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Abstract

Automated Planning, also known as Artificial Intelligence (AI) planning is a branch of
Al focused on automated decision-making and scheduling. A sub-problem within Al
Planning is domain-independent planning, where we want to develop methods that
are generalisable for solving planning problems in many domains. A popular mod-
elling language for domain-independent planning is PDDL. In PDDL we model our
problems as having some start state and some goal state; these states are defined by the
truth-values of a set of defined predicates applied to a set of objects with correspond-
ing types. In this work we explore the concept of dynamic macro-actions for PDDL,
which are macro-actions whose utility are re-evaluated as we solve more problems,
and does not require prior training. We find that dynamic macro-actions are a prom-
ising method, showing average improvements in the number of nodes explored in the
search space of up to 84% depending on the domain.
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Chapter 1

Introduction

Automated Planning—also known as Artificial Intelligence (Al) planning-is a branch
of Al focused on automated decision-making and scheduling. In essence, automated
planning problems are problems in which we want to construct some kind of sequence
of actions for a given agent in a given environment. The set of problems this envelops
is vast; ranging from constructing sequences of actions for robots, to train routing
scheduling problems. The solutions to such problems can be specific to a particular
domain—for example, we write an algorithm for a specific robot to plan its course of
actions—or they can be generalised to be applicable to many different types of domains
(a generic solver).

This is our goal in domain-independent planning; we want to construct a solver
that can do automated planning for a vast array of domains. In other words, the spe-
cific domain should not matter. When one wants to solve a problem in some domain,
all that is required is to construct a model of the domain (including what actions are
available to the agent and a model of its environment) and of models of particular
problem instances (the starting state, goal state and an enumeration of the particular
objects—or even different agents—in the environment). This approach allows us to de-
velop techniques for solving planning problems without limiting our work to a certain
domain.

A popular modelling language for domain-independent planning is PDDL [Ghallab
etal],|1998]. PDDL has in the past been used to solve alot of toy problems, but more re-
cently there has been research done on modelling more complex, real world problems,
such as personalised medication and activity planning [Alaboud and Coles})[2019], vehicle
routing problems [Cheng and Gao,|2014], train dispatching problems [Cardellini et al.|
2021], and many more.

In PDDL we model our problems as having some start state and some goal state;
these states are defined by the truth-values of a set of instantiated predicates applied to
a set of objects with corresponding types. Our starting state is a set of true predicates
(all other possible instantiated predicates are implicitly false), and our goal state is a
conjunction of literals (see Example|[T).



Example 1. Take the following domain: SHAPEBOARD. We informally define this do-
main as follows. We have a board with any number of spots, in any shape. The board
is defined as a set of positions. Furthermore, we have a collection of shapes that can be
placed on the board. Importantly, two shapes cannot occupy one position at the same
time. We have two actions: we can place shapes on a particular part of the board and
we can remove them. Now, take the starting state shown in Figurefor the domain
SHAPEBOARD. We have a circle in the top-right position, and a star in the bottom-left.

Recall that we define a starting state as a collection of true predicates. The starting
state shown in our figure would be defined as follows:

isOn(circle, top — right)
isOn(star,bottom — left)

Let us say the goal is that we want the circle to be on the bottom-left and we want
the star to be either on the top-right or the bottom-right. We can define our goal state
as follows.

isOn(circle,bottom — left) A —isOn(star, top — left)

Note that we do not have to state that we do not want the star to be in the bottom-
left, as we defined our domain such that two shapes can never overlap. _

The goal of our solver is to find a plan (a path) from the start state to the goal state.
Such a plan consists of a sequence of actions. Every action has some parameters, a set
of predicates which are its preconditions (they must be true in the current state for the
action to be allowed), and a set of predicates which are its effects (they become true
once the action has been performed-they thus define what state we go to next).

The state-space of these problems can grow exponentially, so finding ways to make
our search faster is crucial. Earlier research has shown that the use of macro-actions
can improve the solving-time of domain-independent problems [Hernadvolgyi} 2001}
Botea et al}|2004,[2005]. Macro-actions are concatenated actions inside the domain of
a problem. They can be inferred from the domain, or from solutions to the problem,
and then added to the domain.

Example 2. Recall our earlier example of the domain SHAPEBOARD (see Example 1),
where we can place or remove shapes onto/from locations on aboard. Take the ex-
ample state shown in Figure[I.1] A possible macro-action could be to swap the shapes
on two locations. The sequence of actions would be:

remove(circle,top — right)
remove(star,bottom — left)
place(star,top —right)
place(circle,bottom — left)



Figure 1.1: Starting state of a problem instance for shape board.

To potentially find solutions faster for future problems, we can generalise this se-
quence of actions and model it as one (macro-)action to add to our domain:

swap(shape —1,loc — 0,shape —2,loc — 1)
4

To find more ways to improve search, we can look at the sister of Al Planning—
program synthesis. Program synthesis is the problem where we try to generate a pro-
gram which satisfies specified constraints|Gulwani et al, |[2017]. If one stretches its
definition, a program can be seen as a sort of plan. Within program synthesis there ex-
ists a technique called refactoring. With refactoring we try to reformulate some gram-
mar by adding new grammar rules that model combinations of pre-existing grammar
rules (for example double: x + x). It has been shown that refactoring the grammar
in program synthesis problems improves accuracy and solving times[Hocquette et al.|
2024). If we use our perspective of seeing programs as a type of plan, we can also view
refactorings as a type of macro-action.

[t is important to note that this analogy is not perfect, as programs in program syn-
thesis are trees, whereas plans in automated planning are linear sequences of actions.
Just as importantly, we should note that this comparison is not just based on a feel-
ing; the comparison between macro-actions and refactoring can be seen in how we
change the search space. In both cases, we increase the branching factor inside the
search space, but by doing so we create possible shortcuts to the solution. In both re-
factoring and the addition of macro-actions there lies a delicate balance between these
two opposing forces.

An extension of refactoring for program synthesis is the concept of forgetting, where
we forget earlier found refactorings. We do this to maintain the delicate balance between
the increase in branching factor and the inclusion of useful refactorings. Earlier work
has shown that using forgetting for refactoring helps with solving inductive logic pro-
grams [Cropper}2019].

As mentioned prior, refactoring for program synthesis and macro-actions for auto-
mated planning are similar in the sense that they both aim to balance an increase in
the branching factor to create a shorter path in our state-space to our desired solu-
tion. It is thus in our interest to explore similar techniques for both domains, such



as forgetting. In this work we want to explore the usefulness for macro-actions in
PDDL problems of a key insight that forgetting uses—that our estimation of the utility
of found knowledge can change over time. We want to construct a method that can
learn macro-actions and can dynamically reassess their usefulness macro-actions.

The main contribution of this work is a dynamic offline approach to the learning
of macro-actions. This entails that the system can be used with any solver to improve
over as we solve more problems, rather than training it once before use. Furthermore,
we evaluate the system and analyse its strengths and weaknesses.

