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Complex Factor Analysis and Extensions
Ahmad Mouri Sardarabadi and Alle-Jan van der Veen , Fellow, IEEE

Abstract—Many subspace-based array signal processing algo-
rithms assume that the noise is spatially white. In this case, the
noise covariance matrix is a multiple of the identity and the eigen-
vectors of the data covariance matrix are not affected by it. If the
noise covariance is an unknown arbitrary diagonal (e.g., for an un-
calibrated array), the eigenvalue decomposition leads to incorrect
subspace estimates and it has to be replaced by a more general “fac-
tor analysis” decomposition (FA), which then reveals all relevant
information. We consider this data model and several extensions
where the noise covariance matrix has a more general structure,
such as banded, sparse, block diagonal, and cases, where we have
multiple data covariance matrices that share the same noise covari-
ance matrix. Starting from a nonlinear weighted least squares for-
mulation, we propose new estimation algorithms for both classical
FA and its extensions. The optimization is based on Gauss–Newton
gradient descent. Generally, this leads to an iteration involving the
inversion of a very large matrix. Using the structure of the prob-
lem, we show how this can be reduced to the inversion of a matrix
with dimension equal to the number of unknown noise covariance
parameters. This results in new algorithms that have faster nu-
merical convergence and lower complexity compared to several
maximum-likelihood based algorithms that could be considered
state of the art. The new algorithms scale well to large dimensions
and can replace eigenvalue decompositions in many applications
even if the noise can be assumed to be white.

Index Terms—Factor analysis, covariance matching, subspace
estimation, maximum-likelihood.

I. INTRODUCTION

SUBSPACE-BASED techniques for parameter estimation
often start with a singular value decomposition (SVD) of

a data matrix, or equivalently the eigenvalue decomposition
(EVD) of the corresponding data covariance matrix. Without
noise, this matrix is considered to be rank-deficient, and its
column span is called the signal subspace. With additive noise
perturbing the data, an implicit assumption is that this noise is
white with covariance matrix σ2I, as adding a scaled identity
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matrix to the data covariance matrix does not modify the signal
subspace. If this is not the case but the noise covariance matrix
is known from calibration, whitening techniques can be used as
a pre-processing step. However, in many array processing appli-
cations this knowledge is not available. A preferable approach
is to replace the EVD by techniques that jointly estimate the
signal subspace and the noise covariance matrix.

Factor Analysis (FA) is a tool from multivariate statistics that
assumes a covariance matrix R of the data under study (e.g.,
samples acquired from an array of sensors) can be modeled as

R = AAH + D, (1)

where A is a “tall” matrix (AAH has low rank), and D is a
positive diagonal matrix. In terms of subspace-based techniques,
A captures the signal subspace while D can model the noise
covariance matrix. Given a sample covariance matrix R̂, the
objective of FA is to estimate A and D.

FA for real-valued matrices was first introduced by Spearman
[1] in 1904 to find a quantitative measure for intelligence, given a
series of test results. Between 1940 and 1970, Lawley, Anderson,
Jöreskog and others developed FA as an established multivariate
technique [2]–[6]. Currently, FA is an important and popular tool
for latent variable analysis with many applications in various
fields of science [7]. However, its application within the signal
processing community has been surprisingly limited.

In the context of signal processing, the FA problem and sev-
eral extensions can be regarded as a specific case of covariance
matching, studied in detail in [8]. In there, the model (1) is pre-
sented more generically in terms of a parametric model A(θ)
and a linear parametric model for the noise covariance (not re-
stricted to diagonal), and maximum likelihood algorithms are
presented to estimate the parameters. This relates to the topic
of sensor array parameter estimation (e.g., direction of arrival)
in the presence of colored noise or spatially correlated noise,
under a variety of possible model assumptions such as D being
diagonal, block diagonal, or composed of a linear sum of known
matrices [9]–[12].

Generally, algorithms for finding the model parameters in
the FA model can be categorized into two groups. “Classical”
approaches are based on Maximum Likelihood (ML) or re-
lated weighted least squares optimization. This results in large
nonlinear optimization problems that are often implemented
using Newton-Raphson or more efficient Fletcher-Powell itera-
tions [2], [13], [14]. These algorithms are still very popular and
standard toolboxes (Matlab, SPSS) use them. Unfortunately,
they are relatively hard to implement and computationally
rather complex due to the inversion of a large matrix contain-
ing the second-order derivatives, so that approximations are
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necessary. Alternatively, the ML solution is found using
Expectation-Maximization (EM) techniques, first proposed in
[15], resulting in algorithms that are simpler to implement but
often show slow convergence. The Conditional Maximization
(CM) algorithm [16] has quadratic convergence and currently
seems most competitive.

A second class of algorithms is inspired by the work of Led-
ermann in 1940 [17] and gained renewed momentum in recent
years due to the popularity of convex optimization. The factors
are found using the trace function as a convex relaxation of a
minimum-rank constraint [18]–[20]. Recently, several new ap-
proaches for matrix completion have been proposed that involve
low-rank plus sparse matrices [21], [22]. This leads to similar
convex optimization algorithms, although not specifically de-
signed with covariance matrices in mind.

In this paper, we aim to present factor analysis as a generic
tool to replace EVD in array processing applications. We build
upon prior work where we applied FA to calibration and inter-
ference detection/filtering in radio astronomy [23]–[26]. These
addressed the case where the noise covariance matrix is diagonal
with unknown elements. For cases where the noise covariance
matrix is no longer diagonal but has a known sparse structure,
we propose in this paper the “extended FA” (EFA) model.

We also consider applications where the desired subspace
changes rapidly while the noise remains stationary. In this case
we can compute a series of short-term covariance matrices or
“snapshots” (each of the form (1) but with a common matrix
D), requiring an extension toward “joint FA” (JFA). Combined,
this leads to “joint extended FA” (JEFA).

In this paper, we focus on the ML-type algorithms, and in
particular consider a Weighted Least Squares (WLS) formu-
lation that is minimized using fast-converging Gauss-Newton
iterations. Contributions are:

� We extend the FA model to complex data and multi-
snapshot observations, and replace the diagonal term with
a more general structure (i.e., the JEFA model).

� To avoid large matrix inversions in the computation of the
direction of descent, we use the Kronecker structure of
these matrices to derive a closed-form expression for the
direction of descent of only the noise parameters, without
resorting to approximations. This results in a fast algorithm
that is scalable to large problem sizes.

� Specializing this approach to the classical FA problem, we
arrive at an attractive Alternating WLS algorithm that is
easy to implement.

� Simulations show that the proposed algorithms are reliable
and outperform many of the currently available algorithms
in terms of convergence speed.

The outline of this paper is as follows. In Sec. II we dis-
cuss the data and covariance models for classical FA and in
Sec. III the proposed extensions to JEFA. Sec. IV gives a brief
overview of algorithms used for classical FA. Sec. V presents
JEFA as a Nonlinear WLS problem and derives an efficient
Gauss-Newton-based algorithm to estimate the parameters. Spe-
cializing to the classical FA model leads to an Alternating WLS
solution that converges much faster than the existing algorithms.
Various model order detection methods are discussed in Sec. VI,

and computational complexity in Sec. VII. Finally, in Sec. VIII
we use simulations to evaluate the performance of the proposed
methods.

