese), with a length of 6380 km and a 
2 

catchment area of 1.8 million km , is the largest and the most important 
river in China. It flows into the East China Sea north of Shanghai. The 
river mouth is situated at Jigujiao which forms the natural downstream 
boundary of the estuary. The tidal influence can reach up the river as.far 
as Tongling and Wuhu in the dry. season during spring,tide. Datong located 
640 km from the- river mouth is the most downstream tide free hydrologie 
station (see fig.8.1). In order to have clearly defined upstream boundary ,.. 
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conditions, a study on the Yantze estuary should start from this station 
although Xuliujing is usually considered as the upstream boundary of the 
estuary. 

The Yantze estuary is of great economic importance to China. It is the 
entrance to Shanghai harbour and also the main waterway for seagoing ships. 
Without this estuary the Shanghai Economic Zone would probably never have 
been developed. At present various enterprises are being constructed along 
the south bank of the estuary. The most important one is the Baoshan Steel 
Mill with a total planned output of "six million tons of steel in 1990. 
Another important one is the Shidongkou Thermal Power Plant with a total 
installed capacity of 2400 MU, which will start operation in 1992. 
Especially for these enterprises, jetties are built along the south bank of 
the estuary for the sea going transport of raw material, fuel and products. 
Further, the Luojing harbour with a total yearly transport of 24,000,000 
tons and Qiyakou harbour with a total yearly transport of 60,360,000 tons 
are planned along the south bank of the estuary. For these harbours and 
jetties it is very important to keep the navigation channels in good order. 
Therefore, investigation of the morphological development in the estuary is 
of great importance. 

The Yantze estuary is divided by islands and sand banks in a regular way. 
Downstream of Xuliujing the estuary is first divided into the south and 
north branches by the Chongming island. The south branch is then subdivided 
into the south and north channels by the Changxing and Hengsha islands. The 
south channel is further divided into south and north passage by the Jiuduan 
sandbank. Corresponding to these ordered regular divisions the development 
of the estuary seems also to happen in a systematic way. Every division is 
initiated by an underwater sandbank. The sandbank becomes an island as the 
division develops. The division will finally disappear when the island joins 
the north bank of the estuary. At the same time a new division somewhere 
downstream will start to develop. This systematic process has already 
repeated itself several times in history although the period of the process 
is considerable (Chen et al, 1982). At present, the north branch is 
decreasing its volume due to sedimentation. It is expected that the 
Chongming island will join the north bank in the near future. 
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At present (1989) the Yantze estuary seems to be too large to be included in 
the ESMOR model. It is certainly impossible to consider the whole region 
from Datong to Jigujiao (640 km) because of the large area covered, although 
it would be ideal to do so for the boundary conditions of the morphological 
model. Even when Xuliujing instead of Datong is considered as the upstream 

2 

boundary the model will cover an area of about 100 km * 100 km . This will 
not only lead to too many grid points but the available data for such a 
model will also be very restricted since extensive measurements have not 
been carried out in all parts of the estuary. As mentioned above, the south 
branch is the main waterway at present while the north branch is silting up. 
Most enterprises under construction or in planning stage are located along 
the south bank of the south branch. The south branch has become the most 
interesting part of the estuary for research. Most measurements are also 
carried out in the south branch. Therefore it is decided to take the south 
branch for the study. As upstream boundary the cross section at Xinjian is 
chosen and as downstream boundary the Hengsha cross section in the south 
channel and the Gongqingwei cross section in the north channel, (see 
fig.8.2). 

Fig.8.2 The Yantze Estuary. 
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In the following section the collected data are described and analyzed. The 
calibration of the flow as well as the sediment transport model is carried 
out in section 8.3 followed by a simulation of a one week measuring period 
in 8.4. The long term morphological computations are described in section 
8.5 followed by some sensitivity analysis in section 8.6. Finally in section 
8.7 the conclusions from the study are summarized. 

8.2 The Field Data 

8.2.1 General Features of the Estuary 

Before the ESMOR model is applied the general features of the estuary have 
to be examined in order to see whether the model is applicable for the 
estuary. 

The most important feature of an estuary is the type of mixing which is 
determined by the ratio between the river inflow and the tidal prism of the 
estuary. 

At the Datong hydrologie station the following data are derived from the 
measurements in the period 1947 to 1983. 

9 3 
long term annual runoff 912*10 m 

3 
long term averaged discharge 28900 m /s 

3 
maximum discharge 92600 m /s 

3 
minimum discharge 4620 m /s 

The tide in the Yantze estuary is semi-diurnal, with a period of 12 h 25 
min. At the mouth the maximum tidal range is 4.62 m, the average tidal range 
is 2.66 m, and the minimum tidal range is 0.17 m. In different seasons, 
depending on the tidal range, the tidal prisms of the estuary are: 

9 3 
flood season, spring tide 5.3 * 10 m 

9 3 
dry season, spring tide - '3.9 * 10 • m 

9 3 
flood season, neap tide 1.6 * 10 m 

9 3 
dry season, neap tide 1.3 * 10 m 
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The type of mixing of an estuary can be characterized by the mixing number M 
which is the ratio between the fresh water inflow (QxT) and the tidal prism 
(Simmons and Brown, 1969). According to Officer (1975) an estuary is 
stratified if M>1, well-mixed if M<0.01 and partially mixed if 0.01<M<1.0. 
The type of mixing of the Yantze estuary has been studied by Huang and Zhong 
(1986). Under the long term mean fresh water inflow and average tide M is 
determined to be 0.29, So on the whole the partially mixed type is 
predominant in the Yantze estuary. However, in the flood season during neap 
tide (M=2.6), stratified flow may occur, while in the dry season during 
spring tide (M=0.05) the estuary may become well mixed. At the long term 

3 

flood season mean discharge, 45500 m /s, the 'null point' which indicates 
the upper limit of the salt intrusion, is located at Tongsha, where the 
mouth bar is formed. This is located just outside the modelling region at 
present. Therefore the density flow effect at present can be neglected 
although the estuary as a whole is not well-mixed. 

At the Datong hydrologie station data are also collected for the sediment 
transport. 

3 
flood season averaged sediment concentration 1.0 kg/m 

3 
dry season averaged sediment concentration 0.1 kg/m 

3 
annual averaged sediment concentration 0.544 kg/m 

9 
averaged annual sediment load 486*10 kg 

Especially the annual sediment load is very important for the calibration of 
the morphological model since it determines the morphological time scale of 
the estuary. 

