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Preface

About the contents

This book presents a teaching text on airplane performance. This field has to do
with the translational motion of flight vehicles, in which we study such questions
as maximum flight speed, maximum rate of climb, range, and takeoff distances.
A number of books on the dynamics of flight have appeared in the last decades,
aimed at a variety of subjects.

Concerning the treatment of the capability of airplanes to perform specific maneu-
vers and their operational tasks, most of the existing books are of limited scope.
However, the technological developments and the growing importance for all air-
plane types to function economically have introduced the need for a comprehen-
sive, modern book on the principles and practice of airplane performance predic-
tion suited for use as a primary text in undergraduate engineering courses. The
present book is intended to fulfill that need.

The book is a description of the regular courses on airplane performance as have
been taught for many years by the author at the Faculty of Aerospace Engineering
of Delft University of Technology (TUD), The Netherlands, and at the Faculty of
Applied Sciences of the Brussels Free University (VUB), Belgium.

In the text, three fairly well-defined parts may be distinguished.

The first part comprises the chapters 1 to 7, which deal with some basic concepts
of the airplane and its motion, the properties of the atmosphere, and the general
equations of motion. Furthermore, these supporting chapters include the basics
of the generation of aerodynamic forces and moments, the operating principles of
the air data instruments and their application to flight, some fundamental aspects
and operating characteristics of airplane propulsion systems, and the theory of the
propeller. These subjects represent the required background knowledge neces-
sary for the subsequent analysis of the performance of powered and unpowered
airplanes.

The second part is formed by the chapters 8 to 13, where especially are discussed
the classical methods of predicting the performance values of airplanes that per-
tain to a given point of time or a given point on the flight path (point performance).
To illustrate the applications of the theory in practical problems, numerous worked
examples, employing the SI-system of units and notation, are included in these
chapters.

The last part of the main text (chapters 14 to 16) is devoted to giving an account
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of the most common techniques used for estimating the performance items that
are related to the course of the flight (integral performance).

In analyzing the performance in chapters 8 to 16, use is made of both analytical
and graphical techniques.

In order to provide a clear understanding of the fundamental equations of motion,
in Appendix A the essentials of Newtonian mechanics are described. In Appendix
B are listed a number of conversion factors between English and metric units and
between technical units and the equivalent Si units. In Appendix C is given a
table of values for the International Standard Atmosphere up to an altitude of 32
km. Finally, in Appendix D, one-dimensional steady flow equations are reviewed
of which the knowledge is a prerequisite for an appreciation of the aerodynamics
and the many technical aspects of atmospheric flight.

References to the literature are indicated in the text and listed at the end of the
book. In addition, a few more general references have been included.

My special thanks are due to the late Mr. Dirk M. van Paassen, who was a col-
league in much of the preparation of the material presented, and without whose
cooperation this book could not have been written.

Delft, The Netherlands
May 2007 G.J.J. Ruijgrok

In this second edition, apart from a few minor adjustments, all the material from
the first edition has been retained and the errors found in the first edition have
been rectified.

Delft, The Netherlands
August 2009 G.J.J. Ruijgrok
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Chapter 1

BASIC CONCEPTS

1.1 Introduction

This course book deals with performance prediction of aircraft. By performance
we understand certain extremes of quantities that are related to the translational
motion of the vehicle, such as: rate of climb, flight regime, takeoff and landing
distance, range and endurance, turning rate, etc.

In this book the subject matter is limited to that class of aircraft known as air-
planes. An airplane may be defined as a mechanically driven fixed-wing aircraft,
heavier than air, which is supported by the reaction forces caused by the airflow
against the surface of its body. Moreover, the attention is devoted to the exam-
ination of the performance of existing airplanes so that - in principle - pertinent
airplane data are available. This means that the problem of designing an airplane
that meets specified performance requirements, will not be discussed.

As a simplification, performance will be represented by the translational motion
of the airplane as a response to the external forces acting on the center of mass of
the airplane. The prerequisite for this treatment is the assunption that the airplane
is regarded a rigid body.

Another important idealization may be the assumption of an airplane flying over
an Earth that is considered to be nonrotating and flat. The different approximations
will be discussed in some detail in subsequent sections of this chapter.

1.2 The airplane is regarded a rigid body

In this book we shall limit our analyses to rigid airplanes. In the case of rigid-
ity, the motion of an airplane can be divided into a translational and a rotational
motion.

translational motion rotational motion

Figure 1.1 Division of airplane rnotion
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reference line
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Figure 1.2 Determination of center of gravity

As illustrated by Figure 1.1, a rigid airplane has six degrees of freedom; the three
components of the linear velocity and the three components of the angular veloc-
ity, acting along and about the X,Y and Z axes, respectively, where the origin of
the axis system coincides with the center of mass of the airplane (see Appendix
A).

The displacement of the airplane can be determined by treating the airplane as a
point mass located at the center of mass, customarily referred to as the center of
gravity (abbreviation: c.g.).

The rotation of the airplane depends on the moments about the center of gravity.
The effects the moments have on the rotation of the airplane are studied in the
field of aeronautics, called stability and control. The subjects stability and con-
trol concern the abilities to maintain and to change prescribed flight conditions,
respectively.

Since throughout this book the emphasis is on the computation of airplane perfor-
mance, we can limit our considerations to the effects that the application of the
external forces and moments have on the displacement of the center of gravity of
the airplane.

According to its definition, the center of gravity of an airplane is the point through
which the resultant of the partial weights acts, independent of the attitude of the
airplane.

The location of the center of gravity in longitudinal direction can be found by
measuring the reaction forces N, and N, in the ground-based situation (Figure
1.2).

The sum of the loads at each wheel is equal to the weight of the airplane:

W =N, +N,.

The sum of the moments of the loads at each wheel equals the weight multiplied
by the distance between the center of gravity and the reference line:

N X, +N,X, = WX..
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From the latter equality we obtain

x, = NXi T NXy (1)

w

In order to determine the location of the center of gravity in vertical direction,
weighing must be executed at inclined airplane positions.
To ensure save and convenient operation, every pilot has to be aware of the air-
plane weight, as well as the way this weight is distributed in the airplane, in order
to make sure that allowable weight and approved center of gravity limits are not
exceeded.
A typical light airplane loading graph and center of gravity moment envelope are
sketched in Figures 1.3 and 1.4.
For a properly loaded airplane the actual weight and moment values must fall
within the lines indicating forward and aft center of gravity.

max. gross weight

Ny o

<..°¢ &

5 & g

3 & o| forward cg

3 o ®

B N oS g

° & & 8
3
QQOQ

load moment loaded moment
Figure 1.3 Loading graph Figure 1.4 Center of gravity moment
envelope

1.3 Application of Newton’s law of motion with respect to an axis
system attached to the Earth

The translational motion of a rigid body with constant mass is described by New-
ton’s second law of motion :

F = Ma, (1.2)

where F is the vector sum of all external forces acting on the body, M is its mass,
and a is the absolute acceleration. Equation (1.2) must be written down with
respect to an inertial frame of reference, that is to say, an axis system in a state
of complete rest, or any coordinate system which translates with uniform velocity
relative to the frame at rest.

According to the analysis in Appendix A, we can apply Equation (1.2) in a coor-
dinate system attached to the Earth if two apparent forces are added to the force
F,

F—Mo, x [@, x (R+h)] —MQ2w, x V) = Ma,, (1.3)
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polar—} parallel of
axis N latitude

Ft

centrifugal force Coriolis force

Figure 1.5 Forces due to the rotation of the Earth.

where @, is the Earth’s angular velocity (about 7.29 x 103 radians per second), R
is the Earth’s radius vector, /% is the height above the surface of the Earth, V is the
velocity of the body with respect to the Earth, and a, is the acceleration relative to
the Earth.

The second term of the left-hand side of Equation (1.3) is a centrifugal force,

F, = M, X [@, X (R+h)] = —Ma,, (1.4)
where ¢, is a centripetal acceleration. The last term is a Coriolis force,
F.=-MQw, xV)=—Ma,, (1.5)

where a, is the Coriolis acceleration.

In deriving Equation (1.3), the assumption is made that the Earth translates with a
constant velocity along a straight line. This idealization of the Earth’s translational
motion may be correct since our performance analyses normally deal with small
time intervals, that is, small with respect to the period of revolution of the Earth
around the Sun.

By expressing the Equations (1.4) and (1.5) in trigonometric form, we obtain for
the magnitude of the centrifugal force:

F, = Mw?(R+h)cos 6, (1.6)
and for the Coriolis force:
F. = M2®,V sin¢. (1.7)

In the latter expressions the angle 0 is latitude, positive in the Northern Hemi-
sphere and negative in the Southern. The angle ¢ defines the direction of the
velocity relative to the Polar axis. The forces and geometry used in Equations
(1.6) and (1.7) are depicted in Figure 1.5. It is interesting to note that the radius to
the North Pole is somewhat larger than the radius to the South Pole. This deviation
from the sphere is indicated as the pear shape of the Earth.
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westward force due eastward force due force due to
to vertical velocity to North velocity East velocity

Figure 1.6 Coriolis forces

The centrifugal force is directed perpendicular to the Earth’s Polar axis and points
out from the Earth along a line intersecting the axis of rotation. At a position in the
equator plane (0 = 0°) and near the Earth’s surface we obtain for the magnitude
of the centripetal acceleration, using the approximation that the Earth may be
regarded a sphere with a radius R, = 6371 km

a, = 0?R, = (7.29 x 10 °)> x 6371 x 10* = 0.034m/s>.

Equation (1.7) shows that at a given velocity, the Coriolis acceleration, a., has
its maximum value when the velocity is directed perpendicular to the polar axis
(¢ =90°).

To illustrate the Coriolis force in more detail, the effect of a vertical velocity, a
northward velocity, and an eastward velocity is considered successively in Figure
1.6, where the body is in a point on the Earth’s surface. 1t follows from Equation
(1.5) that a body moving vertically upward appears to an axis system referenced
to the rotating Earth to be forced to the west by

F. = M2®,V sin(90 — 6).
When the body has a northward velocity, the Coriolis force becomes
F.=M2®,V sin6.

In this case the body is subject to an eastward force.

Figure 1.6, finally, shows that a body with an eastward velocity appears to be
forced outward from the Earth. It is seen from Equation (1.7) that now the Coriolis
force is not dependent on latitude:

F. = M2®,V. (1.8)

This force can be resolved into a component directed upward along the radius
vector of the Earth, and a southward component.
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Figure 1.7 Typical flight velocities and altitudes.

In order to provide an idea of the degree of importance of the Coriolis acceleration,
assume a body with a velocity of 2000 km/h to the east. Then,

2000
ac=2w,V =2x7.29 x 10*5W =0.081m/s>.

Anticipating the discussion on gravitation in the following section, it can be no-
ticed here that in comparison with the acceleration of gravity (= 9.81 m/s> at the
Earth’s surface) the centripetal accelerations as well as the Coriolis accelerations
are very small.

From the numerical examples given before it will also be clear that the effects of
rotation of the Earth on the motion of a body may only become of interest in the
study of high-altitude and high-velocity vehicles. This means that these effects
are negligibie for most airplane operations, which are executed at lower altitudes
and at relatively low airspeeds. The latter conditions are evident from Figure 1.7,
where are shown flight altitudes and airspeeds for typical airplane types.
Especially the layer below 20 km is an important region to aeronautics since most
airplane operations are executed in this atmospheric shell.

1.4 Gravitation

Newton’s law of gravitation states that any two particles attract one another with
a force of magnitude :

_ kMM,

F 72

, (1.9)
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gravitational force

centrifugal force
due to Earth
rotation

gravity force

Figure 1.8 Components of gravity force

where M|, M, are the masses of the particles, R is the distance between them and
U is a proportionality factor, known as the universal gravitational constant. The
force F acts along the line joining the particles. Accordingly, if M is the mass of
a particle outside the Earth, and M, the mass of the Earth, the gravitational force
F, on the particle is given by (Figure 1.8)
umM.M

Fy= W (1.10)
This equation says that the gravitational force due to the Earth is the same as if all
mass M, were concentrated at the center of the Earth. To derive Equation (1.10)
the assumption must be made that the Earth can be considered a sphere (mean
radius R, = 6371 km), of which the density is a function of the distance to the
center only.
As shown in Figure 1.8, the gravity force or weight W of a body is actually the
vector sum of the gravitational force F, and the centrifugal force F; due to the
rotation of the Earth about its Polar axis. Therefore, the gravity force does not
point exactly to the center of the Earth.
The centrifugal force in Figure 1.8 results from the choice of an earthbound rotat-
ing frame of reference and is given by Equation (1.6), repeated below,

F, = Mw?(R, + h)cos 6. (1.11)

The gravity force per unit mass is the acceleration of gravity, g = W /M.
The sea-level value of g may be given by, from Equations (1.10) and (1.11), and
Figure 1.8,

UM,
R}

g= —a)ezRecosze. (1.12)

At the Equator the centrifugal force is a maximum. There we get for the acceler-
ation of gravity at the Earth’s surface, using y = 6.67 x 10~ "' m’kg~'s 2, M, =

5.98 x 10**kg,R, = 6.371 x 10°m, and @, =7.29 x 1075~ 1

_ uM,
T R2

e

— 2R, = 9.827 —0.034 = 9.793 m/s”.
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Because of the variation of the centrifugal force with latitude, the above valuc of
g increases gradually to 9.827 m/s? at the Poles (6 = 90°) .