Lastly, we assess how different different hyper-parameters change the performance
of our system. Our main goal is to discover how we can best estimate and (re)asses the
utility of a potential macro-action.

This brings us to the following main research question: 'How can we use dynam-
ically learn macro-actions to improve the solving time of Al planning problems mod-
elled in PDDL?, with the following sub-questions:

1. How does the performance of dynamic macro-actions change as we train on
more problems?

2. At what point do we observe diminishing returns as we train on more problems
for dynamic macro-actions? That is, (when) do we observe a convergence of the
performance?

3. How can we best estimate the utility of macro-actions?

Broadly, in our method we store information of all macro-actions it finds with each
problem we solve (each iteration). Then, for each iteration we select macro-actions
based on some utility function we define. This approach ensures that no problem-
instances are required for training; we train as we solve problems we want to solve
and learn over time.

We benchmark our method using various domains: BAKING and LoGisTics from the
PDDL-Gym problem set, and SATELLITE, PIPESWORLD-NO-TANKAGE and PIPESWORLD-
TANKAGE from the IPC-4 competitio

We find that the most important metric for estimating the utility of a macro-action
depends on the domain we are trying to solve. Specifically, we see that the best per-
forming formulae for the estimated utility are the number of historic uses for the Bak-
ING domain with an average decrease in nodes explored in the search space of 84%
(after solving 5 problems prior), the number of historic uses weighted by the number
of unique actions (by name) in the macro-action for the Logistics domain with an
average decrease of 75%, and the number of uses weighted by the size of the macro-
action for the SATELLITE domain, with a 33% average decrease.

We found that our method does not improve performance on the PrpEsworLD do-
mains and hypothesise that this is due to the large amount of parameters in their ac-
tions. but does improve performance for the other domains. We do not see a very clear
trend-however—in any domain, for how the performance changes; the performance
does not seem to converge.

'"https://ipcO4.icaps-conference.org/deterministic/
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Chapter 2

Background

The following chapter describes all the background knowledge that is required to un-
derstand the coming chapters. We start by introducing Al planning in general. Then,
we introduce basic domain-independent planning in PDDL. Lastly, we introduce what
macro-actions are and what forgetting them entails.

2.1 Automated Planning

Automated Planning, or Al Planning, is the field in which we aim to automatically solve
planning problems. Such problems are problems where we want to plan out what an
agent is/multiple agents are going to do in a given world/with a given set of resources;
we want to create a plan of action for some agent(s). We want to generate a plan that
achieves some sort of goal. A problem consists (see Definition[4) of a set of objects, a
starting state and a goal state.

The solution to such a problem consists out of a list of actions (a plan) which bring
us from the initial state to the goal state.

2.1.1 Domain-Independent Planning

While Al Planning can be done in a domain dependent manner—that is, catering your
planner to some specific domain—it can also be done in a domain independent manner.
This means that we design a planner that can solve problems regardless of their do-
main. For such planners, the domain is given as a model to the planner alongside
the specific problem(s) that need(s) to be solved. A popular example of a domain-
independent modelling language is PDDL.

Definition 1 (PDDL Domain). A PDDL Domain D : (T, #, A) consists of:
« T A type tree where the root note is the object type.
« P: A set of predicates, each consisting of a name, a set of argument names A,
and their corresponding types {(p1, A1,1'1), ..., (Pn, An,'n)}, where p; is
the predicate name of predicate 7, A; an ordered tuple of the argument names



of predicate 7, and I'; is an ordered tuple of the corresponding types of the ar-
guments in A;.

o A : A set of actions, each with a name, a set of parameter names with their
corresponding types, a set of preconditions, and a set of effects—where both
the preconditions and effects are in conjunctive normal form (a conjunction of

disjunctions).
{(name;, params, pre,, eff;), ..., (name,, params,, pre,,, eff,)}

_
Definition 2 (Predicate Instance). For any type tree 7', predicate p(py : t1, -+ ,pp -
tn) € P, t; € T and set of object literals O, a predicate instance p(01, - - - , 05,) is the
instantiation of predicate p € % with a tuple of object literals 01, - ,0p,0; € O,
where n < |O| such that the types of 01, - - - , 0, are t1, - - - , t,,. A predicate instance
can have a truth or false value. _

Definition 3 (State). For any PDDL domain (see Definition and a set of object lit-
erals O, a state S is a truth-value assignment for every possible instantiation of pre-
dicates in P for the objects in O. _

Definition 4 (PDDL Problem Instance). A PDDL Problem Instance P : (O, Sy, Sy)
corresponding to some domain D : (T, P, A) consists of:
+ O: A set of objects and their corresponding types

{(namela 71)7 cey (nameTL?,yn)}

+ Sp: The starting state expressed as a set of predicates in # and their corres-
ponding arguments (objects) { (p1, A1), - .., (Pn, Apn)} where A; is an ordered
tuple of objects in O containing the arguments for p;.

+ Sy A goal state expressed as a set of predicates in [ and their corresponding
arguments (objects) {(p1, A1), ..., (Pn, An)} where A; is an ordered tuple of
objects in O containing the arguments for predicate p;.

|

APDDL domain (see Definition[I) models the type of problem we want to solve. An
example of such a domain can be found in Figure In this domain we are model-
ling a type of problem involving a teapot and a teacup; we can have a set of teacups
and teapots and we want to pour into some amount of teacups. A domain only mod-
els the type of problem we want to solve; it defines the types, predicates, and actions
in that type of problem. Specifically, we see one singular action: pour. This action
requires the teapot to be full and the cup to be empty to be able to pour a given tea-
cup with a given teapot. We see that the effect is that the cup is no longer empty.
Notably, this domain is only using two requirements: Strips and typing. PDDL



knows many other requirements, and different planners support different require-
ments|Ghallab et al.,[1998].

For each domain there exist many problem instances (see Definition ??). An example
of a problem instance for the tea domain can be found in Figure[2.2] We see here that
we have one singular cup and one singular teapot. Our starting state is that our cup is
empty and our goal is for it to not be empty.

( ( tea)
( :strips :typing)
( cup teapot)
( (cupisempty ?x - object)
(teapotisempty ?y - teapot))
( pour
(?x - cup ?y - teapot)
(
(cupisempty ?x)
( (teapotisempty) ?y)
)
(
( (cupisempty ?x))
)
)
Figure 2.1: An example of a PDDL domain modelling pouring a tea cup.
( ( teaproblem)
(
cupe - cup
pote - teapot
)
(
(isempty cupo)
)
( (
( (isempty cupe))
)
)
)

Figure 2.2: Example of a simple PDDL problem where we have to fill a teacup.



2.2 Macro-Actions

In this section we give a brief introduction to macro-actions. They are formally defined
in Chapter[4 Macro-actions are sequences of actions that are modelled as one. Take,
for example, the following sequence of actions from a baking problenﬂ

putflourinpan(flour®, pan0)
mix(egg0, flour0, pano)
putpaninoven(pan0,oveno)

If we deem this a useful, or ‘smart’ sequence of actions, we can decide to store it as
knowledge for our solver as a macro-action, so it is easier to find. Our resulting action
would be:

combined(flour0,egg0, pand,oven0)

Note that the name of our macro-action does not matter, as long as it models the
correct logic. That is, a macro-action m : ay, ..., a, is valid if and only if it can only
be used if the sequence of actions would be allowed to be used, and the effects of the
macro-actions are the same as if the actions were performed one-by-one.

