
Computer Engineering

Mekelweg 4,
2628 CD Delft

The Netherlands
http://ce.et.tudelft.nl/

2009

MSc THESIS

Scalability of Bioinformatics Applications for

Multicore Architectures

Ernst Joachim Houtgast

1056212

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2009-30

Exponential growth in biological sequence data combined with the
computationally intensive nature of bioinformatics applications re-
sults in a continuously rising demand for processing power. Micro-
processor complexity and, more importantly, computational capa-
bility increases as well, through transistor budgets that grow in line
with Moore’s law. However, limits in power consumption, frequency
scaling and memory technology cause single threaded performance
improvements to stagnate. The result is a paradigm shift to parallel
architectures, an example being the state-of-the-art Cell Broadband
Engine. In this thesis, suitability of this architecture is examined
for HMMER, a bioinformatics application that identifies similarities
between protein sequences and a protein family model. Qualitative
and quantitative analysis is performed to reveal its scaling behav-
ior and potential bottlenecks. Inspection of the program structure
shows that the parallelization strategy imposes limits on scaling abil-
ity. Based on function profiling, a model for application performance
is proposed that is accurate within 2%. From the model, the opti-
mal PPE/SPE ratio is derived for different workloads. For typical
workloads, the PPE can supply nine SPEs with jobs. The TaskSim
simulator, whose phase-based simulations are accurate within 2%,
is used to validate the model’s predictions and to demonstrate that
scaling behavior is mostly determined by the buffering of jobs.
Keywords: bioinformatics, Cell Broadband Engine, HMMER,
many-core scaling, performance modeling, performance simulation,
sequence analysis.

Scalability of Bioinformatics Applications for

Multicore Architectures

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Ernst Joachim Houtgast

born in The Hague, The Netherlands

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Scalability of Bioinformatics Applications for

Multicore Architectures

by Ernst Joachim Houtgast

Abstract

E
xponential growth in biological sequence data combined with the computationally
intensive nature of bioinformatics applications results in a continuously rising
demand for processing power. Microprocessor complexity and, more importantly,

computational capability increases as well, through transistor budgets that grow in line with
Moore’s law. However, limits in power consumption, frequency scaling and memory technology
cause single threaded performance improvements to stagnate. The result is a paradigm shift
to parallel architectures, an example being the state-of-the-art Cell Broadband Engine. In this
thesis, suitability of this architecture is examined for HMMER, a bioinformatics application
that identifies similarities between protein sequences and a protein family model. Qualitative
and quantitative analysis is performed to reveal its scaling behavior and potential bottlenecks.
Inspection of the program structure shows that the parallelization strategy imposes limits on
scaling ability. Based on function profiling, a model for application performance is proposed
that is accurate within 2%. From the model, the optimal PPE/SPE ratio is derived for different
workloads. For typical workloads, the PPE can supply nine SPEs with jobs. The TaskSim
simulator, whose phase-based simulations are accurate within 2%, is used to validate the model’s
predictions and to demonstrate that scaling behavior is mostly determined by the buffering of
jobs.

Keywords: bioinformatics, Cell Broadband Engine, HMMER, many-core scaling, perfor-
mance modeling, performance simulation, sequence analysis.

Laboratory : Computer Engineering
Codenumber : CE-MS-2009-30

Committee Members :

Advisor: G. N. Gaydadjiev, Assistant Prof, CE, TU Delft

Advisor: S. Isaza Ramirez, PhD Student, CE, TU Delft

Chairperson: K. L. M. Bertels, Associate Prof, CE, TU Delft

Member: M. J. T. Reinders, Full Prof, ICT, TU Delft

Member: B. H. H. Juurlink, Associate Prof, CE, TU Delft

i

ii

Contents

List of Figures vii

List of Tables ix

Acknowledgements xi

1 Introduction 1

1.1 Motivation . 2

1.2 Problem Statement . 3

1.3 Thesis Overview . 3

Part I: Background 5

2 Introduction to Bioinformatics 7

2.1 Molecular Biology . 8

2.2 Sequence Analysis . 11

2.2.1 Formal Definition . 11

2.2.2 Classification of Sequence Alignment 12

2.2.3 Sequence Alignment Techniques 13

2.3 Biosequence Analysis Software . 14

2.3.1 HMMER . 15

2.4 Biological Sequence Databases . 15

2.5 Summary . 16

3 Profile Hidden Markov Models 17

3.1 Markov Models . 17

3.2 Hidden Markov Models . 18

3.2.1 The Viterbi Algorithm . 20

3.3 Profile Hidden Markov Models . 21

3.3.1 The Plan7 Profile HMM Architecture 22

3.3.2 Bit Score and E-value . 23

3.4 Summary . 23

4 Computer Architecture Trends 25

4.1 Paradigm Shift to Parallel Architectures 25

4.1.1 The Frequency Wall . 26

4.1.2 The Power Wall . 27

4.1.3 The Memory Wall . 27

4.2 Types of Parallelism . 27

iii

4.3 Issues with Parallelism . 28
4.3.1 Limits on Performance Gains . 28
4.3.2 Parallel Software Engineering Difficulties 29

4.4 The Cell Broadband Engine . 30
4.4.1 Architecture Overview . 30
4.4.2 Addressing the Three Walls . 31
4.4.3 Cell Development Issues . 32
4.4.4 Cell Platform Roadmap . 32

4.5 Summary . 33

Part II: Implementation and Analysis 35

5 HMMER and HMMERCELL 37
5.1 HMMER . 37
5.2 HMMERCELL . 38

5.2.1 Parallelization Strategy . 39
5.2.2 Implementation Details . 40
5.2.3 Limitations . 41

5.3 Related Work . 43
5.4 Summary . 44

6 Performance Analysis 45
6.1 Inspecting HMMERCELL Behavior . 45

6.1.1 Test Sets . 47
6.1.2 Test Environment . 48

6.2 Profiling Results . 50
6.2.1 Scaling of PPE Buffering Function 50
6.2.2 Scaling of SPE Viterbi Function 51
6.2.3 Scaling of PPE Traceback Function 52

6.3 Analytical Model . 54
6.3.1 Parameter Estimation . 56
6.3.2 Model Validation . 57
6.3.3 Potential Bottlenecks . 58

6.4 Summary . 59

7 Simulation Results 61
7.1 Simulating the Cell Architecture . 61

7.1.1 The TaskSim Simulator . 62
7.1.2 TaskSim Validation . 63

7.2 Improvements to Scaling Behavior . 64
7.3 Limiting Behavior Analysis . 65

7.3.1 Fast PPE Buffering . 66
7.3.2 Fast PPE Traceback . 67
7.3.3 Fast PPE Buffering and Traceback 67
7.3.4 Fast SPE Viterbi Calculations . 68

iv

7.4 Discussion . 69
7.5 Summary . 71

Part III: Learnings 73

8 Conclusions and Recommendations 75
8.1 Conclusions . 75
8.2 Recommendations . 77

Bibliography 81

Part IV: Appendices 83

A List of Terms 85
A.1 List of Terms . 85

v

vi

List of Figures

2.1 The flow of information within a cell. 8
2.2 The organization of information inside DNA. 9
2.3 A phylogenetic tree. 10
2.4 An example biosequence analysis workflow. 14
2.5 EMBL database growth. 16

3.1 A simple Markov model of the weather. 18
3.2 A Hidden Markov Model of the weather. 19
3.3 The Plan7 Profile HMM Architecture. 22

4.1 Chip transistor count over time. 26
4.2 Cell Broadband Engine architecture. 31
4.3 Cell technology roadmap. 33

5.1 Functioning of hmmsearch. 38
5.2 HMMERCELL internal functioning. 41
5.3 Distribution of protein database element sizes. 42
5.4 HMMERCELL Performance Comparison. 43

6.1 Overhead resulting from trace instrumentation. 49
6.2 Paraver trace file visualization. 49
6.3 HMMERCELL execution time overview. 50
6.4 PPU buffering function behavior. 51
6.5 SPU Viterbi function behavior. 51
6.6 PPU Viterbi traceback function behavior. 52
6.7 Traceback in-depth analysis. 53
6.8 Schematic overview of dependencies between functions. 55

7.1 TaskSim validation results. 64
7.2 Standard simulation results. 65
7.3 Swift buffering simulation results. 66
7.4 Swift traceback simulation results. 67
7.5 Swift buffering and traceback simulation results. 68
7.6 Swift Viterbi simulation results. 68

vii

viii

List of Tables

2.1 A codon to amino acid translation table. 10

4.1 PPE and SPE comparison. 31

6.1 Relevant hmmsearch parameters. 46
6.2 Test set overview. 48
6.3 Traceback count vs HMM (row) and vs number of sequences (column). . . 53
6.4 Scaling behavior summary. 54
6.5 Model validation results (results in ms). 57
6.6 Maximum effectively usable SPEs. 59

7.1 Simulation trace overview. 63

ix

x

Acknowledgements

T
he thesis resting in front of you is the product of many months of work. It
forms the final element required for obtaining the Master of Science degree in
Computer Engineering from the Delft University of Technology. This thesis

would not exist if not for the support and guidance of many of my friends and family. To
each of them I would like to express my gratitude. Furthermore, I would like to explicitly
mention a select few, whose help has been invaluable to me:

• First of all, I would like to thank my parents and my family, for always having
faith in me, for supporting me in whatever I do, and for being patient during the
years of my study.

• I would like to thank my supervisors: Sebastian Isaza, for always making time for
me whenever I had a question, for providing me with valuable feedback, and for
the chats on a wide variety of non-thesis related subjects; and Georgi Gaydadjiev,
for providing me with motivation, guidance and useful insights.

• I would like to thank the helpful people at the Barcelona Supercomputing Center,
for allowing me to use their unreleased, experimental TaskSim simulator and their
Cell blade environment, and for giving support whenever I encountered an issue.

• I would like to thank Jelle ten Hoeve, for the interesting discussions we had, for
piquing my interest in bioinformatics, and for all the small talk we made during
our many coffee breaks.

• And of course I would like to thank lovely Farnaz, for her love and support, for
making these last few months at the TU the most enjoyable ones yet, and for
always reminding me that ’someone has thesis’ !

Ernst Joachim Houtgast
Delft, The Netherlands
November 6, 2009

xi

xii

Introduction 1
T

he discovery of the DNA structure ushered in the widespread use of and interest
in genetic data. Biological analysis at the genetic level brings innumerable
possibilities. Its applications will influence the lives and welfare of millions

of people: knowledge of the genetic system allows for development of drugs that target
diseases in a much more specific manner, thus becoming more effective; key factors that
induce illnesses such as Alzheimer’s disease or cancer can be identified; even evolutionary
links between different species can be established. Analysis of DNA and proteins, which
form the blueprint and building blocks of life, allows biologists to gain novel insights
into the development of organisms and into the evolution of life itself. The economic
and scientific incentives such applications offer result in continued growth in attention
for the field of genetics: research budgets are growing and more people become involved.
As an industry, it generates a huge amount of data and the rate of accumulation will
continue to accelerate. The result is an ever increasing demand in computation power
required for processing.

In parallel to the developments in biology, computer technology experienced an evo-
lution of its own. Starting out as a nascent industry in the previous century, it has
grown to become a field that influences every part of modern life. Computing and com-
munication technology have had a huge impact on lifestyle. Imagine a world without
the communication capabilities of today, such as cellphones or the internet, or without
contemporary processing capabilities. The commoditization of computing technology
has led to its pervasive use. The advances in circuit density, as dictated by Moore’s law,
continue at an exponential rate. As a result, even a cheap contemporary mobile phone
is many times more powerful than the huge mainframes of the last century, whose sheer
size prohibited use outside of large laboratories.

Miniaturization proceeds apace and transistor budgets continue to grow at an expo-
nential rate. However, three separate issues are troubling computer architects, resulting
in the stagnation of improvement to single threaded performance: power consumption is
soaring, resulting in a choice for more efficient techniques over techniques that are ded-
icated to raw performance; memory technology lags behind computational capabilities;
and processor frequency scaling is peaking. These three ’walls’ form the fundamental
reason for the current paradigm shift towards parallel computing, a shift from single-
core towards multi-core architectures. The switch from sequential to parallel computing
attempts to ensure the expected growth in processing capability.

The exponential growth in computing power is a well-suited counterpart to the equiv-
alent surge in the availability of biological data. This has resulted in the emergence of
the bioinformatics field. Within this domain, computing technology is applied to solve
biological problems to further the understanding about biological systems and processes.
The available computation power is harnessed to manipulate and give meaning to data

1

2 CHAPTER 1. INTRODUCTION

sets whose sheer size makes analysis by hand unfeasible. In this thesis, the impact of
multi-core computing on bioinformatics applications and the opportunities arising from
it are investigated.

1.1 Motivation

The thesis project is one of the requirements of the Master of Science degree in Computer
Engineering within the faculty of EEMCS of Delft University of Technology. This thesis
has been performed within the ∆-ILIAD research theme of the Computer Engineering
group, which concerns itself with research on novel computer architectural paradigms,
investigating new and unconventional processor architectures. The research itself falls
under the SARC project, an EU project focusing on long term research in computer
architecture aimed at finding systematic scalable approaches to systems design.

Suitability and effectiveness of the multi-core paradigm on bioinformatics applications
remains an open research question. No deep understanding exists of their behavior and
scaling capability under many-core situations. Therefore, investigation of their structure
and determination of their performance characteristics when scaling processor count is
of great interest. This thesis contributes through the analysis of a particular bioinfor-
matics application called HMMER. Part of the popular SPEC ’06 processor benchmark,
it is considered as representative for this class. Like most bioinformatics programs, HM-
MER exhibits parallelism at many levels. The execution time is dominated by a small,
computationally intensive kernel which is applied to each element in the data set.

HMMER is used to compare protein sequences to a protein model in order to find ho-
mologues. These have many uses: for example, they give biologists valuable clues about
overlap in functionality between proteins or they indicate the potential existence of a
relationship between different species. Analyzing this data is computationally intensive.
Hence, high performance computing platforms are often used for processing. However,
as in general such computers are assembled using off-the-shelf processors, they do not
provide a natural fit to the problem domain. As a result, power efficiency, performance,
cost, or all of them suffer. An application-specific integrated circuit would offer opti-
mal performance per watt, but they lack flexibility and their cost of development and
production is prohibitive in this domain.

The Cell Broadband Engine is a state-of-the-art processor intended for high perfor-
mance computing. Its architecture represents a trade-off between specialized and general
purpose processing, as it contains both a general purpose core and eight cores specialized
for streaming workloads. As such, its performance per watt is favorable for applications
that fit the architecture well. The scaling behavior of HMMERCELL, a port of HM-
MER to this system, is analyzed. Qualitative analysis is performed by inspecting the
program structure, explaining its behavior and revealing potential bottlenecks, such as
the followed parallelization strategy and the choice for a modified Viterbi algorithm
resulting from architectural limitations. Quantitative analysis is performed through pro-
filing, modeling and simulations. The optimal ratio between PPEs and SPEs is deduced
and bottlenecks in program structure and implementation architecture are measured
to investigate their effect on scaling behavior. The results help creating guidelines for
improved performance of bioinformatics applications on many-core architectures.

1.2. PROBLEM STATEMENT 3

1.2 Problem Statement

The objective of this thesis is to contribute to the understanding of the interaction
between bioinformatics applications and multi-core processing through determination of
the performance characteristics and scaling behavior of HMMER, a biosequence analysis
application. This results in the three project aims, summarized as follows:

1. Investigate the performance of bioinformatics applications, gaining a thorough un-
derstanding of their structure and behavior, through the analysis of a representative
application called HMMERCELL.

2. Identify bottlenecks in program operation and system architecture by profiling,
modeling and simulating the system’s behavior.

3. Improve the understanding of scaling behavior for many-core computing platforms
by evaluating the impact of the identified bottlenecks.

1.3 Thesis Overview

The work in this thesis is divided into three main parts:

1. A theoretical part, the result from a literature study into the various fields be-
longing to the problem domain. The overview provides the reader with a sufficient
background and understanding of the relevant parts in biology, mathematics and
computer architecture in order to be able to place the rest of the thesis in its proper
context. In Chapter 2, a short introduction to the field of bioinformatics is given.
Chapter 3 presents the fundamentals of Hidden Markov Models, the mathematical
foundation on which HMMER is based. Chapter 4 describes the developments and
trends in computer architecture and presents the Cell microprocessor, the imple-
mentation platform of this work.

2. An implementation and analysis part, resulting from the work with HMMER, with
the implementation architecture, and with the various tools for profiling and simu-
lation. In this part, the application itself is discussed. The program structure is in-
vestigated, its behavior analyzed, and scaling behavior simulated. Chapter 5 gives
an overview of the internal working of HMMER and HMMERCELL. In Chapter 6,
results from analyzing and profiling the application are presented and discussed.
In Chapter 7, the results from simulations that measure the impact of bottlenecks
to scaling capability are shown.

3. A final part with learnings from this thesis. Chapter 8 presents the conclusions
that have been drawn. Recommendations are made indicating promising directions
for future research.

PART I:

BACKGROUND

”The biologists thought that a database was an enzyme that acted on datab.”

- wiredweird

Introduction to Bioinformatics 2
T

he discovery in 1953 of the DNA structure ushered in an explosion in the
availability of genetic information. By now, biologists have sequenced the
genetic information of many different species. Of such sequencing projects,

the Human Genome Project is probably the most well-known. Started in 1990, it led
to the first sequencing of an entire human genome in 2000. The databases where such
sequences are stored contain huge amounts of data; for instance, the human genome
contains approximately three billion base pairs. The sheer size of such data sets makes
their analysis impossible by hand. The use of computers however has enabled research
that would otherwise be unfeasible.

Bioinformatics is the discipline at the intersection of the fields of molecular biology
and computing. The rapid growth in computational power allows for the development
and application of new computationally intensive techniques. These techniques are used
to increase the understanding of the biological processes that operate within cells.

Although bioinformatics is still in its infancy, the application of high performance
computing to the massive data sets provided by biological research has already proven
to be very successful. Nowadays, computers are utilized to solve a wide range of prob-
lems in bioinformatics. Analysis of biological sequences is one example; another is the
field of recombinant DNA technology. Sequencing DNA strands sequentially is a time
consuming process. Instead thousands of subsections are read and analyzed in parallel.
Fitting the pieces back together requires the use of computers to explore each of the
combinations that are possible. Yet another example is genome rearrangement, in which
differences in the ordering of gene occurrence onto the DNA is investigated. Reversals,
translocations, fusions or fissions cause organisms with similar genes to express wildly
different phenotype. For example, the genomes of humans and mice differ by less than
250 rearrangements. One last domain is the field of systems biology modeling. Entire
cells are simulated, modeling all the processes which occur within. Even with the com-
puting resources available today, such techniques can only be applied to the simplest of
organisms, such as E. Coli.

This chapter aims to provide the reader with a large enough background of bioin-
formatics to place the rest of the thesis in its proper context. Section 2.1 gives an
introduction to molecular biology, explaining the relationship between and functionality
of genes and proteins. Section 2.2 explains sequence analysis, the main subject of this
thesis, in more detail. Section 2.3 explores some of the software tools that have been
developed for biological sequence analysis. Section 2.4 discusses the enormous amount
of online available sequence data. Section 2.5 concludes the chapter with a summary.

7

8 CHAPTER 2. INTRODUCTION TO BIOINFORMATICS

DNA RNA Protein
transcription translation

Figure 2.1: The flow of information within a cell.

2.1 Molecular Biology

Molecular biology is the part of biology that studies biological processes at the molecular
level. It concerns itself with the processes within a cell and with interactions between
cells. The central dogma of molecular biology as stated by Crick in 1956 [11] (later
reformulated [12]) is as follows:

”The central dogma of molecular biology deals with the detailed residue-by-
residue transfer of sequential information. It states that information cannot
be transferred back from protein to either protein or nucleic acid.”

The central dogma describes the relationship between three important classes of
molecules within a cell. These three are: DNA, RNA and proteins. Figure 2.1 provides
a simplified view of the relationship between these three molecules. DNA can be seen
as containing the blueprint of an organism. Proteins effectuate the realization of this
blueprint; they are used as the building blocks of cells, used for signaling, used in the
metabolism, and much more. RNA functions as a carrier of information: first, DNA is
transcribed to RNA in the nucleus. Then, the RNA travels outside of the nucleus to
the ribosomes. There, it is translated into proteins. For this thesis’ purposes, genes and
proteins are the most important. Hence, they will now be discussed in more detail.