At 45° geographic latitude the sea-level acceleration of gravity, denoted g, be-
comes

M,
8 = “R; — ;R,cos = 9.827 — 0.034 x 0.5 = 9.810m/s”.

e

At this point, it is worthy to note that in particular for the International Standard
Atmosphere (see Chapter 2) the acceleration of gravity g, is used and taken as
9.80665 m/s”.

In our applications, mostly, it is possible to ignore the effect of the centrifugal
force when considering the variation of g with height. Then, it follows from
Equation (1.10) that the acceleration of gravity varies inversely as the square of
the distance from the center of the Earth

uM,
=-——-, and 1.13
7 Ry -
s K — (14 (1.14)
gy (Re+h)? R, '
Using the first two terms of the binomial expansion we get
h
£ 12 (1.15)
8o R.

The latter expression may show that even at the maximum altitudes suitable for
atmospheric flight (2 = 60 — 80 km), there is only a slight difference between g
and g,. But certainly at the heights encountered during normal operations (less
than 20 km) the actual value of g is very near to its standard sea-level value (g/g,=
0.993 at & =20 km).

1.5 The effect of curvature of the Earth

Considered is a body moving at constant speed in a circular orbit of radius (R, +/)
around the Earth in a plane perpendicular to the Equator plane (Figure 1.9). If
we neglect air forces, on the body act the weight W of the body in a direction
approximately toward the center of the Earth and in the opposite direction an
apparent force associated with the circular motion. The latter force is the familiar
centrifugal force, C, which is given by (cf. Equation (1.4)
L w2
C=—-MOx|0x(R,+h)=————, 1.16
6 (Reth)] = = s (116)

where 0 is latitude and V is the velocity of the body.
The relative importance of the centrifugal force can be expressed by the ratio:

C V2

W~ (Re+h)g (17
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Figure 1.9 Flight around the Earth

The speed at which the centrifugal force equals the weight of the body is called
the circular velocity V,:

Ve=1/(R.+h)g. (1.18)

At sea level (h = 0) we find from Equation (1.18), using R, = 6371 X 10° m and
g =gy = 9.80665 m/s?: Ve, = 7904 m/s = 28455 km/h.

Since Figure 1.7 indicates that our analyses mostly will concern airspeeds which
are small with respect to the circular velocity, it follows from Equation (1.17) that
we usually can ignore the effect of the centrifugal force (C < W) on the motion
of the airplane so that the Earth can be regarded as ideally flat.

1.6 Coordinate systems

To describe the motion of an airplane four coordinate systems, employing right-
handed, rectangular Cartesian axis systems, are used. The origin is denoted by
”0” and the axes designated X,Y,Z. Displacements are positive in the positive
senses of the axes and angles are positive in clockwise direction when looking
along the appropriate axis in the positive direction. Velocities, angular velocities
and accelerations also are positive in these directions.

a. The Earth axis system or ground axis system (Figure 1.10). Earth axes are
denoted by the subscript ”g”. The origin of this coordinate system is any
point on the Earth’s surface. The X,- and Y,-axes lie in the horizontal plane
of the Earth. The X-axis points into an arbitrary direction. E.g., the X,-axis
is taken in the direction of flight. The Zg-axis points vertically and positive

downward.

b. The moving Earth axis system or local horizon system (Figure 1.11). The axes
are denoted by the subscript e”. The origin of the system is taken to be the
center of gravity of the airplane. The X,,Y, and Z, axes are parallel to the
corresponding axes of the Earth axis system. Thus, the plane formed by the
X,- and Y,-axes is always parallel to the surface of the Earth.
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horizontal plane

Figure 1.10 Earth axis system Figure 1.11 Moving Earth axis system

¢. The body axis system or airplane axis system (Figure 1.12). Body axes are
denoted by the subscript “b”. The origin of the system is at the center of
gravity of the airplane. The X -axis lies in the plane of symmetry of the
airplane and points out of the nose of the airplane. The Z, -axis is perpen-
dicular to the X, -axis, lies also in the plane of symmetry, and is directed
downward for a normal flight attitude. The ¥, -axis is directed out of the
right wing of the airplane. The body axes are fixed to the airplane and ori-
ented by reference to some geometrical datum. The X, -axis coincident with
what is called the longitudinal axis of the airplane. The Y, -axis usually is
termed transverse or lateral axis and the Z,-axis is named normal axis. The
rotational components about X;, ¥, and Z, are called roll, pitch and yaw,
respectively.

d. The air-path axis system or flight-path axis system (Figure 1.13). Air-path axes
are denoted by the subscript ”a”. The origin is at the center of gravity of the
airplane. The X,-axis lies along the velocity vector. The Z,-axis is taken
in the plane of symmetry of the airplane, and is positive downward for a
normal airplane attitude. Consequently, the Y,-axis is positive to starboard.

roll

C; yaw
|

Zp

Figure 1.12 Body axis system Figure 1.13 Air-path axis system

1.7 Angles and velocities describing the angular displacement of
the airplane

In order to describe the attitude of the airplane with respect to the moving Earth
axis system, a number of characteristic angles are used. These angles often are
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Figure 1.14 Eulerian angles

called Eulerian angles and are presented in Figure 1.14.

a. Eulerian angles defining the orientation of the airplane body axes. These angles
are:

o Angle of yaw y; the angle between the projection of the X, -axis on
the X, Y,-plane (horizontal plane) and the X,-axis.

e Angle of pitch 8; the angle between the X, -axis and its projection on
the X, Y,-plane.

e Angle of roll ¢; the angle between the Y, -axis and the intersecting line
of the ¥, Z, -plane with the X,Y,-plane.

The Eulerian angles y, 6 and ¢ are obtained by three defined successive
rotations of the moving Earth axes. This procedure is illustrated in Figure
1.15. First, we rotate by y about Z,, then by 6 about Y, and finally by ¢
about X,. As shown in Figure 1.14, also may be used the angle of bank @,
being the angle between the Y, -axis and its projection on the X,Y,-plane.
The angle of bank can be written in terms of the angle of roll and the angle
of pitch:

sin® = sin ¢ sin(90 — 6),
or

sin® = sin¢ cos 0. (1.19)

The relation (1.19) follows by applying a theorem from spherical trigonom-
etry in the spherical triangle ABC in Figure 1.16.
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angle of yaw

- A rotation by  about the Z; axis
to the intermediate position X'Y'Z,

- A rotation by 8 about the Y'-axis
to the intermediate position be'Z'.

- A rotation by ¢ about the X, -axis

to the final position XbeZb,

angle of roll

Figure 1.15 Orientation of body axes to moving Earth axes

b. Eulerian angles defining the orientation of the air-path axes. These angles are

(Figure 1.14):

e Azimuth angle y; the angle between the projection of the X,-axis on

the X, Y,-plane and the X,-axis.

o Flight-path angle y; the angle between the X,-axis and its projection

on the X,Y,-plane.

e Aerodynamic angle of roll u; the angle between the Y,-axis and the

intersecting line of the X,Y,-plane with the X,Y,-plane.
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- A rotation by X about the Ze-a:is
to the intermediate position X'Y'Ze.

flight-path angle

- A rotation by ¥y about the Y'-axis
to the imermediate position XaY‘Z',

¥ 3 X -
aerodynamic angle A rotation by p about the X axis
of roll to the final position XY Z .

Figure 1.17 Orientation of air-path axes to moving Earth axes

The angles y,y and u are also generated by three successive rotations of the mov-
ing Earth axes. The sequence of rotations is indicated in Figure 1.17. First, we
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Figure 1.18 Orientation of air-path axes to body axes

rotate by y about Z,, then by y about Y’, and finally by u about X,,.

Of importance is also the relationship between the air-path axis system and body
axis system. Both coordinate systems are shown in Figure 1.18. Since the Z,-axis
lies in the X, Z, -plane (plane of symmetry of the airplane), the orientation of the
air-path axis system with respect to the body axis system is completely defined by
the following two angles:

e Angle of attack «; the angle between the projection of the X,-axis on the
plane of symmetry of the airplane and the X, -axis.

e Angle of sideslip f3; the angle between the X,-axis and its projection on the
plane of symmetry of the airplane.

The angle of attack is positive when the velocity component along the Z, -axis is
positive. The angle of sideslip is positive when the velocity component along the
Y, -axis is positive.

At this point it is suited to define the components of the airspeed V along the X,,
Y, and Z, axes of the body axis system as u, v and w, respectively (Figure 1.19).
The following relations are apparent:

Figure 1.19 Components of airspeed
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V2 =212 42
u="VcosPcoso
v=Vsinf

w=Vcosfsino

(1.20)

Similarly, the resultant angular velocity @ can be resolved into the components p,
g and r along the X, ¥, and Z, axes, respectively, where

> =p*+q*+17 (1.21)

The angular veiocity about the X, -axis is the rolling velocity, positive if the right
wing drops. The angular velochy about the Y, -axis is the pitching velocity, pos-
itive if the nose of the airplane rises. The angular velocity about the Z, -axis,
finally, is the yawing velocity, positive if the nose of the airplane moves to the
right (clockwise when observed from above).

In connection with the study of airplane motion, the relations between the angular
velocities, p, g, r, about the body axes and the time rate of change of the Eulerian
angles v, 0, ¢, may be of importance.

According to the rotations defined in Figure 1.15, the vectors ‘2—‘1’. %. % are
directed along the Z,, Y’ and X , axes, respectively.

Figure 1.20 shows these vectors. Resolving along the body axes leads to the fol-
lowing relationships between the two sets of angular velocities:

p—f—sme—{—
q= dt cos@s1n¢+ cosd) , (1.22)
r=2cos@cosp — 90 sing

and the inverse relationships:

d
¥ = _L-(gsing +rcos¢)

2 _qcos¢ —rsing : (1.23)
d¢*p+ sin@ = p+ (gsin¢ +rcos¢)tan O

In the presence of wind the velocity of the airplane with respect to the ground or
ground speed Vj is the vector sum of the speed of the airplane relative to the air V
and the wind velocity V,, (Figure 1.21):

Vo=V +V,. (1.24)

Since the airplane is carried along by the wind, the projection of the velocity
vector V on the ground is at a so-called drift angle with the actual flight track.
Figure 1.22 shows the components of the airspeed along the axes of the moving
Earth axis system. From this figure we obtain:

Vx, = Vcosycosy
VY« =Vcosysiny . (1.25)
Vy, =Vsiny
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Figure 1.20 Angular velocities about the body axes

Note that a positive sign is given to the component of V in the direction of the
negative Z,-axis. Hence we find the components of the ground speed along the
axes of the Earth axis system as:

ng =V cosycosy +u,
Vyg =Vcosysiny + v, . (1.26)
Vzg =Vsiny+w,

U
I
I
I
I
1

wind velocity
VW
I
|
i
B |
horizontal plane Ze
Figure 1.21 Ground speed Figure 1.22 Components of airspeed

In Equation (1.26), wind data are given as u,,, vy, W,,, being the respective compo-
nents of the wind velocity in terms of the moving Earth axis system. The positive
sense of w,, is taken in upward direction.

1.8 The airplane

Figure 1.23 shows in some detail the overall make-up of an airplane. Basic com-
ponents are fuselage, wing, tail assembly, controls, landing gear, and engine (and
propeller, in the case of propeller propulsion).
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Figure 1.23 Basic airplane components
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Figure 1.24 Balance and trim tab

The fuselage may be seen as the structural component to which the other main
parts are connected. Further, it provides space for crew, passengers, cargo, air-
plane systems and instrumentation. Generally, the fuselage is streamlined to re-
duce its drag.

