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Multi-objective Design and Performance Analysis of Incremental
Control Allocation-based Flight Control Laws

T.S.C. Pollack∗, and E. van Kampen†

Delft University of Technology, 2629HS Delft, The Netherlands

The functional architecture of a flight control system (FCS) is driven by multiple objectives
related to the aircraft’s operational mission and in-service performance targets. Control
allocation (CA) is a common method to ensure adequate use of the available effector architecture
once the number of control effectors linked to the FCS increases and the control problem
becomes overdetermined. A primary CA design objective is to ensure that high-level motion
control demands are met. However, the additional degrees of freedom offered by the control
effector suite can also be exploited to perform secondary control tasks. In this light, this article
focuses on the Incremental Control Allocation (INCA) framework in the context of in-flight
optimization of arbitrary secondary flight control design objectives. An extension to the existing
INCA concept is formulated that isolates this secondary control task from generating primary
control demands. Moreover, an alternative, but closely related design method based on optimal
control principles is proposed that extents the role of the control allocator to active control of
the system dynamics. Design examples are demonstrated for least-squares minimization of
total drag and control activity. These are analyzed in linear and nonlinear simulation scenarios
based on an open-source General Dynamics F-16 simulation model.

I. Introduction

Operational mission profile and in-service performance levels of an aircraft are driving factors that determine the
functional architecture of flight control systems (FCS). Meeting all requirements related to safety, flying quality,

and ride comfort can be seen as the primary FCS design objective. The flight condition-dependent nature of the
aerodynamics of the airframe and the available control authority implies that diverse control strategies may be required
to meet these design goals. The consequence is that the FCS functional architecture may consist of a large number of
control effectors. Distributed roll mechanisms such as in-board/out-board ailerons and roll spoilers [1] are common
examples, as are high-lift devices such as flaps and slats. More extensive and complex system architectures are seen in
case of extreme maneuvering capabilities and high angle-of-attack flight. For such capabilities, additional mechanisms
such as leading edge flaps or thrust vectoring functionality [2, 3] may be required. Another example is the case of
Vertical Take-off or Landing (VTOL), which can be achieved by installing e.g. lifting fans [4] or tilting rotors [5].

In addition to meeting these primary design goals, modern flight control systems may be configured to improve
secondary performance objectives as well. These can for example refer to aerodynamic and structural efficiency of the
airframe, but also other performance features such as energy consumption [6]. Recent civil transport production aircraft
reflect an increasing relevance of this aspect. For example, the Airbus A350XWB features an adaptive dropped hinge
flap to enhance aerodynamic performance of the main wing during the cruise phase [7]. Likewise, the Boeing 787 family
features a Trailing Edge Variable Camber (TEVC) system for a similar purpose [8]. These techniques can be seen as
examples of multi-functional effector suites, which enable further functional integration of the flight control system [7].

Control allocation (CA) methods can be adopted to make adequate use of the available control effector suite during
every flight phase of the mission profile. In case the control problem is over-determined, the control design can be
configured such that the additional degrees of freedom are exploited to meet secondary design goals. To this end,
optimal effector configurations shall ideally be established during both trim and off-trim flight conditions. A significant
number of different control allocation techniques have been studied in the past, such as direct allocation [9], daisy
chaining [10], and redistributed pseudo-inverse [11]. Taking an overhead view, a distinction can be made between linear
and non-linear allocation methods [11] as well as frame-wise strategies [6]. This last category takes into account the
effector rate limitations by calculating incremental position changes at every time-step (frame) of the flight control
computer. Moreover, it enables the use of local control effectiveness models to increase the accuracy of the control
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allocation module in case of nonlinear effector models. This strategy also appears in the literature as Incremental
Nonlinear Control Allocation (INCA), which aims at mitigating some of the inherent limitations of conventional control
allocation methods when applied to coupled, nonlinear control problems [12].

Many of these techniques focus mainly on allocating manoeuvre commands generated by a high-level primary
control law. By contrast, the question of optimality in terms of the secondary control objectives is often given relatively
little attention. This is reflected by the fact that this part of the design is often approached by scheduling a desired or
preferred (stationary) position for each effector as a function of flight phase [4]. More advanced methods typically
perform on-line optimization to impose on-line control constraints [13] or to minimize effector-induced performance
losses [6, 14]. However, limiting the optimization to effector-induced losses only may not always be appropriate. For
example, seeking effector configurations that minimize the aerodynamic drag generated by the control surfaces may
not automatically result in minimum drag of the overall airframe. This naturally leads to the question how a control
allocation scheme can be configured that produces overall minimum drag control solutions.

This optimality question forms the main scope of this work. It will be investigated in the context of the Incremental
Nonlinear Control Allocation (INCA) framework proposed by [12]. There has been previous research on INCA with
additional focus on optimizing effector configurations based on secondary control objectives [15]. However, this
study considered the allocation problem as a weighted least squares (WLS) optimization of the primary and secondary
control objectives. This introduces an undesirable trade-off between tracking performance and secondary performance
optimization, which is unnecessary if the control problem is over-determined. Therefore, in addition to focusing on the
optimality question, another goal of this article is to formulate an INCA design that prevents such a trade-off. This
must also be viewed as an extension of the study described in [16], where a simple incremental control concept was
formulated that minimized the control-induced performance loss of an isolated control effector.

The contribution of this work is threefold. Firstly, the incremental nonlinear control allocation (INCA) algorithm
is extended to deal with arbitrary secondary objectives in the kernel or null-space of the control effectiveness matrix.
Secondly, a closely related kernel-projected incremental optimal control law is proposed that enables optimal use
of effector redundancy when the secondary control task requires active control of the system state. These items are
introduced in Sections II.B and II.C, respectively. Thirdly, performance of the extended INCA concept is evaluated in
the context of weighted least squares minimization of airframe drag and control effector activity. The case study that
stands at the basis of this assessment is described in Section III. Linear and nonlinear simulation results are discussed in
Sections IV and V, respectively. Finally, the article is concluded in Section VI.

II. Fundamentals
The fundamental theory behind the proposed control concepts is formulated in this Section. First, a concise

introduction to Incremental Nonlinear Dynamic Inversion (INDI)-based control is given in Subsection II.A. With
respect to the multi-objective control architecture, this part of the control law largely serves to fulfill the primary control
task. This is followed by a formulation of the extended Incremental Nonlinear Control Allocation (INCA) algorithm in
Subsection II.B, which approaches the secondary control task as a static optimization problem within the kernel or
null-space of the control effectiveness matrix. This is followed by the description of an alternative, but closely related
concept based on nonlinear optimal control in Subsection II.C. This design method effectively extends the traditional
scope of control allocation. Finally, Subsection II.D discusses some special forms of the proposed control laws.

A. Incremental Nonlinear Dynamic Inversion
Consider a nonlinear multi-input multi-output (MIMO) system Σ of the form

Σ :

{
¤𝒙 = 𝒇 (𝒙) + 𝒈(𝒙, 𝒖)
𝒚 = 𝒉(𝒙)

(1)

described by the state vector 𝒙 ∈ R𝑛, the input vector 𝒖 ∈ R𝑚, the observation vector 𝒚 ∈ R𝑝 , and smooth mappings
𝒇 , 𝒈, and 𝒉. It is assumed throughout this work that 𝑚 > 𝑝, which implies that the control system is over-determined. A
dynamic inversion control law can be obtained by taking repeated Lie derivatives of the system output until the input
vector 𝒖 appears in the formulation. This can be done for any system relative degree that is nonzero [17]. Assuming for
simplicity that the relative degree 𝜌 equals one in all axes, the following description of the output dynamics emerges:

¤𝒚 =
𝜕𝒉

𝜕𝒙
( 𝒇 (𝒙) + 𝒈(𝒙, 𝒖)) ≜ 𝜶(𝒙) + 𝜷(𝒙, 𝒖) (2)
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This result enables the construction of an incremental nonlinear dynamic inversion (INDI) feedback control law,
which can be obtained by taking a Taylor expansion of the output dynamics at the previous timestep (𝑘 − 1) [17, 18].
Consequently,

¤𝒚𝑘 = ¤𝒚𝑘−1 +
𝜕 [𝜶(𝒙) + 𝜷(𝒙, 𝒖)]

𝜕𝒙

����
𝑘−1

(𝒙𝑘 − 𝒙𝑘−1)︸         ︷︷         ︸
Δ𝒙𝑘

+ 𝜕𝜷(𝒙, 𝒖)
𝜕𝒖

����
𝑘−1

(𝒖𝑘 − 𝒖𝑘−1)︸         ︷︷         ︸
Δ𝒖𝑘

+ 𝒓1,𝑘 (3)

In order to arrive at the INDI control law, the time-scale separation principle needs to be applied [17, 19, 20]. This
implies that all incremental state-dependent and high-order residual terms can be neglected with respect to the other
terms in the Taylor expansion. As a result, the following expression is obtained:

𝝉𝑘 ≜ 𝝂𝑘 − ¤𝒚𝑘−1 = B𝑘−1Δ𝒖𝑘 (4)

where 𝝂𝑘 ∈ R𝑝 is the pseudo-control input generated by an auxiliary control loop and B𝑘−1 = B(𝒙𝑘−1, 𝒖𝑘−1) ≜
𝜕𝜷 (𝒙,𝒖)

𝜕𝒖

���
𝑘−1

represents the control effectiveness matrix. This result forms an equality constraint that is to be satisfied by
the control allocation module.

