

Delft University of Technology

Teaching Software Engineering Principles to K-12 Students
A MOOC on Scratch
Hermans, Felienne; Aivaloglou, Efthimia

DOI
10.1109/ICSE-SEET.2017.13
Publication date
2017
Document Version
Final published version
Published in
2017 IEEE/ACM 39th International Conference on Software Engineering

Citation (APA)
Hermans, F., & Aivaloglou, E. (2017). Teaching Software Engineering Principles to K-12 Students: A MOOC
on Scratch. In R. Bilof (Ed.), 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering Education and Training Track (ICSE-SEET) (pp. 13-22). IEEE.
https://doi.org/10.1109/ICSE-SEET.2017.13
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ICSE-SEET.2017.13
https://doi.org/10.1109/ICSE-SEET.2017.13

Teaching Software Engineering Principles to K-12
Students: A MOOC on Scratch

Felienne Hermans and Efthimia Aivaloglou

Software Engineering Research Group

Delft University of Technology

Mekelweg 4, 2628 CD Delft, the Netherlands

f.f.j.hermans@tudelft.nl, e.aivaloglou@tudelft.nl

Abstract—In the last few years, many books, online puzzles,
apps and games have been created to teach young children
programming. However, most of these do not introduce children
to broader concepts from software engineering, such as debug-
ging and code quality issues like smells, duplication, refactoring
and naming. To address this, we designed and ran an online
introductory Scratch programming course in which we teach
elementary programming concepts and software engineering con-
cepts simultaneously. In total 2,220 children actively participated
in our course in June and July 2016, most of which (73%)
between the ages of 7 and 11. In this paper we describe our
course design and analyze the resulting data. More specifically,
we investigate whether 1) students find programming concepts
more difficult than software engineering concepts, 2) there are
age-related differences in their performance and 3) we can predict
successful course completion. Our results show that there is no
difference in students’ scores between the programming concepts
and the software engineering concepts, suggesting that it is indeed
possible to teach these concepts to this age group. We also find
that students over 12 years of age perform significantly better in
questions related to operators and procedures. Finally, we identify
the factors from the students’ profile and their behaviour in the
first week of the course that can be used to predict its successful
completion.

Keywords-Programming education, MOOC, Scratch, code
smells, dropout prediction

I. INTRODUCTION

Programming education, and the broader computational
thinking [1], has been made part of the curriculum in many

countries recently [2], [3]. However, most of the program-

ming materials do not teach software engineering methods.

We hypothesize that some fundamental software engineering

methods can be taught to young children as part of an

introductory programming course.

To explore this idea, we have developed an online introduc-

tory programming course in which not only programming con-

cepts but also software engineering ideas are being instructed.

In particular, we instruct students about code smells [4]: dead

code, long method smell, duplication smell and bad naming

smell, and train their debugging skills. In previous work we

have found that the long method and the duplication smell are

both harmful and common [5], [6].

Our course ran as a MOOC (massive open online course)

on the edX platform from June 15th to September 1st 20161.

It included 6 weeks of course material, and remained available

for another 4 weeks to give the opportunity to students that

joined later to finish. The course lectures and all material were

in Dutch. In total 3,179 students enrolled in the course, 2,220

participated in it, meaning they watched videos, submitted

answers to quizzes or participated in the forum. Out of those,

181 successfully completed it, which is defined by edX as

obtaining 60% of the possible points. This completion rate of

5.7% is in line with the average completion rate for MOOCs,

which has been calculated to less than 7% [7], [8].

In this paper we present our course design, consisting of

videos, mixed with formative quizzes, forum interactions and

two summative exams, at the end of weeks 3 and 6. We further

examine if children can understand, apart from programming

concepts, concepts related to code quality. Moreover, because

it has been found that specific programming concepts can be

understood in certain ages [9], we want to examine whether

we observe similar patterns in our course. At the same time,

many papers in the domain of programming education have

attempted to predict the factors related to students ceasing

their participation in online courses. A number of factors

that is found to contribute are student entry characteristics

including students previous academic and professional expe-

riences and performance, learning skills, and psychological

attributes, supportive environments and encouragement, and

students interactions within classrooms [10]. Using the data

that became available through this course, and knowing that

children exhibit different behavioral patterns than adults when

following on-line courses [11], we wanted to investigate if

the similar factors apply. Specifically, we are interested in

examining which characteristics from the student profile and

what type of participation and grading data from the first week

of the course can be used for identifying the students that have

potential for successfully finishing the course.

We analyze the data of all 2,220 students who started the

course to determine 1) if students found the programming

concepts more difficult than the software engineering concepts,

2) if there are age-related differences in their performance

on the different concepts and 3) if we can predict course

1URL of course on self-paced mode: https://www.edx.org/course/scratch-
programmeren-voor-kinderen-8-delftx-scratchx-0

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.13

10

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.13

12

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.13

13

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering Education and Training Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.13

13

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

completion based on information from the student profiles and

their activities in the first week.

Our results show that there is no difference between the

students’ scores on the programming concepts and on the

software engineering concepts. This gives credibility to the

hypothesis that we can teach children about code quality and

debugging. We also find that, for some concepts, there is a

significant difference on the performance between 11-12 year

old children with 13-14 year old ones. Finally, we are able to

identify factors from the students’ profile and their behaviour

in the first week of the course that can be used to predict

whether they will complete the (i.e. obtain 60% of the points).

The contributions of this paper are as follows:

• The course design of an online course for children

teaching programming and software engineering methods

• An analysis of the difficulty of 7 programming and 5

software engineering based on quiz scores

• An machine learning model predicting factors for the

successful completion of the course

II. COURSE DESIGN

To explore the idea of teaching software engineering to

children, we developed an online introductory programming

course in Scratch. This course was marketed as an introductory

programming course, we did not explicitly share the fact that

software engineering methods would be taught as well.

During the course, we presented clean code and maintain-

ability as things that programmers do and like. For example,

when talking about dead code, we explained that programmers

do not like a messy workspace, so that you need to clean your

workspace.