Notation: Superscript T denotes matrix transpose, ∗ denotes
complex conjugate, and H complex conjugate transpose, vect(·)
denotes the stacking of the columns of a matrix in a vector and
unvect(·) is the inverse operation (we assume that the dimen-
sions of the resulting matrix are known). diag(a) creates a diago-
nal matrix out of a vector, vectdiag(M) creates a vector from the
diagonal elements of a matrix, diag(M) = diag(vectdiag(M)),
bdiag({Mm}), m = 1, . . . , M creates a block-diagonal matrix
from the argument matrices. I is the identity matrix and 1M is
an M × 1 column vector containing only ones.
E{·} is the expectation operator. ⊗ denotes the Kronecker

product, ◦ a Khatri-Rao product (column-wise Kronecker prod-
uct), and� the entrywise multiplication of two matrices of equal
size.

For any P × Q matrix A, we denote by KP,Q the permutation
matrix such that vect(AT ) = KP,Q vect(A). For any P × Q
matrix A and M × N matrix B we have

(A ⊗ B)KQ,N = KP,M (B ⊗ A). (2)

II. CLASSICAL FACTOR ANALYSIS MODEL

A. Data Model

To derive the classical FA model, we consider an array of
P receiving elements exposed to a mixture of Q < P sources
modeled by a complex Gaussian distribution. The array is
uncalibrated—each element could have a different gain and
noise level. We assume that the noise is a proper complex Gaus-
sian process [27, pp. 39–40] and, for the classical model, uncor-
related between different receiving elements. By stacking the
received signals from each receiver, we can model the sampled
output of the system as

y[n] = A0x[n] + n[n], n = 1, . . . , N (3)

where y is a P × 1 vector of received signals, A0 is a P × Q
array response matrix, x is a Q × 1 vector representing the
source signals, and n is a P × 1 vector modeling the noise. N
observations are available, and assuming y[n] is zero mean, we
construct the sample covariance matrix as

R̂ =
1
N

N −1∑

n=0

y[n]y[n]H .

Assuming that the sources and noise contributions are stationary
and uncorrelated, the model for R̂ is

R = E{yyH } = A0RxAH
0 + Rn . (4)

R0 = A0RxAH
0 is the noise-free covariance matrix, and Rn =

E{nnH } is the noise covariance matrix. R0 is of rank Q, and
it can be factored as R0 = AAH where A is a P × Q matrix
with the same column span as A0 .

Subspace-based array processing techniques such as MUSIC
[28] and ESPRIT [29] have a first step in which the column span
of A is to be estimated. Assuming white noise (Rn = σ2I), the
eigenvalue decomposition of R̂ is computed. The eigenvectors
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corresponding to the dominant Q eigenvalues then form an es-
timate for the column span of A. However, this technique fails
if the noise is not white and Rn takes another model. Most
literature assumes in this case that Rn is known so that the
data can be prewhitened by R−1/2

n , reducing it to the previous
situation.

Instead, the classical FA model1 assumes that the additive
noise is independent, but not necessarily identical, i.e.,

R = AAH + D, (5)

where Rn = D is a diagonal matrix with positive diagonal el-
ements. Given R̂, the objective is to estimate the factors A and
D. In this problem, the number of columns Q of A (i.e., the
number of sources) is assumed to be known. If Q is unknown, it
can be estimated by solving the FA problem for several values
of Q and employing a Generalized Likelihood Ratio Test. This
approach is discussed in Sec. VI.

B. Identifiability and Uniqueness

It is immediately clear that the factors are not uniquely identi-
fiable. E.g., A is not unique: The columns of A can be permuted
and if A satisfies the model, then also A′ = AQ is valid, for
any unitary matrix Q. The column span of A is invariant un-
der these transformations, and thus these do not harm subspace
estimation techniques.

More important is the uniqueness of D. By counting num-
bers of observations and numbers of unknowns, we see that the
number of columns Q of A cannot be too large, in fact we need
Q < P −√

P as discussed in Appendix A. Even so, D is not
always unique, as seen from the following example. Consider
R = A1AH

1 + D1 , where

A1 =
[

1 1 . . . 1
0 1 . . . 1

]T

.

Then we also have R = A2AH
2 + D2 , where

A2 =
√

2
[
1/2 1 . . . 1

]T
, D2 = D1 + 1

2 e1eT
1

and ei is the ith column of the identity matrix. The problem in
this case is caused by a submatrix of A1 being rank-deficient.
This can be considered an uncommon technicality. Appendix A
discusses the identifiability conditions in more detail and offers
a test, for given A, to establish identifiability of D. Through-
out the rest of the paper, we assume that D can be identified
uniquely.

If D is identifiable, then A is unique up to a rotation Q. We
can make A unique by adding additional constraints. This es-
sentially amounts to choosing a non-redundant parametrization.
Not all algorithms require this, but it may be needed to avoid
singularities during the computation of the Cramer-Rao Bound
(CRB) or when we use Newton gradient descent techniques.
For complex data, Q2 constraint equations are needed. Com-
mon constraints are to force the columns of A to be orthogonal

1Traditionally FA is geared for real-valued data; in this paper we make the
straightforward adaptations to complex data.

with respect to a certain weight matrix W > 0, i.e., to require
that AH WA is diagonal.

If we compute a matrix A without satisfying constraints,
the required transformation Q such that A′ = AQ satisfies the
constraints is easily determined afterwards. Hence, in most al-
gorithms the constraints do not play a role.

III. EXTENSIONS OF THE CLASSICAL MODEL

We develop two extensions of the classical model: joint and
extended factor analysis.

A. Joint Factor Analysis Model

In some applications, the signal subspace (i.e., A) is not
stationary, while the noise covariance is stationary. Consider
e.g., DOA estimation of moving sources and an uncalibrated
array. An available dataset is then partitioned into M short
subsets or “snapshots”, each containing N samples. This leads
to M sample covariance matrices R̂m , m = 1, . . . , M , with
model

Rm = AmAH
m + D, m = 1, . . . , M. (6)

Am is a low-rank matrix of size P × Qm with Qm < P for all
m = 1, . . . , M , and D is a positive real diagonal matrix com-
mon among the M models. We call this model Joint Factor Anal-
ysis (JFA). The objective is to estimate D and {Am} jointly,
based on the available sample covariance matrices {R̂m}. In
many applications we are just interested in the column span
of Am .

B. Extended and Joint Extended FA Model

Another extension is to consider the noise covariance ma-
trix to be more general than a diagonal matrix, say Rn = Ψ,
where Ψ has a certain structure, assumed to be known. Here we
consider Ψ of the form

Ψ = M � Ψ,

where M is a symmetric matrix containing only ones and ze-
ros and � denotes the Hadamard or entrywise product. We
call M a mask matrix; the main diagonal is assumed to be
nonzero. We can model various types of covariance matrices us-
ing this approach (for example: block-diagonal matrices, band
matrices, sparse matrices, etc.).2 We assume M to be known
based on the application. The Extended FA (EFA) model then
becomes

R = AAH + M � Ψ. (7)

Both generalizations can be combined into Joint Extended FA
(JEFA), where we have

Rm = AmAH
m + M � Ψ, m = 1, . . . , M. (8)

2A further generalization of this (not considered here) is to model Ψ as a
linear sum of known matrices [8].
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C. Parametrization

All models presented in this section are covariance mod-
els, i.e., we can write R(θ), where the vector θ represents the
unknown parameters in the model. If the parameters are com-
plex, one popular method in signal processing is to represent
them using Wirtinger operators and its extensions [30]. Given
an unknown parameter θi we consider its conjugate θ∗i as an in-
dependent parameter while real parameters are represented only
once. Using this method we define the parameter vector as

θ =
[
θT

A1
,θT

A∗
1
, . . . ,θT

AM
,θT

A∗
M

,θT
Ψ

]T
, (9)

where

θAm
= vect(Am )

θA∗
m

= vect(A∗
m ) θΨ =

⎡

⎣
ψ
ψ∗

d

⎤

⎦ .

