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Abstract

The use of multi-axis additive manufacturing has enabled the possiblity to fabricate parts using curved
layer deposition. Compared to the traditional deposition using planar layers of a fixed thickness, multi-
axis additive manufacturing significantly increases the number of possible fabrication sequences. With
the introduction of a time component for topology optimization in recent work, fabrication-process-
dependent physics can now be incorporated in the optimization process. The fabrication sequence
resulting from such complex optimizations can lead to layers with large variations in thickness. For
manufacturability reasons, considering multi-axis additive manufacturing, this variation should be con-
trolled. In this thesis, we present a method to control the variation in thickness of the projected layers
to improve the manufacturability. We use the continuous pseudo-time field and its gradients to track
the development of the layer boundaries. To demonstrate the effectiveness of the method, we apply
the thickness control method on a fabrication sequence optimization for minimizing thermal distortion.
The results show that the proposed method is able to reduce the variation of thicknesses compared to
the original sequence optimization without thickness control resulting in improved manufacuturability.
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1
Introduction

Additive manufacturing (AM), commonly known as 3D printing, has emerged as a disruptive technol-
ogy, revolutionizing various sectors including aerospace, automotive, healthcare, and consumer goods.
With its layer-by-layer deposition of material, it provides a flexible production method suitable for fast
prototyping. Additive manufacturing allows for the production of complex geometries that might be
impossible or cost-prohibitive using traditional manufacturing methods. The use of multi-axis robotic
systems in additive manufacturing has increased the manufacturing flexibility even further. Instead of
the standard planar layer deposition, additive manufacturing along a curved surface is now a possibility.

In a recent study [32] a new type of optimization, called Space-Time Topology Optimization (STTO),
was proposed. In this method the optimization is done concurrently on both the structural layout of
the design and the fabrication sequence for additive manufacturing. The fabrication sequence can
be derived from the psuedo-time field. The introduction of the time field into the optimization process
offers the opportunity to optimize for process-dependent physics. Recent work [31] demonstrated the
possibility of fabrication sequence optimization for minimizing distortion using such a pseudo-time field.

The addition of the time-field in the optimization process offers opportunities to optimize for com-
plex fabrication-process-dependent physics problems. A limiting factor in optimizing the fabrication
sequence of such problems is the manufacturability of the resulting sequence. Results show that the
optimization for minimizing distortion leads to non-uniform layer thickness. While some additive manu-
facturing methods, such as Wire-Arc Additive Manufacturing (WAAM) can control the thickness of the
deposition to some extend, the flexibility is rather limited. Depending on the WAAM equipment speci-
fications, the thickness of a layer has a lower and an upper bound. Therefore, to make such designs
feasible for fabrication these restrictions on layer thickness should be incorporated in the optimization
process.

The aim for this thesis research is to propose a method to ensure manufacturability of fabrication
sequence optimized designs. The optimization for minimizing distortion is chosen to validate the effec-
tiveness of the method, but the proposed methods should not be limited to this specific optimization. To
get a better understanding of the origin of the problem in this research, some background information is
required. In this section an introduction is given on additive manufacturing and topology optimization.
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1.1. Introduction to additive manufacturing
Additive manufacturing (AM), also known as 3D-printing is a computer controlled production method
that can create three-dimensional objects by layer-by-layer deposition of material [34]. Compared to
traditional fabrication techniques such as subtractive manufacturing (milling, turning, drilling), formative
manufacturing (forging, rolling, extrusion) and molding and casting, AM offers various advantages. The
direct deposition of the material can reduce the material waste and gives more design freedom than
molding and casting [17]. Within AM several types exist which can be divided in groups depending on
the material deposition method:

• VAT Photopolymerisation makes use of a liquid photopolymer resin. An ultraviolet light is used
to cure the resin layer by layer to produce the part.

• Blinder jetting makes use of two materials deposited by a printing head in alternating layers. A
powder based material is combined with the binder material to form the object.

• Material extrusion like FusedDepositionModeling (FDM) draws thermoplastics through a heated
nozzle to deposit layer by layer. The nozzle can move in multiple directions to create 3D objects.

• Powder bed fusionmakes use of powder materials deposited layer by layer. The layer of powder
is melted by electron beams or lasers to melt the material onto the substrate after which excess
powder can be removed.

• Directed Energy Deposition makes use of a laser or arc to melt material onto the substrate.

These types of additive manufacturing each offer their advantages and disadvantages. Some AM
techniques only work on a 3-axis machine and can only print planar layers. In Figure 1.1 the fabrication
of a 3-axis FDM-printer is shown. This type of printer is mostly used to fabricate small light-weight parts
by successively producing planar layers.

Figure 1.1: A 3-axis FDM-printer fabricating a part [28]

With the introduction of multi-axis additive manufacturing, the flexibility in manufacturing methods
such as wire and arc additive manufacturing further increased. Themulti-axis freedom allows to change
the position as well as the angle of the printing nozzle or building plate, to deposit material along a
curved surface. This prevents the so-called staircase effect when manufacturing parts with curved
surfaces, resulting in a smoother surface finish and the possibility to print support-free parts.

1.1.1. Wire and Arc Additive Manufacturing
Wire and Arc Additive Manufacturing (WAAM) is a specific type of additive manufacturing that belongs
to the Direct Energy Deposition (DED) group. The wire and arc refers to the welding process often
used for joining metal parts. Attaching the welding torch to a multi-axis robotic arm enables melting
the wire feedstock into 3D objects. WAAM can be used to produce both small and large-scale parts
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without significant changes to the setup or process. This makes it adaptable to different production
needs, from detailed components to large structural elements. WAAM can work with a wide range of
metallic materials, including steel, aluminum, titanium, and nickel-based alloys [28]. This flexibility can
enable a broad array of applications across various industries. Parts manufactured using WAAM often
demonstrate good mechanical properties, comparable or sometimes even superior to those created
using traditional manufacturing methods. This is particularly significant for industries where structural
integrity is important, such as aerospace and automotive sectors. In Figure 1.2 a generic scheme is
visualised of a multi-axis WAAM setup.

Figure 1.2: Generic scheme of the WAAM process [28]

The dimensions of a single welded layer have a minimum and maximum height that ranges approx-
imately from 1-2 mm. The minimum bead thickness is determined by the minimum power required to
weld the wire and the largest torch speed at which a stable weld bead is produced [10]. By controlling
the power, the torch speed and the wire feed rate, the dimensions of the weld bead can be controlled
[10] [20].

Figure 1.3: Dimensions of the weld bead [20]

While WAAM has good mechanical properties, it also has its downsides. WAAM generates large
thermal gradients due to localized melting and solidification of material. These thermal gradients result
in residual stresses within the part, leading to thermal distortions. These distortions are dependent on
WAAM parameters and its fabrication sequence [23] and can lead to inaccurate shapes and dimensions
when compared to the CAD-model it was based on. Another downside of WAAM is the high surface
roughness. Due to themelt pool characteristics, the dimensions of the deposited weld bead can be hard
to control which can result in a rough surface finish. To get to a desired surface finish, post-processing
of the part is often required.

1.2. Integration of additive manufacturing with topology optimiza-
tion

The fabrication flexibility of additive manufacturing equipment is best utilized with the often complex
designs generated by topology optimization [38] [14] [36]. In this section we will first shortly explain
what topology optimization is.
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Topology optimization (TO) [22] is a structural optimization method that uses algorithmic models to
optimize material layout within a user-defined space for a given set of loads, conditions, and constraints.
The goal of the optimization is formulated in the objective function. This objective function reflects the
performance of the design. By computing the derivatives of the objective function w.r.t. the design
variable, such as the density, optimization algorithms such as the Method of Moving Asymptotes (MMA)
[25] can steer the optimization to maximize the desired performance. This often results in very natural
and non-intuitive shapes as can be seen in Figure 1.4.

Figure 1.4: Example of a part designed by topology optimization (3Dprint.com)

The integration of additive manufacturing with topology optimization offers significant advantages
over conventional manufacturing techniques. AM enables the direct realization of optimized designs by
building complex structures layer by layer, eliminatingmany of the constraints associated with traditional
subtractive manufacturing processes. This integration allows engineers to exploit the full potential of
topology optimization, translating optimized designs into physical prototypes or end-use components
with unprecedented design freedom.

For many AM processes, support structures are needed to be able to manufacture parts with large
overhangs. Such support structures require post-processing of the part and can lead to an increased
weight of the part due to inaccessible support material. Support-free AM methods and overhang-free
topology optimization [27] are being developed to solve this problem, as it still remains a challenge [14].

Additive manufacturing technologies, such as WAAM, offer the ability to produce intricate, highly
customized geometries without the need for assembly or complex tooling. The layer-by-layer deposi-
tion process allows for the fabrication of complex internal features, lightweight lattice structures, and
optimized material distributions that are often the outcome of topology optimized designs. By precisely
controlling the material placement, WAAM techniques can replicate the optimized designs accurately,
ensuring that the intended performance characteristics are realized in the final product. When using
multi-axis WAAM, curved layer deposition becomes possible. This can reduce the need of support
structures which will then reduce the need of post-processing of the parts.

1.3. Length-scale control issues associated with sequence optimiza-
tion

The use of multi-axis additive manufacturing enables the fabrication of parts in an endless number
of possible fabrication sequences. With challenges such as large overhangs in parts often requiring
support structures, smart toolpath planning can result in improved part quality and a valuable reduction
in post-processing. With the introduction of fabrication sequence optimization [31] the fabrication order
can be optimized for process dependent physical problems, instead of slicing the part into planar layers
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using conventional slicing algorithms. Fabrication sequence optimization can play a crucial role in
ensuring the successful implementation of additive manufacturing (AM) processes. By determining the
optimal order of manufacturing operations, the fabrication sequence optimization approach enables
the production of complex geometries and customized components. However, one of the challenges
that arise during fabrication sequence optimization for AM is managing the variations in layer thickness
resulting from the optimization. The limited ability of AM equipment to deposit layers with varying
thickness poses a significant constraint that must be carefully addressed to achieve manufacturable
designs and the desired part quality and functionality.

