
 
 

Delft University of Technology

Map-matching for cycling travel data in urban area

Gao, Ting; Daamen, Winnie; Krishnakumari, Panchamy; Hoogendoorn, Serge

DOI
10.1049/itr2.12567
Publication date
2024
Document Version
Final published version
Published in
IET Intelligent Transport Systems

Citation (APA)
Gao, T., Daamen, W., Krishnakumari, P., & Hoogendoorn, S. (2024). Map-matching for cycling travel data in
urban area. IET Intelligent Transport Systems, 18(11), 2178-2203. https://doi.org/10.1049/itr2.12567

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1049/itr2.12567
https://doi.org/10.1049/itr2.12567


Received: 15 March 2024 Revised: 30 July 2024 Accepted: 27 August 2024 IET Intelligent Transport Systems

DOI: 10.1049/itr2.12567

ORIGINAL RESEARCH

Map-matching for cycling travel data in urban area

Ting Gao Winnie Daamen Panchamy Krishnakumari Serge Hoogendoorn

Department of Transport & Planning, Delft
University of Technology, Delft, The Netherlands

Correspondence

Ting Gao, Department of Transport, and Planning,
Delft University of Technology, 4.21 Stevinweg 1,
2628 CN Delft, The Netherlands.
Email: t.gao-1@tudelft.nl

Funding information

EUROPEAN COMMISSION - Directorate-
General for Communications Networks, Content
and Technology under Horizon Europe research
and innovation programme, Grant/Award Number:
101093051

Abstract

To promote urban sustainability, many cities are adopting bicycle-friendly policies, lever-
aging GPS trajectories as a vital data source. However, the inherent errors in GPS data
necessitate a critical preprocessing step known as map-matching. Due to GPS device
malfunction, road network ambiguity for cyclists, and inaccuracies in publicly accessible
streetmaps, existing map-matching methods face challenges in accurately selecting the best-
mapped route. In urban settings, these challenges are exacerbated by high buildings, which
tend to attenuate GPS accuracy, and by the increased complexity of the road network. To
resolve this issue, this work introduces a map-matching method tailored for cycling travel
data in urban areas. The approach introduces two main innovations: a reliable classifica-
tion of road availability for cyclists, with a particular focus on the main road network, and
an extended multi-objective map-matching scoring system. This system integrates penalty,
geometric, topology, and temporal scores to optimize the selection of mapped road seg-
ments, collectively forming a complete route. Rotterdam, the second-largest city in the
Netherlands, is selected as the case study city, and real-world data is used for method imple-
mentation and evaluation. Hundred trajectories were manually labelled to assess the model
performance and its sensitivity to parameter settings, GPS sampling interval, and travel
time. The method is able to unveil variations in cyclist travel behavior, providing munic-
ipalities with insights to optimize cycling infrastructure and improve traffic management,
such as by identifying high-traffic areas for targeted infrastructure upgrades and optimizing
traffic light settings based on cyclist waiting times.

1 INTRODUCTION

Bicycles are becoming increasingly popular among people as a
sustainable and convenient way of transportation, particularly
in countries such as the Netherlands, Sweden, and Denmark
[1]. Besides serving as an eco-friendly alternative for short
to medium-distance car journeys, bicycles provide citizens
with faster first or last-mile connectivity to public transport
compared to walking.

As the country with the highest number of bicycles per capita,
the Netherlands maintains its dedication to evidence-based traf-
fic policy-making, leveraging extensive data collection. Notably,
between 2020 and 2022, the Dutch government launched the
Talking Bike Program to collect bicycle GPS trajectory data
throughout the entire country [2, 3]. Urban planners invest
efforts in understanding bicycle traffic patterns not only to
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enhance cycling infrastructures but also to improve traffic per-
formance from a multi-modal perspective [4, 5]. Since bicycles
serve as a vital link in connecting public transport systems and
significantly impact road traffic conditions, maintaining a multi-
modal view is essential when processing bicycle data. Regarding
map-matching, it is unreasonable to exclusively consider official
cycleways, as this approach overlooks potential interactions with
other traffic modes.

The increasing availability of GPS data has underscored the
importance of map-matching as an integral process for adapting
such data to diverse traffic applications. Map-matching is pivotal
as it aligns GPS data points with specific road segments, neces-
sitating a detailed map with comprehensive information about
the road network. In our study, we choose OpenStreetMap
(OSM) as the mapping resource for analysis and implementa-
tion. OSM stands as the prominent map for many end-users,
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including industrial actors and researchers, providing a collab-
orative, freely accessible, and extensive map of the world [6].
This platform encompasses an array of geographical informa-
tion crucial for map-matching, encompassing features such as
longitude, latitude, and road types. We opt for BBBike1 for OSM
data extraction. BBBike is a widely used tool in mapping and
cycling-related projects, providing high-quality and up-to-date
OSM data.

The quality of map-matching is significantly influenced by
multiple factors. GPS drift and building disturbances, often
resulting in deviations in mapped roads, introduce uncertainty
in accurately determining traveled paths. Lower sampling rates
necessitate the inference of intermediate roads, further increas-
ing uncertainties about mapped road precision. OSM quality
also significantly impacts map-matching results: inaccurately
labeled roads or erroneous geographical coordinates can sig-
nificantly affect the accuracy of mapped roads and thus the
resulting route. These problems become more pronounced in
urban areas, as high buildings can aggravate GPS errors [7],
and the dense road network presents more possible roads to
map the GPS coordinates as well as origin-destination route
choices.

While numerous algorithms cater to map-matching car GPS
data, as extensively discussed in [8–10], there are notably fewer
algorithms designed for bicycles. Specifically, it is possible to
directly apply car-focused map-matching methods to bicycles,
but their performance is suboptimal [11]. Further improve-
ments are needed due to the dissimilarities between car and
bicycle travel patterns: cars adhere to specific speed limits and
road restrictions, whereas there are few speed controls for
cycling, and cyclists possess the flexibility to traverse various
routes. Existing bicycle-specific algorithms, such as those found
in [12, 13], define the bicycle network based solely on the
information indicating whether a road is accessible for bicycles
in OSM. However, this approach may be insufficient if OSM
is inaccurate or if other infrastructure more in favour of the
cyclists is nearby.

In this study, we introduce an innovative map-matching
algorithm tailored for bicycles. Our main contributions are as
follows: (1) Improved road availability classification for bicy-
cles: We meticulously assess road availability for cyclists based
on route choice studies, OSM street descriptions, and real-world
observations, with particular emphasis on the main car road net-
work. (2) Extended trajectory matching method: Based on the
refined network, we have developed an extended map-matching
method that improves upon existing approaches by penaliz-
ing unrealistic speed and expanding the notion of travel cost
along different road segments. (3) Real-world implementation:
We conducted experiments using real-world data from Rotter-
dam. We manually labeled 100 trajectories to evaluate model
performance, demonstrating a significant improvement com-
pared to the baseline model. Regarding sensibility, our method
also proved to be robust against parameter changes and GPS
data quality. Additionally, we analyzed user behavior based
on the mapped results. (4) Accessible code: Our contribution

1 https://download.bbbike.org/osm/bbbike/Rotterdam/

includes codes featuring functions for parallel processing on
laptops or supercomputers and visualization tools to display the
map-matching results, the code implementation is accessible on
GitLab2.

The following sections are organized as follows: Section 2
provides a synthetic review of current map-matching methods
and outlines the unsolved challenges. In Section 3, a detailed
introduction to our method is presented. Section 4 applies our
method to real-world data and evaluates the results. Finally,
Section 5 draws conclusions and opens the discussion for
future research.

2 BACKGROUND

Map-matching methods have been extensively studied in recent
years and are broadly categorized into three types: geometric,
topological, and advanced algorithms [14]. Geometric methods
match GPS records to the nearest network elements (nodes or
links) based on distance, and their accuracy heavily relies on the
precision of GPS data. In contrast, topological methods ana-
lyze sequences of GPS records and the network’s connectivity.
Advanced methods integrate both geometric and topologi-
cal approaches, often using advanced techniques like Hidden
Markov Models (HMMs) [8, 15].

The HMMs model the road segment to be mapped in
the network as a state, with the state probability indicating the
likelihood of observing the provided GPS record under the
condition that the bicycle is on the corresponding road seg-
ment (state). The transition probability represents the likelihood
of moving between different road segments (states). Designing
these state and transition probabilities is crucial. The geo-
metric method mentioned earlier can provide the geometric
score as the state probability, while the topological method can
offer the topological score as the transition probability. How-
ever, this remains insufficient, as the roads chosen by cyclists
among different roads also depend on road types and the
surrounding environment.