A. Course overview

The course consists of six ‘weeks’, even though students

are free to follow the course in their own pace. This is the

default manner in which course content on edX is organized.

Each week consists of three components: videos, quizzes

and forum interactions.

The videos are a combination of the screen as a whole and

the instructor talking, are short in length and are presented

with enthusiasm, as per the recommendations of Guo et al.

based on 7 million viewing sessions [12].

In each week, the instructor creates a game in Scratch,

which is shown in the videos. We expect students to follow

along with the creation of the game, as presented in the videos.

Often, the instructor creates part of the game and challenges

students to finish the remainder, for example, demonstrating

how to control a sprite to move left, and encouraging the

students to complete similar code for right, up and down.

In between these programming assignments, students get

quizzes in which their knowledge is tested. These quizzes are

sometimes related to the concrete programming assignment

that has given, like what code is needed to make the sprite

move right. These quizzes were mixed with quizzes testing

students’ general knowledge of programming concepts.

The quizzes are designed as formative assignments, giving

students feedback on their learning progress. Students are

allowed two attempts for each quiz and get encouraging

feedback on wrong submissions, like ‘that was close, but

maybe you need to make one little change’.

In addition to the videos and quizzes, we encouraged

students to explore the forum. The forum can be used to ask

questions if they are stuck, but also to chat informally about

their progress. By asking students specifically to participate

in the forum, for example by asking children to share their

specific approach with us, we hoped to motivate them to also

ask us questions in case they needed help. During the run of

the course, we monitored the forum almost every day.

B. Course Contents

Our course differs from other introductory programming

courses, by emphasizing software engineering concepts related

to source code quality. As such, the contents of the course are

both aimed at programming concepts and on the additional

software engineering methods that students are taught about.

Table I presents an overview of the course contents.

1) Week 1: In the first week, students create a simple game

in which the player navigates a sprite through a maze. In this

week, we explain the Scratch basics of sprites and their blocks,

and we introduce students to control flow: in the form of loops

and if-then-else. We also show them how to store data in a

variable. In a case where the instructor creates dead code, by

moving a block from one script to the other, we explain that

programmers do not like a messy workspace, and that needs

to be cleaned up.

2) Week 2: Students create a game where a fish eats smaller

fishes to grow bigger himself. We explain to students that

programmers prefer small scripts over longer ones. We even

share the fact our research has shown that shorter scripts are

easier to read. In this week, procedures also make their first

appearance. When we explain procedures, we explain that

we want to minimize repetition. We furthermore explain the

functionality of the random number block.

3) Week 3: We let students create a quiz on their favourite

topic. The main topic of this week is the introduction of lists

as variables, with the corresponding operations for adding

items to a list, removing them and accessing specific items.

We also repeat random numbers, conditionals and loops, and

introduce conditional loops. This week also marks the start of

the topic of debugging, where we deliberately make mistakes

in programming and have students decide if we are correct or

not, and have them fix the instructor’s “mistakes”.

Week 3 introduces fewer new concepts, as it also contains

the intermediate exam discussed in Section II-C.

4) Week 4: Students program a “crossy road” game, in

which a dog needs to avoid traffic to reach the other side

of a road on which food items are placed. Again we repeat

loops and conditionals already taught, we also have students

debug programs again, and let students practise with creating

procedures to minimize duplication. In addition to that, we

explore the XY plane more, learn about using the x-pos and

11131414

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

TABLE I
OVERVIEW OF THE CONCEPTS TAUGHT IN EACH SECTION OF THE COURSE

Topic Summary of Course Material
Week 1

Conditionals The if-then-else block is introduced, as well as the
possibility for sprite to touch each other

Events We introduce the when-key-pressed and blocks to
move, turn, and control the speak bubbles of sprites

Variables We introduce the concept of variables
Dead code We teach children to remove unused blocks, as

programmers do not like clutter
Loops We explain the do-forever loop

Week 2
Conditionals We repeat the if-then else block
Events Blocks to show, hide and shrink sprites
Variables We repeat variables and introduce random numbers
Coordination We introduce broadcast-receive blocks
Duplication We show repeated scripts and explain that we want

to minimize this
Long method We show a long script and explain that this is less

readable than two separate scripts
Loops We repeat the use of the do-forever block
Naming We encourage students to select a good name when

naming a signal
Procedures We show children how to create their own block and

explain that this can be used to minimize duplication
Week 3

Conditionals We repeat the if-then-else block
Events We explain how sprites can ask and use the answer
Variables We use lists and related concepts: add, empty and

get item
Debugging From week 3 on, we deliberately make mistakes in

programming and challenge children to find them
Loops The do-until block is taught

Week 4
Conditionals We repeat the if-then else block
Events We introduce measuring distance to other sprites
Variables We introduce using x-pos and y-pos as variables
Debugging From week 3 on, we deliberately make mistakes in

programming and challenge children to find them.
Duplication Students have to decide how to create blocks to

minimize duplication
Loops We repeat all loops previously taught
Operators We explain >and <
Parallelization We explain the {wait} block and the concept of

blocking operations.
Procedures Students have to decide how to create custom blocks

to minimize duplication
Week 5

Conditionals We repeat previously taught conditionals
Events Introducing the use of sounds and the webcam
Variables More practise with variables including random vari-

ables
Debugging From week 3 on, we deliberately make mistakes in

programming and challenge children to find them.
Loops We repeat all loops previously taught
Operators We explain < and > and their use.

Week 6
Conditionals The operator & is introduced to combine conditionals
Events Explaining how to stop scripts
Variables Exercises use variables
Debugging From week 3 on, we deliberately make mistakes in

programming and challenge children to find them.
Duplication Students have to decide how to create blocks to

minimize duplication
Loops The do-repeat block is introduced
Naming A new sprite created by Scratch is called ’sprite1’.

We explain why that is not a preferred name
Operators Student practise more with >and <
Procedures More practise with creating blocks

TABLE II
EVALUATED PROGRAMMING AND SOFTWARE ENGINEERING CONCEPTS

Concept Example question
Conditionals We are going to determine if the answer is correct.

