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Abstract

This study examines dataset annotation practices in influential NeurIPS research.
Datasets employed in highly cited NeurIPS papers were assessed based on criteria
concerning their item population, labelling schema, and annotation process. While
high-level information, such as the presence of human labellers and item population, is
present in most cases, procedural details of the annotation process are poorly reported.
Notably, 48% of datasets lack details on annotator training, 43% omit inter-rater re-
liability, and 28% are not publicly accessible. Temporal comparisons show minor im-
provements, but no substantial progress in reporting annotation methodology. A com-
plementary analysis of 49 NeurIPS papers published since 2020 shows that researchers
often discuss the broader impact of their work, yet do not include datasets or their
annotations in these assessments. These findings highlight a lack of standardisation
in annotation reporting and call for more robust practices that ensure transparency,
auditability, and reproducibility in machine learning research.

1 Introduction

Machine Learning (ML) has become a widely influential research field and a dominant
industry in recent years. A fundamental component of training and deploying ML models
consists of labelled datasets, with the annotations serving as the “ground truth” upon which
the model is built. As a result, data annotations directly influence the fairness, validity, and
trustworthiness of a model.

Despite this, the research community in the field generally prioritises other criteria to assess
the quality of a study or a model, such as performance, generalisation and novelty [1]. ML
research either refrains from discussing ethical matters, such as the societal impact of novel
discoveries and how the ground truths come to be, or does not address these concerns at all
[I]. Moreover, past research on data selection and dataset annotation shows that, in many
cases, ground truth creation suffers from insufficient reporting [2] and considerable pitfalls
[3, [4]. This inconsistency poses a growing risk, as a lack of transparency when it comes to
ground truth creation limits the capacity to assess its quality. Since models are increasingly
deployed in high-stakes environments, it is essential to evaluate dataset annotation practices.

Having the objective of providing a robust analysis, this study focuses on the Neural Infor-
mation Processing Systems (NeurIPS) conference. NeurIPS is, according to Google Scholar
metrics, one of the most prolific venues in the field [5]. It covers a wide range of branches
within ML, such as deep learning and reinforcement learning, while also actively encour-
aging research into socioeconomic aspects of ML, including fairness and safety [6]. Taking
into account the influence of NeurIPS, it is particularly relevant to examine the annotation
practices behind widely used datasets within the venue.

As such, this study addresses the following research question: “What are the data col-
lection and reporting practices for annotation in societally impactful ML appli-
cations from the NeurIPS venue?”. To find a thorough response, presents the
sub-questions that provide a framework to support the process.

The remainder of this thesis is structured as follows. Firstly, methodology is described

in Statistical results are illustrated in followed by a more elaborate



SQ1 | How do NeurIPS researchers assess the quality of the datasets that they
use for their models? Do they explicitly take annotations into account?
SQ2 | What or who is labelling the datasets?

SQ3 | What are the relevant criteria for evaluating the transparency of dataset
creation?

SQ4 | Do the datasets fit the criteria established by SQ37

Table 1: Research sub-questions.

discussion in Subsequently, discusses the limitations of this project. At
last, the analysis is concluded in

All materials used to conduct the study are publicly available and listed in

2 Methodology

Based on the research question, the most suitable approach to this study is conducting a
structured analysis of NeurIPS publications. This allows for examining the current research
landscape within the venue and observing what datasets are frequently encountered. The
annotation process of the respective datasets will be documented, with the aim of showcasing
the most common patterns arising from labelling and reporting practices.

With this in mind, 75 papers are extracted, 25 each from the last two, five, and fifteen
years (starting from 2023, 2020 and 2010, respectively), using citation counts to identify the
most influential studies within each period. The 2025 Conference on Neural Information
Processing Systems is scheduled for December, which is why the last year to be considered
is 2024.

The research process is showcased in a collaborative spreadsheet that combines the efforts
of all members of the peer group. The spreadsheet is available in [Appendix A] More details

regarding the methodology are included in

2.1 Defining “Societally Impactful”

Paper selection only began after a consensus was reached regarding what it means for an
ML application to be societally impactful. As such, the h5-index was chosen as a general
quantitative measure of relevance. It is defined as “the largest number A, such that A articles
from the past five years that have at least h citations each” [7]. This index, therefore,
highlights venues that have consistently cited work and is a convenient first glance at the
influence of a publication.

Following venue selection, papers are extracted based on the number of citations. While
citation count cannot effectively measure the quality of a research paper, it does show that
the study had a meaningful contribution, albeit possibly negative, to the scientific process
and the literature of the field. Moreover, it is an intuitive extension to the h5-index used
for choosing research venues.



In the scope of this project, a societally impactful ML application is defined as a piece of
academic work published in a leading field venue, with a high citation count as a testament
of recognition within the research community.

2.2 Extracting NeurIPS Papers

As previously mentioned in this chapter, 75 NeurIPS papers from three distinct periods were
extracted from Scopusﬂ ordered by citation count. Solely using Scopus was a decision taken
among the peer group, driven by a couple of considerations. Firstly, different versions and
citation counts of the same paper might occur in different databases, which can introduce
inconsistencies in the final compilations. Additionally, Scopus is easily accessible for TU
Delft students, hence it was an appropriate database choice.

For each paper, the title, publication year, Digital Object Identifier (DOI), and Scopus
link were exported. As NeurIPS does not issue DOIs for their published research papers,
those were manually extracted from the arXiv preprintﬂ While arXiv can include multiple
versions of the same paper, the DOI is used solely as the unique identifier of a paper and
has no other purpose. Moreover, NeurIPS papers are publicly accessible on their Websitdﬂ
hence the version that will be further used is the one available there.

After accounting for duplicates, which were only examined once, and excluding one study
that did not use any dataset, a total of 71 NeurIPS papers remain for further analysis.

2.3 Gathering Datasets

Paper selection was followed by compiling the list of datasets used in the respective studies.
For this stage, a set of rules was decided to ensure consistency in the datasets that will be
included. The purpose of this study is to assess datasets that were either released by the
selected papers or used in the training, development, or evaluation of the issued models. As
such, datasets that occur as related work on the specific tasks were excluded. Additionally,
datasets solely mentioned as possible alternatives, without eventually being used, were not
considered for further analysis.

The final step of this stage was deduplication. The most frequent reason for duplicate
data was naming, as the same dataset happened to be referenced differently across multiple
papers. As a result of this process, reading the NeurIPS papers has led to a total of 351
unique datasets.

2.4 Analysing Dataset Papers

At last, the concluding step of this review is analysing the sources of the datasets, to evaluate
their annotation process. Following discussions among the peer group and supervisors, and
considering that the midpoint of the allocated nine-week period had been reached, a target
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of 60 datasets was set. A method for sorting the extracted datasets has been established in
order to assess their relative importance. Based on this, the following weighted formula was
used for each dataset and time period:

Scoreq s = Z Citations(p)

PEP4 ¢

where:

e Scoregq; is the score for dataset d in time period ¢.
e Py, is the set of papers in time period ¢ that used dataset d.

e Citations(p) is the number of citations of paper p.