B. Incremental Control Allocation with Kernel Restoring
Based on this understanding, the incremental nonlinear control allocation (INCA) problem can be defined as the

following constrained static optimization problem in the case 𝑚 > 𝑝:

min
𝒖𝑘 ∈U

𝐿 (𝒙𝑘 , 𝒖𝑘) subject to B𝑘−1Δ𝒖𝑘 = 𝝉𝑘 (5)

where 𝐿 ≥ 0 ∈ R represents a scalar objective function that shall be minimized by an admissible control vector
𝒖𝑘 ∈ U ⊂ R𝑚 for the system state 𝒙𝑘 . In what follows, the question of how to deal with input limits will not be further
considered; these can be accounted for using e.g. interior-point methods [21] or a redistribution procedure [11] as
described in Subsection V.A.2. Consequently, the original problem can be transformed into a Lagrangian formulation
by introducing a Lagrange multiplier 𝝀 ∈ R𝑚,

L(𝒙𝑘 , 𝒖𝑘 , 𝝀𝑘) = 𝐿 (𝒙𝑘 , 𝒖𝑘) + 𝝀𝑇𝑘 (𝝉𝑘 − B𝑘−1Δ𝒖𝑘) (6)

Using the fact that Δ𝒖𝑘 ≜ 𝒖𝑘 − 𝒖𝑘−1, optimality is achieved when

𝜕L
𝜕𝒖𝑘

=
𝜕𝐿 (𝒙𝑘 , 𝒖𝑘)

𝜕𝒖𝑘

− 𝝀𝑇𝑘B𝑘−1 = 0 (7)

𝜕L
𝜕𝝀𝑘

= 𝝉𝑘 − B𝑘−1Δ𝒖𝑘 = 0 (8)

Assuming 𝐿 (𝒙𝑘 , 𝒖𝑘) is twice differentiable in 𝒖𝑘 , a second-order Taylor expansion can be established to formulate a
quadratic approximation of the objective function:

𝐿 (𝒙𝑘 , 𝒖𝑘) = 𝐿 (𝒙𝑘 , 𝒖𝑘−1) + ∇𝑢𝐿 (𝒙𝑘 , 𝒖𝑘−1)𝑇Δ𝒖𝑘 +
1
2
Δ𝒖𝑇

𝑘∇
2
𝑢𝑢𝐿 (𝒙𝑘 , 𝒖𝑘−1)Δ𝒖𝑘 + 𝑟2,𝑘 (9)

For completeness, the following incremental delay operator is defined:{
𝜼𝑘+1 = 𝜼𝑘 + Δ𝒖𝑘

𝒖𝑘−1 = 𝜼𝑘

(10)

which enables the definition of the augmented state vector 𝒛𝑘 =

[
𝒙𝑇
𝑘

𝜼𝑇
𝑘

]𝑇
=

[
𝒙𝑇
𝑘

𝒖𝑇
𝑘−1

]𝑇
. Consequently, using

𝑳𝒖,𝑘 = 𝑳𝑢 (𝒛𝑘) ≜ ∇𝑢𝐿 (𝒙𝑘 , 𝒖𝑘−1)𝑇 and 𝑅𝑘 = 𝑅(𝒛𝑘) ≜ ∇2
𝑢𝑢𝐿 (𝒙𝑘 , 𝒖𝑘−1) and assuming 𝑟2,𝑘 ≈ 0, the following control

increment is found from Equation 7:

Δ𝒖𝑘 = −𝑅−1
𝑘

(
𝑳𝒖,𝑘 − B𝑇

𝑘−1𝝀𝑘

)
(11)
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Substituting this expression in Equation 8 yields

𝝀𝑘 =

(
B𝑘−1𝑅

−1
𝑘 B𝑇

𝑘−1

)−1 (
𝝉𝑘 + B𝑘−1𝑅

−1
𝑘 𝑳𝒖,𝑘

)
(12)

which in combination with Equation 11 results in the final control law

Δ𝒖𝑘 = 𝑃𝑘𝝉𝑘 − 𝑁𝑘𝑅
−1
𝑘 𝑳𝒖,𝑘 ≜ Δ�̄�𝑘 + Δ𝒖⊥

𝑘 (13)

where

𝑃𝑘 = B+
𝑘 ≜ 𝑅

−1
𝑘 B𝑇

𝑘−1

(
B𝑘−1𝑅

−1
𝑘 B𝑇

𝑘−1

)−1
(14)

𝑁𝑘 = B⊥
𝑘 ≜ 𝐼 − 𝑃𝑘B𝑘−1 (15)

The resulting INCA law can be viewed as an online variant of a constrained sequential quadratic programming
(SQP) optimizer [11, 21] that performs one iteration per time step. It consists of two parts. The first element Δ�̄�𝑘 can be
recognized as the primary incremental control input, which ensures that incremental control demands are allocated in a
least-squares fashion over the control effector suite. The second element Δ𝒖⊥

𝑘
can be seen as the restoring element [6],

which optimizes the effector configuration according to the secondary control objective. The restoring input remains
within the kernel or null-space of B and does therefore not affect the tracking performance of the incremental control
law. This INCA scheme features close similarities to existing nonlinear control allocation approaches [11].

C. Kernel-projected Incremental Optimal Control
The driving philosophy behind control allocation is to isolate the effector distribution task from the motion control

law [22]. However, this concept is generally too restrictive when both primary and secondary control objectives require
active control of the system dynamics. If this is the case, the focus of the control distribution task shifts from static
control allocation to dynamic optimal control. Nevertheless, it will be shown in this Section that there are significant
similarities between these two strategies. First, the static optimization problem formulated in Equation 5 needs to be
converted to a dynamic alternative. Given the incremental nature of the control law, this is done based on a discrete-time
formulation of the optimal control problem [23] in combination with the INDI equality constraint:

min
𝒖∈U

lim
𝑁→∞

𝑁∑︁
𝑘=𝑖

𝐿 (𝒙𝑘 , 𝒖𝑘) subject to B𝑘−1Δ𝒖𝑘 = 𝝉𝑘 (16)

Accordingly, the sampled-data representation of the system Σ describing the open-loop plant will be used:

Σ̄ :

{
𝒙𝑘+1 = �̄� (𝒙𝑘) + �̄�(𝒙𝑘 , 𝒖𝑘)
𝒚𝑘 = 𝒉(𝒙𝑘)

(17)

In order to arrive at the kernel-projected optimal control, a Hamiltonian function needs to be constructed that
incorporates the static Langrangian formulation from Equation 6. Before doing so, the incremental nature of the control
law demands the introduction of the one-step delayed input vector as an additional state in the optimal control formulation.
Using the incremental delay operator defined by Equation 10 and performing the necessary algebraic manipulations in
Equations 17 and 10, the augmented system dynamics are described by the following compact difference equation:

𝒛𝑘+1 = 𝒇 ∗ (𝒛𝑘 ,Δ𝒖𝑘) (18)

This yields the necessary ingredients to construct the Hamiltonian, which is defined as follows:

H(𝒙𝑘 , 𝒖𝑘 , 𝒖𝑘−1,Δ𝒖𝑘 , 𝝀𝑘 , �̃�𝑘+1) = 𝐿 (𝒙𝑘 , 𝒖𝑘) + 𝝀𝑇𝑘 (𝝉𝑘 − B𝑘−1Δ𝒖𝑘) + �̃�
𝑇

𝑘+1 𝒇 ∗ (𝒙𝑘 , 𝒖𝑘−1,Δ𝒖𝑘) (19)

Incorporating the Taylor expansions for 𝐿 (𝒙𝑘 , 𝒖𝑘) and �̄�(𝒙𝑘 , 𝒖𝑘), recognizing that 𝒖𝑘 = 𝒖𝑘−1+Δ𝒖𝑘 , and substituting

𝒛𝑘 =

[
𝒙𝑇
𝑘

𝒖𝑇
𝑘−1

]𝑇
results in the following expression:

H(𝒛𝑘 ,Δ𝒖𝑘 , 𝝀𝑘 , �̃�𝑘+1) = 𝐿 (𝒛𝑘) + 𝑳𝒖,𝑘Δ𝒖𝑘 +
1
2
Δ𝒖𝑇

𝑘 𝑅𝑘Δ𝒖𝑘 + 𝝀𝑇𝑘 (𝝉𝑘 − B𝑘−1Δ𝒖𝑘)+

�̃�
𝑇

𝑘+1 ( 𝒇 ∗ (𝒛𝑘 , 0) + 𝐺∗ (𝒛𝑘 , 0)Δ𝒖𝑘)
(20)
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Here, 𝐺∗ (•) represents the augmented control effectiveness matrix. The optimal incremental control Δ𝒖𝑘 should
minimize H(•) while ensuring that the equality constraints that arise from the primary control objective are met. This
can be achieved by applying the optimality conditions from Equations 7 and 8 to the Hamiltonian. For the present
problem formulation, this approach is equivalent to applying Pontryagin’s Minimum Principle [23] after establishing the
optimal form of the static Lagrange multiplier. The latter is found as

𝝀𝑘 =

(
B𝑘−1𝑅

−1
𝑘 B𝑇

𝑘−1

)−1 (
𝝉𝑘 + B𝑘−1𝑅

−1
𝑘 𝑳𝒖,𝑘 + B𝑘−1𝑅

−1
𝑘 𝐺

∗
𝑘
𝑇 �̃�𝑘+1

)
(21)

where 𝐺∗
𝑘
= 𝐺∗ (𝒛𝑘 , 0). Likewise, the stationarity condition leads to

Δ𝒖𝑘 = −𝑅−1
𝑘 𝑳𝒖,𝑘 − 𝑅−1

𝑘 𝐺
∗
𝑘
𝑇 �̃�𝑘+1 + 𝑅−1

𝑘 B𝑇
𝑘−1𝝀𝑘 (22)

Consequently, using 𝑃𝑘 and 𝑁𝑘 as described by Equations 14 and 15 and substituting Equation 21 into 22 yields the
optimal control law

Δ𝒖𝑘 = 𝑃𝑘𝝉𝑘 − 𝑁𝑘𝑅
−1
𝑘

(
𝑳𝒖,𝑘 + 𝐺∗

𝑘
𝑇 �̃�𝑘+1

)
≜ Δ�̄�𝑘 + Δ𝒖⊥

𝑘 (23)

Comparing the above expression to the static INCA law from Equation 13 shows significant similarities. It is
observed that additional knowledge of the future costate vector �̃�𝑘+1 is needed to convert the static control allocation
mapping to a dynamically optimal control law. Therefore, the control law in Equation 23 transcends the traditional
scope of utilizing effector redundancy in dynamic inversion control architectures.