What programming block do we need?
Coordination The fish needs to grow when he catches a purple

fish. How do you program that?
Variables We created the variable ’speed’ and set it to 0. Now

it needs to decrease. What block to use?
Loops When does the wheel need to stop spinning?
Operators We will check two things: whether Giga touches the

wall and ...? What do we need to add?
Parallelism The bug disappears at the beginning of the game,

but moves when Giga moves. Which script achieves
this?

Procedures Can you create your own countdown block? Which
blocks will go in it?

Dead code What will happen when we execute this code?
Debugging We have created this program. Does it work?
Duplication This code is correct, but, there is one block we could

remove. Which one?
Long method That’s a lot of blocks. Can you make the code more

readable?
Naming Describe the steps needed to cross the streets in

Dutch. What parts of the code do they relate to?

y-pos as properties of sprites and for measuring distance

between sprites. Finally, we introduce the wait until
block and explain blocking operations.

5) Week 5: Students build a “flappy bird” game that chil-

dren can control with the webcam. The main goal of this week

is to amaze students with the possibilities that programming

brings, in addition to repeating previously taught concepts. We

further practice using < and > operations.

6) Week 6: In this week, students make the capstone game

of the course, a Mario-like platformer. In this week all skills

of the previous weeks are needed, the only new concept

introduced is the do repeat block, and we again stress the

importance of good names, this time for sprites and costumes.

C. Evaluation and Feedback

To gain feedback on the progress of students towards learn-

ing about programming concepts we used two types of tests:

the quizzes that were included in every week of the course and

were designed to assist the students in understanding the taught

concepts, and the interim and final tests at the end of the third

and the sixth week respectively. The course included a total

of 64 quizzes with a total of 117 multiple choice questions,

while the 2 tests included 55 questions.

The questions of the quizzes and the tests were designed to

correspond to specific programming concepts. We used the 7

programming concepts similar to the ones commonly utilized

in the literature ([13], [14], [9], [15]). They are outlined, along

with example questions, in Table II. The questions of the 2

tests were designed to cover the six categories of the Bloom

taxonomy, as applied to computational thinking in [16] and

[17]. There were cases of questions testing more than one

programming concept at the same time. The students had the

opportunity to try each question twice and they got directions

after the first try.

12141515

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

III. DATA AND RESEARCH DESIGN

With the data of the course, we aim to answer the following

resesarch questions:

RQ1 Do students perform better on the questions related

to the 7 programming concepts than on the 5 related

to code quality?

RQ2 Are there age-related differences in the students’

performance on all 12 concepts?

RQ3 Can we predict course completion based on informa-

tion from the student profiles and their activities in

the first week?

This section describes the dataset on which we perform our

analyses, as well as the approach we use to answer the three

research questions.

A. Student backgrounds

In total 3,179 students enrolled in the course, while 2,220

actively participated in it by watching at least one video or

submitting at least one answer to a quiz or participating in the

course discussion forum. 181 students successfully completed

it, defined by edX as obtaining 60% of the possible points.

In order to understand our course population better, we are

interested in the age and the gender of the students, the pro-

gramming experience that they already have, and whether they

are receiving off-line support during the course. Regarding

age and gender, this could be obtained from the user profile

on the edx platform. This information however might not be

representative of the course students, because they could be

using their parents’s user profiles to participate to the course.

This is somewhat likely, since edX is a platform aimed at adult

professional learners rather than at children.

For this reason, we ask students about their age and gender

in a questionnaire, as the first task on Week 1 of the course.

In the same questionnaire we ask them about their previous

programming experience and whether they are following the

course alone or have some off-line support.

Of the 2,220 active students in the course, 1,243 filled in

this student profile questionnaire.

The age distribution of the students is plotted in Figure 1.

Using their ages as they reported them in the questionnaire,

most students (73.71% of the 1,202 that filled in their age at

the questionnaire) are 7 to 11 years old, with the most popular

ages being 8 (for 19.97% of the 1,202 students) and 9 (for

17.30% of them). Using the edX user account information,

the most popular ages are 9, 10 and 11, together accounting

for 34.11% of the 2,553 users that registered for the course

and have filled in their year of birth to their edX profile. At

the same time, 40.03% of those edX users are over 20, which

could indicate students using their parents accounts, but also

contains some parents and teachers sampling the course to

decide whether it is fun and educational. Though email and

Twitter we received a few messages from teachers along those

lines.

Out of the 1,093 students that reported their gender at the

questionnaire, 346 (31.66%) are female. The gender distribu-

0

50

100

150

200

250

300

350

1 3 5 7 9 1113151719212325272931333537394143454749515355

N
u

m
b

e
r

o
f

st
u

d
e

n
ts

Age

EDX Self-reported

Fig. 1. Age distribution of the students participating in the course

-300

200

700

1200

1700

2200

1 2 3

M
id

-t
e

rm
4 5 6

B
o

n
u

s

F
in

a
l

te
st

N
u

m
b

e
r

o
f

st
u

d
e

n
ts

Course week & chapter

Video watches Quiz submissions

Fig. 2. Student engagement in course videos and quizzes

tion is similar in the edX accounts, where 891 (35.13%) of

the 2,536 users that have provided their gender are female.

Asked about their programming experience, the majority of

the students (58.15% of the 1,147 that answered this question

at the questionnaire) answered that they have none, while

19.09% reported having used Scratch in the past and even

4.79% had programmed with Lego Mindstorms.

Regarding off-line support, the majority of the students

(60.21% of the 1,141 that answered this question at the

questionnaire) reported following the course at home together

with their father, mother or some other adult. In-school teacher

support was provided to 5.43% of the students, while a few

students (3.33%) followed the course together with a friend or

sibling, and the rest followed it alone.

B. Student Behaviour

The number of students engaged in the course throughout

its time line is plotted in Figure 2.