Furthermore, note that we did not simply concatenate the parameters. We collapsed
them based on how they were called (in our combined actions, we do not have the
parameter fLour0 twice). Our method for doing so, and combining macro-actions
in general, can be found in Chapter[5} Notably, PDDL does not offer native support for
macro-actions, so the merging of actions must be deduced based on their parameters,
preconditions and effects.

'"https://github.com/tomsilver/pddlgym/blob/master/pddlgym/pddl/
baking.pddLl
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Chapter 3

Related work

There exists a considerable amount of research surrounding macro-actions. Most of
the research on macro-actions are for basic PDDL, where the logic of combining ac-
tions is quite simple. This changed in 2023, when a paper [Bortoli et al.,[2023] is pub-
lished that expands macro-actions to also support temporal PDDL problems, paving
the way for being able to apply macro-actions to more complex, real-world problems.

The main shortcomings of the related works is that they are either static, use an
online approach, or both. In this work we give a dynamic approach which is offline,
and can thus be plugged into any solver.

3.1 Static Macro-Actions

We start with macro-actions. They are a very widely discussed topic in the literature,
with not only papers showing their effectiveness, but also exploring different ways
of finding them and filtering through them. Many papers find that the addition of
macro-actions improves performance, but also find that having too many has a coun-
terproductive effect [Hernadvolgyi, 2001} Botea et al.,|2004, [2005].

In the paper Macro-FF: Improving Al Planning with Automatically Learned Macro Op-
erators, the authors build two systems. CA-ED, which interacts with a planner that
does not require support for macro-actions, and SOL-EP, which interacts with a plan-
ner that does require support for macro-actions. They do not provide source code
for their solutions, nor an algorithm for merging macro-actions for solvers that do
not support them [Botea et al, [2005|. Importantly, they do collapse the parameters
of macro-actions. Another planner called Marvin (Macro Actions from Reduced Ver-
sions of the INstance) is described in a different paper [Coles and Coles| [2004]. This
is a forward-chaining domain-independent planner that uses a relaxed-plan heuristic
for its search. In this work they do not discuss the collapse of parameters for macro-
actions. Furthermore, as it is a stand-alone planner, their implementation cannot be
used with external planners. In this work we describe a method that can be used with
any solver, making the approach more versatile.

Other papers explore how to generate / find good macro-actions. One paper uses

11



automatically generated heuristics for a given problem to generate macro-actions [Hernad-
volgyi,[2001]. Another work finds a 44% improvement in solving time for the average
solution [Hernadvolgyil|2001]. However, their approach is about state-space search in
general and not about PDDL problems. They thus do not discuss how macro-actions
are combined in PDDL, nor do they discuss the collapsing of parameters in macro-
actions. Another paper measures the utility of plan fragments to find suitable macro-
actions. Though they do not address the problem that adding too many macro-actions
is counterproductive and do not explicate what they do to prevent that from happen-
ing|[Minton, |1985]. Their paper applies macro-actions to STRIPS, but also does not
discuss the collapsing of parameters. Another method of generating macro-actions,
which is also used by Macro-FF[Botea et al.|[2005] is by generating abstractions of the
problem. This method is explored in the paper Automatically Generating Abstractions
for Planning[Knoblockl1994]. They run experiments and give empirical results, as well
as formal proofs. Lastly, in the paper Applying Inductive Program Synthesis to Macro
Learning [Schmid and Wysotzki, 2000], the authors apply inductive program synthesis
to find macro operators. A problem in their paper is it lacks empirical results, mean-
ing that the effectiveness of their method can not properly be assessed. Furthermore,
they use a small problem and extrapolate, potentially leading to false conclusions.

A paper published in 2023[Bortoli et al., 2023|] applies macro-actions to temporal
PDDL problems. This is noteworthy because the difficulty of merging actions to form
a macro-action in PDDL-especially for temporal problems in PDDL~is non-trivial;
PDDL does not have built-in functionality for macro-actions.

All the aforementioned papers have a static approach to macro-actions. That is,
once they are learned, they are learned. After that we simply stop learning and never
reassess the utility of the macro-actions. In the literature there does exist an approach
where we do re-assess utility of learned knowledge called forgetting.

3.2 Forgetting

In the literature of macro-actions, most papers focus on filtering macro-actions, rather
than unlearning already learned macro-actions. One paper [Coles et al}[2007] does
discuss the ‘pruning’-or forgetting—of macro-actions. They do this on an online basis—it
is built into the solver.

They find that this leads to an improvement. They do not provide the code to their
solutions but do provide good research into how to identify the quality of macro-
actions. A limit of their approach is that because they focus on the solving of one
problem, it cannot reason about knowledge gathered by different problems about the
usefulness of macro-actions. An advantage of this approach is that it does not require
a big set of problems to learn from. In this work we focus on finding macro-actions
that are good for a range of problems.

In the domain of Inductive Logic Programming (ILP) there exists a paper which
explores the concept of forgetting background knowledge|Cropper)2019] and finds that
it is promising for ILP.

12



Chapter 4

Problem Statement

In this chapter we describe and formally define the problem we are trying to solve—the
macro-action extension problem. We first provide all necessary definitions required
for understanding the problem and then give a formal definition of it.

4.1 Preliminaries

We give the necessary definitions for describing the domain extension problem. Go-
ing forward, PDDL domain’ (see Definition|[l) is shortened to ‘domain’ and similarly
‘PDDL problem instance’ (see Definition[4) is shortened to ‘problem instance'

4.1.1 Solving a Problem Instance

We first want to define the problem of solving problem instances modelled in PDDL.
A solution to such a problem instance is a plan, or a path through the state space from
our starting state Sy to our goal state S;. Each edge on this path is an action call, which
we define as follows.

Definition 5 (Action call). For any problem instance P : (O, Sy, Sg), domain D :
(T, %, A), an action call A is a pair (a,0), where a € A and o is an ordered list
of object literals in O. An action call can be applied to a certain state .S, resulting in

S = A(S). Ny

We furthermore define a path as follows:

Definition 6 (Path). Forany probleminstance P : (O, Sy, Sy),domain D : (T, @, A),
a path p is an ordered list of action applications A1, . .., A, starting from some state
S, and ending in some state Sy, where Sy, = A, (- -+ (A1(Sa))). |

The task of a PDDL solver is then to, given a domain D and a problem instance P,
to find the shortest path p from our starting state Sp to our goal state .

Definition 7 (Shortest-plan problem). Given a problem instance P and a domain D,
find the shortest path p from Sy to S,. _l

13



4.1.2 Macro-actions

Macro-actions are actions which are logically equivalent to particular action-paths,
or, parametrised sequences of actions.