With the development of machine learning, data-driven
methods have emerged as prominent options. A deep rein-
forcement learning framework for map-matching cellular data is
proposed in [16]. In [17], data sparsity and noise are addressed
through deep learning-based data augmentation. However, this
method requires ground truth data, which are not always
available for bicycles due to privacy concerns. Similarly, a
method based on representation learning is proposed in [18],
where high-frequency trajectories are needed to enhance the
expressive capability of representations. Transfer learning is
implemented in [19], where labelled data are still needed and
generated data are based on a feasible network. While these
methods have proven efficient for car traffic, they face limita-
tions when applied to non-labelled bicycle data. Data generation
is also challenging because cyclists have a wide range of choices
over road types, and rule violations are common [20], making it
hard to define a feasible network.

2 https://gitlab.tudelft.nl/T.Gao-1/mm4b.git
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(a) OSM representation (b) Google Map street view

FIGURE 1 At the location marked by the star (latitude = 51.93156, longitude = 4.465156) on Stadhoudersweg street, 3039CD Rotterdam, (a) OpenStreetMap
(OSM) displays only secondary roads, despite (b) the presence of nearby cycleways.

To the best of our knowledge, since 2020, no publications
specifically designed for bicycle map-matching include open-
source code and do not require ground truth training data. A
study detailed in [11] compared six prominent advanced map-
matching algorithms [8, 12, 21–24] using active travel data,
comprising 88% bike/e-bike data and 12% walk/run data. The
evaluation matrices included six ground-truth dependent and
six ground-truth independent measures. Based on the findings
in [11], pgMapMatch [8] adopted the HMM and emerged as the
top-performing method. Therefore, we take this method as a
starting point for our research. However, since pgMapMatch
is primarily designed for car traffic and ignores the real-world
scenarios for bicycles and utilizes speed limitations which are
much less strict for cyclists, we need to incorporate additional
functionalities to tailor it to bicycle traffic.

When dealing with real-world bicycle data, the necessity for
a more precise bicycle network is crucial due to the limitations
of GPS data quality. This limitation can impede map-matching
algorithms from consistently selecting the most suitable road
types for cyclists. The precision of the bicycle network is piv-
otal for deriving various traffic variables, such as traffic flow,
which relies on precise matching on the respective roads. Publi-
cations specifically tailored for bicycles take the bicycle network
into consideration. In [12], bicycle travel data are only mapped
to roads reserved for cycling. Meanwhile, [13] derives the bicy-
cle network from OpenStreetMap, excluding road types like
motorways, footways, steps, and paths unless an additional tag
specifies permission for cycling. While these methods do dis-
tinguish between networks for cars and bicycles, they overlook
the challenges encountered in real-life scenarios, as outlined
below.

One of the primary challenges stems from the ambiguity of
the road network for cyclists. In many countries, cyclists share
roads with either pedestrians (on sidewalks) or cars (on the
road). In the Netherlands and Denmark, even though cyclists
have designated protected cycling routes, they sometimes navi-
gate through roads shared with other modes of transportation

[25]. This mixing of cycling routes with other road types makes
it more challenging to determine the route a cyclist has taken, as
more options exist.

However, since the goal of map-matching is to replicate roads
taken in real-life as closely as possible, the approach of simply
removing road types originally designed for other modalities, as
suggested by [12, 13], is not a practical solution. Moreover, from
the perspective of multi-modal transport, these roads may host
interactions among various transportation modes and cyclists
may frequently interact with pedestrians or other vehicles on
these shared roads.

The second challenge stems from the inherent inaccuracy of
OSM data. The extraction of precise geographic information is
a complex task, and OSM may not always provide reliable repre-
sentations of real-world conditions [26]. For example, Figure 1
illustrates a case where OSM data exhibits inconsistencies with
reality. This observation underscores the importance of not
immediately removing roads from the dataset, as some roads
in OSM are labeled solely as car roads (e.g. secondary roads) but
are also utilized as bicycle routes. Erroneous labeling presents
specific challenges for bicycle map-matching due to the diverse
types of roads available in OpenStreetMap. Complications also
arise from varying regulations regarding infrastructure usage by
bicycles across different countries.

In summary, while numerous map-matching methods have
been designed for car traffic, there is still a gap in address-
ing the specific challenges posed by bicycle traffic in the real
world: (1) The type of roads and surrounding environment
influence cyclists’ route choices, which geometric and topo-
logical methods fail to account for. (2) Most algorithms are
designed for car traffic, whereas bicycle traffic has its own
specificities—fewer speed limitations, a wider variety of usable
roads—resulting in an ambiguous road network for cyclists.
(3) Finally, the OSM dataset is noisy, containing roads usable
by cyclists but not labeled as such. These challenges persist and
have motivated our research, forming the foundation of our
approach.
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4 GAO ET AL.

FIGURE 2 Comparison of matching GPS travel data for one route between the pgMapMatch method and our method. Each method is divided into three
stages: preprocessing, road path scoring, and postprocessing. The common parts are denoted in grey, while the differences are highlighted in yellow and red. Actions
are represented by squares, and input/output are denoted by circles.

3 NOVEL MAP-MATCHING METHOD
FOR BICYCLES

In this section, we introduce our innovative approach to map-
matching cycling GPS data. We begin with an overview in
Section 3.1 that underscores the novelty of our method which
extends the pgMapMatch model to cater specifically to bicy-
cle traffic. Subsequently, we delve into two crucial preprocesses.
The first step, outlined in Section 3.2, focuses on creating a sim-
plified graph representation of the road network. The second
step, detailed in Section 3.3, automates the classification of road
availabilities for cyclists, particularly focusing on the urban main
road network to ensure accurate mapping of trajectories to the
most probable roads. Finally, we elaborate on our state scoring
system and extended transition scoring system in Section 3.4,
where each road candidate is assigned a score that integrates
geometric, topological, and temporal aspects.

3.1 Extended map-matching method
overview

The pgMapMatch method [8] has been recognized as the opti-
mal map-matching model for car traffic [11]. We extend this
method to better suit bicycle traffic. An overview of these two

methods is presented in Figure 2. As depicted in Figure 2,
each method comprises three stages: preprocessing, road path
scoring, and postprocessing. The entire process falls under the
category of HMM, with each stage corresponding to defin-
ing the state, determining state score and transition score, and
finding the optimal path.

3.1.1 Preprocessing stage

In this stage, the bicycle network is identified, and a set of can-
didate roads for each GPS data point is selected. These roads
represent the states in Markov theories.

In pgMapMatch, the raw road network is used as the bicycle
network, and roads within a 50-meter radius for each GPS data
record are chosen as candidates. The 50-meter radius is gener-
ally larger than GPS accuracy, ensuring the capture of almost all
true road segments. In our method, we start by extracting a sim-
plified graph network from the raw road network to reduce the
computational load. This process will be detailed in the follow-
ing Section 3.2. Based on the simplified network, we first classify
the availability of various roads based on the OSM road type
descriptions and discrepancies between OSM road types and
real-world observations. Subsequently, we refine our classifica-
tion for the main road network, which serves as the backbone
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GAO ET AL. 5

of the urban traffic network. This refinement is driven by the
observation that cyclists often avoid main car roads when well-
established parallel cycleways are available nearby, prioritizing
safety and comfort. A detailed description of this process is in
Section 3.3.

It is worth noting that, in our method, the simplified graph is
built by merging redundant nodes while maintaining the geom-
etry shape. Therefore, when determining the distance between
a GPS record and a specific simplified road (edge), we use the
shortest distance of all original roads (edges) that collectively
form the given road (edge).

3.1.2 Path scoring stage

In this stage, each candidate road from the simplified network
receives a state score to evaluate its likelihood of being part of
the route, and each pair of candidate roads from adjacent GPS
records is assigned a transition score to assess the connection
possibility. In our approach tailored for bicycle traffic, we have
implemented several crucial adaptations.

Regarding the state score, we adopt the same method
as pgMapMatch, only considering the geometric component,
which is the distance between GPS data points and road
segments.

As to the transition score, the pgMapMatch method con-
siders two aspects: (1) a topological component based on the
length of mapped road segments and the distance between adja-
cent GPS points, favoring shorter routes in the geographical
context, and (2) a temporal component favoring smaller speeds
and penalizing significantly for speeds exceeding the maximum
allowed speed. However, the latter may not correspond effec-
tively to bicycle traffic, as road speed limits might not be as
relevant, and there are few control devices (such as speed cam-
eras) for bicycles. In our method, in addition to the topological
component, we use a temporal speed score to penalize unfeasi-
ble speeds for all trips, especially those exceeding 10 m/s. Such
velocities are often unusual in urban cycling environments and
are likely the result of GPS drift, where the recorded location
deviates from the actual position. Additionally, we extend the
temporal component to a time-averaged cost, where the cost
combines factors such as road length, the direction of travel
(whether or not to go against the flow of traffic), and the pre-
defined road availability class. The score of each component is
detailed in Section 3.4.