The first video in the first week of the course was watched

by 1,958 students (88.2% of the 2,220 active participants),

which dropped to 788 students (35.49% of the active ones)

in the second week. The sixth and final week of the course

started with 176 students (7.93% of the active ones) and

finished with 93. Examining the video interactions, the most

common behavior is pausing the video streams, in 18.71%

of the 102,133 video watches. Video pausing behavior is

notable: all 19,110 paused video watches included more than

13151616

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

total mean min Q1 median Q3 max
Duration (seconds) 52.60 6 16 34 70 1,794
Forward seek (times) 6,333 0.16 0 0 0 0 37
Backward seek (times) 5,886 0.11 0 0 0 0 43
Speed up (times) 258 0.00 0 0 0 0 1
Pause (times) 19,110 6.87 0 0 0 0 614

TABLE III
SUMMARY STATISTICS OF VIDEO INTERACTIONS CALCULATED OVER 102,133 VIDEO WATCHES

0

20

40

60

80

100

120

1
5

-J
u

n

2
2

-J
u

n

2
9

-J
u

n

6
-J

u
l

1
3

-J
u

l

2
0

-J
u

l

2
7

-J
u

l

3
-A

u
g

1
0

-A
u

g

1
7

-A
u

g

2
4

-A
u

g

3
1

-A
u

g

N
u

m
b

e
r

o
f

st
u

d
e

n
ts

Course week

Passive Active

Fig. 3. Use of the course discussion forum

5 pauses, while 10,572 of them included more than 20.

Because most of the videos in the course walk the students

through the implementation of Scratch programs, we assume

that this video pausing behavior indicates that students would

simultaneously program in the Scratch web interface while

watching the instructions. Table III summarizes all types of

video interactions during the course.

The first quiz of the course was the student profile ques-

tionnaire discussed in the previous section. The first quiz on

the course material was answered by 1,452 students (65.4%

of the active ones). Submissions for the mid-term exam at the

end of week three were received by 276 students out of the

281 that were still in the course and had watched the final

video of that week.

The discussion forum of the course was used by 706

students (31.8% of the active ones). 200 of them actively

participated on it, submitting a total of 691 posts and replies in

195 different threads, while the rest were passive forum users,

visiting it and possibly reading posts and searching —a total

of 76 forum searches were recorded during the course. Figure

3 summarizes the number of active and passive forum users

during the course.

C. Data analysis

To answer RQ1, we obtained feedback on the progress

of students towards learning about programming concepts

through the quizzes and tests discussed in Section II-C. While

the students had the opportunity to try each question twice, in

the analysis we use only the assessment for their first attempt,

since students got directions after the first try. In each question,

the students are graded with 1 if it is correct or 0 otherwise.

All questions were assigned the same weight, so the mean

�����

�����

�����

��	��

���
�

��	��

�����

�����

�����

�����

���
�

����

� �� ��� ��� ��� �

������������

������������

���������

�����

���������

���������������

���!��"���

#����!���

#��"$$��$

#"���!�����

���$�%��&��

'�%��$

��������	��

Fig. 4. Mean grade of all student answers (first attempts) to all questions
corresponding to different programming and software engineering concepts

student grade is the same as the mean correct answers.

We investigate the difference between the grades that the

students received in programming and in software engineering

questions. We created two sets, one with their mean test results

in programming questions and one with the ones in software

engineering questions. We use the Wilcoxon rank sum test to

compare the two sets and Cliff’s delta to calculate the effect

size.

Related to RQ2, Seiter et al. observe that certain concepts

are too advanced for most students within primary school

grades [9]. Since our data seemed to follow a similar pattern,

we compared groups older and younger than 12 respectively.

We therefore created for each tested programming concept

two sets, one with the test results of the 11 and the 12 year

old students and one with the results of the 13 and 14 year

olds. We used the age of the students as either the one they

declared in the student profile questionnaire or, if they did not

fill it in, we calculated it from their edX account information.

We then used the Wilcoxon rank sum test to compare the two

sets and Cliff’s delta to calculate the effect size.

For RQ3, we are interested in examining which characteris-

tics from the student profile and what type of participation and

grading data from the first week of the course can be used for

identifying the students that have potential for successfully

finishing the course. To understand the factors that lead to

course competition or dropout, we use machine learning. We

generate the dataset of the features that are described in Table

IV for all students that have watched at least one video or have

submitted at least one answer to a question of the first week

of the course. We model retention as a binary classification

problem, where given those features, we try to predict whether

14161717

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

the student will score over 60% on edX’s cumulative scoring

mechanism.

At a high level, the process to retrieve the dominant factors

that affect retention for the classification task consists of two

steps. First, we run the dataset through 2 classification algo-

rithms, namely Random Forests and Binary Logistic Regres-

sion. To evaluate the classification performance, we use Area

Under the Receiver Operating Characteristic Curve (AUC) and

F1 metrics. Both metrics are typical for binary classification

tasks, especially when comparing model performance. To

select the appropriate classification algorithm, we run a 10-

fold random selection cross-validation and aggregate the mean

values for each classification metric. At each iteration, the

algorithm randomly samples half of the available data points,

trains a classifier with 80% percent of the input and uses it

to predict the remaining 20%. The 10-fold run results also

allowed us to evaluate the metric stability across runs. We

did not perform any hyperparameter tuning at this stage. The

results showed that both Logistic Regression and Random

Forests achieve an AUC score of 0.84 and a comparable F1

score of 0.49 and 0.48 respectively. As Binary Logistic Re-

gression offers higher explainability of the effect of factors on

the outcome and comparable performance scores, we dropped

Random Forests from further examination.

Having selected Binary Logistic Regression, we further tune

our model. To do so, and for each Task, we build 5 variants

for our classification models:

1) V1: is the default model.

2) V2: like V1, with highly correlated (ρ threshold: 0.8)

parameters eliminated.

3) V3: like V2, adding a check for multicollinearity using

the the Variance Inflation Factor (VIF).

4) V4: like V1, but to stabilize variance, we apply a log

transformation to numerical values.

5) V5: like V1, but we apply a log transformation to

numerical values after removing highly correlated values

We cross-compare the variants using the Akaike information

criterion (AIC) score, which provides a relative estimate of the

information lost when a given model is used to represent the

process that generates the data. We supplement the comparison

with each model’s deviance. Moreover, to evaluate model fit,

we compare all variants in terms of AUC. The results can be

seen in Table V.