Definition 8. (Action path) An action pathp(x,...,2) :aj0---oap(x,---,z)isa
parametrised ordered list of actions where each action uses a specified tuple from the
parameters z, ..., 2. -
Definition 9 (Equivalence of action paths). Any two action paths py(z, . .., 2),

py(z, . .., z) arelogically equivalent po(z, . . ., 2) =~ py(x, . .., 2) iff for any state S,
taking po(, . . ., z) takes us to the same state S, as taking py(z, . . ., 2). 4

Definition 10 (Macro-action). For any domain D, a macro-action m is an action
which is equivalent to some action path p in D, [m] ~ p. 4

4.1.3 The Macro-Action Extension Problem

With these definitions for the Shortest-plan problem and macro-actions, we can define
the domain extension problem (see Problem|[11).

Definition 11 (Macro-Action Extension Problem). Given a domain D : (T, ?, A),
we want to find some domain D’ : (T, P, A’) such that A’ D A to minimise the av-
erage amount of visited nodes in the search tree when solving the shortest-plan prob-
lem for problem instances of D, where every a € A’ \ A is a macro-action.

J
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Chapter 5

Methods

The following chapter will detail the main contribution of this work: dynamic macro-
actions (how they are constructed, kept track of and used). First we contrast dynamic
macro-actions with static macro-actions and compare compare our approach to for-
getting. We follow by explaining what dynamic actions are. We motivate our choice
for the overall structure and flow of our method and give some notes on how it can
be used and adjusted. This is followed by an overview of the whole system, including
description of each step. Lastly, we give details of our implementation.

Our main contribution is the concept of dynamic macro-actions. Rather than train-
ing and returning a new domain as with static macro-actions, we want to improve
over time as we solve more problems; with each problem we solve, we want to gain
more information about the domain and update our knowledge base accordingly. This
method is similar to forgetting—where we learn some set of macro-actions and forget
them if they are not useful. We differ in that we store information on all found poten-
tial macro-actions and pick the best ones with each problem instance we solve.

When solving a new problem, we look at our knowledge base and select the best 2 (a
given parameter) macro-actions that we know of according to some estimated utility
value. An overview of the whole system can be found in Figure

5.1 Static macro-actions and forgetting

In previous work (see chapter|3) on macro-actions, a set of problems of a particular
domain and their solutions are analysed to get some set of macro-actions, which are
either used by some solver or are appended to a domain.

The main motivation of this work is to further investigate macro-actions by trying
to apply a crucial insight from forgetting to their use to see its effectiveness; the insight
that when encountering new problem instances, we might learn that certain macro-
actions are not (as) useful any more. To be able to use this insight we need to have some
kind of knowledge database that we can update whilst solving new problem instances.

Importantly forgetting been implemented in an online manner-that is, embedded
into some solver. In this work we will approach implementing a dynamic approach

15



similar to forgetting.

5.2 Dynamic Macro-actions

We take the main insight of forgetting—namely that we might change our assessment
of the usefulness of certain macro-actions over time-but use it in a different manner.
Instead of having one core of macro-actions we remember and forget in favour of new
ones, we choose to store information of all macro-actions the system ever encounters
in an external knowledge base K. We update this external knowledge base K with
each problem instance that is solved. For each next problem we solve, we choose the
best macro-actions to add to our domain D given the knowledge in K we have ac-
cumulated. This ensures we do not lose earlier found knowledge, while still keeping
our ‘real’ knowledge-base (the macro-actions that are actually added to the domain
D) small. In short, our knowledge stored in K is ever-growing, while our knowledge
we store in D is continually reset and recreated based on our continually updated
knowledge-base K.

The first main benefit of our method are that it is extremely versatile; we can use
it with any solver, because it is offline. The second main benefit is that it is easily
adjustable, especially in the way that we estimate the utility of macro-actions. In this
work we use basic metrics such as the number of times a macro-actions has historically
been used in solutions, the size of the macro-action and the number of unique actions
init-but an extension of this work could easily swap this out for more complex metrics
or use

5.3 Method overview

An overview of our method can be found in Figure We see that we can use our
method with any generic PDDL solver. Each problem we solve goes through the
pipeline. First we retrieve the top (according to some estimated utility function) n
(which is a given parameter) macro-actions (encoded as sequences of actions with ar-
guments)-if they exist-from our macro-action database (see Section[5.3.2). We then
merge those sequences of actions into singular actions (see Section[5.3.3) and add them
to a copy of our original domain. We solve our problem using any PDDL solver and
use the solution to continue. We extract macro-actions from the solution we found
and update our macro-action database for the next problem(s) we want to solve (see
Section[5.3.1). We continue this cycle with every problem we solve, so we continually
improve our knowledge of our domain. This means there is no training required; we
improve as we go.

To maintain our knowledge database K, we must have some way of extracting
macro-actions from solutions and storing them to K or updating K.
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5.3.1 Extracting and Storing Macro-Actions

Given a solution & which is an ordered list of actions and corresponding arguments,
we extract all sublists |§| > 2 of §. It is noteworthy that this component of the
system will differ per solver that is used, as different solvers will output the solution
differently; we call this component the macro-action extractor.

We then add these to K if they do not yet exist, or update them if they do with
usage data. We store the number of times this sequence of actions (or a macro thereof)
has been used, the size of the macro-action, the number of unique actions within the
macro-action and the number of cycles it has been since it was last picked.

Each macro-action gets a row in this database with the following attributes:
sub_actions-whichis a plain-text encoding of the macro-action, S1ze-which is
the length of the sequence of actions in the macro-action, num_unique_actions
—which is the unique number of actions in the sequence, NUM_USeS—which is the
total number of times that sequence of actions has been used throughout the different
solutions the system has encountered (as macro or otherwise), and
cycles_last_included, which keeps track of how many problems the system
has solved since this sequence was last included as a macro-action. These were chosen
for simplicity’s sake. Other considerations which were not included are discussed in

chapter

Encoding Macro-Actions

As stated earlier, we use a plain-text encoding to store the sequences of the macro-
actions. We want to store information of both the names of the actions and with what
variables they were used, as this information is crucial to understanding sequences of
actions found in solutions. We illustrate this using the following example:

actioni--vari-var2 action2--var2-var3

We then need some way to pick the ‘best’ macro-actions from K —that is—the macro-
actions that will lead to the largest decrease in the visited nodes in our search tree.

5.3.2 Picking the Best Macro-Actions

When we want to solve a new problem, we choose the macro-actions we want to add
as follows. Given that we want to use n macro-actions, we first sort them by their es-
timated utility. Then we simply pick the top n macro-actions according to this sorting.
For the next iteration of our system, we will only use these n macro-actions.

Estimating the Utility of a Macro-Action

To be able to implement our method, we need some kind of measure of the usefulness,
or utility, of a macro-action m. We denote this as U (m). In this work we want to
investigate what a good estimation of utility is, so we experiment on the following.
For any macro-action m with an associated action path p, we have:
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+ The number of uses n—that is, how many times p has occurred in previous iter-
ations.