The sediment in the estuary is quite fine. It consists mostly of silt. For 
such fine material, flocculation can be important when the salinity is above 
a certain level. Cohesive sediment particles in the Yantze estuary consists 
mainly of illite ( 70 to 77% ) while the percentage of montmorillonite is 
only 3.5-7.5% (Shen et al, 1986). According to Dyer (1979) flocculation of 
illite and kaolinite is complete above a salinity of 0.4% if adequate 
particle concentration is present. Therefore, it can be expected that the 
flocculation can be important when the salinity is above 0.4%. Measurements 
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from August 28, 1984 to September 4, 1984 show that fresh water dominates in 
the upstream part of the region under consideration. The salinity at the 
Qiyakou (Q) cross section is below 0.16%. In the downstream part of the 
region the salinity is much higher. In the south channel (S) and north 
channel (N) the salinity varies between 0.6 to 1.7% in the same period. This 
means that the flocculation in the upstream part of the region can be 
neglected while in the downstream part it can be important. Little is known 
about the flocculation of sediment in the Yantze estuary. In the present 
study the flocculation effect is not taken into account. This shortcoming of 
the model has to be kept in mind when computational results are interpreted. 

8.2.2 Data Required for the Study 

For the morphological computation with the present model the following data 
are required. 

Geometry and topography 

Detailed information on the geometry and bed level in the area under 
consideration at the initial state is required. 

Roughness of the bed 

The Chezy coefficient in the whole area has to be known. 

Boundary condition for the flow 

For the ideal boundary condition for the flow the water level at the 
downstream boundary has to be specified while at the upstream boundary the 
discharge has to be given. 

Properties of the sediment 

The grain sizes of the bed material as well as the suspended material have 
to be known. For the suspended material the fall velocity has also to be 
known. For the bed composition the porosity has to be known. 
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Boundarv condition for the sediment transport 

For the ideal boundary conditions the transport rate at the upstream 
boundary during ebb and the sediment concentration at the downstream 
boundary during flood have to be specified. 

The data mentioned up to now are the necessary data to run the model. In 
order to calibrate and to verify the model the following additional data are 
required. 

- Water level measured in some stations within the model area. 
- Flow velocity measured within the region under consideration. 
- Sediment concentration or transport rate in the region under 
consideration. 

- Bed level of the whole area at different times. 

8.2.3 Collected Data 

The collected data are mostly from three sources, the annual sounding of the 
bed level in the estuary, the records of the hydrologie and tidal stage 
record stations, and the 1984 hydrologie survey conducted in the period 
between 28 August and 4 September. Among these sources the 1984 hydrologie 
survey is the most important one. In the following the required data listed 
in the previous section are examined one by one in order'to see if they are 
satisfied. If this is not the case a solution is suggested. 

Geometry and Topography 

This information has been obtained from a large scale (1:50000) navigation 
map. The navigation map is updated every year with measurements (soundings) 
usually conducted from April to October of the year. The bed levels 
indicated on the map are thus not measured at one certain time. The 
topography of the years 1984 and 1985 is selected for the present study. 
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Rouehness of the bed 

No field data concerning the bed roughness is available. However, various 
tidal flow computations have been carried out for the estuary, so some 
experience about the resistance to the flow has been gained. An often used 
value of n in the Manning formula for the region under consideration is 
0.013, thus 

l 

C = ^ _ (8.!) 

where D = water depth in in, 
o s 

C = Chezy coefficient in m " /s. 

In the ESMOR model the Chezy coefficient is calculated as 

12D C = A log-i^ (8-2) 
s 

Table 8.1 shows that a satisfactory agreement between equation (8-1) and (8-
2) is achieved for A = 40 and k = 0.18 m with the water depth varying from 
1 to 34 m. 

WATER-
DEPTH 

■ 1.0 m 

7.0 m 
13.0 m 
19.0 m 
25.0 m 
31.0 m 

EQUATION 
(8-1) 

76.9 
106.4 
118.0 
125.7 
131.5 
136.3 

EQUATION 
(8-2) 

72.9 
106.7 
117.5 
124.1 
128.8 
132.6 

WATER-
DEPTH 

4.0 m 
10.0 m 
16.0 m 
22.0 m 
28.0 m 
34.0 m 

EQUATION 
(8-1) 

96.9 
112.9 
122.1 
128.8 
134.0 
138.5 

EQUATION 
(8-2) 

97.0 
112.9 
121.1 
126.6 
130.8 
134.2 

Table 8.1 Comparison between equations (8-1) and (8-2) 
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A value kg of 0.18 m is realistic for a bed with sediment transport, but an 
A value of 40 certainly needs some explanation. 

It should be noted that 

A = 
K 10 g e (8-3) 

where K is the von Karman constant. For /c -0.4 the usual value A - 18 is 
obtained. According to Einstein and Chien (1954) K value can be decreased by 
the presence of the suspended sediment in the flow. Einstein and Chien 
(1954) relate the K value to the relative energy required to keep the 
sediment in suspension (see fig.8.3). It is difficult to apply this theory 
directly to a tidal flow since the energy slope i is then not well defined. 
However, using the Chezy equation the relative energy may be modified as 
follows for a single fraction of sediment 

Acw 
A s C D Ac — —=■ (8-4) 

For A-l.65, c = 1000 ppm, W g = 1 nun/s, u = 1 m/s, D - 10 m, C = 112 
this equation becomes 

o 5 
m ' /s 

10 

10 

10 

-1 

-2 

-3 

\ 
N \ J 

Einstein & O lien ^ 
\ 
\ 

0.15 0.20 0.25 0.30 0.35 0.40 
^ K 

Fig.8.3 Relation between von Karman constant and 
relative energy 
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Acw 
z J. = 0.21 (8-5) 

ui 

From fig.8.3 it follows that K = 0.18, which may explain the value A=40. 

In the final computation the A value is determined by calibration. The value 
given here is used as reference. 

Boundary condition for the flow 

The boundaries of the region are chosen such that at each boundary a tidal 
stage record station is present. So the downstream boundary condition is 
satisfied but for the upstream boundary condition the required discharge 
record is not available. 

Mathematically it is no problem to give water level boundary conditions at 
both sides of the model, but it can be dangerous from a accuracy point of 
view. Specifying the water levels at both sides means that the water surface 
gradient is given. A small error in the water levels can cause a large error 
in the gradient, especially when the difference between the water levels is 
small. A large error in the gradient means a large error in the velocity. 
Furthermore computations have shown that this type of upstream boundary 
condition can give numerical problems. Special measures have to be taken to 
assure stability of the computation as described in the following section. 

In the short term computations including those for calibration and the 
simulation of the measuring period, the measured water level at the upstream 
boundary is used as boundary condition. In the long term morphological 
computations a flow computation of one tidal period has been carried out 
first, and the computed discharge at the upstream boundary during this 
period is used as boundary condition for further computation. 