D. ℓ2-norm Performance Optimization with Time-Scale Separation Simplification
As an important special case, the following formulation of the objective function 𝐿 is considered:

𝐿 (𝒙𝑘 , 𝒖𝑘 ,Δ𝒖𝑘) =
1
2
∥𝝈𝑘 ∥2

2 +
1
2
Δ𝒖𝑇

𝑘𝑊𝑟Δ𝒖𝑘 (24)

which corresponds to minimizing the ℓ2-norm of a linear system performance function output 𝝈𝑘 = 𝜻 (𝒙𝑘 , 𝒖𝑘) with
additional penalties on control increments. The latter can be viewed as a way to penalize effector rates and has been
adopted before in existing literature [24]. Denoting the gradient of 𝜻 (•) with respect to 𝒖𝑘 as Υ(•) yields the following
expression for the static INCA law:

Δ𝒖 = 𝑃𝑘𝝉𝑘 − 𝑁𝑘𝑅
−1
𝑘 Υ𝑇

𝑘 𝜻 𝑘 (25)
where 𝑅𝑘 = Υ𝑇

𝑘
Υ𝑘 +𝑊𝑟 . Likewise, the dynamic optimal control law reads as:

Δ𝒖 = 𝑃𝑘𝝉𝑘 − 𝑁𝑘𝑅
−1
𝑘

(
Υ𝑇
𝑘 𝜻 𝑘 + 𝐺∗

𝑘
𝑇 �̃�𝑘+1

)
(26)

The consequence of the selected notation (subscript 𝑘) must be emphasized, as it masks the dependency on the
augmented state vector 𝒛𝑘 . In the context of the performance output vector for example, it holds that 𝜻 𝑘 = 𝜻 (𝒛𝑘) =
𝜻 (𝒙𝑘 , 𝒖𝑘−1). Therefore, information from two different time steps needs to be incorporated. This is problematic in
case one would like to use direct measurements of the performance output instead. It is recognized that this issue
can be largely circumvented if the time-scale separation (TSS) principle that is commonly used in the derivation of
sensor-based INDI control laws holds for 𝜻 (𝒙𝑘 , 𝒖𝑘) as well. In that case, one can simplify according to:

𝜻 𝑘 ≈ 𝜻 (𝒙𝑘−1, 𝒖𝑘−1) +
𝜕𝜻 (𝒙𝑘 , 𝒖𝑘−1)

𝜕𝒙𝑘

����
𝑘−1

(𝒙𝑘 − 𝒙𝑘−1)︸         ︷︷         ︸
Δ𝒙𝑘≈0

≈ 𝝈𝑘−1 (27)

This enables the direct incorporation of measurements in the static INCA law from Equation 25, which results in the
simplified control law

Δ𝒖 = 𝑃𝑘𝝉𝑘 − 𝑁𝑘𝑅
−1
𝑘 Υ𝑇

𝑘 𝝈𝑘−1 (28)
For the dynamic optimal control law, the TSS simplification must be applied after the optimal costate trajectory

has been determined. Consequently, the TSS-simplified dynamic optimal control that optimizes the ℓ2-norm of the
performance output is readily found as

Δ𝒖 = 𝑃𝑘𝝉𝑘 − 𝑁𝑘𝑅
−1
𝑘

(
Υ𝑇
𝑘 𝝈𝑘−1 + 𝐺∗

𝑘
𝑇 �̃�𝑘+1

)
(29)
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III. Design Case Study Description
This section briefly introduces the control design case study for which a multi-objective control law is to be designed

and analyzed. The simulation model is discussed first in Subsection III.A, which is followed by an outline of the
INDI-based primary flight control law design in Subsection III.B. The secondary performance objective is briefly
described in Subsection III.C. Subsequent development of the kernel-projected part of the control law is discussed later
in Section IV.

A. Bare airframe description
In order to demonstrate its abilities on an exemplary control allocation task, the proposed INCA-R scheme is applied

to a dynamic inversion control law design for an open-source nonlinear simulation model of the General Dynamics F-16
aircraft [25, 26]. The active aerodynamic control effector suite consists of a symmetric horizontal tail, flaperons, rudder,
and leading edge flap (LEF). It should be remarked that the existing F-16 flight control system design philosophy does
not consider the LEF part of the active set, as it is scheduled with angle of attack and dynamic pressure to maximize the
lift/drag ratio and improve directional stability at high angle-of-attack [27]. The aerodynamic database was established
based on low-speed static and dynamic (forced-oscillation) wind-tunnel test data from a sub-scale model and covers an
angle-of-attack and angle-of-sideslip range of −20° ≤ 𝛼 ≤ +60° and |𝛽 | ≤ 30°, respectively. The longitudinal force and
moment coefficients can be found below; a description of the full aerodynamic database is available in [25].

𝐶𝑋,𝑡 = 𝐶𝑋 (𝛼, 𝛽, 𝛿ℎ) + Δ𝐶𝑋𝐿𝐸𝐹

(
1 − 𝛿𝐿𝐸𝐹

𝛿𝐿𝐸𝐹,𝑚𝑎𝑥

)
+ 𝑐𝑞

2𝑉

[
𝐶𝑋𝑞

(𝛼) + Δ𝐶𝑋𝑞𝐿𝐸𝐹
(𝛼)

(
1 − 𝛿𝐿𝐸𝐹

𝛿𝐿𝐸𝐹,𝑚𝑎𝑥

)]
(30)

𝐶𝑍,𝑡 = 𝐶𝑍 (𝛼, 𝛽, 𝛿ℎ) + Δ𝐶𝑍𝐿𝐸𝐹

(
1 − 𝛿𝐿𝐸𝐹

𝛿𝐿𝐸𝐹,𝑚𝑎𝑥

)
+ 𝑐𝑞

2𝑉

[
𝐶𝑍𝑞

(𝛼) + Δ𝐶𝑍𝑞𝐿𝐸𝐹
(𝛼)

(
1 − 𝛿𝐿𝐸𝐹

𝛿𝐿𝐸𝐹,𝑚𝑎𝑥

)]
(31)

𝐶𝑚,𝑡 = 𝐶𝑚 (𝛼, 𝛽, 𝛿ℎ)𝜂𝛿ℎ (𝛿ℎ) + 𝐶𝑍,𝑡 (𝑥𝐶𝐺,𝑟𝑒 𝑓 − 𝑥𝐶𝐺) + Δ𝐶𝑚𝐿𝐸𝐹

(
1 − 𝛿𝐿𝐸𝐹

𝛿𝐿𝐸𝐹,𝑚𝑎𝑥

)
+ 𝑐𝑞

2𝑉

[
𝐶𝑚𝑞

(𝛼) + Δ𝐶𝑚𝑞,𝐿𝐸𝐹
(𝛼)

(
1 − 𝛿𝐿𝐸𝐹

𝛿𝐿𝐸𝐹,𝑚𝑎𝑥

)]
+ Δ𝐶𝑚 (𝛼)

(32)

where

Δ𝐶(.)𝐿𝐸𝐹
≜ Δ𝐶(.)𝐿𝐸𝐹

(𝛼, 𝛽) − Δ𝐶(.) (𝛼, 𝛽, 𝛿ℎ = 0) (33)

and 𝛿ℎ and 𝛿𝐿𝐸𝐹 represent the horizontal tail and leading edge flap (LEF) control surface positions, respectively.
These are both driven by actuators that are modeled as a first-order lag with time constants of 0.0495 and 0.136 seconds,
respectively. Moreover, 𝑥𝐶𝐺 represents the longitudinal center of gravity (CG) position in terms of %MAC, and
𝜂𝛿ℎ (𝛿ℎ) = 1 for the deflection ranges encountered in this study.