« The size of the macro-action |m/|-that is, how many sub-actions does m con-
tain, or |p|.

« The number of unique actions «(m)-that is, how many unique (by name) ac-
tions are in p.

« The number of uses 1 weighted by the size of the macro-action, n - |m).

+ The number of uses n weighted by the number of unique actions in the macro-
action, 1 - u(m).

+ As a control we also want to see how randomly assigning

Overlapping macro-actions

It is possible that the macro-actions we pick when simply sorting are subsequences of
one another; we call these overlapping macro-actions. We hypothesise adding several
overlapping macro-actions is not optimal, and therefore we want some way to pick
which macro-actions to include, and which to includes. We discuss three methods to
do so.

The first method is a control; we simply allow overlapping macro-actions to be
added to our domain simultaneously. We can use this control method to test our hy-
pothesis.

For the other two methods we introduce some notation. We have a set of macro-
actions we want to add 771 and we are given a sorted sequence M of macro-actions
we add, sorted by their estimated utility. Furthermore, let m|n denote that m is a
subsequence of n.

Our second method called LARGEST goes as follows. We iterate through M. If the
next m € M, is a subsequence for any p € 171-that is, m|p-then we discard it.
Otherwise, we take the largest subset » C 171, such that Vp € P, p|m we update
M := (M \ #)U {m}. We continue until |171| = n.

The benefit of this method is that we add larger macro-actions which could bring
us closer to the solutions. The drawback is that these larger macro-actions could be
of lower quality, as they can be lower in our ranking than the smaller macro-actions
we discard.

Our third method called BesT goes as follows. We iterate through M. If for the next
m € M, there exists any p € 111 such that m|p , we discard it. Otherwise, we update
1M := 1M U {m}. We continue until [171| = n.

The benefit of this method is that we always use the best macro-actions according
to their estimated utility. A drawback is that we are potentially missing out on macro-
actions which could bring us closer to the solution. It is a priori unclear which method
is optimal.

Once we have our macro-actions we cannot just add them to the domain, as PDDL
does not natively support macro-actions. We need to model a new action in such a
way that it is equivalent to its corresponding sequence.
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5.3.3 Macro-Actions in PDDL

PDDL does not have native support for macro-actions. That is, we cannot tell PDDL
we want a macro-actions by referring to existing actions. Instead, we need to create
new actions which model a sequence of actions. We do this in the component called
the macro-action merger.

When given an action path p as found in some solution, we want to to create a new
macro-action m = p (see Definition[9). We broadly do this in two steps (also see

Algorithm][T).

Firstly we have to rename all the parameter references in the clauses of our precon-
ditions and effects, such that we have one parameter for each of the unique arguments
found in the solution where this sequence was found. We illustrate this in Example

Example 3. Take the sequence of actions:

putegginpan(egg_0,pan_1)
putpaninoven(pan_1,oven_1)
bakesouffle(oven_1,egg _0,pan_1,new_0)

where the action signature of putegginpanisputegginpan(?egg—egg ?pan—
pan), the action signature of putpaninovenisputpaninoven(?pan—pan Toven—
oven) and the action signature of bakesouffleisbakesouffle(?oven—oven ?egg—
ingredient Tpan — pan Tnew — ingredient).

We collapse the parameters found in our sequence and get the following list:

. egg_0:1ngredient
« pan_1: pan

. oven_0:oven

- new_0:ingredient

We replace all references of egg and pan in putegginpan with egg_0 and pan_0, all
references of pan and oven in putpaninoven with pan_0 and oven_0, etc. M|

Secondly, we need to merge the preconditions and effects of all the actions into one
set of preconditions and one set of effects. The preconditions pre and effects e f f of
two subsequent actions a1, as can be merged as follows. Concerning the precondi-
tions, we want the preconditions of a1, plus the preconditions of as which are not
satisfied by the effects of a1, so pre; U (pre, \ eff; ). For the effects we want the effects
of ag, plus the effects of a; that are not negated or repeated in the effects of as, so
effy U (eff; \ {—c | ¢ € effa}). The preconditions and effects of a sequence of actions
can be merged using the aforementioned property by using a fold operation.
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Algorithm 1: Merging a sequence of actions

Input: A sequence s of n actions actions [a; : ((P;,T;), pre;, eff;)]?, an
ordered list L of tuples [l1, . . ., l,,] of the arguments (objects) they
were called with, and a mapping ¢t : O — T mapping objects to their
corresponding types.

Output: A new macro-action m =~ s (see Definition ??).

P« {{o,t(0)) o€ l,l € L};

Replace all parameters and parameter calls in actions ay, . . . , a, with the
corresponding argument names inly, . .., [,

Merge all the preconditions and effects in order, where those of two actions
(in order) (ag, a,) are merged as follows:

pre < pre, U (pre, \ eff;);

eff < eff, U (effy \ {—c | c € effy});

return m : (P, pre, eff);
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5.4 Implementation

We implement the system in]uliﬂ using the PDDL.j1 libraryﬂ The macro-actions are
stored in an SQLite database, which we use for its simplicity and speed. It is import-
ant that the database is fast because the amount of macro-actions stored can become
massive if solutions are large and/or the solutions differ a lot.

'https://julialang.org/
*https://github.com/JuliaPlanners/PDDL.jl
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Chapter 6

Results

To evaluate our method, we want to answer three main questions:

1. How does the performance of dynamic macro-actions change as we train on
more problems?

2. At what point do we observe diminishing returns as we train on more problems
for dynamic macro-actions?

3. How can we best estimate the utility of macro-actions?

We run our experiments on five domains. Two are from the PDDL gym prob-
lem set: the BAKING domain and the LoGisTics domain. Furthermore, we take three
domains from the IPC-4 benchmarksﬂ Satellite Non-temporal STRIPS, Pipesworld
Non-temporal STRIPS No-tankage and Pipesworld Non-temporal STRIPS tankage,
hereafter referred to as SATELLITE, PIPESWORLD-NO-TANKAGE and PIPESWORLD-TANKAGE.
We will answer the questions for both of these domains separately.

We chose these domains because our implementation requires a model that has at
most the requirements STRIPS and TYPING, and requires there to be one domain for
many different problem-instances.

6.1 Experimental Setup

To run our experiments we use the A* planner from the Symbolic Planners.jﬂlibrary
using the HAdd heuristic. We generated the problem instances for BAKING and Lo-
GISTICS using the parameters shown in Tables[A.2]and[A.] The scripts that we used to
run our experiments can be found on the Github repositor

For the IPC-4 problem sets, we took the first 20 problems because of time-constraints.

'"https://ipcO4.icaps-conference.org/deterministic/
*https://github.com/JuliaPlanners/SymbolicPlanners.jl
*https://github.com/pujiii/thesis_implementation
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6.1.1 Machines

Due to time constraints, each experiment was run on one of three machines, hereafter
referred to as MACHINE-1, MacHINE-2, and MACHINE-3. MACHINE-2 uses a AMD
Ryzen 7 5800X 8-Core Processor 3.80 GHz processor, and MACHINE-3 uses a Intel(R)
Xeon(R) Platinum 8168 CPU @ 2.70GHz processor.