3.1.3 Postprocessing stage

In this stage, we employ a strategy similar to the pgMapMatch
method. By leveraging the pre-defined state score and transi-
tion score, we apply the Viterbi algorithm [27] to maximize the
accumulated score along the trajectory. This process takes into
account conditions such as U-turns and maximum skips. The
maximum skip parameter enables the algorithm to skip over a
specified number of consecutive GPS points with an associated
skip cost. In practical term, if a current GPS point fails to find a
suitable match within the defined maximum skip distance on the

road network, the algorithm proceeds to the subsequent point in
the sequence in an attempt to find a match. The best candidate
route is then selected, and any gaps in the route are filled.

3.2 Graph extraction

To enhance the clarity of our presentation, we represent the
road network with a graph. The graph representing the whole
network is denoted as G f (V ,E ), where V represents the set of
nodes, and E the set of edges. In this context, ei = (u, v) ∈ E

signifies the i-th road segment from source node u to target
node v. The notations used in this article can be found in
Table A1 of Appendix A.

In OSM, each road consists of several straight segments
to approximate the road shape. Since the original network is
large and computationally intensive when mapping trajectories
to road segments, we aim to create a more compact graph.
We acknowledge that packages such as networkx3 and osmnx4

provide functions to simplify graphs. Nonetheless, we decided
to develop our own package in Algorithm B1, Appendix B to
have the flexibility for specific map-matching demands such as
maintaining oneway and road type information. The length of
the new edge is the sum of its merged edges. In Figure 3, we
present the graph representation of a portion of OSM and its
simplified result.

3.3 Refined road classification method for
cyclist availability

Achieving accurate map-matching to desired road segments
poses significant challenges due to the intricate nature of roads
and inaccuracies in OSM data describing these roads. For
cyclists’ trajectory mapping, it is crucial to evaluate the avail-
ability and safety of different roads, as some are easily available
and safe for cyclists, while others may pose significant dangers
or are unavailable for cyclists. It is insufficient to classify road
segments based solely on road types due to the discrepancies
between the road network and OSM data: roads might be miss-
ing or wrongly labelled in OSM data. In this section, we pay
special attention to these discrepancies for urban main roads
and the nearby roads available to cyclists. Indeed, they serve as
critical traffic arteries and analyzing their accurate traffic state is
essential for effective traffic management.

In the following, we start by discussing common prefer-
ences regarding cycling infrastructure. Then, we use Rotterdam
as a case study to identify observed inaccuracies within OSM
using our visual inspection tool for road types. Based on these
observations, we propose a pipeline classifying main car roads.

Understanding cyclist preferences and behaviors is crucial
for accurate map-matching, especially in cases where ground
truth data is missing. Although cycling behavior varies among

3 https://gitlab.tudelft.nl/T.Gao-1/mm4b.githttps://networkx.org/documentation/
stable/
4 https://osmnx.readthedocs.io/en/stable/
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6 GAO ET AL.

(a) Original graph representation of linestrings in OSM with 328 nodes. (b) Simplified graph representation with only 32 nodes.

FIGURE 3 Visualization of road segments in OpenStreetMap, with different colors corresponding to different types of roads. In this scenario, primary roads
do not intersect with other roads because they are tunnels.

Is road in� � � ��available
for cyclists?� � No

Yes

If alternative road in��

� � ��

low availability for
cyclistsNo

Yes

Is road type
secondary, tertiary

high availability
for cyclists

low availability for
cyclists

FIGURE 4 Pipeline of analyzing the availability of main car roads for cyclists. 𝕄o = {primary, primary link, secondary, secondary link,

tertiary}, 𝔹 = { cycleway, footway, residential}.

individuals, some common preferences is consistently observed
across different cyclists:

In scenarios where dedicated cycle paths run
alongside main roads, cyclists prioritize segregated
cycling infrastructure to enhance safety and com-
fort [29–32]. Cycling on main carriageways is
generally prohibited and considered highly haz-
ardous [33]. Additionally, cyclists’ route choices
are strongly influenced by the trip length [31, 34,
35].

Cyclists’ route choices reflect a balance between safety, com-
fort, and trip length. Based on Google satellite images in
Rotterdam urban area, we observe that dedicated cycleways are
always provided parallel to main car roads. In these cases, the
difference in trip length between using cycleways and car roads
is minimal, and the high risk associated with car roads create a
strong preference for cycleways. For pedestrian-dedicated roads,
the choice is influenced more by comfort and trip length than by
safety considerations. Cyclists may use shortcuts through these
roads when they offer significant time savings, although these
routes are generally less preferred from a comfort perspective.

In OSM, we denote the hierarchized main car road net-
work as 𝕄o, consisting of motorway, motorway link,

primary, primary link, secondary, secondary

link, tertiary roads. By visualizing different OSM road
types in the map, we derive the following observations:

Observation 1 Parallel cycleways alongside motorway,

motorway link, primary, primary link, second-

ary link are consistently depicted in OSM.
Observation 2 If cycleways run parallel to secondary

and tertiary roads in OSM, they are labeled as cycleway,
footway, or residential. Otherwise, they are merged with
the main road representation. For simplification, we denote the
set of cycleway, footway, and residential as Alternative
Bikeable Road Set 𝔹.

The cycling infrastructure preferences show a significant pri-
ority difference between main car roads and adjacent cycleways.
However, OSM inaccuracies often blur the distinction between
parallel cycleways and main roads. Therefore, to correctly evalu-
ate the probability of cyclists using different roads, it is necessary
to distinguish between actual cycleways and main car roads in
the OSM network. The workflow is depicted in Figure 4. For
secondary and tertiary roads, if we can identify alterna-
tive roads within set 𝔹 for cyclists, we confirm that they only
represent car roads and are of low availability for cyclists.

Based on this examination on main car road network, we
complete a road classification that accounts for OSM inaccura-
cies and street descriptions. This classification provides a more
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GAO ET AL. 7

TABLE 1 Classification of roads availability considering street descriptions in [28], real-world situations in the Rotterdam urban area, and revised main car road
network. secondary-2 and tertiary-2 denote roads identified as having low availability, while secondary-1 and tertiary-1 represent the remaining roads.

OSM road type Class Explanation

Cycleway 0 Dedicated cycling infrastructure in urban areas.

Residential 1 Residential areas are frequently visited by our user group. Many real-life cycleways are wrongly labelled (overlapped)
with residential in OSM.

Tertiary-1 1 The next most important roads in a country’s system. Many real-life cycleways are wrongly labelled (overlapped) with
tertiary in OSM.

Service 2 Roads leading to or within areas such as industrial estates, campsites, business parks, car parks, and alleys. They are
easy to be used by cyclists.

Path 2 Generic paths intended for all non-motorized vehicles including bicycles.

Living street 2 Residential streets with generally lower speed limits and reduced traffic volume, creating a safer environment for
cyclists and pedestrians.

Unclassified 3 Unclassified roads.

Footway 3 Roads mainly or exclusively designed for pedestrians, typically in park, zoom, and garden. They often feature
elements such as uneven surfaces and narrow width, which are not ideal for cyclists to use.

Pedestrian 3 Roads mainly or exclusively for pedestrians, typically in train station and shopping areas. Cyclists are generally
required to walk their bikes in train station and shopping areas.

Steps 3 Roads with stairs where cyclists must carry their biyclces.

Bridleway 3 Roads designed for horse riders, they are often unpaved or have rough surfaces, such as gravel or dirt, which can be
challenging and uncomfortable for cyclists.

Platform 3 Platforms at bus stops or train stations, they are not designed to accommodate bicycles and may lack features for safe
cycling.

Busway 3 Bus lanes next to the road. The infrastructure such as line width and traffic control is tailored for buses instead of
bicycles.

Construction 3 Roads under construction. Construction zones often have uneven or unstable sufaces that are hard for cyclists to use.

Services 3 Service stations along highways. They are often located at highway interchanges with limited access for cyclists.

Secondary-1 3 secondary roads in OSM that overlap with real-life cycleways, this identification may be overly optimistic.

Motorway 4 Restricted access highways.

Motorway link 4 Link roads between motorways.

Secondary link 4 Link roads between secondary roads, typically depicted with parallel cycleways in OSM.

Primary 4 Major roads in a country’s road system, typically depicted with parallel cycleways in OSM.

Primary link 4 Roads linking primary roads, typically depicted with parallel cycleways in OSM.

Tertiary-2 4 tertiary roads with parallel cycleways in OSM.

Secondary-2 4 secondary roads with parallel cycleways in OSM.

accurate assessment of the route choice’s probability based on
road type, comfort, and safety consideration for cyclists. As
shown in Table 1, we group all the roads into five classes.
Class 0 includes only cycleway, corresponding to dedicated
cycling infrastructure along main roads. Class 1 comprises cycle-
ways that are incorrectly labeled (e.g. residential and part of
tertiary roads). Class 2 encompasses roads such as service
that are not primarily designed for cycling but are still available
to cyclists. Class 3 consists of roads that cyclists are generally
not permitted to use but where violations occur occasionally
(e.g. pedestrian) [20]. Class 4 includes roads used by cyclists
only in extreme situations, where usage is highly dangerous (e.g.
primary) [33].