The wing is the principal component to generate the lift of the airplane by its
motion with respect to the surrounding air. The wing may often be equipped with
flaps. These adjustable parts are used to increase lift and drag at low airspeeds.
The tail assembly consists of the vertical and the horizontal stabilizer, which sur-
faces provide directional stability in yaw and stability in pitch, respectively.
Included in the tail assembly and the wing are the control surfaces. The usual po-
sition of the three primary controls is also illustrated in Figure 1.23. Yaw control
is provided by the rudder, which is connected with the vertical stabilizer.

The elevators are attached to the horizontal stabilizer and control the pitch of the
airplane. Roll control is provided by deflections of the ailerons which are located
near the outer trailing edges of the wing.

Depending on the type of airplane, small auxiliary control surfaces may be in-
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a. tricycle (nosewheel) b. tail wheel c. floats

Figure 1.25 Landing gear types

stalled to the trailing edges of the elevators, rudder and ailerons. These movable
surfaces are known as trim tabs and are adjusted by the pilot. As shown in Figure
1.24, the airflow over the trim tab creates a moment that holds the primary control
surface in the desired position without any help from the pilot.

Tabs may also be used to assist the pilot in the movement of the primary controls;
these are known as balance tabs.

The landing gear or undercarriage supports the airplane while it is in contact with
the ground. Modern airplanes generally are equipped with a tricycle gear, consist-
ing of nose wheel and main wheels. The landing gear may be retractable, except
special forms which include skis for snow and floats for operations on water (Fig-
ure 1.25).

An important characteristic is the type of propulsion system. The main engine
types are the piston engine (reciprocating engine), and the reaction engine such as
turbojet, turboprop, and turbofan. Converting the power of a piston engine and a
turboprop into a thrust is accomplished by the propeller(s).

1.9 Flight types, airplane configuration and flight condition

In Figure 1.26 are illustrated the typical flight phases encountered by an airplane
during a trip over a given travel distance.

The takeoff consists of the takeoff run where the airplane is accelerated from
standstill to the liftoff speed, followed by the climbout to a distance over, say,
10.7 m (35 ft) obstacle. After the takeoff the power of the engine(s) is reduced
and the airplane climbs to cruise altitude at, approximately, constant velocity. The
latter conditions hold as much with regard to the descent. Also cruise flight is
executed in unaccelerated and straight flight.

An example of a curved flight path is the turn and particularly the so-called
constant-altitude banked turn, where the airplane is inclined about the longitu-
dinal axis. This type of turn is the usual manner in which the flight path heading
is changed, e.g., in the holding maneuver. As depicted in Figure 1.26, during
holding the airplane remains within a specified airspace whilst awaiting further
clearance for the approach flight to the airport runway.

The final flight phase, naturally, is the landing, proceeding from the steady ap-
proach flight so as to clear the screen height at the beginning of the runway and to
come to rest on the runway at the end of the ground run. Just like the takeoff, the
landing is a case of unsteady airplane motion.
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takeof f landing

Figure 1.26 Typical flight phases

In the various flight phases, usually, the airplane is controlled in such a manner that
the instantaneous motion satisfies certain conditions. This leads to well-defined
flight types, such as:

e Gliding flight; flight in which the thrust is zero.

e Steady flight; flight in which the forces and moments acting on the airplane
do not vary in time, neither in magnitude nor in direction.

e Nonsideslipping flight; flight in which the velocity vector is parallel to the
plane of symmetry of the airplane (angle of sideslip is zero).

o Straight flight; flight in which the center of gravity of the airplane travels
along a straight line.

e Symmetric flight; flight in which both the angle of sideslip is zero and the
plane of symmetry of the airplane is perpendicular to the horizontal plane
of the Earth.

At this point, it is useful to emphasize that symmetric flight, and in particular
steady symmetric flight forms the basis of considerations on the performance of
airplanes during most of their time of flying. In this connection, it may be clear
that at best an airplane can perform a quasi-steady flight due to the consumption
of engine fuel and/or the variation of atmospheric conditions.

The term airplane configuration or airplane condition indicates the description
of the external shape of the airplane and any parameter affecting the motion of
the airplane which is characterized by the fact that it remains constant during a
certain period of time. Examples of airplane configuration elements are (Figure
1.27) landing gear position, flap angle, speedbrake and spoiler deflections, and
number of operative engines.

The estimation of airplane performance may be treated by considering the airplane
in a given configuration which is related to a particular flight phase, such as takeoff
configuration, cruise configuration and landing configuration.

The term flight condition is the group of variables, which defines the motion of
the airplane at each instant of the flight. A description of the flight condition
will comprise airplane weight, altitude, atmospheric conditions, airspeed, power
setting and control surface deflections.

1.10 Forces on the airplane

Practically, there are two different kinds of external forces that act on an airplane
in flight, gravity forces and aerodynamic forces.
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Figure 1.27 Example of airplane configuration
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Gravity forces are related to the mass of a body and act from a distance. A com-
mon example is, of course, the weight of the airplane.

Aerodynamic forces are developed through application of Newton’s third law of
motion, which states that for every action there is an equal and opposite reaction
(Appendix A). Therefore, essential to the generation of an aerodynamic force is
the occurrence of relative motion between body and medium.

In this course book we shall use the symbol R to denote the aerodynamic force
produced by the interaction between the air and the outer surface of the airplane.
When resolved into components along the air-path axes, the vector force R de-
livers the lift, drag, and side force. The lift, designated by the symbol L, is the
component along the negative Z,-axis. The major portion of the lift arises from
the airflow around the wing. The drag D and side force S are the components of
the aerodynamic force R along the negative X,-axis and Y,-axis, respectively. A
side force or cross force appears only when the airplane is in sideslipping flight.
Figure 1.28 shows the aerodynamic force R in the case of symmetric flight. In this
type of flight the motion is in the geometric plane of symmetry so that besides the
X),-axis, also the X,-axis lies in the plane of symmetry of the airplane.

When studying rotational motion in symmetric flight it may be useful to employ
the tangential force T and the normal force N being the components of R along the
negative X, -axis and Z, -axis, respectively. As can be seen from Figure 1.28 the
components L and D, and the components N and T are related by the expressions:

L=Ncoso—Tsino
D =Nsino + T coso
N =Lcosa+ Dsino
T =—Lsinoc+ Dcosa

: (1.27)

where o is the angle of attack.

Also the driving force of the propulsion system is an aerodynamic force. This
force is called the thrust and also given the symbol 7.

As indicated in Figure 1.29, the thrust acts in forward direction along a working
line which makes a fixed angle 1 with the longitudinal axis of the airplane (X, -
axis). The type of flight considered in Figure 1.29 represents the case of steady
symmetric flight. Maintaining this type of flight requires that the vector sum of
the forces acting on the airplane is zero:

R+T+W=0. (1.28)
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Figure 1.28 Aerodynamic force R and components

R+T

Figure 1.29 Forces In steady symmetric flight

The general definitions of the various angles used in Figure 1.29, i.e., the angle of
attack a, the flightpath angle y and the angle of pitch 6, have been given in Section
1.7.

1.11 Sl-system of units

Throughout this book the International System of Units (Systeme International
d’Unités) is used. This system has been adopted by many countries as the recom-
mended system of units for weights and measures. According to the publications
of the International Organization for Standardization (ISO) there are seven basic
units, which are tabulated in Table 1.1.

Although the SI-unit of temperature is the kelvin (K), also the celsius (C) or centi-
grade scale is used. Since the unit degree celcius is exactly equal to the unit
kelvin, the temperature expressed in degree celsius can be readily converted to the
absolute temperature in kelvin by the following relationship,

degree C = K —273.15. (1.29)
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From the basic units in Table 1.1, the units of a wide range of quantities can be
derived, whereby the product and/or quotient of any number of basic units forms
the resultant unit of the derived quantity. The units of some of the more common
quantities are listed in Table 1.2.

To obtain multiples or decimal fractions of the units, standard prefixes are used,
which are collected in Table 1.3.

In order to prevent errors in calculations, it is strongly recommended that in com-
putations only SI-units are used and not their multiples or decimal fractions.

It should be mentioned that, though becoming obsolete, in engineering practice
frequently the so-called technical system of units is used. In this system the quan-
tity force, having also the name kilogram, is a basic unit instead of mass. In order
to distinguish both kilograms, in the technical system the quantity force is (often)
denoted as kilogramforce (abbreviation: kgf). The following relation is defined:
1 kgf = 9.80665 N. Some technical units and corresponding SI-units are given in
Table 1.4.

In Appendix B a number of conversion factors are collected, arranged according
to subject categories.

Table 1.1 Basic Sl-units

quantity name of unit symbol
length meter m
mass kilogram kg
time second s
temperature kelvin K
electric current ampere A
luminous intensity candela cd
amount of substance mole mol

Table 1.2 Derived Sl-units

quantity name of unit symbol definition
force newton N kg m/s?
pressure pascal Pa N/m?
work (energy) joule J J=Nm
power watt |74 J/s
velocity meter per second Vv m/s
acceleration meter per second squared a m/s?
moment of force newton meter M Nm
density kilogram per unit cubic meter p kg/m3




1. Basic concepts

Table 1.3 Standard muitiples and decimal fractions
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multiple/fraction prefix symbol
102 tera T
107 giga G
100 mega m
10° kilo  k
102 hecto h
10 deca da
107! deci d
1072 centi ¢
1073 milli m
107° micro U
107 nano n
10712 pico p
1071 femto f
10718 atto a
Table 1.4 Systems of units
quantity technical system SI-system
metric English
length m ft m
time s s S
force kgf Ibf kg m/s? (newton)
mass kgf s?/m Ibf s?/ft (slug) kg
pressure kgf/m? 1bf/ft> N/m?
work (energy) kgfm Ibf ft kg m?/s> = N m (joule)
power kgf m/s Ibf ft/s kg m?/s® = J/s (watt)
density kgf s?/m* Ibf s2/ft* kg/m?




Chapter 2

THE ATMOSPHERE

2.1 Nature of the atmosphere

The atmosphere is the gaseous shell surrounding to Earth. Atmospheric air con-
sists of a mixture of gases with a total mass of about 5.3 x 10'® kg, which is
about one millionth of the mass of the Earth. The normal constituents of air in
the lower part of the atmosphere are listed in Table 2.1, where also are given their
concentrations and molecular masses.

The molecular mass of a substance may be defined as the mass of one kmol of
the substance. The kmol is an amount of matter of a system which holds as many
elementary particles (molecules, atoms, etc.) as there are atoms in precisely 12 kg
of the isotope '2C. This number amounts to 6.02257 x 10?° kmol ! and is called
Avogadro’s number.

Chiefly nitrogen and oxygen in the ratio of four-fifths nitrogen to one-fifth oxy-
gen represent 99 % of the total volume of all component gases. Though the vol-
ume percentages of carbon dioxide and methane are very small, their presence is
especially significant to the temperature at the Earth’s surface because these con-
stituents are more absorptive of terrestrial then of solar radiations. They, therefore,
are responsible for what is known as the greenhouse or blanketing effect, that is,
an elevation of the mean temperature in the lower part of the atmosphere.

In addition to the constant constituents there is always a certain amount of water
in the atmosphere, which exists in three states; gaseous (water vapor), liquid (rain
and clouds), and solid (snow and hail). The presence of water is also of signifi-
cance to the above-mentioned greenhouse effect. The proportion of water vapor
varies with place on Earth (latitude and longitude), time of day and time of year.
On the whole the highest humidity occurs at sea level and in the neighborhood of
the Equator.

With respect to the chemical composition, the atmosphere may be classified into
the homosphere and the heterosphere (Figure 2.1). The homosphere extends from
sea level to an altitude of about 90 km. Apart from water vapor and ozone, in the
homosphere the composition of the air is essentially constant. Consequently, in
this region also the mean molecular mass of the air (=~ 29 kg/kmol) is constant.
In the heterosphere, mainly because of molecular dissociation, the molecular mass
decreases from about 29 kg/kmol at a height of 90 km, to about 18 kg/kmol at 500
km.

The atmospheric conditions, temperature, pressure, and density, depend strongly
on height. For an analysis of these quantities it is appropriate to divide the at-
mosphere into five layers based on the vertical distribution of the air temperature.
The typical variation of the average temperature with altitude is also sketched in

24
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Table 2.1 Normal composition of clean atmospheric air near sea level

constituent gas  content, percent molecular
by volume  mass, kg/kmol
Nitrogen N, 78.084 28.0134
Oxygen 0, 20.9476 31.9988
Argon Ar 0.934 39.948
Carbon dioxide =~ CO, 0.0314 44.00995
Neon Ne 0.001818  20.183
Helium He 0.000524  4.0026
Methane CH, 0.0002 16.04303
Krypton Kr 0.000114  83.80
Sulfur dioxide SO, 0 to 0.0001 64.0628
Hydrogen H, 0.00005 2.0159%4
Nitrous oxide N,O 0.00005 44.0128
Xenon Xe 0.0000087 131.30
Ozone O, 0 t0 0.000007  47.9982
Nitrogen dioxide NO,  01t00.000002  46.0055
Iodine L, 0 to 0.000001  253.8088
Water vapor H,0 variable  18.0
Figure 2.1.