Having calculated this, the last remaining step of the methodology was analysing the top
20 datasets from each period according to the computed score. Subsequently, the criteria
previously defined by Geiger et al. [2] were adopted, with several additions that would
support a more robust assessment of quality and transparency. These additions consist of
criteria developed independently by the peer group, capturing aspects of transparency and
dataset construction that were not addressed in the original framework. In total, there are
27 criteria, 12 of which were also employed in [2].

Addressing SQ3, the final set of criteria was organised into three focal points. The first,
Items, concerns the description of the item population and the reasoning behind it. The
second, Annotators and Labelling Process, addresses who the labellers are and how they were
selected. and how they interacted during the annotation process, if at all. The third focal
point, Annotation Schema, elaborates on the rationale behind the chosen schema and the
specific task the dataset is designed to support. The exact set of criteria, alongside specific
details regarding how to assess them, can be found in [subsection B.2| of [Appendix Bl

2.5 Inspecting how NeurIPS Papers Discuss Annotations

In 2020, NeurIPS mandated that all papers include a “Broader Impact” section in order to
be accepted. This only lasted for one year; as of 2021, a separate section was no longer
compulsory. However, author instructions did mention that a discussion on societal impact
ought to be included [§]. Addressing these concerns, while nevertheless an approach worthy
of praise, gives readers an opportunity to observe what NeurIPS researchers prioritise when
faced with the demand of responsible research.

With the aim to discover how important the ground truth is in the NeurIPS landscape, a
separate analysis was conducted on a subset of the venue papers extracted from Scopus.
This consisted of two stages. Firstly, the “Broader Impact” section of a paper was inspected,
if it existed, to observe whether researchers assess the impact of their work on human lives.
Additionally, it was noted whether the datasets used or their annotations were mentioned
as possibly influencing this impact. Secondly, the papers were fully scanned to examine how
datasets and annotations are generally approached.



Papers published from 2020 onwards were examined using a set of criteria designed to assess
the level of attention given to dataset and annotation transparency. The complete set of
criteria, with rules of inspection, is described in [subsection B.3|of [Appendix B|

3 Findings

3.1 Dataset Annotation Analysis

This section effectively answers SQ4.

3.1.1 Overall Statistics

General statistics, compiling all three periods, can be seen in

Any available information about the dataset? |
Did humans label the dataset? |

Were the used labels original?

Was the label source provided? |

Was prescreening or lack thereof stated? |

Were formal instructions given? | 15% |
Was the label threshold provided? m_
Was the synthesis type described? | m_

Was there a discussion among the annotators? 30% 1T%

was 1R measured: - I EE———
Wias the population of the items descrite |
Was a reason given for choosing this item population? - b .
Was the sample size chosen befare data coniection® N N N
Was a rationale given for the sampte =iz« |
Was the annotation schema created beforenand? | N e o s ]
Was a reason given for annotation schema [ . = = 1

Partially

-
-
== No
-

Count

Was there annotator overlap?

Not applicable
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Figure 1: Overall statistics after dataset analysis.

Addressing SQ2, illustrates that a majority of the datasets were entirely human-
labelled, namely 67%. Another 11% of datasets were labelled both by humans and machines,
while 15% were either exclusively machine-labelled or unlabelled. For the remaining 7%,
there is no information regarding who or what was involved in dataset annotation.

Some particular patterns already arise from observing these figures. On the one hand,
there is a reliable source of information for the majority of datasets, as seen in the first bar
of the chart (“Any available information about the dataset?”). In this particular bar, the



"Not applicable" category refers to benchmarks, all of which were found to have accessible
documentation in the analysis. As a result, information was available for 91% of the datasets.
Additionally, 93% of the papers explicitly state whether the datasets were annotated by
humans. Finally, a large proportion of the dataset papers describe the item population
(89%) and offer a rationale for it (87%). This indicates that authors generally provide the
more high-level aspects of dataset creation.

On the other hand, several important aspects regarding annotation are poorly documented.
Generally, taking into account only cases where the criteria are applicable, details concerning
the annotation process itself, such as prescreening and training of annotators, rationale
for labeller selection, label thresholds and Inter-Rater Reliability (IRR) are predominantly
missing. Specifically, 41% of the datasets did not include information on prescreening, 48%
on training, 39% on labeller selection rationale, 35% on label threshold and 43% on IRR. This
suggests that there is a general lack of documentation of the labelling process. Additionally,
28% of the datasets themselves are inaccessible online. Even though this is by no means a
majority, it nevertheless raises transparency and reproducibility concerns.

Overall, authors do report general information about the datasets, such as the presence of
human labels, the item population and its reasoning. However, pitfalls are evident when it
comes to the annotation process, which is weakly reported. Specifically, the three fields with
the least amount of documentation are annotator training, discussion between annotators,

and IRR.

3.1.2 Comparing Periods

For each period, the top 20 datasets were inspected. presents the datasets that
occurred in multiple time frames, showing that the sets of datasets across periods are al-
most disjoint. Hence, analysing each period separately reveals more information on how
transparency levels fluctuate.

Common 2-5-15 ‘ Common 2-5 ‘ Common 5-15 ‘ Common 2-15
COCO [9] GSMSK [10] CIFAR-10 [11] No common datasets
ImageNet 2012 [12]

Table 2: Common occurrences in the top 20 datasets across all periods.

Firstly, the lack of reliable information on datasets only concerns the 15-year period. For
the remaining time frames, there was either a dataset paper, a website, or a README file
in a repository linked to the authors, that discussed dataset creation. Consequently, the
same rationale applies to reporting who or what labelled the datasets.

Another aspect concerning accessibility is whether the datasets themselves are available
online. This is showcased in the last bar of the chart (“Link to the dataset available?”), with
“Partially” meaning that a link is provided, but it is either not functional, or redirects to a
website that does not actually publish the data. In this case, there are improvements across
time frames. While in the 15-year period, 45% of the datasets were not made public at all,
this percentage decreased to 30% in the 5-year period, and 10% in the 2-year period.

Further, the percentage of criteria for which no information was provided can be observed



in At first glance, it might appear that the more recently used datasets are
significantly more documented. Two other aspects support this statement. Firstly, the
“Overall” bar, which illustrates that approximately 30% of information is missing across all
datasets, is skewed upwards by datasets that were employed in the past. Secondly, as stated

beforehand [Table 2] shows that the three periods have only a few datasets in common.
applicable are excluded. While it is clear

that both the 15-year and the 5-year period

show the same pitfalls previously discussed, ¢

those criteria are not applicable for a ma- ¢

jority of the datasets used in the 2-year pe-

riod. There are two main reasons for why =

this is the case. Firstly, some datasets from

this period are either unlabelled or machine- .