The genome constitutes the genetic information of an organism, its complete set of
DNA. Figure 2.2 shows the basic organizational structure of DNA and the relationship
between DNA, genes and proteins. In essence, DNA can be seen as a long string of
symbols, called base pairs or nucleotides. The four symbols in this alphabet are: Adenine,
Guanine, Thymine, and Cytosine (inside RNA, Uracil is used instead of Thymine). Three
base pairs together can be interpreted as a codon. Each codon codes for an amino acid.
Table 2.1 gives the translation from codon to amino acid. A string of codons then
codes for a sequence of amino acids. In the ribosomes, proteins are built based on such
sequences. Genes are groupings of codons and they are the basic entity in the DNA that
codes for proteins. They are considered to be the basic physical unit of heredity. The
figure shows a gene that codes for a protein consisting of five amino acids.

The size of a genome varies per species. The genome of a human being consists
of approximately three billion base pairs, although not all parts of its DNA contains
useful information: large parts are duplicate, junk or control information. Parts of
the DNA that code for proteins are called exons (for expressed region). Introns (for
intragenic region) are the non-coding sections. About 95% of DNA is non-coding. Of
the three billion base pairs a human genome contains, only 0,1% is different between two
individual humans. Analysis of the human genome, after the Human Genome Project was
completed, estimates that the human genome contains about 20,000 to 25,000 genes. The

2.1. MOLECULAR BIOLOGY 9

DNA

Codon

Gene

. . .ACTATGCCTTACGCCTGAGTA. . .

TACCCTATGACT GCC TGA GTA

TyrosineProlineStart Alanine Stop

Figure 2.2: The organization of information inside DNA.

genome of Amoeba dubia, a single cell amoeba, is one of the largest known, containing
about 670 billion base pairs.

One difficulty that arises when analyzing DNA fragments is the problem of deciding
at what point and in which direction to start interpreting the DNA fragment as codons.
Six open reading frames are possible: three reading the DNA string forward, three
reading the DNA string backwards. A naive approach would be to simply use the length
of genes in a frame as an indicator of its probability of correctness: there are twenty
one codon types (twenty amino acids and the stop codons); hence, on average, one can
expect every twenty-first codon to be a stop codon. Since genes are often longer, a lower
length threshold could be used to prune unlikely candidates. One problem is that if this
guideline is used, short genes cannot be found. A more elaborate method also takes into
account the relative frequency in which codons are found in already discovered genes:
some amino acids are encountered more often than others. An open reading frame is then
more likely to be correct if it contains more probable codons. An even more elaborate
method would also consider the frequency of pairs of consecutive codons.

Whereas genes contain information about an organism, proteins are the workhorses
that actually realize an organism’s functioning. Proteins are complex organic compounds
that carry out many essential tasks: amongst others, activity of proteins controls sig-
naling of functionality within and between cells; they also form the basis of and give
structure to an organism’s major components, such as hair or skin. As stated above,
proteins consist of strings of amino acids, coded for by codons. Proteins are character-
ized by such sequences of symbols. Although a protein can be simplified to this one
dimensional string, protein functionality is largely determined by the three dimensional
structure this string folds into. Protein folding is therefore an important discipline within
bioinformatics.

The discipline within bioinformatics that concerns itself with comparing sequences
of DNA is called sequence analysis. Sequence analysis has many applications. As an
example, genes can be compared to each other to discover similarities in functionality;

10 CHAPTER 2. INTRODUCTION TO BIOINFORMATICS

Second Base

T C A G

F
ir

st
B

a
se

T Phenylalanine Serine Tyrosine Cysteine T

T
h
ir

d
B

a
se

Phenylalanine Serine Tyrosine Cysteine C

Leucine Serine Ochre(STOP) Opal(STOP) A

Leucine Serine Amber(STOP) Tryptophan G

C Leucine Proline Histidine Arginine T

Leucine Proline Histidine Arginine C

Leucine Proline Glutamine Arginine A

Leucine Proline Glutamine Arginine G

A Isoleucine Threonine Asparagine Serine T

Isoleucine Threonine Asparagine Serine C

Isoleucine Threonine Lysine Arginine A

Methionine(START) Threonine Lysine Arginine G

G Valine Alanine Aspartic acid Glycine T

Valine Alanine Aspartic acid Glycine C

Valine Alanine Glutamic acid Glycine A

Valine Alanine Glutamic acid Glycine G

Table 2.1: A codon to amino acid translation table.

Figure 2.3: A phylogenetic tree (taken from [20]).

genomes of individuals within the same species can be compared to each other; similar
genes can be combined into a profile, describing possible base pairs at each position
of the gene and their likelihood. Such a profile can then be used to compare parts of
one species’ genome to other species’ genomes, in order to estimate their evolutionary
relatedness. This way, a phylogenetic tree can be composed that groups more related
species closer to each other (see Figure 2.3).

2.2. SEQUENCE ANALYSIS 11

2.2 Sequence Analysis

Sequence analysis, or sequence alignment, compares sequences to each other in order to
discover similarities between them. Sequence analysis techniques can be applied to many
different types of data: it can be used to compare literary works, to find similarities in
musical compositions, to analyze financial data, or even to assist with speech recognition.

In bioinformatics, biosequence analysis is utilized to discover regions of similarity
between strands of DNA or between the codings for proteins. For example, it can
help establish an evolutionary or functional relationship between genes. Large similarity
between genomes is thought of as close evolutionary relationship. More sensitive analysis
techniques allow for the detection of more remote relationships.

Being the main topic of this thesis, sequence analysis is now discussed in more detail.
A formal definition is given first; then, different types of sequence analysis are discussed
along with techniques to obtain such alignments.

2.2.1 Formal Definition

Consider a sequence as consisting of a string of symbols from an alphabet. The objective
is to find the best match between strings v and w, best being defined as having a highest
possible score. When comparing symbols of each string, the following operations are
available to create a best possible match: match the current symbols to each other (the
scoring matrix s assigns a positive or negative score to the match, depending on the
relatedness of the symbols), or delete either one of the current symbols (this assigns a
negative score). Algorithm 2.1 shows the formulation of the sequence alignment problem
by Smith and Waterman [39], allowing for arbitrary insertions and deletions (or indels).

Algorithm 2.1 The Smith-Waterman algorithm

INPUT:
strings v (‖v‖ = m), w (‖w‖ = n); scoring matrix s; gap penalties W .

RECURSION:

Hi,0 = 0, 0 ≤ i ≤ m

H0,j = 0, 0 ≤ j ≤ n

Hi,j = max

Hi−1,j−1 + svi,wj
if vi and wj are associated

Hi−k,j − Wk if vi ends a deletion with length k
Hi,j−l − Wl if wj ends a deletion with length l
0 no similarity up to vi and wj

OUTPUT:
an alignment of v, w with maximum score.

The algorithm finds segments with high similarity by filling matrix H. The value of
Hi,j can be interpreted as being the maximum similarity between two segments ending
in vi and wj . The best alignment is then found by locating the highest value in H and

12 CHAPTER 2. INTRODUCTION TO BIOINFORMATICS

working backwards, each step selecting the biggest decrease until encountering an entry
in H with a value of zero. Instead of assigning a fixed penalty for an insert or gap, Wk is
used to determine the cost of an indel with length k, to account for affine indels. Gaps
caused by an evolutionary mechanism are often longer than one base pair. Hence, the
cost is split into a gap opening and gap extension penalty.

The scoring matrix s contains the score for a match or mismatch between symbols.
In the case of protein sequences, the table contains the scores for substitutions between
amino acids (also called residues). These scores are based on biological evidence: some
mutations are more likely to occur than others. Harmful mutations are assigned a neg-
ative score; substitution between amino acids with similar biochemical properties are
assigned a positive score. The choice of scoring in the similarity matrix determines the
extent of substitutions the sequence search is likely to discover. As an example, As-
paragine and Glutamine are alike, both are amino acids with acidic side chains and are
very hydrophilic. Hence, they are likely to be substituted for each other. Alanine and
Valine are both hydrophobic amino acids. Hence, these are unlikely to be substituted
for Asparagine or Glutamine.

Two widely used scoring matrices are PAM (Point Accepted Mutation) [13] and
BLOSUM (Blocks Substitution Matrix) [21]. BLOSUM uses observations of mutations
in local alignments of highly conserved regions. For example, BLOSUM64 is based on
sequences that are at least 64% identical. PAM is based on an explicit evolutionary model
and considers replacements on the branches of a phylogenetic tree. PAM1 means that
there is a 1% chance for each symbol in a sequence to have changed. Of course, symbols
may have mutated several times or may not have changed at all. Hence, PAM100 does
not imply a wholly different sequence. The two types of matrices are comparable: for
example, BLOSUM64 is similar to PAM120.

2.2.2 Classification of Sequence Alignment

There are various ways in which sequence alignment can be performed. This section
distinguishes between local and global sequence alignment and between pairwise and
multiple sequence alignment (MSA).

Global sequence alignment aligns sequences over their entire length, whereas local
sequence alignment finds the optimal alignment between parts of the two sequences.
The Smith-Waterman algorithm, stated above in Algorithm 2.1, is a local alignment
algorithm and is derived from the Needleman-Wunsch algorithm [32], which is used for
global alignment. The two are similar, but by setting negative entries in the matrix H
to zero, the Smith-Waterman algorithm allows alignments to start at arbitrary points in
the sequence.

Local sequence alignment and global sequence alignment have different applications.
If two protein segments are thought to be of similar length, global alignment should be
used, since it will match them from end to end, even though parts might be dissimilar.
However, since genes are often similar only over short sections, local alignment is mostly
used.

Another categorization of sequence alignment is in the number of sequences that are
to be aligned simultaneously. Pairwise alignment seeks to align two sequences together;

2.2. SEQUENCE ANALYSIS 13

multiple sequence alignment attempts to align more than two sequences to each other.
Naturally, the latter is far more computationally intensive. In order to find the optimal
solution, every ordering of aligning sequences together should be investigated, leading to
exponential growth in the amount of computations. The next section investigates both
optimal and heuristic techniques for sequence alignment.

2.2.3 Sequence Alignment Techniques

The previous paragraph shows sequence alignment techniques can be classified in various
ways. On the one hand, local and global alignment are closely related: usually variations
of the same technique can be used to perform either kind of alignment. On the other
hand, the difference between pairwise alignment and multiple alignment is significant.
Pairwise alignment is a tractable problem. Therefore, obtaining the optimal solution is
still feasible. Multiple sequence alignment, however, is intractable [25]. Therefore, for
all but the most simple multiple alignments heuristic algorithms should be used.

Several solving methodologies exist for pairwise alignment. The Smith-Waterman
and Needleman-Wunsch algorithms, discussed above, utilize a dynamic programming
approach to calculate an optimal solution (according to their scoring parameters). Dy-
namic programming splits a complex problem into many less complex ones; results ob-
tained by solving the sub-problems are reused, removing the need to recalculate certain
steps multiple times. But even though such optimal methods can be used for pairwise
alignment, in practice even here speed is preferred over accuracy. BLAST [8] and FASTA
[36], two popular sequence alignment tools, both use heuristic methods to rapidly obtain
alignments by using word based methods. In a word based method, from the initial
sequence a list with words of length k is created. These words are sub-sequences of the
original sequence. Then, all the words on the list are checked against the target sequence.
Some words on the list will have a high scoring against the sequence. Then, it is tried
to extend these hits to other hits by including residues before and after the segments.
Another technique is based on Hidden Markov Models (HMMs). HMMs are explained
in Chapter 3.

Multiple sequence alignments can be seen as an extension to pairwise alignments,
though they are much more computationally intensive. The equivalent dynamic program-
ming approach to algorithm 2.1 that creates an MSA would require an n-dimensional
variant of matrix H to be filled. This would require exponential running time in the
number of sequences to be compared. Problems that scale exponentially in input size
are called NP-complete and are known to be solvable only for the most trivial of cases.
Hence, the use of heuristic methods is mandatory.

One such heuristic method to produce MSAs is called progressive alignment. First,
all sequences are compared to each other in pairs. Then, a guide tree is composed
that indicates the order in which alignments are added to the MSA. Starting with the
sequences that have the highest alignment score for each other, sequences are successively
added to this MSA, until all sequences are contained in it.

14 CHAPTER 2. INTRODUCTION TO BIOINFORMATICS

UNIPROT SEQS

C
lu
st
al
W

MSA

H
m

m
er

HMM

H
m
m
er

Figure 2.4: An example biosequence analysis workflow.

2.3 Biosequence Analysis Software

Over the years, many biosequence analysis tools have been developed, allowing biologists
to take advantage of the computing power offered by modern day high performance
computing. The scale in which sequence alignment and analysis is performed today
would not have been possible without the availability of huge amounts of computation
resources. Different tools have been developed, each specialized to their particular branch
of sequence alignment.

Well-known tools are BLAST [8], ClustalW [41], FASTA [36] and HMMER [18].
Trading accuracy for speed, all of them are based upon heuristic alignment techniques.
BLAST, FASTA and HMMER are pairwise sequence alignment tools. Two sequences
are aligned to each other, producing a score that, if it exceeds a certain threshold,
signifies a relationship between the two. Commonly, one protein sequence or model is
compared against a database of sequences. BLAST and FASTA use word-based methods.
Compared to FASTA, BLAST only evaluates the most significant word matches, rather
than every word match. This makes it the fastest sequence alignment tool, being about
fifty times faster than dynamic programming algorithms based on Smith-Waterman.
HMMER, this thesis’ main focus, is based on Hidden Markov Models. The HMM acts
as a model for a family of proteins, and the basic idea is to find out if a certain protein
sequence is related to this protein family. The following section describes HMMER in
more detail. Finally, ClustalW is a tool used to create a multiple sequence alignment of
DNA or protein sequences.

Figure 2.4 offers a scenario in which the above tools are used in conjunction. Starting
at the top, from a set of related protein sequences, ClustalW is used to produce a multiple
sequence alignment. Out of this MSA, HMMER creates a protein profile HMM. Finally,
HMMER uses this profile to search through a protein database, in order to find related
sequences. With this larger set of related protein sequences, the cycle can be started
again.

2.4. BIOLOGICAL SEQUENCE DATABASES 15

2.3.1 HMMER

HMMER is a freely available open source family of tools often used in biosequence
analysis, aimed specifically at protein sequence analysis. Included as a part of the SPEC
CPU2006 benchmark [5], it is representative for a large group of biosequence applications.
In contrast to BLAST and FASTA, HMMER uses profile Hidden Markov Models to
analyze families of proteins. Its specific HMM architecture is explained in more detail in
Section 3.3.1. In contrast to the Smith-Waterman and Needleman-Wunsch approaches,
in the HMM approach the model instead of the algorithm itself determines whether local
or global alignment is used, both with regard to the protein sequence as well as with the
model. Also, the model determines if multiple domain hits per sequence are allowed. The
main advantage of using HMMs over the dynamic programming methods is that gaps are
modeled in a systematic way. For example, in algorithm 2.1 WK is used to assign a score
to gaps. A drawback all these techniques share is that they all assume that positions can
be scored independently: higher-order correlations between consecutive residue positions
in the protein sequences cannot be modeled.

Some of the programs in the HMMER family are: hmmsearch, which aligns sequences
from a database with an HMM profile using the Viterbi algorithm in order to find re-
lated sequences; hmmpfam, which compares a single sequence to an HMM database;
hmmbuild, which builds a profile HMM from a multiple sequence alignment; and hmm-
calibrate, which calibrates a profile HMM for more accurate E-values. E-values estimate
how many hits can be expected by chance when comparing a profile to a database of a
certain size filled with random sequences by performing Monte Carlo simulations. The
fundamentals on which HMMER is based are explained in Chapter 3.

2.4 Biological Sequence Databases

Biologists around the world, from small universities to large research centers, are per-
forming biosequencing of DNA and proteins. The more information that becomes avail-
able, the better patterns between proteins and protein families become visible. These
large quantities of sequence information are stored in freely accessible databases. For
this thesis’ purposes, two classes of databases are of importance: databases containing
protein sequences and databases containing models of protein families.

Sequence databases contain vast amounts of protein or DNA sequences. Moreover,
the size of these databases is growing exponentially. Figure 2.5 shows the growth of
the European Molecular Biology Laboratory (EMBL) nucleotide database. There are
two reasons for this growth: ever growing interest in the field of biosequencing and
bioinformatics, and the fact that the sequencing process itself is becoming ever faster.
This makes the development of newer and faster methods for analyzing the data in these
databases crucial.

UniProt [27], the Universal Protein Database, is an international effort to create a
centralized freely accessible database on proteins. It is the largest protein database and
is part of the EMBL. The EMBL exchange data between the DNA DataBank of Japan
and GenBank at the National Center for Biotechnology Information on a daily basis,
under the umbrella of the International Nucleotide Sequence Database Collaboration.

16 CHAPTER 2. INTRODUCTION TO BIOINFORMATICS

Figure 2.5: EMBL database growth (taken from [2]).

The UniProt Knowledge Base is divided into two parts: UniProtKB/TrEMBL, which
contains unreviewed protein sequences and UniProtKB/Swiss-Prot, which contains man-
ually annotated proteins.

The other database type is the protein structure database, with descriptions of protein
models. These models can then be used to search through protein sequence databases in
order to find related sequences. Pfam [40] is a database containing protein descriptions
based on Hidden Markov Models. These models can be used with HMMER. Pfam-A
is the high quality, manually curated part of Pfam. Pfam-B is the larger automatically
generated section, containing potentially less accurate models. This database can be
used when no matches against Pfam-A are found, to increase coverage.

2.5 Summary

This chapter provided the reader with an introduction to the field of bioinformatics and
to biological sequence analysis in particular. The central dogma of microbiology shows
the relation between DNA and proteins. Sequence analysis compares fragments of DNA
or protein sequences to each other. Alignment can be categorized according to locality,
global or local, and multiplicity, pairwise or multiple sequence alignment. Optimal meth-
ods based on dynamic programming exist, but for speed reasons, heuristic methods are
usually preferred. Out of all the existing biosequence tools, FASTA, BLAST (based on
k-word methods), and HMMER (based on Hidden Markov models) are the most popular
ones for pairwise alignment. ClustalW is a tool for MSA. Sequence databases containing
DNA or protein sequences such as UniProt are growing at an exponential pace. As a
result, analysis of the resulting data becomes an ever greater challenge.

More information on bioinformatics can be found in the excellent introductory book
on the subject by Jones and Pevzner [24].

Profile Hidden Markov Models 3
C

hapter 2 introduced a biosequence analysis tool called HMMER, which is the
main focus of this thesis. HMMER’s search mechanism is based on proba-
bilistic theory and uses Hidden Markov Models to represent protein models,

against which sequences are aligned. To this end, it utilizes a specific architecture,
called the Plan7 Profile Hidden Markov Model. This chapter presents the theoretical
background behind the model used in HMMER, studying the mathematical fundaments
on which the application is based. The development and use of such pattern recognition
models originates from research in domains such as speech recognition [38].

Section 3.1 provides a short introduction to Markov models. Section 3.2 explains
the concept of Hidden Markov Models and the Viterbi algorithm. Section 3.3 discusses
profile Hidden Markov Models, as used in bioinformatics applications and discusses the
specific architecture used by HMMER, the Plan7 Profile Hidden Markov Model. Then,
E-values and bit scores are discussed, which aid in the interpretation of the significance
of an alignment. Section 3.4 concludes the chapter with a summary.

3.1 Markov Models

One way of categorizing models of systems is to distinguish between deterministic systems
and probabilistic systems. In a deterministic system, a given starting condition will
always result in the same outcome. This outcome is defined solely by the system inputs
and parameters. Conversely, in a statistical system identical starting conditions do not
necessarily result in the same outcome: outcomes are inherently uncertain. A priori,
the outcome of a given starting condition is unknown, although assumptions about the
likelihood of certain outcomes can usually be made.

A Markov model then, being a simple statistical model, is probabilistic in nature. It
is defined by a set of states and a set of probabilities for transitioning from one state to
another. At any given time, the system is in one of its states. For a discrete Markov
model, every time step the system transitions from the current state to the next state (to
another one or possibly to the current one), according to a set of transition probabilities
A. A Markov model is characterized by its n states Sn and its n×n transition probability
matrix A governing transitions between these states. Hence, observing a Markov model
over time shows a sequence of observed states O, for example:

O = . . . , S1, S5, S2, S2, S3, . . . (3.1)

The defining characteristic of a Markov model is that it exhibits the Markov property:
transitions from the current state to the next state are dependent only on a fixed number

17

18 CHAPTER 3. PROFILE HIDDEN MARKOV MODELS

SUNNY RAINY

0.2

0.8

0.3

0.7
Set of States:

S =

(

Sunny
Rainy

)

Transition Probabilities:

A =

(

0.8 0.2
0.3 0.7

)

Figure 3.1: A simple Markov model of the weather.

of previous states. In a first order Markov model, the next state Qt+1 is dependent only
on the current state Qt. The following equation states that the chance for a certain
transition Qt,t+1 is only dependent on the previous state in a more formal manner:

P (Qt+1 = Si|Qt = Sj , Qt−1 = Sk, . . .) = P (Qt+1 = Si|Qt = Sj) (3.2)

For static Markov models, the transition probabilities from each state to each other
state are given by the n × n transition matrix A, where:

aj,i = P (Qt+1 = Si|Qt = Sj) (3.3)

with aj,i ≥ 0 and ∀j :
n

∑

i=1

aj,i = 1

As an illustration, consider Figure 3.1, which models the weather of consecutive days
in a very simple manner. The model consists of just two states: a day is either rainy or
sunny. Moreover, the weather of any given day is assumed to be dependent only on the
weather of the previous day. Hence, this system can be modeled as a first order Markov
model. The labels of the arrows between states show the transition probabilities. From
the model, it follows that the weather is stable: if it is sunny on a certain day, it is 80%
likely to be sunny the next day as well; if it rains, it is 70% likely to rain the day after
as well.