Properties of the sediment 

During the 1984 hydrologie survey the grain size of bed material at 10 
locations in total in the south channel and north channel cross section has 
been determined. These data are shown in table 8.2 
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VERTICAL 

SI 
S2 
S3 
S4 
S5 

So 
15.5 
12.0 
62.5 
105.0 
43.0 

VERTICAL 

Nl 
N2 
N3 
N4 
N5 

d50 

53.0 
50.5 
90.0 
125.0 
27.5 

Table 8.2 Grain size of the bed material in pm 

d__ in /xm at the south channel cross section 
VERTICAL 

SI 
S2 
S3 
S4 
S5 

SPRING TIDE 

14.2 
12.0 
13.0 
11.6 
11.8 

average 

13.5 
13.3 
11.9 
13.5 
11.1 

tide NEAP TIDE 

6.7 
7.7 
8.6 
6.6 
6.3 

d - in fim at the north channel cross section 

Nl 
N2 
N3 
N4 
N5 

12.2 
13.7 
16.6 
16.5 
17.2 

8.9 
11.4 
10.1 
12.4 
11.6 

7.3 
7.0 
10.4 
9.7 

in fim at the Qiyakou cross section 

13.5 18.3 9.25 

Table 8.3 Grain size of the suspended material 
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The grain size of the bed material appears to vary strongly from site to 
site, but the area covered by the measurement points is too restricted to 
draw a conclusion about the distribution of the bed material needed to 
calculate the bed load transport. However, the bed load transport can be 
neglected with respect to the suspended transport as will be shown in 
section 8.6. Therefore this will not cause serious problem for the 
computation. 

The grain size of the suspended material was also measured in 3 cross 
sections during the 1984 hydrologie survey (see table 8.3). 

The suspended material appears to be more homogeneous in the region than the 
bed material but it clearly depends on the amplitude of the tide. The fall 
velocity is not measured. It might be estimated from the grain size as 
follows 

1 Ae 2 

With this formula it can be shown that the fall velocity is in the order of 
0.1 mm/s. It should be noted that the fall velocity may also be influenced 
by the flocculation. Reliable data for w can only be obtained from field 
measurement. Therefore it is decided to consider w as a calibration 

s 
parameter. 

No information about the porosity of the bed is available. In the 
computations it is assumed to be 0.4, which is probably not exact, 
especially in regions with fine bed material. 

Boundary Condition for Sediment Transport 

No sediment concentration or transport rate measurement was conducted at the 
boundaries. Therefore assumptions have to be made for the boundary 
conditions. At the downstream boundary during flood the dynamical 
equilibrium concentration from the single point model is applied in all 
computations. 
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9c c -c 
s _ s e s ,a 71 at T (8"7) 

a 

The same has been done for the upstream boundary during ebb in the short 
term computations. It should be noted that for the case of steady flow this 
condition is equivalent to applying the equilibrium transport rate at the 
upstream boundary. For the long term morphological computations this 
condition alone is not sufficient for the upstream boundary condition for 
the morphological model. Therefore in the long term computations the problem 
is solved analogously as for the flow computation. A computation of one 
tidal period is carried out first and the computed transport rate at the 
upstream boundary is used as boundary condition in further computation. 

Water level in the region 

The tidal records of the six tidal stage stations present in the region 
(fig.8.2) are collected. These records can be used for the calibration and 
verification of the flow model. 

Flow velocity in the region 

During the 1984 hydrologie survey flow velocities at 15 verticals have been 
measured during spring tide, average tide as well as neap tide. These data 
are used for the calibration and verification of the flow model. 

Sediment concentration 

During the 1984 hydrologie survey also the sediment concentration has been 
measured in the 15 verticals. These data can be used for calibrating and 
verifying the sediment transport model. 

Bed level at different times 

The bed levels of 1984 and 1985 have been collected. The bed level measured 
in 1984 is used as the initial bed level while that of 1985 is used for 
testing the morphological model. 
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8.2.4 Theoretical Considerations on the Applicability of the Model 

Based on the collected field data the result from the theoretical analysis 
as presented in chapter 5 can be applied to examine the applicability of the 
model. 

Basic parameters 

U*~JI C 30 

u - 1 m/s 
so u - 0.03 m/s 

w - 0.001m/s 

so — - 0.03 u* 

The convergence radius of the asymptotic solution of Galappatti (1983) e.g. 
can now be determined. For w /u,=0.03, R =33. (see section 5.3). 

s' * a 

Time Variation 

The characterizing time scale for the present problem is the tidal period 

T « 44700 s. 

so the a value characterizing the time variation is 

. 2w h a - X T-w-s 

For h=10 m and w =0.001 m/s la 1=1.4 which is much smaller than R . Therefore s ' ' ' a 
the model will certainly be applicable regarding to the time variation. 
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Spatial variation 

As pointed out in chapter 5 the wave number k characterizing the bed level 
variation in a numerical model is always in the range 

=- < k < Ï Ax - L 

where Ax is the space step and L is the length of the region under 
consideration. At present Ax=l km and L-80 km, so the magnitude of 

a = ik 3-w s 

2 
varies from 0.4 to 32 for q=10 m /s. Thus the spatial variation is also 
within the convergence domain of the model of Galappatti (1983). Therefore 
it can be concluded that the model is certainly applicable for the present 
case. 

8.3 Basic Parameters and Calibration of the model 
I 

8.3.1 Basic Parameters 

The region under consideration has a length of about 80 km and a width of 
about 15 km. For the computational grid (fig.8.4) the space steps are chosen 
as Ax=Ay=l km. The time step should be restricted by the stability as well 
as the accuracy requirement. 

Fig.8.4 The computational grid 
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In the flow model the ADI method is applied for the numerical computation, 
which is theoretically unconditionally stable. According to Stelling et al 
(1987) the ADI method can only be accurate if 

At ((0.5AX)"2
 + (0.5Ay)-2] * 4 ^ (8-8) gd (.(O. 5Ax) + (0.5Ay) 

For Ax=Ay=1000m and JgD = 10 m/s this gives At<200 s. Therefore At=200 s is 
chosen for the computation. Computations have also been carried out with 
other time steps. The influence of the time step on the accuracy is 
discussed in section 8.6. 

The time step for the concentration computation is chosen the same as that 
for the flow computation. The time step for the transport rate is chosen 
larger than that of the flow computation. 

The geostrophic force is determined by the latitude S of the region, which 
o 

is about 31 N, so 

f - 20 sin0 = 7.49 * 10" s" 

The horizontal eddy viscosity has been chosen as 

E = 0.03 ü D (8-9) 
s 

0 5 
This is about u,_D for C=110 m / s . 

8.3.2 Calibration of the Flow Model 

The calibration of the flow model is carried out with a computation using 
the field data measured during the first tidal period of the 1984 hydrologie 
survey. Only one calibration parameter is used, i.e. the Chezy coefficient. 
Two computations have been carried out one with 

C = 4 0 1 o S s ^ 

and the other with 
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,~ , 12D C = 30 log Ö 3 8 

From the comparison between the results of the two computations the 
following conclusions have been drawn. 

* The Chezy coefficient does not have significant influence on the 
computed water level. The agreement with the measurements is quite 
good in both computations. 