Additive manufacturing equipment is typically designed to deposit uniform layers of material during
the build process. The layer thickness is often predetermined and depends on the specific equipment
and process parameters. Deviating from the predefined layer thickness introduces challenges in main-
taining a consistent deposition rate and controlling the flow behavior of the material, potentially leading
to defects, inconsistencies, or reduced mechanical properties in the final part. Further research and de-
velopment efforts are necessary to advance the understanding of material behavior, optimize process
parameters, and develop intelligent control systems, enabling precise and consistent layer deposition
in additive manufacturing processes. By effectively managing layer thickness variations, fabrication
sequence optimization can successfully harness the full potential of additive manufacturing technolo-
gies, resulting in high-quality, functional, and optimized products. The goal of this research is to find
a method to effectively control the thickness of the layers in fabrication sequence optimization. The
method should be able to reduce the variation of thickness over the length of the layers and limit the
upper and lower bounds of the layer thickness according to user defined values. This will help to bridge
the gap between optimized fabrication sequences and the realization of these optimizations.

1.4. Thesis structure
Firstly, the relevant literature is reviewed in chapter 2. In section 2.2 the time component in topology
optimization is introduced and in section 2.3 a use case of the fabrication sequence optimization to
minimize thermal distortion is discussed. In section 2.5 a method to slice parts into layers of uniform
thickness is shown and in section 2.6 a useful method to control layer thickness variation is reviewed.
Secondly, in chapter 3 a thickness control method is proposed in a paper. Finally, in chapter 4 short-
comings of the method are discussed, conclusions on this research are drawn and possible future work
is suggested.
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2
Literature study

2.1. Density based topology optimization
Topology optimization stands as a computational strategy aimed at identifying the most suitable mate-
rial distribution within a predefined design domain, ensuring specific performance goals are met. One
of the most widely used methods in topology optimization is the density-based approach [22]. Instead
of directly representing the design’s boundary, density-based topology optimization works by assigning
a density value to each element of a design domain. These densities can be interpreted as a measure
of the presence or absence of material in that particular element.

The core of the topology optimization challenge is the search for an ideal material distribution that
minimizes an objective function, operating within applied global volume constraint and supplementary
constraints. Here, ρ signifies the material distribution—expressed as a density field—taking either a 0
value (indicative of a void) or 1 (indicating solid) within the design space.

In applying the density-based method, the design domain undergoes a discretization process, trans-
forming into finite elements. This breakdown dictates material distribution by assigning it toN elemental
or nodal design variables. However, such discretization can be problematic. When the design variable
is restricted to only 0 and 1 values, larger design domains can be especially challenging to optimize.
To alleviate this, the continuous density design approach is used, allowing for the implementation of
gradient-driven optimization algorithms, improving the convergence.

The mathematical representation of continuous topology optimization can be written as:

min
ρρ

: F (u(ρ), ρ) =
∑
e

∫
Ωe

f(u(ρe), ρe)dV (2.1)

s.t. : g0(ρ) =

∫
Ωe

ρ(x)dV − V0 =
∑
e

veρe − V0 ≤ 0 (2.2)

: gi(u(ρ), ρ) ≤ 0, i = 1, ...,m (2.3)
: 0 ≤ ρe ≤ 1 e = 1, ..., N (2.4)

(2.5)

where F is the objective function dependent on the displacement field u which is a function of the
element densities ρe. The optimization is subject to the global volume constraint g0 with V0 being the
desired maximum volume and additional constraints gi.

To reduce the complexity of the homogenization approach the SIMP method was introduced to
topology optimization. The SIMP (Simplified Isotropic Material with Penalization) method or power-law
technique simplifies and improves the convergence of solutions. This relationship between density
design variables and material properties gets expressed by a power-law, as shown in Equation 2.6,
with E0 representing the Young’s Modulus of solid material, and p being the penalization parameter.

Ee(ρe) = ρpeE0 (2.6)
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For p = 1 the optimization problem is a convex problem with a unique solution. However, for the
same objective function, when p > 1 intermediate densities are penalized in their effective Young’s
modulus and hence the optimization favors 0-1 solutions. To avoid gray scale elements or too fast
convegence, p = 3 is the value at which the optimization performs well on both aspects.

When the SIMP method is included, the formulation for compliance minimization will be given by

min
ρ

: c(ρ) = UTK U =

N∑
e=1

Ee(ρe)uTk0u (2.7)

s.t. : KU = F (2.8)

: g0 =
V (ρ)

V0
− vf ≤ 0, (2.9)

: 0 ≤ ρe ≤ 1 e = 1, ..., N (2.10)
(2.11)

where c is the compliance of the structure, evaluated by the displacement field U and the global
stiffness matrix K. The optimization is subject to the global volume constraint where V (ρ) is the material
volume of the density field and V0 is the total volume of the design domain and vf is the prescribed
volume fraction.

2.1.1. MMA solver
The optimization formulation given in Equation 2.7 can be solved using using common optimization
algorithms such as Sequential Linear Programming (SLP), Optimality Criteria (OC) and the Method of
Moving Asymptotes (MMA). The Method of Moving Asymptotes optimization algorithm [25], character-
ized by the generation and assessment of strictly convex approximations, is known for its efficiency and
robust convergence. This algorithm, using sensitivity calculations [12], derives the objective gradient
and constraint function concerning design variables to guide the optimization process.

2.1.2. Sensitivities
The MMA algorithm uses the derivatives of the objective and constraint functions w.r.t. the design
variables to guide the optimization in the direction for maximum performance while satisfying the applied
constraints. These derivatives are referred to as sensitivities. The sensitivities of the objective function
and the global volume constraint in Equation 2.7 are given by

∂c

∂ρe
= −pρp−1

e E0 (2.12)

∂g0
∂ρe

=
∂V (ρ)

∂ρe

1

V0
(2.13)

2.1.3. Filtering
To prevent the formation of small feature sizes or checkerboard patterns, a density filtering method is
used to smoothen the density field. This density filter is a convolution operator that smoothens the
densities ρi within a defined filter radius rd using weighting functions w(xi, rd). This removes any
undesired checkerboard patterns that can occur in density-based optimization. The density filter also
offers some form of LSC as it averages the density value of an element with its neighbouring elements.
By varying the filter radius, the feature size of the geometries of the design can be changed.

ρ̃e =
Σi∈Se

w(xi, rd)ρi
Σi∈Se

w(xi, rd)
(2.14)

Here Se is the set of elements within the prescribed filter radius of a central element. The weight
factor w(xi, rd) is defined by

w(xi, rd) = max(0, rd −∆(e, i)) (2.15)
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where ∆(e, i)) is the center-to-center distance of element e to element i. When a density filter is
applied to the density field the densitities of the elements become dependent on each other. Therefore,
to get accurate sensitivities, a chain rule should be applied when computing the sensitivities with respect
to the density variable.
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2.2. Space-time topology optimization for additive manufacturing
In the paper Space-Time Topology Optimization for additive manufacturing [32], the new topology opti-
mization formulation called Space-Time Topology Optimization (STTO) is proposed. Here the structural
layout of the design is simultaneously optimized with its fabrication sequence. STTO makes use of two
design variables. The structural layout is defined by the density field and the fabrication sequence is
defined by the time field t. The addition of the time field to the optimization allows the design to be
divided in a number of manufacturing stages. On each of these stages, structural performance can be
evaluated and constraints can be imposed.

Designs can be optimized for multiple problems, which can be combined in the objective function.
For STTO this objective function consists of the performance of the complete design and the perfor-
mance of the intermediate stages of the design. This leads to a new objective function which is defined
by:

J(ρ, t) = Jcomplete(ρ, t) + Jprocess(ρ, t) (2.16)

In the case of STTO the main objective of the optimization is minimal compliance, which is defined
in Equation 2.17. Here U is the displacement and K is the stiffness matrix. In Equation 2.16 this means
that the compliance will be evaluated for each of the intermediate stages and the final design. To
impose manufacturability, new objectives can be added to this function or constraints can be added to
the optimization.

c = UTK(ρ)U (2.17)

The value of the compliance is an indicator of the structural performance of the design. In a later
stage, when manufacturability constraints or modifications to the objective function have been applied,
this indicator can be used to evaluate the influence on the structural performance. Constraining the
optimization is restricting the design freedom and therefore will lead to higher compliances of the design.
The effects of the manufacturability constraints can thus be compared to the benchmark value of the
unconstrained optimization. The design variables ρ ∈ [0, 1] and t ∈ [0, 1] are associated to an element
of a discretized design space. The density value should converge to a discrete value of either 0 or 1,
where 0 and 1 mean a void or solid element respectively. The time field however is a continuous field
ranging from 0 to 1 that indicates the time at which the element is created. The density field consists of
a three-field scheme in the optimization. Firstly, a continuous density field is computed from the MMA-
solver. The density field is then smoothed by a density filter shown in Equation 2.18. This removes
any undesired checkerboard patterns that can occur in density-based optimization. Lastly, the density
field is projected using a differentiable threshold projection shown in Equation 2.36. Here βd controls
the sharpness of the step function, and η is the threshold projection value by which the density value
of an element is pushed to either 0 or 1.