Period 15 Period 5 Period 2 overall
labelled. As such, criteria that concern hu-

man annotators, such as prescreening or dis- Figure 2: Percentage of fields with no
cussion, do not fit the context. Secondly, information across periods.
annotations for other datasets used in the

2-year period were taken from external sources that already had those labels. Although it
is known that the datasets are human-labelled, criteria such as annotator discussion, label
threshold, and implicitly all aspects that concern overlap, are not applicable for those cases.
Considering solely the cases where the criteria do apply, the dataset papers used in the 2-
year period still report the annotation process weakly. Information about annotator training,
labellers per item and IRR is scarce in this period as well. While other aspects of the annota-
tion process show some improvements compared to other periods, those are not substantial.

However, this assumption is not fully sup-
ported if cases where the criteria are not

Missing Information Percentage

Generally, documentation on datasets

Total: 42

seems to have improved over time, al- . WetmeRPeersovrce sedt
. . . . . == Not applicable

beit with some fluctuations in partic- .  ==;we

ular cases. However, these improve- ..

ments are concentrated in high-level as- ..
pects, such as the reasoning behind the
item population, where the labellers .

36
(85.7%)

Count

come from, and data availability. As .. Torhh 8

is the case in the overall statistics, de- 5 o7 . o
tails about the annotation process are h —(::':)—
poorly reported across all three peri- Did humans label the dataset?

ods. While there are improvements
in criteria such as total labellers and
threshold, other details such as IRR and label source.

and training remain overlooked. This indicates a lack of standardised reporting practices,
leaving the inclusion of these details at the discretion of dataset authors.

Figures concerning each period can be inspected in

Figure 3: Pairwise analysis between human labels



3.1.3 Pairwise Analysis

To examine the identified patterns in greater detail, cross-tabulations were conducted for
selected pairs of criteria. This approach showcases how different fields interact, which in turn
reveals potential inconsistencies in dataset documentation. Analysing these relationships
therefore offers a more nuanced understanding of reporting practices.

To begin, for most datasets that involved human annotation, either fully or partially, au-
thors clearly stated the source of their annotators. This is illustrated in The
percentage is similar in these categories, indicating a somewhat consistent level of trans-
parency, considering the difference in sample size. When it comes to datasets that were
either machine-labelled or unlabelled, conclusions are difficult to draw, since the two are not
differentiated.

The next analysis concerns annotator training and formal instructions. Preparatory mea-
sures are generally taken prior to annotation, in order to ensure consistency and reliability
across labellers. Training and formal instructions are the procedures that were inspected
throughout this analysis. They are examined together, in order to reveal the degree of
attention allocated to this stage of the annotation process.

Interactive training is one of the most

Total: 28

undocumented aspects of this analysis, ERERIES R TG
as discussed beforehand. However, = o = o formaton

. . n . mmm Formal instructions
shows that preparation is still Tota: 20

taking place, albeit in a different for-
mat. Among the 28 dataset papers
that do not report on any form of train-
ing, 20 still state that written guide-
lines were provided to labellers. In
contrast, all annotators who received
training also benefitted from formal in- o
structions. Nevertheless, this shows Was REAIfIiNG
that dataset authors generally rely on
forms of preparation that do not re-
quire high degrees of interaction with
the labellers.

8
(28.6%)

Total: 12

Figure 4: Pairwise analysis between annotator
training and formal instructions.

3.2 Perceptions of Societal Impact within NeurIPS

This subsection provides an answer to SQ1. Overall statistics after analysing the venue

papers can be observed in

These statistics also provide more insight for effectively answering SQ1. Out of the 49
venue papers analysed, 55% discussed the annotation of the datasets they used, or lack
thereof, in varying degrees of detail. Another 37% briefly touched upon the contents of
the datasets. With this in mind, it is reasonable to assume that NeurIPS researchers are
generally attentive to the high-level aspects of how datasets are annotated.



Does the paper introduce

datasets? 49%

Is there a *Broader Impact®

section? o

Are datasets mentioned in

this section? 40%

Are annotations mentioned

in this section? o

Does the section address

impact on human lives? 65%

Are datasets / annotations
discussed in the paper?

Are all the datasets used in
the research public?

55% 37%
65%

W Yes | Notapplicable 8 No [l Partially

Figure 5: Overall statistics after reviewing NeurIPS papers.

A categorical majority of the papers clearly address the broader impact of the research
through a dedicated section. This shows that addressing these topics is a practice that has
persisted from 2021 onwards, when the respective section became a voluntary choice (only
around 28% of the inspected papers were published in 2020).

However, datasets, and implicitly their annotation, are often not mentioned in the re-
searchers’ efforts to address the impact of their work. Even though most of the papers
discuss potential effects on human lives, there is often no correlation made between how
ML systems impact humans and the fact that training and experimental data constitute a
fundamental component of said systems. This is illustrated in

B No I Notapplicable [l Yes

40

32

30

20

Mention of annotations - Count

Not applicable

Human impact

Figure 6: Pairwise analysis between mentions of impact on humans and mentions of ground
truth in the “Broader Impact” sections.

Lastly, 35% of the venue papers make use of datasets that are not public. Consulting the
comparison shown in reveals that most of these proprietary datasets are not the
focal point of their respective papers, but rather introduced to support the research, either
by training or evaluating a ML model.
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Figure 7: Pairwise analysis between papers that introduce datasets and use of public
datasets.

4 Discussion

4.1 Lacking Information on the Annotation Process

As previously addressed, most dataset papers examined do provide general information,
such as the item population and the rationale behind its selection. Unfortunately, similar
levels of coverage do not extend to annotation. High-level aspects, such as the presence of
human annotators and their source, are commonly reported. However, elaborations on the
procedural aspects of annotation are overall scarce.

Firstly, the lack of interactive training procedures suggests limited engagement between
dataset creators and annotators. Authors prefer formal written instructions as an alter-
native, yet this is an impersonal and formulaic approach by nature. The overall tendency
towards excluding collaborative mechanisms, also suggested by lack of information on other
criteria, implies a generally unsupervised annotation process. A possible pitfall of such an
approach is that it encourages simplistic choices, which can reduce ground truth quality by
making it devoid of nuance [4]. This is further supported by the general lack of interaction
among annotators, who are assigned tasks individually without opportunities for discussion.
As a result, annotation becomes an encapsulated activity, which only enables flawed datasets

M.

Additionally, IRR metrics are also largely unreported. Measurements of IRR show how
consistently different annotators label the same data, which in turn reveal how consistent
the labelling task actually is. Without them, one cannot assess whether the labels are
reliable, or the result of agreement by chance between annotators. Most dataset papers do
not include any IRR statistics or mention of overlap between annotators. This aspect, or
lack thereof, raises doubts on the quality of the labels.