* The influence of the Chezy coefficient on the flow velocity is much 
more important. The second computation agrees better with the 
measurement than the first computation. In the first computation the 
Chezy coefficient seems to be too large while in the second 
computation it seems to be too small. For further computations it has 
been decided to use 

C - 33 log 12D 
0.18 (8-10) 

In the calibration computations the water level has been specified at both 
the upstream and downstream boundary as boundary condition. This appears to 
cause some serious numerical problems in the flow model DUCHESS. The problem 
occurs at the boundary region, especially during an inflow period. At the 
boundary a circulation occurs and its strength grows in time, eventually 
causing 'overflow' in the inflow discharge. This is apparently due to the 
numerical schematization at the water level boundaries. In order to avoid 
this problem the inflow velocity is smoothed along the boundary after each 
time step with 

new v. l v. + a(v. . l l-l 2v. + v..) l l+l 
old (8-11) 

where i is the grid number along the boundary. Physically this means that a 
2 

extra viscosity of QAX /At is added to the water at the boundary. Therefore 
the a value should be chosen as small as possible. Computations show that a 

= 0.05 is sufficient to maintain stability of the computation. 
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8.3.3 Calibration of the Sediment Transport Model 

Two parameters are used for calibrating the sediment transport model, the 
fall velocity and the bed boundary condition. 

The gradient type bed boundary condition is applied in the computation with 
the equilibrium concentration computed from 

.2 

cse - A i r <8-12> 
2 - 1 

where A is a coefficient with dimension T L to be determined via the 
calibration. This equation is applied only because it is often used for the 
Yantze estuary (see e.g. Huang, 1986) as well as for the Qiantang estuary 
(Lin et al, 1981) of which the sediment is mostly from the Yantze estuary 
(Lin, 1984). At present (1989) the obtained data is too restricted to verify 
this formula. 

The fall velocity w is the key parameter in the model. It is the only 
parameter determining the adaptation time when the flow field is known. The 
adaptation time is the most important parameter determining the phase lag 
and the damping of the sediment concentration compared with the equilibrium 
concentration. The other calibration parameter, the coefficient A has also 
strong influence on the amplitude of the concentration but it does not 
influence the phase lag. Therefore the agreement for the phase lag with the 
measurement is used as a criterion for determining w . 

Four computations have been carried out for the calibration of w , 
respectively with w =0.0001, 0.0005, 0.001 and 0.002 m/s. The best agreement 
has been found for w = 0.001 m/s. s 

It should be noted that the concentration equation is linear, so the 
calibration with the coefficient A is quite easy when w is already 
determined. The best value for A can be found by extrapolation. However, it 
appears that good agreement between the measurement and computation can only 
be obtained if the coefficient A varies in the region. The eventually used 

2 
value (in s /m) is 
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0.030 for flood (8-13a) 

0.030 for y>50km 
0.0525 y<41km for ebb (8-13b) 
[1.75 (50-y)/9 + (y-41)/9]*0.03 41<y<50 

where y is the distance in km measured from the upstream boundary. No proper 
explanation can be given for equation (8-13b). The final conclusion on the 
formula for the equilibrium concentration will be given in the following 
section after the simulation of the whole measuring period. 

8.4 Simulation of the Measuring Period 

From August 28 to September 4, 1984 a hydrologie survey was organized in the 
estuary. This one week measuring period, in the flood season of the Yantze 
river, was chosen such that spring tide, average tide as well as neap tide 
were covered. During the survey the flow velocity, sediment concentration, 
water temperature and salinity were measured in five cross sections 
distributed in the whole estuary, among which three sections are located in 
the region under consideration (see fig.8.2). In each cross section data 
were collected in five verticals with five measuring points in each 
vertical. A part of the data collected in this survey has already been used 
for calibrating the model described in the previous section. In this section 
a simulation of the whole measuring period is described. 

The simulation has two aims. 

1) It provides a verification of the calibrated model. 

2) It gives information about the influence of the spring-neap tide cycle. 
This information is useful for determining the standard tide in the 
morphological computation. 

The important input parameters in this computation are 

w =0.001 m/s 
s ' 

Ax = Ay = 1000 m 
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At- = At - 298 s f c 
At = 4 * 298 = 1192 s s 
At = 89400 sec m 24 h 50 min. 

The Chezy coefficient, bed boundary condition, upstream and downstream 
boundary conditions for the flow as well as for the sediment transport are 
as described in the previous two sections. In fig 8.5 the applied water 
level at the boundaries are shown. Neither secondary flow nor bed load 
transport is included in this computation. Their influence will be discussed 
in section 8.6. 

6m r 

0 15 30 45 60 75 90 105 120 135 150 165 180 

Time (h) 

Fig.8.5 Boundary conditions for the flow. 

In order to restrict the computation time, the time step for the flow 
computation At,. and for the concentration computation At has been chosen 
larger than the value mentioned in the previous section. The influence of 
the time step will be discussed in the sensitivity analysis in section 8.6. 
At is the time step for the transport rate computation. It can be chosen 
larger than At because it is not restricted by any stability requirement. 
It has only to be small enough for an accurate integration of the transport 
rate over the tidal period. 

At is the morphological time step. At present it is chosen as two times the 
tidal period, which means that the bed level in the model is adjusted every 
day. This time step is relatively small. It is chosen to ensure an real 
simulation of the measuring period. 
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Flg.8.6 Calculated and measured water level. 
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Fig.8.7 comparison between calculated and measured velocity 
in the 15 verticals. 



-160-

VERTICAL 01 
CRLCULRTEO 
HER3URED 

t'.OO 12.00 2U.00 ife.00 lbo.00 l'l2.00 12U.00 fte.00 lUa.OO ÏÜ7ÖÖ 167.00 179.00 
TIME IH) 

VERTICAL 02 
CALCULATED 
MEASURED 

t'.OO 12.00 2b. 00 36.00 lbo.00 l'l2.00 12U.00 136.00 11(3.00 155.00 167.DO 179.00 
TIME 1H) 

VERT1CRL 03 
CALCULATED 
REASUREO 

■=£00 12.00 2ll.00 36.00 lbo.00 112.00 12U.00 136.00 lUs.00 155.00 167.00 179.00 
TIME (H) 

VERTICAL OU 

CRLCULRTED 
HER3URED 

'%Ö0 12.00 2I1.00 ife.00 lbo.00 112.00 12U.00 1^6.00 1>13.00 155.00 167.00 179.00 
TIME (H) 



-161-

VERTICRL 05 
CRLCULRTED 

+ HERSURED 

t ' .OO 12.00 all. 00 36.00 lbo. 00 112.00 [ÏÜTÖÖ 136.00 1 !l3,00 155.00 167.00 179.00 
TIME IH) 

VERTICRL SI 
CRLCULRTED 
HERSUREO 

^TÖo 12.00 itTÖÖ 36.00 lbo.00 112.00 121.00 136.00 lllS.00 155.00 187.00 179.0 
TIME (H) 

VERTICRL 32 
CRLCULRTED 
HERSURED 

tTÖO 12.00 2ÏTÖÖ 36.00 lbo.00 112.00 121.00 136.00 lUs.OO 155.00 167.00 179.00 
TIME (H) 