ϕ̃e =
Σi∈Se

w(xi, rt)viτi
Σi∈Se

w(xi, rt)vi
(2.18)

ρe =
¯̃
ϕe =

tanh(βdη) + tanh
(
βd(ϕ̃e − η)

)
tanh(βdη) + tanh(βd(1− η))

(2.19)

For the time field, a similar threshold projection is used to cut the total design into a prescribed
number of intermediate building stages. To display the density field that is built up until a time threshold
T , the time value of the elements lower than that threshold should get to 1 and the time value of the
elements built after that threshold should be 0. This is achieved by the formula shown in Equation 2.20.

t̄[T ]
e = 1− tanh(βtT ) + tanh(βt(te − T ))

tanh(βtT ) + tanh(βt(1− T ))
(2.20)

To segmentize the fabrication process, the time field is divided into intervals. With a prescribed
number ofN intervals, the time at which an intermediate structure (also called stages) is evaluated can
be computed by

Ti =
i

N
, i = 0, ..., N (2.21)
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Using these time points and the threshold projection for the time field shown in Equation 2.20 struc-
tural performance of the intermediate structures can be evaluated and constraints can be applied.
These constraints can help in making the optimized design more manufacturable. A requirement of
the constraints is that they are differentiable. This is necessary to compute the sensitivities that are
used in the MMA-solver to optimize the design.

In this paper, it is assumed that the fabrication speed is constant, and thus the maximum volume
of the complete structure (V0) is equally distributed over the time intervals. This means that each of the
N stages are bounded by a volume constraint defined by

V [Ti]− V [Ti−1] ≤
V0

N
i = 1, ..., N (2.22)

Where V [Ti and V [Ti−1 are the volume that has been deposited up until the time points Ti and Ti−1.
In Figure 2.1 a visualisation of the sequence of the intermediate structures is shown.

Figure 2.1: Construction sequence of the 8 stages of an optimized structure [32]

To prevent deformation due to self-weight of intermediate structures, supporting structures are often
used in additive manufacturing. In the STTO objective formulation shown in Equation 2.23 however, the
compliance of the intermediate structures is incorporated to minimize the effect of the self-weight. Here
αi is the weighting factor that defines the contribution of the compliance of the intermediate structures
at times Ti to the objective function. This way the part can be produced without additional support
structures.

min
ϕ,τ

c = UTK(ρ)U +

N∑
i=1

αi(U
[Ti])TK(ρ[Ti])UTi (2.23)

Besides the influence of the self-weight on the compliance, the load of the moving robot platform on
top of the structure can also be substantial and can be incorporated into the objective function. Not only
does this lead to a minimization of compliance, another important effect of incorporating these process-
dependent loads is that they cause the optimization algorithm to create a platform for the robot to move
on. The robot should be able to move along the fabricated part of the bridge in order to print the next
stage. In Figure 2.2a a visualisation of the moving robot can be seen.

In Figure 2.2b an optimization of a structure including the loads of the weight of the robot at different
positions can be seen. The figure shows a varying thickness in the layers. This is due to the fact
that the time field is optimized to minimize the compliance due to gravity and process-dependent loads
during the fabrication. Another factor of influence for the varying thickness is the varying density field.
Even with a smooth time field with isolines equally space apart, the presence (solid) or absence (void)
of material within the isolines of the time field can result in variation in the observed layer thickness.
The variation in the thickness of the layers should be limited due to manufacturing limitations for the
WAAM robot.
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(a) Visualisation of the positions and range of the moving
robot [32]

(b) Optimized layout and sequence when the loads of the
weight of the robot are included

Figure 2.2: Space-time topology optimization using a moving WAAM-robot to account for process dependent loads.

2.3. Fabrication sequence optimization for minimizing distortion
in multi-Axis additive manufacturing

In Fabrication Sequence Optimization for Minimizing Distortion in Multi-Axis Additive Manufacturing
[31] a new objective to optimize the fabrication sequence for is presented. This method optimizes
the fabrication sequence of a predefined shape to minimize distortion resulting from thermal strain
caused by the manufacturing process such as WAAM fabrication. WAAM generates a lot of heat to
melt the material for deposition on the substrate. As the material of the deposited layer solidifies, its
volume shrinks as shown in Figure 2.3. The shrinkage of an element is caused by the nodal forces that
correspond to the thermal strain.

Figure 2.3: Visualisation of the shrinkage of a material element [31]

With the addition of a new layer, the displacements of the ∆u[i] resulting from the thermal strains of
the elements in the i-th layer, Ωi, can be computed by solving

K[i]∆u[i] = f [i], i = 1, ..., N. (2.24)

With this equilibrium equation, we can compute the incremental displacement of the simulation grid
due to the addition of each new layer. Under the assumption of small displacements, the displacement
field at the i-th stage, u[i] is computed by the summation of incremental displacements until the current
stage,

u[i] =

i∑
i=1

∆u[i], i = 1, ..., N. (2.25)

The goal of the proposed method is to minimize these displacements to enhance part quality. In
Equation 2.26 the objective function is shown.
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min d(t) = u⊤Qu (2.26)

s.t. K[i](t)∆u[i] = f [i](t), i = 1, ..., N, (2.27)
− γv ≤ gi(t) ≤ 0, i = 1, 2, ..., N, (2.28)
g0(t) ≤ γc (2.29)
0 ≤ te ≤ 1, ∀e (2.30)

Here, u contains the displacements of the nodes of the elements and Q is a sparse matrix to specify
the nodal displacements of concern. The displacement of a node is computed by

di = (ux
i )

2 + (uy
i )

2 (2.31)

The optimization problem is solved by using a gradient-based optimization (MMA), with the only
design variable being the time values t placed on the nodes of the elements. The element time value is
then computed by taking the average of the nodes. From these elemental time values the fabrication
sequence can be determined. In Figure 2.4 the distortion resulting from fabrication using regular planar
layers can be compared to the sequence optimized to minimize distortion.

Figure 2.4: Fabrication sequence optimization for distortion resulting in varying layer thickness [31]

While the method is succesful in reducing the distortion of the fabricated part, the resulting layers
show large variation in thickness. For manufacturability reasons, the thickness of the layers should
be as constant as possible as fabrication methods like WAAM have a limited flexibility in varying the
thickness of the deposited layer. The variation in layer thickness is a problem occurring in STTO as
well, and needs to be solved by controlling the optimization to limit thickness variation. The optimization
for distortion favours a certain fabrication sequence resulting in the varying layer thickness. Modifying
the optimization objective and constraints can improve manufacturability at cost of the distortion of the
part.

12



2.4. Robust formulation
There are many proposed methods in topology optimization for imposing length scale control on the
design [8] [7] [37]. Typically, these length scale control methods work on the entire design. One of the
most used methods is the so called robust formulations [30]. This method makes use of an optimization
formulation based on erosion, intermediate and dilation projections. These projections create three
designs that are tested on their compliance using a FEM-calculation. These compliances are then
used in the objective function which is shown in Equation 2.32.

min
ρ

: max(f(¯̃ρe(ρ)),f(¯̃ρi(ρ)),f(¯̃ρd(ρ))

s.t. : K(¯̃ρe)ue = f

s.t. : K(¯̃ρi)ui = f

s.t. : K(¯̃ρd)ud = f

(2.32)

Where the superscripts e, i and d stand for the eroded, intermediate and dilated designs respectively.
In the case of compliance optimization, the eroded case will always have the highest compliance due to
its more slender geometry. Therefore, the problem formulation can often be reduced to the formulation
shown in Equation 2.34. In the case of STTO however, the objective function consists of the compliance
of the final structure and the compliances of the intermediate structures due to density-dependent loads
(self-weight). The compliance due to self-weight can have a non-monotonous character [2]. As this
compliance is part of the objective function shown in Equation 2.23, the objective function itself can
become non-monotonous as well. This is dependent on factors such as the weight-factor α, the number
of stages N for which the compliance is computed and the load on the finalized structure F .

Besides the non-monotonous character of the compliance due to self-weight, the paper points out
another undesirable effect of density-dependent loads in the optimization. The compliances of the
intermediate structures are dependent on the ratio of the gravity g and the stiffness K. Using the Solid
Isotropic Material with Penalization (SIMP) method, the elasticity modulus for an element is determined
as shown in Equation 2.33.

Ei = ρpiE0 (2.33)
Here ρ ∈ [0, 1] is the density parameter, p is the penalization factor which is often set to 3, and E0

is the elasticity modulus of the material. Because the stiffness is related to the E-modulus the ratio
g ρ∇ · K ρp becomes related to the density parameter. This can cause problems when the pseudo-
density tends to zero, which means that the ratio and thus the compliance goes to infinity. The algorithm
tries to solve this problem by increasing the density slightly to reduce the nodal displacements. Similar
problems can occur when using the threshold projection for the robust formulation. The projections
can push the elemental densities to low, non-zero values which affect the ratio thus the compliance. It
is therefore proposed in the paper to use a modified version of the SIMP-method, which reduces this
effect. Although reduction of the formulation has the advantage of reducing computational effort of the
optimization, one can not simply assume the possibility of the reduction. The effects of the density-
dependent loads on the objective function should first be analysed before a reduced formulation can
be used.

On the three projections of the original (non-reduced) robust formulation, constraints are imposed. The
volume constraints on the optimization are imposed using the volumes of the dilated designs. This is
because the dilated design has the highest volume, and thus violation of the desired volume fraction
will make the MMA-solver direct the volume of the density-field down to comply with the constraint.
The volume constraint is shown in Equation 2.35. Here the summation of the density of the elements
is taken and divided by the total volume of the design space. The volume fraction V ∗

d of the dilated
structure is updated every 20 iterations such that the volume of the intermediate design Vi becomes
equal to V ∗. The intermediate structure will then eventually be used as the blueprint design.

min
ρ

: f(¯̃ρe(ρ))

s.t. : K(¯̃ρe)ue = f
(2.34)
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fv(ρ) =
Σi

¯̃ρdi vi
V

≤ V ∗
d (2.35)

Reducing the formulation helps lowering the computational cost of the optimization. As the eroded
structure always has the highest compliance, the FEM-calculations of the intermediate and dilated
designs can be left out. As FEM-calculations are computationally costly, this has a positive effect on
the duration of each loop of the optimization. It should be noted however, that when optimization is
extended to other problems such as heat conduction, the eroded topology might not always be the
worst performing. In this case, the robust formulations cannot be reduced to the formulation shown in
Equation 2.34 and thus the complete formulation shown in Equation 2.32 should be used.