In ascending order, we distinguish the troposphere, the stratosphere, the meso-
sphere, the thermosphere, and the exosphere. The dividing planes between the
next four layers are called tropopause, stratopause, and mesopause.

The lowest region of the atmosphere, the troposphere, is characterized by a de-
creasing temperature with increasing altitude. In this layer the phenomena occur
which we call the weather, i.e., the local state of temperature, pressure, humid-
ity, cloudiness, wind, and precipitation. The troposphere extends to about 8 km
at the Poles and approximately to 17 km at the Equator. At middle-latitude the
tropopause lies at a height of about 11 km, where the average temperature de-
creases from roughly 15°C at sea level to - 56°C at the tropopause.

In the stratosphere, at first, there is a nearly constant temperature of about - 56°C
up to an altitude of about 20 km. This layer may be called the lower stratosphere.
Above 20 km we have the upper stratosphere, where the temperature increases
to a maximum value of 0°C at an altitude of about 50 km. This altitude is the
stratopause, sometimes referred to as the ozonepause.

It may be remarked that the atmospheric layer up to 20 km, being of major im-
portance to aviation (see Figure 1.7), contains approximately 95% of the total
atmospheric mass.

In the mesosphere, reaching from the stratopause to an altitude of 90 km, the
temperature decreases to a minimum value of about - 90°C at the mesopause.
The stratosphere and the mesosphere are of consequence in the sense that contin-
uously there is a certain amount of ozone. In fact, the temperature increase above
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Figure 2.1 Arrangement of atmospheric layers

20 km is related to the absorption of ultraviolet radiation, involving ozone forma-
tion. Nevertheless, the proportion of ozone is quite small, the presence of it at
these high altitudes is substantial to life on Earth, as it acts as a filter against solar
ultraviolet radiation.

The absorption of solar ultraviolet radiation is caused by the dissociation of molec-
ular oxygen (O,) into atomic oxygen (O). A portion of the atomic oxygen forms
ozone (03) by combination with molecular oxygen. Finally, ozone and atomic
oxygen recombine to form molecular oxygen. The decomposition of ozone to or-
dinary oxygen causes heating of the atmosphere. The formation and destruction
of ozone is a continuous process, resulting in more or less a constant amount of
ozone in the stratosphere and mesosphere.

In the thermosphere, the temperature increases quickly with increasing altitude
until at about 500 km the so-called exospheric temperature is reached. The mag-
nitude of this temperature is dependent on solar activity (Ref. 11).

In the exosphere collisions between molecules are so rare that temperature is only
an indication of the kinetic energy of the air particles.

From 90 km upwards, ionization processes occur, i.e., the generation of ions and
the accompanying free electrons takes place. Therefore, in Figure 2.1 also is
depicted the ionosphere, in which layer ionization processes (generation of free
electrons and ions) occur due to the absorption of solar radiation incident in this
region.

Depending on electron density, the ionosphere is subdivided into four layers, des-
ignated D, E, F| and F,. Figure 2.1 shows that the extent of ionization increases
with altitude up to approximately 400 km. Also, the ionization varies with solar
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activity and time of the year.

Finally, it should be mentioned that several classifications exist, each using dif-
ferent heights for th epositions of the dividing planes between the various layers
(Ref. 8).

2.2 \Variation of pressure with altitude

The weight of the column of air at rest above a unit area will produce a certain
pressure at that surface. The higher one rises in the atmosphere, the smaller will
be the weight of the air above the unit area, and the smaller will be the occurring
pressure.

p+dp
' 3 o wsmgm tmd dh
ity element: dw =
th dw: P3
)
B
h | : P
i1 )l unit area
i

/

Figure 2.2 Forces acting on an element of air

To obtain an expression for pressure as a function of altitude, consider a unit body
of air shown in Figure 2.2. Summing the forces in vertical direction gives

p—(p+dp)—pgdh=0 or dp=-—pgdh, 2.1

where p is pressure, p is density, /4 is geometrical altitude, and g is the acceleration
of gravity. The differential Equation (2.2) is known as the hydrostatic or aerostatic
equation, and shows us that with increasing altitude, the pressure decreases at the
rate pg. The combination of the hydrostatic equation and the equation of state
for air is a suitable starting point to describe the variation of pressure and density
with altitude. Atmospheric air can be assumed to satisfy the equation of state for
an ideal gas, i.e.,

R
p_Zarp 2.2)

In the perfect gas law Equation (2.2) R, is the universal gas constant, M is the
molecular mass of the gas, and T is the absolute temperature (kelvin).

Insertion of Equation (2.2) into (2.1) gives

Mp dp Mg

dh
R O T T RT

dp=— dh. (2.3)
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Integration of Equation (2.3) from 4 = 0 (sea level) to an altitude % yields

V4 h
/ dr _ / M8 4n and (2.4)
p R, T
Py 0
"M
m2 = [ 228 4 2.5)
Do ; R, T

Apparently, a calculation of the distribution of atmospheric pressure requires knowl-
edge of:

e the variation of molecular mass with height
e the variation of acceleration of gravity with height

the variation of temperature with height

sea level atmospheric pressure, p,.

At this point it is appropriate to introduce the geopotential altitude H, which is
defined by the following equation,

h

H
~ far =L [ean .
H_O/dH /gdh 2.6)

800

In this equation, g, may be taken equal to the standard sea-level value of the
acceleration of gravity (see Section 1.4). Since both H and 4 are set equal to zero
at sea level, the geopotential altitude H is the height in a uniform gravity field at
which the potential energy is the same as at a geometrical height / in a variable
gravity field.

The relationship between air pressure and geopotential altitude is obtained by
combining Equations (2.5) and (2.6):

H
M
e = / Soum. 2.7
Po R,T
0

Clearly, the integration is simplified since the acceleration of gravity g, is inde-
pendent of altitude. The adoption of a particular variation of air temperature with
geopotential height will enable us to determine the corresponding pressure ratio
variation, provided that the molecular mass M is constant or a known function of
altitude.

2.3 Standard atmospheres

The real atmosphere never remains constant. There is always a considerable vari-
ation of temperature, pressure and density at any time, height and place on Earth.



2. The atmosphere 29

Since the performance of airplanes strongly depends on the atmospheric condi-
tions, it will be obvious that the performance of an airplane measured at different
moments and places must be related to a common reference. Also, the actual per-
formance of an airplane does not provide a reliable basis of comparison with other
airplanes. No more, the results of calculations can be correlated if not the same
atmospheric conditions are employed.

In order to satisfy the need for standardization, over the years a number of stan-
dard atmospheres have been developed, which all are reflections of what may be
expected as mean circumstances.

Then, from the actual performance of an airplane it is possible to deduce what
would have been the performance of this airplane under the conditions of a given
reference atmosphere. The latter performance data can be compared with those
measured at other times and places or can be compared with the performance of
some other airplane which has been correspondingly converted to standard condi-
tions.

The atmospheric model used in this book has been adopted for the derivation of
the International Standard Atmosphere (1.S.A.) in Reference 9. This reference
atmosphere is based on the assumption that the air is a perfect gas, which is sup-
posed to be devoid of moisture and dust. Also the assumption is made that the
atmosphere is motionless with respect to the Earth.

For the computation of pressure, temperature, density, and other atmospheric
properties as functions of altitude, standard conditions are defined at zero-altitude
(sea level). Table 2.2 lists the values of primary constants for the International
Standard Atmosphere.

The molecular mass of air M follows from Equation (2.2) using the standard val-
ues of pressure, density, temperature and the universal gas constant as given in
Table 2.2,

R,T,
M=l 28.96442 kg/kmol.
Po

The specific gas oonstant of air is determined from the relationship,
R =R,/M = 287.05m?/s’K.

Ascp :RYTY] we find
¢p = 1004.68m?/s’K and ¢, = ¢, /y = 717.63m*/s’K.

The variation of temperature with geopotential altitude is presented in Figure 2.3,
showing that a sequence of connected constant gradient layers is defined.

In the troposphere and the upper part of the stratosphere the temperature variation
can be written as

T =T+ A(H—H,), 2.8)
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Table 2.2 Values of primary constants

sea-level pressure po = 101325 N/m?
sea-level temperature T, =288.15K (15 °C)
sea-level density po = 1.225 kg/m®
acceleration of gravity at sea level 8o = 9.80665 m/s?
universal gas constant R, =8314.32 J/K kmol
ratio of specific heats of air y=cp/cy=14

(cp = specific heat at constant pressure;
¢, = specific heat at constant volume)

32 .
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' ‘28 -
km
24 F
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temperature, K

Figure 2.3 Temperature versus geopotential height (I.S.A.)

where A = dT /dH is the temperature gradient and 7} is the temperature at height
H,, being the base of the layer. By insertion of Equation (2.8) into (2.7) we obtain

8o H
dH = —2>In[T,+A(H—H
/RT—i—AH H,)] ga MO HAH=HI - or
T,+A(H—H
1n£:_ﬁ1nM_ (2.9)
)2 RA T,
Thus, the pressure ratio variation with altitude becomes
A z
H—-H))| =
P _ [1+7( 1)} , (2.10)
Py T
The corresponding density ratio variation follows from the equation of state,
50
T, AH-H,)] B
p_pl :[Hi( 1)} . @.11)
pr T T
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In the troposphere the height H,= 0, so that the Equations (2.10) and (2.11) reduce
to

2 _580

H] 7

P [1 + _} and (2.12)
Po T

-+
EZ[ “’} # ]_ (2.13)

I+—
Po Ty
In the lower part of the stratosphere the temperature is constant (A = 0). Now

the pressure ratio is obtained by direct integration of Equation (2.7) between the
height of the tropopause H; and height H (H < 20km),

H
ml = [y — 30y _H) or (2.14)
»s RT, RT,
H;
P _ ok (H-H). (2.15)

Ds
In these equations the subscript ”’s”” denotes the condition at the tropopause.
From the equation of state, we find

P_ ﬁ. Thus

Ps Ps

P _ ) (H-H) (2.16)
Ps

In order to determine the value of the geometrical height as a function of geopo-
tential altitude, it is essential to define a relationship between the acceleration of
gravity and geometrical height (see Equation (2.6)).

From the discussion in Section 1.4 we know that the acceleration of gravity is the
resultant of the gravitational force per unit mass and the centrifugal force per unit
mass as caused by the Earth’s rotation. Accordingly, it depends upon height and
latitude. However, for our aims the acceleration of gravity may be obtained with
adequate precision by ignoring the centrifugal force and applying only Newton’s
law of gravitation as already noticed in Section 1.4. Then we have the following
expression

g R;

o Rerh? "

Combining Equations (2.6) and (1.14) leads to

h

O/HdH O/h d Rzo/ﬁ. (2.17)
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Performing the integration in Equation (2.17) yields the following relationship
between geometrical height and geopotential altitude,

h
R.h
H:Rz/—dR, ) l=_—"¢
e ( L+ ) (Re_"_h)v or
0
R.H
he et (2.18)
(Re—H)

The preceding equations in this section and the primary constants in Table 2.2 are
used to calculate temperature, pressure, density and geometrical height as func-
tions of geopotential altitude. Figure 2.4 shows how pressure and density in the
International Standard Atmosphere vary with height. Numerical values of 7', p
and p are given in the tables in Appendix C. Other quantities listed in Appendix
C are the coefficient of dynamic viscosity tt and the speed of sound c. The coef-
ficient of dynamic viscosity is a state variable, which determines the shear stress
between air layers moving adjacent to each other at different velocities. The fol-
lowing equation, basically derived from kinetic theory, is used for the computation
of u,
ﬁ T3/ 2

_ 2.19
=755 (2.19)

where B is a constant equal to 1.458 x 10 %kg s 'm 'K ~1/2, and S is Suther-
land’s constant, equal to 110.4 K.