6.1.2 Performance metric

Across all our experiments we use the same performance metric, from here on called
#expanded nodes using macro-actions
#expanded nodes without using macro-actions
a certain configuration), where ‘expanded nodes’ refers to nodes in our search tree that

“the performance metric”, which is the ratio (using
have been expanded upon by our solver, as provided by the solver. We use this metric
to prevent hardware from having an effect on how we evaluate the performance of our
method.

Importantly, a value of 1 for this method means that there is no difference in per-
formance, a value < 1 means that we perform better using macro-actions, and a value
> 1 means that we are performing worse using macro-actions.

6.2 Configuration experiments

The design of our system is flexible and allows us to run it using different configura-
tions. To answer our questions we would want to use the best configuration to do so,
so we can accurately assess the performance of our method.

To do so, we first run some experiments to determine what configuration to use.
Namely, we will do this to determine the mode by which we deal with overlap, and the
ideal number of macros to use.

6.2.1 The Ideal Overlap mode

To determine what overlap mode we should use for our main experiment, we split up
our problem set into two parts: a training set and a test set. We train our system on the
training set and then evaluate the performance of macro-actions using each overlap
mode. We use problems 1-16 as our training set and 17-20 as our test set (see Table
A.2)

The results can be found in Figure We find that BEsT vastly outperforms the
other two overlap modes. Therefore we will use this for our future experiments. We
also observe that allowing overlap performs worse than not using macro-actions at all
and that choosing the largest macro-action in case of overlap also performs better, but
not as well as BEsT.

6.2.2 The Ideal Number of Macro-Actions to Choose

To determine the best number of macro-actions to pick, we perform a similar test, but
only on the large problems. We split our training and test set such that our test set are
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Figure 6.1: Barchart showing how different overlap modes perform for large problems
(17-20) in the BaAkiNG domain (see Table. The green line shows the baseline of not

using macro-actions. This experiment was run on|MACHINE- |

problems 17-20 for the BAKING domain.

The results can be found in Figure [6.2] We see that our system performs the best
with > 4 macro-actions. We pick 4 to run the rest of our experiments with because it
has the best improvement.

6.3 Final Experiment

Now we can set up our main experiment to answer our earlier posed questions. We
run this experiment with num_macros = 5 by picking the ‘best’ macro in case of
overlap. For this we do the following:

1. We take our test set and measure the performance without using our system at
all. That is, we do not pick macro-actions and we also do not add any knowledge
to our database.

2. We iteratively run all of our problems using our system, learning as we go.

3. We do this for every method of estimating utility (see Section[5.3.2) to pick our
macro-actions.

We can see the graphs showing the results of this experiment in Figure[6.3]and Fig-
ure ??. Tables|6.1}[6.2]and[6.3|show the detailed results for the best-performing sorting
criteria per domain.

Baking For the baking domain, we observe that selecting on the number of uses
works the best by far. This is followed by the number of uses weighted by the number
of unique actions.

We observe a significant increase in performance after 5 problems. The trend does
not seem to converge in this experiment, so we cannot speak of diminishing returns.

Our best performing sorting criterium-the number of uses—has an average decrease
in the number of explored nodes of 84% after solving 5 problems (see Table|6.1).
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problem no. #expanded nodes percent-wise
without macro-actions | with macro-actions | performance increase
1 5 5 0.0%
2 6 5 17.0%
3 5 4 20.0%
4 6 5 17.0%
5 11 11 0.0%
6 15 4 73.0%
7 11 4 64.0%
8 15 4 73.0%
9 234 10 96.0%
10 723 12 98.0%
11 300 10 97.0%
12 897 12 99.0%
13 132 62 53.0%
14 372 134 64.0%
15 192 78 59.0%
16 552 29 95.0%
17 1466 54 96.0%
18 11726 107 99.0%
19 2346 86 96.0%
20 19250 204 99.0%

Table 6.1: Table showing the detailed results for the sorting criterium num_uses of
the experiment shown in Figure in the BAKING domain. The percent-wise per-

#expanded nodes with macro-actions ) . 100%
#expanded nodes without macro-actions o

formance increase is (1 —
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problem no. #expanded nodes percent-wise
without macro-actions | with macro-actions | performance increase

1 16 16 0.0%

2 17 12 29.4%
3 21 14 33.3%
4 80 138 -72.5%
5 22 35 -59.1%
6 84 29 65.5%
7 264 33 87.5%
8 100 17 83.0%
9 410 33 92.0%
10 7205 3725 48.3%

Table 6.2: Table showing the detailed results for the sorting criterium
num_uses - num_unique_actions of the experiment shown in Fig-

ure in the Locistics domain. The percent-wise performance increase is
(1 __#expanded nodes with macro-actions ) .100%
#expanded nodes without macro-actions o

Logistics For the LogisTics domain we observe that the criterium of the number
of uses weighted by the number of unique actions works the best by far.

We observe a decently steady performance increase boost from problem 6. How-
ever, the trend does not seem to converge yet by problem 10. Therefore, we cannot
speak of diminishing returns in this experiment yet.

For our best performing sorting criterium-the number of uses weighted by the
number of unique actions—we observe a 75% decrease in the number of nodes ex-
panded in the search tree after solving 5 problems (see Table[6.2).

Satellite Forthe LocgisTics domain we observe that the the number of uses weighted
by the size performs the best, solving all problems (25% more problems than without
using macro-actions). This is quickly followed by the unweighted number of uses,
which can solve 15% more problems.

We observe that the improvement in performance occurs rapidly for this domain,
starting at the first problem where we add macro-actions (problem 2). We cannot
judge any diminishing returns, as because of the timeout we do not know the exact
performance boost for many of the problems.

For our best performing sorting criterium-the number of uses weighted by the
size— we observe a 33% decrease in the number of nodes expanded in the search tree
after solving 5 problems.