IV. RESULTS

A. RQ1: Do students perform better on the questions related
to the 7 programming concepts than on the 5 related to code
quality?

Figure 4 summarizes the results obtained from a total of

52,264 student answers to the quiz and test questions of the

different categories. Students generally performed better at the

quiz questions, which is expected because they were designed

to be formative rather than summative. The lowest percentage

of correct answers was given for the Operators, Procedures

and Variables categories.

Fig. 5. Mean grade per student on questions related to software engineering
concepts and to programming concepts

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 6 7 8 9 10 11 12 13 14

M
e

a
n

 g
ra

d
e

Student age

Conditionals

Coordination

Variables

Loops

Operators

Parallelization

Procedures

Fig. 6. Answer correctness per student age and tested programming concept

Comparing the performance of students on questions related

to software engineering concepts with their performance on

programming concepts, we found that the difference is not

significant. Figure 5 shows the variance of the mean grade

per student in the two types of questions. The calculated p-

value is very small (8.301e-08), but the effect size of 0.141

is too small to characterize the difference between the two

groups as significant.

0

0.2

0.4

0.6

0.8

1

1.2

5 6 7 8 9 10 11 12 13 14

M
e

a
n

 g
ra

d
e

Student age

Dead code

Debugging

Duplication

Long method

Naming

Fig. 7. Answer correctness per student age and tested software engineering
concept

15171818

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

Feature Description Quant 5 Mean Median Quant 95 Histogram
gender The gender declared in the student profile questionnaire - - - -

age The age declared in the student profile questionnaire or the edX
profile age

0.00 14.71 10.00 50.00

alone Is the student following the course alone? (from the student
profile questionnaire)

- - - -

experience Does the student have prior programming experience? (from the
student profile questionnaire)

- - - -

joined calendar week Which week was the course in when the student first became
active

1.00 2.88 2.00 7.00

forum searches Number of searches in the discussion forum in the 1st course
week

0.00 0.01 0.00 0.00

forum times accessed Times the discussion forum was accessed in the 1st week 0.00 0.17 0.00 1.00

forum max duration Duration of the longest session in the forum in the 1st week
(seconds)

0.00 19.95 0.00 59.00

distinct videos watched Different 1st week videos watched 0.00 3.14 0.00 15.00

prc videos warched Percentage of 1st week videos watched 0.00 0.20 0.00 1.00
skipped video Did the student skip any of the 1st week videos? - - - -

total watches Total number of video watches in the 1st week 0.00 7.75 0.00 43.00

days engaged videos Distinct calendar days engaged in 1st week video watching 0.00 0.60 0.00 3.00

total pauses Number of video pauses in the 1st week 0.00 53.19 0.00 365.00

total forward seek Number of video forwards in the 1st week 0.00 1.21 0.00 7.00

total backward seek Number of video backwards in the 1st week 0.00 0.85 0.00 6.00

mean pauses Mean pauses per video in the 1st week 0.00 1.78 0.00 11.00

mean forward seek Mean forwards per video in the 1st week 0.00 0.05 0.00 0.30

mean backward seek Mean backwards per video in the 1st week 0.00 0.03 0.00 0.21

total duration Total time spent watching 1st week videos 0.00 407.48 0.00 2145.05

mean duration Mean time per video in the 1st week 0.00 19.25 0.00 91.47

questionnaires skipped Number of 1st week questionnaires skipped 0.00 9.14 8.00 17.00

questonnaires tried Number of 1st week questionnaires with at least one submitted
answer

0.00 1.70 0.00 8.00

questions skipped Number of 1st week questions skipped 0.00 20.01 16.00 47.00

questions tried Number of 1st week questions with submitted answer 0.00 3.83 0.00 18.00

mean tries question Mean submissions per 1st week question 0.00 0.38 0.00 1.77

mean grade Mean grade from the 1st week questions 0.00 0.25 0.00 1.00
has failed answer Did the student fail in any of the 1st week questions? - - - -

TABLE IV
SELECTED FEATURES AND DESCRIPTIVE STATISTICS. HISTOGRAMS GIVE AN OVERVIEW OF THE DATA. THEY ARE IN LOG SCALE.

Model variant V1 V2 V3 V4 V5
AIC 593 605 608 593 693
Deviance 529 559 566 525 663
AUC 0.81 0.781 0.77 0.84 0.71

TABLE V
MODEL SELECTION RESULTS

B. RQ2: Are there age-related differences in performance on
all 12 concepts?

An overview of the mean grades per student age and tested

concept is presented in Figures 6 and 7, while the comparison

results between the sets of 11-12 and 13-14 year old student

results are listed in Table VI.

Our findings indicate that the two sets differ significantly

(p <0.05 and effect size >0.4) for the case of Operators

and, especially, Procedures, with effect sizes of 0.468 and

0.615 respectively. The p-value is also small for the case of

p-value Effect size
Conditionals 0.003 0.236
Coordination 0.008 0.187
Variables 0.021 0.220
Loops 0.282 0.081
Operators 0.031 0.468
Parallelization 0.586 0.073
Procedures 0.008 0.615
Dead code 0.337 0.205
Debugging 0.149 0.168
Duplication 0.646 0.044
Naming 0.067 0.393

TABLE VI
P-VALUES AND EFFECT SIZES (CLIFF’S DELTA) OF THE WILCOXON RANK

SUM TEST BETWEEN THE GRADES OF 11-12 YEAR OLD STUDENTS AND

THE ONES OF 13-14 YEAR OLD STUDENTS.