At sea-level the coefficient of dynamic viscosity is: p, = 1.7894 x 10~3kg/m s.
The ratio of i and the density of air is named kinematic viscosity: v =t /p. The
speed of sound is the rate at which a small disturbance on the ambient condition
travels through the air. The values of ¢ in Appendix C are calculated from (see
Appendix D)

Ry 12 1/2
c= <yMT> = (YRT)'2. (2.20)

Its sea-level value becomes: ¢ = 340.294 m/s.
Since the temperature gradients are linear, it may be a sufficient approximation to
consider dc/dH as a constant. E.g., in the troposphere:

n dc
dH
Insertion of Equation (2.8) into (2.20) gives

c=c, H. (2.21)

AH
¢ = [R(Ty + 2H)]'” = [ey(14+ 7)) V2. (2.22)
0
Using the first two terms of the binomial expansion we get
coh
c=co+ L H. (2.23)

2T,
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Figure 2.4 Variation of pressure, density and temperature In the International Standard
Atmosphere

We thus have in the troposphere:

A
de _Sh _ 003845
dH ~ 2T,

2.4 Off-standard atmospheres

Off-standard atmospheres are defined by a temperature distribution which is ob-
tained by changing the temperature of the standard atmosphere with given incre-
ment AT. The resulting temperatures then are given by

T = Tigp +AT,

where the subscript "ISA” denotes a value in the International Standard Atmo-
sphere.

The constant increases in temperature are referred to the so-called geopotential
pressure altitude, H,,. The latter altitude corresponds to the reading of an airplane
altimeter. This instrument measures the actual air pressure and is calibrated by
exposing it to various pressures and marking on the dial the geopotential altitudes
that in the International Standard Atmosphere correspond to these pressures (see
also Chapter 5). Thus, when the air temperatures are different from those of the
standard atmosphere, the altimeter also will read the geopotential pressure alti-
tude. Apparently, the geopotential pressure altitude is the geopotential altitude in
the International Standard Atmosphere at which the pressure is equal to the actual
pressure. E.g., in the case of an altimeter which is calibrated according to Equa-
tion (2.12), we have the following relationship between pressure and geopotential
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pressure altitude (H, < 11,000 m),

H, = H”%] 0 1] % (2.24)

Similarly, for atitudes between 11 and 20 km it follows from Equation (2.14) that

H,=H,— RT 10 2 (2.25)

80 Po

Apparently, the altimeter reading furnishes the actual air pressure only. If, in
addition, the temperature increment AT is known, the air density can be calculated
from the equation of state,

)4

B = pisa X Tisa =p(Tisp +AT) or (2.26)
p=tisa_ (2.27)
AT

ISA

Usually, airplane performance data are represented as a function of geopotential
pressure altitude and air temperature, Tig, +AT.

Also the so-called geopotential density altitude, H,, may be used. This is the
geopotential altitude in the International Standard Atmosphere at which the den-
sity is equal to the actual air density.

By solving Equation (2.13) for height we obtain the geopotential density altitude
in the troposphere as

RA
T +RE T
H, — [ﬂ} O Lo, (2.28)
Po A
In the lower stratosphere, we find from Equation (2.16),
RT,
Hy=H,— P (2.29)
8 Ps

Figure 2.5 shows the dependence of H, with T for given values of H,,. By means
of this chart, an altimeter reading can be converted into density altitude, provided
that the actual air temperature is known.

2.5 Humidity

An upper limit exists concerning the concentration of water vapor that can be
present in a fixed volume of air. When a given volume contains the maximum
amount of water vapor the air is saturated. By definition, the saturation vapor
pressure is the partial pressure at which water vapor can coexist in equilibrium
with liquid water. This maximum value of the vapor pressure increases rapidly
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Figure 2.5 Relatlonship between pressure altftude and densfty altftude

with increasing temperature. The solid curves in Figure 2.6 represent the varia-
tion of the saturation vapor pressure with temperature. This relationship may be
approximated by:

7.5T
=611 x 1023757 (water vapor <— — water) and
water 9.5T

emax,, = 611 x 10265557 (water vapor < — ice)

€max

(2.30)

In these expressions 7' is the temperature in degree celcius, and the saturation
vapor pressure is obtained in pascal (N/m?). From Figure 2.6 we note that below
0°C water vapor can condense into ice as well as into supercooled water. Also
note that the vapor pressure of supercooled water is appreciable greater than of
ice. According to Dalton’s law, the pressure p of moist air is the sum of the partial
pressure of dry air p, and the partial pressure of water vapor e,

p=p,+e. (2.31)

pressure \ LIauip
\ WATER
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Figure 2.6 Saturation vapor pressure of water and ice

The following quantities are used to express the amount of water vapor in the
atmosphere:

e absolute humidity, a
e specific humidity, g
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e mixing ratio, x
e relative humidity, H.

Absolute humidity a is the mass of water vapor per cubic meter. Hence, the ab-
solute humidity is equal to the density of water vapor p,. Since, just like air, also
water vapor follows the perfect gas law with sufficient approximation, we have

_ Me e
pV_RaT_RvT'

(2.32)

In Equation (2.32) M, and R, are the molecular mass and the specific gas constant
of water vapor, respectively. As M, = 18.0 kg/kmol (Table 2.1), we get

R, = R,/M, = 8314.32/18.0 = 461.90 m? /s’K.

The absolute humidity is maximum if at the actual temperature the air is saturated
(e = emax)- Figure 2.7 gives the maximum absolute humidity against temperature.
This graph shows that at 0°C the maximum proportion of water vapor is about
0.004 kg per cubic meter, which value increases to 0.023 kg/m? at 25°C.

0035 =

a,
kg/m3
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Figure 2.7 Absolute humidity for saturated air

Specific humidity ¢ is the ratio of the density of water vapor to the density of the
moist air,

Py
g=—"— (2.33)
P+ Py

where p, is the density of dry air, which is given by

Py pb—e
= ——= —. 2.34
Pa=Rr = RT (2.34)
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Insertion of Equation (2.32) and (2.34) into (2.33) yields

e
RT R €
PN S 235)
Frtmr p—ell—g)

Using R = 287.05 m?/s’K and R, = 461.90 m?/s’K, we obtain R/R, = 0.622. It
then follows that
0.622 ¢

0l 2.36
1= 570378 ¢ (2.36)

The mixing ratio x is the ratio of the density of water vapor to the density of dry
air,

x=p,/p,- (2.37)
This leads to
e R
R.€ 0.622 ¢
x= f:ﬂ =B _ . (2.38)
D
0030 ——————
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Figure 2.8 Specific humidity and mixing ratio for saturated air
The expressions (2.36) and (2.38) may be approximated by
e
qg=x=0.622—. (2.39)
4

For saturated air, the variation of ¢ (= x) versus temperature is plotted in Figure
2.8.
Relative humidity H is defined as the ratio of the actual water vapor pressure to
the saturation vapor pressure at that temperature,
e
H=100—, (2.40)

€max
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where H is expressed in percent.

As clarified in Figure 2.9, lines of constant values of relative humidity can be
drawn, starting from the line of 100% relative humidity, which corresponds to the
saturation vapor pressure curves in Figure 2.6. Evidently, the use of relative hu-
midity requires also a knowledge of the ambient air temperature to have a physical
significance.

Instead of relative humidity, the air temperature in combination with the so-called
dew point may be used to specify the moisture content of the air. As illustrated
in Figure 2.9, the dew point is the temperature to which moist air must be cooled
isobarically, without addition of moisture, until the saturation point or frost point
(if below 0°C) is reached.

3600 /
3200 + H=100% /
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e, 2800 »
N/ m 60%
2400
40%
2000
1600
1200 20%
8OO ¢ T
400 |
temperature
— —dew point

0
-30 -20 -10 0 10 20 30 £0
temperatureT, °C

Figure 2.9 Relationship between water vapor pressure, temperature and relative humldfty

The magnitude of the difference between the air temperature and the dew point is
an indication of how much the moist air will have to be cooled to reach saturation
and condensation. If the difference between the actual temperature and the dew
point is great, extreme cooling is needed to achieve saturation, whereas if the
difference between the two thermometer readings is small, only slight cooling is
required to saturate the air. Clearly, condensation will produce clouds and several
forms of precipitation as dew, rain, snow, and so forth. Therefore, the difference
between the air temperature and dew point is also a measure for the height at
which cloud formation begins.

Finally, we will examine the influence of water vapor on the density of moist air.
According to Equation (2.35) we can write

—e e p e R

_ _P _P_tH_ £
P=Patpy="prt o =7 p(l Rv)]- (2.41)
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By insertion of R/R, = 0.622 into Equation (2.41) we obtain

P e p

where R is the specific gas constant of dry air and 7;, is an increased temperature
which is called the virtual temperature and which is used to account for the effect
of humidity on the air density.

From Equation (2.42) it follows that

T

T,=— .
VT 1-0.378¢
P

(2.43)
Equations (2.42) and (2.43) show that, at a given pressure, moist air is somewhat
lighter than dry air. This feature may be of special importance to the thrust or
power output of propulsion systems and thus to airplane performance.

2.6 Vertical motion in the atmosphere

Though in all standard atmospheres the air is assumed to be at rest, we all know
that the real atmosphere is often in a state of motion. In this section we will
therefore consider the vertical displacements of limited masses of air as may occur
in the atmosphere.

Since atmospheric pressure decreases with increasing height, the pressure within
an isolated mass of air will also decrease when it is lifted into the surrounding air.
Then, also its temperature falls because some of the heat energy is used in doing
the work required for expansion. To describe this process we may assume that the
moving body of air has nearly uniform properties and that its pressure p* equals
constantly the pressure p of the surrounding air, but not necessarily 7* = T.
Furthermore, it is assumed that no changes of state occur and that the air expands
adiabatically. Then, according to the first law of thermodynamics in Appendix D,
the process is described by

1
cpdT* — —dp* =0, (2.44)
p
where ¢, is the specific heat at constant pressure of air. By making use of the

hydrostatic equation (2.1) and noting that dp* = dp, we find
p

cpdT™ + Egdh =0. (2.45)

Combination of Equation (2.45) and the equation of state (2.2) yields
T*
cpdT™ + ngh =0. (2.46)

Hence, the rate of temperature fall is

ar*  gT*
dh ¢, T’

(2.47)
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By substitution of g = 9.80665 m/s?, ¢, = 1004.68 m?s°K (dry air) and 7*/T = 1
into Equation (2.47), we find for the rate of change of temperature within the rising
mass of air

dar*
— =—0. K/m.

Thus, if the expansion process is adiabatic the temperature decrease is about 1
kelvin for each 100 meters rise. This lapse rate holds only for dry or unsaturated
air, and is known as the dry adiabatic rate.

The water vapor in the moving body of air also cools as it ascends. When it reaches
its saturation temperature, condensation will take place with any further cooling.
The heat which is released by the condensation is added to the air and the lapse
rate is therefore about half the value of the dry adiabatic rate. The temperature
lapse rate for saturated air is denoted, therefore, as the saturation adiabatic rate.
In Figure 2.10 is sketched the variation of temperature with altitude according to
the dry adiabatic rate. From this illustration we can explain what actually can
happen when a mass of unsaturated air is elevated. If the atmosphere has a lapse
rate which is less than 1 K/100 m, the rising air will always be colder, and thus
denser, than the surrounding air. As a result, vertical motion is suppressed so that
the moving air will tend to sink back to its initial level. In this case the atmosphere
is said to be in a stable condition.

altitude

hi +200m |
hj +100m |

hi

temperature

Figure 2.10 Temperature rates

On the other hand, if the observed lapse rate is greater than 1 K/100 m, the rising
air will be constantly warmer, and therefore lighter than the surrounding air. In
consequence, the rising air tends to move away from fts initial position. This
is known as an unstable condition. In order to explain the dynamics of lifting
and sinking, a moving infinitesimal element of air with dimensions dx, dy and
dh will be considered (Figure 2.11). If we assume quasi-static motion (p* = p)
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Figure 2.11 Force diagram

and the vertical motion involves no friction forces between the element and its
environment, Newton’s second law furnishes
R dw dp .

p dxdydhg = pdxdy— (p+ %dh)dxdy —p*gdxdydh. (2.48)
In this equation w is the vertical velocity of the element of air. Dividing the terms
by p*dxdydh gives

dw 1 dp

2, 2.49

i~ pran ¢ (249
Inserting the hydrostatic Equation (2.1) and the equation of state (2.2) into Equa-
tion (2.49), we obtain

dw T~

=g 1), (2.50)

This result indicates that the vertical velocity tends to increase (unstable condition)
if starting from the original level, the ratio 7* /T increases. Indeed, this requires
that the prevailing lapse rate is greater than the dry adiabatic rate.

In the special circumstance that the lapse rate in the atmosphere is the same as
the dry adiabatic rate, the temperature within the moving air constantly coincides
with the temperature of the surrounding air. Consequently, there is no density
difference, and the air will not restore to or displace from its momentary position.
This condition is called neutral equilibrium.