B. Primary flight control law design
The control law is selected as an angular rate demand design that consists of an outer linear two degree-of-freedom

(2DOF) proportional-integral (PI) controller wrapped around an incremental nonlinear dynamic inversion (INDI) inner
loop. Figure 1 shows a block diagram of the full control system. For a rate response type, angular acceleration forms
a natural command variable (CV) that is to be inverted by the INDI loop. In this view, the INDI control law can be
derived starting from the rotational equations of motion in the body frame:

¤𝝎 = 𝑱−1 (𝑴 (𝒙, 𝒖) − 𝝎 × 𝑱𝝎) (34)

Since the input arises directly, this equation can be used immediately for dynamic inversion. Taking the Taylor
expansion around the current time-step 𝑡0 yields the following formulation:

¤𝝎 = ¤𝝎0 +
𝜕

𝜕𝒙

[
𝑱−1 (𝑴 (𝒙, 𝒖) − 𝝎 × 𝑱𝝎)

]
Δ𝒙 + 𝜕

𝜕𝜹

[
𝑱−1 (𝑴 (𝒙, 𝒖) − 𝝎 × 𝑱𝝎)

]
Δ𝜹

+ 𝜕

𝜕𝛿𝐿𝐸𝐹

[
𝑱−1 (𝑴 (𝒙, 𝒖) − 𝝎 × 𝑱𝝎)

]
Δ𝛿𝐿𝐸𝐹 + 𝑹1

(35)

Working out the partial derivatives, applying the time-scale separation principle, and isolating the longitudinal
dynamics results in the following incremental control law:
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Fig. 1 Control system overview

𝜏𝑘 =

[
�̂�𝛿ℎ (𝒙𝑘 , 𝒖𝑘−1)𝐽𝑦𝑦 �̂�𝛿𝐿𝐸𝐹

(𝒙𝑘 , 𝒖𝑘−1)𝐽𝑦𝑦
] [ Δ𝛿ℎ,𝑘

Δ𝛿𝐿𝐸𝐹,𝑘

]
≜ B(𝒙𝑘 , 𝒖𝑘−1)Δ𝒖𝑘 (36)

where 𝜏𝑘 ≜ 𝜈𝑘 − ¤𝑞𝑘−1. The pseudo-control 𝜈 is generated according to the control law

𝜈 = ¤𝑞𝑟𝑒 𝑓 + 𝐾𝑃

(
𝑞𝑟𝑒 𝑓 − 𝑞

)
(37)

For all designs described in this work, a proportional gain of 𝐾𝑃 = 5 is used. The desired angular rates to control
inceptor input are obtained through the following command filter:

𝑞𝑟𝑒 𝑓 (𝑠)
𝛿𝑙𝑜𝑛 (𝑠)

=
𝐾𝑞 (𝑇𝜃2 𝑠 + 1)

𝑠2 + 2𝜁𝑠𝑝𝜔𝑠𝑝𝑠 + 𝜔2
𝑠𝑝

(38)

This command filter is consistent with the desired Low Equivalent System (LOES) response profiles suggested in
[28]. The design parameters are selected as 𝐾𝑞 = 3.4𝜔2

𝑠𝑝, 𝑇𝜃2 = 1.0 seconds, 𝜁𝑠𝑝 = 1.0, and 𝜔𝑠𝑝 = 4.0 rad/s. Lastly,
the INDI loop is run at 100 Hz.

C. Secondary performance objective
Multi-functional flight control law designs may exploit advanced objectives in the the control surface positioning

logic. Online sensor information could be used that directly translate these objectives to real-time control solutions.
The online strategy suggested here aims to minimize a least-squares weighted combination of the airframe’s total drag
coefficient and effector control activity. The following objective function definition is adopted to this end:

𝐿 (𝒙, 𝒖) =
(
𝐶𝐷,𝑘

𝐶𝐷𝑟𝑒 𝑓

)2
+ 1

2
𝒖𝑇
𝑘𝑊𝑝𝒖𝑘 +

1
2
Δ𝒖𝑇

𝑘𝑊𝑟Δ𝒖𝑘 (39)

Here, 𝐶𝐷𝑟𝑒 𝑓
is introduced to normalize the drag coefficient with respect to the control activity terms. Accordingly,

the performance output and Hessian functions are given as:

𝝈𝑘 = 𝑑𝑖𝑎𝑔( 1
𝐶𝐷𝑟𝑒 𝑓

,𝑊
1/2
𝑝 )

[
𝐶𝐷𝑘

𝒖𝑘

]
, 𝑅𝑘 =

1
𝐶2
𝐷𝑟𝑒 𝑓

𝑪𝑇
𝑫𝒖 𝑘

𝑪𝑫𝒖 𝑘
+𝑊𝑝 +𝑊𝑟 (40)

Contrary to an objective function that would only include effector-related terms, the fact that the drag-related term
needs to be estimated on-line introduces an inherent level of uncertainty. Since the objective functions effectively
consists of a combination of two sub-objectives, this implies that the relative weighting of these terms may be different
in the presence of uncertainty. However, this aspect will not be further considered.
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IV. Linear Design and Analysis
Control allocation techniques become especially relevant in a nonlinear context, as these may exploit the nonlinear

nature of the control problem to seek (global) minima where that the control-induced performance is minimized at
every timestep. However, it is of high interest to first conduct performance analysis in a linear context. The foremost
reason is that this enables straightforward verification of the multi-objective control design from the perspective of the
true optimal control solution. Moreover, the kernel-projected infinite-horizon optimal control law can be derived in
analytical form. The incremental control allocation and kernel-projected optimal control designs are both described in
Subsection IV.A. Nominal and robust performance are discussed in subsequent subsections. The effects of these control
strategies on stability margins are considered as well.

A. Multi-objective Incremental Control Law Construction
Consider the MIMO system Σ in linear form with inversion variable 𝒚 and performance vector 𝝈 as follows

Σ :


¤𝒙 = 𝐴𝒙 + 𝐵𝒖
𝒚 = 𝐶𝑦𝒙

𝝈 = 𝐶𝜎𝒙 + 𝐷𝜎𝒖

(41)

A key insight to arrive at the optimal restoring control law is that the optimal control after closing the primary
control loop must be found. Using the primary control loop design described in the previous section, the following
expression is found for the incremental control demand:

𝝉 = 𝝂 − ¤̂𝒚 = 𝒓 − 𝐾𝑝 𝒚 − ¤̂𝒚 = 𝒓 − 𝐾𝑝𝐶𝑦𝒙 − 𝐶𝑦𝐴𝒙 − 𝐶𝑦𝐵𝒖𝑘−1 ≜ 𝒓 − 𝑇𝒙 − 𝐶𝑦𝐵𝒖𝑘−1 (42)
Which leads to the combined control law

𝒖 = 𝑃𝝉 + Δ𝒖⊥
𝑘 + 𝒖𝑘−1 = 𝑃𝒓 − 𝑃𝑇𝒙 − 𝑃𝐶𝑦𝐵𝒖𝑘−1 + Δ𝒖⊥

𝑘 + 𝒖𝑘−1 = 𝑃𝒓 − 𝑃𝑇𝒙 + Δ𝒖⊥
𝑘 + 𝑁𝒖𝑘−1 (43)

where the control effectiveness 𝐶𝑦𝐵 is used in the formulation of 𝑃 in accordance with Equation 14. This results in
the following description of the closed-loop system dynamics:

¤𝒙 = (𝐴 − 𝐵𝑃𝑇) 𝒙 + 𝐵
(
𝑁𝒖𝑘−1 + Δ𝒖⊥

𝑘

)
≜ 𝐴𝑐𝒙 + 𝐵𝒖⊥ + 𝐵𝑃𝒓 (44)

At this point, a sampled-data representation of the closed-loop system needs to be generated. Doing so yields the
following discrete-time description:

𝒙𝑘+1 = �̄�𝑐𝒙𝑘 + �̄�𝒖⊥
𝑘 + �̄�𝑃𝒓𝑘 (45)

Subsequently, this result can be used to construct the augmented system dynamics:

𝒛𝑘+1 =

[
�̄�𝑐 �̄�𝑁

−𝑃𝑇 𝑁

]
𝒛𝑘 +

[
�̄�

𝑰

]
Δ𝒖⊥

𝑘 +
[
�̄�

𝑰

]
𝑃𝒓𝑘 ≜ 𝐴𝑐∗ 𝒛𝑘 + 𝐵∗Δ𝒖

⊥
𝑘 + 𝐵∗𝑃𝒓𝑘 (46)

with the corresponding optimal orthogonal incremental input terms law described as

Δ𝒖⊥
𝑘 = −𝑁𝑅−1

(
𝐷𝑇

𝜎𝑉𝜎 𝒛𝑘 + 𝐵𝑇
∗ �̃�𝑘+1

)
(47)

where 𝑉𝜎 ≜
[
𝐶𝜎 𝐷𝜎

]
. Consequently, the closed-loop performance output is derived as

𝝈𝑘 =

[
𝐶𝜎 − 𝐷𝜎𝑃𝑇 𝐷𝜎𝑁

]
𝒛𝑘 + 𝐷𝜎

(
𝑃𝒓𝑘 + Δ𝒖⊥

𝑘

)
≜ 𝑌𝜎 𝒛𝑘 + 𝐷𝜎𝑃𝒓𝑘 + 𝐷𝜎Δ𝒖

⊥
𝑘 (48)

1. Incremental Control Allocation with Kernel Restoring
The incremental control allocation scheme can be readily obtained from the information in Section II.D. Using the

TSS simplification therefore results in the following incremental control input:

Δ𝒖𝑘 = 𝑃𝝉𝑘 − 𝑁𝑅−1𝐷𝑇
𝜎𝝈𝑘−1 (49)