3.2 Hidden Markov Models

Hidden Markov Models (HMMs) form a specialized class of Markov models. In a HMM,
the state of the model cannot be observed directly. Instead, states emit symbols and
those emitted symbols are observed. Based on this sequence of emitted symbols and
the parameters of the model, it is possible to make assumptions about the probable
sequence of states that occurred. Thus, in contrast to a normal Markov model, the
observed sequence O is not a sequence of states, but a sequence of emitted symbols.

An HMM can be thought of as to act as a generator for an infinite number of
sequences. The model acts as a probability distribution over this infinite number of

3.2. HIDDEN MARKOV MODELS 19

SUNNY RAINY

nojacket jacket

0.2

0.8

0.3

0.7

0.6

0.40.1

0.9

Emission Alphabet:

V =

(

jacket
nojacket

)

Emission Probabilities:

B =

(

0.6 0.4
0.1 0.9

)

Figure 3.2: A Hidden Markov Model of the weather.

sequences. Since the total probability of all sequences sums to one, increasing the like-
lihood of some sequences must result in a corresponding decrease in likelihood of other
sequences. Starting from an initial state, a state is chosen to transition towards, accord-
ing to the transition probabilities A. Then, based on that state’s emission probabilities
E, a symbol is emitted. These steps are repeated until an end state is encountered.

Formally, the HMM is characterized by the original set of Markov parameters - the n
states Sn and the n × n transition probabilities matrix A -, extended with the alphabet
of emitted symbols Vm and the n×m probability distribution matrix of emitted symbols
per state B.

As an illustration, consider the model shown in Figure 3.2. Again, a system of the
weather for consecutive days is modeled. However, since in this example the model is
a HMM, emission variables and probabilities are added. These can be interpreted as
follows: person X will either wear a jacket or not, depending on the weather. If it rains,
X will almost certainly wear one (a 90% emission chance). If it is sunny, X usually
does not (only a 40% emission chance). Let person Y be unable to observe the weather
directly (the HMM premise), but let him be able to observe whether X is wearing a
jacket or not. Also, Y knows the likelihood that X wears a jacket based on the weather
conditions and he is familiar with the general behavior of the weather. In other words,
he knows the system’s parameters. Then, based on his observations of X, he will be able
to make some assumptions about the weather conditions.

Three canonical problems are associated with HMMs:

• Given are an HMM with known parameters S, A, V, B and a sequence of emitted
symbols O. What is the probability of the occurrence of output sequence O?
Formally: compute P (O|S, A, V, B). The forward/backward algorithm is a method
to solve this problem [38]. In biosequence analysis terms, this problem produces
an estimate of how well sequence O matches the protein model.

• Given are an HMM with known parameters S, A, V, B and a sequence of emitted
symbols O. What is the most likely sequence of states leading to this output? For-
mally: compute a sequence of states Sa, Sb, Sc, . . . that maximizes P (O|S, A, V, B).

20 CHAPTER 3. PROFILE HIDDEN MARKOV MODELS

This sequence can be obtained using the Viterbi algorithm [42]. This is precisely
what HMMER does: it produces the most likely alignment of states of the protein
model to the protein sequence. The Viterbi algorithm will be discussed in more
detail in Section 3.2.1.

• Given is an HMM with states S and emitted variables V ; also given are k output
sequences Ok. Find the parameters A, B of the HMM that maximize the likelihood
of the model producing sequences Ok. This problem can be solved using the Baum-
Welch or Baldi-Chauvin algorithm. In bioinformatics terms, this can be used to
create a protein family model based on a set of related sequences.

3.2.1 The Viterbi Algorithm

The Viterbi algorithm can be used to find a sequence of states that maximizes the chance
for a given sequence of output symbols. Since HMMER utilizes the Viterbi algorithm to
align sequences to HMMs, the Viterbi algorithm is now discussed in more detail. The
exact model HMMER uses will be explained in Section 3.3.1; this section describes how
the Viterbi algorithm obtains the most likely sequence of states for a given HMM and
observed sequence.

Algorithm 3.1 The Viterbi algorithm

INPUT:
HMM with parameters S, A, V, B,
observed sequence O,
initial state distribution P .

INITIALIZATION:
k = 0,
∀s∈S : x0

s = Ss,
∀s∈S : p0

s = Ps.

WHILE Ok:
∀i∈S : pk+1

i = max(∀j∈S : pk
j · Aj,i · Bj,Ok

),

add corresponding state to survivor path xk+1
i .

OUTPUT:
sequence x of states Sa, Sb, . . . , Sz, maximizing P (O|x).

Algorithm 3.1 shows the basic operation of the Viterbi algorithm. The algorithm is
recursively defined, based on the following idea: a state sequence x with length k can end
up in any of the n states in the state space. For each of these n states, there is one state
sequence that maximizes P (O|x), the survivor path. Let xk

i denote the survivor path to
state i with length k. Any longer optimal state sequence must go through one of these
survivor paths. Hence, the optimal sequence with length k+1 can be determined by solely
considering each of the survivor paths with length k and the corresponding transition

3.3. PROFILE HIDDEN MARKOV MODELS 21

k → k + 1. Recall that Aj,i is the state transition probabilities matrix P (Si|Sj) and
that Bj,Ok

is the emission probabilities matrix P (Ok|Sj). Therefore, it follows that the
algorithm just has to keep track of the survivor path to each state Sn and the probability
of said path. This probability is denoted by pk

i . When the entire observed sequence is
processed, the state sequence that maximizes P (O|x) is given by the survivor path with
the highest probability.

Analyzing the algorithm to determine time and space complexity gives the following
results: the time the algorithm takes is linear in the length of the observed sequence
(‖O‖), since the algorithm steps over each symbol. Every step, for each state the new
survivor path has to be calculated, by considering the path from every other state. Hence,
in the worst case when the states are fully connected, the algorithm scales quadratically
in state count. Thus, time complexity is of order O(‖O‖ · n2). With regard to space
complexity, for each state the survivor path is tracked, and the corresponding probability.
This leads to O(‖O‖ · n) space complexity.

Two concluding remarks: since the probabilities are multiplied with each other, they
quickly become very small. In order to prevent round-off errors, it is custom to store
them in logarithmic format (log-odds). Also, the forward/backward algorithm, which
computes the likelihood of a given output sequence (recall Section 3.2), is very similar
to the Viterbi algorithm. It can be obtained by taking the sum instead of the maximum
during computation of the survivor paths. Hence, both are usually calculated at the
same time.

3.3 Profile Hidden Markov Models

Proteins are an important part of molecular biology, as they constitute the elements
that perform a cell’s functioning. Although proteins have a three-dimensional shape,
their basic structure can be described by its constituent string of amino acids. The idea
that similarly structured proteins have similar function has led to the comparison of
protein descriptions to discover related families. In Section 2.2.3, various techniques for
performing sequence analysis have been discussed. One probabilistic method is based on
Hidden Markov Models. In bioinformatics, such models are often called profile Hidden
Markov Models, or pHMMs. This nomenclature stems from the fact that a HMM is used
as a representation of the profile of a protein.

Aligning a protein sequence to a profile model amounts to matching the sequence
of amino acids in the protein sequence to a sequence of emitted symbols, and thus
to a sequence of states in the profile model. Compared to dynamic programming or
k-word techniques, a large advantage of using a pHMM for sequence analysis is that
it allows for the natural and systematical modeling of gaps. Other forms of sequence
alignment require manual setting of these parameters. Because the profile is trained
on a multiple sequence alignment, every residue position contains its own scores for
substitution, insertion and deletion. To prevent over-fitting of these parameters to a
specific MSA, pseudo-counts with observed amino acid frequencies are often combined
with the parameters.

22 CHAPTER 3. PROFILE HIDDEN MARKOV MODELS

S N B M1

D1

I1

M2

D2

I2

M3

D3

I3

M4

D4

E C T

J

Figure 3.3: The Plan7 Profile HMM Architecture.

3.3.1 The Plan7 Profile HMM Architecture

The Plan7 Profile HMM Architecture is the model used by HMMER to describe protein
models [18]. Figure 3.3 shows the basic layout of the model, using a length-4 motif as an
example. The diamond and square states are emitting states, the circles non-emitting.

The main part of the model consists of Match, Delete and Insert states. A M/D/I-
triple is called a node. Match and Insert states are able to emit amino acid symbols,
Delete states emit no symbols. A Match state signifies a match between a particular
position in the protein sequence and the HMM. Insert states are used to allow for gaps
in the protein sequence as a result of evolution. Delete states let the protein sequence
skip over some part of the HMM. Together, these states constitute the data dependent
part of the model.

The Plan7 Architecture also contains extra states, which control the way in which
alignment is performed. Global and local alignment is supported, as are multiple hits
against the profile in one sequence. The N-state allows for random symbols in the protein
sequence to precede the profile, the C-state for random symbols afterwards. If the loop
back from the E-state to the B-state via the J-state is allowed, multiple hits are possible.
The J-state allows for symbols in between hits. Finally, the S-state is the entry point of
the HMM, the T-state the end.

Section 3.2.1 discussed the Viterbi algorithm. The time complexity of the algorithm
was determined to be O(O·n2). The algorithm is linear in the sequence size and quadratic
in the model size, since for every symbol in the sequence, the path from every state
to every other state needs to be taken into account. However, this worst case time
complexity only occurs if the graph is fully connected. The specific form of the Plan7
architecture shows that the progression through the graph follows a linear path through
the nodes, from left to right. Hence, in this case, time complexity of the Viterbi algorithm
is just on the order of O(O · n).

3.4. SUMMARY 23

3.3.2 Bit Score and E-value

Creation of an alignment between a protein model and a sequence by HMMER produces
three results: the actual alignment between the sequence and the model, an E-value and
a bit score. These last two help interpret the statistical significance of the alignment.
Good homologues will have a low E-value and a high bit score.

The bit score measures how well the sequence matches the model. It is a log-odds
score based on the probability the sequence matches the model compared to how well
it matches the null model, which is a model based on random sequences. A positive
log-odds value indicates that the HMM is a better fit than the null model. The bit score
S is given by the following equation:

S = log2
P (seq|HMM)

P (seq|null)
(3.4)

When comparing a model to a random sequence database with a certain size, purely
by chance a number of hits will occur, each with a certain bit score. The E-value indicates
this number of false positives. It is calculated based on the bit score. Hence, a lower
E-value is better, as it means that the sequence is unlikely to be caused by chance alone.
Empirically, hits with an E-value of 0.1 can be trusted to be significant hits. Also, note
that the E-value is dependent on database size! The bigger the database grows, the
higher the bit score of a sequence must be to be counted as a significant hit.

A more detailed explanation on E-scores and bit values can be found in [17].

3.4 Summary

This chapter discusses the mathematical fundaments of the HMMER application, which
is based on Hidden Markov Models. Markov models are simple probabilistic models.
Their fundamental characteristic is the Markov property, which states that state tran-
sitions are only based on the previous x states. In a Hidden Markov Model, the actual
state is invisible; only emitted variables can be observed. The Viterbi algorithm is used
to discover the most likely path that generates a specific sequence of emitted variables.
In bioinformatics, Markov models are usually called profile Hidden Markov Models, since
they are used to model the profile of a protein sequence. The specific architecture of
HMMER is called the Plan7 Profile HMM architecture. The data dependent part con-
sists of M/I/D states, other states in the model control its alignment behavior, allowing
for global or local alignment and multiple hits. An alignment between a sequence and
an HMM has a bit score, which measures how well the sequence matches the model, and
an E-value, which indicates how many hits with identical bit score are expected to be
generated by chance alone for a random test set of similar size.

24 CHAPTER 3. PROFILE HIDDEN MARKOV MODELS

Computer Architecture Trends 4
O

ver the last few years a trend has become apparent: even though Moore’s law
still holds, providing computer architects with continuously increasing tran-
sistor budgets (albeit at a slower pace), single threaded performance growth

appears to have come to a near standstill. Instead of improvements to single threaded
performance, the additional transistor budget has been spent on putting multiple cores
on a single chip. This chapter explains the causes and effects of this trend. Section 4.1
describes the reasons for and implications of the paradigm shift from single-core to
multi- and many-core computing. Section 4.2 briefly discusses different types of par-
allelism. In Section 4.3, issues with parallelism are discussed. Section 4.4 illustrates
how computer architects are coping with the aforementioned issues by discussing the
Cell Broadband Architecture, a state-of-the-art microprocessor and our implementation
architecture. Section 4.5 concludes the chapter with a summary.

4.1 Paradigm Shift to Parallel Architectures

In the recent years, parallelism seems to have taken flight. All major semiconductor
companies have embraced the practice of adding additional cores to their processors as
a means to increase performance. Traditional semiconductor companies are scaling up
the core count of their processor design. Intel, the world’s largest semiconductor com-
pany, ships more multi-core than single-core processors since the third quarter of 2006.
Furthermore, the number of processors on a single chip is expected to increase ever
farther, resulting in processors with thousands of cores on a chip, or many-core proces-
sors. An example is Intel’s Terascale initiative [4]. Graphics processor design follows a
similar trend. These traditionally very parallel but fixed function designs are becoming
increasingly more general purpose, an example is Nvidia’s CUDA, which attempts to
unlock the vast floating point capabilities of their GPUs to software engineers. [33]. The
convergence of these trends seems to lead to processor designs with very many simpler
cores.

What is the underlying cause for this shift? Parallel computing itself is not new:
High Performance Computing is a longstanding research discipline. To obtain the highest
performance possible, early supercomputers already contained dozens or more processors.
The reasons for parallel computing to become a mainstream phenomenon are different.
There are many reasons for this shift from single-core to multi-core processors and for
the trend towards parallel architectures in general. Many problems are easy to state
and execute in a parallel manner (although many also are not). Moreover, there will
always be need for additional computation resources and parallel systems will naturally
always be faster than single processor systems. However, the main argument in favor of

25

26 CHAPTER 4. COMPUTER ARCHITECTURE TRENDS

Figure 4.1: Chip transistor count over time (taken from [34]).

multi-core architectures is the fact that increasing sequential computing performance is
becoming ever more difficult: the shift to parallelism is more of a necessity.

Moore’s law [31] states that the number of transistors on a chip roughly doubles ev-
ery two years. Figure 4.1 displays the exponential growth in transistor count of modern
processors. A relationship exists between transistor count and processor performance:
microprocessor performance is determined by the product of clock rate and number of
instructions executed each clock cycle (IPC). In the past, this growing transistor budget
was usually aimed at raising IPC through a variety of techniques, such as branch pre-
diction, superscalar execution, out of order execution and large on-chip caches. However
nowadays, three issues are preventing much further scaling of single-threaded perfor-
mance [23]: frequency scaling limitations, power consumption constraints, and memory
technology not keeping pace with the increase in computational capabilities. Therefore,
a trend towards parallel architectures is emerging.

4.1.1 The Frequency Wall

Processor frequency is an important determinant to overall microprocessor performance.
The clock rate of a chip is limited by the distance signals are required to travel each
clock cycle. Hence, clock rate can be raised by decreasing the amount of work per clock
cycle; i.e. the number of gates between buffers. One way to realize this is by increasing
pipeline depth. However, although longer pipelines allow a higher clock frequency, they
also cause detrimental side-effects to performance: instruction dependencies cause longer
stalls since instructions must be processed by more pipeline stages, and pipeline flushes
as a result of mispredicted branches become costlier. Current pipeline depths represent a
fair balance, increasing them further leads to diminishing returns. As a result, micropro-
cessor frequency is reaching a plateau: the maximum clock rate of modern mainstream
processors has been hovering at the same level for a few years now.

4.2. TYPES OF PARALLELISM 27

4.1.2 The Power Wall

Besides processor frequency, the other determinant to microprocessor performance is
its IPC. For a long time, the mantra in processor design was maximize performance
at all costs. This resulted in the development and implementation of techniques such
as branch prediction, superscalar execution, out of order execution and the inclusion
of large on-chip caches. These techniques raise IPC considerably, but, when compar-
ing their performance benefits to increases in power consumption, it becomes obvious
that they often cost a disproportionate amount of transistors and power. High power
consumption is becoming problematic in many situations. Desktop computers require
large cooling solutions to keep processors from overheating. The widespread adoption
of mobile devices, where battery longevity is an important factor, shift the focus more
and more from absolute performance towards power consumption and performance per
watt. And an even more important factor is the increasingly large cost of running data
centers. To illustrate of the magnitude of this problem: in 2006, energy use of data
centers amounted to 1.5% of total energy consumption in the U.S. [7].

Besides limiting IPC, power consumption also limits clock frequency scaling. One
rule of thumb states that a 1% increase in clock rate causes a 3% increase in power
use. Therefore, a processor consisting of multiple cores at a lower clock rate will have a
higher performance per watt than a processor with a single higher clocked core, provided
applications are able to take advantage of parallel processing (see Section 4.3).

4.1.3 The Memory Wall

A final bottleneck to processor performance is the fact that memory technology is unable
to scale as fast as processor speed. Although memory bandwidth has risen considerably,
latency has not been lowered significantly. Hence, from the perspective of the processor,
access times to memory are becoming longer: the observed latency is increasing. To
lessen the impact, processors are often equipped with elaborate memory hierarchies with
multiple cache levels, or execution proceeds speculatively. However, such mechanisms
take up a large number of transistors and consume much power. An alternative is to
execute multiple threads simultaneously. Then, when one execution thread is stalled
while data is fetched from main memory, another thread is allowed to proceed with
execution.

4.2 Types of Parallelism

The above gives some insight in the difficulties with improving single threaded perfor-
mance, making a case for more parallelism in computing. The different levels at which
parallelism can be exploited [15] will now be discussed.

Lower forms of parallelism are handled within the microprocessor itself. These are
transparent to the software engineer. This form is called hardware parallelism. Examples
are bit-level and instruction-level parallelism. Bit-level parallelism increases the amount
of information a processor can manipulate in a single clock cycle and is improved by
enlarging the computer word size. Instruction level parallelism (ILP) operates on the

28 CHAPTER 4. COMPUTER ARCHITECTURE TRENDS

instruction stream, where instead of performing instructions one by one, multiple in-
structions of the program stream are executed simultaneously by reordering this stream
and using multiple functional units inside the processor. Of course, such parallelism is
limited by dependencies within the instruction stream.

Higher level forms of parallelism include data parallelism and task parallelism. Data
parallelism divides a domain of data, on which certain calculations have to be performed,
in smaller regions and executes calculations on those regions in parallel. An example: the
parallel addition of individual elements in two arrays. Task parallelism can be utilized
when multiple independent tasks are executed concurrently. These higher level types of
parallelism, also called software parallelism, are visible to the programmer and must be
manually exploited in order to take advantage of the offered parallelism.

An important aspect limiting the possible gains from parallelism is the granularity of
the parallelism. Granularity defines the amount of communication and synchronization
that is needed between tasks. Fine-grain parallelism requires continuous communica-
tion, coarse-grain almost none. Very fine grain parallelism includes instruction level
parallelism; fine-grain parallelism includes data parallelism and parallelism within loops;
medium-grain parallelism resides on the control level, such as parallel function calls;
coarse-grained parallelism takes place on the task level. Finally, ”embarrassingly” par-
allel tasks require no communication between processes and hence are the easiest to
parallelize.

4.3 Issues with Parallelism

The previous sections demonstrate the reasons underlying the trend to more parallel
architectures and have shown the various forms in which parallelism can manifest. How-
ever, widespread adoption of parallelism in applications still lags these developments
in hardware. This section will illustrate some of the difficulties while writing parallel
programs. First of all, there are limits on the gains to be expected from parallelizing
software. Secondly, software engineering issues hamper widespread adoption.

4.3.1 Limits on Performance Gains

Amdahl’s law describes the maximum speedup that can be obtained by the parallelization
of a program [9]. It gives an upper bound for the maximum obtainable speedup of a
program. The following equations show its basic form:

Speedup =
(S + P)

(S + P
N

)
=

1

(S + P
N

)
(4.1)

SpeedupN→∞ = lim
N→∞

1

(S + P
N

)
=

1

S
(4.2)

with S + P = 1

Consider a program as consisting of a fraction P that is amenable to parallelization
and a fraction S that is not. The program is executed on a system with N processors.