Conditionals, Coordination and Variables, but the effect size

is too small. For the software engineering concepts that the

students were tested on, the difference between the two age

16181919

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

Model 1

(Intercept) −13.58 (27.58)
genderBoy −0.53 (1.24)
genderGirl −0.63 (1.25)
log(age + 1) −0.18 (0.30)
aloneAt school with help from a teacher −0.80 (0.85)
aloneTogether with a friend or sibling −1.18 (0.82)
aloneAt home with help from parent −0.57 (0.27)∗

experienceYes, with Scratch 0.88 (0.49)
experienceYes, with other 0.05 (0.53)
experienceNo −0.17 (0.49)
log(joined calendar week) −0.44 (0.18)∗

log(forum searches + 1) 0.25 (1.23)
log(forum times accessed + 1) −0.39 (0.42)
log(forum max duration + 1) 0.13 (0.09)
log(distinct videos watched + 1) 3.20 (9.60)
log(prc videos warched + 0.01) −2.43 (8.11)
skipped video1 0.47 (0.66)
log(total watches + 1) 0.21 (2.55)
log(days engaged videos + 1) 0.52 (0.38)
log(total pauses + 1) −0.23 (0.25)
log(total forward seek + 1) 0.05 (0.45)
log(total backward seek + 1) 0.28 (0.50)
log(mean pauses + 1) 0.63 (0.47)
log(mean forward seek + 0.01) −0.03 (0.30)
log(mean backward seek + 0.01) −0.10 (0.32)
log(total duration + 1) −0.31 (2.31)
log(mean duration + 0.01) 0.27 (2.37)
log(questionnaires skipped + 1) 0.01 (0.96)
log(questonnaires tried + 1) 7.28 (3.22)∗

log(questions skipped + 1) 0.04 (0.59)
log(questions tried + 1) −4.06 (3.27)
log(mean tries question + 0.01) −0.19 (0.55)
log(mean grade + 0.01) 21.82 (9.84)∗

has failed answer1 1.69 (0.74)∗

AIC 593.02
BIC 762.59
Log Likelihood −262.51
Deviance 525.02
Num. obs. 1083
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

TABLE VII
LOGISTIC MODEL FOR PREDICTING WHETHER A STUDENT WILL REACH

EDX SCORE > 60% USING PROFILE & 1ST WEEK INTERACTION DATA

groups was not significant.

C. RQ3: Can we predict course completion based on infor-
mation from the student profiles and their activities in the first
week?

In the model of Table VII we see that following the course

“at home with help from parent” and being late in joining the

course reduces the chance of successfully completing it. At

the same time, the factors that have a statistically significant

positive influence are the number of questionnaires that have

been submitted, the mean grade in the quizzes and having a

failed answer.

Table VIII shows the deviance explained by each factor.

Apart from the aforementioned factors, it shows that the

experience, the number of times that the discussion forum was

accessed, the distinct videos that were watched and the number

of skipped questionnaires also explain a small, yet significant

percentage of the total deviance.

The results also reveal that the effect of the gender is

statistically insignificant, meaning that there are no differences

between boys and girls in their chances of successfully com-

pleting the course. The same applies to their video interactions

(pauses, forward and backward seek, total time spent on course

videos). Moreover, even though the age of students affects

their performance in quizzes and tests, as discussed in Section

IV-B, the age feature does not have a significant effect on their

chances of completing of the course.

V. DISCUSSION

A. Threats to validity
The first threat to the validity of our findings pertains to

the self-selection of the course by the participants, because

we cannot assume that the children in our course are a

random sample of the Dutch population. Instead they, or

their parents, decided to participate in an online programming

course. Therefore, it is likely that these children are motivated

to learn, and as such we will observe patterns that might not

hold for all students. This threat will be addressed in future

work, as currently over 10 classes are using our materials in

a classroom setting for ages 9 and up. Furthermore, not all

students filled out the age and gender questions in week 1.

Out of the 2,220 participants 1,452 filled out the survey. In

our data analysis as described in III-C, we used the age on

the edX platform in case this data was missing, which might

belong to the parent or teacher of the student and hence not

be representative.

B. Naming
Previous work has shown that children rarely change the

default names of sprites [18], which is one of the code smells

that this course aims to educate about. While there is too

little data to measure an effect, a first manual sample of our

students’ program does show that they changed the names

of a new sprite created in week 6. However, this was part

of the course materials, and it remains to be seen whether the

students would also exhibit this behaviour while programming

“in the wild”. An analysis of the programs that students create

after this course is a direction for future work.

C. Difficult programming concepts
Other papers [9] have observed that some programming

concepts, especially variables and conditionals, are harder for

certain age groups. While we do not measure significant dif-

ferences for conditionals and variables, we do see an increase

in scores on those two categories in our data as well. Our

finding that younger children (less than 12 years old) perform

worse in questions related to Procedures is an indication that

this is an advanced concept and may be the reason why it is

rarely applied in Scratch projects —only 8% of 250 thousand

projects in the Scratch repository are found to utilize custom

blocks [6]. Finally, it is notable that the threshold of 12 years

of age that we found for increased performance at Operators

and Procedures is also the age after which the children in the

Netherlands move from elementary school to high school—

88.91% of the course participants declares the Netherlands as

their country of origin in their edX profiles. An interesting

direction for future work would be to explore whether their

increased performance on those programming concepts is due

to the more advanced mathematical concepts that they are

taught within their high school curriculum.

17192020

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

Df Deviance Resid. Df Resid. Dev Pr (>Chi)