Based on the mask M, ψ is a vector consisting of the non-
zero elements of the strictly upper triangular part of Ψ, while
d = vectdiag(Ψ) represents the diagonal elements of Ψ, which
are real. Using this parameterization we have

vect(Ψ) = SUψ + SLψ
∗ + (Ip ◦ Ip)d,

where SU and SL are selection matrices for the upper and lower
triangular part of Ψ, based on the mask matrix M, and ◦ denotes
the Khatri-Rao product (column-wise Kronecker product). We
can write this as

vect(Ψ) = JΨθΨ , (10)

where

JΨ =
[
SU SL IP ◦ IP

]
. (11)

Note that JH
ΨJΨ = I, so that JH

Ψ vect(Ψ) = θΨ , while JΨJH
Ψ

is a projection that represents the mask: for any P × P matrix
X with x = vect(X) we have

vect(M � X) = diag[vect(M)]x = JΨJH
Ψx. (12)

For classical FA we have ψ = 0 and M = 1, which leads to a
simplified parameterization

θ =

⎡

⎣
θA

θA∗

θD

⎤

⎦ =

⎡

⎣
vect(A)
vect(A∗)

d

⎤

⎦ . (13)

Using this parameterization, we discuss in the following sections
various methods to find an estimate for θ given a series of
sample covariance matrices {R̂m}. Cramér-Rao Bounds for the
presented models have been derived by us before and were
presented in [31].

IV. ESTIMATION ALGORITHMS FOR CLASSICAL FA

The classical FA problem was introduced in 1904 [1] and
several algorithms were proposed [4], [17], [32], all for real
data matrices (although readily extended to the complex case).
In this section we briefly review some of these approaches.

A. Ad Hoc Method

The estimation problem can be approached as a two-stage
minimization problem [6]. In this approach we minimize the LS
cost function

min
A ,D

‖R̂ − AAH − D‖2
F (14)

by an alternating least-squares (ALS) approach, where ‖ · ‖F is
the Frobenius norm. First, for a given A, (14) is minimized with
respect to D and in the next stage, D is held constant and a new
A is found.

Let the subscript (k) denote the iteration count. The iteration
steps are

D(k+1) := diag(R̂ − A(k)AH
(k)) (15)

U(k+1)Λ(k+1)UH
(k+1) := R̂ − D(k+1) [EVD] (16)

A(k+1) := U0,(k+1)Λ
1/2
0,(k+1) , (17)

where U(k+1) and Λ(k+1) follow from an eigenvalue decompo-
sition, and U0,(k+1) and Λ0,(k+1) are the Q dominant eigenvec-
tors and corresponding eigenvalues. A Weighted Least Squares
formulation could be considered instead of (14), leading to sim-
ilar iterations, but involving the EVD of Ψ−1/2R̂Ψ−1/2 .

As for most ALS approaches, the rate of convergence is slow
(linear). The EVD required at each iteration makes this pro-
hibitive for large problems. Nonetheless, a single iteration of
this ad hoc method is often used to initialize other iterative
techniques.

B. Maximum Likelihood Estimator

Since the sources and noise are modeled as complex Gaussian,
the complex log-likelihood function is given by

l(θ) = N
[
− log(πP ) + log |R−1 | − tr(R−1R̂)

]
, (18)

where R(θ) = AAH + D. The maximum likelihood (ML) ap-
proach aims to find A and D that maximizes this function. To
this end, we find the gradient of the likelihood function (called
the Fisher score) and set it equal to zero. The Fisher score for a
proper Gaussian distributed signal is given by [27, p.165]

g(θ) =

⎡

⎣
gA

gA∗

gD

⎤

⎦ = NJH
(
R−T ⊗ R−1) vect(R̂ − R), (19)

where the Jacobian J(θ) is given by

J =
∂vect(R)

∂θT
=
[
∂vect(R)

∂θT
A

,
∂vect(R)

∂θT
A∗

,
∂vect(R)

∂θT
D

]

= [JA ,JA∗ ,JD ] , (20)

which evaluates to (cf. (2))

JA = A∗ ⊗ IP , JA∗ = (IP ⊗ A)KP,Q ,
JD = IP ◦ IP .

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2021 at 11:25:37 UTC from IEEE Xplore.  Restrictions apply. 



958 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

From these results and (19), the elements of the Fisher score
become

gA = N(AT R−T ⊗ R−1)vect(R̂ − R)

= Nvect
[
R−1(R̂ − R)R−1A

]
(21)

gA∗ = g∗
A (22)

gD = Nvectdiag
[
R−1(R̂ − R)R−1

]
. (23)

The ML technique requires us to set (21) and (23) equal to zero,
but unfortunately this does not produce a closed-form solution.
As a result, different iterative techniques such as the scoring
method and EM based approaches have been suggested in the
literature.

1) The Scoring Method: Initial algorithms considered the
alternating optimization of (21) and (23), and this leads to sim-
ilar algorithms as the Ad Hoc method [2]. Starting with [13],
one line of research has considered Newton-Raphson-like algo-
rithms to numerically compute the ML estimate, as these provide
quadratic convergence. In particular, the scoring algorithm is a
variant of the Newton-Raphson algorithm where the gradient
and Hessian are replaced by the Fisher score and Fisher infor-
mation matrix, respectively [33]. The Fisher information matrix
(FIM) for the Gaussian distribution is given by

F = JH (R−T ⊗ R−1)J, (24)

where J is given by (20). The resulting scoring iterations are

θ(k+1) = θ(k) + μ(k)δ, (25)

where μ(k) is a step size and

δ =
[
δT

A δT
A∗ δT

D

]T

is the direction of descent. The latter follows from solving

F(k)δ = g(k) , (26)

where g(k) = g(θ(k)) is the Fisher score and F(k) = F(θ(k))
is the FIM. Since without constraints the parametrization is re-
dundant (see Sec. II-B), the FIM is singular. However, this does
not need to cause complications because g(k) is in the column
span of F(k) , so that the system of equations has a solution,
and (taking the minimum-norm solution) standard convergence
results for the scoring method follow.3

A problem with the scoring method is that the matrix F
quickly becomes large, as its dimension is equal to the number
of unknown parameters. Solving (26) then becomes unattrac-
tive. The literature shows several approximations to reduce the
complexity of this step. E.g., the ML method described in [4]
is an approximation of the scoring method in which F†

(k) is

approximated by [diag(F(k))]−1 , i.e., a Jacobi preconditioner.
2) EM-based Algorithms: Alternatively, the expectation

maximization (EM) technique may be used to optimize the like-
lihood function. For FA, this was first proposed by [15]. Unfor-
tunately, many of the EM algorithms show very slow (linear)

3Alternatively, a non-redundant or constrained parametrization could be used,
but it does not seem to offer advantages.

convergence. An overview of the original method and several of
its derivatives can be found in [16]. In that paper, an alternative
Constrained Maximization (CM) algorithm is proposed that is
straightforward to implement and shows quadratic convergence.
We compare with CM in the simulations.

3) Covariance matching techniques: Factor Analysis can be
viewed as a special case of covariance matching, studied in detail
in [8]. In there, A(θ) is modeled parametrically, while the noise
covariance Ψ has a linear parametrization as in (10), but for
a more general (known) matrix JΨ . This fits the formalism of
what we call Extended Factor Analysis.

In [8], the ML problem is replaced by a Weighted Least
Squares (WLS) fitting of the sample covariance, and it is shown
that the large sample properties of the estimators are the same.
Solving this nonlinear least squares problem using gradient de-
scent techniques is closely connected to the scoring algorithm,
and we follow this approach.