4.3. ISSUES WITH PARALLELISM 29

Then, the maximum realizable speedup from parallelism will eventually be limited by
the non-parallelizable fraction: if the program were to be executed on a system with
infinitely many processors, the execution time would be equal to the time required for
the execution of just the serial fraction. Hence, the maximum speedup is 1

S
.

Amdahl’s law implies that in order to make optimal use of many-core architectures,
algorithms and programs have to be written in a manner amenable to parallelization.
But it also implies that fast single-core execution capability is important for those parts
of the program that cannot be parallelized. Therefore, a heterogeneous processor design
with fast cores for non-parallelizable parts and more efficient cores for parallelizable parts
of the code would represent a good trade-off between power and performance.

4.3.2 Parallel Software Engineering Difficulties

New processor designs with higher clock frequency and IPC allow for faster execution
of existing software, without any intervention by the software developer. In contrast,
processors with additional execution cores require software that is specifically written
to take advantage of this. Part of the burden of extracting more performance from
the hardware is shifted from the hardware engineer to the software engineer. Several
problems make parallel software design more difficult than sequential software design.
These are explained below.

In general, writing parallel software requires more effort than writing sequential pro-
grams. The reasons for this are readily apparent: in order to parallelize a program,
additional steps must be undertaken compared to a single threaded program: paralleliz-
able parts of the program have to be identified; these parts need to be broken down
into smaller tasks, the tasks need to be assigned to individual processors and then com-
munication and synchronization between tasks has to be implemented. Note that some
programs might lack any such parts, making parallelization impossible!

Secondly, reasoning about the execution of a parallel program is more complex than
reasoning about a sequential one: the state space of a running program is much larger.
Whereas in a sequential program instruction are executed from a single program stream,
parallel programs execute multiple streams simultaneously. External factors influence
the order in which instructions from different streams are executed, making program
order non-deterministic. This makes parallel software development more bug prone and
bugs can be difficult to reproduce, especially if they only occur in exotic circumstances.
As an example, consider when multiple processes require access to the same memory lo-
cation. Simultaneous reading poses no problem. But when one or both of the processes
need to write to the memory, the order in which events take place determine the pro-
gram semantics. Hence, synchronization is required to ensure proper behavior, otherwise
such race conditions can lead to inconsistent program states. However, synchronization
schemes need to be implemented with care. Otherwise they can lead to deadlocks.

Portability is often another problem for parallel software. If a program is written
with a certain architecture in mind, - for example requiring a fixed number of processors
on which to execute or requiring a specific memory subsystem -, it cannot readily be
executed on another architecture. Moreover, not all programs lend themselves to paral-
lelization: if some section of a program must execute before another section, those two

30 CHAPTER 4. COMPUTER ARCHITECTURE TRENDS

tasks cannot be run in parallel. In such a case, a complete rewrite of the program using
a different algorithm more amenable to parallelization might be the only option possible.

4.4 The Cell Broadband Engine

To illustrate the issues mentioned in this chapter, the Cell microprocessor is now dis-
cussed. The Cell is the implementation architecture for this thesis. It represents a radical
paradigm shift in processor design. Developed by Sony, Toshiba and IBM, its design ad-
dresses the three main difficulties facing microprocessor engineers: the power wall, the
memory wall and the frequency wall. This section presents a brief overview of the Cell’s
design and how its architecture deals with the aforementioned problems. Afterwards,
peculiarities about development on Cell are discussed and a roadmap showing future
iterations of the platform is shown.

4.4.1 Architecture Overview

The Cell Broadband Engine architecture is a radical departure from traditional modern
microprocessors design. The floor plan shown in Figure 4.2 shows some of its important
characteristics, the most obvious being its heterogeneous nature. The Cell contains nine
cores: one traditional PowerPC core (the PPE) and eight Synergistic Processing Engines
(SPEs). Table 4.1 lists some of the differences between both types of cores.

The PPE is a general purpose core, fully backwards compatible with the PowerPC
instruction set extended with special VMX SIMD instructions. The PPE allows the
Cell to execute all standard PowerPC software (albeit slowly). The PPE accesses main
storage in a traditional manner, using load/store instructions to transfer data between
the register file and the cached main storage. It is intended to run the operating system,
coordinating the SPEs, and other general purpose tasks.

The SPEs are specialized processor cores, designed for streaming workloads such as
games, multimedia applications or high performance computing. The SPEs have a very
simple architecture, divided into two parts: the Synergistic Processing Unit and the
Memory Flow Controller. These units operate in parallel, allowing for parallel compu-
tation and transfer of data. The SPU features a custom SIMD instruction set that is
processed in-order with dual issue capability. The absence of branch prediction or caches
makes its behavior deterministic. The MFC represents a radical break with conventional
architecture models, because it explicitly parallelizes computation and the transfers of
data and instructions. SPEs cannot access main memory directly, code and data must
be transferred to the Local Store through DMA. This also implies that both code and
data must fit in the 256kB local store.

Other notable features of the Cell are the high speed Element Interconnect Bus (EIB),
which allows for high bandwidth, low latency communication between PPE, SPE, main
memory and I/O, and the Memory Interface Controller (MIC) with a peak data rate of
25.6 GBps.

4.4. THE CELL BROADBAND ENGINE 31

Figure 4.2: Cell Broadband Engine architecture (taken from [6]).

PPE SPE

Core Count 1 8
Function General purpose tasks Streaming workloads
ISA PowerPC + VMX Custom SIMD
Type In-order dual issue In-order dual issue
Registers 32x 64b (GPR) 128x 128b

32x 64b (FPR)
32x 128b (VMX)

Memory Access Direct (cached) Through DMA
On-chip Memory 32kB L1 + 256kB L2 256kB Local Store
Branch Prediction Yes No
Other 2-way SMT

Table 4.1: PPE and SPE comparison.

4.4.2 Addressing the Three Walls

In the previous section the architecture of the Cell processor has been shown. Its design
addresses the frequency, power and memory barriers, in order to attain high performance
at relatively low power [26]. Its heterogeneous nature allows both types of processor core
to be optimized for their respective use, allowing for a low power, high frequency design.
The PPE is intended as a control-plane processor, the SPEs as data-plane processors.
Figure 4.2 shows that the SPEs are, compared to the PPE, relatively small. But for
certain workloads they are extremely fast. At 3.2 GHz, Cell has a peak performance

32 CHAPTER 4. COMPUTER ARCHITECTURE TRENDS

of 204.8 GFLOPS. In order to reach this peak rate, parallelism must be utilized on all
levels. The SIMD-nature of both processor types allows for fine grained parallelism;
coarse grained parallelism is achieved by running multiple threads on the various cores.

In order to address the memory wall problem, memory management has been made
explicit. The SPE’s Local Store reduces the dependence on low latency main memory
access. Parallel to computations, the MFC should be used to stream in new code or data
in the background. In effect, this setup trades latency for bandwidth. The combination
of MFCs, EIB and MIC allow for very many concurrent memory accesses.

To illustrate the level of performance the Cell processor is able to attain, consider
the Stanford Folding@Home project (FAH). FAH is a distributed computing project,
where volunteers donate computing time to aid with protein folding calculations. The
combined computation rate has peaked at a record five PetaFLOPS earlier this year.
The computations the FAH kernel performs are very well suited to the streaming nature
of the Cell. The Folding@Home client for the PLAYSTATION3, which contains the Cell
processor, is an order of magnitude faster than a 2.66GHz Xeon processor [30]. About
one tenth of the more than 330000 active clients constitute PLAYSTATION3 clients,
however they contribute about a quarter of the total available TFLOPS [3].

4.4.3 Cell Development Issues

In order to obtain high performance out of the Cell processor, programs are required to
have both good thread and data parallelism. Programs that contain both fine and coarse
grain parallelism are able to fully utilize the SIMD nature of all nine cores. This fact,
combined with what was shown in Section 4.3, shows that not all workloads are equally
suited to the Cell: at the very least, many programs will require extensive rewrites.

The exotic nature of the SPE memory architecture, with its explicit nature and
small Local Store, is another issue making software development more difficult. Software
kernels must be split in small chunks in order to fit into this tiny amount of memory.
Compare this to standard program development, where code and data size is no issue at
all. It is much more similar to the programming of embedded devices. Some program
types are suited well to the SPE’s nature, others, such as branch-heavy or pointer-chasing
applications, are not. These are best run on the PPE.

To simplify development on Cell, different programming models have been developed
for Cell. These include the PPU centric and SPE centric model, the function offloading
model, the device extension model, the computational acceleration model, streaming
models, and the asymmetric thread runtime model.

4.4.4 Cell Platform Roadmap

The flexibility of the Cell platform is expressed in the roadmap of Figure 4.3. The
heterogeneous multi-core nature allows for natural upwards as well as downwards scaling.
Low power designs can consists of fewer SPEs; high performance computing oriented
designs can utilize more. For example, the PowerXCell contains special SPEs that are
natively able to work with double precision floating point operations. As a result, its
double precision throughput is much higher, which is important for scientific workloads.
Also shown is a higher clocked future Cell variant consisting of 2 PPEs and 32 SPEs.

4.5. SUMMARY 33

Figure 4.3: Cell technology roadmap (taken from [22]).

Other ways in which the architecture could evolve include:

• Better performance per SPE by virtue of new instructions.

• Larger Local Stores per SPE.

• Lower main memory latency and higher bandwidth.

4.5 Summary

Continuously increasing transistor budgets as predicted by Moore’s law allow for increas-
ingly complex microprocessors. Three reasons underlie the current trend towards multi-
core architectures: frequency scaling is becoming more difficult, power consumption is
becoming more important, and memory technology scaling lags behind the increases in
microprocessor computational capabilities. Hence, parallel architectures are favored over
sequential architectures.

Parallelism can be exploited on many levels: from instruction level parallelism to
thread level parallelism. Parallelism exposed to the software engineer places additional
burden on software design. Moreover, based on Amdahl’s law, limits exist on the speed-
up gained from parallelism, especially when parallelizing existing software.

The Cell Broadband Engine, the implementation architecture of this thesis, is a
state-of-the-art microprocessor aimed at providing high performance at acceptable power
consumption levels by extracting parallelism at all levels. Its heterogeneous nature and
exposure of memory parallelism to the software engineer represents a radical break with
traditional microprocessor design.

PART II:

IMPLEMENTATION AND ANALYSIS

”I do not fear computers. I fear the lack of them.”

- Isaac Asimov

HMMER and HMMERCELL 5
T

his thesis contributes to the understanding of the behavior of bioinformatics
applications on many-core architectures by investigating HMMER, a repre-
sentative biosequence analysis application and part of SPEC CPU2006 [5], a

popular benchmark for computer performance. The Cell Broadband Engine architec-
ture is chosen as the implementation architecture, being a state-of-the-art heterogeneous
multi-core architecture. The thesis is centered around the Cell variant of HMMER, aptly
called HMMERCELL. The functionality and mathematical fundaments of this applica-
tion have already been covered in Chapters 2 and 3 respectively; the Cell architecture
was discussed in Chapter 4. In this chapter, HMMER’s internal functioning and the
peculiarities of the Cell version are shown.

In Section 5.1, the standard version of HMMER is discussed. In Section 5.2, relevant
aspects of the port of HMMER to the Cell architecture are described: the parallelization
strategy that was followed, implementation details and its limitations. In Section 5.3,
related work is discussed. The chapter concludes with a summary.

5.1 HMMER

HMMER is a freely available open source family of tools often used in biosequence
analysis by Eddy et al [14]. It is aimed specifically at protein sequence analysis. Groups
of protein sequences thought of as belonging to the same family are modeled with profile
Hidden Markov Models. HMMER has a specific profile model format, called the Plan7
Profile HMM Architecture (see Section 3.3.1 for more details). Residue positions in
the protein model correspond to states in the profile. Certain states have emission
probabilities, these represent the chance that an amino acid occurs at a given residue
position. In this manner, differences between sequences in the family, caused by for
example evolutionary mechanisms, can be modeled. The official website of the HMMER
project [16] contains the following description of the software’s function:

”Profile hidden Markov models (profile HMMs) can be used to do sensitive
database searching using statistical descriptions of a sequence family’s con-
sensus. HMMER is a freely distributable implementation of profile HMM
software for protein sequence analysis.”

This thesis focuses on one tool within the HMMER suite in particular: hmmsearch.
This program is used to compare a protein profile, or consensus, to one or more protein
sequences. The model is usually compared to entries in a sequence database (see Sec-
tion 2.4). The Viterbi algorithm is used to generate a score showing the quality of the fit
between the model and a sequence (see Section 3.2.1). Before taking an in-depth look at

37

38 CHAPTER 5. HMMER AND HMMERCELL

HMMER

Implementation Architecture

Sequences

Protein Model

Top Matches

(a) Black box view.

VIT

load seq
in mem

calculate
Viterbiw

h
il
e

(m
or

e
se

q
’s

)

(b) Internal view.

Figure 5.1: Functioning of hmmsearch.

the implementation, the program can be analyzed as a black box to make assumptions
on expected behavior. After obtaining empirical results, these can be compared to the
expectations. Peculiarities are then explained by inspecting the program structure.

Figure 5.1 shows a simplified view of hmmsearch functionality. Figure 5.1(a) sum-
marizes hmmsearch’s operation on some implementation architecture: based on a profile
HMM and one or more protein sequences, the output is generated by aligning each se-
quence to the profile. Each alignment results in a score. Alignments whose score exceeds
a certain threshold - i.e. sequences that appear to match the profile - are displayed.
Generally speaking, the execution time of hmmsearch is dominated by the time spent on
Viterbi decoding, which is performed once for each sequence in the sequence database.
Profiling shows that for all but the simplest workloads, Viterbi decoding accounts for
98+% of total hmmsearch running time. This is exemplified in Figure 5.1(b).

The time required to compute these results depends on a multitude of factors,
amongst others the size of the HMM, the amount of sequences in the test set and their
length, and the implementation architecture. The impact of these parameters on perfor-
mance will be more thoroughly investigated in Chapter 6. Since biosequence data sets
are growing at an ever increasing pace, minimizing the computation time is of utmost
importance.

5.2 HMMERCELL

HMMERCELL is a port of hmmsearch to the Cell micro-architecture by Lu et al [29].
The next section describes the parallelization strategy they followed when HMMER was
ported to the Cell architecture. It shows how the strengths of the Cell architecture were
exploited and its weaknesses circumvented. Then, limitations that the Cell architecture
imposed on the program are clarified.

5.2. HMMERCELL 39

5.2.1 Parallelization Strategy

Cell’s exotic nature makes optimal utilization difficult. Careful planning is required
to exploit its strengths while at the same time circumventing its weaknesses (recall
Section 4.4). It offers parallelism at multiple levels: Cell contains nine computation
cores, a PPE and eight SPEs, which ideally should be utilized simultaneously at all times;
moreover, in order to benefit from Cell’s very strong SIMD performance, vectorized code
that exhibits data parallelism is essential.

Like many bioinformatics applications, hmmsearch includes a computationally in-
tensive kernel that is repeated many times in succession; in the case of HMMER, the
Viterbi algorithm. As the most computationally expensive part, it is a natural starting
point for the exploitation of parallelism. Thus, the parallelization strategy followed by
HMMERCELL is to parallelize the Viterbi algorithm as thoroughly as possible. The
Viterbi algorithm contains both coarse grain and fine grain parallelism, forming a good
match for the Cell architecture. Processing sequences is an inherently parallel task, as
each sequence alignment can be determined independently and hence simultaneously. In
accordance with the manager/worker paradigm, these coarse grained jobs are distributed
over the processors. The PPE prepares jobs, which are then processed by the SPEs. A
job consists of aligning a single sequence to the profile HMM by performing Viterbi de-
coding. The Viterbi algorithm itself is also amenable to fine grain parallelization. Very
fast SIMDized versions of the algorithm exist; the implementation in HMMERCELL is
based on the highly efficient Altivec implementation by Lindahl [28].

Another important aspect of the Cell architecture is the explicit memory management
(again, recall Section 4.4). SPEs are unable to address main memory directly; instead,
each SPE has its own local store (LS) of 256 KB. Code and data must be transferred to
the LS via DMA. This has two important consequences for HMMERCELL.

First of all, the small size of the LS imposes limitations on the size of the data
structures the Viterbi algorithm can use. The algorithm requires memory space linear in
sequence length and HMM size, or O(n ·m) (see Section 3.2.1). Combined with the small
LS size, this has as result that the algorithm’s data structures only fit in memory for
small HMMs in conjunction with short sequences. To allow HMMERCELL to function
for common HMM sizes and sequence lengths, a modified version of the Viterbi algorithm
with a smaller memory footprint is used. This algorithm only outputs a score, it does
not store the alignment to which the score pertains. In this case, keeping the survivor
path to each state in memory is no longer necessary. Just an intermediate score is kept
for each state; hence, not O(n · m), but only O(n + m) space is required. In effect,
the SPEs are used to indicate which of the sequences in the test set are of interest. A
sequence that scores above a certain threshold is deemed a potential match. For those
high scoring sequences, the PPE obtains the alignment by performing traceback, i.e.
running the full Viterbi algorithm. The idea behind this division is that only a small
percentage of sequences actually scores above the threshold, hence few PPE traceback
is required. In the next chapter, traceback behavior is analyzed in more detail.

Secondly, the SPE code uses double buffering. Each SPE processes a large number
of sequences, one by one. To hide the latency of the memory operations, computation
and communication operations are overlapped: while the SPU is busy performing the

40 CHAPTER 5. HMMER AND HMMERCELL

Viterbi algorithm for one sequence, the MFC is already transferring the next sequence
(if available) to the LS. This is allowed by the explicit control over both units granted
to the programmer.

5.2.2 Implementation Details

HMMERCELL’s parallelization is organized according to the manager/worker pattern.
The PPE creates jobs, whereas the SPEs consume them. Figure 5.2 shows the basic
idea of the implementation. The Viterbi function consumes most of the time in stan-
dard HMMER. Therefore, the various functions displayed in the figure all relate to the
parallelization of the Viterbi processing phase in HMMER. The figure is divided in three
parts: the PPE, the SPE and main memory. Individual sequences are processed in three
stages: first, PPU BUF, then SPU VIT, and finally PPU TB (the corresponding states
are UNPROCESSED, UNCHECKED and FINISHED). In the figure, data movements
corresponding to each function are annotated with one, two and three, respectively. The
individual stages are now discussed in more detail.

The PPE performs two important functions: buffering and traceback. First, all se-
quences are buffered, loading them one-by-one from storage into aligned memory. For
each sequence, an appropriate entry into the administrative structure is created, con-
taining, amongst others, the length of the sequence, its location in memory, and a status
entry that signifies the state of the sequence (PPU BUF). Initially, this status is set to
UNPROCESSED. When all sequences are buffered, the PPE proceeds with scanning
through the status entries in the administrative structure to check their results. For
each unchecked sequence, the following procedure is performed: if the sequence has a
high enough score to count as a significant match to the profile, the PPE computes the
Viterbi algorithm to produce the alignment to the model. Then, regardless of score, the
status entry is updated to FINISHED (PPU TB).

SPE execution follows a simple routine. When the SPE is first started, the HMM
against which all sequences need to be aligned is copied to the LS (not shown in the
figure). Then, as long as there are still sequences to be processed, SPEs wait for a
sequence to become available. When a job becomes available, its administrative entry
and sequence are transferred to the LS, the reduced Viterbi algorithm is performed, and
the entry of the job in the administrative structure is updated with status UNCHECKED
and its resulting score (SPU VIT). When all sequences have been processed, the SPEs
quit.

In the figure, only one SPE is displayed. However, as the processing of sequences
is independent, the number of SPEs that could be put to use is restricted just by the
number of sequences in the test set. Normal workloads contain tens of thousands of
sequences or more. Hence, in practice, there is no limit on the SPE count. The figure
also shows that most communication between PPE and SPEs is performed through the
data structures in main memory. Synchronization by means of mutexes ensures exclusive
access to these data structures. Not shown in the simplified overview is the use of pre-
buffering of sequences at the PPE-side. Before the SPEs are started, an initial batch of
jobs is created for the SPEs to ensure that they do not immediately stall and wait until
the first jobs become available. When this first batch is created, the PPE starts the SPEs

5.2. HMMERCELL 41

PPE
Main

Memory SPE

PPU BUF

load seq
in mem

create
admin
entry

PPU TB

candidate
?

calculate
full Viterbi

update
admin

X

SPU VIT

obtain
admin

obtain seq

calculate
modified
Viterbi

writeback
result

X

SEQARRAY

seq1
seq2
...

seqn

ADMIN

seq1
seq2
...

seqn

w
h
il
e

(m
o
re

se
q
’s

)

yes

no

w
h
il
e

(u
n
c
h
e
c
k
e
d

se
q
’s

) w
h
il
e

(s
e
q
’s

le
ft

)

1

1
2

2

2

3

3

Figure 5.2: HMMERCELL internal functioning.

and then continues buffering more jobs. Finally, as explained earlier, double buffering is
used at the SPE-side, to overlap the transfer of a new sequence with computations on
another sequence.