The robust formulation method generates the eroded, intermediate and dilated designs by making
use of the threshold projection shown in Equation 2.36. For each of the cases, the threshold parameter
η is different, with the dilated structure having the lowest threshold ([0,1]), the intermediate structure in
the middle (η = 0.5) and the eroded structure having the highest threshold projection value. This leads
to the following threshold projections:

ρe =
¯̃
ϕe =

tanh(βdηe) + tanh
(
βd(ϕ̃e − ηe)

)
tanh(βdηe) + tanh(βd(1− ηe))

ρi =
¯̃
ϕe =

tanh(βdηi) + tanh
(
βd(ϕ̃e − ηi)

)
tanh(βdηi) + tanh(βd(1− ηi))

ρd =
¯̃
ϕe =

tanh(βdηd) + tanh
(
βd(ϕ̃e − ηd)

)
tanh(βdηd) + tanh(βd(1− ηd))

(2.36)

The projection parameter βd controls the sharpness of the threshold projection function. This pa-
rameter is increased during the optimization to create a near discrete density-field of void (0) and solid
(1) elements. In the paper, the beta parameter is doubled every 50 iterations. The optimization is sen-
sitive to the projection parameters β, and its increasement, and η. Slower increasement of beta allows
for better convergence but increases the amount of iterations required for the optimization to converge,
so this results in a trade-off. As shown in Figure 2.5b, when increasing these parameters correctly, the
optimization converges to a black and white design. When comparing Figure 2.5a to Figure 2.5b, it can
be seen that the robust formulations do indeed impose length scale control on the final design.

(a) Optimization without robust formulations (b) Optimization using tuned parameters

Figure 2.5: Effect of the robust formulations on the design

Although the robust formulations do impose LSC on both the void and solid phase, they are typically
used for the final design. In STTO however, robustness and thus manufacturability is also required
on the intermediate structures. The robust formulations do not ensure that LSC is imposed on each
individual layer. This means the formulations are useful to minimize feature size in the design, but can
not control the variation in thickness of the layers.
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2.5. Slicing methods for uniform thickness
To produce parts generated by Topology Optimization or CAD-models using additive manufacturing, the
part needs to be divided into printable layers. For this, so called slicing software is used to determine
the path in the plane of each layer. Conventional slicing algorithms for additive manufacturing slice
the part into planar layers of fixed thickness [9]. The simplicity and robustness of this slicing method
makes it suitable for most designs and AM equipment. However, the introduction of multi-axis additive
manufacturing offers possibilities to improve surface finishing, create support-free structures and opti-
mize the fabrication sequence for process dependent physics problems [35]. To utilize the capabilities
of multi-axis AM, slicing algorithms able to divide the designed part into curved layers are needed. To
be able to slice the part in curved layers a heat method can be used [19] [4]. In this method, the part
is virtually placed on a heated base plate of temperature Tbottom with the top surface has a fixed tem-
perature of Ttop. The temperature differences of the bottom and top boundaries will cause the heat
to spread out through the part as time goes by as shown in Figure 2.6. The heat equation shown in
Equation 2.37 is used to solve this heat transfer problem.

ρCp∂T

∂t
= k∆T (2.37)

With the temperature field obtained from the solved heat equation the isothermal surfaces can
now be extracted from the geometry. As the temperature does not decrease linearly over the height
of the part, the distance between isothermal surfaces for a fixed temperature gap will also decrease
nonlinearly. Therefore the average magnitude of the temperature gradient over a layer is used to
determine the next isothermal surface, as shown in Equation 2.38.

Figure 2.6: Simulated temperature field for isothermal slicing [19]

Ti = Ti−1 − d · ¯|∆T | (2.38)

Here Ti is the temperature of the next isothermal surface, Ti−1 is the temperature of the current
isothermal surface, d is the desired thickness of the layer and ¯|∆T | is the average magnitude of tem-
perature gradient over this layer. Similarly, a time field can be used instead of a temperature field to
determine the isosurfaces. For the time field however, the magnitude of the gradient over a layer of
thickness d will be added to the previous value of the isoline as shown in Equation 2.39

Ti = Ti−1 + d · ¯|∆T | (2.39)
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2.6. Layer thickness control
In recent work a method to control the variation of the layer thickness has been proposed for multi-axis
AM. [6]. Firstly a method to generate curved layers for multi-axis 3D printing is used by following an
optimized scalar field G(x). From this field surface layers can be generated by extracting iso-lines of
G(x). The distance between these iso-lines is the thickness of the layer, which can vary along the
boundary. As the WAAM manufacturing hardware has limits in varying the thickness of the deposited
layer, this should be controlled when optimizing. To achieve this, the formula shown in Equation 2.40
can be added to the objective function.

Et =
∑

Ve(∥∇G(xe)∥ − c)2 (2.40)

Here the magnitude of the gradient of G(x) indicates the speed of the material deposition, c is
the target layer thickness of each layer and Ve is the volume of an element. When the magnitude of
the gradient of G(x) is optimized to be nearly constant, it is possible to control the variation of the
thickness to make it as uniform as possible. Such a formulation can be incorporated in the objective
function of fabrication sequence optimization to control the layer thickness variation, which will improve
the manufacturability. The addition of this formulation to the objective function can also have a positive
effect on the thickness computation mentioned in section 2.5. As the gradients within a layer will vary
less, the computed thickness from the gradient magnitudes within that layer will be more accurate.

2.7. Gap in the state of the art
While slicing algorithms do exist as post optimization process to slice parts in layers of uniform thick-
ness, such methods have not been incorporated in the optimization yet. With the introduction of a time
component to the (topology) optimization process, the toolpath can now be incorporated in the opti-
mization. As the fabrication sequence can be optimized for objectives such as minimizing distortion,
the optimized sequence can result in varying layer thickness. While there are several length scale con-
trol methods for minimizing and maximizing feature sizes in the design domain, no method has been
developed yet to do this layer-by-layer to generate a optimized sequence feasible for additive manu-
facturing. Hence to make such optimized sequences feasible for production, a method needs to be
developed to control the thickness of all the layers such that they are manufacturable for the multi-axis
AM-equipment.
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3
Layer thickness control in fabrication

sequence optimization for additive
manufacturing

Abstract
With the introduction of a time component for topology optimization in recent work, fabrication-process-
dependent physics can now be incorporated in the optimization process. The fabrication sequence
resulting from such complex optimizations can lead to layers with large variations in thickness. For
manufacturability reasons, this variation should be controlled. In this paper, we present a method to
control the variation in thickness of the projected layers to improve the manufacturability. We use the
continuous pseudo-time field and its gradients to track the development of the layer boundaries. To
demonstrate the effectiveness of the method, we apply the control method on a fabrication sequence
optimization for minimizing distortion. The results show that the control method is able to reduce the
variation of thicknesses compared to the original sequence optimization for minimizing distortion.

1

1This chapter was intended as a part of a manuscript for a journal submission.
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3.1. Introduction
The use of multi-axis robotic systems in additive manufacturing has increased the manufacturing flex-
ibility. Instead of the standard planar layer deposition, with a printing nozzle or building plate that can
rotate during the fabrication, additive manufacturing along a curved surface is now a possibility[26] [5]
[6]. In conventional additive manufacturing, the fabrication sequence is uniquely determined when a
building orientation of the component is given, due to the planar stacking of the layers. With the intro-
duction of multi-axis additive manufacturing however, the number of possible fabrication sequences is
increased. Due to this improvement in additive manufacturing, finding the optimal fabrication sequence
to improve the quality of the fabricated part poses a new challenge.

Currently, the slicing of parts into printable layers is mostly considered a geometric problem, which
is typically done post optimization. While literature shows several methods to slice these parts into
curved layers and account for manufacturability [19] [24] [1], the physical effects of the resulting printing
sequence are not considered [18]. In a recent study a new type of optimization, called Space-Time
Topology Optimization (STTO) [32] was proposed. In this method the optimization is done concurrently
on both the structural layout of the design and the fabrication sequence [29]. The fabrication sequence
can be derived from the psuedo-time field. In following work [31] the possibility of fabrication sequence
optimization for minimizing distortion using such a pseudo-time field was demonstrated. The addition
of the time-field in the optimization process offers opportunities to optimize for complex fabrication-
process-dependent physics problems [18] [16] [15]. The performance of the part can then be simulated
layer-by-layer [13].

A limiting factor in optimizing the fabrication sequence of such problems is the manufacturability. In
the optimization for minimizing distortion [31] it can be seen that the optimized fabrication sequence
leads to non-uniform layer thickness. While some additive manufacturing methods, such as Wire-Arc
Additive Manufacturing (WAAM) [33] can control the thickness of the deposition, the flexibility is limited
[21] [10] [11]. Depending on the WAAM equipment specifications, the thickness of a layer has a lower
and an upper bound, and thus allows a limited variation in thickness of a layer. To be able to combine
the slicing of the part into the optimization process, manufacturability has to be taken into account.
Therefore, to make such optimized sequences feasible for fabrication, these restrictions should be
incorporated in the optimization process.

The aim for this paper is to propose a method to control the variation in thickness of the layers to
ensure manufacturability of fabrication sequence optimized designs. The optimization for minimizing
distortion is chosen to validate the effectiveness of the method, but the proposed methods should not
be limited to this specific type of optimization. The structure of the paper is as follows. In section 3.2
background information is given and the problem is identified. In section 3.3 the proposed method is
explained. In section 3.4 we present the results from the proposedmethod to control the layer thickness
during the optimization process after which conclusions are drawn and future work is suggested.