VERTICRL 39 
CRLCULRTEO 

+ HERSURED 

^Töo 12.00 2l|.00 38.00 lbo.DO 112.00 121.00 fto.00 lSÏTÖÖ 155.00 167.00 179.00 
TIME (H) 



-162-

VERT1CRL 311 
— CALCULATED 
h HEHSUREO 

' Ü V Ö Ö 1 2 . 0 0 2 11. 00 ife.00 lbo. 00 1'l2.00 124.00 ft6.00 lUs.00 155.00 167.00 179.00 
TIME (H) 

co 

0 

m* 
z: 
LD 

0 

0 
0 

Cfc 

•70 cT**** «\ 

V ™ ^ \ 

J- V •/•^ .-'"••• 

VERTICnL 35 
CRLCULdTEO 

+ HEnsunEO 

A/^... 
TIME IH) 

VEHTICRL KI 
CBLCULOTED 

+ HEnsunEO 

T^ëö 12.00 2 li. 00 ib.00 ïbo. 00 112.00 izu.00 ïVs.00 lUs.oo 155.00 167T00 179.00 
TIME (H) 

ÏEBTICflL N2 
CnLCULHTED 

+ HEflSUnEO 

'V!Öa 12.00 2 11. 00 36.00 lbo. 00 112.00 121.00 T36.00 lll3.00 155.00 lb7.00 179.00 
TIME (Hl 



- 1 6 3 -

VERTICBL N3 

CALCULATED 

MEASURED 

/ ^ 
tToö 12.00 2ll.00 36.00 lbo. 00 112.00 ÏÏÜ7ÖÖ ÏWoO 11(3.00 155.00 1^7.00 l^.OO 

TIME [Hl 

VERTICAL NU 

CALCULATED 

+ HEASUREO 

i2 .oo al». 00 ie..00 lbo.oo 1'12.00 1211.00 ï W o o 1I13.00 155.00 ib7.oo 179.00 
TIME (H) 

VERTICAL NS 
CALCULATED 
MEASURED 

' T J T Ö Ö 12.00 2I1.OO 36.00 lbo.00 l'u.00 12U.00 136.00 ll|3.00 155.00 Ü7TÖ0" 179.00 
TIME (H) 

Fig.8.8 Comparison between calculated and measured mean 
concentration in the 15 verticals. 
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The results from the flow model are presented in fig.8.6 and fig.8.7. 
Fig. 8.6 shows the measured and calculated water level at different stations 
during spring tide, average tide and neap tide. The agreement between the 
computation and the measurements is good in the whole period. The comparison 
between the computed and measured flow velocities in the 15 verticals is 
carried out in fig.8.7. The agreement for most verticals is reasonable in 
the whole period, although in some verticals especially those near the river 
bank (Q2, Q5, S4, N2, N5) considerable deviations between the measurement 
and the computation are present. In general it can be concluded that the 
calibration of the flow model has been satisfactory. 

Fig. 8.8 shows the comparison between the measured and calculated sediment 
concentration in the 15 verticals. From this figure it can be observed that: 

* The results in all Q-verticals are not satisfactory. Especially during 
neap tide the concentration is overestimated. This is probably due to 
the fact that the A coefficient in equation (8-13) is too large. 

* The results in the S- and N-verticals are better, but still not really 
satisfactory. However, for these regions it seems to be impossible to 
make the agreement between the measurements and the calculations better 
by modifying the two calibration parameters. 

* The results during the average tide are reasonable in most verticals. 

Fig.8.9 shows the transport rate in the three cross sections. The agreement 
between the measurement and the calculation is reasonable, but during the 
averaged and neap tide the transport is considerably overestimated by the 
computation, especially in the cross section Q. The same conclusion is drawn 
from fig.8.10 where the dayly total flood- and ebb-transport through the 
three cross sections is shown. It seems thus that the calibration of the 
sediment transport model has not been very satisfactory. However, with the 
available field data it is not possible to improve the agreement between the 
computation and the measurement very much by changing the calibration 
parameters. The A coefficient given in equation (8-13) is estimated under 
spring tide condition. It is too large for average tide and neap tide, 
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Fig.8.9b Calculated and measured sediment transport 
through cross section South Channel. 
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Fig .8 .9c Calculated and measured sediment t ranspor t 
through cross sec t ion North Channel. 

e s p e c i a l l y during ebb. I t seems to be b e t t e r to take A = constant =■ 0.030 
2 

s /m instead of (8-13b) which is determined only based on computations 
during the spring tide. 

The net transport field and the calculated bed level change during spring 
tide, average tide and neap tide are respectively shown in fig.8.11 through 
fig.8.13. All three figures show similar patterns of erosion and 
sedimentation. Therefore it seems to be perfectly possible to carry out the 
morphological computation with a properly chosen standard tide. 

The choice of the standard tide should be based on the net transport during 
the tidal period. The net transport in the standard tide has to be about the 
averaged net transport in the spring-neap tide cycle. Computational results 
in all three measured cross sections show that the averaged net transport is 
reproduced by the average tide (fig.8.10). The same conclusion is also drawn 
from the measurements. Therefore the average tide will be chosen as the 
standard tide in the morphological computations. 
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Fig.8 .10 Total ebb- and flood t r anspor t through the t h r e e cross 
sec t ions ( in 10000 tons) 
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spring tide. 
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Yantze Estuary 
DZ during spring tide 

(unit = cm) 

Fig.8.lib Calculated bed level change during the spring 
tide. 
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Yantze Estuary 
DZ during average tide 
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Fig.8.12b Calculated bed level change during the average 
tide. 
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Fig.8.13a Calculated total transport field during the 
neap tide. 
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Yantze Estuary 
DZ during neap tide 
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Fig.8.13b Calculated bed level change during the neap 
tide. 
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8.5 Long Term Morphological Computation 

In the previous section a standard tide has been derived for the 
morphological computation after studying the spring-neap tide cycle. 
However, the morphological process is also influenced by the seasonal 
variation of the upstream river flow. The measuring period was in the flood 
season, during which the sediment transport rate is relatively high. As no 
information is available about the seasonal variation it is decided to 
adjust the coefficient A in equation (8-12) such that the morphological time 
scale is correctly reproduced. In order to reproduce the correct 
morphological time scale the annual sediment transport through the estuary 
has to be reproduced correctly. The computed total transport through the 

2 

estuary with the standard tide with A=0.030 s /m appears to be about four 
times the averaged transport measured at Datong station. Therefore it has 

2 

been decided to use A=0.0075 s /m in the morphological computation. It 
should be noted that the adjustment implies the assumption that in the river 
reach from Datong station to the estuary no significant sedimentation and/or 
erosion takes place. This river reach has a length of about 500 km and a 
width of about 1 km. A averaged bed level change of 1 cm in the reach will 

9 

thus lead to a sedimentation or a erosion of about 10x10 kg of sediment, 
which is about 2% of the annual sediment transport measured at the Datong 
station. So the assumption is certainly a reasonable one. 
The other parameters in the model are 

At,. - At - 196.05 s, f c 
At - 4 * 196.05 = 784.2 s, s 
At = 40T = 1788000 = 20 days, 
m J 

M = 3, r 
a = 0, a = 0.10, x y 

The parameter M is the number of time steps of morphological computations 
after each flow computation. This means that M -1 continuity corrections are 
carried out instead of a complete tidal flow computation each time. At 
present the complete tidal computation is carried out after every 3 
morphological time steps, i.e. about two months. 
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The a and a are the smoothing coefficients in the bed level model in x-x y 
and y-direction respectively (see equation 6-15). The channels in the 
estuary are mostly in the y-direction, so a has been chosen as zero in 
order to avoid severe "numerical sedimentation" of the channels. A small non 
zero a value appears to be necessary for maintaining the stability of the 
computation. This is in contradiction with the conclusion drawn in chapter 6 
from an analysis of the simplified case. However, the value of a needed is 

y 
much smaller than in the case of bed load transport. 