Two characteristics of the current program structure, the manager/worker pattern
and the requirement for full traceback, create a potential bottleneck: the PPE is put
under pressure as it has two separate functions: ensuring that enough jobs are available
for the SPEs and that traceback calculations are performed. In the next chapter, the
implications of these issues are investigated.

5.2.3 Limitations

Certain characteristics of the Cell architecture make it well-suited to bioinformatics
applications. The parallelism naturally available in such applications is a good fit to

42 CHAPTER 5. HMMER AND HMMERCELL

(a) Pfam database (b) UniProt database

Figure 5.3: Distribution of protein database element sizes.

the parallel nature of the Cell. However, its architecture also imposes some limitations.
As shown earlier, the small LS size requires the use of a modified version of the Viterbi
algorithm. Even when using this variant of the algorithm, hard limits on the size of the
profile HMM and the sequences are imposed. This section investigates these limitations
in more detail.

The size of the SPE LS is 256 KB. HMMERCELL allocates this available memory as
follows: 150 KB is reserved for the profile HMM, 10 KB is reserved for the sequence to
be processed. But as double buffering is used, 2x 10 KB are required. The rest of the LS
is filled with code and temporary data. The 150 KB reserved for the HMM corresponds
to models with a length of at most 500 residue positions. Each residue position in the
model requires the following data: emission probabilities and scores for every amino acid
and transmission probabilities to the follow-up states. The 10 KB reserved for sequences
allows for sequences with a length of at most 10000 symbols, as amino acids can be
represented by a single byte.

The limitations on the size of the HMM models and on the length of the sequences
that can be used somewhat restrict the applicability of HMMERCELL. However, as will
be shown, these restrictions do not severely reduce the number of queries that can be
performed. In order to show the impact, the following figures depict the distribution
of HMM model size and sequence length in two popular bioinformatics databases. In
Figure 5.3(a), the distribution of model sizes in the Pfam database is shown. The
histogram shows for each profile size bin how many models the bin contains. Just 651
out of 10340 profile HMMs contain more than 500 residue elements; 93% of the models
are shorter. Moreover, only a few models are much larger: 99.5% of the models contain
a thousand elements or less. Consequently, a somewhat larger LS, where twice as much
memory could be allocated to the HMM, would allow practically every HMM to be used.
Figure 5.3(b) shows the distribution of sequence lengths in the UniProt database. The
histogram shows the number of sequences ordered by sequence length. Just thirteen out
of 468851 protein sequences are larger than the imposed limit of 10000 symbols. The
average sequence contains only 354 symbols. Hence, this limitation is not very restrictive.

5.3. RELATED WORK 43

5.3 Related Work

This section reviews various work related to HMMER. This helps placing HMMERCELL
into its proper context. First, performance of HMMERCELL is compared to versions
of HMMER that run on other processor architectures, which allows a better apprecia-
tion of the performance characteristics of Cell for suitable applications. Then, results
from FPGA and MPI versions of HMMER are discussed. Also shown is a first look at
HMMER3.

The performance of HMMERCELL as compared to commodity x86 architectures is
shown in Figure 5.4 [29]. In this figure, results from alignment to a four hundred length
HMM are shown, with performance normalized to a regular eight SPE Cell. Cell is
compared against the AMD Opteron platform (2.8 GHz, 1-4 cores used) and against the
Intel Woodcrest platform (3.0 GHz, 1-4 cores used). From the graph, the exceptional
computational capabilities of the Cell architecture become obvious. A single Cell is
thirty times faster than a single-core Intel or AMD processor. However, note that the
SIMD capabilities are left unused on the x86 platforms, which would grant them a 4-7x
speedup. But even then, Cell compares favorably.

Figure 5.4: HMMERCELL Performance Comparison.

HMMER has been ported to many different platforms and architectures. Field Pro-
grammable Gate Arrays (FPGAs) represent a cost-effective solution allowing potentially
large speed-up, if the application can be mapped well to them. In [35], suitability of FP-
GAs to HMMER is investigated. As in HMMERCELL, the computationally intensive
kernel of the Viterbi algorithm is mapped onto the FPGA. Similar to HMMERCELL,
the FPGA is used as a filtering mechanism: sequences with a promising score require
reprocessing on the host machine. A thirty fold speed-up over an AMD Athlon64 3500+
is reported, which is comparable to results from HMMERCELL.

The MPI-based MPI-HMMER was introduced to take advantage of computer clusters
[44]. Similar to HMMERCELL, one node is assigned a manager-role, the rest of the
machines are workers over which the workload is distributed. To cope with overhead
from message passing, sequences are grouped in larger bundles and sent as one message.
Through double buffering, communication latency is minimized. An eleven-fold speed-
up is reported when using sixteen machines. In [43], MPI-HMMER is analyzed and the
manager node is demonstrated to be a bottleneck. For MPI-HMMER, scaling is effective
up to 32-64 nodes, depending on workload. PIO-HMMER is introduced, addressing
I/O-related bottlenecks through use of parallel I/O and optimized post-processing. The

44 CHAPTER 5. HMMER AND HMMERCELL

manager distributes an offset file with sequences to each node, worker nodes read the
sequences from their local database. Furthermore, nodes only report significant results
back to the manager. The resulting scaling capability is much improved, as up to 256
machines can be used effectively.

HMMERCELL is based on the most recent version of HMMER. A new version, HM-
MER3, will be released in the near future [16]. Its most promising feature is that it
addresses the slow speed of profile HMM-based methods, which forms their main draw-
back. In contrast, HMMER3 is as fast as BLAST. This makes HMMER even more
relevant, as the trade-off between sensitivity (choosing HMMER) or throughput (choos-
ing BLAST) is no longer required. The improvement is mainly the result of pervasive
use of vector instructions in combination with the processing of sequences through an
increasingly more sensitive and slow filtering pipeline [19]. The results from this thesis
are not directly applicable to HMMER3, as the new algorithms will have a profound
effect on its behavior. However, the general methodology described remains valid.

5.4 Summary

In this chapter, the results from qualitative analysis of HMMER, a representative bioin-
formatics application, are presented. The Hmmsearch tool in the HMMER package is
used to align a set of sequences to a protein model, which is represented by a profile
HMM. The alignment is obtained by performing the Viterbi algorithm for each sequence
in the data set. HMMER’s execution time is almost exclusively determined by this
function, making it a good candidate as starting point for parallelization.

HMMERCELL is the port of hmmsearch to the Cell architecture by Lu et al [29].
Their implementation was inspected to discover the program structure and its suitability
to the Cell architecture. The Viterbi algorithm is parallelized using the manager/worker
pattern. It maps well on the Cell architecture, as both coarse grained parallelism (pro-
cessing sequences in parallel) as well as fine grained parallelism (using a SIMDized version
of the algorithm) can be utilized. The Cell architecture also presents some challenges: in
order to fit the algorithm into the SPE’s local store, a modified version of the algorithm
with a smaller memory footprint is used. This version only produces a score, which indi-
cates how well a sequence matches the model. When a sequence scores above a certain
threshold, the PPE has to perform the full Viterbi algorithm in order to produce the
alignment between the sequence and the model. Additionally, the small size of the local
store places restrictions on the size of the HMM and of the sequences that can be pro-
cessed. The manager/worker parallelization strategy and the traceback mechanism both
introduce potential bottlenecks. Their effects will be investigated in the next chapters.

Cell appears to be an excellent implementation platform for HMMER, as HMMER-
CELL outperforms x86-based implementations by up to thirty times. FPGA implemen-
tations are able to achieve similar speed-up. HMMER can also take advantage of large
computer clusters, MPI-based version are scalable up to 256 machines. A new version of
HMMER will soon be introduced. This makes the use of profile HMM-based methods
even more attractive, as HMMER3 addresses their main drawback: processing speed.

Performance Analysis 6
I

n the previous chapter, the internal operation of hmmsearch and the Cell specific
version called HMMERCELL was clarified. An abstract view of the program’s
functionality was presented, the parallelization strategy being followed was dis-

cussed, and limitations of the port were shown. In this chapter, the performance of
HMMERCELL is analyzed. The parameters and the functions that are relevant to
the application’s performance are identified and the influence of these parameters is in-
vestigated. Implications of the peculiarities of the HMMERCELL port and the Cell
architecture are scrutinized. Based on the results, an analytical model to predict the
performance of HMMERCELL is proposed. Applications of this model include estima-
tion of the required computation time for a test set or determination of the number of
SPEs that can be effectively used to minimize execution time for a given workload.

In Section 6.1, HMMERCELL behavior is discussed and the test sets and test en-
vironment are described. In Section 6.2, profiling results are shown. In Section 6.3, an
analytical model is formulated based on the results. The model is validated and used to
identify potential bottlenecks to performance. The chapter is concluded with a summary.

6.1 Inspecting HMMERCELL Behavior

Before presenting the profiling results, relevant parameters to HMMERCELL perfor-
mance are discussed first. A short summary of the parallelization strategy is given to
help obtain a clear view of the important parts of the program structure. The input
and output variables are discussed next. Then, the test sets that have been used and
a motivation for their structure is given. Finally, the test environment from which the
results have been obtained, will be discussed.

Execution time in hmmsearch is spent almost exclusively in the Viterbi function,
which computes an alignment between an HMM and a sequence. HMMERCELL’s
parallelization strategy attempts to distribute this workload evenly over the available
processors by utilizing the manager/worker pattern: the PPE creates jobs (PPE BUF)
which are consumed by the available SPEs (SPE VIT). The small size of the SPE’s local
store requires the use of a modified Viterbi algorithm with a smaller memory footprint.
This modified algorithm stores only the resulting alignment score; the survivor paths
are not stored in their entirety. Therefore, sequences with a sufficiently high probabil-
ity of being a match to the model require recalculation of the alignment by the PPE
(PPE TB). Three aspects deserve further investigation: the effects of the introduction
of this manager/worker split, the number of SPEs that can be put to effective use, and
the influence of traceback on performance.

The input parameters for hmmsearch are a profile HMM and a set of sequences that

45

46 CHAPTER 6. PERFORMANCE ANALYSIS

Input Parameters

Profile HMM Model length
Sequences Number of sequences

Distribution of sequence lengths

Output Parameters

High Scoring Sequences Bit score and E-value
Alignment

Execution Time Time in milliseconds

Architecture Characteristics

Cell Broadband Engine Number of SPEs in use

Table 6.1: Relevant hmmsearch parameters.

will be matched to the profile. The output consists of a set of high scoring alignments.
A particular combination of profile HMM and set of sequences should always yield the
same resulting alignments. Hence, only quantitative measures are of interest. Execution
time of the algorithm is therefore taken as the measure of application performance.

Table 6.1 summarizes relevant details of the input and output variables hmmsearch
uses. With regard to input parameters, for the profile HMM only the number of residue
positions in the model is relevant. Important characteristics of the sequence test set are
the number of sequences the set contains and the distribution of lengths of sequences in
the set. The influence of the number of SPEs on performance is investigated to find out
what the maximum number of processor cores is that can be effectively used.

One aspect deserving further explanation is the following. The resulting alignments
and alignment scores are of course dependent on the particular combination of HMM
and sequence set: some sequence sets will match the model better than others, as they
contain more homologues. Also, some HMMs model proteins formed out of more com-
mon substructures than other more exotic proteins, resulting in more tracebacks. As
a result, the number of sequences that require traceback will vary accordingly. Hence,
the requirement for traceback depending on alignment score introduces some inherent
uncertainty, as will be shown later on.

As execution time is dominated by the Viterbi calculations, the expected result of
altering input parameters can be determined based on the behavior of this algorithm.
Processing time should scale linearly in the size of the profile HMM, since the Viterbi
algorithm is linearly time dependent on the number of states in the profile HMM. The
composition of the set of sequences (their number and size), has the following effect
on execution time: the Viterbi algorithm is linearly time dependent on the length of
a sequence. Moreover, since sequences are processed independently of one another,
execution time should scale linearly in the number of sequences.

Before running actual tests, it is useful to think about what ideal scaling behavior
would be for this application. An increase in the number of SPEs should result in a linear

6.1. INSPECTING HMMERCELL BEHAVIOR 47

decrease in processing time, since the workload is evenly spread over all processors. Of
course, this assumes perfect load balancing, i.e. the PPE and SPEs are all busy and
finish at exactly the same time. Since workloads have a discrete size, this is unlikely to
be the case. Moreover, the current parallelization pattern makes the PPE responsible
for two tasks: managing the SPE job creation and performing traceback for promising
sequences. Hence, for every workload there exists an SPE count that will saturate the
PPE: either when job creation proceeds at a slower pace than SPE job consumption, or
when PPE job creation and traceback together takes more time than the SPE Viterbi
calculations. As next generation CELL processors will likely tilt the balance between
PPEs and SPEs towards more SPEs (see Section 4.4.4), it is interesting to find out how
many SPEs can be used effectively for different workloads.

6.1.1 Test Sets

HMMERCELL has been subjected to a variety of tests in order to determine the appli-
cation’s behavior. In a typical HMMER use case, a protein model is compared against
all entries in the UniProt database (see Section 2.4). Constraints on the size of the data
set led to the use of a smaller representative subset of this database. With this data set,
performance of a typical use scenario is simulated and analyzed. To investigate scaling
behavior, the different functions of importance are investigated separately. The influence
of three aspects is measured: the characteristics of the profile HMM to search with, the
composition of the sequence test set to compare against and the number of SPEs the
application is allowed to use. Table 6.2 gives an overview of the different conditions that
have been tested.

To determine the impact of the HMM model size, five HMM lengths are used; their
sizes evenly distributed up to the maximum allowed size by HMMERCELL. They have
been selected at random out of the Pfam database. The table indicates the specific
HMMs that have been used. During most tests, only one HMM of each size is used.
For the test aimed at investigating traceback behavior, the HMMs listed in parenthesis
are used. As the number of tracebacks for a given combination of HMM and test set is
dependent on the biological match between protein sequences and protein model (recall
Section 3.3.2), multiple HMMs are used in order to produce an average traceback score.

The sequence test sets consist of randomly selected sequences from the UniProt
database. The following sequence sets have been created:

”Representative” To investigate typical HMMER use, a set of sequences has been
made whose distribution in length is representative to the occurrence of sequences
in the UniProt database (see Section 2.4). The number of sequences in the test
set, 20000, is chosen sufficiently large, making overhead from e.g. initialization
negligible.

”Length” To investigate scaling behavior in sequence length, a number of sequence sets
with a thousand sequences each have been created. Each set contains successively
larger sequences: the first contains sequences ranging from 1-120 symbols; the sec-
ond sequences with 121-240 symbols; et cetera. The largest set contains sequences
of up to 1560 symbols.

48 CHAPTER 6. PERFORMANCE ANALYSIS

Profile HMM Length and Description

100 COQ7 (SRI 2, Syntaxin-6 N, Transposase 9, tRNA synt 1c R2,
T Ag DNA bind)

200 CNTF (HutD, ICAP-1 inte bdg, NanE, RIO1, R equi Vir)
300 CitG (ketoacylsynt, Lipoprotein 1, Ndr, Nuc sug transp,

Peptidase U4)
400 Acyl transf 1 (DUF819, DUF898, Herpes U34, IpaC SipC,

RNA pol Rpc82)
500 ADP PFK GK (ADP PFK GK, Arabinose Isome, Sulfatase,

GDE C, Molybdopterin)

Sequence Test Set Composition

”Representative” 20000 sequences with representative* length (see text)
”Length” 1000 entries each, sequence sizes range from 1-120,

121-240, . . . , up to sequences of 1560 symbols.
”Test Set Size” Sets containing 100, 1000 and 10000 sequences.

Number of SPEs Used

1, 2, 4, 8, 16

Table 6.2: Test set overview.

”Test Set Size” Traceback behavior is also dependent on test set size (again, recall
Section 3.3.2). Hence, test sets containing different numbers of sequences (100,
1000 and 10000 sequences) have been created. Of each size, five test sets have been
produced by randomly selecting UniProt sequences (see Section 2.4).

To investigate scaling behavior of the application in the number of SPE cores that are
used, tests have been performed with 1, 2, 4, 8 and 16 SPEs. Although a Cell processor
contains only eight SPEs, the test systems contain two Cell processors each. Hence,
sixteen SPEs can be utilized (but in this case, the second PPE is not used).

6.1.2 Test Environment

HMMERCELL is a port of HMMER v2.3.2 to the Cell architecture. Tests are performed
on the Cell cluster located at the Barcelona Supercomputing Center [1]. The BSC is an
important partner in research and development for the Cell architecture. Dedicated test
facilities are available on which jobs are scheduled. These jobs are granted exclusive
access, preventing external factors from influencing the results. Each machine contains
two Cell processors and hence two PPEs and sixteen SPEs.

In order to analyze HMMERCELL, traces that record information about runtime
behavior have been created by executing an instrumented version of the application.
These traces are reviewed to investigate performance. HMMERCELL source code has
been instrumented with calls to the MPItrace tracing library [10]. Calls to this library

6.1. INSPECTING HMMERCELL BEHAVIOR 49

Figure 6.1: Overhead resulting from trace instrumentation.

Figure 6.2: Paraver trace file visualization.

are manually inserted at critical parts of the code, so that the order and timing of
important events that occur during runtime can be analyzed later on. Impact of the
tracing instrumentation calls on performance is shown in Figure 6.1. Overhead has been
investigated under two scenarios (both using the representative test set): one with an
HMM of length 100 using one SPE; the other with an HMM of length 500 using two
SPEs. During one setup traces with only a few events are generated, resulting in a trace
file of a few KB. Another setup, tracing a great number of events, produces trace files in
the order of a few MB in size. From the figure, it is obvious that the resulting overhead
is small to negligible as the difference in execution time is marginal.

The generated traces are inspected with the Paraver tool [37], a visualization envi-
ronment for trace files. Traces can be displayed in various ways: for example, a graphical
overview can be shown or detailed numerical statistics can be produced. The trace file
can be filtered to prune irrelevant events, in order to focus on specific details. A seman-
tic module can be used that interprets the events, giving meaning to the data set. An
example visualization is presented in Figure 6.2. It shows the result from a test with
one PPE and eight SPEs. The phases PPU BUF (pink), PPU TB (green) and SPU VIT
(orange) are clearly distinguishable. The light blue color signifies inactivity.

MPItrace and Paraver have both been developed by the BSC. When used in conjunc-
tion, they offer the user powerful tools of analyzing program performance and behavior.

50 CHAPTER 6. PERFORMANCE ANALYSIS

6.2 Profiling Results

In this section, the results obtained from profiling HMMERCELL are presented. First,
an overview of the application’s performance profile is given. Then, the scaling behavior
of the various functions that constitute overall performance (PPU BUF, SPU VIT and
PPU TB) is investigated in more detail. To this end, traces have been generated run-
ning the application using various input parameters: test sets consisting of sequences of
varying length, different HMM sizes and a varying number of SPEs.

Figure 6.3: HMMERCELL execution time overview.

Figure 6.3 shows execution time when performing sequence alignment using the rep-
resentative sequence test set for different HMM lengths and SPE count, giving a general
idea of run-time performance. The overview immediately reveals a few trends: larger
HMMs require correspondingly longer execution time; in general, using additional SPEs
leads to shorter execution times; only a certain number of SPEs can be used effectively,
depending on the workload. Due to overhead, using more SPEs results in identical or de-
teriorated performance. For example, using sixteen SPEs is slightly slower than eight, as
off-chip communication is required since the Cell contains just eight SPEs. The effective
SPE count can be calculated using the model proposed later on.

The results have been investigated in more detail by inspecting the scaling behavior
of the functions that constitute HMMERCELL performance. For each function, two
graphs are shown: one in which HMM size is varied, the other with varying sequence
length. This facilitates the recognition of scaling behavior. Behavior at the functional
level is irrespective of SPE count. Hence, results are shown with just one SPE.

6.2.1 Scaling of PPE Buffering Function

Figure 6.4 shows the scaling behavior of the PPU BUF function. This function loads
sequences from disk into main memory and creates corresponding entries into the ad-
ministrative structure. In both figures, the vertical axes represent execution time. Fig-
ure 6.4(a) shows scaling results in sequence length. In this figure, the horizontal axis
stands for the sequence length, ranging from very short to medium length sequences.