3.2. Layer thickness variation in sequence optimization
In Figure 3.1a and Figure 3.1b we can see the optimized time fields to minimize distortion of a part
for two different intitial time fields. The figures clearly show the variation in layer thickness of the
optimized sequences. While the optimization is successful in reducing the distortion of the part, the
resulting projected layers are not feasible for manufacturing due to the large thickness variations. The
variation in thickness of the optimized layers are also influenced by the shape of the part, its mesh
size and number of layers, and the initialized time field. However, the optimization should not solely be
dependent of initialization parameters and thus further control on the thickness of the layers is required.
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(a) Original optimization for minimizing distortion
Obj: distortion = 2.0E-4

(b) Original optimization for minimizing distortion
Obj: distortion = 1.7E-4

Figure 3.1: Optimized fabrication sequences to minimize distortion for two different initial time fields

3.3. Layer thickness control
In this section we propose a framework to control the variation in layer thickness in fabrication sequence
optimization. Firstly the objective function, based on gradient control, is explained. The formulation of
the optimization problem is then given in subsection 3.3.1 followed by a sensitivity analysis in subsec-
tion 3.3.5.

3.3.1. Variation of layer thickness
In fabrication sequence optimization the time values of the elements are derived from the time values
on its nodes by taking the average of the four nodes, as shown in Figure 3.2. These time values
represent the order in which the elements of a part are fabricated. The time field is a psuedo-time field
where t ∈ [0, 1]. Elements can have equal or similar time values to form isolines in the time field. The
gradients in x and y-direction of an element can be determined from the nodal time values as shown in
Equation 3.1.

dt
dx

dt
dy

t1 t2

t3t4

Figure 3.2: Element with its corresponding nodes

te =
t1 + t2 + t3 + t4

4
(3.1)

dt

dx
=

1

2
(t2 − t1) +

1

2
(t3 − t4) (3.2)

dt

dy
=

1

2
(t4 − t1) +

1

2
(t3 − t2) (3.3)

Themagnitude of the gradient of an element in the 2D time field is then computed using Equation 3.4.
By taking the magnitude of the gradients w.r.t. the x- and y-position, the development of the isolines
in the normal direction can be tracked. This is the direction of interest to control the distance between
specified isolines in the time field.
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M = ∥∇T∥ =

√(
dt

dx

)2

+

(
dt

dy

)2

(3.4)

To control the thickness of the layer along its length, the gradients within that layer have to be
controlled. Similar magnitudes of the gradients over the length of the layer will result in similar thickness.
Some variation is allowed but for manufacturability reasons the layers should be as uniform as possible.
To control the uniformity of the layers, a formulation shown in Equation 3.5 is added to the objective
function. This objective function resembles the variance function commonly used for statistics. By
reducing the variance of the gradient magnitudes within the layers the variation in layer thickness can
be controlled.

obj : min : G(t, Tp) =

i=N∑
i=1

(
t̄[Tp(i+1)]
e − t̄[Tp(i)]

e

) (
M j −mi

t

)2 (3.5)

HereM i denotes the gradient magnitudes of the elements within the layer andmi
t is the magnitude

target defined as the average of the magnitudes within each layer, as shown in Equation 3.6. The value
of the magnitude targets are bound by the upper and lower limit of the time field.

mi
t =

∑
e M ·

(
t̄
[Tp(i+1)]
e − t̄

[Tp(i)]
e

)
∑

e ρe ·
(
t̄
[Tp(i+1)]
e − t̄

[Tp(i)]
e

) (3.6)

t̄[T ]
e = 1− tanh(βtTp) + tanh(βt(te − Tp))

tanh(βtTp) + tanh(βt(1− Tp))
(3.7)

The threshold projections t̄
[Tp]
e are used here to isolate the gradient magnitudes within each of the

layers from entire magnitude field. This way we can evaluate the average gradient magnitude within
a layer. The slope of the projections are determined by the sharpness parameter β. To evaluate the
average magnitude within each layer more accurately, the sharpness parameter can be increased.
This creates a sharper cut-off at the time points Tp as shown in Figure 3.3a and Figure 3.3b. By more
accurately evaluating the average gradient magnitude within the layers, the variance of these gradient
magnitudes can be controlled better.

(a) Isolated layer for β = 30 (b) Isolated layer for β = 100

Figure 3.3: Isolation of the layers using threshold projection on the time field

3.3.2. Manufacturability constraints on layers
To ensure the optimized fabrication sequence is feasible for production, we impose constraints to im-
prove the manufacturability. Firstly we impose a fabrication speed constraint. For simplicity, we assume
a constant fabrication speed. Previously this was enforced by constraining the volume at predefined
time points, as shown in Equation 3.8 where these time points Tp represent the values of the isolines
which will form the upper and lower boundary of a layer. For a constant and uniform thickness however,
a fixed layer volume limits the length of the layer and thus the design freedom as the desired thickness
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of the layer is defined should remain constant. The volume constraint is therefore modified by making
the time points a design variable. This makes varying the length and thus volume of the layers possible
while ensuring a constant fabrication speed. Since the number of layers is prescribed as N, the volume
up until the i-th layer shall be Tp(i) · V ∗,

V [i](t) =
∑
e

ρ[i]e (te) · ve =
i

N
V ∗, i = 1, ..., N, (3.8)

V [i](t) =
∑
e

ρ[i]e (te) · ve = Tp(i) · V ∗, i = 1, ..., N, (3.9)

where ve is the volume of an element and Tp(i) is the time point at which the i-th layer is deposited.
The above equality constraint is replaced by two inequality constraints for the upper and lower bound
for the fabrication speed respectively, as shown in Equation 3.10. The constraint can be relaxed ac-
cordingly to allow variation in fabrication speed.

gi1(t, Tp) = V [i](t)− Tp(i) · V ∗ ≤ 0, i = 1, ..., N, (3.10)
gi2(t, Tp) = Tp(i) · V ∗ − V [i](t) ≤ 0, i = 1, ..., N, (3.11)

Secondly we impose a thickness constraint on each of the N layers to control the upper and lower
limit of the thickness. In Equation 3.12 the formula used to evaluate the thickness of each layer is used.

di =
∆t

M̄
= (Tp(i+ 1)− Tp(i)) ·

∑
e ρe ·

(
t̄
[Tp(i+1)]
e − t̄

[Tp(i)]
e

)
∑

e M ·
(
t̄
[Tp(i+1)]
e − t̄

[Tp(i)]
e

) ≈ dtarget (3.12)

Where dtarget is the target thickness of the layer. This target thickness can be determined depending
on fabrication equipment parameters, but in this work we determine it based on the part dimension h
and the number of stages N as shown in Equation 3.15. The above equality constraint is replaced by
two inequality constraints for the upper and lower bound respectively, as shown in Equation 3.13.

gi3(t, Tp) = di − dmax ≤ 0, i = 1, ..., N, (3.13)
gi3(t, Tp) = dmin − di ≤ 0, i = 1, ..., N, (3.14)

dtarget =
h

N
(3.15)

The thickness constraint can be relaxed to allow deviation from the target thickness by using upper
and lower bounds dmax and dmin.

As the time points Tp are now a design variable and the volumes of the layers are no longer bound.
To prevent the time points from overlapping or layers becoming too small, a minimum volume constraint
is added to control the minimum dimensions of the deposited layers. The minimum volume inequality
constraint is shown in Equation 3.16,

gi4 = Vmin −
∑

ρ · (ft(t)− gt(t)) ≤ 0, i = 1, ..., N, (3.16)

where Vmin denotes the minimum required each layer. With the thickness of the layers controlled
by the thickness constraint, this ensures that each layer satisfies a minimum length. In the case of
WAAM this would correspond to the minimum dimensions of the weld bead.

3.3.3. Continuity constraint
As the proposed thickness control formulation controls the magnitude of the gradients within a layer
but not the direction, local minima and maxima can occur in the time field. These local minima and
maxima correspond to isolated material patches and enclosed voids, respectively. As enclosed voids
are inaccessible and isolated material patches require support structures, these are undesired for man-
ufacturability reasons. To prevent these from occurring, we use a continuity constraint [31] shown in
Equation 3.17
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g0(t) =
1

n (M)

∑
e∈M

∥te −meani∈N⌉(ti)∥
2 ≤ γc, (3.17)

where M is the set of all elements in the domain except for the starting region for the fabrication
process and N⌉ is the set of elements adjacent to element e. The γe parameter is a small constant
used for numerical stability. The mean value of these adjacent elements is evaluated as shown in
Equation 3.18.

meani∈N⌉(ti) =

∑
i∈N⌉

ti

n
(
N⌉
) (3.18)

3.3.4. Optimization problem formulation
The original aim of the optimization was to reduce the distortion of the fabrication component. To
improve manufacturability, a term is added to the objective function for the uniform thickness of the
layers and constraints are added. The modified optimization problem is formulated as

min G(t, Tp) = u⊤Qu+

i=N∑
i=1

αu

(
t̄[Tp(i+1)]
e − t̄[Tp(i)]

e

)
(M i −mi

t)
2 (3.19)

s.t. K[i](t)∆u[i] = f [i](t), i = 1, 2, ..., N, (3.20)
g0(t) ≤ γc (3.21)
g1(t, Tp) ≤ 0 (3.22)
g2(t, Tp) ≤ 0 (3.23)
g3(t, Tp) ≤ 0 (3.24)
g4(t, Tp) ≤ 0 (3.25)
0 ≤ te ≤ 1, ∀e (3.26)
0 ≤ Tp(i) ≤ 1, i = 1, 2, ..., N, (3.27)

where αu is the weighting factor of the uniform thickness objective. This weighting factor can be
adjusted to allow more or less variation in layer thickness. The optimization problem is solved by
gradient-based numerical optimization using the Method of Moving Asymptotes (MMA) [25].