NULL 1082 741.60
gender 2 2.12 1080 739.48 0.3464
log(age + 1) 1 0.04 1079 739.44 0.8401
alone 3 6.61 1076 732.83 0.0853
experience 3 32.70 1073 700.13 0.0000
log(joined calendar week) 1 11.63 1072 688.50 0.0007
log(forum searches + 1) 1 0.00 1071 688.50 0.9818
log(forum times accessed + 1) 1 15.02 1070 673.48 0.0001
log(forum max duration + 1) 1 3.26 1069 670.23 0.0710
log(distinct videos watched + 1) 1 61.01 1068 609.21 0.0000
log(prc videos warched + 0.01) 1 26.10 1067 583.11 0.0000
skipped video 1 0.53 1066 582.59 0.4684
log(total watches + 1) 1 0.05 1065 582.54 0.8296
log(days engaged videos + 1) 1 1.82 1064 580.72 0.1771
log(total pauses + 1) 1 1.91 1063 578.81 0.1665
log(total forward seek + 1) 1 0.40 1062 578.40 0.5253
log(total backward seek + 1) 1 0.15 1061 578.25 0.6943
log(mean pauses + 1) 1 1.20 1060 577.05 0.2738
log(mean forward seek + 0.01) 1 0.01 1059 577.04 0.9125
log(mean backward seek + 0.01) 1 0.21 1058 576.83 0.6494
log(total duration + 1) 1 0.01 1057 576.82 0.9194
log(mean duration + 0.01) 1 1.65 1056 575.17 0.1992
log(questionnaires skipped + 1) 1 27.89 1055 547.28 0.0000
log(questonnaires tried + 1) 1 10.38 1054 536.89 0.0013
log(questions skipped + 1) 1 2.26 1053 534.63 0.1327
log(questions tried + 1) 1 1.38 1052 533.26 0.2407
log(mean tries question + 0.01) 1 0.21 1051 533.05 0.6455
log(mean grade + 0.01) 1 1.50 1050 531.55 0.2212
has failed answer 1 6.53 1049 525.02 0.0106

TABLE VIII
DEVIANCE EXPLAINED BY FACTORS AFFECTING RETENTION

VI. RELATED WORK

A number of studies have been carried out on teaching

programming concepts to novice programmers with block-

based languages in general, and Scratch in particular. Scratch

was taught in middle school classes containing a total of

46 students in the study presented in [14]. Evaluating the

internalization of programming concepts, it was found that

students had problems with concepts related to initialization,

variables and concurrency. In [18], Wilson et al. present an 8-

week Scratch course given to 4 primary school classes with a

total of 60 students aged 8 to 11, and evaluate it by analyzing

the 29 projects that the students created. Maloney et al. [13]

taught Scratch as an extracurricular activity, in an after-school

clubhouse. By analyzing the 536 students’ projects for blocks

that relate to programming concepts, they found that within

the least utilized ones are boolean operators and variables.

Apart from projects created during courses, other works

analyze the public repository of Scratch programs for indi-

cations of learning of programming concepts. Yang et al.

examined the learning patterns of programmers in terms of

block use over their first 50 projects [19]. In [15], the use of

programming concepts was examined in relation to the level

of participation, the gender, and the account age of 5 thou-

sand Scratch programmers. Moreno and Robles analyzed 100

Scratch projects to detect bad programming habits related to

Naming and Duplication [20]. In prior work, we have analyzed

250 thousand Scratch projects in terms of complexity, used

programming concepts and smells [6]. Seiter and Foreman

[9] proposed a model for assessing computational thinking

in primary school students and applied it on 150 Scratch

projects, finding that design patterns requiring understanding

of parallelization, conditionals and, especially, variables were

under-represented by all grades apart from 5 an 6.

The topic of student retention and dropout in MOOCs has

received significant attention during the last years. Lee and

Choi have reviewed 35 empirical studies on students dropout

in post-secondary on line courses and categorized the 44

common dropout factors into student factors, course/program

factors, and environmental factors [10]. More recently, Kloft

et al. [21] used machine learning to predict MOOC dropout

over weeks using clickstream data from the page view log

and the lecture video log. [22] presents a dropout predictor

that uses student activity features, including video views ans

exams taken, to predict which students have a high risk of

dropout. Similar to our analysis, data from the first week of

a university on-line course was used in [23] to predict the

students performance at the end of the course and it was found

that assignment performance in Week 1 is a strong predictor.

While a large volume of research has been carried out

on postsecondary education MOOCs, limited research has

been published on online courses aimed for K-12 schoolage

children. A MOOC on Scratch programming has been taught

in Uruguay; [24] presents the course description and initial

results. In [25], a university-level CS1 course is offered as a

MOOC to school children over 15 years old and they find that

upper secondary school participants in the MOOC perform

as well as the older participants. In [11], Yin et al. report

that interviews of children-parent couplets having completed

at least one MOOC revealed that children perceive MOOC

video lectures differently than adults, that family interactions

can affect the course experience, and that children may play

with the MOOC material more than adults.

18202121

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

VII. CONCLUSION

The goal of this paper is to share our experience with our

course on software engineering for children and the corre-

sponding data analysis. More specifically, we study 1) whether

students found the 7 programming concepts more difficult than

the 5 software engineering concepts, 2) if there are age-related

differences in their performance on the different concepts and

3) if we can predict course completion based on information

from the student profiles and their activities in the first week.
Our results show that there is no difference in students’

scores on the programming concepts and the software engi-

neering concepts. We also find that for operators and proce-

dures there is a significant difference between the performance

of students below 12 years old with the performance of the

older ones. Finally, we find that being late in joining the course

and following it at home with a parent or other adult reduces

the chance of successfully completing it, submitting answers to

all questionnaires and a high mean grade in the first week are

positive factors, while the age and gender have no significant

effect in successful course completion.
We hypothesize that a course like ours could help students

think about maintainability of source code from their first

experience. While our results give some credibility to this

hypothesis, quizzes in a course are not sufficient proof. There-

fore, one of the directions for future work that we envision is

to follow students who took our course in their programming

career, to measure if there is indeed a difference. A concrete

plan we have in this direction is to sample Scratch programs of

our participants in a few months, and compare the quality of

their programs in terms of the smells we taught to the Scratch

programs of the general population.

ACKNOWLEDGMENTS

We would like to thank Georgios Gousios for his help with

data analysis, as well as Claudia Hauff and Yue Zhao for

their help with obtaining the course data. Also, we would

like to thank everyone who helped review the course material,

especially the students of Instituut Het Centrum in Rotter-

dam: Darko Donker and Nickolay Frissen, and our teaching

assistants who tirelessly answered questions on the forum:

Jesse Donkervliet and Stefan Hugtenberg. Finally we thank

our cameraman Jan Douma who helped us record the MOOC

videos.

REFERENCES

[1] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, no. 3,
pp. 33–35, Mar. 2006.