Within NeurIPS, there have been emerging efforts to make annotation and dataset construc-
tion more transparent, while also involving authors more directly in the process. Particu-

10



larly, the OpenAssistant Conversations project adopts an unconventional framework. Over
13,000 volunteers contributed to the dataset, combining the actual labelling task with item
quality reviews and filtering harmful content [13]. Discussion among labellers was facilitated
through a Discord server, where authors, among other contributors, had a clear moderation
role and promptly addressed issues raised by the annotators. The project does suffer from
a set of limitations, particularly under-representation of some demographics. Nevertheless,
it explores a labelling procedure that is community-driven, democratised, and aligned with
the “Crowd Truth” framework [4], which makes it unique in the list of datasets that were
analysed. Such initiatives additionally show that similar efforts are possible with limited
funding, as all labellers were volunteers.

4.2 “What are these automated systems actually trained on?”

The field of computer vision has seen major advancements due to the use of large-scale,
web-scraped datasets. Among them, ImageNet [I4] is regarded as the benchmark that
launched the widespread adoption of convolutional neural networks (CNNs) in both industry
and academia [I2]. CNNs have since been employed in applications ranging from medical
imaging to product recommendations.

A significant amount of datasets included in this analysis share similarities with ImageNet,
either through the data collection procedure, share of common items, or aim to provide all-
encompassing image corpora. However, the scale of these datasets effectively implies that
they are difficult to audit exhaustively.

Nevertheless, efforts have been made in discovering the intricacies of such datasets [15] [16].
Both studies have found vast quantities of harmful content in the datasets they inspected (i.e.
ImageNet and LAION-400M), including explicit imagery, racial and ethnic discrimination,
and propagation of other toxic stereotypes. At large, the corpora that dominate the field
are inherently unfiltered and poorly reported, as further confirmed by this study.

Lack of information on this particular category of corpora has been recognised as a limita-
tion within NeurIPS, due to the risks of harm, unintended spread of biases, and concerns
regarding consent [I7, [I8, 19, 20]. Although the technological progress cannot be doubted,
there is a definite need for more awareness and action to ensure that these practices do not
persist and do not negatively affect human lives.

4.3 Private Datasets

Both the dataset annotation analysis and the targeted NeurIPS analysis have shown that
28% of the employed datasets that are not made public. Barriers to dataset access directly
undermine the reproducibility of the presented findings, as researchers do not have the
resources to verify results or inspect data quality.

As shown in the analysis of NeurIPS papers, the datasets that are not published are typically
supporting resources for training or evaluating the proposed models. While the core contri-
butions may be valid, the use of inaccessible datasets make the conditions under which results
were produced uncertain. Moreover, NeurIPS has published papers that were authored by

11



strong participants within the industry of ML, whose products are used by numerous people
around the world. OpenAl is a particular example, having more than half a billion monthly
users [2I]. Upon inspecting the datasets used to create one of OpenAI’s most acclaimed
products, i.e. GPT-3 [22], one can observe that 9 out of the 36 employed datasets, from
both training and evaluation stages, are proprietary. Hence, datasets that cannot be evalu-
ated have shaped products used by people around the world. This draws attention to the
transparency standards that research venues are expected to uphold, and whether current
practices adequately support reproducibility and robust reviewing processes.

5 Limitations

5.1 Time Constraints

As this research project was conducted under a strict nine-week time frame, several method-
ological choices were driven by this aspect. For instance, the decision to focus solely on one
research venue was taken with the objective of presenting a robust, in-depth analysis while
also taking time into consideration. The remaining members of the peer group pursued
similar reviews on other venues.

Perhaps the most significant decision that was influenced by time constraints was the number
of papers and datasets selected for inspection. With this in mind, as an effort to balance fea-
sibility and depth of analysis, the study targets 75 venue papers and 60 datasets. Analysing
all the papers and compiling the relevant information took approximately five weeks. To
justify the inclusion of specific items, we established selection criteria that prioritised rele-
vance. Namely, citation count for the papers, and the weighted citation-based score for the

datasets, discussed in [subsection 2.4

At last, the choice of examining how impact is discussed in NeurIPS research was limited
to the last five years, due to the same time considerations. Moreover, it was motivated by
the conference decision to mandate such a discussion in 2020 and include it in the author
instructions one year later [8]. Approximately one week of the project was spent on this
analysis. While a broader temporal scope might have yielded more insights, focusing on
recent publications allowed for a targeted analysis within the available time frame.

Restricting the amount of items that were examined implicitly required sacrificing the
breadth of the study. However, it allowed for a more robust analysis given the allocated
time. Future research can build upon it by reviewing annotation practices on a larger scale.

5.2 Choice of Impact Indicators

Given the scope of the project, as well as the aim to capture the annotation practices across
datasets that are widely used in NeurIPS, the chosen definition of societal impact has proven
itself useful. Due to it being strictly quantitative, it provided a means to prioritise the venue
papers and the datasets that constitute the subject of analysis.

Nevertheless, quantitative measures do have a few disadvantages. For instance, a drawback
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of the hb-index is that it has a bias towards venues that publish a significant number of
papers, since a small conference or journal that publishes few papers will implicitly have
a low index, even if those papers are highly cited. Thus, the decision to focus on prolific
venues within the field was deliberate.

More complete definitions of societal impact would require qualitative assessments. Gen-
erally, societal impact can be understood as a perceivable effect on human lives. To this
extent, NeurIPS encompasses a wide range of ML fields, many of which involve more techni-
cal contributions whose societal implications may not be immediately visible. Throughout
the analysis, it became clear that many areas of Machine Learning, such as advances in com-
puter vision, prediction systems, large language models, and speech recognition technologies,
hold substantial impact, even if not directly observable in everyday life.

As such, while qualitative measures could offer a richer and more nuanced understanding of
societal impact, the use of a quantitative metric in this project allowed for a scalable way to
prioritize venue papers and datasets, which was in line with the study’s focus on annotation
practices. Future research tailored to specific application domains may build on this work
and develop more context-dependent definitions of impact that also incorporate qualitative
dimensions.

6 Conclusions and Future Work

This study was set up as a means to investigate the common reporting and collection prac-
tices concerning annotation, in the case of datasets frequently employed in NeurIPS research.
In all, 71 venue papers and 60 datasets constituted the subject of this analysis. Subsequently,
datasets were examined on a set of 27 criteria concerning the items, annotators, and anno-
tation schema.

The findings reveal that, while general information is well reported, the procedural aspects
of annotation are insufficiently documented. Omitting these stages of the labelling process
limits the ability to assess the quality and reliability of the datasets in question. Moreover,
the targeted review of recent NeurIPS papers indicated that, although societal impact is
frequently approached, ground truth construction is rarely discussed in this context. This
reveals that, while labelled datasets are a foundational part of ML applications, researchers
do not take them into consideration when assessing the implications of their studies. The
analysis also raises concerns about the accessibility of datasets, a notable proportion of
which are private or only partially accessible. This practice is present even in recent venue
research, which undermines ongoing efforts to ensure that research is reproducible.