6.2. PROFILING RESULTS 51

(a) vs sequence length (b) vs HMM size

Figure 6.4: PPU buffering function behavior.

The different lines show the results for the different HMM sizes. Figure 6.4(b) presents
scaling results in HMM size. In this figure, on the horizontal axis HMM size is given and
the lines stand for the various sequence sets. In the legend, the average sequence length
per test set is shown.

From the figure, it becomes clear that PPU BUF computation time scales linearly in
the sequence length and it is irrespective of HMM size. This is in line with expectations:
loading a sequence from disk by the PPE has no relation whatsoever with the HMM
size, it is dependent solely on the sequence’s length.

6.2.2 Scaling of SPE Viterbi Function

(a) vs sequence length (b) vs HMM size

Figure 6.5: SPU Viterbi function behavior.

Figure 6.5 shows the scaling behavior for the SPU VIT function, which performs the
Viterbi calculations on the SPE. As before, the vertical axis in both graphs displays
execution time. The left figure shows scaling in sequence length, the right scaling in
HMM length. From the figures, it is obvious that SPU VIT computation time scales
linearly both in the length of the sequence and in the size of the HMM profile. Again,
this confirms expectations, as in Section 3.3.1 it was already shown that the Viterbi
algorithm scales linearly in sequence length and linear for models cast in HMM form.

52 CHAPTER 6. PERFORMANCE ANALYSIS

6.2.3 Scaling of PPE Traceback Function

(a) vs sequence length (b) vs HMM size

Figure 6.6: PPU Viterbi traceback function behavior.

Figure 6.6 shows the scaling behavior of the PPU TB function, which performs the
full Viterbi algorithm on the PPE to produce the alignment for those sequences that are
a potential match to the model. Compared to previous graphs, PPU TB behaves less
regular. Whereas PPU BUF and SPU VIT are performed for each sequence in the test
set, the Viterbi calculations in PPU TB are only performed for a subset of sequences:
those whose score exceeds a certain threshold. The actual number depends on how well
sequences in the test set correspond to the model and varies accordingly. Performance of
PPU TB is now analyzed further by breaking it down in two components: the number
of times traceback is performed and the time required for an individual traceback.

Figures 6.7(a) and 6.7(b) show the number of tracebacks performed given different
sequence and HMM combinations; Figures 6.7(c) and 6.7(d) show the average time for
a single traceback. The number of tracebacks multiplied by the time per traceback
produces the total time spent in the traceback function, as given in Figure 6.6.

The time per individual traceback behaves as expected: execution time scales more or
less linearly in both sequence length and HMM size. The full Viterbi algorithm requires
a large data structure in memory. Traversing the memory hierarchy causes the observed
staggered scaling. Fluctuations in the number of tracebacks are the main reason for the
erratic results in total traceback time. Some correlation between length and traceback
count does exist: generally speaking, longer sequences lead to more hits, since local
alignment is performed. Subsections of a sequence are allowed to form a match to the
model, hence the longer the sequence the larger the probability of a matching subsection.
HMM size has no clear effect on performance.

The number of tracebacks is affected by two factors (recall Section 3.3.2): the partic-
ular combination of HMM and sequence set, i.e. their biological match; and the number
of sequences in the test set, as the E-value depends on test set size. Table 6.3 contains
results from further traceback count analysis, showing the number of tracebacks required
for different test set sizes and HMMs. Five test sets of each size were generated (listed
in the columns). Also, five different HMMs of each HMM size were used (listed in the
rows). The results show large variation in the number of tracebacks between HMMs,
even for those having identical length. Differences between the test sets of equal size are

6.2. PROFILING RESULTS 53

(a) Traceback count vs sequence length (b) Traceback count vs HMM size

(c) Time per traceback vs sequence length (d) Time per traceback vs HMM size

Figure 6.7: Traceback in-depth analysis.

much less pronounced. Larger numbers of sequences only require a few more tracebacks,
as a weak logarithmic relationship between test set size and traceback count is present
(again, recall Section 3.3.2).

Number of Sequences in Test Set

H
M

M
le

n
g
th

100 1000 10000

29 34 29 28 32 47 47 43 51 58 47 58 49 60 62
36 37 38 31 33 93 89 106 100 95 202 194 200 180 198
42 38 45 43 43 92 90 97 94 103 155 154 155 149 149
30 33 34 29 32 69 75 74 63 66 132 125 108 113 133

1
0
0

31 29 33 25 21 46 50 43 60 44 65 63 60 63 65
40 39 43 31 38 99 101 81 80 90 135 142 156 152 131
21 25 28 22 23 35 39 41 43 36 42 49 56 43 47
44 42 41 41 41 115 102 108 114 107 226 189 221 197 196
39 46 44 39 37 81 81 74 75 78 116 122 122 134 125

2
0
0

35 34 43 30 33 86 69 63 60 83 93 97 92 106 116
38 37 41 30 37 110 104 103 97 102 215 215 223 232 242
25 23 26 26 24 55 55 50 60 63 96 95 97 94 103
27 26 24 26 28 44 46 47 54 49 69 59 56 67 65
27 29 28 27 31 73 69 77 73 76 176 161 195 161 166

3
0
0

26 25 29 26 26 57 60 73 66 69 106 82 100 90 108
32 29 33 28 34 105 84 104 98 102 351 296 322 301 321
31 29 28 29 29 116 89 106 107 118 535 436 517 479 524
22 25 26 21 22 37 41 37 35 29 50 48 39 48 51
21 27 28 24 26 64 63 71 74 82 162 163 177 150 165

4
0
0

28 27 31 27 27 65 56 77 79 75 122 119 119 116 145
25 25 31 25 25 66 61 66 75 80 93 106 96 109 125
39 40 38 38 33 94 76 75 79 83 136 108 111 118 140
23 26 25 26 28 43 49 53 50 49 75 81 63 77 80
32 28 29 26 27 54 49 57 71 54 83 72 77 89 88

5
0
0

28 25 31 26 27 55 52 67 62 61 99 105 89 104 108

Table 6.3: Traceback count vs HMM (row) and vs number of sequences (column).

54 CHAPTER 6. PERFORMANCE ANALYSIS

HMM Size Sequence Size Test Set Size

PPU BUF independent linear linear
SPU VIT linear linear linear
PPU TB(# of TB’s) independent * (see text) *(see text)
PPU TB(time per TB) linear linear independent

Table 6.4: Scaling behavior summary.

6.3 Analytical Model

As discussed earlier, the function that performs Viterbi computations dominates HM-
MER execution time. In HMMERCELL, this function was decomposed into three sub-
functions: buffering of sequences (PPU BUF), reduced Viterbi calculations (SPU VIT)
and full Viterbi calculations (PPU TB). Based on the findings from the previous sec-
tion, models can be formulated to predict the execution time for each of these functions.
Together, they can be combined to form a model for HMMERCELL’s performance. Ta-
ble 6.4 summarizes the scaling behavior of the different functions of interest (PPU TB
has been split up in number of tracebacks required and in time per individual traceback).

The input parameters mentioned in Section 6.1 are variables in the model. They are
parameterized as follows:

• the profile HMM H has a model length m,

• the test set S contains n sequences: s1, s2, . . . , sn; each with length lx,

• the Cell processor contains one PPE and q SPEs.

As per table 6.4, linear equations have been formulated for the scaling behavior of
each function. Equation 6.1, 6.2 and 6.3 model the required execution time for processing
an individual sequence. Function ITB(H,si,n) is an indicator function, returning 1 when
the alignment between sequence si and model H is significant for a test set of size n;
otherwise it returns 0.

tPPU BUF (si) = α · li + Cα (6.1)

tSPU V IT (si) = β · m · li + Cβ (6.2)

tPPU TB(si) = (γ · m · li + Cγ) · ITB(H,si,n) (6.3)

Aggregating the equations for individual sequences to the entire test set results in
Equation 6.4, 6.5 and 6.6. Notice that the indicator function ITB has been replaced by a
generalized probability PTB for a sequence in test set S to require traceback. Predicting
the result of indicator function ITB is difficult, as it requires full knowledge of the bio-
logical match between the protein model and sequence. On the other hand, probability
PTB can be more easily estimated based on the traceback count results from the previous
section. Also, note that SPU VIT is time required for the Viterbi computations on all
the SPEs combined.

6.3. ANALYTICAL MODEL 55

PPE

SPE

PPU BUF PPU TB

bu
f

S

v
it

S

bu
f

E
tb

S

v
it

E

tb
E

SPU VIT

time

Figure 6.8: Schematic overview of dependencies between functions.

TPPU BUF (S) = α ·

n
∑

li + n · Cα

= n · (α · l̄ + Cα) (6.4)

TSPU V IT (S) = β · m ·
n

∑

li + n · Cβ

= n · (β · m · l̄ + Cβ) (6.5)

TPPU TB(S) = (γ · m ·
n

∑

li + n · Cγ) · PTB(H,S)

= n · (γ · m · l̄ + Cγ) · PTB(H,S) (6.6)

with PTB(H,S) =
δ · lnn + Cδ

n

In order to obtain an integrated model for HMMERCELL performance, the interre-
lation between the different functions needs to be taken into account. The dependencies
between the three functions have been discussed in Chapter 5 and are visualized in
Figure 6.8. Function SPU VIT starts after function PPU BUF starts, as at least one
sequence has to be buffered before processing by the SPEs can commence. Function
SPU VIT ends after function PPU BUF ends, as the last sequence to be buffered must
be processed as well. Function PPU TB starts when function PPU BUF ends, as the
PPE is first occupied with the buffering of sequences, after which it commences with
traceback. Function PPU TB ends after function SPU VIT ends, as the last processed
sequence must be checked by the PPE as well. Depending on the workload, a large part
of PPU TB can consist of idle time, where the PPE waits for an SPE to finish processing
a sequence.

In general, a test set contains thousands of sequences. Hence, the processing time
of any individual sequence is insignificant when compared to total execution time. For
example, take a test set consisting of just a thousand sequences. Even when using ten

56 CHAPTER 6. PERFORMANCE ANALYSIS

SPEs, on average, processing time for a single sequence would be only 1% of total execu-
tion time. This observation allows for two simplifications: first, the above dependencies
between the functions can be approximated as follows: PPU BUF and SPU VIT start
at the same time; PPU TB starts when PPU BUF completes; and PPU TB must finish
after SPU VIT. Secondly, load balancing between SPEs is assumed to be perfect, as all
processes will finish at approximately the same time.

Then, the accuracy of the model relies on the assumption that the test set contains
a large number of sequences, so that the granularity of individual sequence processing
becomes very small. Otherwise, the dependencies between processing stages become a
non-negligible factor to performance. However, as relevant workloads consist of many
thousands of sequences, this assumption seems valid. With these simplified rules, exe-
cution time per processor can be summarized as shown in Equation 6.7 and 6.8. Equa-
tion 6.9 shows the total execution time:

TPPE = TPPU BUF + TPPU TB (6.7)

TSPE = (TSPU V IT)/q (6.8)

Ttotal = max(TPPE , TSPE) (6.9)

6.3.1 Parameter Estimation

The model as proposed in the previous section contains a few unknowns: parameters
α to δ, Cα to Cδ from the linear equations and function PTB(H,S). Their values are
specific to the implementation of HMMERCELL on the Cell architecture. To estimate
their values, the results from Section 6.2 have been used to parameterize Equation 6.4,
6.5 and 6.6, resulting in Equation 6.10, 6.11 and 6.12:

TPPU BUF (S) = n · (
0.19

103
· l̄ +

5.52

103
) (6.10)

TSPU V IT (S) = n · (
0.59

103
·

m

102
· l̄ +

0.88

103
) (6.11)

TPPU TB(S) = n · (
2.25

103
·

m

102
· l̄ +

35.7

103
) · PTB(H,S) (6.12)

with PTB(H,S) =
21.9 · lnn − 73.2

n

From these equations a few immediate observations can be made by comparing the
constants in the different equations. First, recall from Section 2.4 that the typical size
of an HMM (parameter m) is in the order of a few hundred symbols and the average
length of sequences in the UniProt database is 355 (parameter l̄). Then, filling in these
parameters in the equations, it follows that PPE buffering takes about an order of
magnitude less time than the Viterbi calculations on the SPE. Another observation is
that an SPE is about four times as fast at Viterbi calculations than the PPE, as this

6.3. ANALYTICAL MODEL 57

Test Empirical Result Expected Result Diff
(n/m/q) BUF VIT TB BUF VIT TB BUF VIT
20k, 150a, 1 1498 6349 581 1459 6301 176 -2.6% -0.8%
20k, 150a, 8 1492 797 581 1459 788 176 -2.2% -1.2%
20k, 150b, 1 1442 6345 336 1459 6301 176 1.2% -0.7%
20k, 150b, 8 1492 797 335 1459 788 176 -2.2% -1.2%
20k, 450a, 1 1441 18440 777 1459 18868 519 1.3% 2.3%
20k, 450a, 8 1448 2303 776 1459 2359 519 0.8% 2.4%
20k, 450b, 1 1441 18436 1032 1459 18868 519 1.3% 2.3%
20k, 450b, 8 1446 2305 1031 1459 2359 519 0.9% 2.3%
40k, 150a, 1 3071 12747 1031 2934 12673 196 -4.7% -0.6%
40k, 150a, 8 3026 1605 714 2934 1584 196 -3.1% -1.3%
40k, 150b, 1 2927 12748 427 2934 12673 196 0.2% -0.6%
40k, 150b, 8 3026 1603 427 2934 1584 196 -3.1% -1.2%
40k, 450a, 1 2925 37021 509 2934 37949 577 0.3% 2.4%
40k, 450a, 8 2931 4627 507 2934 4744 577 0.1% 2.5%
40k, 450b, 1 2924 37021 1531 2934 37949 577 0.3% 2.4%
40k, 450b, 8 2929 4629 1551 2934 4744 577 0.2% 2.4%

Table 6.5: Model validation results (results in ms).

type of calculations is well-suited to their architecture. Also, note that the test set
should contain at least 29 sequences for PTB to give a valid result. Finally, for larger
test sets, PTB becomes very small. Table 6.3 shows that whereas for a test set of a
hundred sequences, on average 31% of the sequences requires traceback; for a test set
of ten thousand sequences, only 1.4% is in need of traceback. More observations and
implications will be made in Section 6.3.3.

Finally, substituting Equation 6.10, 6.11, and 6.12 into Equation 6.7, 6.8, and 6.9
results in Equation 6.13, which gives an estimate for the total execution time:

Ttotal = max

{

TPPE ⇒ n · [(0,19
103 + 2,25

103 · m
102 · PTB) · l̄ + (5,52

103 + 35,7
103 · PTB)]

TSPE ⇒ n · (0,59
103 · m

102 · l̄ + 0,88
103)/q

(6.13)

6.3.2 Model Validation

The validity of the model as proposed in the previous section has been investigated
by performing additional tests. This way, the accuracy of the various functions can
be estimated. Table 6.5 summarizes the findings for the various test conditions. Again,
representative sequence sets have been created, as such, average sequence length is about
355 symbols (see Section 2.4). The table shows the expected result as predicted by the
model for each function as well as the actual result.

From the table, it is obvious that the execution time for PPU BUF and SPU VIT
can be accurately estimated. The average difference between result and expectation for
PPU BUF is 1.5%, for SPU VIT 1.7%. However, estimation for PPU TB is unreliable
for two reasons: first, estimating the number of required tracebacks is difficult as it is
dependent on the biological fit between data set and model. Second, in contrast to the
SPE Viterbi code, the time per traceback on the PPE varies considerably.

58 CHAPTER 6. PERFORMANCE ANALYSIS

The inaccuracy in PPU TB estimation only affects overall performance estimation
when two conditions are fulfilled: first of all, performance must be constrained by the
PPE in order for the inaccuracy in PPU TB to be reflected in the results. Secondly,
PPU TB must form a substantial part of total PPE execution time. This occurs when
a high fraction of sequences in the test set requires traceback. However, recall that
traceback count scales logarithmically in test set size. For common scenario’s, such as
a comparison against the entire UniProt database with its hundreds of thousands of
sequences, the percentage of tracebacks PTB is marginal. In such cases, PPU TB will
contribute little to total execution time and its influence on uncertainty in the model
is small. Due to the practical reason of test execution time and due to limitations in
available storage space, relatively small test set sizes have been used, where the impact
of traceback remains of influence. Furthermore, one should realize that traceback counts
are dependent on biological semantics. As such, their estimation is inherently uncertain.
For example, a data set solely containing homologues to the model would result in a
traceback percentage of 100%!

6.3.3 Potential Bottlenecks

Based on the profiling results and the model shown in this chapter, some observations
on potential bottlenecks can be made. The program structure and implementation ar-
chitecture both have an effect on the specific performance characteristics. Two issues
will be discussed here: on the one hand the structural decision in HMMERCELL to use
the manager/worker parallelization strategy; on the other hand the architectural choice
in the Cell for a certain SPE count and the choice for a local store, which is directly
responsible for the introduction of the traceback mechanism.

An important structural characteristic of HMMERCELL is the manner in which Lu
et al [29] parallelized the most time-consuming portion of HMMER, the phase in which
Viterbi calculations are performed. The manager/worker pattern was followed, where the
PPE creates Viterbi jobs, which are processed on the SPEs. The Viterbi calculations
lend themselves well to the nature of the SPEs, as the workload is very regular and
computation to communication ratio is very high. In theory, as many SPEs can be used
as there are sequences. Hence, for a typical test set consisting of many thousands of
sequences, there is no practical limit on the number of SPEs, given that the PPE is able
to supply them with jobs. However, job creation forms a bottleneck and the use of this
pattern implies that for any workload a certain SPE count will saturate the PPE.

A notable characteristic of the Cell architecture is the fact that each SPE contains
its own limited size local memory. This requires the use of the reduced Viterbi algorithm
on SPEs, which leads to the introduction of the traceback phase on the PPE. Traceback
forms another bottleneck, as this PPE function is not parallelized. Additionally, the
traceback mechanism introduces inherent uncertainty, as discussed before. Other mech-
anisms could offer more predictable time estimation for workloads, especially for smaller
test sets. However, for large test sets, such as comparing a model against the entire
UniProt database, only a negligible fraction of sequences require traceback; PPE time
is dominated by the buffering phase. Thus, uncertainty in this function does not ad-
versely affect overall inaccuracy of the model. Moreover, in buffering constrained cases,

6.4. SUMMARY 59

HMM Length 100 200 300 400 500

q (max SPE count) 3 6 9 12 15

Table 6.6: Maximum effectively usable SPEs.

the number of SPEs that saturate the PPE for a given workload can be estimated by
assuming that PPE time consists solely of buffering time and then solving for q when
setting TPPU BUF equal to TSPE , which leads to the following equation:

q ≈
TPPU BUF

TSPE
=

n · (0,19
103 · l̄ + 5,52

103)

n · (0,59
103 · m

102 · l̄ + 0,88
103)

=
0, 59 · m

102 · l̄ + 0, 88

0, 19 · l̄ + 5, 52
(6.14)

From Equation 6.14 it follows that the number of usable SPEs is independent of the
test set size, apart from the requirement of a large enough test set to make PPU TB
irrelevant. Moreover, it is only marginally affected by the sequence length. The most
influential factor is the HMM model size. Table 6.6 gives the maximum number of usable
SPEs for various HMM sizes when using sequences with typical length. For example,
when an HMM of length 200 would be aligned to the UniProt database, six SPEs would
be enough to saturate the buffering capabilities of the PPE. This formula allows for
determination of the optimal ratio between PPEs and SPEs.

6.4 Summary

In this chapter, results from analysis of the different functions that constitute HMMER-
CELL performance were discussed. The effects of the input parameters - the HMM,
the set of sequences and the number of SPEs - on performance have been investigated.
Scaling results were as follows: PPE buffering scales linearly in the total length of all
the sequences in the test set; the Viterbi calculations on the SPEs require time linear in
the length of the sequences and linear in the length of the HMM; the traceback Viterbi
calculations on the PPEs are more difficult to estimate, as the traceback count is data
dependent.

A model to estimate the required processing time for a workload was proposed and
validated. The models for the buffering and SPE Viterbi functions are accurate within
two percent; the model for the traceback function is, as expected, much less exact. How-
ever, for typical test sets, such as comparing a model against the UniProt database, the
fraction of execution time resulting from traceback calculations is negligible. In general,
the model predicts execution time accurately. Consequences of the manager/worker
parallelization structure imply that for any given workload, a certain SPE count will
saturate the PPE. This number is mostly dependent on the length of the protein model.
For a typical model of length three hundred, nine SPEs can be put to effective use.