For FA, a technique based on WLS was proposed by Jöreskog
in 1972 [14] and solved using Newton-Raphson iterations. We
compare this method in the simulations in Sec. VIII-A.

This concludes our review of some of the popular estimation
techniques for classical FA.

V. ESTIMATION ALGORITHMS FOR JEFA

In this section we consider the generalization toward the JEFA
model (8). Starting from a covariance matching formulation,
estimating the parameters for JEFA also leads to a nonlinear
weighted least squares problem. As the number of parameters
grows quickly, we need to consider scalable approaches. We
propose several algorithms.

A. Nonlinear Weighted Least Squares

Recall the JEFA data model (8). We start by vectoring and
stacking all the covariance matrices to form a single measure-
ment vector

r̂ =
[

vectT (R̂1), . . . , vectT (R̂M )
]T

, (27)

and similarly

r(θ) =
[

vectT (R1(θ)), . . . , vectT (RM (θ))
]T

, (28)

where θ is defined by (9). Instead of following the ML for-
malism, we can estimate the unknown parameters in θ using
nonlinear WLS defined as

θ̂ = arg min
θ

‖W1/2 [̂r − r(θ)]‖2
2 , (29)

where W is a weighting matrix. The optimum weighting ma-
trix is the inverse of the (asymptotic) covariance matrix of the
entire dataset, but because we only have access to the sample
covariance matrices R̂m we use

W =

⎡

⎢⎣
R̂−T

1 ⊗ R̂−1
1 . . . 0

0
. . . 0

0 . . . R̂−T
M ⊗ R̂−1

M

⎤

⎥⎦ , (30)
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which gives an asymptotically optimal solution for a Gaussian
distributed data matrix [8].4

A very common iterative technique for solving nonlinear op-
timization problems is the Gauss-Newton algorithm, where the
Hessian is replaced by the Gramian of the Jacobians [34]. The
updates are similar to the scoring method updates (25):

θ(k+1) = θ(k) + μ(k)δ, (31)

where δ is the direction of descent. To find δ we need to solve

B(θ(k))δ = g(θ(k)), (32)

where

g(θ) = JH (θ)W[̂r − r(θ)] (33)

B(θ) = JH (θ)WJ(θ) (34)

and the Jacobian J(θ) is given by

J =
∂r(θ)
∂θT

=

⎡

⎢⎢⎢⎣

JA1 JA∗
1

. . . 0 JΨ

0 . . . 0 JΨ

0
. . .

. . . 0 JΨ

0 . . . JAM
JA∗

M
JΨ

⎤

⎥⎥⎥⎦ (35)

JAm
= (A∗

m ⊗ IP ), JA∗
m

= (IP ⊗ Am )KP,Qm

JΨ = [SU , SL , IP ◦ IP ].
(36)

The iterations given by (31) are repeated until ‖g(θ(k))‖2 < ε,
where ε > 0 depends on the desired accuracy. Clearly, the equa-
tions are very similar to the ML equations in Sec. IV-B, except
that the covariance matrices in W (30) have to be inverted only
once.

The key step in the Gauss-Newton iteration is solving the lin-
ear system (32). For the JEFA model the matrix dimensions can
quickly become large. We propose two approaches for solving
this system. The first approach (Sec. V-B) is a Krylov-based
method directly applied to the system of equations, while the
second approach (Sec. V-C) is based on a symbolic inversion of
B, essentially exploiting the sparse structure of (35).

The optimal step size μ(k) can also be derived, and this is
done in Appendix C. It amounts to solving for the roots of a
cubic polynomial, which is computationally simple.

For JFA we can enforce additional constraints such as D ≥ εI
for some ε > 0 using a nonlinear active set approach [34]. The
full discussion of this approach is beyond the scope of this
paper, but the algorithm presented here can be extended with
small modifications.

B. Krylov-Based Method for Direction of Descent

To reduce storage and complexity, we propose to solve (32)
using a Krylov subspace-based solver. An overview of such
solvers is in [35]. We know that for the FA problem the solution
is not unique. This means that the Jacobians and hence B are
singular. One possible Krylov solver that is applicable in this

4As an aside, we remark that the minimum trace factor analysis discussed by
[32] is a special case of the WLS we are considering here.

case is the MinresQLP algorithm [36] and for this reason we
have chosen this solver for our iterative approach.5

MinresQLP is a standard Krylov-subspace iterative solver
that requires the availability of a subroutine that performs a
matrix-vector multiplications of the form u = Bv. Other oper-
ations in MinresQLP have negligible complexity. We show how
we can perform this multiplication efficiently by exploiting the
Kronecker structure of B(θ) and the underlying J(θ), without
needing to store the Jacobians.

We drop the dependency on θ from the notation and write
only J and r because θ does not change while we are solv-
ing for δ. To calculate a product u = Bv for B in (34) and
arbitrary vectors u,v of compatible dimensions, we define the
intermediate results

z = Jv, y = Wz, u = JH y.

We partition u and v in the same manner as θ in (9) into

v =

⎡

⎢⎢⎢⎣

vect(VA1 )
vect(VA∗

1
)

...
vΨ

⎤

⎥⎥⎥⎦ ,u =

⎡

⎢⎢⎢⎣

vect(UA1 )
vect(UA∗

1
)

...
uΨ

⎤

⎥⎥⎥⎦ . (37)

Likewise we partition z and y in the same manner as r in (28)
as

z =

⎡

⎢⎣
vect(Z1)

...
vect(Zm )

⎤

⎥⎦ , y =

⎡

⎢⎣
vect(Y1)

...
vect(Ym )

⎤

⎥⎦ . (38)

To find u we compute UAm
(m = 1, . . . , M ) and uΨ . We

assume that v is such that VA∗
m

= V∗
Am

, and in that case
UA∗

m
= U∗

Am
. It can be shown that MinresQLP provides vec-

tors v that have this property, as long as we initialize the iteration
with a vector g with the same property.

The Jacobian for the entire dataset is given by (35). Note
that JΨ in (36) is identical to JΨ as defined by (11), which
related the parameter vector θΨ to the P × P matrix Ψ via
vect(Ψ) = JΨθΨ . Similarly, we can define a P × P matrix
VΨ as vect(VΨ ) = JΨvΨ and likewise vect(UΨ ) = JΨuΨ .

Using these relations, we can compute the components of
z = Jv as

vect(Zm ) = (A∗
m ⊗ IP )vect(VAm

)

+ (IP ⊗ Am)KP,Q vect(VA∗
m
) + vect(VΨ )

= vect
(
VAm

AH
m + AmVH

Am
+ VΨ

)
,

where we used VA∗
m

= V∗
Am

. Unstacking both sides gives

Zm = VAm
AH

m + AmVH
Am

+ VΨ . (39)

Hence, to calculate z = Jv, we reshape the vector v into corre-
sponding matrices VAm

and VΨ , and apply (39). The variables

5Alternatively, methods such as LSQR or LSMR could be used to solve the
equivalent LS problem, minδ ‖W1/2 (Jk δ − bk )‖2

2 , where bk = r̂ − r(θk ).
However, working with W1/2 could make these methods computationally less
attractive.

Authorized licensed use limited to: TU Delft Library. Downloaded on December 03,2021 at 11:25:37 UTC from IEEE Xplore.  Restrictions apply. 



960 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 66, NO. 4, FEBRUARY 15, 2018

Am are the current estimates of the unknown parameters and
hence require no additional storage.