It is worth noting that, although our observations and road
classification table are based on Rotterdam, they are flexible
and can be adapted to accommodate specific local infrastruc-

ture conditions and usage patterns. In the Section 3.3.1, we
detail the process of finding alternative roads for secondary
and tertiary roads in Figure 4, and address specific cases that
necessitate precise handling of inaccuracies in Section 3.3.2.

3.3.1 Framework of revising main car road
availability

We classify an OSM main road as having low bicycle availability
when alternative bikeable roads are nearby. An intuitive case is
given in Figure 5. Figure 5a provides an illustration of the road
network in a selected area in Rotterdam, the Netherlands, which
showcases a typical intersection scenario. Figure 5b categorizes
these roads based on our previous definition. Considering the
expanded road in Figure 5c, it is easy to find available alternative
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8 GAO ET AL.

(a) OpenStreetMap representation. (b) Classify roads and mark considered road.

(c) Expand the scope to its outgoing edge. (d) Find bikeable alternative road.

FIGURE 5 Among the secondary and tertiary roads we evaluate availability for cyclists. First classify all the roads into OSM main car roads and
alternative bikeable roads. Later, we expand outgoing roads of the considered road to find practical alternative bikeable routes.

bikeable roads nearby in Figure 5d, making the considered road
of low availability for cyclists.

There are two main observations from Figure 5: the first
one is that the alternative roads and OSM main car roads do
not necessarily geometrically run in parallel but intersect with
each other, forming acute angles. Therefore, the process of
revising OSM main car roads should be rooted in topological
connectivity rather than geometric parallelism.

The second observation is that some OSM main car roads,
while not directly connected to bikeable roads in the local view,
can still be considered with low availability for cyclists. This is
because a narrow local perspective may not suffice to detect
potential nearby bikeable road alternatives. Thus, to expand our
observation area and make a more informed determination, we
consider both the incoming and outgoing edges within a speci-
fied distance. An example of expanding outgoing scope is given
in Appendix C Algorithm C1.

With the expanded OSM main car roads, it is now possible to
identify whether alternative roads sharing the same start node
and end node exist. The condition for bikeable roads to serve as
alternatives is based on two key metrics: detour ratio 𝜃uv and
detour distance 𝛿uv . Denoting the bicycle distance as (u, v)

(the shortest distance achievable via bikeable roads between
nodes u and v) and OSM main car road distance as  (u, v) (the
shortest distance achievable via OSM main car road network),
the detour ratio 𝜃uv and detour distance 𝛿uv are expressed as
follows:

𝜃uv =
(u, v)
 (u, v)

,

𝛿uv = | (u, v) − (u, v)|.

The use of the detour ratio 𝜃uv and detour distance 𝛿uv is
depicted in Figure 6, where two different rules are presented,
each applying to different scenarios. Satisfying any of them
confirms the presence of alternative bikeable roads, render-
ing the existing OSM main car roads unavailable for cyclists:
(1) The first rule applies to shortcut situations by only constrain-
ing the detour ratio. This is intuitive, as if the bikeable road is
comparable or even shorter than the original road, cyclists tend
to take the bikeable road, as shown in Figure 6a. (2) The sec-
ond rule addresses short OSM main car roads where the detour
ratio might be substantial. As shown in Figure 6b, we adopt a
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GAO ET AL. 9

FIGURE 6 Rules are applied in different situations, and the thresholds are determined empirically based on applied dataset (Talking Bike). (a) shortcut:
uv = 94.5 m,uv = 60.2 m, 𝜃uv = 0.64, 𝛿uv = 34.3 m. Applied rule: 𝜃u,v ≤ 1.2. (b) short considered roads: uv = 22.2 m,uv = 33.3 m, 𝜃uv = 1.50, 𝛿uv = 11 m.
Applied rule: 𝜃u,v ≤ 2 & 𝛿u,v ≤ 20 m.

FIGURE 7 Special cases dealing with inaccuracies. (a) Bad expanded neighboring roads (denoted in yellow) form part of the loop. (b) Bad expanded
neighboring roads (denoted in grey) disrupt the bicycle network between the two red star markers. (c) Expanding a long-length edge could help the labeling of
tiny-length edge for which the rules are hard to satisfy.

more flexible constraint of the detour ratio 𝜃uv while enforcing
a constraint on the detour distance 𝛿uv .

The empirical thresholds utilized for these two rules are as
provided in the figures. In this study, we developed a visual-
ization tool to display the identified OSM main car roads with
low availability for cyclists, allowing users to easily zoom in
and out to compare with real-world conditions. The thresh-
olds were determined to ensure that the accurately identified
main car roads meet a satisfactory level. However, the selec-
tion of diverse hyper-parameters can vary according to user
preferences. Looser constraints typically lead to a more coarse-
grained screening, resulting in more OSM main car roads
being identified as having low availability for cyclists. Addi-
tionally, some roads that are integrated with real-life cycleways
might be wrongly categorized as having low availability. Accord-
ing to observations with our dataset, the revised network is
robust to changes in hyperparameters. The algorithm is given
in Appendix Algorithm C3.

3.3.2 Special cases

Up to this point, we have developed a framework to identify
OSM main car roads with low availability for cyclists. Yet, this

framework is not sufficient. The complexity of real-world road
situations could lead to undesired expansions, and the selected
roads might disrupt the connectivity of Bikeable Roads due to
inherent inaccuracies in OSM. These situations are addressed
with the first two cases in this section. Additionally, we present
a third case to enhance the revising process for very short
road segments.

The first case involves confusion of expanded roads. When
expanding the observation scope to include neighboring incom-
ing and outgoing roads, the existence of an alternative bicycle
road depends largely on the bikeable distance u,v . When u,v

is small, all the rules described above are easily satisfied and the
corresponding OSM main car road is regarded to have low avail-
ability for cyclists. However, in the case shown in Figure 7a,
where the extended neighboring roads form part of a loop,
the bicycle distance u,v naturally decreases. This is not the
expansion that we want. Therefore, we impose restrictions on
the vertical and inverse projection of neighboring roads to pre-
vent them from forming a loop. This particular constraint is
addressed in Algorithm C1.

The second case arises from the incomplete data within
OpenStreetMap. As illustrated in Figure 7b, the roads under
consideration disrupt the continuity of the bicycle network.
Retaining these roads for map-matching is essential since
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10 GAO ET AL.

FIGURE 8 The function of (a) geometric score, (b) topological score, (c) temporal speed score, and (d) temporal cost score.

omitting them would force cyclists to take detours to reach the
opposite side of the road. To tackle this problem, we evaluate all
pairs of candidate nodes forming the outgoing/incoming candi-
date edges. If significant detours are required through Bikeable
Roads to connect one node pair, the edge connecting these
nodes should not be classified as having low availability. An
extreme case involves two nodes isolated in Bikeable Roads
despite being connected in the full road network, and in such
instances, these roads should not be classified as low availability
as well. The algorithm is given in Appendix Algorithm C2.

The third case pertains to very short uncertain roads, posing
challenges in creating rules that universally apply without affect-
ing the assessment of other roads. As shown in Figure 7c, given
that most of these short roads come into play when expand-
ing the observation scope of longer or medium-length roads,
to which rules defined before apply effectively, it is reasonable
to label them as having low availability if alternative bikeable
roads are identified for the collective segment involving these
short roads.

3.4 Path scoring function

Given a series of candidate road segments, we use the geomet-
ric score to represent the local likelihood of observing the GPS
record for each road segment, and the topological score and
temporal score to measure the transition likelihood between
road segments.

3.4.1 Geometric score

The function of the geometric score based on the distance
between GPS points and road segments (in meters) is depicted
in Figure 8a. The pgMapMatch method utilizes a normal distri-
bution with a sharp drop in probability between 0 and 20 m. In
our approach, we have implemented a sharp drop for distances
greater than 20 m. The design is attributed to the fact that, in
many cases, the GPS error for the applied dataset could reach
20 m, as supported by the findings in [36].

3.4.2 Topological score

The topological score considers the likelihood of road tran-
sitions from a spatial perspective and favors short distances.
Figure 8b presents the evolution of topological score over
topological ratio. The topological ratio is the ratio of esti-
mated road network distance over straight-line distance between
GPS points. Similar to the pgMapMatch method, we use a t-
distribution in our approach. However, we increase the scale
parameter to create a wider distribution. This accounts for the
larger sampling interval in the applied dataset and accommo-
dates the potential for cycling network distances to be much
longer than the straight-line distance between GPS records,
resulting in a higher topological ratio.