60 CHAPTER 6. PERFORMANCE ANALYSIS

Simulation Results 7
E

arlier chapters showed the result from investigation of the behavior of HMMER
and HMMERCELL on an actual available system, the Cell platform. Through
qualitative analysis the internal structure was determined, which aids in the

understanding of its behavior. Quantitative analysis, through profiling of the implemen-
tation and through accurate modeling of the relevant functions, revealed its performance
characteristics. Both types of analysis help to gain insight in the manner the application
reacts to different workloads. Bottlenecks and limitations were found in the capability
of the application to scale in the number of SPEs. The importance of each bottleneck
shifts depending on the workload. For example, when aligning sequences against a short
HMM, PPE buffering quickly becomes the bottleneck to performance as the SPE’s ca-
pability to perform Viterbi decoding exceeds the PPE’s buffering ability. Conversely, for
longer HMMs, Viterbi processing on the SPEs becomes the dominant factor of execution
time. When the number of sequences in the input is small, traceback calculations on the
PPE require a large amount of time relatively.

In this chapter, simulation is used to gauge performance of the application. Changes
to the implementation structure and hardware architecture can be investigated to dis-
cover promising methods to improve the fit between the application and implementation
architecture. The analysis is performed for hypothetical variants of the Cell platform.
As shown earlier, the Cell platform roadmap indicates that future iterations of the ar-
chitecture will possess a greater number of PPEs and SPEs. It is therefore interesting to
analyze the effects of such changes on the existing bottlenecks and to deduce the optimal
clustering ratio between PPEs and SPEs for a given workload. Results are obtained
through the use of TaskSim, an experimental and as of yet unreleased Cell simulator.

In Section 7.1, simulation of the Cell architecture is discussed and the simulation
environment is introduced. In Section 7.2, the concept of scaling behavior is explained
and in Section 7.3 the effects of the various functions on scaling behavior is analyzed by
inspecting their limiting behavior. In Section 7.4, the results are related to the findings
from Chapter 5 and 6. Section 7.5 concludes the chapter with a summary.

7.1 Simulating the Cell Architecture

As discussed in Section 4.4.4, the Cell Broadband Engine is the first iteration of a future
platform of Cell processors. It contains one core aimed at general purpose tasks combined
with eight cores specialized for streaming workloads. Next generations of the platform
can evolve in multiple directions: architectural improvements can be implemented, such
as native support for double precision floating point operations (as already planned for
the PowerXCell 8i), enlargement of the SPE local store, enlargement of the cache, or

61

62 CHAPTER 7. SIMULATION RESULTS

improvements to the communication channel; another probable direction is the addition
of more cores to the processor die. The current ratio between PPEs and SPEs does
not have to be maintained; it is probable that, based on developer experience and an
improved software infrastructure better able to take advantage of the SPEs, this ratio
will be skewed towards more SPEs per PPE. As an illustration, one planned extension
of the current layout is the PowerXCell 32ii with two PPEs and thirty two SPEs.

In this chapter, the impact of such developments is assessed by simulating the effects
of such improvements. Simulators model program behavior according to a hardware
description of the architecture. By modifying this description, the characteristics of the
architecture can be changed. The TaskSim tool, which is used to perform the simulations,
is introduced first. Then, the accuracy of this tool is investigated, in order to discover
whether its results conform to observations.

Simulating a hardware architecture has several benefits. During the design stages of a
microprocessor, preliminary simulations can give the developer valuable feedback, which
can help during design space exploration to make decisions about trade-offs. Simulators
can also be used to start software developments before actual hardware is available.
Another important use, especially for this thesis, is the ability of a simulator to simulate
modified designs of a processor, for example simulating a machine description with more
or faster execution cores.

Disadvantages of simulation include the fact that simulation is time-consuming. De-
pending on the detail level that the simulation is performed at, speed or accuracy can be
impaired. High-level simulations can be completed relatively swift, as they only model
a few basic characteristics. Cycle-accurate simulations on the other hand require a large
amount of processing time, but then provide more accurate details. As always, the best
type of simulation depends on its purpose.

7.1.1 The TaskSim Simulator

TaskSim is a high-level, trace-driven simulator. Trace-driven simulators use an input
trace, which is a pre-determined path through the program, and a machine description
to generate an output trace with the resulting simulated behavior. In contrast, execution-
driven simulators simulate the actual program, and hence they require both the program
and input data. Then, based on this input data different paths through the program
might be taken. TaskSim uses its own TaskSim Trace Format (TTF) for traces, but
tools are provided to convert other trace formats into TTF. The behavioral description
it simulates is composed of three aspects: processing phases, DMA data transfers, and
synchronization dependencies between threads. The CPU is simulated as performing
abstract bursts of computation, with duration obtained from the traces. Data transfers
are simulated cycle-accurate (amongst others the DMA controller, caches, interconnect,
memory controller, and DRAM). Ratio files can manipulate the duration of program
phases. TaskSim is in development at the BSC [1].

”TaskSim is a computer architecture simulator that allows several detail levels
from programming-model to micro-architecture level. The application can be
split up in phases, each one being simulated at a different detail level. This
allows speeding-up simulation while avoiding accuracy penalties.”

7.1. SIMULATING THE CELL ARCHITECTURE 63

Simulation Trace Characteristics

”Complex” Aligning 40k sequences against length 500 HMM (87 tracebacks).
”Typical” Aligning 40k sequences against length 300 HMM (108 tracebacks).
”Simple” Aligning 40k sequences against length 100 HMM (120 tracebacks).

Number of SPEs Used

1, 2, 4, 8, 16, 32*, 64* (see text)

Table 7.1: Simulation trace overview.

To obtain TaskSim traces, the HMMERCELL source code is instrumented further to
generate traces that record execution phase duration, DMA transfers and synchroniza-
tion between threads. The important phases are: PPU BUF, SPU VIT with correspond-
ing idle phase SPU WAIT FOR JOB (when an SPE is waiting for a job), and PPU TB
with corresponding idle phase PPU WAIT FOR TB (when the PPE is waiting on SPEs
to complete their job). Dependencies that ensure correct program order are inserted
between buffering a sequence and its processing on the SPE, and between processing a
sequence and its traceback on the PPE. Recording when a phase is idle is important,
as differentiating between computation phases and time spent waiting on other threads
allows for the elimination of such idle time if dependencies are fulfilled earlier (an exam-
ple is an SPE waiting for a job to become available). The trace is then converted into
TTF format and fed to TaskSim for simulation, according to the configurable machine
description. The resulting trace is inspected using Paraver [37].

Traces have been created for three different trace scenarios, listed in Table 7.1. Each
trace covers the alignment of forty thousand sequences with typical sequence length.
Varying HMM sizes are used to highlight the impact of their length on scaling behavior.
The number of threads in the trace is determined by the number of used SPEs. Traces are
obtained with one, two, four, eight and sixteen SPEs. The results for thirty two and sixty
four SPEs are obtained by using the sixteen SPE trace in combination with a modified
ratio file, in which the SPE execution is sped up two-fold and four-fold respectively. The
accuracy of this approximation is reviewed in the next section.

7.1.2 TaskSim Validation

In order to verify the accuracy of the simulations performed by TaskSim, results from
profiling the actual application are compared to the traces generated by TaskSim. For
these tests, TaskSim simulates the traces according to a standard Cell machine descrip-
tion, with execution times for idle states set to zero. This is achieved through the use of
TaskSim ratio files. As the Cell blades contain two Cell processors with in total sixteen
SPEs, validation can only be performed for simulations with up to sixteen SPEs. Also
shown are results when using one SPE in combination with a ratio file that speeds up
its execution in order to emulate more SPEs. Validation tests have been run for each of
the three different trace scenarios.

64 CHAPTER 7. SIMULATION RESULTS

Figure 7.1: TaskSim validation results.

Figure 7.1 shows the results. Simulated and actual execution time are comparable,
the largest difference being 5%. These differences result from the fact that TaskSim does
not simulate waiting states, such as looping through the administrative array during the
PPE traceback phase to find newly processed jobs. The results from simulation using
multiple SPEs and a sped up SPE are also similar. They differ on average by 3%, with an
outlier of 9% for the 100HMM/16SPE case. The inaccuracy results from a combination
of less initialization overhead and less efficient bus utilization.

The results prove that even though TaskSim performs its simulations at a high-level,
enough characteristics are modeled for the simulation to be very accurate. Ratio files
also prove to be a useful tool for simulation. In the case of HMMERCELL, trace-driven
simulation is suitable, as the execution time is largely independent of underlying data.
For similar sized inputs, similar instruction streams are executed.

7.2 Improvements to Scaling Behavior

The growing importance and interest in genetics leads to continuously increasing amounts
of biosequence data. Consequently, manipulation of these data sets necessitates continu-
ously larger processing capabilities. As seen in Chapter 4, a clear trend in microprocessor
design exists towards multi-core architectures. Hence, it is important for bioinformatics
applications to be able to utilize such parallelism and to have favorable scaling metrics.
In the remainder of this chapter, the effects of the various functions are investigated on
the scaling behavior of HMMERCELL.

A characteristic feature of bioinformatics applications is that they are often amenable
to various forms of parallelization. Coarse-grained parallelism is available in the form of
computations that must be applied to all elements in a data set. Fine-grained parallelism
is available as the computations themselves usually contain data parallelism. In the case
of HMMER, these types correspond to the alignment of sequences to an HMM through
the application of the Viterbi algorithm. The abundance of sequences in the data set
makes the coarse-grained parallelism infinite for practical purposes. In the limiting case,
each of the thousands of sequences could be processed by its own processor.

HMMERCELL has been subjected to different forms of analysis, resulting in the

7.3. LIMITING BEHAVIOR ANALYSIS 65

(a) Simulated execution time (b) Speedup from SPE scaling

Figure 7.2: Standard simulation results.

identification of certain bottlenecks to scaling behavior. These findings can be used as a
starting point for improvements. From Chapter 5, in which the program structure was
analyzed, it followed that bottlenecks arise from the design decision to have one processor
responsible for both job creation and the processing of the results. In Chapter 6, in which
profiling results were shown and a model for system behavior was proposed, the existence
of these bottlenecks was confirmed. The model can be used to estimate the optimal
clustering size between managers and workers, or in the case of the Cell processor, PPEs
and SPEs. Preferably, a situation would be reached where all parts of the architecture’s
computational and communication abilities are fully utilized.

Amdahl’s law (see Section 4.3.1) describes the maximum speedup that can be ob-
tained by the parallelization of a program, giving an upper bound for the maximum
obtainable speedup of a program. At some point, the non-parallelizable part of the ap-
plication will prevent further speed-up from using additional processing cores. This is
illustrated in Figure 7.2, which shows simulated scaling capabilities of HMMERCELL
for the different test sets. The graph on the left shows execution time for varying SPE
count; the graph on the right displays the resulting speedup from increased SPE count.
A fully parallelizable application would show scaling behavior that follows the ideal line:
an increase in the number of processors would lead to a corresponding decrease in ex-
ecution time. However, from the figure it is obvious that scaling is only effective up
until a certain SPE count, depending on the scenario. The serial nature of buffering
and traceback limits further scaling. In Section 6.3.3, limits were given for the number
of SPEs that the PPE could supply with jobs, based on the proposed model. Due to
traceback requirements and other overhead, these findings do not fully agree. However,
as will be shown in Section 7.3.2, when traceback is disregarded the results do confirm
the predictions given by the model.

7.3 Limiting Behavior Analysis

To determine promising directions to improve the scaling capability, the limiting behavior
of the various functions of importance in the application (PPE sequence buffering, SPE
Viterbi calculations and PPE traceback) is investigated. Simulations are run with the

66 CHAPTER 7. SIMULATION RESULTS

processing component of each of these functions set as to require zero time. This is
achieved through the use of TaskSim ratio files. These limiting behavior tests provide
valuable information on the existence of bottlenecks in HMMERCELL.

In the following subsections, the results from these simulations are presented. For
each of the tests, the simulation results are presented in two different graphs. In the first
graph, the execution time is given for different SPE counts. In the second graph, the
speedup gained from utilizing more than one SPE is shown. The results are explained and
possible methods to reach such limiting situations are mentioned, through improvements
in application structure or improvements in hardware architecture.

7.3.1 Fast PPE Buffering

(a) Simulated execution time (b) Speedup from SPE scaling

Figure 7.3: Swift buffering simulation results.

In this simulation, the time required for sequence buffering is set to zero through
the use of a ratio file. The increased buffering capability leads to behavior as shown
in Figure 7.3. Compared to normal HMMERCELL scaling behavior (see Figure 7.2),
scaling is much closer to the ideal speed-up line, i.e. scaling behavior is much improved.

The limiting behavior is as expected. As the buffering function corresponds to the
manager role in the manager/worker pattern, it is a major limitation in scaling capabil-
ity. SPE Viterbi function scaling is almost ideal (recall Section 6.2.2). In this simulation,
scaling is ultimately bottlenecked by the traceback component, as this function is per-
formed sequentially on the PPE as well. Then, the PPE determines the execution time.
As traceback is dependent on HMM length, the complex test simulation (the green line)
is quickly bottlenecked by traceback. The typical scenario can be scaled to more SPEs
and the simple scenario scales the best. More complex scenarios are relatively less af-
fected by overhead, as it becomes a relatively smaller portion of execution time. This
explains why the typical scenario temporarily outperforms the simple scenario.

From the figure it is obvious that PPE buffer time has a large effect on scaling
capability. The speed of buffering determines for a large part the optimal ratio between
managers and workers. As such, an optimal clustering ratio between PPEs and SPEs
can be determined, as shown in Section 6.3.3. A faster PPE allows more SPEs to be
used per PPE.

7.3. LIMITING BEHAVIOR ANALYSIS 67

7.3.2 Fast PPE Traceback

(a) Simulated execution time (b) Speedup from SPE scaling

Figure 7.4: Swift traceback simulation results.

In this simulation, traceback on the PPE is practically eliminated by setting the
required traceback time to zero through the use of a ratio file. The results are shown
in Figure 7.4. Compared to normal HMMERCELL scaling behavior (see Figure 7.2),
the limiting behavior stabilizes at a higher SPE count. In other words, more SPEs can
be utilized effectively. The results also prove that traceback indeed forms a bottleneck,
although its importance decreases for larger test sets, as less sequences require traceback.

In this situation, scaling characteristics are mostly determined by buffering speed.
The results are therefore in accordance with Table 6.6, which lists the number of SPEs
that can be used effectively for different HMM sizes, confirming the predictions made
using the analytical model. From this simulation, the effective number of SPEs appears
to be three, eight and fourteen for models of length 100, 300 and 500 respectively; the
model predicted three, nine and fifteen. The difference is caused by overhead from
non-parallelizable parts in the application.

The traceback bottleneck can be reduced through the use of a faster PPE or by
parallelizing traceback to multiple PPEs. Parallelization is feasible, as tracebacks can
be performed independent of each other, and the number of tracebacks, although rel-
atively small compared to the total test set size, is still large enough to benefit from
more processors. The scaling bottleneck from traceback could also be removed entirely
by either parallelizing traceback on the SPEs through a Viterbi algorithm that uses
streaming to circumvent the small local store size. Another option is to perform the full
streaming Viterbi algorithm on the SPEs for all sequences. However, this last option
might adversely affect total execution time as the number of tracebacks is insignificant
compared to the total amount of sequences. Moreover, such techniques are only useful
when execution time is not dominated by SPU Viterbi calculation time or PPE buffering
time.

7.3.3 Fast PPE Buffering and Traceback

In this simulation, both bottlenecks on the PPE-side are eliminated. The results are
shown in Figure 7.5. Compared to normal HMMERCELL scaling behavior (see Fig-

68 CHAPTER 7. SIMULATION RESULTS

(a) Simulated execution time (b) Speedup from SPE scaling

Figure 7.5: Swift buffering and traceback simulation results.

ure 7.2), the scaling behavior is much more favorable. Basically, it shows that the
resulting application is very parallelizable, as the manager role in the manager/worker
pattern is removed as a bottleneck. Overhead from non-parallelizable parts in the ap-
plication causes the deviation from the ideal line. The more complex the scenario is,
the less it is affected by this overhead. It is also interesting to compare this figure to
Figure 7.3. This comparison reveals the impact traceback has on scaling behavior.

Removing these bottlenecks can be achieved by following the directions from both
earlier sections.

7.3.4 Fast SPE Viterbi Calculations

(a) Simulated execution time (b) Speedup from SPE scaling

Figure 7.6: Swift Viterbi simulation results.

In this simulation, the SPEs are removed as a practical bottleneck by reducing the
time required for Viterbi processing to zero. The results are shown in Figure 7.6. It
is obvious that the results are independent of SPE count, as the parallelizable part of
the application is eliminated. This way, HMMERCELL is reduced to a non-parallelized
application. In terms of Amdahl’s law, it is the situation where the parallelizable part
is infinitely sped up and P goes to zero (see Section 4.3.1).

7.4. DISCUSSION 69

The remaining execution time is the combined overhead from buffering and traceback
on the PPE. As buffering requires the same time for each scenario (only the HMM differs),
the variations are caused by differences in traceback time resulting from HMM length
and traceback count. More complex HMM models result in longer traceback time. Also
noticeable is that traceback time compared to buffer time is quite small.

This situation can be reached through the inclusion of more SPE cores, or using
faster SPEs. More SPEs and faster SPEs basically results in the same outcome, since
the Viterbi function scales very well. Latency per individual sequence is somewhat
higher when using multiple SPEs, but throughput is unaffected. Usually, large numbers
of sequences are processed, thus the most efficient option of the two should be used.
This is also confirmed by the tests with one sped up SPE as compared to many SPEs
(see Section 7.1.2). However, most workloads will be bottlenecked by buffering and/or
traceback. Hence, faster SPE processing is mostly useful in situations where large HMMs
are used.

7.4 Discussion

In order to investigate the performance characteristics of HMMERCELL and to be able to
improve its fit to the implementation architecture, the application has been subjected to
various forms of qualitative and quantitative analysis: program inspection, performance
profiling, behavioral modeling and simulation. In this section, the findings from each
form of analysis are reviewed and lessons to improve performance and scaling behavior
are drawn.

In Chapter 5, the results from program inspection were discussed, revealing details
of its internal structure. Interesting features of the application include: the specific
algorithm used and how it reacts to the workload (sequence length, sequence count and
HMM size); the parallelization strategy that was followed to parallelize this algorithm
(the manager/worker pattern); and the necessity for traceback, as an algorithm with
smaller memory footprint was used on the SPEs to let it fit into the small local store size.
All of these influence performance and form potential bottlenecks to scaling behavior.

In Chapter 6, the actual effects of these bottlenecks were investigated through the
profiling of each function. The scaling characteristics of each function agreed with ex-
pectations set by the used algorithm, and the relative importance of each function was
determined. The buffering function on the PPE and the Viterbi calculations on the SPE
were concluded to be most influential for performance, as they are linearly dependent
on the number of sequences in the workload, whereas traceback reduces in importance
for larger workloads. Based on these results, a model to predict the execution time was
proposed and verified to be accurate within 2%. Traceback is excluded from the model,
as it is assumed to be negligible. Using this model, the optimal PPE-to-SPE cluster
ratio was derived for various HMM lengths. For an HMM with a typical length of three
hundred positions, nine SPEs should be able to be effectively used.

In this chapter, simulations were used to predict the behavior of HMMERCELL for
future iterations of the Cell architecture. Even though TaskSim simulates the system at
a high-level, its phase-based simulations are accurate within 2%. The impact of each of
the identified bottlenecks on the SPE scaling ability of HMMERCELL was determined.

70 CHAPTER 7. SIMULATION RESULTS

The simulations supported the predictions made by the model for such situations. The
impact of each function on scaling behavior was investigated under different workloads.
Buffering is shown to be the most important determinant to scaling potential, which
agrees with expectations set by the use of the manager/worker pattern. Traceback
mostly affects smaller workloads consisting of just a few sequences. Simulations with
the traceback component of the application eliminated confirmed predictions from the
model, as the SPE scaling behavior acted as was described. These findings can be used
to discover the most efficient ways of improving performance.

From a software perspective, the impact of the software design decisions on the
program’s execution time is of importance. The manager/worker split, which is used
to parallelize the most time consuming portion of HMMER to the SPEs, is directly
responsible for creating a bottleneck at the PPE, determining the effective number of
SPEs that can be utilized. The traceback mechanism, used to circumvent the small local
store size, has been shown to work well as its detrimental influence to performance and
scaling behavior is reduced for larger and thus more relevant workloads. However, as
the PPE often already forms a bottleneck, parallelizing traceback to SPEs is a valid
software-based method to further improve the scaling behavior, especially for smaller
workloads where traceback time is significant. The effects of this improvement can be
seen by comparing the chart with standard behavior to the chart with fast traceback
behavior (Figure 7.2 and 7.4), or by comparing the chart with fast buffering behavior to
the chart with fast buffering and traceback behavior (Figure 7.3 and 7.5).