Next, we compute y = Wz. Using properties of Kronecker
products and the definition of W in (30), it is straightforward
to show that we only need to compute

Ym = R̂−1
m Zm R̂−1

m , m = 1, . . . , M. (40)

Finally, we calculate u = JH y. From the structure of (35), (36),
we find

vect(UAm
) = JH

Am
vect(Ym ) ⇔ UAm

= YmAm (41)

while UA∗
m

= U∗
Am

. The remaining term UΨ is given by

UΨ =
M∑

m=1

M � Ym , (42)

where we have used the properties uΨ = JH
Ψ vect(UΨ ) and,

using (12), JH
Ψ vect(X) = JH

ΨJΨJH
Ψ vect(X) = JH

Ψ vect(M �
X).

To summarize, to calculate a matrix-vector product u = Bv
we reshape v into VAm

and VΨ and use (39)–(42) to find the
result. The gradient g in (33) can be calculated in a similar
manner by replacing Zm in (40) by R̂m − Rm and using (41)
and (42) with the result. The procedures that perform these steps
are provided to MinresQLP, which then solves Bδ = g (32).

C. Direct Method for Direction of Descent

As an alternative technique to Krylov iterations for computing
the direction of descent, we now provide a direct approach
for solving Bδ = g. A block LDU (lower-diagonal-upper, or
Cholesky) decomposition of the Hermitian matrix B can be
computed symbolically in closed form and leads to the following
solution for the descent direction δ.

Define Wm = R̂−1
m and the quantities

W̃m = Wm − WmAm (AH
mWmAm )−1AH

mWm , (43)

B̃Ψ = JH
Ψ

(
∑

m

W̃T
m ⊗ W̃m

)
JΨ , (44)

g̃Ψ = JH
Ψ

∑

m

(
W̃T

m ⊗ W̃m

)
vect[R̂m − Rm (θ)]. (45)

As shown in Appendix B, the computation of

δ =

⎡

⎢⎢⎢⎣

vect(ΔA1 )
vect(ΔA∗

1
)

...
δΨ

⎤

⎥⎥⎥⎦

reduces to the computation of δΨ from

B̃ΨδΨ = g̃Ψ . (46)

Subsequently, we define ΔΨ as vect(ΔΨ ) = JΨδΨ . Closed-
form expressions for the ΔAm

are

ΔAm
=

1
2
(I + W−1

m W̃m )(R̂m − Rm (θ) − ΔΨ )·

· WmAm (AH
mWmAm )−1 ,m = 1, . . . , M, (47)

and ΔA∗
m

= Δ∗
Am

. Hence, the original matrix inversion prob-
lem reduces to solving for δΨ in (46), which has a dimension
equal to the number of nonzero entries in the mask M, which is
2P
∑

m Qm fewer unknowns than in δ. In particular, for the JFA
model (Ψ diagonal), B̃Ψ is just P × P . Since Ψ is well defined
if the JEFA model is identifiable, this problem is well-posed.

For large problems, we can also solve (46) using a Krylov-
subspace based solver, and the matrix-vector products are sim-
ilar to the ones presented in the previous section.

D. Alternating WLS Method

The approach from Sec. V-C can be developed into a new
Alternating WLS method that is similar to the Ad Hoc method
discussed in Sec. IV-A, but providing much faster convergence.
We consider the update equation for θΨ . If we take the step size
μ(k) = 1 we have θ(k+1)

Ψ = θ
(k)
Ψ + δΨ . Starting from (46) and

subsequently using vect(Ψ(k)) = JΨθ
(k)
Ψ and the definition of

B̃Ψ in (44), we obtain

B̃Ψθ
(k+1)
Ψ = B̃Ψθ

(k)
Ψ + JH

Ψ

∑

m

(W̃T
m ⊗ W̃m )

× vect(R̂m − AmAH
m − Ψ(k))

= JH
Ψ

∑

m

(
W̃T

m ⊗ W̃m

)
vect(R̂m − AmAH

m ),

where to simplify the notation we have dropped the dependency
on k from B̃Ψ , W̃m and Am . Since W̃mAm = 0 as a result
of (43), this reduces to

B̃Ψθ
(k+1)
Ψ = JH

Ψ

∑

m

(
W̃T

m ⊗ W̃m

)
vect(R̂m ). (48)

From the definition of B̃Ψ in (44), the solution θ(k+1)
Ψ can also

be written as the solution to

min
θΨ

∥∥∥W̃1/2
(k) [̂r − J̃ΨθΨ ]

∥∥∥
2

2
, (49)

where J̃Ψ := [JT
Ψ , . . . ,JT

Ψ ]T and W̃(k) := bdiag{W̃T
m ⊗

W̃m}. The latter matrix can be interpreted as “projecting out”
the contribution of the terms AmAH

m in r̂ (incorporating an
optimal weighting), after which the remaining term Ψ can be
estimated. Estimation of Ψ from (49) is computationally effi-
cient, compared to the original problem (32). The problem is
convex, and additional constraints such as positivity of Ψ could
also be incorporated.

This approach can be formulated as a new Alternating
Weighted Least Squares (AWLS) algorithm. Starting from an
initial estimate for Ψ, in the iteration we estimate the Am using
the EVD of R̂m − Ψ (for Wm = I) or Ψ−1/2R̂mΨ−1/2 (for
Wm = R̂−1

m ), similar to Sec. IV-A. Next, we calculate W̃m

using (43), which depends only on Am and Wm , followed by
solving (48) or equivalently (49). For classical FA, this leads to
the following iterations (where with abuse of notation we write
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W instead of W1):

U(k+1)Λ(k+1)UH
(k+1) := D−1/2

(k) R̂D−1/2
(k) [EVD]

A(k+1) := D1/2
(k) U0,(k+1)(Λ0,(k+1) − I)1/2

W̃ := W − WA(k+1)(AH
(k+1)WA(k+1))−1AH

(k+1)W

d(k+1) :=
[
W̃T � W̃

]−1
vectdiag(W̃R̂W̃)

D(k+1) := diag(d(k+1)).

Note that for W = R̂−1 , we have W̃R̂W̃ = W̃. Hence this
calculation is not needed.

For W = I, W̃ = P⊥
A is the projection matrix for the orthog-

onal subspace of A. If we are only interested in the null space
of A for applications such as MUSIC or spatial filtering, we can
avoid calculating A and obtain W̃ directly from the EVD of
R̂ − D.

VI. GOODNESS OF FIT AND DETECTION

One of the parameters that needs to be found for the FA model
is the factor dimension Q (i.e., rank(A)). In array processing,
this relates to detecting the number of sources that the array
is exposed to. An extensive literature exists on this topic (an
overview can be found in [37, pp. 222–223], [38]). Here we
limit the discussion to a general likelihood ratio test (GLRT),
which is used to decide whether the FA model fits a given sample
covariance matrix. We consider the classical FA model and aim
to detect the smallest number of sources for which the model
fits the data.

For each Q, two hypotheses are tested against each other. H0
assumes that there is an FA model underlying the data, while
H1 assumes no structure. For a threshold γ, consider the GLRT

ζ =
L∗

1

L∗
0

≷ γ,

where L∗
1 is the maximum value of the likelihood when H1 is

true, and L∗
0 is the maximum value of the likelihood for an FA

model. Taking the natural logarithm from both sides we see that
the likelihood ratio reduces to

λ = 2 log(ζ)

= 2N
[
tr(R−1R̂) − log |R−1R̂| − P

]
, (50)

where R is the best-fitting model with Q sources. From [6, p.
267] [39, p. 281] we know that λ has an asymptotic χ2

s distribu-
tion under H0 , where for complex data s = (P − Q)2 − P is
the degree of freedom, as defined by (51) later in Appendix A.
We can use this statistic to find a constant false alarm ratio detec-
tor. In the special case where Q = 0 this test indicates whether
there are any sources active during the measurement.