Pipesworld Forboth the PIPESWORLD-NO-TANKAGE and the PIPESWORLD-TANKAGE
domain we see that the macro-actions do not improve our performance. Rather, it de-
creases our performance. We do see that the number of unique actions works as well
as not using macro-actions for the most problems for both domains.
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problem no. #expanded nodes percent-wise
without macro-actions | with macro-actions | performance increase

1 9 9 0%

2 13 9 31%
3 11 8 27%
4 25 17 32%
5 31 15 52%
6 20 15 25%
7 751 35 95%
8 26 18 31%
9 3558 33 99%
10 29 20 31%
11 34 87 -156%
12 43 26 40%
13 Timed Out 82 X
14 1367 83 94%
15 Timed Out 48 X
16 Timed Out 109 X
17 Timed Out 116 X
18 32 21 34%
19 62 43 31%
20 Timed Out 166 X

Table 6.3: Table showing the detailed results for the sorting criterium num_uses -
size of the experiment shown in Figurein the SATELLITE. The percent-wise per-

#expanded nodes with macro-actions ) 100%
#expanded nodes without macro-actions 0

formance increase is (1 —

28



n
g - i
® 3 X
£ 8
=
3 £ 1004
s 5
£ o
2 < [
~9 ‘é
e Zg
5o ws
(o=l ou
=) 5o
— o
£ £8 101
B <=
= s
E 2
< 3
o k=)
x c
b 3
2t X 1021 ; H ; H H ; H H H
12345678 91011121314151617181920 w 1 2 3 a4 5 & 7 8 9 10

Problem index Problem index

—e— num_uses
size
num_uses * size

—.-
—-

Estimated Utility

--@- num_uses * num_unique_actions
—e— num_unique_actions
-e- random()

(a) BAKING domain

—e— num_uses
size
num_uses * size

—-
—-

Estimated Utility

. num_uses * num_unique_actions
—e— num_unique_actions
-e- random()

(b) LocisTics domain

= i i3 $1 §
§ n X3 % x ¥
S <] XX X XX XXX
©
£ 3
= £ . o o
o =
E=1 o
= £
3 i 3 E=
<) £
VT )
9 2
54 8%
ES 8o
L -1
<= ES 10
=}
= =
b ¥ =y
e
-g v v v g
© v v /7 c
[=3 ©
& -2 <3 ,
10 x w0l
12345678 91011121314151617181920 1234567 8 91011121314151617181920
Problem index Problem index
Estimated Utility Estimated Utility
—e— num_uses -+@+ numM_uses * num_unique_actions —e— num_uses -+@- nuUM_uses * num_unique_actions
—o - size —e— num_unique_actions —o - size —e— num_unique_actions
—e:- num_uses *size - random() —e:- num_uses *size  -e random()

(c) SATELLITE domain

(d) PIPESWORLD-NO-TANKAGE domain

-
o
>

-
o
D

o

[log scale]

Expanded (with macros / without macros)

1072

e e e e e e S s
123456 7 8 91011121314151617181920
Problem index

Estimated Utility
—e— num_uses -+ nuUM_uses * num_unique_actions
—e - size —e— num_unique_actions

—e-- num_uses * size  -e-  random()

(e) PIPESWORLD-TANKAGE domain

Figure 6.3: Graphs showing the effect on the performance of our solver of our method
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*Each line represents a different sorting criterium that is used. A cross at the top means that the
problem can be solved within a timeout of 10 minutes without using macro-actions but not with macro-
actions, and a check-mark at the bottom means that we could not solve it without macro-actions but we
could solve it with. Each experiment uses 4 macro-actions and picks the macro-action with the highest
estimated utility in the case of overlapping macro-actions. The the experiments for the BakiNG, LoGI1sT-
1cs, and SATELLITE domains were run on[MACHINE-3|and the experiments for the PIPESwWORLD domains

were run on Each problem has a time-out of 10 minutes.
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Chapter 7

Discussion

In the following chapter we discuss the results we have found in chapter[6] Firstly,
we discuss the results of the configuration experiments and secondly we discuss the
results of our final experiment.

7.1 Overlap Mode

We observed in Section|[6.2.1|that the overlap mode BesT outperformed the other two
overlap modes by far. This is expected, as our estimated utility of the macro-actions
we add is the highest in this mode.

We also observe that LARGEST performs better than not using macro-actions, but
performs considerably worse than BEsT. This could be explained by the fact that we are
eliminating overlapping macro-actions, but we do not pick the ones with the highest
estimated utility.

Lastly, we observe that allowing overlaps performs worse than not using macro-
actions. This could be because we are adding several macro-actions which essentially
do the same so do not bring us closer to the solution necessarily, but do increase the
branching factor.

7.2 Number of Macros

We observed in Section that picking > 4 macro-actions gives us a stark per-
formance increase. We hypothesise that this is because it is a good balance between
having picked enough macro-actions to have one that is useful for our problem, while
not increasing the branching factor by too much, which increases the search-space
exponentially as we add more macro-actions.

In Macro-FF[Botea et al., 2005] they use two macro-actions instead of four for
PipESwORLD. As the PiPEswoRLD domains do not perform well on our domain with
four macro-actions, we run a second experiment where we select only two macro-

actions (see Figure[7.1).
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Figure 7.1: Graphs showing the effect on the performance of our solver of our method
over the course of training many instances. Each line represents a different sorting cri-
terium that is used. A cross at the top means that the problem can be solved within a
timeout of 10 minutes without using macro-actions but not with macro-actions, and
a check-mark at the bottom means that we could not solve it without macro-actions
but we could solve it with. Each experiment uses 2 macro-actions and picks the ‘best’
macro-action when given the choice of two overlapping macro-actions. All the exper-

iments were run on[MacHINE-2|and each problem has a time-out of 10 minutes.

We observe that for regular PIPESWORLD, we perform slightly better than with 4
macro-actions, but we still never have a perform increase w.r.t. not using macro-
actions. For PIPESWORLD-NO-TANKAGE, we observe that it performs slightly worse
compared to using 4 macro-actions. We can therefore not conclude that the reason
that the P1PEswoRrLD domains do not work well on our domain is because we add too
many macro-actions. Macro-FF did find that their method of using macro-actions
and the macro-actions they did add improved performance with two macro-actions.

7.3 'What Macro-actions are we using?

We analyse the macro-actions that we pick to solve problem 20 in the SATELLITE do-
main, so we can compare it to the macro-actions that were picked in Macro-FF|Botea
et all,12005] for said domain.

We will carefully observe what macro-actions our system gives for the sorting cri-
terium S1ze - NUM_uses in the Satellite domain. We do this because it is able to
solve the largest problems out of all the sorting criteria. Here, we pick the following
macro-actions:

« TURN-TO(4, B, ) + CALIBRATE(4, E, B)
« TURN-TOqa, B, ¢) + TAKE-IMAGE(D, E, B, A) + TURN-TO(D, F, E)
o« TURN-TO(4, B, ¢) + TAKE-IMAGE(D, ¢, 4, E)
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o TURN-TO(4, B, c) + TAKE-IMAGE(D, E, B, A)

We observe that we have macro-actions that comprise of the same actions—in the
same order—but that they have different parameter structures. Future work should
investigate whether this is useful, or whether we need to be more strict in the filtering
out of overlapping macro-actions.

7.4 Macro Sorting Criteria

In Section[6.3| we evaluated different utility estimations for macro-actions. We saw
that for each domain, a different utility estimation worked best: for BAKING—the un-
weighted number of uses, for LocisTics—the number of uses weighted by the number
of unique actions, for SATELLITE-the number of uses weighted by the size.

For the PipEsworLD domains they all perform worse or as well as not using macro-
actions. The reason why the number of unique actions solves the most problems in
PIPESWORLD-NO-TANKAGE is unclear.

7.5 Diminishing Returns

We find that the rate of improvement varies vastly from the domain to domain. It
is thus difficult to make a general statement that encompasses our results for all our
domains—other than that the rate of improvement depends on the domain. Further-
more, we did not observe a convergence of the performance for any of the domains,
which means we cannot determine a point of diminishing returns.