When viewed from a hardware perspective, a few observations can be made. First
of all, the Cell appears to be well-suited to HMMER. An abundance of both coarse and
fine-grained parallelism is available to keep all parts of the processor occupied. Also,
the Viterbi algorithm is a natural fit to the SPEs and they perform very fast when
compared to the PPE. An important indicator to track from a hardware perspective is
the utilization of the hardware. Ideally, the PPE and the SPEs are kept busy during all
stages of program execution. As shown by the model, the relative weight of each function
depends on the workload, but is mostly dependent on the HMM model length. Hence,
the optimal PPE/SPE ratio can be determined for typical model sizes. This is useful
when designing improvements to the hardware to ensure that the resulting architecture
is balanced.

In the case of the Cell Broadband Engine with its eight SPEs, sequence alignment
against an HMM model of around three hundred residue positions results in optimal
PPE/SPE utilization. In that case, neither the SPEs are constrained by the job creation
rate, nor the PPE is forced to idle during traceback while waiting for jobs to be processed
by the SPEs. One approach to improve efficiency between program and hardware would
be to create multiple Cell derivatives, each with a different PPE/SPE ratio. Then, a task
could be executed on the specific machine for which its model length is optimal: work-
loads requiring alignment against a short HMM would be processed on a Cell with just
a few SPEs; workloads requiring alignment against a longer HMM would be processed
on a Cell with a great number of SPEs. Such a setup would ensure optimal utilization
of resources.

7.5. SUMMARY 71

7.5 Summary

In this chapter, simulation results generated by TaskSim, a trace-driven simulator, were
shown. Its high-level, phase-based simulations reflect actual program execution with an
accuracy within 2%. To determine limits in scaling behavior, simulations were performed
with Cell-like machine descriptions with SPE count ranging from one to sixty four SPEs.
The impact of HMMERCELL’s important functions was investigated by setting the
execution time for each of these functions to zero through the use of TaskSim ratio files.

From the simulations where execution time per function is set to zero, the impact
on execution time can be determined. The buffering portion appears to be the most
important, confirming findings from the earlier chapters. As the PPE determines the
maximum number of effectively usable SPEs, parallelizing traceback to the SPEs is a
software-based method that can result in improved scaling behavior, even though its
importance diminishes for larger workloads. The model and the findings can also be
used to design Cell variants that are optimally suited to the HMMER workload. As the
effective PPE/SPE ratio is dependent on the length of the HMM model, using multiple
Cell variants with different ratios ensures optimal utilization under each workload.

PART III:

LEARNINGS

Hofstadter’s Law:

”It always takes longer than you expect, even

when you take into account Hofstadter’s Law.”

- Gödel, Escher, Bach, Douglas Hofstadter

Conclusions and

Recommendations 8
B

ioinformatics applications such as HMMER are recognized as an important
class of programs. Their uses are manifold and they will allow numerous novel
methods to improve quality of life around the world. Their often computation-

ally intensive nature combined with the exploding growth of biological data sets creates
a continuously increasing demand for processing capability. Multi-core architectures
form a new development in computer architecture, as a mechanism to avoid the power,
memory and frequency scaling constraints of traditional microprocessor design, in an
attempt to ensure the continuity of processing power increases. However, the suitabil-
ity and effectiveness of the multi-core paradigm on bioinformatics applications remains
an open research question. To further the understanding of their structure and scaling
capability, this thesis contributes by examining the behavior of a biosequence analysis
application called HMMER on the Cell architecture, a state-of-the-art heterogeneous
multi-core processor.

As stated in the introduction, the three research goals for this thesis were as follows:

1. Investigate the performance of bioinformatics applications, gaining a thorough un-
derstanding of their structure and behavior, through the analysis of a representative
application called HMMERCELL.

2. Identify bottlenecks in program operation and system architecture by profiling,
modeling and simulating the system’s behavior.

3. Improve the understanding of scaling behavior for many-core computing platforms
by evaluating the impact of the identified bottlenecks.

Chapter 2, 3 and 4 contain a short introduction on bioinformatics, Hidden Markov
Models and computer architecture respectively. In Chapter 5, the program structure
and behavior of HMMER and HMMERCELL was presented, resulting from qualitative
analysis. Chapter 6 showed results obtained from application profiling and a model for
run-time behavior was proposed. In Chapter 7, simulation results on Cell-like machine
architectures were given. These results were related to the findings from earlier chapters.
In Section 8.1, the conclusions drawn from this work are presented. The thesis is closed
by Section 8.2, in which promising directions for future research are indicated.

8.1 Conclusions

To investigate the suitability of HMMER to the Cell microprocessor and to be able to
judge the effectiveness of improvements to it, knowledge of all facets of the application
and the implementation architecture is required. Therefore, various forms of analysis

75

76 CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

have been used to provide insight in how HMMER and HMMERCELL are structured,
and how the port plays into the strengths and weaknesses of the Cell architecture, and
how bottlenecks affect performance. The different forms of analysis all provide different
clues about application behavior, and each complements the findings of the others.

The following was learned from program inspection: like most bioinformatics appli-
cations, HMMER contains a small but computationally intensive kernel that is applied
to each element of a huge data set. This implies that both coarse-grained as well as
fine-grained parallelism is available in abundance, which is a requirement for optimal
performance on the Cell architecture. In the case of HMMER, this amounts to aligning
protein sequences to a Hidden Markov Model using the Viterbi algorithm. For each
alignment, a score shows the likelihood of the two being related. HMMER’s execution
time is determined almost exclusively by this function. Lu et al [29] parallelized the
Viterbi algorithm according to the manager/worker pattern. One core buffers jobs into
memory, these jobs are then consumed by the other cores; the results are processed by
a traceback procedure. Thus, one core is responsible for supplying the other cores with
jobs, which forms a potential bottleneck in scaling behavior. A Cell-specific design choice
is the fact that the workers perform an indicator function: a modified Viterbi algorithm
with a smaller memory footprint (necessary to make it fit into the small accessible mem-
ory of most of the Cell’s cores) is used to designate high scoring sequences. For those
sequences, the requested alignment is generated by performing the full Viterbi algorithm.
This traceback procedure forms another potential bottleneck.

The following was learned from quantitative analysis: the existence were verified to
exist and their effects quantified through application profiling, behavioral modeling and
simulation. Profiling results confirmed that the scaling behavior of each function was
in line with expectations set by the use of the Viterbi algorithm. The analysis also
demonstrated the relative importance of the functions. Buffering is regarded as being
the most important determinant to scaling behavior. Traceback was shown to be of
relative minor importance: it scales far slower in the number of elements in the input
than other functions. A model to predict execution time for the important functions
was proposed and shown to be accurate within 2%. An important use of the model is to
derive the optimal ratio between manager and worker cores for different workloads. For
the Cell processor, this optimal ratio is determined to be one manager to nine workers
for an HMM with three hundred residue positions. The TaskSim simulator was used to
measure the impact of the bottlenecks on HMMERCELL’s ability to scale in the number
of usable worker cores. Its high-level, phase-based simulations are demonstrated to be
a fast and effective means of simulating behavior: simulation results are within 2% of
actual results. Moreover, results are in agreement with predictions made by the model,
in particular when the traceback phase of the program is removed. Scaling capability is
mostly determined by the speed at which jobs are able to be generated.

Software and hardware-based design choices both affect scaling behavior. The use
of the manager/worker pattern directly determines the number of workers that can be
utilized effectively. The traceback mechanism works well, as its negative influence on
performance diminishes with larger test sets. As the manager core is often a bottleneck,
parallelizing traceback to the other cores is an valid software-based method to further
improve scaling behavior. From a hardware perspective, the Cell appears well-suited

8.2. RECOMMENDATIONS 77

to HMMER and bioinformatics applications, as there is an abundance of parallelism
available. The Viterbi algorithm itself maps well to the SPEs and their SIMD nature.
The model can be used for guidance during the design stages of hardware development,
as the optimal ratio between manager and worker cores can be estimated to optimize
utilization. The limited size of the local store restrict the range of sequence lengths and
especially HMM models that can be used. Enlarging the local store would allow for a
greater percentage of models to be used.

The aforementioned ideas are also relevant for other bioinformatics applications.
First, as bioinformatics applications usually contain an abundance of coarse-grained
parallelism, the manger/worker pattern is an useful strategy to divide the work over
multiple cores. Care has to be taken however that the manager core is able to supply the
worker cores with enough jobs. Therefore, in order to attain optimal scaling behavior,
this core should be relieved of as many other tasks as possible. Second, modeling the
behavioral characteristics of a program has multiple uses: it is a valuable aid for decision-
making during design space exploration; it can point out interesting places to start with
performance improvements; or it can help to optimize run-time scheduling of workloads
if machines with variable performance characteristics are available. Computationally
intensive workloads can be scheduled on machines with many worker cores, lighter tasks
on machines with less worker cores. Third, phase-based simulation appears to be an ac-
curate and relatively fast approach for the simulation of bioinformatics workloads. The
data-independent nature of their calculations is captured well by such simulations.

The approach this thesis takes to capture the essential nature of bioinformatics ap-
plications seems valid. The different analysis techniques - inspection, profiling, modeling
and simulation - complement each other well and their combined use helps to create
insight in the relevant performance characteristics of the application.

8.2 Recommendations

Genetics and computer architecture are fields both subject to constant change. As such,
they contain many open research questions. A relevant question in the context of this
thesis is the suitability of multi-core architecture to bioinformatics applications. This
thesis contributes by gaining understanding in the scaling behavior of one such appli-
cation, HMMER. Other applications would benefit from similar research. An example
that immediately comes to mind is analysis of HMMER3, when it becomes available.

The thesis itself also offers a few interesting directions for future research. In the
simulations section, a number of software-based methods were mentioned that could
lead to improved scaling behavior. The implementation of such changes is outside the
scope of this thesis. However, for example parallelizing the traceback phase to the SPEs
using a streaming algorithm and comparing the resulting behavior with expectations set
in this thesis would be of interest.

Simulations were used to forecast performance of Cell-like derivatives with more SPEs
than the Cell Broadband Engine contains. When a Cell platform becomes available offer-
ing such SPE counts, it would be interesting to compare the simulated scaling behavior
to results obtained on actual hardware. An ideal candidate would be the announced
PowerXCell 32ii, which will contain thirty two SPEs.

78 CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS

Bibliography

[1] Barcelona Supercomputing Center website, http://www.bsc.es.

[2] The EMBL nucleotide sequence database, statistics,
http://www.ebi.ac.uk/embl/Services/DBStats/.

[3] Folding@Home client statistics by OS, http://fah-web.stanford.edu/cgi-
bin/main.py?qtype=osstats.

[4] Intel Tera-scale Computing Research Program website,
http://techresearch.intel.com/articles/Tera-Scale/1421.htm.

[5] SPEC CPU2006 benchmark suite, http://www.spec.org/cpu2006/.

[6] The Cell project at IBM Research, http://www.research.ibm.com/cell/.

[7] U.S. Environmental Protection Agency, Report to congress on server and data center
energy efficiency.

[8] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local
alignment search tool., J Mol Biol 215 (1990), no. 3, 403–410.

[9] Gene M. Amdahl, Validity of the single processor approach to achieving large scale
computing capabilities, (2000), 79–81.

[10] Barcelona Supercomputing Center, MPI trace tool user’s guide, 2000,
http://www.bsc.es/media/1379.pdf.

[11] F. H. C. Crick, On protein synthesis, Symp. Soc. Exp. Biol. 12 (1958), 138–163.

[12] , Central dogma of molecular biology, Nature 227 (1970), no. 5258, 561–563.

[13] M. O. Dayhoff, R. Dayhoff, M.O., Schwartz, and B.C. Orcutt, Atlas of protein
sequence and structure, volume 5, supplement 3 ed., pp. 345–358, Nat. Biomed.
Res. Found., 1978.

[14] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison, Biological
sequence analysis : Probabilistic models of proteins and nucleic acids, Cambridge
University Press, July 1999.

[15] Lus Moura e Silva and Rajkumar Buyya, Parallel programming models and
paradigms, 1999.

[16] S. Eddy, HMMER: biosequence analysis using profile Hidden Markov Models,
http://hmmer.janelia.org/.

[17] , HMMER User’s Guide, Howard Hughes Medical Institute and Dept. of
Genetics.

79

80 BIBLIOGRAPHY

[18] S. R. Eddy, Profile Hidden Markov Models, Bioinformatics 14 (1998), no. 9, 755–763.

[19] Sean Eddy, The need for (vector) speed., Cryptogenomi-
con; The Eddy lab: genome sequence analysis (2009),
http://selab.janelia.org/people/eddys/blog/?p=66#more-66.

[20] Leonard Eisenberg, A phylogenetic tree, http://www.evogeneao.com/.

[21] S. Henikoff and J G Henikoff, Amino acid substitution matrices from protein blocks.,
Proceedings of the National Academy of Sciences of the United States of America
89 (1992), no. 22, 1091510919, PMC50453.

[22] IBM, Cell broadband engine architecture computing platforms from ibm: Quick ref-
erence guide, http://www-03.ibm.com/technology/cell/index.html.

[23] J. Bautista J. Held and S. Koehl, From a few cores to many: A Tera-scale Com-
puting Research overview, Tech. report.

[24] Neil C. Jones and Pavel A. Pevzner, An introduction to bioinformatics algorithms
(computational molecular biology), The MIT Press, August 2004.

[25] W. Just, Computational complexity of multiple sequence alignment with SP-score.,
Journal of computational biology : a journal of computational molecular cell biology
8 (2001), no. 6, 615–623.

[26] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,
Introduction to the Cell multiprocessor, IBM J. Res. Dev. 49 (2005), no. 4/5, 589–
604.

[27] European Bioinformatics Institute (European Molecular Biology Labora-
tory), Protein Information Resource, and Swiss Institute of Bioinformat-
ics, Uniprot press release - establishing a universal knowledgebase of proteins,
http://pir.georgetown.edu/pirwww/otherinfo/102502uniprot.pdf.

[28] E. Lindahl, Altivec-accelerated HMM algorithms, http://lindahl.sbc.su.se/.

[29] Jizhu Lu, Michael Perrone, Kursad Albayraktaroglu, and Manoj Franklin, HMMer-
Cell: High performance protein profile searching on the Cell/B.E. processor, ISPASS
’08: Proceedings of the ISPASS 2008 - IEEE International Symposium on Perfor-
mance Analysis of Systems and software (Washington, DC, USA), IEEE Computer
Society, 2008, pp. 223–232.

[30] Edgar Luttmann, Daniel L. Ensign, Vishal Vaidyanathan, Mike Houston, Noam
Rimon, Jeppe Øland, Guha Jayachandran, Mark Friedrichs, and Vijay S. Pande,
Accelerating molecular dynamic simulation on the Cell processor and Playstation 3,
Journal of Computational Chemistry 9999 (2008), no. 9999, NA+.

[31] G. E. Moore, Cramming more components onto integrated circuits, Proceedings of
the IEEE 86 (1998), no. 1, 82–85.

BIBLIOGRAPHY 81

[32] S. B. Needleman and C. D. Wunsch, A general method applicable to the search for
similarities in the amino acid sequence of two proteins., J Mol Biol 48 (1970), no. 3,
443–453.

[33] Nvidia, CUDA, http://www.nvidia.com/cuda.

[34] University of Wisconsin Madison Materials Research Sci-
ence and Engineering Center, Slides on computer architecture,
http://mrsec.wisc.edu/Edetc/SlideShow/slides/computer/Moores Law.html.

[35] T. Oliver, L. Yeow, and B. Schmidt, Integrating FPGA acceleration into HMMER,
Parallel Computing 34 (2008), no. 11, 681–691.

[36] W. R. Pearson, Rapid and sensitive sequence comparison with FASTP and FASTA.,
Methods in enzymology 183 (1990), 63–98.

[37] Vincent Pillet, Jess Labarta, Toni Cortes, Sergi Girona, and Departament
D’arquitectura De Computadors, PARAVER: A tool to visualize and analyze paral-
lel code, Tech. report, In WoTUG-18, 1995.

[38] Lawrence R. Rabiner, A tutorial on hidden markov models and selected applications
in speech recognition, Proceedings of the IEEE, 1989, pp. 257–286.

[39] T. F. Smith and M. S. Waterman, Identification of common molecular subsequences,
Journal of Molecular Biology 147 (1981), no. 1, 195–197.

[40] E. L. Sonnhammer, S. R. Eddy, and R. Durbin, Pfam: a comprehensive database
of protein domain families based on seed alignments., Proteins 28 (1997), no. 3,
405–420.

[41] J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through sequence weighting,
position-specific gap penalties and weight matrix choice., Nucleic Acids Res 22
(1994), no. 22, 4673–4680.

[42] Andrew J. Viterbi, Error bounds for convolutional codes and an asymptotically op-
timum decoding algorithm, IEEE Transactions on Information Theory (1967), 260–
269.

[43] John Paul Walters, Rohan Darole, and Vipin Chaudhary, Improving MPI-
HMMER’s scalability with parallel I/O, IPDPS ’09: Proceedings of the 2009 IEEE
International Symposium on Parallel&Distributed Processing (Washington, DC,
USA), IEEE Computer Society, 2009, pp. 1–11.

[44] John Paul Walters, Bashar Qudah, and Vipin Chaudhary, Accelerating the HMMER
sequence analysis suite using conventional processors, AINA ’06: Proceedings of the
20th International Conference on Advanced Information Networking and Applica-
tions (Washington, DC, USA), IEEE Computer Society, 2006, pp. 289–294.

PART IV:

APPENDICES

”’The road is clear,’ said Galt. ’We are going back to the world.’”

- Atlas Shrugged, Ayn Rand

List of Terms A
S

ome of the terms and expressions in this thesis are very specific to the respective
domains of bioinformatics and computer architecture. As such, the reader might
be unfamiliar with their meaning. This appendix presents an alphabetical list

of commonly used terms with their explanation, in order to aid in the understanding of
this thesis.

A.1 List of Terms

Bioinformatics Discipline that attempts to increase the understanding of molecular
biology through the development of novel algorithms and techniques, making use
of the exponential growth in computing power.

Bit Score Log-odds measure for the fit between sequence and protein model.

Buffering (HMMERCELL program phase) The buffering stage creates jobs that are
ready to be processed by the SPEs. Loads sequences into memory and creates
administrative entry.

Cell Broadband Engine State-of-the-art heterogeneous multi-core processor, devel-
oped by IBM, Sony and Toshiba, consisting of nine cores: a general purpose
oriented PPE, and eight SPEs aimed at streaming workloads. Implementation
platform of this thesis.

DNA String of base pairs containing the entire genetic code of an organism.

E-Value Number of expected false positives for a certain bit score and database size.

Gene A sub-sequence of the DNA that codes for a single protein.

Genome The combined total of an organism’s genetic data.

Hidden Markov Model Markov Model in which the model state is hidden. States
output emission variables, based on which model state can be recovered.

HMM See Hidden Markov Model.

HMMER Computer program to align protein sequences to a protein family model
(based on HMMs). Resulting alignment has E-value and bit score that indicates
likelihood of match.

HMMERCELL Port of HMMER to the Cell architecture.

85

86 APPENDIX A. LIST OF TERMS

Homologue Similarity between DNA or protein sequences resulting from common an-
cestry.

Manager/Worker Pattern A design pattern used for the parallelization of software.
One processor produces jobs that are consumed by other processors.

Markov Model A simple state-based probabilistic model. State transitions only de-
pend on the previous x states.

Paraver Trace visualization environment. Used in this thesis to interpret generated
traces.

Pattern (Computer Science term) A generalized solution for commonly encountered
problems.

Pfam Database containing protein descriptions based on HMMs.

Plan7 Profile HMM Architecture The specific profile HMM structure as used by
HMMER.

PPE Power Processing Element. Cell processor core intended for general purpose pro-
cessing.

Profile Hidden Markov Model HMM as used in bioinformatics.

Protein Basic building block of life. Many uses, amongst others: forms major compo-
nents of organism’s body, controls signaling within a cell.

Sequence A string of symbols; in this context usually a list of symbols that code for a
protein.

Sequence Alignment Arranging sequences to each other and scoring the resulting
alignment. Often, the highest scoring alignment needs to be found.

Sequence Analysis Comparing sequences to each other to find similarities.

SPE Synergistic Processing Element. Cell processor core intended for streaming work-
loads.

TaskSim High-level phase-based simulator for computer architectures. Used in this
thesis to simulate Cell-like derivatives.

Traceback (HMMERCELL program phase) Produces alignment of a sequence to an
HMM. Traceback is performed only for sequences scoring above a certain threshold.

UniProt The Universal Protein Database, a database containing protein sequences.

Viterbi Algorithm Finds the most likely sequence of states through an HMM to gen-
erate a given sequence of output symbols.