3.4.3 Temporal score

The temporal score measures the likelihood of road transi-
tions from a temporal perspective. As introduced in Section 3.1,
our temporal score differs significantly from the pgMapMatch
method. In our approach, it is the sum of two parts: speed score
and time-averaged cost score, as depicted in Figures 8c and 8d.
The speed score only penalizes estimated speeds over 10 m/s,
which probably results from GPS drift errors.

For the time-averaged cost, the cost consists of a mapping
cost and a traveling cost. Denoting e0 and en two road candi-
dates for two GPS points at time ts and ta, with {e1, e2, … , en−1}

being the intermediate road segment set found by the shortest
path algorithm.

The mapping cost cm imposes different penalties according
to the classification detailed in Table 1. As discussed in Sec-
tion 3.3, each class groups roads based on varying levels of
availability for cyclists. This classification considers common
route choice, OSM street descriptions, and real-world road net-
work observations. Higher classes represent roads that are less
available and less preferred by cyclists. Therefore, we apply pro-
gressively higher cost coefficients for each class. We denote class
0-4 as ℂ0 − ℂ4 and 𝛼 = [𝛼0, 𝛼1, 𝛼2, 𝛼3, 𝛼4] ∈ ℝ5

+ the map-
ping penalty for each class. In the following equation, we set
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GAO ET AL. 11

TABLE 2 Comparison of the data provided by Ring-Ring and Tracefy.

Trip duration (min) Sampling interval (s)

Supplier ID Nb of recorded trip Mean Median 75% quantile Mean Median 75% quantile Peak hours

Ring-Ring 1,032 7.0 5.2 8.7 12.7 4.0 11.0 5h-7h & 16h

Tracefy 100,202 6.2 4.7 8.1 30.0 14.0 30.0 18h-22h

𝛼 = [0, 1, 2, 3, 5]:

cm =
∑

i∈{0,n}

𝛼0𝟙ℂ0
(ei ) + 𝛼1𝟙ℂ1

(ei ) + 𝛼2𝟙ℂ2
(ei ) + 𝛼3𝟙ℂ3

(ei )

+𝛼4𝟙ℂ4
(ei ).

The traveling cost ct is defined based on the road length, with
additional coefficients incorporated for reverse travel direction
and roads classification detailed in Table 1:

ct =
n∑

i=0

fi li (1 + 𝛽d𝟙dir (ei ))(1 + 𝛽0𝟙ℂ0
(ei ) + 𝛽1𝟙ℂ1

(ei )

+ 𝛽2𝟙ℂ2
(ei ) + 𝛽3𝟙ℂ3

(ei ) + 𝛽4𝟙ℂ4
(ei )),

where fi ∈ [0, 1] represents the fraction to travel, li is the road
length, 𝟙dir (ei ) is a function indicating whether the travel is
against the designed direction. The time-averaged cost is thus:
c = (cm + ct ) ⧵ (ta − ts ). We use 𝛽 = [𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4] ∈ ℝ5

+ to
denote extra travelling cost for each class. In our experiment, we
set 𝛽d = 0.2 and 𝛽 = [0, 0.1, 0.2, 0.3, 0.5]. In both cost func-
tions, our coefficients reflect the availability levels of different
roads. The sensitivity of model performance to 𝛼 and 𝛽 is
further discussed in Section 4.2.3.

4 EVALUATION AND ANALYSIS

The objective of map-matching is to reconstruct the traveled
roads from erroneous GPS data, providing insights into user
behaviors. In this section, we first introduce our real-world
dataset in Section 4.1, then evaluate our network and overall
method in Section 4.2. Finally, we examine our mapped results
to understand user behaviors in Section 4.3.

4.1 Dataset description

The dataset utilized to validate our algorithm is sourced from
the Talking Bike Program in the Netherlands, spanning a dura-
tion of two years from October 1st, 2020. The primary objective
of this program is to collect policy-relevant data and gain
insights into cycling travel behavior [2]. The Talking Bikes pro-
gram has amassed an extensive GPS cycling dataset, capturing
over one million bike rides annually across various locations
throughout the Netherlands. The dataset is collected anony-

mously and in line with General Data Protection Regulation
(GDPR) [37] in Europe.

In this study, the urban area of Rotterdam is selected as the
research area. Rotterdam is a Dutch port city and is home to
approximately 0.6 million inhabitants. The municipality of Rot-
terdam is dedicated to transforming into a cycle-friendly city
[38]. The OSM of our study area and the scatter plot of the
Talking Bike Data can be found in Appendix D, Figure D1.

We have been very diligent in our data cleaning process,
aiming to retain data integrity and minimize objective bias.
Specifically, to address duplicate timestamps within a route,
we adopted a strategy aligned with [39], keeping only the ini-
tial record. Additionally, trips consisting of two or fewer data
points were excluded as they are not suitable for map-matching.
This process resulted in the identification of 101,256 trips to be
matched within the urban area. In the candidate road selection
process, if there are only two or fewer data points for which we
can find at least one road segment within 50 meters, these trips
are removed. This results in 101,234 trips for the mapping pro-
cess. For a detailed statistical distribution of the dataset, refer to
Appendix D, Figure D2.

The dataset is collected by two suppliers: Siemens Mobility
(Tracefy) and Ring-Ring. Siemens Mobility uses GPS trackers
from Tracefy, collecting real-time trajectory data from shared
bikes, constituting more than 98% of the dataset. Ring-Ring
is an application designed to enhance cyclist safety by send-
ing notifications to cyclists when approaching intersections.
The geographical distribution of these two datasets is given in
Figure E4, Appendix D.

Table 2 presents key numbers for these two datasets, and a
detailed distribution is available in Figure E1, E2, and E3 of
Appendix D. We could see that the Ring-Ring dataset exhibits
higher frequency and longer trip durations. Additionally, the
Ring-Ring dataset captures both morning and afternoon peak
hours, whereas the Tracefy dataset predominantly reflects the
afternoon-evening peak hour. The differences between these
two datasets arise from the distinct user groups from which
data are collected. Ring-Ring collects data from phone appli-
cation users, while Tracefy shared bikes are mostly used by food
deliverers. This disparity contributes to the dense distribution in
residential areas within the Tracefy dataset. Moreover, the ten-
dency of people to order food in the afternoon results in an
afternoon-evening peak hour observed in Tracefy dataset.

Additionally, the high values for the mean sampling time and
the 3rd quartile, relative to the median sampling time, indicate
that many trips contain long segments with sparse GPS infor-
mation. In urban environments, characterized by a dense road
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12 GAO ET AL.

FIGURE 9 (a) The unconfirmed OSM main car roads (tertiary in red and secondary in purple), possible alternative bikeable roads(grey), and the other
roads (orange) in our study area. (b) Confirmed OSM main car with low availability for cyclists roads and their alternative roads. Generally the former is surrounded
by the latter.

network, this lack of detailed data makes the map-matching task
more challenging.

Regarding the road network dataset, we employed the OSM
data provided by BBBike. The raw OSM network contains
26,011 nodes and 61,110 edges (considering reverse edges, as
is typical in real life). After removing redundant nodes, these
numbers were reduced to 8,452 nodes and 25,696 edges. This
indicates a remarkable compression of more than 67.5% of
nodes and 57.9% of edges. This significant reduction con-
tributes to lower computing demands, thereby enhancing the
overall performance of our methodology. This efficiency is
achieved while retaining all essential information, including road
length, road type, and other vital parameters.

4.2 Evaluation

In this section, we conduct a comprehensive evaluation of
our method. We start by visualizing our identified OSM main
car roads with low availability for cyclists and their alternative
routes found in Section 3.3. Figure 9a outlines all unconfirmed
main car roads (labelled as secondary, tertiary in OSM,
Observation 2) and their possible alternative bikeable road
types. Figure 9b presents the confirmed main car roads with
low availability and their corresponding alternative roads on the
map. Comparing these two figures, we can see that a signifi-
cant percentage of main car roads are identified as having low
availability for cyclists. This distinction highlights different lev-
els of availability within the OSM main road network, even when
roads have the same labels.

In the following section, we evaluate our method. Estab-
lishing ground truth is crucial for validating the accuracy and

effectiveness of our approach. Due to the lack of ground truth,
we create a evaluation dataset by randomly selecting 100 tra-
jectories, similar with [11]. These selected trajectories serve as a
reference point, or “ground truth,” for our evaluation. We begin
by detailing the evaluation dataset and evaluation metrics, fol-
lowed by a comparison between our method and pgMapMatch.
Finally, we perform a sensitivity analysis to assess model perfor-
mance under various conditions, including parameter variations
and GPS data quality. At this stage, we also validate our refined
road availability classification for OSM main car roads (detailed
in Section 3.3).