As explained earlier, in the case of moving air which is saturated, the rate of cool-
ing is about 0.5 K/100 m. To examine the stability, now, the actual temperature
variation in the atmosphere must be compared to the saturation adiabatic rate.
When the actual temperature lapse rate lies between that of the dry adiabatic rate
and that of the saturation adiabatic rate, so-called conditional instability prevails
(Figure 2.12). This term expresses that there is a stable condition for unsaturated
air and an unstable condition for saturated air.

Although air normally gets colder as we go up in the atmosphere, the air tem-
perature also can rise with increasing height. This causes decided atmospheric
stability. Then we have a temperature inversion (negative lapse rate) which may
be produced by advection of warm air currents or by cooling through contact with
a cold ground surface.
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Figure 2.12 Conditional Instability

The vertical movements brought about by unstable atmospheric conditions are
called convection. This type of air currents can emerge near the Earth’s surface
when local heating of the ground causes a lapse rate which is greater than the dry
adiabatic rate. The rising air may be used by glider pilots to gain altitude while
gliding (Figure 2.13a).

The height at which the rising air reaches its saturation temperature is called the
convective condensation level (Figure 2.13b). If above this level conditional in-
stability exists, the air may continue its upward motion thereby cooling at the
saturation adiabatic rate. Then condensation of some of the moisture takes place
and clouds may be formed due to the presence of condensation nuclei in the at-
mosphere. By reason of this, clouds consist of an enormous amount of droplets of
water.

As illustrated in Figures 2.13a and b, the rapid updrafts due to instability give
localized clouds with vertical development. The cooling and condensation needed
for cloud formation may also be caused by slow rising of a whole layer of stable
air. E.g., due to the horizontal movement of air (wind) against a mountain or
over a front, which is a wedge of cold air moving under the influence of gravity
beneath a warm air mass (Figure 2.13c). This gives slow condensation processes
and therefore layerlike clouds.

Usually, cloud types are divided into four families according to the regions where
particular forms are found (Figure 2.14).

The distance from the ground to the base of the clouds is called the ceiling. In
the case of fog, which is a cloud at the Earth’s surface, the ceiling will be at zero
altitude.

It is quite obvious that the presence of clouds or fog is extremely important to
aviation because it reduces the pilot’s range of vision from the flight deck. In this
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Figure 2.13 Cloud formation

respect, also information on the visibility is included in all aviation weather re-
ports. According to its definition, visibility in a definite direction is the maximum
distance to which prominent suitable objects like trees or houses, located in that
direction and observed against the horizon sky, can be seen.

It is also important to know that water droplets are present in clouds, even when
the air temperature is below freezing point. Only at temperatures below —15°C to
—20°C clouds are composed mostly of ice crystals.

Supercooled water droplets exist in a highly unstable state and when excited will
rapidly be transformed into ice. The freezing of water droplets which are inter-
cepted by the airplane results in the formation of ice on various surfaces of the
airplane. Also when the humidity is high and the air temperature is near freezing
point, acceleration of the air flow around the wing and propeller blades may cause
sufficient fall of temperature to start the freezing process.

Ice formation has always been a hazard to aviation since it affects the flying char-
acteristics and the performance of airplanes by loss of lift, added drag, added
weight and loss of thrust. Icing can also stop the air vents, leading to the flight
instruments. It should be stated here that modern airplanes are equipped with full
de-icing.

2.7 Wind

Wind is the horizontal movement of air relative to the Earth, and is one of the
primary atmospheric factors affecting airplane performance.

The direction of wind is that direction from which the wind comes. If the wind is
blowing from the southwest, its direction is indicated as southwest (SW). Figure
2.15 shows the generally used wind direction scales.

Wind velocity is reported either in knots or in meters per second. Surface winds
may also be expressed in terms of the Beaufort scale of wind force. Originally, this
system was used to estimate wind velocity by observing its effect on the condition
of the sea surface. Table 2.3 gives the relationship between Beaufort number and
wind speeds as defined for wind at a height of 10 meters above the ground. The
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Figure 2.14 Basic cloud families

Figure 2.15 Wind direction scales

table also includes the description of winds.

As a whole there is a systematic meridional circulation of the atmosphere, which
is caused by the uneven distribution of solar heat over the Earth. Figure 2.16 rep-
resents the general circulation on the Northern Hemisphere. Equatorial surfaces
heat most. This causes the lower air to expand. Owing to this expansion the sea-
level pressure at the Equator is reduced and a higher pressure in upper levels over
the Equator is created. Then, at higher elevations air flows from the Equator and
in lower levels toward the Equator.

Due to the rotation of the Earth from west to east, the Coriolis force, (see Section
1.3), deflects the air which is moving from the Equator to the right. This leads to
a high pressure zone at about latitude 30°, where calm and variable winds occur.
The winds blowing Equatorward become the well-known Northeast trades in the
neighborhood of the Equator. Light winds occur in the equatorial low pressure
zone between the two belts of trade winds.

The cooling in the Polar regions causes the air to contract, resulting in a high
pressure at the ground and a relative low pressure in upper levels. The air moving
southward from the North Pole is deflected into an easterly flow. The air which is
forced Poleward from the high pressure zone at latitude 30° is turned to the west
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and becomes the familiar prevailing Westerlies. As a result, a low pressure zone
is also found around latitude 60°.

Table 2.3 Beaufort scale

Beaufort wind velocity description
number  (knots) of wind
0 <1 calm
1 1-3 light air
2 4-6 light breeze
3 7-10 gentle breeze
4 11-16 moderate
5 17-21 fresh
6 22-27 strong
7 28-33 near gale
8 34-40 gale
9 41-47 strong gale
10 48-55 storm
11 56-63 violent storm
12 > 63 hurricane
North Pole
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Figure 2.16 General circulation of Northern Hemisphere

Near the Earth’s surface the forces that determine wind direction and wind speed
are the force due to the horizontal pressure gradient, the Coriolis force and the
friction force. The latter force arises from the relative motion between air and
ground surface. The magnitude of the wind speed at lower altitudes is strongly
affected by this friction force, which tends to decrease the wind velocity. The re-
tarding effect of the surface is largest near the ground and remains of significance
up to about 1000 meters above ground level. The region where the surface friction
occurs may be called the planetary boundary layer.
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due to Coriolis force the Northern Hemisphere

Since the Coriolis force is proportional to the wind velocity, this apparent force
increases with increasing height. In the so-called surface boundary layer, which
reaches to about a height of 100 meters, the Coriolis force is negligible small in
comparison with the friction force and the pressure gradient force. In this layer
the wind velocity increases continuously with increasing height, starting from the
zero-velocity boundary value at ground level, whereby the air moves in a direction
perpendicular to the isobars.

Above the surface boundary layer the wind speed increases further and wind blow-
ing Poleward is deflected in an easterly direction under the influence of the Cori-
olis force. This situation is depicted in Figure 2.17, where equilibrium of forces
is assumed. The reduction of the wind velocity due to the friction force and the
angle that the wind makes with the isobars depend on the type and roughness of
the ground surface.

Above the planetary boundary layer the surface friction is no longer effective.
Then, finally, the wind direction becomes parallel to the isobars. Under these
circumstances the Coriolis force is balanced by the pressure gradient force (Figure
2.18).

The equation which expresses this condition for the case of straight isobars, is the
so-called geostrophic wind equation:

% i—ls) =2wm,V, sing, (2.51)
where dp/ds is the horizontal pressure gradient if s is measured across the isobars,
V), is the geostrophic wind velocity and ¢ is latitude.

A qualitative description of the direction of the geostrophic wind is given by the
law of Buys-Ballot, which states that in the Northern Hemisphere, if you face the
wind the atmospheric pressure decreases toward your right and increases toward
your left. In the Southern Hemisphere the opposite is true.

Information services for air navigation all over the world regularly report mete-
orological data that comprise wind directions and velocities at various altitudes.
On the average the wind speed increases up to the tropopause (Figure 2.19a).
Also the presence of the so-called jet streams in the upper troposphere and lower
stratosphere should be mentioned. These relative strong winds, having velocities
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of 300-400 km/h, are concentrated within a narrow flow and follow a meandering
path at particular latitudes.

The increase in wind velocity with height in the surface boundary layer often is
represented by power laws, according to the relationship

Vo=V, (:—1> : (2.52)

where V, | is the average wind velocity at a fixed reference height 4,. For wind
blowing over a relatively smooth surface and in conditions of normal lapse rates,
the exponent n is approximately equal to 1/7 (Reference 12). Figure 2.19b dis-
plays the form of the wind profile according to Equation (2.52), using V, ; = 5
m/s at h; =2 m.

a. high altitude b. near the ground
30

h h, m

Y
7 |h
vw=vw1(_ﬁ|
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Yio 0 4 8

Figure 2.19 Typical wind velocity profiles

When the wind blows over a rough surface or when the air flows in layers adja-
cent to each other at different speeds, irregular motions in the atmosphere may be
induced. The type of small-scale motion which is superimposed on a basic flow is
called turbulence or gustiness. A similar form is the convective turbulence which
is produced in the case of unstable atmospheric conditions.

On an unclouded day the turbulence is not visible so that it will be felt by an
airplane without any visual warning. Under these conditions the term clear-air
turbulence is used. In general we can designate local wind shear at heights near
the tropopause as being the most important cause of clear-air turbulence.

2.8 Atmospheric fronts

In the previous section we have observed that the circulation of the atmosphere is
basically the migration of extensive air masses over long distances.

By air masses are meant far-reaching bodies of air, wherein the atmospheric con-
ditions are approximately consistent at each level, and of which the physical prop-
erties originate from the characteristics of their source regions on Earth.
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Figure 2.20 Vertical cross-section through atmospheric fronts
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Figure 2.21 Warm front cloud systems

During its motion, the air has a tendency to maintain its commencing properties,
or else is modified somewhat by the nature of the ground surface over which it
travels.

When air masses of different temperature meet each other, a rather thin transition
layer or surface of discontinuity is formed between them. The colder, heavier air
moves underneath the warmer light air, thereby forming a wedge of cold air under
the action of gravity (Figure 2.20). The dividing plane between the two air masses
is called the frontal surface. The intersection of the frontal surface with the ground
surface is called a front.

A front is designated by the relative temperature of the air mass, which moves
toward the other. Thus, if warmer air is displacing colder air, it is called a warm
front (Figure 2.20a). In the same way, a cold front is a front along which colder
air replaces warmer air (Figure 2.20b).

Logically, a warm front causes higher temperatures at the places over which it
proceeds, and a cold front brings lower temperatures. Each front has its own
special quality of cloud, precipitation and wind conditions.

Figure 2.21a shows the cloud system in a warm front with the warm air stable.
In this case the air slowly advances over the sloping frontal surface and extensive
cloud formation occurs. First cirrus clouds come into sight, and then cirrostratus
and altostratus, in sequence. Ultimately, nimbostratus clouds are developed, and
precipitation drops down. Low stratus clouds may cover the nimbostratus.

The humidity of the cold air is increased to near-saturation by the precipitation,
through which further cooling during the night may produce fog over large areas.
If the warm air is conditionally unstable, altocumulus and cumulonimbus clouds
come after the cirrus forms and thunderstorm activeness may be encountered
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Figure 2.22 Fast-moving cold front cloud formation
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Figure 2.23 Verlical cross-section of clouds In slow moving cold fronts

ahead of the front, together with convectional showers (Figure 2.21b).

The wind directions and velocities above and under the frontal surface commonly
differ significantly.

Two types of cold fronts are distinguished, fast-moving cold fronts and stationary
or slow-moving cold fronts.

Figure 2.22a indicates that the motions in a fast-moving cold front consist of de-
clining movements at both sides of the frontal surface, causing variable surface
winds behind the front. In the warm air ahead of the front upward movements
take place.

If the warm air is stable, the sky becomes overcast with altostratus and ninbostra-
tus clouds, from which rain falls.

An unstable condition of the warm air (Figure 2.22b) leads to the development of
cumulonimbus clouds, thunderstorm activity, and showers along and ahead of the
front.

The cloud formation in a slow-moving cold front is of the same kind as in a warm
front (Figure 2.23); warm air sloping upward delivers altostratus and nimbostratus
clouds. Also, there may be sufficient upward movements in the cold air to produce
low stratus clouds behind the front. When the warm air is conditionally unstable
cumulonimbus clouds with thunderstorm activity may arise.

In the case that a cold front meets a warm front, we may have the situation of
an occluded front. The manner in which the occlusion works out depends on the
relative temperature of the cold air masses underlying the two frontal surfaces.