As a concluding remark, it is shown that both the annotation process itself and its reporting
are still largely unstandardised. Future work should aim to establish more rigorous and uni-
form procedures for documenting dataset annotation. Additionally, the research community
in the field should intensify efforts to audit and critically examine widely used datasets, both
in terms of labelling procedure and item population. At last, future research can extend
upon this study, either by focusing it on specific branches of ML, or by broadening its scope
to include more venues and different impact assessments.
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Responsible Research

Reproducibility and Replicability

This literature review mainly aims to address issues of transparency in ML research. As
such, reproducibility and replicability were, intuitively, focal points in conducting this study.
Documenting the process was done extensively throughout the project, with the precise aim
to present as detailed a description as possible.

Given the thorough documentation of the methodology, as well as the availability of all
the resources that were used, it is reasonable to assume that this project is replicable.
Researchers who wish to either extend upon this analysis, or apply the same methods for
other venues or time frames, have all the resources at hand to conduct such a study. Paper
and dataset extraction, along with dataset analysis and aggregate statistics, have well-set
rules that can be followed in the future.

However, such an assumption cannot be applied to conclude that this review is fully repro-
ducible. Venue papers were extracted from Scopus on a certain date, having citation count
as the sorting criterion. As time passes, the number of citations will undoubtedly differ,
which might alter the final set of papers to be reviewed. Citation count was additionally
used to decide which datasets will be examined, hence there is no guarantee that this list
will be the same in the future. Still, citations were used as the primary measurement of
impact, so excluding them from the methodology would remove a fundamental component
of this study.

On this basis, while replicability is guaranteed, there are parts of this study that need to be
altered to also ensure reproducibility. Measuring impact differently, both in terms of papers
and datasets, can mitigate this issue in future research on the topic.

Use of Large Language Models

The only Large Language Model (LLM) that was used during this project is GPT-40, made
by OpenAl. GPT-40 has been used to assist in writing the code that produced the statistics
shown in [section 3

No LLM was used for the personal contribution to the codebase that generated the statistics
shown in the project. Further, LLMs did not substitute any personal work or analysis in
other stages of the analysis. Examples of exact prompts given to GPT-40 are shown in

Append

Ethical Concerns

This thesis does not introduce a novel ML model or release any dataset intended for training
or evaluation. As such, ethical concerns related to human use or impact — which are rightfully
considered when deploying ML systems — do not directly apply here. Instead, this study
mainly aims to contribute to an ongoing discussion around annotation practices, and how



these are insufficiently addressed within the research community.
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This inconsistency poses a growing risk, as a lack of transparency
when it comes to ground truth creation makes it difficult to assess its
quality.

what are some similar expressions to 'makes it difficult' that are a bit
rmore formal but still fit the context of this sentence?

Here are several more formal alternatives to "makes it difficult” that would fit well in your sentence:

1. "Hinders the ability to"

"...a lack of transparency when it comes to ground truth creation hinders the ability to assess its

quality."

2. "Impedes the assessment of"
"...a lack of transparency when it comes to ground truth creation impedes the assessment of its
quality.”

3. "Undermines efforts to"

"...a lack of transparency when it comes to ground truth creation undermines efforts to assess it

quality.”

Figure 8: Enter Caption

A Resources

The collaborative spreadsheet, containing all the venue papers and datasets that have
been inspected, can be accessed here: https://docs.google.com/spreadsheets/d/
16MkuS-upEQxkAj-poZ05ggPqmu_UIDbwi7HWS3-21HE/edit?usp=sharing,

Here, Tab 1 was compiled as mentioned in Tab 2 as described in
and Tab 3 as discussed in The code that was used for aggregate

statistics is available on GitHub: https://github.com/Gargant0373/DatasetAnalysis|

B Methodology Details

This appendix is meant to provide more details regarding paper extraction and the criteria
used in analysing datasets and NeurIPS papers.


https://docs.google.com/spreadsheets/d/16MkuS-upEQxkAj-poZO5ggPqmu_UIDbwi7HWS3-21HE/edit?usp=sharing
https://docs.google.com/spreadsheets/d/16MkuS-upEQxkAj-poZO5ggPqmu_UIDbwi7HWS3-21HE/edit?usp=sharing
https://github.com/Gargant0373/DatasetAnalysis

B.1 Using Scopus to retrieve NeurIPS papers

Paper extraction took place on April 25, 2025; as such, all the query results were recorded
that day. The first Scopus query was used to observe the venues (in Scopus, “source title”s)
that appear after simply querying Neural Information Processing Systems:

SRCTITLE ( neural AND information AND processing AND systems )

The query mostly yielded NeurIPS papers, except for one venue: “Information Processing
by Chemical Systems Neural Network Type Configurations” as seen in As such,
the query was tweaked to exclude this venue:

SRCTITLE ( neural AND information AND processing AND systems AND NOT biochemical )

Filter by source title X

Sort by Number of results ~

D Advances In Neural Information Processing Systems 22,524

|:| Advances In Neural Information Processing Systems 24 2s5th Annual Conference On Neural Information Processing Systems 2011 Nips

2011

D Advances In Neural Information Processing Systems 23 2ath Annual Conference On Neural Information Processing Systems 2010 Nips

2010
D Advances In Neural Information Processing Systems 22 Proceedings Of The 2009 Conference 263
l:l Advances In Neural Information Processing Systems 21 Proceedings Of The 2008 Conference 251

Advances In Neural Information Processing Systems 20 Proceedings Of The 2007 Conference 219

ood

Nips 2002 Proceedings Of The 15th International Conference On Neural Information Processing Systems

Nips 2006 Proceedings Of The 19th International Conference On Neural Information Processing Systems 201
Nips 1995 Proceedings Of The 8th International Conference On Neural Information Processing Systems 150
Nips 1994 Proceedings ©f The 7th International Conference On Neural Information Processing Systems 140

6th Workshop On Automated Knowledge Base Construction Akbc 2017 At The 31st Conference On Neural Information Processing

Systems Nips 2017

O OO0O0

Information Processing By Biochemical Systems Neural Network Type Configurations 1

Figure 9: List of source titles shown in Scopus after applying the first query.

This new query only yielded NeurIPS papers. Having sorted this out, to extract papers
from the certain time periods, the following queries were used:

e 15-year period:
SRCTITLE ( neural AND information AND processing AND systems

AND NOT biochemical )
AND PUBYEAR > 2009 AND PUBYEAR < 2025

e 5-year period:



SRCTITLE ( neural AND information AND processing AND systems
AND NOT biochemical )
AND PUBYEAR > 2019 AND PUBYEAR < 2025

e 2-year period:

SRCTITLE ( neural AND information AND processing AND systems
AND NOT biochemical )
AND PUBYEAR > 2022 AND PUBYEAR < 2025

The “Sort by” feature of Scopus was used to get the most cited papers from each period, as

shown in

21,155 documents found A Analyze results 7

D All v  Export v  Download  Citation overview === More Show all abstracts ~ Sortby Cited by (highest) ~  H =

Figure 10: Sorting by citation count in Scopus.