The other parameters have the same value as in the simulation of the 
measuring period described in the previous section. 

The computation is carried out for 5 years. The computed result is shown in 
fig.8.14 and fig.8.15. Fig.8.14 shows the bed topography at different times 
while in fig. 8.15 the bed level change after every 2 years is presented. 
From these figures the following general features of the morphological 
development of the region can be observed 

* There are three morphologically active regions, the south and the north 
channel and the region near the upstream boundary. In the middle region 
upstream of the Changxing island relatively less morphological changes 
take place. 

* In the north channel erosion is dominating while in the south channel 
sedimentation is relatively more important. 

* The deep channel in the south channel is shifting to the south. 

The computed result after one year (fig.8.15a) can also be compared with the 
measurement which is shown in fig.8.16. The following conclusions can be 
drawn from the comparison. 

* The time scale of the morphological development is correctly reproduced 
by the model. The calculated erosion and sedimentation are of the'same 
order of magnitude as the measured ones. 
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Fig.8.14a The initial bed topography. 
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Fig.8.14b Calculated bed topography after 1 year. 



- 1 7 8 -

Yantze Estuary 
3ec ile\ 

( 

ill 
il 
■ 
1 

/el after 
unit = c 

flBOUE 

-400 -

-800 

-1200 

-1600 -

-2000 -

-2400 

3 year 
m) 

0 

0 

- -400 

- -800 

- -1200 

- -1600 

- -2000 

- -2400 

Fig.8.14c Calculated bed topography after 3 year. 
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Fig.8.14d Calculated bed topography after 5 year. 
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Fig.8.15a Calculated bed level change after 1 year. 
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Fig.8.15b Calculated bed level change after 3 year. 
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Fig.8.15c Calculated bed level change after 5 year. 
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Fig.8.16 Measured bed level change after 1 year. 
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* The locations of the important erosion and sedimentation areas are 
reasonably reproduced in the north and the south channel. In the 
upstream region only areas where strong erosion or sedimentation occur 
are correctly reproduced in the computation. 

* In the middle region where no significant morphological changes occur 
the erosion and sedimentation areas are poorly reproduced. 

* The forms and extent of the erosion and sedimentation areas are not 
exactly reproduced. 

With the quantity and quality of the available field data in mind it is 
concluded that the obtained agreement between the measurement and 
computation is reasonable. The result of the whole computation is 
encouraging. 

The CPU time for this computation on a IBM 3083-JX1 computer is about two 
hours . 

8.6 Sensitivity Analysis 

Sensitivity analysis is aimed to examine the influence of the parameters in 
the model. It is very important for morphological computations because many 
uncertainties exist about the parameters in the model (de Vries, 1982). 

The following parameters are considered in the present analysis. 

* The secondary flow 
* The bed load transport 
* The fall velocity w 

J s 
* The morphological time step At 
* The number of continuity corrections M 

J r 
* The time step for the flow and concentration computation At 

A distinction should be made between the physical parameters and the model 
parameters. For the model parameters (the latter three) the sensitivity 
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analysis helps to make an optimal choice of them such that sufficient 
accuracy is obtained with minimal computational efforts. For the physical 
parameters (the former three) the sensitivity analysis helps to understand 
the influence of the uncertainty in the parameters on the final results. 

Influence of the secondary flow and the bed load transport 

The influence of the secondary flow and the bed load transport is examined 
with three computations over one tidal period as shown in the following 
table. As reference (GO) the result of the simulation of the measuring 
period during the first period is chosen. 

Run 

GO 
Gl 
G2 
G3 

sec.flow 

excl. 
incl. 
excl. 
incl. 

b. ed load 

excl. 
excl. 
incl. 
incl. 

No significant difference in the net sediment transport with the reference 
computation has been found in any of the three computations. Therefore it is 
concluded that neither the bed load nor the secondary flow is important in 
the present problem. 

Influence of the fall velocity 

The influence of w on the transport field has already been considered 
during the calibration of the model. Three computations over 6 months with 
w =0.0005 m/s, 0.001 m/s and 0.002 m/s respectively are carried out to 
examine the influence on the long term morphological development. 
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The input parameters in the computations are 

Run At At end 

G4 
G5 
G6 

0.001 
0.0005 
0.002 

300 
300 
300 

20T 
20T 
20T 

3 
3 
3 

0.05 
0.05 
0.05 

6 months 
6 months 
6 months 

The comparison between the computations is made in terms of the bed level 
changes, see fig.8.17...fig.8.19. These figures show that the computation 
result is very sensitive to the value of w . It can be observed that the 
larger the value of w the faster the morphological development. This can be 
explained by the fact that the larger the value of w the smaller the 
adaptation time, the weaker the damping and the larger the transport rate. 
In addition to this systematic difference between the computations a great 
scatter in the figures can be observed, which means that the computed 
sedimentation-erosion pattern will be affected. It is thus very important to 
use the correct value of w in the computation. 

-6.00 -2.00 2.00 
DZ FROM GU (M) 

10.00 

Fig.8.17 Influence of the fall velocity. 
Comparison between GA and G5. 
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'-10.00 -6.00 -2.00 2.00 6.00 10.00 
DZ FROM GU (Ml 

Fig.8.18 Influence of the fall velocity. 
Comparison between G4 and G6. 

DZ FROM G5 (M) 

Fig.8.19 Influence of the fall velocity. 
Comparison between G5 and G6. 
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The influence of At m 

The influence of the morphological time step is examined with the following 
computations. 

Run At At, end 

G4 
G7 
G8 

20T 
10T 
40T 

3 
3 
3 

0.05 
0.025 
0.10 

300 s 
300 s 
300 s 

6 months 
6 months 
6 months 

The a value is adjusted to At in order to ensure that the effective y m 
diffusion coefficient 

E = -T a Ax /At (8-14) 

is the same in all computations. 

O 
o 

r-o 
5io 
D o 
Ef 
a 

o o 
to.. 

o o 
o 

-6.00 -2.00 2.00 
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Fig.8.20 Influence of the morphological time step. 
Comparison between G4 and G7. 
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DZ FROM GH (M) 

Fig.8.21 Influence of the morphological time step. 
Comparison between G4 and G8. 