In a so-called cold front occlusion (Figure 2.24a), the air behind the cold front
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Figure 2.24 Occluded fronts

is the colder, and therefore displaces the cool air behind the warm front. On the
other hand, as shown in Figure 2.24b, in a warm front occlusion the air behind
the cold front is less cold than the air beneath the warm front so that now the cold
front climbs over the wedge of the warm front.

We end this section with the remark that, apparently, an appreciation of the bound-
aries between air masses of different characteristics is very important since their
frontal disturbances involve special weather conditions which may cause serious
aviation hazards in the form of gusts, low ceilings, poor visibilities, and ice accre-
tion.



Chapter 3

EQUATIONS OF MOTION

3.1 Translational motion

Newton’s second law of motion can be written as

d(MV)

}_':':
dt

: 3.1)

where F is the resultant of all external forces applied to the body, M is its mass,
and V is the linear velocity vector of the center of gravity of the body relative to
an inertial frame of reference.

Starting from Equation (3.1), in Appendix A the derivation is given of the general
equation of translational motion for an arbitrary deformable body of mass M (see
Equation (A.46) of Appendix A). Of course, all airplanes are flexible, that is,
the relative positions of the various parts of the structure change somewhat under
the influence of the forces acting in flight. However, it is very beneficial to the
complexity of the problem to disregard these deformations. This simplification is
generally justified and, as has been mentioned already in Chapter 1, shall also be
used here in analyzing the performance of airplanes.

Assuming a rigid body of constant mass, Equation (3.1) becomes the familiar
form

—

- dv
F=M—=Ma. 32
dt “ (3-2)

According to Appendix A, the rotational motion of a rigid body is governed by

. dB
Mg = 7%. (3.3)

This equation says that the external moment applied to a body is equal to the time
derivative of its angular momentum relative to the center of gravity of the body.

In this section the translational motion of rigid airplanes of constant mass will be
described by using the body axis system. For this purpose the vector equation
(3.2) is transformed analogous to Equation (A.20) of Appendix A. Then we have

ﬁ:M(‘Z—‘;Jrfsz), (3.4)

where ‘Z—‘t/ is the time derivative of the velocity vector with respect to the body axis

system, and Qs the angular velocity of the airplane.

51
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If the unit vectors in our airplane fixed reference frame are ? f % and if u, v, wand
P, q, r are the components of V and Q along the body axes, respectively, then

V=ui+vj+wk and (3.5)

Q=pi+tqj+rk (3.6)
If further the corresponding conponents of the external force are given by

F = Fi+Fj+Fk, (3.7)
we obtain from Equation (3.4) the following three scalar equations:

F, = M(% +wg —vr)

F},:M(%—I—ur—wp) . 3.8)
F, = M(% +vp—uq)

The resultant external force F includes the aerodynamic force R, originating from
the interaction between airflow and airplane surfaces, the thrust T of the propul-
sive system, and the weight W of the airplane,

F=R+T+W. (3.9
We also may consider the so-called resultant aerodynamic force A, being the vec-
tor sum of two constituents; the acrodynamic force R and the thrust T

A=R+T. (3.10)

By reference to Figure 3.1, we see that the components of the weight along the
body axes are:

Wy =—Wsin0
Wy =WcosOsing ;. (3.11)
W, =W cos 6 cos ¢

Now Equation (3.8) for the translational motion may be written as
~Wsin0 + A, = M(% +wq —vr)
WcosOsing +A :M(‘é—f—l—ur—wp) , (3.12)
Wcos@cosd +A; = M(% +vp—uq)

where Ay, Ay and A; are the scalar components of the resultant aerodynamic force

—

A.

3.2 Rotational motion

In order to derive similar expressions for the rotational motion, we will evalu-
ate Equation (A.57) of Appendix A, which equation describes the total angular
momentum relative to the center of gravity of the airplane as

—

Bep = / 75 (Q x F)aM, 3.13)
M
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Figure 3.1 Components of airplane weight along body axes

where 7 is the position vector of a mass element with respect to the center of
gravity of the airplane. Using the following basic law for the vector triple product,

X (QxF)=QF-7)—FQ-7),

we can rewrite Equation (3.13) as
B = [0 P)am— [7(@-Fam. (3.14)
M M

If the coordinates of a mass element in the body axis system are x, y, z, then
F=xi+yj+ k. (3.15)
In terms of the coordinates x, y, z, the dot products in Equation (3.14) become
FR=x 4y +7,
Q7= px+qy+rz.

Substituting the latter relations into Equation (3.14) yields

By =0 / (P +y* +22)dM — / F(px+qy + rz)dM. (3.16)
M M
If we write
Bey = Bii+Byj+ Bk (3.17)

the components of Ecg along the body axes are:
By=p[(?+22)dM —q [ xydM —r [ xzdM
M M M
By=—p[yxdM+q[(x+2*)dM~r [yzdM (3.18)
M M M

B.=—p[zxdM—q [zydM+r [(x*+y*) dM
M M M
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In Equation (3.18) appear the so-called moments of inertia of the body:

L= [(y*+z})aM

M
L= [(*+2%)aM (3.19)
M
L= [(x*+y*)dM
M
and the products of inertia:
Ly=1ILx=—[xydM
M
Ly =1Iy=— 1& yzdM % (3.20)

Ixzzlzx:_fodM
M

Equations (3.19) and (3.20) give the nine components of the tensor of inertia T of
the body. Hence, we may write

By=pL+qly+rl;
By=ply+tql+rl,; ;. (3.21)
B,=pl;+tql;+rl;

Apparently, Equation (3.13) also can be expressed as the dot product of the tensor
7 and the vector Q

Bep = /?x (@ xP)aM=T-8. (3.22)

L dB,, -dQ 4 -
M, = d;gzl-z%—Qchg, (3.23)

where A_;Ic.g is the external (aerodynamic) moment on the airplane, acting about the
center of gravity. If Mcg is resolved into its components along the body axes, the
following three scalar equations are obtained:

M, = zd_f Ix‘f‘jli_;,ilxy“"% I,:+gB: — B,

My, = 51_1; Ly + j—? L+%1,.+rB.—pB, ;. (3.24)

M, = d_i) I+ d_(z] L.+ % I+ pBy —qB,
These equations are indicated as Euler’s equations of rotational motion, where M
is the rolling moment, M, the pitching moment, and M, the yawing moment. For
most airplanes the simplification can be made that the distribution of the mass of
the airplane is symmetric with respect to the XZ-plane. Then: I, = I, =0, and
the components of M., become:

My =22 I+ (I, — L) qr + L. (% + pq)
M, = % I+ (Ix _Iz)Pr‘f‘Ixz({i’z - r2) . (3.25)
M, = % L+ (1)' _Ix)pq—’_lﬂ(d_[; —qr)
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The systems of Equations (3.12) and (3.25), and the kinematic relations (1.22)
describe the motion of a rigid airplane with constant mass.

In a general sense, we have to consider accelerated motion of the airplane on the
basis of a detailed knowledge of the force and moment components. Such studies
make up the essence of the subject termed flight dynamics. Both, a number of
problems in the field of stability and control, and airplane performance fall under
the heading of flight dynamics. Concerning airplane performance, for example,
the prediction of takeoff and landing distances and the determination of optimum
flight trajectories under circumstances in which the interchange between kinetic
and potential energies is of importance to the computational results, pertain to this
class of questions.

On the other hand, one should remember that during most of its flying time, an
airplane can be assumed to be in quasi-steady motion. Therefore, as a topic of par-
ticular interest, in the following section the equations describing the most general
motion of an airplane in steady flight are presented.

3.3 The most general steady motion

In Section 1.9 steady flight has been defined as the flight in which both magnitude
and direction of forces and moments acting on the airplane remain constant.
Starting from this definition, we can examine the resulting motion, provided that
the atmospheric conditions are independent of flight altitude (poor assumption in
case of prolonged flight).

Steady motion requires that the time derivatives of all the variables involved in
Equations (3.12) and (3.25) are zero:

du dv dw dp dq dr do d¢
dt dt dt dt dt dt W w T @ (3:26)
These conditions lead to the following equilibrium equations:
—Wsin@+A, = M(wg—vr) )
WcosOsing +A, = M(ur—wp)
A, = M(vp—
WcosOcoso+ A, (vp—uq) 3.27)

My = (L—1L)gr+1:pq

M, = (Ix - Iz)Pr +IXZ(p2 - 72)

M, = (Iy—I)pq—ILqr )
It follows from the requirements (3.26) that only the angular velocity dy//dt may
have a finite value. Then, according to the definition of the angle of yaw in Figure
1.14, the resultant angular velocity of the airplane is about the vertical axis,

o
dt
For steady motion the kinematic relations (1.22) reduce to (see Figure 1.20)
p= —%’ sin 6
g=+%cosBsing . (3.28)

r=+[§—'ﬁ'cosecos¢
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Figure 3.2 Helicoidal motion

It is seen from the equations (3.28) that not only the direction, but also the magni-
tude of the resultant angular velocity remains unchanged. Expressed in terms of
the angles defining the orientation of the air-path axes, we have

dy dy du
= and e a 0
Evidently, the flight-path angle y and the aerodynamic angle of roll  are also
independent of time. Consequently, the same holds true for the angle of attack o
and the angle of sideslip B since at a given velocity the aerodynamic force solely
depends on the attitude of the airplane relative to the velocity vector, and this
orientation is fully determined by the angles o and f3.

As shown in Figure 3.2, the condition that velocity V, angle v, and angular velocity
Q are constants, implies that the most general steady motion of an airplane is
a nonsymmetric flight in which the center of gravity of the airplane travels at
constant velocity along a helical path with vertical axis, having a constant radius
and pitch (spiral climb).

In performance considerations, the forces in Equation (3.27) are conveniently ex-
pressed in terms of their components along the air-path axes. In doing so, we
derive for the steady helicoidal motion the following force equations (Figure 3.3):

(3.29)

—D+Tcosocosf—Wsiny =0
—S—Tcosaysinff+Wcosysinyg —Ccospt =0 ». (3.30)
—L—Tsino +Wcosycosp +Csingt =0

These equations give the force components along the X, ¥, and Z,-axis, respec-
tively. As can be seen from Figure 3.3, the sideslip is toward the inner side of the
curvilinear path (8 > 0).

The thrust angle o in Equation (3.30) includes the angle of attack and the fixed
inclination 7 of the thrust vector to the X,-axis. The force C is the horizontal
centrifugal force, which is given by (see Equation (1.16))

V2
C= EVQ cosy = K—cos2 Y, (3.31)
8 § R
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Figure 3.3 Forces acting on the airplane In steady helicoidal motion

where R is the radius of curvature (Figure 3.2). The side force S is the cross
component of the aerodynamic force R due to the sideslipping motion, and acts
along the negative Y,-axis at a positive angle of sideslip. The paramount contribu-
tions to the force § originate from the fuselage and the vertical tailplane. Also the
propulsive system may produce a contribution to the side force.

3.4 Special types of flight

a. Steady straight nonsideslipping flight

In this particular case all the lateral variables are zero: § =0,C =0, S =0. Inser-
tion of these conditions into Equation (3.30) learns us that also the aerodynamic
angle of roll is zero (1 = 0).

The force equations (3.30) are then reduced to

—D+Tcosoy —Wsiny=0 } (3.32)

—L—Tsinoy +Wcosy=0

In addition, we have the requirement that the moments generated by the aerody-
namic forces must be fully balanced by appropriate settings of the control sur-
faces (trimmed flight condition where M, = M, = M, = 0). Use of the controls,
of course, will affect the aerodynamic characteristics of the airplane. However,
in considering particular flight types, we shall assume that the contributions from
control surface deflections to lift, drag, and side force are sufficiently small in
magnitude so that they can be neglected. Moreover, because we are primarily
concerned with the translational motion of the airplane, we can usually limit our-
selves to the application of the force equations only.

The above-mentioned conclusion that u = 0 implies that the Y,-axis lies in the
horizontal plane so that the plane of symmetry of the airplane coincides with one
and the same vertical plane (Figure 3.4).
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Figure 3.4 Steady straight nonsideslipping flight

Consequently, the motion indicated here concerns steady symmetric flight, which
is the basic type of flight in performance analyses (see also Figure 1.29).

b. Steady straight sideslipping flight

In this case we have the condition R = oo and thus C = 0 in Figure 3.3. Now the
equilibrium equations (3.30) change into:

—D+Tcosapcosf—Wsiny =0
—S—TsinoysinB+Wcosysinu =0 ». (3.33)
—L—Tsino +Wcosycosy =0

In this flight type the side force S is mainly balanced by the lateral component of
the weight of the airplane.