In what follows, this will be referred to as the total incremental control law.
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2. Kernel-projected Incremental Optimal Control Law
The system described by Equations 46-48 can be used to construct the optimal secondary control law. This requires

the solution 𝑆 that satisfies the algebraic Riccati equation

𝐴𝑇𝑐∗𝑆𝐴𝑐∗ − 𝑆 −
(
𝐴𝑇𝑐∗ + 𝐺

)
𝑆𝐵∗ �̃�

−1𝑁𝑅−1
(
𝐷𝑇

𝜎𝑉𝜎 + 𝐵𝑇
∗ 𝑆𝐴𝑐∗

)
+ 𝐺𝑆𝐴𝑐∗ + 𝐻 = 0 (50)

where

𝐺 = −
(
𝑌𝑇
𝜎𝐷𝜎 − 𝑇𝑇

∗ 𝑃
𝑇𝑊𝑟

)
𝑁𝑅−1𝐵𝑇

∗

𝐻 = 𝑌𝑇
𝜎𝑌𝜎 + 𝑇𝑇

∗ 𝑃
𝑇𝑊𝑟𝑃𝑇∗ −

(
𝑌𝑇
𝜎𝐷𝜎 − 𝑇𝑇

∗ 𝑃
𝑇𝑊𝑟

)
𝑁𝑅−1𝐷𝑇

𝜎𝑉𝜎

(51)

as well as a description of the effect of the reference signal on the costate variable. Here, 𝑇∗ ≜
[
𝑇 𝐶𝑦𝐵

]
. The

corresponding derivations have been included in the Appendix. The resulting optimal total incremental control law
reads as:

Δ𝒖𝑘 = 𝑃𝝉𝑘 − �̃�−1𝑁𝑅−1 (𝐾𝑧 𝒛𝑘 + 𝐾𝑟𝑃𝒓𝑘) (52)

where �̃� ≜ 𝐼 + 𝑁𝑅−1𝐵𝑇
∗ 𝑆𝐵∗ and

𝐾𝑧 = 𝐷
𝑇
𝜎𝑉𝜎 + 𝐵𝑇

∗ 𝑆𝐴𝑐∗

𝐾𝑟 = 𝐵𝑇
∗

(
𝑆𝐵∗ +𝑉−1𝑈

)
𝑈 = 𝑌𝑇

𝜎𝐷𝜎 − 𝑇𝑇
∗ 𝑃

𝑇𝑊𝑟 +
(
𝐴𝑇𝑐∗ + 𝐺

)
𝑆𝐵∗

(
𝐼 − �̃�−1𝑁𝑅−1𝐵𝑇

∗ 𝑆𝐵∗
)

𝑉 = 𝐼 −
(
𝐴𝑇𝑐∗ + 𝐺

) (
𝐼 − 𝑆𝐵∗ �̃�

−1𝑁𝑅−1𝐵𝑇
∗

) (53)

It must be noted that 𝐶𝑦𝐵�̃� = 𝐶𝑦𝐵, which implies 𝐶𝑦𝐵�̃�
−1 = 𝐶𝑦𝐵. Hence the kernel projection property of the

secondary control is maintained. Accordingly, applying the TSS simplification results in the following total optimal
incremental control law:

Δ𝒖𝑘 = 𝑃𝝉𝑘 − �̃�−1𝑁𝑅−1
(
𝐷𝑇

𝜎𝝈𝑘−1 + 𝐵𝑇
∗ 𝑆𝐴𝑐∗ 𝒛𝑘 + 𝐾𝑟𝑃𝒓𝑘

)
(54)

B. Nominal Performance
The control laws are evaluated based on a linear short-period representation of the bare airframe obtained at two

different flight conditions. Therefore, the open-loop plant dynamics are governed by the following equations of motion:[
¤𝛼
¤𝑞

]
=

[
𝑧𝛼 𝑧𝑞

𝑚𝛼 𝑚𝑞

] [
𝛼

𝑞

]
+
[
𝑧𝛿ℎ 𝑧𝛿𝐿𝐸𝐹

𝑚 𝛿ℎ 𝑚 𝛿𝐿𝐸𝐹

] [
𝛿ℎ

𝛿𝐿𝐸𝐹

]
, 𝑦 =

[
0 1

] [𝛼
𝑞

]

𝝈 = 𝑑𝑖𝑎𝑔(𝐶𝐷𝑟𝑒 𝑓
,𝑊

1/2
𝑝 )

©­­«

𝐶𝐷𝛼

𝐶𝐷𝑞

0 0
0 0


[
𝛼

𝑞

]
+

𝐶𝐷𝛿ℎ

𝐶𝐷𝛿𝐿𝐸𝐹

1 0
0 1


[
𝛿ℎ

𝛿𝐿𝐸𝐹

]ª®®¬
(55)

It must be noted that 𝑧𝛿ℎ and 𝑧𝛿𝐿𝐸𝐹
are responsible for the dynamic coupling in the secondary control task. It

is assumed in this analysis that perfect estimates of the drag coefficient are available. The selected flight conditions
both correspond to straight-and-level flight. Moreover, the C.G. is located at 38% relative to the mean aerodynamic
chord (MAC), which results in a statically unstable airframe. The reason for using the short-period reduced form is
that steady-state performance can be assessed in a straightforward fashion. The control law design parameters are
selected as 𝐶𝐷𝑟𝑒 𝑓

= 0.01, 𝑊1/2
𝑝 = 5𝑑𝑖𝑎𝑔( 1

𝛿ℎ−𝛿
ℎ

, 1
𝛿𝐿𝐸𝐹−𝛿

𝐿𝐸𝐹

), and 𝑊𝑟 = 0.25𝑑𝑖𝑎𝑔(0.1, 1). Here, the effector limits

[𝛿
ℎ
, 𝛿ℎ] = [−25, 25] and [𝛿

𝐿𝐸𝐹
, 𝛿𝐿𝐸𝐹] = [0, 25] are used (in degrees). Figure 2 shows the step response of the

control allocation and optimal control designs for the first flight condition (𝑉0 = 500 ft/s or M0.46, ℎ = 10,000 ft). It is
emphasized that the presented variables are with respect to their respective trim values. A benchmark response where
the LEF remains in trim position is displayed as well. The incremental control problem becomes exactly determined in
this benchmark case, which implies that the control law reduces to a standard incremental dynamic inversion (IDI)
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Fig. 2 Linear step response obtained for flight condition #1 (𝑽0 = 500 ft/s or M0.46, 𝒉 = 10,000 ft); dashed lines
indicate the true optimal steady-state solution

control law. This provides an additional perspective to the assessment of the multi-objective control laws. The true
optimal control solution has been indicated in the figure as well. This solution can be straightforwardly obtained from

Fig. 3 Linear step response obtained for flight condition #2 (𝑽0 = 450 ft/s or M0.40, 𝒉 = 10,000 ft); dashed lines
indicate the true optimal steady-state solution
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the system’s equation of motion and the secondary objective function.
At first glance, it appears that the overall difference in response across the three control laws is limited. This is

desirable in terms of the pitch response, which is effectively equivalent thanks to the kernel projection of the secondary
control. The error with respect to the reference model can be largely attributed to the dynamics of the actuators, which
have been neglected in the control design. Both multi-objective control laws command the leading edge flap to retract
by a certain amount with respect to its initial position during the pull-up maneuver. When focusing on the steady-state
response, this results in a slight reduction in the secondary performance index 𝐿 which is paralleled by a small reduction
in drag. Whereas the incremental optimal control law successfully drives the secondary objective to its optimal value,
this is not achieved by the control allocation design. This is evident from the fact that long-term state-induced or
setpoint-induced variations in the objective are not accounted for by the static control allocator.

This observation becomes more prominent in the second flight condition (𝑉0 = 450 ft/s or M0.40, ℎ = 10,000 ft),
for which the simulation results are displayed in Figure 3. The pitch rate tracking performance is again effectively
equivalent, but the secondary performance index shows some important differences. In this case, it appears that the
performance achieved by the benchmark is just slightly worse than the true optimum. This true optimum is again
reached by the optimal control law. However, the static control allocator performs substantially worse compared to the
benchmark case. This demonstrates that this design approach may not be suitable in case the secondary performance
objective is strongly influenced by the dynamics of the system.

C. Robustness to synthesis model variations
The need for additional a-priori information of the plant dynamics is inherent to the multi-objective nature of the

presented control laws. This is despite the assumption that direct ideal estimates of the secondary performance vector 𝝈
are available. This applies in particular to the kernel-constrained optimal control design, which requires a complete
synthesis model of the IDI closed-loop dynamics in the construction of the performance feedback gains. The latter is in
stark contrast to the philosophy of INDI-based design, which aims at reducing the dependency of the control system
on detailed system models. Equations 46 and 48 provide some essential insights for this discussion. Although the
secondary optimal control is derived after the primary control loop has been closed, the fact that the state feedback
matrix 𝑇 (and therefore the bare airframe state matrix 𝐴) appears directly in the augmented system formulation shows
that the robustness benefits of reduced model dependency do not apply to the the secondary optimal control design
presented here. This raises concerns regarding the control law’s sensitivity to synthesis model variations.