3.3.5. Sensitivity analysis
The sensitivities of the distortion objective with respect to the time t are known from previous work [31]
and will not be shown here. The sensitivity of the layer thickness control part of the objective function
with respect to the design variables te and Tp are given by
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(3.28)

22



∂G

∂Tp
=

i=N∑
i=1

αu

(
∂t̄

[Tp(i+1)]
e

∂Tp
− ∂t̄

[Tp(i)]
e

∂Tp

)(
M −mi

t

)2
+

i=N∑
i=1

2 · αu

(
t̄[Tp(i+1)]
e − t̄[Tp(i)]

e

) (
M −mi

t

) ∂M
∂Tp

+

i=N∑
i=1

−2 · αu

(
t̄[Tp(i+1)]
e − t̄[Tp(i)]

e

) (
M −mi

t

) ∂mi
t

∂Tp

(3.29)

Where ∂t̄
[Tp]
e

∂te
, ∂M

∂te
, ∂mi

t

∂te
, ∂t̄

[Tp]
e

∂Tp
, ∂M
∂Tp

and ∂mi
t

∂Tp
can be evaluated from Equation 3.7, Equation 3.4 and

Equation 3.6.
With the time points Tp now being design variables, the objective to minimize distortion is now also
dependent on these design variables. Therefore we need to evaluate the sensitivities of the distortion
objective w.r.t. these variables. In Equation 3.30 the objective function for minimizing distortion is given.

L(t, Tp) = uTQ u+

i=N∑
i=1

λT
t

(
K[i](t, Tp)∆u[i] − f [i](t, Tp)

)
(3.30)

The resulting finite difference sensitivity check of the objective function and constraints with respect
to the design variables can be seen in Appendix B.
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(3.31)

We choose λi satisfying

K[i](t, Tp)λi + 2QTu = 0, i = 1, 2, ..., N. (3.32)

This simplifies Equation 3.31 to
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(3.33)

The stiffness matrix K depends on density of the elements. These densities are a function of the
time value of the element and the time points Tp at which the layers are deposited and the constraints
are evaluated. Using the chain rule, the resulting derivative of the stiffness matrix w.r.t the time points
is

∂K[i]
e (t, Tp)

∂Tp
=

∂K[i]
e (ρ

[i]
e )

∂ρ
[i]
e

∂ρ
[i]
e

∂t̄
[i]
e

∂t̄
[i]
e

∂Tp
(3.34)

3.4. Results
The proposed method has been implemented using Matlab. In this section, we will present the results
of the optimization of the fabrication sequence to control layer thickness in Wire Arc Additive Manufac-
turing (WAAM) on 2D components. The goal of the optimization is to ensure that the layers are uniform
in thickness, especially for WAAM where highly varying layer thicknesses are difficult to manufacture.
A parameter study was done to show the influence of the weight factor of the uniform thickness ob-
jective. The optimization was performed using the computational framework for fabrication sequence
optimization presented in the paper Fabrication sequence optimization for minimizing distortion in multi-
axis additive manufacturing. The fabrication sequence was encoded by a continuous pseudo-time field
and optimized using gradient-based numerical optimization. The objective of the optimization was to
minimize distortion in multi-axis additive manufacturing while controlling the variation in thickness of
the layers. The distortion is evaluated by the displacements of the specified nodes by
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di = (ux
i )

2 + (uy
i )

2 (3.35)

where subscript i refers to the index of the node of interest and the superscripts x and y indicate
the x and y parts of the displacement vector.

3.4.1. L-shape
We first test the method on a 2D L-shaped component shown in Figure 3.4a. The domain is discretized
by a finite element grid of 180 x 120 with 20 layers. The bottom of the part is fixed to the horizontal
build plate. We use two different fabrication starts as reference to initialize the time field t, from the
bottom left and from the entire build plate on the bottom. A distance field corresponding to the left
bottom starting point is shown in Figure 3.4c.

(a) Given L-shape component (b) Nodes of interest (c) Initial time field from the bottom

Figure 3.4: Initialization of the design domain

For comparison the original optimizations for minimizing distortion for the L-shape are given in Fig-
ure 3.5a and Figure 3.5b. The optimizations were done using the same parameter settings, with two
different initial time fields. It shows that in the original optimizations to minimize the distortion for the
L-shape component, the optimized fabrication sequence resulted in large variation in thickness of the
layers.

(a) Obj: distortion = 1.0e-4 (b) Obj: distortion = 2.0E-4

Figure 3.5: Optimized fabrication sequences to minimize distortion without layer thickness control for two different initial time
fields

In Figure 3.6a and Figure 3.6b the fabrication sequences are shown using the proposed layer thick-
ness control method. Both results show an improvement in reducing the layer thickness variation when
compared to the original optimizations. The added design variables Tp allow the layers vary their length
while effectively maintaining a constant thickness as imposed by the thickness constraint.
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(a) Obj: distortion = 3.0E-3 (b) Obj: distortion = 7.7E-3

Figure 3.6: Optimized fabrication sequences to minimize distortion with layer thickness control for two different initial time fields

Figure 3.7 shows that the optimization converges within the 500 iterations. The objective converges
quickly at the start and slowly reduces further. The speed of the convergence is dependent on the
weight attributed to the uniform thickness objective and the imposed constraints that need to be satisfied.
The rate of convergence can further be increased by increasing the maximum step size of the design
variables used by MMA. This however can result in local minima and maxima in the time field which
can then have a negative effect on the convergence rate.

Figure 3.7: Convergence plot of the objective function

In Figure 3.8a the volumes of the layers are shown as a fraction of the total volume of the part. In
previous work the time points Tp were fixed and thus the volumes of the layers were fixed to ensure
constant fabrication speed. With the modified fabrication speed constraint shown in Equation 3.10 the
layers can now vary in volume. In Figure 3.8b the normalized fabrication speeds are shown for the
layers. The fabricated elements per unit time are divided by the number of elements of the part that are
fabricated within the pseudo-time range te ∈ [0, 1]. The figure shows similar fabrication speeds of the
layers with small variations. This means that the constant fabrication speed is maintained with varying
time points Tp.
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(a) Volumes of the layers as a fraction of the total volume (b) Normalized fabrication speed of the layers

Figure 3.8: Effect of the modified constraint to ensure constant fabrication speed

As the thickness constraint is determined by fabrication equipment characteristics it is important
that the thickness computed from the gradient magnitude is accurate enough. To get a measure for the
accuracy, the thicknesses calculated from the gradient magnitudes are compared to the geometrically
calculated thicknesses. Here, the geometrical thickness is evaluated by taking the average normal
distance of the upper and lower boundaries of the layer. In Figure 3.9 the thicknesses for both calcula-
tions. It can be seen that the gradient calculated thicknesses are mostly consistent with the geometrical
thicknesses. Some of the variations can be attributed to the boundaries of the part.

Figure 3.9: Thicknesses of the layers computed from gradients and geometric boundaries

3.4.2. Parameter study
A parameter study was done to show the influence of the weight factor of the uniform thickness objec-
tive on the optimization results. The weight factor determines the importance of the uniform thickness
objective in the optimization relative to the distortion minimization. The study was done by varying the
weight factor and comparing the optimization results to the original without layer thickness control. The
results of the parameter study showed that the weight factor has a significant impact on the optimization
results. A higher weight factor leads to more uniform layer thickness, but also to a higher distortion.
A lower weight factor leads to less uniform layer thickness, but also to a lower distortion. The optimal
weight factor depends on the specific application and the desired trade-off between uniform layer thick-
ness and distortion. In Figure 3.10c it can be seen that the varying weight factors show little effect on
the shape of the layers. This is because the time field that is used to initialize the building direction
is closer to the optimal sequence to minimize distortion and the effect that the thickness constraint in
Equation 3.12 already has on the thickness of the layers. Increasing the weight factor does however
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still influence the propagation of the time values within each layer. As can be seen from the distortion
values, increasing the weight factor does lead to an increasement in the distortion.

(a) Obj: distortion = 2.27E-3
weight: 0.01

(b) Obj: distortion = 7.69E-3
weight: 1

(c) Obj: distortion = 5.4E-2
weight: 1000

Figure 3.10: Layer thickness controlled optimization with the initial time field starting from the bottom left

When the initial time field is changed to start from the building plate, the effects of the varying weights
become more clear. For higher weight factors the optimizations show more uniform layer thickness as
can be seen in Figure 3.11c.

(a) Obj: distortion = 1.0E-2
weight: 0.01

(b) Obj: distortion = 3.06E-2
weight: 1

(c) Obj: distortion = 1.5
weight: 1000

Figure 3.11: Layer thickness controlled optimization with the initial time field starting from the bottom

In Figure 3.12a and Figure 3.12b the effect of the weights on the gradient magnitudes of the time
field are shown. It can be seen that the increased weight factor causes the magnitudes to become
more constant which then results in the more uniform layer thickness.

(a) Gradient magnitudes for weight: 1 (b) Gradient magnitudes for weight: 1000

Figure 3.12: Effect of the weighting factor on the gradient magnitude field

To show the effect of the weight factor on both the distortion and the thickness variation two graphs
are shown in Figure 3.13a and Figure 3.13b. The distortion is measured by taking the average displace-
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ments of the nodes of interest. To get a measure for the thickness uniformity, the coefficient of variation,
also known as the relative standard deviation, is used. The formula for the coefficient of variation is
shown in Equation 3.36.

CVj =
σj

µj
, j = 1, ..., N, (3.36)

σj =

√√√√∑(
M j −mj

t

)2
Vj

(3.37)

µj = mj
t (3.38)

The graphs clearly show the trade-off between distortion optimization and uniform thickness. De-
pending on the fabrication equipment a weight factor can be chose such that the variation in layer
thickness is within the limits of the equipment.