DZ FROM G7 (M) 

Fig.8.22 Influence of the morphological time step. 
Comparison between G7 and G8. 
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The results of the computations are compared in fig.8.20...fig.8.22. The 
differences between the three computations are small. Even the difference 
between G7 and G8 is acceptable. Therefore it can be concluded that At can 
be enlarged to 40T, but it is expected that this is about the limit. 

The influence of M r 

The influence of the continuity corrections is analysed by the following 
computations. 

Run M At At, end 

G8 
G9 

3 
1 

40T 
40T 

0.10 
0.10 

300 
300 

6 months 
6 months 

M =1 in G9 means that the tidal flow field is recalculated after each 
r morphological time step. 
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Fig.8.23 Influence of the continuity correction. 
Comparison between G8 and G9. 
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The two computations are compared in fig.8.23, which shows that the 
difference between the two computations is acceptable. This means that 
computation with M =3 is allowed. Moreover, the continuity correction seems 
to cause some small systematic error, especially for erosion regions. The 
complete computation G9 gives higher erosion rates. Thus larger values for 
M would not be allowed. r 

The influence of At-

The influence of the time step in the flow computation and the 
concentration computation (At =At ) is examined with the following 
computations. 

Run At, At end 

G8 

G10 

300 

150 

40T 

40T 

3 

3 

0.10 
0.10 

6 months 
6 months 
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Fig.8.24 Influence of the time step. 
Comparison between G8 and G10. 
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The results of the two computations are compared in fig.8.24. It is clearly 
shown by this figure that Atf = 300 s is too large. The large difference 
between the two computations is probably caused by the difference in the 
computed flow fields. The adaptation time is about h/w = 10/0.001 = 10000 
s, so At /T =0.03. It seems that this must be small enough. 

8.7 Discussion and Conclusions 

The analysis of the collected data has shown that they are actually not 
sufficient for calibrating, verifying and testing the morphological model. 
The most serious problem is concerned with the properties of the sediment, 
especially the fall velocity which is a key parameter in the model. 
Moreover, too little is known about the sediment transport mechanism to 
specify a realistic bed boundary condition for the suspended sediment 
transport model. The upstream boundary condition is another problem. This is 
mainly caused by the fact that the present model covers only a part of the 
estuary. To avoid this problem the upstream boundary should be situated at 
the Datong hydrologie station, which is located 640 km from the river mouth. 
At present this is impossible since the available data and the computer 
capacity are too restricted. The present study is mainly based on the data 
collected during one hydrologie survey. This is obviously much too 
restricted because no information is available about the long term variation 
of the flow in the estuary such as the seasonal variation. In the hydrologie 
survey the sediment concentration is only measured during a typical spring 
tide, average tide and neap tide. This is also an important shortcoming of 
the data. However, with the present measuring technique and the available 
financial means it seems to be impossible to improve the field data 
significantly in the near future. Nevertheless the following suggestions are 
made for the collection of data. 

* More hydrologie surveys should be organized in a year. The surveys 
should thus not only be carried out during flood seasons. 

* The surveys should cover a larger area than in 1984. Especially the 
region upstream of Xuliujing should also be covered by the surveys. 
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* The measurements during a survey should be continued in the whole 
period, thus not only during a restricted number of tidal periods. 

* Special attention should be paid to the measurements of the sediment 
properties and the sediment transport. Especially the fall velocity of 
the sediment particles should be measured in the field extensively. 

A simulation of the 1984 survey has been carried out after calibrating the 
flow and sediment transport model using a part of the data collected during 
this survey. The following conclusions have been drawn from the results of 
the simulation. 

* The agreement between the measured and calculated water level in the 
region is very good. 

* The agreement between the measured and calculated flow velocity is good. 

* The agreement between the measured and calculated sediment concentration 
is fair. 

* The agreement between the measured and calculated sediment transport 
through the three cross sections is reasonable. 

* The average tide can be used as the standard tide for the morphological 
computation representing the spring-neap tide cycle. 

A long term (5 year) morphological computation has been carried out. Only 
the result after one year can be compared with the measurement. The 
following conclusions have been drawn from the comparison. 

* The general features and the time scale of the morphological development 
are reasonably reproduced by the model. 

* The agreement between the measured and calculated bed level change is 
better in regions with strong morphological changes than in regions with 
small changes. 
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* The agreement in the downstream region (South and North Channel) is 
better than in the upstream region. 

An extended sensitivity analysis for the model has been carried out 
concerning physical parameters as well as model parameters. From the 
analysis the following conclusions are drawn. 

* The secondary flow and the bed load transport seem to be not very 
important for the case under consideration. 

* The computational result is very sensitive to the value of the fall 
velocity w . Therefore it is very important to make accurate estimates 
for w . s 

* The maximum morphological time step allowed is about 40 times the tidal 
period, i.e. about 20 days. 

* The continuity correction method can be applied to restrict the 
computational efforts. At present this method can be applied at least 
two times after each complete tidal flow computation. 

* The time step for the flow computation should not be too much larger 
than 150 s in order to assure sufficient accuracy of the morphological 
computation. 
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Chapter 9 SUMMARY AND CONCLUSIONS 

In this study a two-dimensional morphological model for estuaries (ESMOR) 
has been developed. The ESMOR model is aimed at well mixed estuaries, 
because the density flow effect is not taken into account. Further the 
influence of wind and short waves is not included. The model should thus 
still be considered as in developing stage. 

The ESMOR model consists of four submodels, the main flow model, the 
secondary flow model, the sediment transport model and the bed level model. 
Special attention is paid to the formulation of the sediment transport 
model, especially for the suspended load transport. A depth-integrated model 
has been developed based on an asymptotic solution of the convection-
diffusion equation governing the sediment concentration. This asymptotic 
solution is a generalization of the one presented by Galappatti (1983, also 
see Galappatti and Vreugdenhil, 1985). 

A series of depth-integrated models can be developed based on the general 
asymptotic solution by choosing different sets of test functions. Although 
not all mathematically proved, examples of various models based on the 
general asymptotic solution lead to the following statements. 

* The conventional asymptotic solution as well as the solution of 
Galappatti are included in the presented general asymptotic solution. 
These solutions can be derived from the general solution by making 
certain choices for the test functions. 

* More sophisticated solutions than the conventional solution or the 
solution of Galappatti may be obtained by choosing proper test 
functions. 

* The asymptotic solution can only converge to the complete solution of 
the convection-diffusion equation if the test functions together form a 
complete system. 
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* The convergence rate of the asymptotic solution depends on the linear 
dependence between the test functions. The optimal convergence seems to 
be obtained when the test functions form an orthogonal system. 

Extensive theoretical analysis has been carried out for the depth integrated 
model for suspended sediment transport. Good insight into the validity and 
the applicability of the model have been gained from the analysis. The 
following conclusions have been drawn. 