A basic assessment of this sensitivity is performed based on the simulation results displayed in Figure 4. These results
are obtained for different permutations where each control coefficient is varied by ±50% with respect to its nominal value.
Several observations are highlighted here. Firstly, the results show that primary control task performance is retained
under uncertainty in the 𝐴, 𝐶𝜎 , and 𝐷𝜎 matrices. Hence, the benefits of isolating primary and secondary control tasks
are retained in these scenarios. Evidently, this does not hold in case the uncertainty appears in the effectiveness matrix
𝐵. This is due to the negative impact on the pseudo-inverse and kernel projection matrices. Secondly, despite the fact
that direct measurements of 𝝈 are used, uncertainty in the 𝐶𝜎-matrix leads to some variation in the response generated
by the optimal control design. This is due to the fact that the 𝐶𝜎-matrix appears in the Riccati equation. By contrast,
although not included in Figure 4, the static allocation scheme remains invariant to system-dependent variations in this
matrix. Thirdly, uncertainty in the synthesis 𝐴-matrix has a substantial impact on the secondary performance index of
the optimal control law. This is again due to its central position in the Riccati equation. By comparison, the sensitivity
to variations in the feedthrough matrix 𝐷𝜎 remain more benign.

D. Stability margins
In addition to assessing robustness in the time domain, it is of interest how the stability margins of the kernel-

constrained controllers are affected compared to the benchmark IDI design. This is done by investigating the broken-loop
response at several locations of the control law. The results are shown in Figure 5. The locations where each loop
is broken have been annotated in the control system overview in Figure 1, where the numbering corresponds to the
subfigure numbering used here. The loop shapes obtained for the pseudo-control vector (Figure 5a) and acceleration
error (Figure 5b) give an indication of the stability margins at the level of the primary IDI control loop. Likewise, the
response obtained at the effector level (Figures 5c and 5d) provides insight into the stability properties of the total
control law.

Inspection of the broken-loop response diagrams shows there is very little variation of the response visible around
crossover, which is a confirmation that robustness characteristics and short-term handling qualities associated with the
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(a) Static control allocation; Δ𝐵 (b) Static control allocation; Δ𝐶𝐷𝛿ℎ
, Δ𝐶𝐷𝛿𝐿𝐸𝐹

(c) Optimal control; Δ𝐴 (d) Optimal control; Δ𝐵

(e) Optimal control; Δ𝐶𝐷𝛼
, Δ𝐶𝐷𝑞

(f) Optimal control; Δ𝐶𝐷𝛿ℎ
, Δ𝐶𝐷𝛿𝐿𝐸𝐹

Fig. 4 Sensitivity to synthesis model coefficient variations of ±50% (flight cond. #1; 𝑽0 = 500 ft/s, 𝒉 = 10,000 ft)

control law are largely insensitive to the selected control strategy. Some variation is observed at low frequencies in the
broken-loop responses associated with the horizontal tailplane and leading edge flap actuation paths. This observation
is immediate from the fact that control effector gain is a direct function of control strategy. Moreover, it can be seen that
both designs show a relatively low overall LEF loop gain. This implies that stability robustness properties are very
adequate for this channel.
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(a) Pseudo-control 𝜈 (b) Acceleration error 𝜏

(c) Horizontal tail position 𝛿ℎ (d) LEF position 𝛿𝐿𝐸𝐹

Fig. 5 Broken-loop responses (flight condition #1; 𝑽0 = 500 ft/s or M0.46, 𝒉 = 10,000 ft))

V. Nonlinear Control Allocation Simulation Results
In this section, nonlinear simulation results obtained using the kernel-projected incremental nonlinear control

allocation (INCA) design will be discussed. In this case, the control law will exploit the nonlinear nature of the
performance control effectiveness to optimize effector configurations such that the control-induced performance loss is
minimized at every timestep. As demonstrated in the previous section, this strategy may generally not result in desirable
control solutions in dynamic situations. Accordingly, a secondary nonlinear optimal control law is expected to results in
better performance in these scenarios. Nevertheless, it remains of interest to analyze the behavior of the allocation
scheme in a nonlinear context.

A. Control law extensions
Some extensions to the basic control law are discussed first. These include evaluation of the local control effectiveness,

saturation handling, and estimation of the overall airframe drag.

1. Control effectiveness on-board model
The force and moment coefficients stored in the aerodynamic database are not affine in the horizontal tail position.

Therefore, a central difference scheme is applied to obtain the local control effectiveness at every time step:
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�̂�•𝛿ℎ (𝛼, 𝛽, 𝛿ℎ) =
𝐶• (𝛼, 𝛽, 𝛿ℎ + 𝜖) − 𝐶• (𝛼, 𝛽, 𝛿ℎ − 𝜖)

2𝜖
(56)

No such solutions are needed for the leading edge flap, which is modeled by affine relations in the aerodynamic
database.

2. Saturation handling
The control allocation scheme presented in Section II.B does not take into account effector limits. Neglecting these

may have serious consequences on overall control law safety and performance, as the incremental demand equality
constraint will not be met in case of saturation. Additional redistribution logic [11] is set in place to manage these
situations. In case an input generated by the default control allocation logic exceeds one or more effector position limits,
a scaling factor is calculated that scales the input vector such that it remains within the available input space:

𝑘𝑠Δ𝒖𝑘 + 𝒖𝑘−1 ∈ U (57)

Subsequently, this scaling factor is adopted to generate the demand and gradient residuals:

𝝉′𝑘 = (1 − 𝑘𝑠)𝝉𝑘 , 𝑳′
𝒖,𝑘 = (1 − 𝑘𝑠)𝑳𝒖,𝑘 (58)

In addition, the 𝑃′ and 𝑁 ′ matrices are recalculated by setting the appropriate rows and columns of B and 𝑅 equal
to zero. Then, an additional control increment is computed as follows:

Δ𝒖′
𝑘 = 𝑃′

𝑘𝝉
′
𝑘 − 𝑁

′
𝑘 (𝑅

′
𝑘)

−1𝑳′
𝒖,𝑘 (59)

Which leaves the total incremental control command as:

Δ𝒖𝑘 = 𝑘𝑠Δ𝒖𝑘 + Δ𝒖′
𝑘 ≜ Δ�̆�𝑘 (60)

If it turns out that 𝒖𝑘 ∉ U, the process will be repeated with a different 𝑘𝑠 for Δ�̆�𝑘 until all effector limits are met.
It should be noted that rate limits are not considered here; however, these could be incorporated relatively easily as
suggested in [6, 12].

3. Drag coefficient estimation
In the nonlinear simulation scenario, the drag coefficient contribution to the performance vector will be estimated

based on IMU and thrust measurements:

�̂�𝑋 =
𝑚𝑔

𝑞𝑆
𝑛𝐶𝐺
𝑥 − 1

𝑞𝑆
𝑇, �̂�𝑌 =

𝑚𝑔

𝑞𝑆
𝑛𝐶𝐺
𝑦 , �̂�𝑍 = −𝑚𝑔

𝑞𝑆
𝑛𝐶𝐺
𝑧 (61)

which are then transformed from the body-fixed to the aerodynamic reference frame using the kinematic relationships

�̂�𝐷 = − cos(𝛼) cos(𝛽)�̂�𝑋 − sin(𝛽)�̂�𝑌 − sin(𝛼) cos(𝛽)�̂�𝑍 (62)

The rationale behind this estimation scheme is to reduce the level of model dependency in the control law.
Nevertheless, adequate knowledge of aircraft mass and air data variables remains required for good estimation
performance. In general, this information may not be straightforward to obtain in real-time. However, this will not be
further considered in the analysis here. Therefore, the estimated drag coefficient equals the true drag coefficient returned
by the simulation aerodynamic database in the presented nonlinear simulation scenarios.

B. Nominal scenario
The nominal performance of the control law is examined in a nonlinear simulation scenario with the starting

condition corresponding to flight condition #1 (𝑉0 = 500 ft/s or M0.46, ℎ = 10,000 ft). The engine throttle is set all the
way back to idle at the start of the simulation, whereas a push-up/pull-over (PUPO) maneuver is executed by the pilot
after several seconds. This scenario allows a separate investigation of both the primary and secondary control features,
since the aircraft will experience changing flight conditions in the absence of pilot stick input.
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Fig. 6 Nominal nonlinear simulation time histories obtained for the kernel-based restoring INCA and benchmark
INDI control law designs

Three control law designs are evaluated. These include the INDI benchmark controller that leaves the LEF in
trim configuration and two INCA-based variants. One variant only considers drag and control increment weighting
in the objective function (𝐶𝐷𝑟𝑒 𝑓

= 0.01,𝑊1/2
𝑝 = 𝑑𝑖𝑎𝑔(0, 0), and𝑊𝑟 = 0.25𝑑𝑖𝑎𝑔(0.1, 1)), whereas the other variant is

equivalent to the design evaluated in Section IV and therefore also penalizes effector position to reduce control activity
(𝐶𝐷𝑟𝑒 𝑓

= 0.01,𝑊1/2
𝑝 = 5𝑑𝑖𝑎𝑔( 1

𝛿ℎ−𝛿
ℎ

, 1
𝛿𝐿𝐸𝐹−𝛿

𝐿𝐸𝐹

), and𝑊𝑟 = 0.25𝑑𝑖𝑎𝑔(0.1, 1)). Figure 6 shows the simulation time
histories for each control design.