4.2.1 Evaluation dataset and metrics

During manual labelling, we establish the ground truth trajecto-
ries by examining the real-world environment and adhering to
the following principles:

1. If a dedicated parallel cycleway nearby is available, cyclists
will use the cycleway.

2. When the time interval is large between two sample points,
we use Google Maps to assist with routing. In cases the route
suggested cause a severe detour in comparison to a more
direct trajectory (against the traffic flow of the cycle lane), we
assume that cyclists will not follow Google Maps’ indications
and will go in the reverse direction.

3. In cases where Google Maps propose multiple trajectories
and the trip is two-way, we assume that cyclists choose
roads they are familiar with. Therefore, we will select
the route recommendation that overlaps with the other
direction.
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GAO ET AL. 13

Ground-truth route

Map-matched route

Road 1 Road 2 Road 3
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FIGURE 10 Illustrative example of map-matching evaluation metrics.

4. Cyclists typically avoid crossing shopping centers where they
need to walk their bikes, unless there are multiple GPS points
near the shopping center and the pedestrian roads provide a
direct shortcut.

5. Cyclists typically do not cycle in parks and gardens unless
there are GPS records very close to these roads and far from
other roads.

6. Cyclists typically do not like crossing roads, particularly
boulevards with high traffic volumes.

Due to the complexity of manual labeling, only 100 trajecto-
ries are selected. The selection and labeling are performed by a
single individual. To ensure that our evaluation dataset is rep-
resentative, we conduct the Kolmogorov–Smirnov test during
sampling. We ensure that the p-values for the distributions of
sampling time, travel time, and GPS records per trip are all
higher than 0.05, indicating that the sampled trajectories are not
statistically different from the complete dataset. The p-values
are given in Table F1 and the comparison of the sampled dataset
and complete one is provided Figure F1, F2, F3, and F4 in
Appendix F.

Given the mapped route and ground-truth route, we employ
four measures to compare: route mismatch fraction [40], over-
lapping ratio [41], recall [42], and precision [42]. For each metric,
their definitions are as follows and an example is given in
Figure 10:

∙ Route mismatch fraction is the total length of roads that have
been erroneously included (either incorrectly added or incor-
rectly subtracted) by the map-matching algorithm, divided by
the length of the ground-truth route.

∙ The overlapping ratio is the ratio of the number of common
roads between the ground-truth and map-matched routes to
the total number of unique roads present in both routes.

∙ Recall is the ratio of the total length of the common roads
between the ground-truth route and the map-matched route
to the total length of the ground-truth route.

∙ Precision is the ratio of the total length of the common roads
between the ground-truth route and the map-matched route
to the total length of the map-matching route.

By definition, higher recall, precision, overlapping ratio,
and smaller route mismatch fraction indicate a better map-
matched result.

TABLE 3 Performance comparison between our method and
pgMapMatch. Our method achieves better performance than pgMapMatch
across all metrics.

Method

Route mismatch

fraction

Overlapping

ratio Recall Precision

Our method 0.19 0.794 0.895 0.909

pgMapMatch 0.616 0.523 0.682 0.694

Improvement 69.2% 51.8% 31.2% 31.0%

4.2.2 Comparison with pgMapMatch

In this subsection, we compare the mapped result of our
method with the pgMapMatch method. For a fair compari-
son, we utilize our simplified network, ensuring that all network
properties are maintained without influencing accuracy. We
remind that, in pgMapMatch, the temporal component con-
siders the estimated speed over the maximum allowed speed
and favors smaller speeds. Given the absence of a real maxi-
mum speed limit for cyclists, we adjust the cost function to be
road length. We also harmonize the temporal score, geometri-
cal score, and topological score with the same function adopted
in our method. These adjustments ensure a fair and accurate
comparison, considering the characteristics of the dataset.

From Table 3, we observe an important improvement of
our method compared with pgMapMatch. This improvement
is primarily due to our comprehensive evaluation of road avail-
ability. Our method distinguishes between different levels of
availability for cyclists, which is reflected in our cost func-
tions. In contrast, pgMapMatch does not account for road types
and primarily focuses on optimizing GPS recorded distances
and shortest paths. In Figure 11, we draw the heatmap differ-
ence in edge counts between the pgMapMatch method and our
approach. Upon comparison with Figure 9b, it becomes evi-
dent that the pgMapMatch method tends to match on main car
roads with low availability. In contrast, our method intentionally
incorporate additional traveling cost to these roads, effectively
preventing excessive mapping.

In the following, we present two real-world scenarios in
Figure 12 to intuitively show the difference in performance
between our method and pgMapMatch. From the satellite
image, cycleways are observed alongside the main car roads. In
this context, cyclists tend to cycle on the cycleways instead of the
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14 GAO ET AL.

FIGURE 11 The heatmap illustrates the differences in bike counting
between the mapping results of pgMapMatch and our method. The red color
indicates roads that are more frequently mapped in pgMapMatch, while the
blue indicates the inverse.

car roads. We can observe that even when the GPS records fall
on or are very close to the car roads, our method successfully
maps them back to the cycleways. Moreover, the connection
roads among the mapped roads also favor cycleways, a result
of our designed extra traveling cost for other road types. In

contrast, the result of the pgMapMatch method shows cyclists
cycling on the main car roads, which is unrealistic.

4.2.3 Sensitivity analysis

In this section, we focus on assessing model performance under
different conditions, including variations in parameters and data
quality. When varying parameter, we also compare the perfor-
mance of our method with different classifications of OSM
main road availability.

Parameter variations and different main car road avail-

ability classification. During the evaluation stage of main
car road availability, we developed a visualization script with
zoom-in and zoom-out capabilities, which simplifies the visual
browsing of large areas. Our observations indicate that the
revised network remains relatively stable with variations of ±0.1
in both the detour ratio 𝜃uv and the detour distance 𝛿uv . This
stability suggests that minor adjustments to these parameters
have a negligible impact on the overall network. Additionally, the
visualization script supports parameter tuning by offering a clear
and adjustable view of the network, facilitating the exploration
over different sizes of network. Therefore, the sensitivity of
model performance to 𝜃uv and 𝛿uv is not discussed here. Instead,
this section examines the model’s sensitivity to the parameters
𝛼 and 𝛽 in the mapping cost cm and traveling cost ct .

Given that our classification is based on common route
choices, we preserve the relative weight between different

FIGURE 12 Comparison of our method and pgMapMatch using two examples. (a) and (d) show satellite images of the road network where cycleways run
alongside the main car roads. (b) and (e) display the mapped results of our method, with red dots representing GPS points, red stars indicating estimated positions,
and light blue lines representing the mapped route. (c) and (f) use the same symbols to present the results of pgMapMatch.
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GAO ET AL. 15

TABLE 4 Parameter sensitivity analysis. comparison-1 for different parameter settings. s𝛼 and s𝛽 are scaling factors of 𝛼 and 𝛽, and “—” indicates no change
from the original parameter. The figures in bold represent the best values for each metric and for each method.

Method Scaling factor Mismatch fraction Overlapping ratio Recall Precision

Our method — 0.190 0.794 0.895 0.909

s𝛼 = 0.2 0.211 0.783 0.885 0.897

s𝛼 = 0.5 0.203 0.788 0.888 0.902

s𝛼 = 2 0.221 0.771 0.878 0.893

s𝛼 = 5 0.302 0.727 0.832 0.857

s𝛽 = 0.2 0.255 0.724 0.861 0.876

s𝛽 = 0.5 0.238 0.749 0.87 0.885

s𝛽 = 2 0.237 0.773 0.871 0.876

s𝛽 = 5 0.258 0.755 0.862 0.875

Comparison 1 — 0.213 0.786 0.883 0.897

s𝛼 = 0.2 0.225 0.772 0.877 0.89

s𝛼 = 0.5 0.216 0.778 0.882 0.896

s𝛼 = 2 0.238 0.77 0.869 0.884

s𝛼 = 5 0.303 0.731 0.832 0.857

s𝛽 = 0.2 0.314 0.688 0.831 0.846

s𝛽 = 0.5 0.284 0.716 0.846 0.861

s𝛽 = 2 0.246 0.772 0.867 0.871

s𝛽 = 5 0.277 0.747 0.853 0.865

Comparison 2 — 0.271 0.738 0.855 0.87

s𝛼 = 0.2 0.278 0.741 0.852 0.864

s𝛼 = 0.5 0.26 0.744 0.86 0.875

s𝛼 = 2 0.305 0.714 0.838 0.851

s𝛼 = 5 0.376 0.682 0.795 0.822

s𝛽 = 0.2 0.266 0.717 0.855 0.871

s𝛽 = 0.5 0.293 0.709 0.843 0.858

s𝛽 = 2 0.34 0.7 0.822 0.832

s𝛽 = 5 0.428 0.666 0.79 0.793

classes, and use scaling factors s𝛼 , s𝛽 to adjust 𝛼 and 𝛽. For
example, when s𝛼 = 2, all 𝛼 values become twice their original
values. To examine the effects of the revised main car roads, we
introduce two comparison models:

Comparison-1: All secondary and tertiary roads are
not considered to have low availability for cyclists. Specifically,
all tertiary roads are classified as Class 1, and all secondary
roads are classified as Class 3 in Table 1.