* For each asymptotic solution a convergence domain can be determined. It 
depends on the properties of the test functions. 

* For the one-dimensional case the convergence domain is a circle. For the 
multi-dimensional cases the convergence domain is a cylinder in the 
multi-dimensional space. 

* The convergence radius of an asymptotic solution is an important 
indicator for the validity and applicability of the model. The larger 
the convergence radius the better the solution is. 

* The convergence radius of the solution of Galappatti (1983) is larger 
than the one of the conventional solution. 

* Within the convergence domain the higher order solution is always better 
than the lower order solution, but outside the convergence domain this 
is not always the case. 

* Concerning the overall agreement between the depth-integrated models and 
the models based on direct solution of the convection-diffusion equation 
the first order solution of the model of Galappatti and the first order 
solution proposed in this study are quite good. 

* In the one-dimensional cases the difference between the non-equilibrium 
concentration field and the equilibrium concentration field can be 
characterized by a damping coefficient and a phase lag. This difference 
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causes a decrease of the propagation velocity as well as a damping of 
the bed forms. 

After the theoretical analysis the model has been verified with a comparison 
between the present model and the three-dimensional SUTRENCH model. The 
comparison between the two models is perfectly possible because they are 
based on exactly the same basic theories. The flow field in the computation 
with the ESMOR model is derived from that in the SUTRENCH computation with a 
interpolation procedure. The following conclusions have been drawn from this 
exercise. 

* The agreement between the ESMOR model and the SUTRENCH model for the 
present test problem is very good. 

* The applicability of the model for the present case can be well analyzed 
with the results from the theoretical study. The exercise provides also 
a verification for the analytical results. 

Finally the ESMOR model has been applied to a real estuary, the Yantze 
estuary. Despite many difficulties the model has been applied to simulate a 
survey period of one week and to predict the morphological development of 
the region in 5 year time. The following conclusions have been drawn from 
the application. 

* Despite of the large effort spent in the measurements, the available 
data are insufficient for the calibration, verification and test for the 
model, concerning both the amount and the quality of the data. More 
measurements covering larger region are required for these purposes. 
Special attention should be paid to the properties of the sediment in 
the estuary, both the bed material and the suspended material. For the 
suspended material the fall velocity of the particles is extremely 
important since it is a key parameter in the model. Field measurements 
for this parameter should be carried out. 

* Reasonable agreement has been achieved between the measured and 
calculated concentration as well as sediment transport. Concerning the 
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morphological development the comparison between the measured and 
calculated bed level change after one year shows a reasonable agreement 
in regions with significant changes while in regions with minor changes 
the agreement is worse. 

This study has shown that long term morphological computations in estuaries 
can be realized with the present computer facilities. The ESMOR model 
presented here forms a good basis for further development in mathematical 
modelling of morphological, processes in estuaries. To improve the model much 
more work has to be carried out. Especially the influences of the density 
flow effect, wind and short waves, flocculation of cohesive sediment, etc., 
which are not taken into account here, should be reconsidered. However, this 
study has provided a good insight into the behaviour for the sediment 
transport model, especially the depth-integrated model for the suspended 
sediment transport. ' 
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MAIN SYMBOLS 

Symbol Dimension 

A Coefficient (-) 
c sediment concentration (-) 

0 5 . 1 C Chezy coefficient (L ' T ) 
c depth averaged concentration (-) 
c. ith order term in the asymptotic solution (-) 
c mean equilibrium concentration (-) 
e 
d grain size (L) 
D water depth (L) 

. l f coefficient of geostrophic acceleration (T ) 
.2 

g gravity acceleration (LT ) 
h water depth (=D-z ) (L) 
i gradient (-) 

. l I intensity of the secondary flow (LT ) 

. l I, intensity of the secondary flow due to curvature (LT ) 
D .1 I intensity of the secondary flow due to geostrophic effect (LT ) c . l 
k wave number (L ) 
k resistance hieht of Nikuradse (L) s 
L length scale (L) 
n coordinate in the normal direction to the streamline (L) 
N coordinate normal to the boundary (L) 
p normalized velocity profile " (-) 
q normalized secondary velocity profile (-)• 

2 .1 
q discharge in x-direction per unit length (L T ) 
X 2 . 1 
q discharge in y-direction per unit length (L T ) 
y 2 . 1 
Q discharge in the flow direction per unit length (L T ) R radius of curvature of the main flow streamline (L) s R convergence radius (-) a 
s coordinate in the main flow direction (L) 

2 . l 
S sediment transport (L T ) 

2 . 1 
S sediment transport in the flow direction (L T ) 
s r 2 .i 

S sediment transport in the normal direction (L T ) 
n 2 S total sediment transport in a tidal period (L ) tot 
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r) dimensionless coordinate in n-direction 
f dimensionless coordinate in z-direction 
X exponential coefficient 
fi coefficient 
p density of the fluid 
a Courant number 
6 coefficient 
TJ> coefficient 
X coefficient 

(ML" ) 
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1 Lange-termijn morfologische berekeningen voor estuaria zijn 
mogelijk met de huidige computerfaciliteiten. 

2 In een niet-uniforme stroming zijn er altijd een demping en een 
faseverschuiving van de sedimentconcentratie ten opzichte van de 
evenwichtsconcentratie. De demping heeft vooral tot gevolg, dat de 
voortplanting van de beddingvormen wordt vertraagd, terwijl de 
faseverschuiving vooral demping van de beddingvormen veroorzaakt. 

3 Het integreren van de convectie-diffusie vergelijking over de 
diepte geeft niet voldoende informatie om een diepte-gemiddeld 
model, zoals in dit proefschrift beschreven, op te stellen voor 
zwevend transport. Diepte-gemiddelde modellen zoals dat van Lin et 
al, zijn impliciet gebaseerd op een aanname over de sediment 
uitwisseling tussen de stroming en de bedding. 

Lin Pin-nam, Huang Juqing and Li Xinquen, Unsteady 
Transport of Suspended Load at Small Concentrations, 
J. of Hydr. Eng., Vol. 109, No. 1, 1983, p.86-?8. 

4 Het niveau van het waterloopkundig onderzoek in China zou 
aanzienlijk kunnen worden verbeterd als de wetenschappelijke 
uitwisseling tussen de verschillende instituten wordt vergroot. 

5 Het rendement van grootschalige metingen, zoals die in het Yantze 
estuarium, kan aanzienlijk worden verbeterd door een adequate 
organisatie. 

6 Aangezien veel terroristische akties vooral zijn bedoeld om 
aandacht te trekken, heeft uitgebreide berichtgeving in de pers een 
stimulerend effect op terrorisme. 

7 Het leren van vreemde talen is stimulerend voor het denkproces van 
de mens. 

8 De karakternotatie voor de Chinese taal is een symbool van de 
Chinese cultuur. Toch dient deze notatie vervangen te worden. 

9 China heeft thans meer behoefte aan goed opgeleide managers dan aan 
gespecialiseerde wetenschappelijke onderzoekers. 