A first observation is that the aircraft’s pitch rate adequately tracks the reference trajectory for all control laws.
Therefore, the primary control objective is achieved with any of these designs. Regarding the secondary performance
index, a more intricate discussion is at hand. Therefore, the simulation outcomes will be examined in three parts: the
pre-maneuver phase (0 ≤ 𝑡 < 10 s), the maneuver phase (10 ≤ 𝑡 < 20 s), and the post-maneuver phase (20 ≤ 𝑡 ≤ 40 s).

In the pre-maneuver phase, both INCA designs lead to improved performance over the benchmark INDI control law.
Both designs retract the LEF with respect to its initial trim position, which results in a reduction of the input gradient
norm ∥𝑳𝒖 ∥2 as well as the performance index 𝐿. The angle-of-attack steadily increases due the decreasing airspeed as a
result of idle thrust. However, this increase is partially offset by the INCA designs as a by-product of retracing the
LEF. Consequently, the pilot initiates the pull-up part of the maneuver. The INCA control laws command large LEF
deflections to minimize the input gradient norm, which again results in a subsequent reduction in the performance index
and drag coefficient when compared to the benchmark. When looking in more detail at the push-over part, it is observed
that more or less the same trend applies to the position-weighted INCA design whereas the control law which disregards
effector position performs mostly worse than the benchmark. The latter can be largely explained by the fact that the
control law pushes the aircraft to higher angle-of-attack levels.

15

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
25

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
3-

12
49

 



(a) Benchmark INDI design (b) INCA with kernel restoring (drag + pos. + rate)

Fig. 7 Nonlinear simulation time histories obtained for control effectiveness on-board model offsets up to ±50%

This last observation also applies to the third and final phase of the simulation, the post-maneuver part. In an
effort to further reduce the input gradient norm, the position-unweighted design further extends the leading edge flap
until its maximum position is reached. This again causes the angle-of-attack to increase. Evidently, this effect is not
respected by static allocation. It is observed that the extra drag caused by angle-of-attack destroys the gain of lower
control-induced drag. The result is a larger overall drag coefficient compared to the benchmark design. These effects
are not immediately visible for the position-weighted design. Based on the insights from the previous linear analysis,
an improvement in secondary control performance would be expected if the control law would have been designed
according to the principles of the kernel-projected incremental optimal control concept.

C. Sensitivity to control effectiveness mismatch
In this section, the focus is on nonlinear primary control performance in case the on-board model representations of

the control effectiveness terms �̂�𝑚𝛿ℎ
and �̂�𝑚𝛿𝐿𝐸𝐹

are not equal to their true values. It is concluded from the simulation
results from Figure 6 that the nonlinear nature of the control problem causes the effector activity to increase substantially
with respect to the linear designs in Section IV. Therefore, it is of interest to examine how this increased activity affects
the primary control task in the presence of uncertainty. Figure 7 displays the pitch rate and control effector position
variations obtained using the benchmark INDI and position-weighted INCA designs. It is evident that incorporation
of the secondary control task in the controller design results in additional variation of the pitch rate response under
uncertainty. This is again a direct result of the effect on the pseudo-inverse and kernel projection matrices.

VI. Conclusion
Several achievements in this work can be listed. Firstly, an extension to the existing Incremental Nonlinear Control

Allocation (INCA) framework was presented for over-determined control problems. This formulation adds a kernel-based
effector restoring functionality in the context of arbitrary secondary objectives without affecting primary control
law performance. In other words, this concept does not require combined objective function formulations that lead
to unwanted trade-offs between primary and secondary control tasks. Secondly, an alternative, but closely related
framework based on kernel-projected optimal control was formulated that extends the traditional scope of control
allocation to situations where secondary control task requires active control of the bare airframe system dynamics.
Several multi-objective control laws based on these methods were designed for a secondary performance objective
consisting of a weighted least-squares combination of the overall airframe drag coefficient and effector activity. It was
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shown that the INCA-based design does not always result in desirable control solutions as a result of the strong impact
of angle-of-attack on the secondary control task. This is evident from the fact that state-induced variations are not
accounted for in a dynamic sense by the static allocator. The concept of kernel-projected incremental optimal control
provides the necessary instruments to deal with these scenarios.

Several recommendations for further research are in place here. Firstly, the kernel-projected optimal control concept
was applied in a linear context only. The nonlinear form that was presented does not include a description of the costate
variable. Therefore, a natural follow-up research activity is to further develop this design method such that it can be
used in nonlinear flight control problems as well. A second relevant direction for further investigation is to design
for improved robustness levels. Thirdly, the interaction between the primary and secondary control law loops should
be investigated in more detail. Although the kernel projection ensures that these are decoupled through the control
effectiveness matrix, there are other interaction mechanisms that must be considered. For example, the secondary
control law has a direct impact on the zero dynamics associated with the dynamic inversion control system. Oppositely,
the selected dynamic inversion design has an impact on the design of the secondary controller as well.

Appendix
The system described by Equations 39, 42, and 46-48 leads to the following formulation of the Hamiltonian:

H(𝒛𝑘 ,Δ𝒖⊥
𝑘 , 𝒓𝑘 , �̃�𝑘+1) =

1
2


𝑌𝜎 𝒛𝑘 + 𝐷𝜎𝑃𝒓𝑘 + 𝐷𝜎Δ𝒖

⊥
𝑘



2
2 +

1
2




𝑊1/2
𝑟

(
𝑃𝒓 − 𝑃𝑇∗𝒛𝑘 + Δ𝒖⊥

𝑘

)


2

2
+

�̃�
𝑇

𝑘+1
(
𝐴𝑐∗ 𝒛𝑘 + 𝐵∗Δ𝒖

⊥
𝑘 + 𝐵∗𝑃𝒓𝑘

) (63)

where 𝑇∗ ≜
[
𝑇 𝐶𝑦𝐵

]
. Note that the above Hamiltonian function reflects the fact that the optimal control for the

secondary control increment must be found. Moreover, it is emphasized that the derivation effectively continues the
steps outlined in Section II.C. In this regard, optimality with respect to both the static Langrange multiplier and the
stationarity condition has been achieved through the selected form of the control law. Therefore, the remaining necessary
conditions for optimality are the following [23]:

𝒛𝑘+1 =
𝜕H(𝒛𝑘 ,Δ𝒖⊥

𝑘
, 𝒓𝑘 , �̃�𝑘+1)

𝜕�̃�𝑘+1
(64)

�̃�𝑘 =
𝜕H(𝒛𝑘 ,Δ𝒖⊥

𝑘
, 𝒓𝑘 , �̃�𝑘+1)

𝜕𝒛𝑘
(65)

The first condition represents the state equation described by Equation 46. Substituting the orthogonal control
increment expressed in Equation 47 results in the following formulation:

𝒛𝑘+1 =
(
𝐴𝑐∗ + 𝐸

)
𝒛𝑘 − 𝐹�̃�𝑘+1 + 𝐵∗𝑃𝒓𝑘 (66)

where

𝐸 ≜ −𝐵∗𝑁𝑅
−1𝐷𝑇

𝜎𝑉𝜎 , 𝐹 ≜ 𝐵∗𝑁𝑅
−1𝐵𝑇

∗ (67)

The second condition leads to the costate equation or adjoint system description and is expressed as follows:

�̃�𝑘 = 𝑌𝑇
𝜎

(
𝑌𝜎 𝒛𝑘 + 𝐷𝜎𝑃𝒓𝑘 + 𝐷𝜎Δ𝒖

⊥
𝑘

)
+ (𝑃𝑇∗)𝑇 𝑊𝑟

(
𝑃𝑇∗𝒛𝑘 − 𝑃𝒓𝑘 − Δ𝒖⊥

𝑘

)
+ 𝐴𝑇𝑐∗ �̃�𝑘+1 (68)

Again substituting the orthogonal control increment from Equation 47 leads to the recursive equation

�̃�𝑘 = 𝐻𝒛𝑘 +
(
𝐴𝑇𝑐∗ + 𝐺

)
�̃�𝑘+1 +

(
𝑌𝑇
𝜎𝐷𝜎 − 𝑃𝑇𝑇𝑇

∗ 𝑊𝑟

)
𝑃𝒓𝑘 (69)

where 𝐺 and 𝐻 are defined as in Equation 51. Consequently, Equations 66 and 69 represent a nonhomogenous
Hamiltonian system description [23]:[

𝐼 𝐹

0 𝐴𝑇𝑐∗ + 𝐺

] [
𝒛𝑘+1

�̃�𝑘+1

]
=

[
𝐴𝑐∗ + 𝐸 0
−𝐻 𝐼

] [
𝒛𝑘

�̃�𝑘

]
+
[

𝐵∗
𝑃𝑇𝑇𝑇

∗ 𝑊𝑟 − 𝑌𝑇
𝜎𝐷𝜎

]
𝑃𝒓𝑘 (70)

The state and costate sequences that satisfy this system must now be established. It will be assumed [23] that the
costate is of the form �̃�𝑘 = 𝑆𝑘 𝒛𝑘 + 𝒗𝑘 , which leads to the following formulation of the costate equation:
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𝑆𝑘 𝒛𝑘 + 𝒗𝑘 = 𝐻𝒛𝑘 +
(
𝐴𝑇𝑐∗ + 𝐺

)
(𝑆𝑘+1𝒛𝑘+1 + 𝒗𝑘+1) +

(
𝑌𝑇
𝜎𝐷𝜎 − 𝑃𝑇𝑇𝑇

∗ 𝑊𝑟

)
𝑃𝒓𝑘 (71)