B.2 Tab 3: Dataset assessment criteria

All the criteria that were used to inspect the annotation process of the datasets are discussed
below, in the same order they occurred in the collaborative spreadsheet. As mentioned
before, some of them were taken from the analysis of Geiger et. al [2], while others are new
criteria. Here, the new criteria will be listed in bold.

Some general rules of thumb were taken into account during this process. Each cell in the
sheet could be completed with “No information”, “Not applicable”, or “Unsure”, depending
on the context.

“No information” means that the dataset paper does not mention or discuss the criterion
at all. With this in mind, “No” is different from “No information”, as “No” means that the
dataset paper explicitly states that something was not used or not considered (e.g. it is
stated that there was no sample size that was aimed for).

“Not applicable” was used for criteria that do not fit the context of the specific dataset (e.g.
there is no need for labeller selection criteria if the dataset was machine-labelled).

Finally, “Unsure” was used when there was uncertainty in the information provided by the
dataset papers, which would be further discussed in a meeting with the peer group. If the
uncertainty could not be resolved, the cell would remain completed as “Unsure”.

With this in mind, these are the criteria that were considered when reading the dataset

papers:

e Available. Is there a reliable source for information about the dataset? Dropdown
criterion, with the following options:



— Yes, if there is a reliable source of information on the dataset, i.e. a dataset paper,
or a comprehensive README file in a repository that contains the dataset;

— No, otherwise.
o Outcome. The ML task the dataset is aimed for.

e Human Labels. Was the dataset labelled by humans? Dropdown criterion, with the
following options:
— Yes for all, if humans labelled all the items of the dataset;
— Yes for some, if human labellers were present, but not for all items;

— No / machine labelled, if the dataset was either unlabelled, or entirely machine-
labelled;

— Implicit Yes, if this information is not explicitly stated, but the dataset paper
mentions other things, such that we can infer human labellers were present (e.g.
how many annotators labelled an item, overlap, etc.);

— No information.
— Unsure;

“Not applicable” was not used here, since this list of options is exhaustive for this
criterion.

e OG Labels. Were the labels original (i.e. created by people who are directly involved
in the creation of the dataset)? Dropdown criterion, with the following options:
OQG, if the labels themselves were created either by the authors, or by the labellers;

Miz OG, External, if there are both labels created by authors/labellers and labels
that are taken from an external source that is already available;

Ezxternal, if all the labels were taken from an external source;

— Not Labelled, if the dataset was not labelled at all. This option is a replacement
for “Not applicable”;

— No information.
— Unsure;

e Label Source. Where were the annotators hired from? / Who are the annotators? If
the dataset is machine-labelled, what algorithm / model was used for annotation?

e Prescreening. How were the labellers selected? Dropdown criterion, with the following
options:

Generic skill-based, if annotators were selected based on a specific skill set (e.g.
language proficiency for a translation dataset);

No pre-screening (stated), if it is explicitly mentioned that no selection took place;

Project Specific, if the labellers are known by the authors, or if authors did their
own pre-screening;

Location Qualification, if the labellers were selected based on their location;



Previous Platform, if labellers were chosen based on how well they performed for
other jobs (e.g. HIT accuracy on MTurk);

No information;
Not applicable.

Unsure;

e Compensation. How were the annotators compensated? Dropdown criterion, with the
following options:

Money, if the labellers were paid;
Authorship, if the labellers were mentioned as paper authors;

Course Credit, if the labellers were, for example, students, and the annotation
task was part of coursework;

Other compensation, if other compensation method was stated;
Volunteer, if the labellers were not given any compensation;
No information;

Not applicable;

Unsure.

e Training. Did the labellers receive any sort of interactive training prior to the annota-
tion process? Formal instructions do not count as training. Dropdown criterion, with
the following options:

Some training, if interactive training took place;
No information;
Not applicable;

Unsure.

e Formal Instructions. Did the annotators receive any formal instructions prior to an-
notation? Dropdown criterion, with the following options:

No instructions, if it is explicitly stated that there were no instructions provided;

Some Instructions, if it is mentioned that labellers were given instructions, but
this is not elaborated on;

Formal Instructions, if it is clearly stated that the annotators received formal
instructions, with those instructions also stated in the paper;

No information;
Not applicable;

Unsure.

e Labeller Population Rationale. Do the authors of the dataset paper provide any
reasoning as to why they chose those specific labellers?

e Total Labellers. How many labellers worked on annotation?



e Annotators per item. How many labellers worked on each item? This number can
either be exact, or a measurement of central tendency, i.e. mean, mode, or median.

e Label Threshold. What is the minimum amount of labellers each item needed?

e Overlap. Was there overlap in the annotation process? In other words, did more
labellers work on the same items? Dropdown criterion, with the following options:

— Yes for all, if each item in the dataset was labelled by more than one annotator;
— Yes for some, if some, but not all items were labelled by more than one annotator;
— No, if there was no overlap;
— No information;
— Not applicable;
— Unsure.

e Overlap Synthesis. How were disagreements solved between annotators, if it was the
case? Dropdown criterion, with the following options:

— Quantitative, if some quantitative criterion was used to solve overlap (e.g. ma-
jority vote);

— Qualitative, if some qualitative criterion was used to solve overlap (e.g. discussion
between annotators);

— Other, if there were other methods to solve overlap;
— No information;
— Not applicable;

— Unsure.
e Synthesis Type. What was the exact method used to solve disagreements?

e Discussion. Was there any discussion among the annotators? Dropdown criterion,
with the following options:
— Yes, if discussions took place;
— No, if it is explicitly stated that no discussions took place;
— No information;
— Not applicable;
— Unsure.
e Inter-Rater Reliability (IRR). Was there any IRR reported, if there was overlap? Drop-
down criterion, with the following options:
— Yes, if IRR was reported;
— No, if no IRR was reported;
— No information;
— Not applicable;

— Unsure.



e Metric. What was the exact metric for computing IRR?

e Item population. Briefly describe what the dataset contains.

e Item population rationale. Why was this specific item population chosen?

e Item source. Where were the items taken form?

e A priori sample size. Was the sample size chosen before the creation of the dataset?

e Item sample size rationale. Did the authors decide on the sample size for some
specific reasons?

e A priori annotation schema. Was the annotation schema (i.e. the labels) decided
before the creation of the dataset?

e Annotation schema rationale. Did the authors choose the annotation schema for
any specific reasons?

e Link to data. Is the dataset publicly available online? Dropdown criterion, with the
following options:

— Yes, if there is a provided link to the dataset, and it directs to the dataset;

— Yes, but broken, if there is a link provided, but it does not direct to the dataset;
— No, if there is no link provided;

Not applicable;
— Unsure.