[2] H. Hong, J. Wang, and S. H. Moghadam, “K-12 computer science edu-
cation across the U.S.” in 9th International Conference on Informatics in
Schools: Situation, Evolution, and Perspectives. Springer International
Publishing, 2016, pp. 142–154.

[3] E. Barendsen, N. Grgurina, and J. Tolboom, “A new informatics curricu-
lum for secondary education in The Netherlands,” in 9th International
Conference on Informatics in Schools: Situation, Evolution, and Per-
spectives. Springer International Publishing, 2016, pp. 105–117.

[4] M. Fowler, Refactoring: improving the design of existing code. Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999.

[5] F. Hermans and E. Aivaloglou, “Do code smells hamper novice program-
ming? A controlled experiment on Scratch programs,” in 2016 IEEE 24th
International Conference on Program Comprehension, 2016, pp. 1–10.

[6] E. Aivaloglou and F. Hermans, “How kids code and how we know: An
exploratory study on the scratch repository,” in Proceedings of the 2016
ACM Conference on International Computing Education Research, ser.
ICER ’16. ACM, 2016, pp. 53–61.

[7] C. Parr. (2013) Not staying the course. [Online]. Avail-
able: https://www.insidehighered.com/news/2013/05/10/new-study-low-
mooc-completion-rates

[8] K. Jordan. Mooc completion rates: The data. [Online]. Available:
http://www.katyjordan.com/MOOCproject.html

[9] L. Seiter and B. Foreman, “Modeling the learning progressions of
computational thinking of primary grade students,” in Proceedings
of the Ninth Annual International ACM Conference on International
Computing Education Research. ACM, 2013, pp. 59–66.

[10] Y. Lee and J. Choi, “A review of online course dropout research:
implications for practice and future research,” Educational Technology
Research and Development, vol. 59, no. 5, pp. 593–618, 2011.

[11] Y. Yin, C. Adams, E. Goble, and L. F. V. Madriz, “A classroom at
home: children and the lived world of moocs,” Educational Media
International, vol. 52, no. 2, pp. 88–99, 2015.

[12] P. J. Guo, J. Kim, and R. Rubin, “How video production affects student
engagement: An empirical study of MOOC videos,” in Proceedings of
the First ACM Conference on Learning @ Scale Conference, ser. L@S
’14. New York, NY, USA: ACM, 2014, pp. 41–50.

[13] J. H. Maloney, K. Peppler, Y. Kafai, M. Resnick, and N. Rusk, “Pro-
gramming by choice: Urban youth learning programming with scratch,”
in Proceedings of the 39th SIGCSE Technical Symposium on Computer
Science Education, ser. SIGCSE ’08. ACM, 2008, pp. 367–371.

[14] O. Meerbaum-Salant, M. Armoni, and M. M. Ben-Ari, “Learning
Computer Science Concepts with Scratch,” in Proceedings of the Sixth
International Workshop on Computing Education Research, ser. ICER
’10. New York, NY, USA: ACM, 2010, pp. 69–76.

[15] D. A. Fields, M. Giang, and Y. Kafai, “Programming in the wild: Trends
in youth computational participation in the online scratch community,” in
Proceedings of the 9th Workshop in Primary and Secondary Computing
Education, ser. WiPSCE ’14. ACM, 2014, pp. 2–11.

[16] N. N. Khairuddin and K. Hashim, “Application of Bloom’s taxonomy in
software engineering assessments,” in Proceedings of the 8th Conference
on Applied Computer Scince. World Scientific and Engineering
Academy and Society (WSEAS), 2008, pp. 66–69.

[17] E. Thompson, A. Luxton-Reilly, J. L. Whalley, M. Hu, and P. Robbins,
“Bloom’s taxonomy for cs assessment,” in Proceedings of the Tenth
Conference on Australasian Computing Education - Volume 78, ser. ACE
’08. Australian Computer Society, Inc., 2008, pp. 155–161.

[18] A. Wilson, T. Hainey, and T. Connolly, “Evaluation of computer
games developed by primary school children to gauge understanding
of programming concepts,” in European Conference on Games Based
Learning. Academic Conferences International Limited, 2012, p. 549.

[19] S. Yang, C. Domeniconi, M. Revelle, M. Sweeney, B. U. Gelman,
C. Beckley, and A. Johri, “Uncovering trajectories of informal learning
in large online communities of creators,” in Proceedings of the Second
ACM Conference on Learning @ Scale. ACM, 2015, pp. 131–140.

[20] J. Moreno and G. Robles, “Automatic detection of bad programming
habits in scratch: A preliminary study,” in 2014 IEEE Frontiers in
Education Conference (FIE), Oct. 2014, pp. 1–4.

[21] M. Kloft, F. Stiehler, Z. Zheng, and N. Pinkwart, “Predicting MOOC
dropout over weeks using machine learning methods,” in Proceedings
of the EMNLP 2014 Workshop on Analysis of Large Scale Social
Interaction in MOOCs, 2014, pp. 60–65.

[22] S. Halawa, D. Greene, and J. Mitchell, “Dropout prediction in MOOCs
using learner activity features,” in Proceedings of the European MOOC
Summit (EMOOCs 2014), 2014.

[23] S. Jiang, A. E. Williams, K. Schenke, M. Warschauer, and D. O’Dowd,
“Predicting MOOC performance with week 1 behavior,” in Proceedings
of the 7th International Conference on Educational Data Mining, 2014,
pp. 273–275.

[24] I. F. de Kereki and V. Pauls, “Sm4t: Scratch MOOC for teens: A pioneer
pilot experience in Uruguay,” in 2014 IEEE Frontiers in Education
Conference (FIE) Proceedings, Oct 2014, pp. 1–4.

[25] J. Kurhila and A. Vihavainen, “A purposeful MOOC to alleviate insuf-
ficient cs education in Finnish schools,” Trans. Comput. Educ., vol. 15,
no. 2, pp. 10:1–10:18, Apr. 2015.

19212222

Authorized licensed use limited to: TU Delft Library. Downloaded on January 07,2021 at 13:11:18 UTC from IEEE Xplore. Restrictions apply.