If the GLRT passes for a given estimate Q0 it also passes
for any Q > Q0 , and if it fails it also fails for any Q < Q0 .
Therefore, instead of a linear search for Q̂ we propose to use a
binary search. In this case the number of needed FA estimates
is on average log2(Qmax) + 1, where Qmax is the maximum
number of possible sources for FA given by Qmax < P −√

P
as shown later in (52).

TABLE I
COMPLEXITY OF VARIOUS ALGORITHMS PER ITERATION

VII. COMPUTATIONAL COMPLEXITY

Table I gives an overview of the available and proposed algo-
rithms and shows the complexity for a single iteration of each.

For classical FA, some original algorithms to compare with
are the Ad Hoc iterations (Sec. IV-A), the ML approach solved
using Conditional Maximization (CM, [16]), or using iterations
that minimize the Kullback-Leibler Divergence as a prototype
EM algorithm (KLD/EM, [40]). Here we propose to use the
new AWLS algorithm presented in Sec. V-D. The main compu-
tational complexity is caused by inverting a P × P matrix and
computing the EVD of a P × P matrix inside the iteration, both
with a complexity of order P 3 . The number of iterations needed
for AWLS is usually very small (see Sec. VIII). Thus, the total
complexity of this algorithm for FA is similar to EVD. The Ad
Hoc, CM and KLD/EM algorithms have a similar complexity
per iteration. However, simulations show that the number of
iterations and hence the total complexity of the Ad Hoc and
KLD/EM methods is very large. For CM, the number of itera-
tions appear to be two or three times larger than for AWLS, and
much more for large Q.

For the JFA model, the available algorithms are based on solv-
ing a nonlinear WLS using Gauss-Newton iterations (Sec. V-A),
where the key step is solution of Bδ = g (32). This could be im-
plemented using a Krylov subspace method (Krylov NLWLS),
Sec. V-B. Alternatively, we proposed a direct method (Sec. V-
C), where for JFA the main complexity is in the formation of
W̃m (m = 1, . . . , M ).

In the table, IK is the number of iterations needed for the
Krylov solver to converge. This number can be chosen to be
very small depending on how much improvement is desired with
respect to the descent direction provided by the gradient. In the
simulations presented next we allow the solver to fully converge
based on the default convergence criteria of MinresQLP. For
relatively large P (e.g., P = 100) IK is usually less than P ,
which is a factor 2Q + 1 smaller than the dimension of the
matrix B. This estimate for IK is based on a final error of
‖Bδ − g‖2 < 10−12 .

In summary, it appears there is no specific computational or
storage advantage of Krylov over the direct method. For equal
Qm = Q, the computational complexity is of order MP 2Q.

VIII. SIMULATIONS

We evaluate the performance of the proposed models and
algorithms using a series of simulations. In Sec. VIII-A, we
evaluate the convergence speed of the various algorithms, then
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Fig. 1. Convergence for P = 100 sensors and varying number of samples N and sources Q.

in Sec. VIII-B, we evaluate the quality of the estimated subspace
using classical and Joint FA, and finally in Sec. VIII-D we show
that the proposed algorithm for JEFA converges to the CRB as
the number of samples becomes large.

A. Convergence Speed

We first evaluate the convergence speed of various algorithms
for the classical factor analysis model. An array with P = 100
elements is simulated. The matrix A is chosen randomly with
a standard complex Gaussian distribution (i.e. each element
is distributed as CN (0, 1)) and D is chosen randomly with a
uniform distribution between 1 and 5.

For P = 100, the maximum number of sources is Qmax = 89.
We show simulation results for Q = 20, representative for low-
rank cases, and for Q = 80 for high-rank cases. Sources and
noise are generated using standard unit power complex Gaussian
distributions.

The algorithms that we consider are the proposed AWLS
(Sec. V-D), the proposed Direct NLWLS (Sec. V-C), and the ML
scoring method (Sec. IV-B1) combined with the Krylov solver
in Sec. V-B, referred to as Krylov Scoring. We compare with
the classical Ad Hoc (Sec. IV-A), the WLS method by Jöreskog
[14], and the more recent CM [16] and KLD/EM [40] as a
representative of many other EM-type algorithms. We believe
that this gives a good range of algorithms indicative of the state-
of-the-art (for lack of an agreed standard).6

The same initial point is chosen for all the algorithms. As in
other literature, we initialize with D(0) = [diag(R̂−1)]−1 .

Fig. 1 shows the convergence rate of the different ML algo-
rithms based on the magnitude of the gradient. In the different
panels we vary the number of sources Q and the number of sam-
ples N , where N → ∞ represents the case where the covariance
data is exactly equal to its model.

6E.g., the Matlab algorithm factoran optimizes the ML cost function using a
standard optimization toolbox.

We observe that AWLS consistently outperforms all other pre-
sented algorithms in terms of the number of iterations needed to
reduce the gradient to a given threshold. Typically 10 iterations
or less are needed. The Direct NLWLS converges equally fast
for infinite data (true R) but it is seen to degrade for finite data
size (N = 1000), with convergence around 30–40 iterations.
Next, Krylov scoring requires consistently around 40–50 itera-
tions. The CM method performs well for smaller Q but not for
large Q, where it requires around 100 iterations. The Ad Hoc
method is seen to be very sensitive to Q and converges orders of
magnitude slower for larger Q, and KLD/EM always converges
slowly.

While these results are based on a single realization of the
data, we consider the outcome as typical.

B. Subspace Estimation Performance

Next, we study the subspace estimation performance of FA
and JFA in comparison to EVD for Ψ = σ2I. This gives an
indication of the performance penalty if we use FA even if the
noise is white and EVD is suitable.

We have chosen Qm = 2, P = 5, M = 5 and σ = 1 is the
noise power. We study the subspace estimation performance
for various signal-to-noise ratios (SNR) ranging from −5 dB
to 20 dB per antenna. Each sample covariance matrix is gener-
ated using N = 100 samples and Am is generated as a random
complex matrix.

As metric for the accuracy of the estimated subspace, we de-
fine a projection matrix P̂m onto the null-space of the estimated
Âm , and measure

Subspace error =
∑

m

‖P̂mAmAH
m P̂m‖F

‖AmAH
m‖F

.

Fig. 2 shows the result. FA is the case where the model parame-
ters are estimated separately for each of the M = 5 covariance
matrices, while JFA shows the effect of jointly processing with
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Fig. 2. Subspace error as function of SNR for Ψ = I (white noise).

a common Ψ. In both cases, the Direct NLWLS algorithm is
used. Because FA and JFA have to estimate more parameters, we
expect a drop in performance compared to EVD. The simulation
shows that for sufficiently high SNR, the algorithms behave the
same, while some performance drop occurs for FA at low SNR.
JFA exploits the stationarity of the noise component and has a
negligible performance penalty with respect to EVD.

We conclude that the use of (J)FA does not result in a signifi-
cant performance loss, while this model is more general than the
white-noise model, making it applicable in many practical situ-
ations, e.g., cases where the sensor array is not (yet) accurately
calibrated.

C. Convergence to Local Minima

One of the important points of concern for the proposed iter-
ative methods is the possible convergence to a local minimum.
By estimating the distribution of the subspace error we argue
that for the NLWLS algorithms proposed in this paper this pos-
sibility does not create statistical artifacts in the solutions.

The data set is generated using P = 100, Q = 70, M = 1,
N = 500 and Ψ = I. To simulate A, the 100 receivers are
randomly spread over an area of 6 × 6 wavelengths, and 70
sources of equal strength are randomly chosen with minimum
angular distance slightly less than 1 degree. This is repeated for
each iteration of a Monte-Carlo run. In total 20K runs have been
performed.