“No information” is not an option here, since the list of options is exhaustive for this
criterion.

B.3 NeurlIPS societal impact analysis

This study also inspects how NeurIPS researchers assess the societal impact of their work.
Criteria used in the analysis are listed below, in the order they occurred in the spreadsheet.
Once again, “Not applicable” is used if the criterion does not fit the context (e.g. there is
no discussion in the “Broader Impact” section if there is no such section).

e Dataset paper. Is the research presented in the paper centred around releasing a
dataset or benchmark? Drowdown criterion, with the following options:
— Yes, if this is the case;

— No, but introduces datasets, if the paper is not centred around a dataset / bench-
mark, but datasets were created as part of the research;

— No, otherwise.

e Societal / Broader Impact section. Does the paper have a (sub-)section strictly
named this way? Yes / No answers only.



Datasets mentioned. Are datasets discussed in this section? Yes / No / Not
Applicable answers only.

DS details. Brief description of how datasets are discussed.

Dataset annotations/labels mentioned. Are annotations discussed in this sec-
tion? Discussions on item population or sample size also count. Yes / No / Not
Applicable answers only.

Label details. Brief description of how annotations are discussed.

Human impact. Does the section address other aspects that concern impact on
human lives? This includes, but is not limited to: bias and fairness, legality and safety,
health, environment, impact on labour, etc. Yes / No / Not Applicable answers only.

Datasets / annotations in other sections. Does the paper discuss the datasets
used, and / or their annotation process? Solely mentioning the datasets counts towards

a “No” answer. Dropdown criterion, with the following options:

— Yes, if this is the case;

— Yes, but only contents, if the contents of the datasets are described, but there is

no other discussion;

— No, otherwise.

e Discussion details. Brief description of what is discussed.

e Internal dataset(s). Does the paper use proprietary datasets that are not made

public? Yes / No answers only.

C Analysed Papers and Datasets

This appendix compiles the list of NeurIPS papers and dataset papers that were inspected

as part of the project.

Table 3: NeurIPS papers that were analysed, without duplicates.

*According to Scopus on April 25, 2025.

Title Year | Period | Cited by*
ImageNet classification with deep convolutional neural | 2012 15 85,220
networks [23]

Attention is all you need [24] 2017 15 83,482
Generative adversarial nets [25] 2014 15 48,297
Faster R-CNN: Towards real-time object detection with | 2015 15 33,127
region proposal networks [26]

PyTorch: An imperative style, high-performance deep | 2019 15 29,810
learning library [27]

Distributed representations of words and phrases and | 2013 15 25,301
their compositionality [28]




Table 3, continued from previous page

Title Year | Period | Cited by*
Language models are few-shot learners [22] 2020 15 19,613
A unified approach to interpreting model predictions | 2017 15 16,200
129

Sequence to sequence learning with neural networks [30] | 2014 15 15,234
Inductive representation learning on large graphs [31] 2017 15 11,673
Denoising diffusion probabilistic models [32] 2020 15 9,246
Light GBM: A highly efficient gradient boosting decision | 2017 15 8,998
tree [33]

GANSs trained by a two time-scale update rule converge | 2017 15 8,643
to a local Nash equilibrium [34]

PointNet++: Deep hierarchical feature learning on | 2017 15 8,244
point sets in a metric space [35]

Improved training of wasserstein GANs [30] 2017 15 7,291
Translating embeddings for modeling multi-relational | 2013 15 7,106
data [37]

Convolutional LSTM network: A machine learning ap- | 2015 15 6,900
proach for precipitation nowcasting [38]

Convolutional neural networks on graphs with fast lo- | 2016 15 6,665
calized spectral filtering [39]

Two-stream convolutional networks for action recogni- | 2014 15 6,287
tion in videos [40]

How transferable are features in deep neural networks? | 2014 15 6,227
)

Prototypical networks for few-shot learning [42] 2017 15 6,172
Improved techniques for training GANs [43] 2016 15 6,114
Spatial transformer networks [44] 2015 15 6,099
Matching networks for one shot learning [45] 2016 15 5,721
Practical Bayesian optimization of machine learning al- | 2012 15 5,701
gorithms [46]

Training language models to follow instructions with hu- | 2022 ) 4,795
man feedback [47]

Chain-of-Thought Prompting Elicits Reasoning in Large | 2022 ) 4,314
Language Models [48]

Diffusion Models Beat GANs on Image Synthesis [49] 2021 5 4,045
Bootstrap your own latent: a new approach to self- | 2020 ) 3,942
supervised learning [50]

SegFormer: Simple and Efficient Design for Semantic | 2021 5 3,896
Segmentation with Transformers [20]

wav2vec 2.0: A framework for self-supervised learning | 2020 5 3,605
of speech representations [51]

Supervised contrastive learning [52] 2020 5 3,228
Retrieval-augmented generation for knowledge-intensive | 2020 5 2,587
NLP tasks [53]

Unsupervised learning of visual features by contrasting | 2020 5 2,314

cluster assignments [54]




Table 3, continued from previous page

Title Year | Period | Cited by*
FixMatch: Simplifying semi-supervised learning with | 2020 5 2,275
consistency and confidence [55]

Photorealistic Text-to-Image Diffusion Models with | 2022 ) 2,207
Deep Language Understanding [19]

MLP-Mixer: An all-MLP Architecture for Vision [56] 2021 5 1,730
Graph contrastive learning with augmentations [57] 2020 5 1,645
Autoformer: Decomposition Transformers with Auto- | 2021 5 1,629
Correlation for Long-Term Series Forecasting [58]

Large Language Models are Zero-Shot Reasoners [I§] 2022 ) 1,569
Implicit neural representations with periodic activation | 2020 5 1,511
functions [59]

Flamingo: a Visual Language Model for Few-Shot | 2022 5 1,486
Learning [60]

Unsupervised data augmentation for consistency train- | 2020 ) 1,384
ing [61]

Fourier features let networks learn high frequency func- | 2020 5 1,338
tions in low dimensional domains [62]

Align before Fuse: Vision and Language Representation | 2021 5 1,328
Learning with Momentum Distillation [I7]

HiFi-GAN: Generative adversarial networks for efficient | 2020 5 1,273
and high fidelity speech synthesis [63]

Is A Picture Worth A Thousand Words? Delving Into | 2024 5 1,256
Spatial Reasoning for Vision Language Models

Open graph benchmark: Datasets for machine learning | 2020 5 1,255
on graphs [64]

Visual Instruction Tuning [65] 2023 2 740
Direct Preference Optimization: Your Language Model | 2023 2 531
is Secretly a Reward Model [60]

Judging LLM-as-a-Judge with MT-Bench and Chatbot | 2023 2 516
Arena [67]

QLORA: Efficient Finetuning of Quantized LLMs [68] 2023 2 504
Tree of Thoughts: Deliberate Problem Solving with | 2023 2 387
Large Language Models [69]