Comparison-2: All secondary and tertiary roads are
considered to have low availability for cyclists. Specifically, all
tertiary and secondary roads are classified as Class 4 in
Table 1.

For both comparison models, the classification of other roads
in Table 1 is retained. The performance under different 𝛼 and
𝛽 values for these two comparison models, along with our
method, is shown in Table 4.

In Table 4, we observe that the performance of all methods
significantly decreases when setting s𝛼 = 5, indicating that the
model pays too much attention to mapped roads at each GPS

point, resulting in insufficient full route optimization. Moreover,
when s𝛼 < 5, model performance is more sensitive to s𝛽 . This is
because the mapped cost applies only to available GPS points,
whereas the traveling cost affects the selection of all interme-
diate roads; thus, variations in s𝛽 have a greater impact than
variations in s𝛼 .

Morever, our method generally outperforms comparison-
1, with both methods showing decreased performance when
deviating from the original parameter values. Nevertheless, our
method remains less sensitive to parameter changes compared
to comparison-1, demonstrating its robustness. The difference
becomes more significant for s𝛽 = 0.2, which corresponds to
a smaller traveling cost difference among different roads. By
differentiating OSM main car roads availabilities, we create a
map-matching hierarchy among roads labeled secondary and
teriary which helps to preserve the traveling cost difference.
Additionally, comparison-2 generally performs worse, indicat-
ing that treating all OSM main car roads as low availability is
ineffective and that further refinement is necessary.
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16 GAO ET AL.

FIGURE 13 Performance metrics (route mismatch fraction, overlapping ratio, recall, and precision) as functions of sampling interval and travel time. For
improved visualization, we display only the trips with sampling intervals below 100 seconds and travel times below 750 seconds, as data points beyond these
thresholds are too sparse. The Pearson correlation coefficient between the sampling interval/travel time and the evaluation metrics for the entire dataset is denoted
as “r” in the figures.

GPS data quality. To evaluate our model’s performance
under different data settings, we present Figure 13, illustrating
the model performance as a function of GPS sampling inter-
val and travel time. The sampling interval is a crucial aspect of
data quality, as it determines how frequently GPS data is col-
lected, and shorter sampling intervals provide more detailed trip
information. Excluding a few outlier points, the figure shows
no significant difference in model performance for trips with
sampling intervals ranging from 0 to 100 s and travel times
between 0 and 750 s. This observation is supported by a Pearson
correlation coefficient lower than 0.2. Given that a 100-s inter-
val is relatively large, these results indicate that the algorithm
is robust to variations in sampling frequency and performs
effectively even with datasets that have larger intervals between
GPS records.

4.3 User behavior analysis

The accuracy of map-matching is crucial for aligning identified
roads with the actual paths taken by users, forming the basis
for extracting meaningful insights into their behavior, prefer-
ences, and travel patterns. In this section, we infer user behavior
based on our mapped results, focusing on two perspectives: the
analysis of the most frequently used road and the examination
of differences between two distinct user groups (Tracefy and
Ring-Ring).

The heatmap, derived from the edge count in our mapped
results, is depicted in Figure 14a. This heatmap directly reveals
the most frequently traveled roads for the studied user groups.
In contrast, Figure 14b showcases the bicycle network provided

by the Rotterdam traffic department, offering a perspective
from a policy design standpoint. It is important to note that the
latter network serves as a rough illustration of the real world,
given that its coordinates are not in longitude and latitude. The
comparison of these two networks allows us to assess whether
cyclists are using the main cycling infrastructures as intended by
the municipality.

Upon examination, Figure 14a reveals a distinct network hier-
archy, where the skeletal structure of frequently used roads is
clearly visible. This hierarchy generally aligns with the network
map presented in Figure 14b. However, two interesting differ-
ences emerge upon closer inspection: (1) Residential roads are
utilized more frequently than expected in our dataset, which
aligns with findings from [43] on the high usage of low-priority
roads. This increased usage may be attributed to their role
as shortcuts for cyclists, especially food deliverers. Addition-
ally, frequent food orders from residential areas contribute
to the high visitation rates. (2) The city’s outer ring is rel-
atively less visited in our dataset. This could be a result of
data filtering for the city borders or the lesser influence of the
Talking Bike campaign on individuals residing outside the city
center.

To compare different user behaviors in Ring-Ring and
Tracefy data, we use the following indices, as described in Sec-
tion 3.4: speed, time-averaged cost, and distance. The speed
represents the estimated speed of cyclists based on the mapped
result, the time-averaged cost is the same as introduced in Sec-
tion 3.4, and the distance refers to the distance between GPS
samples and their corresponding mapped roads. Mean values
of these indices for the Ring-Ring and Tracefy datasets are
presented in Table 5.
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GAO ET AL. 17

FIGURE 14 (a) Heatmap illustrating edge counts with our method, derived from the mapped results using OSM, the count is plotted with log scale. (b)
Policy-privileged roads, representing a theoretical design of the municipality. The difference comes from the fact that people can use roads that the municipality has
not identified as cycleways.

TABLE 5 Comparison of the user behaviors in Ring-Ring and Tracefy
Dataset.

SupplierID Mean speed Mean time-averaged cost Mean distance

Ring-Ring 4.1 m/s 4.9 5.1 m

Tracefy 5.1 m/s 6.8 7.9 m

In Table 5, it is evident that users in the Tracefy dataset
exhibit a higher mean speed compared to those in the Ring-Ring
dataset. This aligns with the expectation that food deliverers
tend to travel quickly to deliver on time. Additionally, there is
a higher mean time-averaged cost in the Tracefy group. Since
this additional cost is based on travel direction and road types,
it implies a higher frequency of rule violations in the Tracefy
group, a common occurrence among food deliverers. Further-
more, we observe a greater distance in the Tracefy group, which
can be reasonably attributed to the fact that the Tracefy group
travels more frequently in densely built-up areas (as illustrated
in Figure E5), which can significantly impact GPS accuracy [7].
In summary, the overall comparison allows us to infer distinct
user behaviors and link them to real-world scenarios.

5 CONCLUSION

Accurate mapping of bicycle travel data plays a crucial role in
providing reliable support for traffic management. For example,
understanding the bicycle traffic flow is essential for optimiz-
ing the overall cycling experience, especially when upgrading
cycling facilities within budget constraints. Insights into cycling
travel times can also contribute to the design of traffic schemes,
prioritizing the cycling mode in urban traffic.

Existing literature on map-matching often relies on net-
works filtered by road types in OpenStreetMap (OSM) or uses
the entire traffic network. The former approach is inadequate
because cyclists commonly violate rules for convenience, while
the latter is too coarse, as cycleways are typically designed along
main car roads in urban areas. Mapping GPS records to main

car roads can introduce bias in the distribution of bicycle trips
in real-life scenarios.

In our method, we innovatively address these limitations by:

∙ Careful classification of availability for bicycles: We
have conducted a detailed availability evaluation of roads
in the OSM data, specifically tailored for bicycles and with
particular attention to urban main road networks.

∙ Extended map-matching scoring functions: Our method
includes an extended scoring function that accounts for
bicycle speed, road types, and road availabilities.

To evaluate the model’s performance, we create an evalua-
tion dataset by randomly selecting 100 trajectories and manually
labeling them. Compared with the baseline model, our approach
demonstrates a more accurate mapping result for bicycle travel
data. Additionally, the special attention on main car road avail-
ability evaluation has been shown to enhance the model’s
robustness to parameter changes. Our model has also demon-
strated consistent performance across various sampling inter-
vals and travel times. This robustness makes our method highly
adaptable for practical applications in real world. Furthermore,
we successfully extract user behaviors based on our mapped
results, aligning with the user distribution in our datasets.

Although we use Rotterdam as a case study, our method is
explainable and grounded in well-established route choice stud-
ies, supporting its applicability beyond Rotterdam with minor
user changes. However, we acknowledge that infrastructure and
usage patterns vary among cities, necessitating adaptations for
different urban environments. We provide a detailed classifica-
tion of road availability. This explanation aids users in adapting
our method to other scenarios and cities. Additionally, differ-
ent user patterns might require adjustments in the cost function
definitions to reflect the common usage of certain road types.