The results of the Monte-Carlo simulations are used to create
the histogram Fig. 3, which shows the distribution of the sub-
space errors for NLWLS using the direct method and for EVD.
We also found that a log-normal distribution fits the histograms
quite well.

The smooth behavior of the histogram and its similarity to
the behavior of EVD indicates that there are no outliers (large
subspace errors) beyond expected deviations of the subspace
due to finite sample noise. We conclude that the convergence of
the algorithm is reliable.

D. Comparison to the Cramér-Rao Bound

In this part we investigate the performance of the proposed
Direct NLWLS algorithm using the Cramér-Rao bound in a JFA

Fig. 3. Distribution of subspace errors for Ψ = I.

Fig. 4. Performance of the diagonal estimates compared to the CRB.

setting. We use a setup with P = 5, Qm = 2, Ψ = D with diag-
onal elements ranging from 0.5 to 1.5. Two different approaches
are compared. The first approach is to apply FA separately and
then use D̂ = 1/K

∑
m D̂m . The other approach is to estimate

D̂ using JFA.
To measure the performance we use

E{‖D̂ − D‖2
F } = E{vect(D̂ − D)H vect(D̂ − D)}

= tr[E{vect(D̂ − D)vect(D̂ − D)H }]
≥ tr(CΨ ),

where CΨ is the sub-matrix of the CRB corresponding to Ψ
that was derived previously in [31]. We estimate E{‖D̂ − D‖2

F }
using Monte Carlo simulations. Fig. 4 shows the result of this
simulation. This figure clearly illustrates that the proposed joint
estimation reaches the CRB asymptotically and that applying
the estimation separately followed by an averaging results in a
sub-optimal estimation with higher variance.

E. Experimental Results

The potential of FA and (J)EFA in practical scenarios was
demonstrated for spatial filtering of RFI signals present in
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astronomical data in [31]. Calibration of the Westerbork ra-
dio telescope array (P = 14 dishes) using the Ad Hoc approach
was shown in [23]. Calibration of one station of the LOFAR
radio telescope array (P = 96 antennas) was reported in [26],
[41], [42], and this application is run in daily practice of the ar-
ray [43]. Using LOFAR data, EFA was demonstrated in [44] to
suppress the Milky Way (broadband emission) from a mixture
with point sources.

IX. CONCLUSION

We proposed extensions of the Factor Analysis model to
multiple matrices and more general noise covariance struc-
tures, and we presented efficient estimation algorithms based
on Gauss-Newton iterations. For the classical FA model, we
derived a straightforward Alternating WLS algorithm that con-
verges much faster than currently used techniques.

The simulations indicated the reliability and efficiency of
the proposed algorithms, showing them feasible for moderately
large problem sizes (P = 100 sensors).

We consider FA as an extension of the eigenvalue decomposi-
tion (EVD) to cases where the noise is not white. The simulations
indicated that even if the noise is white, the performance penalty
with respect to EVD is minor. Therefore, the more general struc-
ture of the extended FA data models enable their application in
a wide range of signal processing applications.

APPENDIX A
IDENTIFIABILITY

One of the challenges with the FA models is the problem
of identifiability. As in [45] we call two solutions, θ1 and θ2 ,
observationally equivalent if for a set of observations with prob-
ability density p(x;θ), we have p(x;θ1) = p(x;θ2). The prob-
lem is called (globally) identifiable if for a solution θ, there are
no observationally equivalent solutions on the entire solution
space Θ.

The question we address in this Appendix is: Given a
Hermitian matrix R with decomposition R = R0 + D, with
R0 = AAH of rank Q and D diagonal, are R0 and a non-
singular D identifiable?

Early results on the identification problem were published in
[3]. Later work on this subject has been summarized by [46],
while [47] gives a more recent overview of important theorems
on this subject. However only for Q = 1 or Q = 2 (very small
ranks) do these theorems provide both sufficient and necessary
conditions of identifiability. Here we use the results provided
by [45] to formulate necessary and sufficient conditions for
identifiability.

A necessary condition for identifiability is that the number of
knowns exceeds the number of unknowns. This puts a limit on
Q, the number of columns of A. To find this limit we study the
degrees of freedom we have for the estimation parameter vector
based on a given sample covariance matrix.

For classical FA, the sample covariance matrix consists of
1
2 P (P − 1) complex and P real observations, which are in total
P 2 real knowns. The FA model has PQ complex parameters in
A and P real parameters in D, or 2PQ + P real parameters in

total. We pose Q2 constraints on A, cf. Sec. II-B. As such the
total degrees of freedom becomes7

s = P 2 − (2PQ + P ) + Q2

= (P − Q)2 − P. (51)

For the FA model to be identifiable, s > 0 is a necessary condi-
tion. Solving for Q, we see that the maximum number of sources
that could theoretically be detected by classical FA is

Q < P −
√

P . (52)

Following the same procedure for EFA we find

Q < P −
√

tr(M2), (53)

where tr(M2) represents the total number of nonzero entries in
the mask M. To find a bound on Q for JEFA we assume for
simplicity that Qm is constant. In this case we find

Q < P −
√

tr(M2)
M

. (54)

Next, we study identifiability in more detail. Typically, an es-
timation problem is considered identifiable if the corresponding
Fisher Information Matrix (FIM) F is nonsingular. In our case,
some refinements are needed. We know already that the prob-
lem has to be complemented with constraints. Further, the FIM
depends on the actual parameter values while we would like to
say something that relates to the structure of the problem.

To connect to known literature on identifiability, we briefly
consider a parameterization of the unknowns in terms of real
values. Let θR denote such a parameterization. One way to
define θR for classical FA is

θ = TθR , (55)

where

T =
1√
2

⎡

⎣
IP Q jIP Q 0
IP Q −jIP Q 0
0 0

√
2IP

⎤

⎦ (56)

has size (2PQ + P ) × (2PQ + P ). It is straightforward to
show that T is a unitary (and invertible) transformation and
hence does not change the number of real unknowns. The
Q2 constraints on θR are written in the form of a function
hR (θR ) = 0. The Jacobian of this function is

HR =
∂hR

∂θT
R

(57)

of size Q2 × (2PQ + P ). Let F be the FIM of the problem, and
let FR = TH FT be the real FIM. Define

VR (θR ) =
[

FR

HR

]
.

Reformulating Theorem 2 of [45] gives:

Suppose θ0 is in the solution space of h(θR ) = 0 and is a regular
point of HR (θR ), and assume rank(A) = Q. Then θ0 is locally
identifiable if and only if rank[VR (θ0 )] = 2P Q + P .

7For real-valued data, a similar derivation shows s = 1
2 [(P − Q)2 − (P +

Q)].
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This means that for a locally identifiable problem VR has full
column rank. If rank(VR ) < 2PQ + P , there is another param-
eterization R = R0 + D = R1 + D1 such that rank(R1) ≤
rank(R0) and D �= D1 . In that case the matrix D cannot be
uniquely estimated, and the problem should be complemented
with constraints on D itself. E.g., if in array processing the array
signature combined with the noise covariance matrix is uniden-
tifiable then D also contains part of the signal power and one of
the signal subspaces is lost.

In this paper we assume that the signal and noise have proper
complex Gaussian distributions. This can be used to simplify
the identification criteria. Using Bang’s formula we can write
the FIM as

FR = JH
R

(
R−T ⊗ R−1)JR , (58)

where JR = JT. Let H = HRTH . Considering that R−T ⊗
R−1 is a positive definite matrix and that HH H has the same
row space as H, we have

rank(VR ) = rank

([
T 0
0 I

]
VRTH

)

= rank

([
F
H

])

= rank

([
J
H

])
. (59)

This means that by studying the rank of the Jacobian we can
establish the identifiability of the problem. With Q2 suitable
constraints, H adds Q2 independent rows to J, and we require
the rank of J to be (at least) 2PQ + P − Q2 .