Reflexion: Language Agents with Verbal Reinforcement | 2023 2 288
Learning [70]

SELF-REFINE: Iterative Refinement with Self- | 2023 2 214
Feedback [71]

InstructBLIP:  Towards General-purpose  Vision- | 2023 2 213
Language Models with Instruction Tuning [72]

Toolformer: Language Models Can Teach Themselves | 2023 2 212
to Use Tools [73]

LIMA: Less Is More for Alignment 2023 2 175
Gold-YOLO: Efficient Object Detector via Gather-and- | 2023 2 149
Distribute Mechanism [74]

LLaVA-Med: Training a Large Language-and-Vision | 2023 2 142

Assistant for Biomedicine in One Day [75]




Table 3, continued from previous page

Title Year | Period | Cited by*
HuggingGPT: Solving Al Tasks with ChatGPT and its | 2023 2 141
Friends in Hugging Face [76]

ProlificDreamer: High-Fidelity and Diverse Text-to-3D | 2023 2 136
Generation with Variational Score Distillation [77]

LLM-Pruner: On the Structural Pruning of Large Lan- | 2023 2 134
guage Models [78§]

Segment Everything Everywhere All at Once [79] 2023 2 124
Jailbroken: How Does LLM Safety Training Fail? [80)] 2023 2 115
Segment Anything in High Quality [81] 2023 2 114
Is Your Code Generated by ChatGPT Really Correct? | 2023 2 113
Rigorous Evaluation of Large Language Models for Code

Generation [82]

One Fits All: Power General Time Series Analysis by | 2023 2 99
Pretrained LM [83]

Large Language Models Are Zero-Shot Time Series | 2023 2 91
Forecasters [84]

Simple and Controllable Music Generation [85] 2023 2 88
OpenAssistant Conversations - Democratizing Large | 2023 2 86
Language Model Alignment [I3]

Frequency-domain MLPs are More Effective Learners in | 2023 2 82

Time Series Forecasting [36]




Table 4: Table

Dataset Period
cifar-10 [11] 15
imagenet 2012 [12] 15
wmt14 [87] 15
mnist [88] 15
ptb [89] 15
imagenet 2010 [90] 15
imagenet fall 2009 15
berkeleyparser [91] 15
tfd 15
coco [9] 15
pascal voc 2007 [92] 15
pascal voc 2012 [93] 15
google news 15
word analogy task [94] 15
lsun [95] 15
svhn [96] 15
anli [97] 15
arc-challenge [98] 15
arc-easy [99] 15
books1 [I00] 15
imagenet [14] 5
cifar-10 |11

cifar-100 |101]

oxford flowers 102 [102]
oxford-iiit pets [103]
pascal voc 2007 [92]
imagenet 2012 [12]
birdsnap [104]
caltech101 [105]

dtd [106]

fgve aircraft [107]
food-101 [I08]
stanfordcars [109)]

sun397 [110]

pascal voc 2012 [93]
aqua [11T]

coin flip [T12]
commonsenseqa [113]
date understanding [114]

gsm8k [10]

coco [9]

hh-rlhf [T15]
llava-instruct-158k [116]
scienceqa [117]

cc-595k [118]

NN DNDND OO OTotOU ot Ottt Ot ot Ottt Ot ot Ot Ot Ot ot ot



llava-bench [119]
superni [120]
alpaca [121]

gsm8k [10]
openassistant conversations [13]

cnn/dm modified [122]
imdb- [123]

n/a [124]
webis-tldr-17 [125]
chatbot arena [126]
mt-bench [127]

chip2 [128]
crows-pairs [129]

flan v2 [130]
llava-bench COCO[I19]

llava-bench in-the-wild [I19]

NDNDNNNDNDNNNDNDDNDDNDNDDND NN

D Additional Figures

Other relevant statistics on the findings can be found here.

Any available information about the dataset?

2
5

Did humans label the dataset?

Were the used labels original?

Was the label source provided?

Was prescreening or lack thereof stated?
Was the compensation method stated?

Was information about training provided?

Were formal instructions given?

Was there a reason pi for the labeller

‘Was the total number of labellers provided?

&

Was the number of labellers per item specified?
‘Was the label threshold provided?

‘Was there annotator overlap?

Was the synthesis type described?

Was there a discussion among the annotators?

‘
a’ ||

Was IRR measured?

Was the population of the items described?

Was a reason given for choosing this item population?

|

Was the sample size chosen before data collection? -

Was a rationale given for the sample size?

Was the annotation schema created beforehand? Documentation Status

Was a reason given for annotation schema? -

11
g3
|

E

Link to the dataset available?

= No
Count === Not applicable
0.0 25 50 75 10.0 125 15.0 175 20

Figure 11: Overall statistics for the 15-year period.



Did humans label the dataset?

Was the label source provided?

Were the used labels original? 10%

Was the number of labellers per item specified? 50%

Was the label threshold provided? - | 35%

Was there a discussion among the annotators? 0% 25%
Was IRR measured?

Was the of the items

Was a reason given for choosing this item population?
Was the sample size chosen before data collection?

Was a rationale given for the sample size? 5%

]
o

Was the annotation schema created beforehand? Documentation Status

s areaso given for smotation schems? N I
= Partially
- No
Count === Not applicable
25 5.0 75 10.0 125 15.0 17.5 20.0

Figure 12: Overall statistics for the 5-year period.

E Examples of GPT-40 prompts



Any available information about the dataset?

Did humans label the dataset?

‘Were the used labels original?
Was the label source provided? 10%

Was prescreening or lack thereof stated? 10%

Was the compensation method stated? -
Was information about training provided?

Were formal instructions given?

Was there a reason for the labeller 15%

Was the total number of labellers provided?

Was the number of labellers per item specified?

Was the label threshold provided? 5%

Was there annotator overlap? 10% 10%
Was there a discussion among the annotators?
Was IRR measured?

Was the of the items.

]
B
9

Was a reason given for choosing this item population? -
Was the sample size chosen before data collection?
Was a rationale given for the sample size?

?
Was the annotation schema created beforehand? Documentation Status

Was a reason given for annotation schema?

= Partially
= No
Count mmm Not applicable
00 25 50 75 10.0 125 150 175 20.0

Figure 13: Overall statistics for the 2-year period.



what are some linkers similar to 'a

M Todrawa logical conclusion or result (most common use of "as such”):
« Therefore
Thus
Consequently
Accordingly
Hence
For that reason

As a result

B To refer back to a role, status, or quality ( “as such”= “in that capacity/role"):

In that role
In that capacity
In their position as...

In this regard

Figure 14: GPT-40 suggesting connecting words.



of this sentence?

Here ar nal alternatiy "makes it difficult” tha
Hinders the ability to"

ground truth

hen it comes te ground truth creati

n it comes to ground truth creation under:
quali

4. "Complicates efforts to”

Figure 15: GPT-40 suggesting similar expressions.
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