7.6 'What Domains Work the Best?

We observe that our system works the best on the Baking, LogisTics and SATELLITE
domains. We hypothesise that this is because their actions have few parameters com-
pared to the PrPEsworLD domains, which means that the branching factor does not
increase as rapidly when constructing macro-actions.

7.7 Limits of Experiments

The system has an infinite amount of configurations. Because of this, we have chosen
a small subset of configurations to test, but this means that a large amount of config-
urations are not tested. Most notably we did not run our configuration experiments
(see Section on all macro-sorting criteria, while that could have an effect. Fur-
thermore, we ran them on only one domain. This makes us blind to configurations
that may perform better than the ones tested, or ones that are perform better on more
domains.

Another limit of our experiment is that we did not inform the solver to treat the
cost of macro-actions as the sum of the number of actions, and instead we left it
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unweighted. This means that the solver is potentially biased towards using certain
macro-actions (see Example[4), and this effect can snowball (particularly in the num-
ber of uses logged by our method) as we solve more problems, which can affect our
results.

Example 4. Take an optimal solution s* : aj,as to some problem instance P in
domain D : (T, P, A ) where there are three actions a1, a2,a3 € A. We add the
macro-action a1 (z,y) o as(y, z) o az(y, z) to our domain, such that D’ = D U
{ai(z,y) o az(y, z) o as(y, z) }.

If we do not inform the solver that our macro-action is actually of length 2, it might
find that the optimal solution is, for example, a1(x,y) o as(y, z) o ag(z, z), rather
than aq(x,y), az(x, y, z), whose true length is shorter, but seen as the same length as
a1 (z,y) o as(y, z) o as(y, z) to our solver. 4
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Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this work we explored the concept of dynamic macro-actions, which does not re-
quire prior training as it learns on-the-go and constantly re-evaluates the utility of
macro-actions as it encounters more problems. This is contrasted with static macro-
actions (which are up until now the most widely used form of macro-actions), where
the estimated utility of macro-actions is never re-evaluated. The method is versatile
as it can be used with any solver and for any domain. Lastly, the method is by its nature
easy to tweak (primarily in the way we evaluate the utility of macro-actions). This not
only paves the way for further research to improve the system, but also makes it very
domain specialise-able.

To evaluate our method, we wanted to (a) see how our performance changes as we
solve more problems, (b) investigate whether we find a point of dimishing returns-
where solving more problems does not significantly improve our performance, (c) in-
vestigate what criteria we should use to find promising macro-actions.

We have seen that dynamic macro-actions show promising results for the BAKING
domain (with an 84% avg. improvement in performance after solving our fifth prob-
lem), LocisTics (with a 75% avg. improvement) and SATELLITE (with a 33% avg. im-
provement) domains, but not for the PipEsworLD domains (where we saw a decrease
in performance). We have not been able to see a point of diminishing returns in our
experiments, as the performance did not converge in our experiments. Lastly, we have
not been able to pin-point one sorting criterium that works the best across domains;
we find different sorting criteria perform well on different domains. Specifically, we
saw that the number of uses works the best for the BAKING domain, the number of uses
weighted by the number of unique actions works the best for the Locistics domain,
and the number of uses weighted by the size works the best for the SATELLITE domain.

We can conclude that the method of using dynamic macro-actions is a promising
method, but requires more research to be reliably used for a vast range of domains.
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8.2 Future Work

To improve the current method and more thoroughly investigate its strengths and
weaknesses, more research is needed. Particularly, research can be done on more do-
mains and with larger time-outs. Furthermore, research can be done to improve the
estimated utility of macro-actions. A possible path to set forth for this question is
to explore a more complex utility function, such as a weighted sum of the different
attributes (such as size, number of uses, and number of unique actions).

Moreover, as we have noted in Section our experiments have a bias towards
already used macro-actions, ending in a potential snowball effect biasing our results.
This can be combatted in two ways: by changing the cost of the actions according to
their true size, or by adding exploration to our system in general. By adding explora-
tion, we give lesser-used macro-actions a ‘fair chance’ to be explored. It must be noted
that the results of exploration would only be visible after solving many problems, as
our macro-action knowledge base K contains a substantial amount of macro-actions
to explore. Unless, of course, the method is altered to limit how many macro-actions
we store in our knowledge base K.

Another extension to our experiments could include testing more configurations
for our method, such as running our main experiment for the ‘larger’ overlap mode
and testing our system for more domains on various numbers of macro-actions used.
Different overlap modes can also be developed.

Once the method is more polished and examined, future work should include ex-
panding the system to support more features of PDDL, such as durative actions, to be
able to use this technique for more complex, real-world problems.
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Appendix A

Problem Parameters Baking &
Logistics

problemno. | ny | N2 | m1 | ma | 0
1 2 1 1 2 |2
2 2 1 1 2 |3
3 2 1 2 2 | 4
4 3 1 2 3 |4
5 3 1 3 3 13
6 2 | 2 4 4 |5
7 5 1 2 515
8 5 1 4 5 1|5
9 5 1 5 5 5

10 51| 2 5 5 1|5

Table A.1: Table showing the parameters for all the problem numbers for the problem
set used for the experiments for the LocisTics domain. Here n; is the number of
cities, ng is the number of locations, m is the number of airplanes, ms is the number
of trucks and o is the number of objects.
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problemno. | ny | ng | m | o
1 1 022
2 1 0|3 ]|2
3 1 01213
4 1 03 ]3
5 0 1 2|2
6 0 1 312
7 0 1 213
8 0 1 313
9 1 1 2|2
10 1 1 312
11 1 1 213
12 1 1 313
13 2 10122
14 2 10132
15 2 101213
16 2 101313
17 0| 21|22
18 0 2 312
19 0| 21|23
20 0 2 313

Table A.2: Table showing the parameters for all the problem numbers for the problem
set used for the experiments for the BAkING domain. Here n; is the number of souffles,
ng is the number of cakes, m is the number of pans and o is the number of ovens.

40



	Introduction
	Background
	Automated Planning
	Domain-Independent Planning

	Macro-Actions

	Related work
	Static Macro-Actions
	Forgetting

	Problem Statement
	Preliminaries
	Solving a Problem Instance
	Macro-actions
	The Macro-Action Extension Problem


	Methods
	Static macro-actions and forgetting
	Dynamic Macro-actions
	Method overview
	Extracting and Storing Macro-Actions
	Picking the Best Macro-Actions
	Macro-Actions in PDDL

	Implementation

	Results
	Experimental Setup
	Machines
	Performance metric

	Configuration experiments
	The Ideal Overlap mode
	The Ideal Number of Macro-Actions to Choose

	Final Experiment

	Discussion
	Overlap Mode
	Number of Macros
	What Macro-actions are we using?
	Macro Sorting Criteria
	Diminishing Returns
	What Domains Work the Best?
	Limits of Experiments

	Conclusions and Future Work
	Conclusions
	Future Work

	Problem Parameters Baking & Logistics