Next, we establish that the rank of J solely depends on the
diagonal structure of D and on the column span of A, but not on
the actual values of R, D or the power of the sources. Let A =
U0Γ1/2QH be the (economical) singular value decomposition
of A, where U0 forms an orthonormal basis for the column span
of A. We use the structure of J in (21) to obtain

J = [A∗ ⊗ I, (I ⊗ A)K, I ◦ I]

= [U∗
0Γ

1/2QT ⊗ I, (I ⊗ U0Γ1/2QH )K, I ◦ I]

= Ũ

⎡

⎣
Γ1/2QT ⊗ I 0 0

0 (I ⊗ Γ1/2QH )K 0
0 0 I

⎤

⎦ , (60)

where

Ũ = [U∗
0 ⊗ I, I ⊗ U0 , I ◦ I], (61)

has size P 2 × (2PQ + P ). The latter factor of J is square and
invertible, so that the rank of J is equal to the rank of Ũ, which
only depends on U0 and the diagonal structure of D (which is
captured by I ◦ I). For the problem to be (locally) identifiable
we need

rank(Ũ) = 2PQ + P − Q2 . (62)

Further, we can show that the submatrix of Ũ given by the 2PQ
columns

Ũ1 = [U∗
0 ⊗ I, I ⊗ U0 ]

has (at least) Q2 dependent columns. To show this we use the
fact that Ũ1Z = 0, where

Z =
1
2

[
IQ ⊗ U0

−(U∗
0 ⊗ IQ )

]

is a unitary basis of size 2PQ × Q2 for the null space of Ũ1
(i.e., ZH Z = IQ 2 ).

Thus, identifiability requires that the P columns of I ◦ I be
linearly independent to the columns of Ũ1 .

In summary, we showed that the identifiability of the classical
FA problem can be established by examining the rank of Ũ in
(61), which depends only on the column span of A. This result
is readily extended to EFA by replacing I ◦ I in (61) by JΨ . The
identifiability criteria for EFA becomes

rank(Ũ) = 2PQ + tr(M2) − Q2 . (63)

To conclude, we have used the identifiability problem to find
the maximum number of sources that can be modeled using
(E)FA. We have also shown that the local identifiability of (E)FA
is completely defined by the signal subspace and the structure of
the Jacobians with respect to the noise covariance matrix. This
structure is completely defined by the masking matrix M in (7).

APPENDIX B
PROOF OF THE DIRECT METHOD IN SEC. V-C

We prove the expression forδ given in (46) and (47). Although
the result was obtained from executing a symbolic block-LDU
decomposition of D, we omit this derivation and only verify the
result. We need to prove that Bδ = g. To simplify the presen-
tation we limit ourselves to the case M = 1, and write A,W
instead of Am ,Wm . We also write S = JΨ ; note that SH S = I
and SSH vect(ΔΨ ) = vect(ΔΨ ). Then

B = JH (WT ⊗ W)J

g =

⎡

⎣
gA

gA∗

gΨ

⎤

⎦ =

⎡

⎣
vect[W(R̂ − R(θ))WA]

(· · · )∗
SH vect[W(R̂ − R(θ))W]

⎤

⎦

and

δ =

⎡

⎣
1
2 vect[(I + W−1W̃)C]

1
2 vect[(I + W−T W̃T )C∗]

SH vect(ΔΨ )

⎤

⎦

where C = (R̂ − R(θ) − ΔΨ )WA(AH WA)−1 , and ΔΨ

satisfies (46), i.e.,

SH (W̃T ⊗ W̃)SδΨ = SH (W̃T ⊗ W̃)vect[R̂ − R(θ)].
(64)

Also define

P = W1/2A(AH WA)−1AH W1/2

then W̃ = W1/2(I − P)W1/2 . Note that P is a projection such
that P(W1/2A) = W1/2A, and also W̃A = 0. Further, (64)
with δΨ = SH vect(ΔΨ ) leads to

W̃(R̂ − R(θ) − ΔΨ )W̃ = 0. (65)
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We need to prove that Bδ = g. The first line of this expression
is

1
2 (AT WT A∗ ⊗ W)vect[(I + W−1W̃)C]
+1

2 (AT WT ⊗ WA)Kvect[(I + W−T W̃T )C∗]
+(AT WT ⊗ W)SSH vect(ΔΨ )
= 1

2 vect[W(R̂ − R(θ) − ΔΨ )WA
+W̃(R̂ − R(θ) − ΔΨ )WA
+WA(AH WA)−1AH W︸ ︷︷ ︸

=W−W̃

(R̂ − R(θ) − ΔΨ )WA

+WA(AH WA)AH W(R̂ − R(θ) − ΔΨ )W̃W−1WA︸ ︷︷ ︸
=0

+2WΔΨWA]
= vect[W(R̂ − R(θ) − ΔΨ )WA + WΔΨWA]
= vect[W(R̂ − R(θ))WA] = gA

The second line is the complex conjugate of the first line. The
third line is

1
2 S

H vect[W(I + W−1W̃)︸ ︷︷ ︸
=W+W̃

(R̂ − R(θ) − ΔΨ )·

·WA(AH WA)−1AH W︸ ︷︷ ︸
=W−W̃

+WA(AH WA)−1AH W︸ ︷︷ ︸
=W−W̃

(R̂ − R(θ) − ΔΨ )·

· (I + W̃W−1)W︸ ︷︷ ︸
=W+W̃

+2WΔΨW]

= SH vect[W(R̂ − R(θ) − ΔΨ )W + WΔΨW]
= SH vect[W(R̂ − R(θ))W] = gΨ ,

where in the first step we used (65).

APPENDIX C
STEP-SIZE FOR WEIGHTED LEAST SQUARES

In Sec. V-A, we showed parameter estimation using a
Weighted Least Squares formulation, solved by a descent algo-
rithm such as GN. Here we discuss the selection of the step-size
parameter μ and show that the optimal value can be obtained in
closed form. We first investigate how the error term E = R̂ − R
is updated after each iteration,

E(k)
m = R̂m − A(k)

m (A(k)
m )H − Ψ(k)

E(k+1)
m = R̂m − A(k+1)

m (A(k+1)
m )H − Ψ(k+1)

= E(k)
m − μYm − μ2Xm ,

where

Ym = ΔAm
(A(k)

m )H + A(k)
m ΔH

Am
+ ΔΨ

Xm = ΔAm
ΔH

Am
.

Let e = vect(E), x = vect(X) and y = vect(Y). Then the
WLS cost function can be written as

f(θ, δ, μ) =
∑

m

eH
m (WT

m ⊗ Wm )em

and

e(k+1)
m = e(k)

m − μym − μ2xm .

After taking derivatives with respect to μ we need to solve

∂f

∂μ
= a1μ

3 + a2μ
2 + a3μ + a4 = 0, (66)

where

a1 = 4
∑

m

xH
m (WT

m ⊗ Wm )xm , (67)

a2 = 6
∑

m

�{yH
m (WT

m ⊗ Wm )xm}, (68)

a3 = 2
∑

m

yH
m (WT

m ⊗ Wm )ym (69)

− 4
∑

m

�{eH
m (WT

m ⊗ Wm )xm}, (70)

a4 = −2
∑

m

�{eH
m (WT

m ⊗ Wm )ym}. (71)

�{.} is the real part of the argument and we have dropped the
dependency on k from the notation.

This is a cubic relation where all the parameters are real, and
closed-form solutions exists.
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