Substituting Equation 46 yields:

𝑆𝑘 𝒛𝑘 + 𝒗𝑘 = 𝐻𝒛𝑘 +
(
𝐴𝑇𝑐∗ + 𝐺

) (
𝑆𝑘+1𝐴𝑐∗ 𝒛𝑘 + 𝑆𝑘+1𝐵∗Δ𝒖

⊥
𝑘 + 𝑆𝑘+1𝐵∗𝑃𝒓𝑘 + 𝒗𝑘+1

)
+
(
𝑌𝑇
𝜎𝐷𝜎 − 𝑃𝑇𝑇𝑇

∗ 𝑊𝑟

)
𝑃𝒓𝑘 (72)

Likewise, the orthogonal incremental optimal control corresponding to the selected costate description is written as:

Δ𝒖⊥
𝑘 = −�̃�−1

𝑘+1𝑁𝑅
−1

[(
𝐷𝑇

𝜎𝑉𝜎 + 𝐵𝑇
∗ 𝑆𝑘+1𝐴𝑐∗

)
𝒛𝑘 + 𝐵𝑇

∗ 𝑆𝑘+1𝐵∗𝑃𝒓𝑘 + 𝐵𝑇
∗ 𝒗𝑘+1

]
(73)

where �̃�𝑘+1 ≜ 𝐼 + 𝑁𝑅−1𝐵𝑇
∗ 𝑆𝑘+1𝐵∗. Substituting Equation 73 into Equation 72 results in

𝑆𝑘 𝒛𝑘 + 𝒗𝑘 = 𝐻𝒛𝑘 +
(
𝑌𝑇
𝜎𝐷𝜎 − 𝑃𝑇𝑇𝑇

∗ 𝑊𝑟

)
𝑃𝒓𝑘 +

(
𝐴𝑇𝑐∗ + 𝐺

) (
𝑆𝑘+1𝐴𝑐∗ 𝒛𝑘 + 𝑆𝑘+1𝐵∗𝑃𝒓𝑘 + 𝒗𝑘+1 −

𝑆𝑘+1𝐵∗ �̃�
−1
𝑘+1𝑁𝑅

−1
[(
𝐷𝑇

𝜎𝑉𝜎 + 𝐵𝑇
∗ 𝑆𝑘+1𝐴𝑐∗

)
𝒛𝑘 + 𝐵𝑇

∗ 𝑆𝑘+1𝐵∗𝑃𝒓𝑘 + 𝐵𝑇
∗ 𝒗𝑘+1

] ) (74)

Collecting terms:[
−𝑆𝑘 + 𝐻 +

(
𝐴𝑇𝑐∗ + 𝐺

)
𝑆𝑘+1

(
𝐴𝑐∗ − 𝐵∗ �̃�

−1
𝑘+1𝑁𝑅

−1
(
𝐷𝑇

𝜎𝑉𝜎 + 𝐵𝑇
∗ 𝑆𝑘+1𝐴𝑐∗

))]
𝒛𝑘 +(

𝑌𝑇
𝜎𝐷𝜎 − 𝑃𝑇𝑇𝑇

∗ 𝑊𝑟 +
(
𝐴𝑇𝑐∗ + 𝐺

)
𝑆𝑘+1𝐵∗

(
𝐼 − �̃�−1

𝑘+1𝑁𝑅
−1𝐵𝑇

∗ 𝑆𝑘+1𝐵∗
))
𝑃𝒓𝑘 +(

𝐴𝑇𝑐∗ + 𝐺
) (
𝐼 − 𝑆𝑘+1𝐵∗ �̃�

−1
𝑘+1𝑁𝑅

−1𝐵𝑇
∗

)
𝒗𝑘+1 − 𝒗𝑘 = 0

(75)

This expression must hold for all states 𝒛𝑘 and reference signals 𝒓𝑘 . Therefore [23], the following expressions apply:

𝑆𝑘 = 𝐻 +
(
𝐴𝑇𝑐∗ + 𝐺

)
𝑆𝑘+1

(
𝐴𝑐∗ − 𝐵∗ �̃�

−1
𝑘+1𝑁𝑅

−1
(
𝐷𝑇

𝜎𝑉𝜎 + 𝐵𝑇
∗ 𝑆𝑘+1𝐴𝑐∗

))
(76)

and

𝒗𝑘 =

(
𝑌𝑇
𝜎𝐷𝜎 − 𝑃𝑇𝑇𝑇

∗ 𝑊𝑟 +
(
𝐴𝑇𝑐∗ + 𝐺

)
𝑆𝑘+1𝐵∗

(
𝐼 − �̃�−1

𝑘+1𝑁𝑅
−1𝐵𝑇

∗ 𝑆𝑘+1𝐵∗
))
𝑃𝒓𝑘+(

𝐴𝑇𝑐∗ + 𝐺
) (
𝐼 − 𝑆𝑘+1𝐵∗ �̃�

−1
𝑘+1𝑁𝑅

−1𝐵𝑇
∗

)
𝒗𝑘+1

(77)

In order to find the optimal control sequence, the above difference equations shall be solved for the appropriate
boundary conditions. The goal here is to arrive at the infinite time-horizon optimal control law. Therefore, use will be
made of the steady-state (invariant) solutions 𝑆𝑘 = 𝑆𝑘+1 = 𝑆 and 𝒗𝑘 = 𝒗𝑘+1 = 𝒗. This results in the algebraic Riccati
equation

−𝑆 + 𝐻 +
(
𝐴𝑇𝑐∗ + 𝐺

)
𝑆

(
𝐴𝑐∗ − 𝐵∗ �̃�

−1𝑁𝑅−1
(
𝐷𝑇

𝜎𝑉𝜎 + 𝐵𝑇
∗ 𝑆𝐴𝑐∗

))
= 0 (78)

which is equivalent to Equation 50; moreover,

−𝒗 +
(
𝑌𝑇
𝜎𝐷𝜎 − 𝑃𝑇𝑇𝑇

∗ 𝑊𝑟 +
(
𝐴𝑇𝑐∗ + 𝐺

)
𝑆𝐵∗

(
𝐼 − �̃�−1𝑁𝑅−1𝐵𝑇

∗ 𝑆𝐵∗
))
𝑃𝒓𝑘+(

𝐴𝑇𝑐∗ + 𝐺
) (
𝐼 − 𝑆𝐵∗ �̃�

−1𝑁𝑅−1𝐵𝑇
∗

)
𝒗 = 0

(79)

where �̃� ≜ 𝐼 + 𝑁𝑅−1𝐵𝑇
∗ 𝑆𝐵∗. Equation 79 can be used immediately to derive an analytical expression for 𝒗:

𝒗 = 𝑉−1𝑈𝑃𝒓𝑘 (80)

with𝑈 and 𝑉 defined as in Equation 53. Now, the matrix 𝑆 that solves Equation 78 will be obtained using the Schur
vector approach [29, 30]. To this end, the homogenous part of the Hamiltonian system described by Equation 70 is used:[

𝐼 𝐹

0 𝐴𝑇𝑐∗ + 𝐺

]
︸           ︷︷           ︸

≜𝐿

[
𝒛𝑘+1

�̃�
′
𝑘+1

]
=

[
𝐴𝑐∗ + 𝐸 0
−𝐻 𝐼

]
︸           ︷︷           ︸

≜𝑀

[
𝒛𝑘

�̃�
′
𝑘

]
(81)
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where �̃�
′
𝑘 ≜ 𝑆𝒛𝒌 . The solution of this system of difference equations can be obtained by solving the generalized

eigenvalue problem
𝑀v = 𝑠𝐿v (82)

The Schur vector approach requires the real Schur form of 𝑀 and 𝐿, which can be obtained through QZ factorization
of the above generalized eigenvalue problem. This results in the following matrix pencil [30]:

𝑄 (𝑀 − 𝑠𝐿) 𝑍 = �̃� − 𝑠�̃� (83)

where �̃� and �̃� are quasi-triangular and 𝑄 and 𝑍 are unitary matrices. Denoting 𝑛𝑧 = dim(𝒛𝑘), this decomposition
shall be arranged such that the generalized eigenvalues corresponding to the interior of the unit disk appear in the upper
left 𝑛𝑧 × 𝑛𝑧 blocks of the quasitriangular pair (�̃� ,�̃�). Recognizing that 𝑍 takes the form of four 𝑛𝑧 × 𝑛𝑧 blocks [29, 30]:

𝑍 =

[
𝑍11 𝑍12

𝑍21 𝑍22

]
(84)

Then, the Schur vectors
[
𝑍11 𝑍21

]𝑇
span the basis of the stable subspace associated with the Hamiltonian system.

Consequently, the stabilizing matrix 𝑆 that solves Equation 78 is given by [29, 30]:

𝑆 = 𝑍21𝑍
−1
11 (85)

With this last step, all information that is required to construct the infinite time-horizon orthogonal optimal control
has been obtained. From Equations 73 and 80, this leads to the final result

Δ𝒖⊥
𝑘 = −�̃�−1𝑁𝑅−1

[(
𝐷𝑇

𝜎𝑉𝜎 + 𝐵𝑇
∗ 𝑆𝐴𝑐∗

)
𝒛𝑘 + 𝐵𝑇

∗

(
𝑆𝐵∗ +𝑉−1𝑈

)
𝑃𝒓𝑘

]
(86)

which produces the total control law described by Equation 52.
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