(a) Distortion values for varying weight factors (b) Coefficients of variance for varying weight factors

Figure 3.13: Effect of the weight factor on the distortion and variance in gradient magnitude

3.4.3. 2D Bracket
To show the effect of the layer thickness control, the optimization was done for several 2D shapes. The
second example is a 2D bracket, shown in Equation 3.39. The domain is discretized by a finite element
grid of 144 x 96. The fabrication is supposed to start from the corner on the bottom left or the entire bot-
tom of the part as shown in Figure 3.14c and Figure 3.14b. The nodes on the bottom of the component
are fixed in the process simulation. The number of layers is set to 12. The distortion is measured by
the average of the displacements of nodes on the inner circle (red) as shown in Figure 3.14a by using
the following formulation

d =
1

n (W)

∑
j∈W

((
ux
j

)2
+
(
uy
j

)2) (3.39)

where W is the set of nodes along the circle and d is defined as the average displacement of the
nodes on the inner circle.
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(a) Given component (b) Initial time field from the bottom left (c) Initial time field from the bottom

Figure 3.14: Initialization of the 2D bracket

In Figure 3.15a and Figure 3.15b the results of the distortion minimization without layer control can
be seen. In Figure 3.15c and Figure 3.15d the results from the thickness controlled optimization are
shown. The optimizations starting from the bottom show small differences in the shape of the layers.
This is due to the fact the optimization of the part can mostly be done in planar layers when building
in the given direction. For the optimizations starting from the bottom left the differences become more
clear. The thickness controlled optimization shows a more constant thickness of the layers and less
variation over the length of the layer. Some variation in the thickness of the layers can still be seen.
This is due to the initialized building direction in combination with the limited number of layers N for
the complexity of the part. The measured distortion values show a clear increase due to the thickness
control method. This is expected as the manufacturability is now accounted for which decreases the
design freedom of the optimization.
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(a) Original optimization for minimizing distortion
Obj: distortion = 8E-5

(b) Layer controlled optimization
Obj: distortion = 9E-5

(c) Original optimization for minimizing distortion
Obj: distortion = 5E-4

(d) Layer controlled optimization
Obj: distortion = 7.3E-3

Figure 3.15: Effect of the layer thickness control on the 2D bracket for two differnent initial time fields
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4
Discussion and conclusions

4.1. Conclusions
In this thesis, we have presented a method to control the layer thickness in fabrication sequence op-
timization. The method makes use of the gradient magnitudes computed from the pseudo-time field
to control the variation in the objective function. Numerical results show that the method is effective in
controlling the absolute value of the layer thickness as well as the variation of the thickness over the
length of the layer. To test the method, the framework for minimizing distortion was used. As expected,
the improvement in manufacturability in the optimized fabrication sequence restricted the freedom to
optimize for minimal distortion. By adjusting the weight factor and the thickness target for the constraint,
one can control the nominal thickness and thickness variation of the layers.

4.2. Shortcomings of the layer thickness control method
The results in this thesis in chapter 3 show the effectiveness of the layer thickness control method in
fabrication sequence optimization. The layers are more uniform in thickness when the control method
is applied. Although the method is generally applicable to sequence optimizations including a time field,
its effect in STTO can be less apparent. This is due to the varying density field that can result in thin
geometries smaller than the target thickness of the layers.

4.3. Future work
The work presented in this thesis forms a first step in controlling the layer thickness in fabrication
sequence optimized designs. Further steps can be taken to improve the manufacturability of fabrication
sequence optimized designs. In this section some directions of future work are suggested.

4.3.1. Extension to 3D
The layer thickness control method can be extended to 3D by including the gradients in the z-direction
to the gradient magnitude computation as shown in Equation 4.1. The objective and constraint formu-
lations are based on this gradient magnitude and will have the same effect as in 2D.

M = ∥∇T∥ =

√(
dt

dx

)2

+

(
dt

dy

)2

+

(
dt

dz

)2

(4.1)

With the extension to 3D a new challenge arises for the tool path planning. The 3D curved layer can
require multiple tool passes to fabricate and thus controlling the width of the layer offers a new challenge
in the fabrication sequence optimization process. Currently the layer is assumed to be fabricated at
once. Ideally however, the optimization would also consider the toolpath within each layer.

4.3.2. Extension to STTO
Although the proposed method is efffective in controlling the thickness of the time field of the optimiza-
tion, it does not guarantee uniform thickness in STTO. Due to the variable density field, voids within
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the projected layer can cause varying layer thickness in these optimized fabrication sequences. This
variation in layer thickness can be seen in Figure 4.1.

Figure 4.1: Layers of the STTO design

A possible method to tackle this problem is to use discrete object projection [3] within each layer to
ensure length scale control on the voids and solids between the isolines of the time field. A visualization
of the discrete projection using a prescribed object is shown in Figure 4.2.

Figure 4.2: Discrete object projection using a bead primitive [3]

When these bead primitives are oriented in the shape of the isolines of the time field the elements
of a layer within that bead primitive will be projected to either void or solid. In Figure 4.3 a curved layer
is shown using multiple bead primitives in different orientations. This could help solving the variable
layer thickness in STTO designs due to the varying density field.
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Figure 4.3: Curved layer using bead primitives [3]

Other length scale control methods such as the robust formulations [30] can be applied to ensure
minimum feature size on the void and solid phase. This can reduce the variation in layer thickness due
to optimized material distribution.

4.3.3. Number of layers
The number of layers used for the optimization process is a prescribed parameter in this work. It can
be selected by

N =
h

d̄
(4.2)

where h is the height of the part in the initial building direction and d̄ is desired the nominal thickness
of the layers dependent of the additive manufacturing equipment characteristics. This formulation offers
a good estimate of the required layers to fabricate the given component but could limit the freedom in
layer dimensions and orientation. Possible future work could include making the number of layers N a
design variable, where the number of layers can go up or down to satisfy the layer thickness constraints.

33



References

[1] Oded Amir and Yoram Mass. “Topology optimization for staged construction”. In: Structural and
Multidisciplinary Optimization 57.4 (2018), pp. 1679–1694.

[2] M. Bruyneel and P. Duysinx. “Note on topology optimization of continuum structures including
self-weight”. In: Structural and Multidisciplinary Optimization 29.4 (2005), pp. 245–256.

[3] Julia D. Carroll and James K. Guest. “Topology optimization of uniform thickness structures using
discrete object projection”. In: Structural and Multidisciplinary Optimization 65.9 (2022), pp. 1–16.

[4] Keenan Crane, Clarisse Weischedel, and Max Wardetzky. “The heat method for distance com-
putation”. In: Communications of the ACM 60.11 (2017), pp. 90–99.

[5] Chengkai Dai, Charlie C.L. Wang, Chenming Wu, Sylvain Lefebvre, Guoxin Fang, and Yong Jin
Liu. “Support-free volume printing by multi-axis motion”. In: ACM Transactions on Graphics 37.4
(2018).

[6] Guoxin Fang, Tianyu Zhang, Sikai Zhong, Xiangjia Chen, Zichun Zhong, and Charlie C.L. Wang.
“Reinforced FDM: Multi-axis filament alignment with controlled anisotropic strength”. In: ACM
Transactions on Graphics 39.6 (2020).

[7] J. K. Guest, J. H. Prévost, and T. Belytschko. “Achieving minimum length scale in topology op-
timization using nodal design variables and projection functions”. In: International Journal for
Numerical Methods in Engineering 61.2 (2004), pp. 238–254.

[8] Linus Hägg and Eddie Wadbro. “On minimum length scale control in density based topology
optimization”. In: Structural and Multidisciplinary Optimization 58.3 (2018), pp. 1015–1032.

[9] Kristian Hildebrand, Bernd Bickel, and Marc Alexa. “Orthogonal slicing for additive manufactur-
ing”. In: Computers and Graphics (Pergamon) 37.6 (2013), pp. 669–675.

[10] Rameez Israr, Johannes Buhl, and Markus Bambach. “A study on power-controlled wire-arc ad-
ditive manufacturing using a data-driven surrogate model”. In: International Journal of Advanced
Manufacturing Technology 117.7-8 (2021), pp. 2133–2147.

[11] Davoud Jafari, Tom H.J. Vaneker, and Ian Gibson. “Wire and arc additive manufacturing: Oppor-
tunities and challenges to control the quality and accuracy of manufactured parts”. In: Materials
and Design 202 (2021).

[12] Nam H Kim. “Chapter 4 Sensitivity Analysis”. In: December 2010 (2017).
[13] Weixian Lan and United States. “Efficient Layer-by-Layer Simulation for Topology Optimization”.

In: (2022).
[14] Jikai Liu, Andrew T. Gaynor, Shikui Chen, Zhan Kang, Krishnan Suresh, Akihiro Takezawa, Lei Li,

Junji Kato, Jinyuan Tang, Charlie C.L. Wang, Lin Cheng, Xuan Liang, and Albert C. To. “Current
and future trends in topology optimization for additive manufacturing”. In: Structural and Multidis-
ciplinary Optimization 57.6 (2018), pp. 2457–2483.

[15] Comput Methods, Appl Mech, G A Haveroth, C Thore, M R Correa, R F Ausas, S Jakobsson,
and J A Cuminato. “ScienceDirect Topology optimization including a model of the layer-by-layer
additive manufacturing process”. In: 398 (2022).

[16] Grzegorz Misiun, Emiel van de Ven, Matthijs Langelaar, Hubert Geijselaers, Fred van Keulen,
Ton van den Boogaard, and Can Ayas. “Topology Optimization for additive manufacturing with
distortion constraints”. In: Computer Methods in Applied Mechanics and Engineering 386 (2021),
p. 114095.

[17] Helena Monteiro, Gabriel Carmona-Aparicio, Inês Lei, and Mélanie Despeisse. “Energy and ma-
terial efficiency strategies enabled by metal additive manufacturing – A review for the aeronautic
and aerospace sectors”. In: Energy Reports 8 (2022), pp. 298–305.