Further improvements to our method could focus on
enhancing its ability to assess network availability. Our cur-
rent method struggles with evaluating the availability of circular
intersections, as these are often misinterpreted as loop sit-
uations. Employing machine learning techniques, particularly

 17519578, 0, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/itr2.12567 by T

echnical U
niversity D

elft, W
iley O

nline L
ibrary on [26/09/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



18 GAO ET AL.

with a sufficient number of network samples, might improve
the accuracy of identifying roads with low availability. Given
that many real-life travel datasets are collected without ground
truth, another avenue for improvement is to propose compre-
hensive evaluation metrics tailored to this type of data. This
would provide a more nuanced and accurate assessment of the
performance of map-matching algorithms in scenarios where
ground truth is unavailable. Additionally, other road properties,
such as grade and pedestrian invasion, could be studied and
incorporated into the cost function for future research.
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APPENDIX A: NOTATION

TABLE A1 Notation for road network.

Symbol Signification

𝔹 Set of Bikeable Roads (u, v)

𝕄o Set of main car roads in OSM

G (V ,E ) Directed road network with set of nodes V and set of
edges (roads) E

ei = (u, v) i-th edge from node u to node v

N− (v) Incoming edges of node v, N− (v) = {(u, v)|(u, v) ∈ E }

N+ (v) Outgoing edges of node v, N+ (v) = {(v, u)|(v, u) ∈ E }

li Length of i-th edge

oi Oneway indicator of i-th edge, 0 for two-way road, 1
for one-way road

ti Road type of i-th edge, e.g. “primary”

APPENDIX B: SIMPLIFIED GRAPH

To obtain the simplified graph, we start by examining each edge
to identify downstream candidate edges that can be merged with
it. We employ a recursive function to investigate these candidate
edges. The candidate edge can be merged with the original edge

ALGORITHM B1 Simplify graph.

Function recursive_programming(parent, edge, d):

// Return if the edge searching reaches

its end or input edge has no

downstream edge

if d[edge] == -1 or len(d[edge]) ==0 then

return parent, d

end

next_edge ← d[edge][0] // Go to downstream

edge

parent ← parent + [edge] // Update parents

(upstream edges)

if next_edge in parent then

return parent, d // Get rid of loops

end

parent, d ← recursive_programming(parent,

next_edge, d)

if d[next_edge] ≠ -1 then

d[edge] ← d[edge] + d[next_edge]

end

d[next_edge] ← -1 // Mark the edge as

searching end

return parent, d

Function simplify_graph():

// Read OpenStreetMap linestrings

raw_df ← transform_osm()

// d: Dictionary of adjacent linestring

segments (intersection excluded)

// with similar road types and direction

information

// Format d[upstream edge]=[downstream

edge]

d ← adjacent_similar_edges(raw_df)// Update the

downstream edges to include all edges

that could be merged

foreach edge in raw_df.index do

_, d ← recursive_programming([], edge, d)

end

// Merge linestring segments into one

merged_edges ← []

foreach edge in d.keys() do

if d[edge] ≠ -1 then

merged_edges.append([edge] + d[edge])

end

end

return merged_edges
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20 GAO ET AL.

only when they share the same road type and road direction,
and their junction does not connect to the rest of the graph.
When a candidate edge is deemed mergeable, it is appended to a
list of merged edges, and the recursive function is invoked with
the candidate edge as the new starting point. This recursive pro-
cess continues until no further candidate edges can be merged
with the current edge. The length of each edge in the simplified
graph is calculated as the sum of the lengths of its constituent
merged edges.

APPENDIX C: ALGORITHM

ALGORITHM C1 Enlarge observation scope.

Function Downstream

Dfs(u, e, km, visited , depth, d1, d2):

// u: Considered node

// e: Current edge index

// d1: Dictionary of expanded downstream

nodes {node: browsed distance}

// d2: Dictionary of expanded downstream

nodes {node: browsed edge path}

// 𝜎p: Vertical or inverse projection

threshold

// visited: List of downstream nodes visited

// km: browsed km

if reached searching depth or searching distance threshold then

return d1, d2

end

// Update the browsed path

d2[u] ← d2[visited [−1]] + [e]

if len(visited)≥ 2 then

ak ← accumulated projection on the vertical

direction of considered road

ai ← accumulated projection on the invserse

direction of considered road

if ak ≥ 𝜎p or ai ≥ 𝜎p then

return d1, d2

end

end

if u has incoming or outgoing bikeable roads then

d1[u] ← km // Update the browsed

distance

end

if u has no outgoing bikeable and no unbikeable roads then

d1[u] ← −1 // Mark the it as an end node

end

for outgoing bikeable edge ei = (u, vi ) with length li do

d1, d2 =Downstream Dfs(vi , ei , km + li ,, visited+[u],

depth+1, d1, d2)

end

return d1, d2

ALGORITHM C2 Clean candidates

Input :  // All expanded nodes that are

connected to bikeable roads

Gb(Vb,Eb ) // Directed graph composed

of only bikeable roads

G f (Vf ,E f ) // Full graph where all

roads have two directions, sharing the

same edge label of OSM

𝜎 // Detour threshold

Output: lst // Label list of edges that should

not be categorized as of low

availability

lst = [] // Initialize output

for u ∈  do

for v ∈  do

if u = v then

continue

end

s1,
f (u, v) ← shortest path list between u and v in

G f and its distance

if u and v are disconnected in Gb then

if e = (u, v) ∈ E f then

lst .append(e.label)

end

continue
end

s2,
b(u, v) ← shortest path list between u and v in

Gb and its distance

// When a significant detour appears,

we consider the bikeable network as

interrupted

if b(u, v)∕ f (u, v) ≥ 𝜎 then

for e ∈ s1 do

lst .append(e.label)

end

break
end

end

end
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GAO ET AL. 21

ALGORITHM C3 Assess candidate nodes.

Input : ei // Considered edge

d+
1
// Browsed distance dictionary for downstream nodes

d+
2
// Browsed path dictionary for downstream edges

lst+ // List of bad expanded downstream nodes

d−
1
// Browsed distance dictionary for upstream nodes

d−
2
// Browsed path dictionary for upstream nodes

lst− // List of bad expanded upstream nodes

Gb(Vb,Eb ) // Directed graph only composed of bikeable roads

 // A set of rules

Output: lst // Confirmed edges

for u ∈ d+
1

.keys() do

km1 ← d+
1

[u]

for v ∈ d−
1

.keys() do

km2 ← d−
1

[v]

if u = v then

continue

end

if u and v are disconnected in Gb then

// If the bikeable road network is not connected

// We could still keep the expanded upstream and downstream nodes

// If they are at the frontier of the road network

if d+
1

[u] = −1 or d−
1

[u] = −1 and v not excluded nodes then

lst = lst + d+
2

[u] + d−
2

[v]

end

continue
end

s1, ← shortest path list between u and v in Gb and the distance

// The sum of extended distance and the length of original road

 ← d+
1

[u] + d−
1

[v] + li
if ( ,) is satisfied then

for i in d+
2

[u] do

if i ∈ lst+ then

break

end

lst .append(i)

end

for i in d−
2

[v] do

if i ∈ lst− then

break

end

lst .append(i)

end

end

end

end
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22 GAO ET AL.

APPENDIX D: DATASET DESCRIPTION

(a) OpenStreetMap of study area in Rotterdam. (b) Talking bike GPS data point distribution in
Rotterdam. The absence of recorded trips in the
North West can be attributed to this zone being
a zoo and private gardens.

FIGURE D1 Study area.

(a) Sampling interval (seconds) distribution. (b) Trip duration (min) distribution.

(c) Sampling hour distribution. (d) Evolution of GPS data amount.

FIGURE D2 Statistical property of talking bike data.
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GAO ET AL. 23

APPENDIX E: CROSS-DATASET ANALYSIS

FIGURE E1 Distribution of sampling hour of the day for supplier Ring-Ring and Tracefy.

FIGURE E2 Distribution of sampling interval for supplier Ring-Ring and Tracefy.

FIGURE E3 Distribution of trip duration for supplier Ring-Ring and Tracefy.
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24 GAO ET AL.

FIGURE E4 Distribution of data samples for different suppliers, Ring-Ring data are more centered in main roads.

FIGURE E5 Heatmap based on bicycle counting amount of mapped data from various suppliers. Due to the large quantity of Tracefy data, it is represented on
a logarithmic scale for better visualization.

APPENDIX F: EVALUATION DATASET

TABLE F1 p-value of Kolmogorov–Smirnov test comparing the evaluation dataset and the raw dataset.

Sample time Trip-averaged sample time Travel time Nb of trip segments

p-value 0.74 0.65 0.94 0.99
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GAO ET AL. 25

FIGURE F1 GPS point distribution heatmap of (a) all trips and (b) selected trips for evaluation.

FIGURE F2 Sample time distribution of (a) all trips and (b) selected trips for evaluation.

FIGURE F3 Travel time distribution of (a) all trips and (b) selected trips for evaluation.
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26 GAO ET AL.

FIGURE F4 Number of trip segment distribution of (a) all trips and (b) selected trips for evaluation.
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