34



[18] M. P. Mughal, R. A. Mufti, and H. Fawad. “The mechanical effects of deposition patterns in
welding-bflsed layered manufacturing”. In: Proceedings of the Institution of Mechanical Engi-
neers, Part B: Journal of Engineering Manufacture 221.10 (2007), pp. 1499–1509.

[19] S M E North, Isothermal Surface, Yujie Shan, and Dongming Gan. “ScienceDirect ScienceDirect
ScienceDirect Curved Layer Layer Slicing Slicing based based on on Isothermal Surface Curved
Curved Layer Slicing based on Isothermal Surface”. In:ProcediaManufacturing 53 (2021), pp. 484–
491.

[20] Jesús Emilio Pinto-Lopera, José Mauricio S.T. Motta, and Sadek Crisostomo Absi Alfaro. “Real-
time measurement of width and height of weld beads in GMAW processes”. In: Sensors (Switzer-
land) 16.9 (2016), pp. 1–14.

[21] Tiago A. Rodrigues, V. Duarte, R. M. Miranda, Telmo G. Santos, and J. P. Oliveira. “Current status
and perspectives on wire and arc additive manufacturing (WAAM)”. In: Materials 12.7 (2019).

[22] Ole Sigmund and Kurt Maute. “Topology optimization approaches: A comparative review”. In:
Structural and Multidisciplinary Optimization 48.6 (2013), pp. 1031–1055.

[23] Sagar Singh, Satish Kumar Sharma, and Dinesh W. Rathod. “A review on process planning
strategies and challenges of WAAM”. In: Materials Today: Proceedings 47 (2020), pp. 6564–
6575.

[24] John C. Steuben, Athanasios P. Lliopoulos, and John G. Michopoulos. “Towards multiscale topol-
ogy optimization for additively manufactured components using implicit slicing”. In: Proceedings
of the ASME Design Engineering Technical Conference 1.October 2018 (2017).

[25] Krister Svanberg. “The method of moving asymptotes—a newmethod for structural optimization”.
In: International Journal for Numerical Methods in Engineering 24.2 (1987), pp. 359–373.

[26] Jumyung Um, Joungmin Park, and Ian Anthony Stroud. “applied sciences Squashed-Slice Algo-
rithm Based on STEP-NC for Multi-Material and Multi-Directional Additive Processes”. In: (2021).

[27] Emiel van de Ven, Robert Maas, Can Ayas, Matthijs Langelaar, and Fred van Keulen. “Overhang
control in topology optimization: a comparison of continuous front propagation-based and discrete
layer-by-layer overhang control”. In: Structural and Multidisciplinary Optimization 64.2 (2021),
pp. 761–778.

[28] K. E.K. Vimal, M. Naveen Srinivas, and Sonu Rajak. “Wire arc additive manufacturing of alu-
minium alloys: A review”. In: Materials Today: Proceedings 41 (2019), pp. 1139–1145.

[29] Chao Wang, Bin Xu, Zunyi Duan, and Jianhua Rong. “Structural topology optimization consider-
ing both manufacturability and manufacturing uncertainties”. In: Structural and Multidisciplinary
Optimization 66.1 (2023), pp. 1–18.

[30] Fengwen Wang, Boyan Stefanov Lazarov, and Ole Sigmund. “On projection methods, conver-
gence and robust formulations in topology optimization”. In: Structural and Multidisciplinary Opti-
mization 43.6 (2011), pp. 767–784.

[31] Weiming Wang, Fred Keulen, and Jun Wu. “Fabrication Sequence Optimization for Minimizing
Distortion in Multi-Axis Additive Manufacturing”. In: Additive Manufacturing (2022).

[32] Weiming Wang, Dirk Munro, Charlie C.L. Wang, Fred van Keulen, and Jun Wu. “Space-time
topology optimization for additive manufacturing: Concurrent optimization of structural layout and
fabrication sequence”. In: Structural and Multidisciplinary Optimization 61.1 (2020), pp. 1–18.

[33] S. W. Williams, F. Martina, A. C. Addison, J. Ding, G. Pardal, and P. Colegrove. “Wire + Arc
additive manufacturing”. In: Materials Science and Technology (United Kingdom) 32.7 (2016),
pp. 641–647.

[34] Kaufui V. Wong and Aldo Hernandez. “A Review of Additive Manufacturing”. In: ISRNMechanical
Engineering 2012 (2012), pp. 1–10.

[35] Jing Xu, Xizhi Gu, Donghong Ding, Zengxi Pan, and Ken Chen. “A review of slicing methods
for directed energy deposition based additive manufacturing”. In: Rapid Prototyping Journal 24.6
(2018), pp. 1012–1025.

[36] Tomás Zegard and Glaucio H. Paulino. “Bridging topology optimization and additive manufactur-
ing”. In: Structural and Multidisciplinary Optimization 53.1 (2016), pp. 175–192.

35



[37] Mingdong Zhou, Boyan S. Lazarov, Fengwen Wang, and Ole Sigmund. “Minimum length scale
in topology optimization by geometric constraints”. In: Computer Methods in Applied Mechanics
and Engineering 293 (2015), pp. 266–282.

[38] Jihong ZHU, Han ZHOU, Chuang WANG, Lu ZHOU, Shangqin YUAN, and Weihong ZHANG. “A
review of topology optimization for additive manufacturing: Status and challenges”. In: Chinese
Journal of Aeronautics 34.1 (2021), pp. 91–110.

36



A
Appendix A

A.1. Time projection of a layer
The functions ft(t, tP ) and gt(t, tP ) are used to isolate the elements of a specific layer. Here ft is the
threshold projection using the upper time point and gt is the threshold projection using the lower time
point. By substracting the two we can isolate the layer between its time points tP (i) and tP (i+ 1). In
A.1

Figure A.1: Function to isolate the element values of a specific layer to use in constraints or objectives
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B
Appendix B

B.1. Finite Difference sensitivity check
The objective and constraint functions are functions of the design variables t, Tp. The sensitivities are
computed by taking the derivative of these functions with respect to the design variables. To make sure
the sensitivities are computed correctly, a Finite Difference check can be done to compare the values
of the obtained derivatives. In the following sections the Finite Difference checks are plotted for the
design variables. The design variables are perturbed as shown in Equation B.1 and Equation B.3.

ti = ti +∆t (B.1)
∆t = 10−j , j = 1, 2, ..., 9 (B.2)

Tp = Tp +∆Tp (B.3)
∆Tp = 10−j , j = 1, 2, ..., 9 (B.4)
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B.1.1. Objective function sensitivities
The objective function displays the performance of the optimized fabrication sequence on the distortion
and the uniform thickness. The Finite difference check is done using Equation B.5. The objective
function depends on the design variables t and Tp for which the Finite Difference checks are plotted in
Figure B.1 and Figure B.2 respectively.

Sobj(t) =

∣∣∣∣∣FDobj(ti +∆t)
∂obj(ti)

∂t

− 1

∣∣∣∣∣ (B.5)

Sobj(Tp) =

∣∣∣∣∣∣FDobj(Tp +∆Tp)
∂obj(Tp)

∂Tp

− 1

∣∣∣∣∣∣ (B.6)
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Figure B.1: Finite difference check of the objective w.r.t time value on the nodes t
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Figure B.2: Finite difference check of the objective w.r.t the time point Tp
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B.1.2. Constraint sensitivities
There are several constraints applied in the optimization model. In the following sections the finite
difference curves of the constraints w.r.t the design variables are plotted to confirm the accuracy of the
derivatives of the functions. The Finite difference check is done using Equation B.5.

Scons(t) =

∣∣∣∣∣FDcons(ti +∆t)
∂cons(ti)

∂t

− 1

∣∣∣∣∣ (B.7)

Scons(Tp) =

∣∣∣∣∣∣FDcons(Tp +∆Tp)
∂cons(Tp)

∂Tp

− 1

∣∣∣∣∣∣ (B.8)

Minimum volume constraint
The minimum volume constraint bounds the lower limit of the volume of each layer. The constraint
function depends on the design variables t and Tp for which the Finite Difference checks are plotted in
Figure B.3 and Figure B.4 respectively.
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Figure B.3: Finite difference check of the minimum volume constraint w.r.t the time value on the nodes t
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Figure B.4: Finite difference check of the minimum volume constraint w.r.t the time point Tp
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Constant fabrication speed constraint
The fabrication speed constraint bounds the lower and upper limit of the deposited volume at each time
point to ensure constant fabrication speed. The constraint function depends on the design variables t
and Tp for which the Finite Difference checks are plotted in Figure B.5 and Figure B.6 respectively.
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Figure B.5: Finite difference check of the fabrication speed constraint w.r.t the time value on the nodes t
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Figure B.6: Finite difference check of the fabrication speed constraint w.r.t the time point Tp
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Thickness constraint
The thickness constraint bounds the lower and upper limit of the thickness of each layer. The constraint
function depends on the design variables t and Tp for which the Finite Difference checks are plotted in
Figure B.7 and Figure B.8 respectively.
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Figure B.7: Finite difference check of the thickness constraint w.r.t the time value on the nodes t
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Figure B.8: Finite difference check of the thickness constraint w.r.t the time point Tp
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C
Appendix C

C.1. Local minima
The proposed method to control the variation of the thickness of the layers uses the magnitude of the
gradients of the elements. This way only the absolute value is controlled and not the direction of the
gradient magnitude. This therefore can not guarantee an optimized time field free from local minima.
In Figure C.1a and Figure C.1b the gradients are shown. The occurrence of these local minima can be

(a) Gradients of the elements in x-direction (b) Gradients of the elements in y-direction

reduced by using the continuity filter and by reducing the maximum step-size of the design variables
per iteration. This results in a more positive gradient field for the y-direction as shown in Figure C.2.
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Figure C.2: Gradient in y-direction with reduced local minima
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