Normally, the pilot will always try to avoid sideslipping flight in order to mini-
mize the drag of the airplane. The intentional application of an angle of sideslip
is restricted to the approach prior to the landing in cross wind, where the combi-
nation of sideslip angle and bank angle is used to counteract the lateral drift of the
airplane relative to the runway (Figure 3.5).

Also during landing approaches of small propeller-driven airplanes and gliders in
head wind or still air, the sideslip provides a means of losing height more rapidly
than in the case of symmetric flight, due to increased drag at large 3.

c. The flat turn

This type of nonsymmetric flight concerns the steady, curved, sideslipping flight
in a horizontal plane without angle of bank (Figure 3.6). Since the plane of sym-
metry of the airplane is kept vertical, the centrifugal force produced by the circling
motion is balanced by a component of the thrust and the side force S, acting along
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Figure 3.5 Landing in cross wind

the positive Y,-axis. Therefore, in the flat turn the nose of airplane lies to the right
of the velocity vector (8 < 0). From Figure 3.7 we now get the following force
equations:

Figure 3.6 The flat turn

—D+Tcosapcosf =0
S—Tcosapsinf—C =0 . (3.34)
—L—Tsino, +W =0

In the flat turn the occupants of the airplane are submitted to annoying transversal
accelerations.

Moreover, it appears that the radius of curvature in the flat turn is relatively large
so that the pilot will use this maneuver only when he wants to change his pathway
over the Earth slowly (Reference 1). In regular cases, however, the course of an
airplane is always changed by executing a banked turn as will be discussed in the
following.
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Figure 3.7 Forces in the flat turn

d. Steady nonsideslipping banked turn

This type of flight is called the true banked or coordinated turn, and is the natural
maneuver to change the pathway of an airplane. In a coordinated turn to the right,
the pilot brings the airplane into an inclined position by banking it to the right.
As the condition for a coordinated turn is that the airplane may not be yawed, the
Y,-axis and the Yb-axis coincide. Then, analogous to Equation (1.19), the relation
between angle of bank @, aerodynamic angle of roll u, and the flight-path angle
Y is given by

sin® = sin U cos }. (3.35)

Owing to the absence of sideslip the side force S is zero so that the resultant
aerodynamic force acts in the plane of symmetry of the airplane. Accordingly,
also the vector sum of the weight W and the centrifugal force C lies in the plane
of symmetry (Figure 3.8).

The equilibrium equations now read:

Tcosoy —D—Wsiny =0
Wecosysinu —Ccospt =0 ». (3.36)
—Tsinoy —L+Wcosycosp +Csing =0

The second equation of (3.36) shows that in the coordinated turn the component of
the centrifugal force along the Y,-axis is balanced solely by a lateral component
of the weight of the airplane. Consequently, the occupants experience only an
additional force in a direction perpendicular to their seats, and there will be no
tendency of sliding in a lateral direction.

Often, the system of equations (3.36) may be expressed as follows:

Tcosoy —D—Wsiny =0
—Tsinopsing +Lsinu—C =0 ». (3.37)
—Tsinogpcospt —Lecost +Wceosy =0
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Figure 3.8 Forces in the coordinated turn

a. System at time t b. System at time (t + At)
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Figure 3.9 Ejection of airplane mass

The first of these equations gives again the equilibrium of forces along the X,-
axis. The second equation gives the summation of the radial forces in the hori-
zontal plane, whilst the third equation gives the summation of the forces acting
perpendicular to the X,-axis in the vertical plane.

3.5 Translational equation for variable mass

In considering the motion of an airplane, we have to allow for the fact that in
powered flight the propulsion system consumes fuel, by which the mass of the
airplane is decreasing continually.

In order to formulate the equation for translational motion for a rigid airplane
ejecting mass, we consider an airplane in horizontal straight flight that at time t
has a mass M and a velocity V relative to an inertial frame of reference (Figure
3.9a).

Suppose that at time 7 + Az the airplane has a mass M — AM and a velocity V +AV.
Further, suppose that mass AM, ejected in the time Az, has a velocity w relative to
the airplane (Figure 3.9b).

By Newton’s second law of motion, the total external force acting on the complete
mass system at time 7 is equal to the rate of change of linear momentum of the
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system. In the limit as A tends to zero we have

M—AM)(V £AV)+AM(V —w) =MV dV  dM
F = lim ¢ )V +AV) +AM(V —w) MWL (3.38)
At—0 At dt dt

Thus for an airplane that is losing mass, the equation of motion can be written as
F+w— =M (3.39)

The term dM/dt may be replaced by the fuel flow rate, m )

am

=M (3.40)
where the minus sign indicates that the airplane mass is decreasing. Substitution
of Equation (3.40) into (3.39) gives

dav

F—mfw:ME. (3.41)
We conclude that Equation (3.2) can be used to consider the motion of an airplane
in powered flight, provided that the linear momentum of the fuel flow rate relative
to the airplane is included in the entire external force.



Chapter 4

AERODYNAMIC BASIS

4.1 Aerodynamic coefficients

The aerodynamic forces R and the moment M., acting on a moving airplane
are produced by pressure forces and viscous forces. The pressure forces happen
due to the asymmetric pressure distribution about the wing and the other airplane
component parts, whereas the viscous forces arise because of shear stresses at the
outer surface of the airplane.

Figure 4.1 shows the pressure distribution over a wing section slanted at a normal
(low) incidence angle to the freestream in a steady flow. According to Bernoulli’s
equation for compressible isentropic flow in Appendix D, the variation of the static
pressure p along a streamline is given by

Y
11 71
pi=rp [1 + Ysz} T constant. “4.1)

2 yp
Along the streamline which follows the surface of the wing section, the velocity
lowers from the freestream value ahead of the wing till zero at the stagnation point
on the nose of the wing, where the static pressure becomes equal to the freestream
total pressure p;.
Following the streamline from the nose along the upper surface of the wing sec-
tion, the velocity increases and the local static pressure decreases. At some point
the velocity reaches its highest value and the static pressure its lowest value. Past
this point the velocity decreases again and the local static pressure comes back
to the freestream static pressure. Similar variations of local velocity and pressure
occur along the lower surface. Owing to the difference between the amount of up-
per and lower surface camber, and also because the wing section is at an angle of
incidence, the velocity of the air flowing over the upper surface is greater than the
velocity along the lower surface. Consequently, the pressure on the upper surface
will be lower than that acting on the lower surface. As a result, a resultant force is
produced due to shape and angle of attack of the wing section.
The surface shear stress 7, is the force per unit area acting tangentially on the
surface of a body due to the frictional effects between body and surrounding air
flow. Figure 4.2 illustrates the cause of the shear stress, namely, the fact that the
fluid particles adjacent to a solid boundary are brought to rest and those close
to it are slowed down markedly. This effect decays quickly across the flow so
that always there is a velocity gradient in the flow adjacent to the surface of the
body. The layer in which the velocity of the air particles increases from zero at
the surface to the local velocity about the body is normally very thin (thickness
< 1 cm).

63
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Figure 4.1 Pressure distribution over a wing section
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Figure 4.2 Velocity profile across the boundary layer

The velocity differences between the laminae of air are fundamentally due to co-
hesion and interaction between fluid particles. It allows motion only by sliding
action between adjacent layers which induces shear forces. The resultant effect
of all these forces is the skin friction drag of the body. The layer of air adhering
to the surface in which friction is essential is indicated as the boundary layer. As
will be explained in Section 4.3, the concept of boundary layer flow is a useful
tool for the understanding of drag characteristics. Point of departure thereby, is
the idea that viscosity manifests only in a restricted region and not throughout the
main flow.

Hence the flow pattern around a body may be divided into two regions, that is,
a thin boundary layer in which friction is important, and a region beyond this in
which the air behaves as a frictionless fluid.

Experimentally, it has been observed that the shear stress 7, is given by the product
of the slope of the velocity profile at the surface and the coefficient of dynamic
viscosity U,

av
%= (m)o“' “2)

For the simple type of laminar flow where successive layers of air slide over one
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another in the form of parallel layers, the coefficient i is a physical property, ap-
proximately proportional to T'/2 over the normal range of air temperatures (see
Chapter 2). Clearly, for a given u, the velocity gradient at the surface is the de-
ciding factor in the determination of the skin friction drag.

From the preceding discussion we may expect that the aerodynamic force and
moment are determined by the following quantities:

general shape of the airplane

size of the airplane surface, S

airplane condition

control surface deflections

attitude of the airplane relative to the freestream
airspeed, V

density of the air, p

coefficient of dynamic viscosity, U.

To these variables should be added the speed of sound in air, ¢, which defines the
freestream Mach number, M =V /c. As we will see later, the Mach number is a
convenient parameter for indicating the importance of the compressibility of the
air on the pressure distribution over the airplane surface (see Section 4.3).

A working method to derive expressions for the aerodynamic force R and moment
M., is the technique called dimensional analysis. This technique is based on the
principle that in a physical equation the dimensions should be the same on both
sides.

Therefore, we state that the aerodynamic force on the airplane depends on S, V,
p,cand U,

R:f(vavpvcau>' (43)

Since R has dimensions of a force, the right side of Equation (4.3) must also have
dimensions of a force. The only possibility to secure dimensional uniformity is
writing the latter equation in the following manner,

R=K(sVPpicenl), (4.4)

where a, b, d, e and f are unknown constants and K is a function of the remaining
dimensionless variables, which cannot be brought into Equation (4.3). Then, in
terms of mass [M], length [L] and time [T], we have

(e

Clearly, the exponent of the mass on the left-hand side of Equation (4.5) is 1, and
on the right-hand side d + f. Thus,

l=d+f. (4.6)
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Similarly, for the length we get

1=2a+b—-3d+e—f, 4.7
and for the time

—2=—b—e—f. 4.8)

The latter three equations contain five unknowns. Assuming that S, V and p are
of primary significance, we can solve the Equations (4.6) to (4.8) for a, b and d in
terms of e and f. We find

a=1-—f/2
b=2—e—f 5. (4.9)
d=1-f

Substitution of these exponents into Equation (4.4) gives
R=K(S)" 12wy /(p)/eu. (4.10)

Grouping factors of particular exponents yields

!
c\¢ u
R=KpV3S () (= ) - 4.11
Since the dimension of §'/2 is correspondent to a length /, we may write
Rexpvis(S) (L) 4.12
= KpV'S((;) <m> - (+-12)

We note that the ratio V /c is the freestream Mach number. The quantity pV¢/u,
which is called the Reynolds number (denoted by the symbol Re), indicates the
relative importance of the shear and inertia forces within the flow; the lower the
value of Re the more relative important are the viscous forces. Hence,

R=KpV?S ANARY 4.13
—fp (M) <R—e>' 19

FOF Convenience we set
(LY (LY _G
M Re 2
Now we can write
1
R= CREpVZS = CpgS. (4.14)

Equation (4.14) states that the aerodynamic force is determined by a coefficient
Cp times the dynamic pressure %sz = g times an area S.
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For airplanes the convention is to use the area of the wing planform as the surface
of reference. This area is called wing area and is further explained in Section 4.2.
Evidently, Equation (4.14) represents also the lift, drag and side force components
of the aerodynamic force:

L=C ipV?%s
D=CphipV3s ». (4.15)
§=CsipV2s

Here the coefficients C;, Cj, and C are known as the coefficients of lift, drag and
side force, respectively.

When the technique of dimensional analysis is applied to the moment M, , the
following expression easily is found,

1
Meg =Cyy5 pV2Se, (4.16)

where C,, is the nondimensional moment coefficient. According to universal prac-
tice, the length factor ¢ is taken equal to the mean aerodynamic chord of the wing
(see Section 4.2).

The way in which in aerodynamics the coefficients C;, Cp,, Cy and Cy, are deter-
mined is, of course, beyond the scope of this text. At this place, suffice it to say
that even for a given airplane these coefficients by no means are constants, but
that they are dependent on airplane condition, control surface deflections, Mach
number, Reynolds number and attitude of the airplane.

The side force given in Equation (4.15) occurs only when there is an angle of
sideslip. However, sideslipping flight is virtually always an unwanted flight con-
dition. Therefore, so-called coordinated flight conditions (8 = 0) are of primary
importance.

4.2 Airfoil and wing characteristics

A cross-section of the wing parallel to the plane of symmetry of the airplane is
called airfoil or wing section, and is so shaped as to generate Iift without exces-
sive drag. Figure 4.3 provides an impression of the development of wing section
shapes over the years. Of special significance is the supercritical airfoil developed
for use on the modern high-subsonic transports. This advanced wing section has a
flatter upper surface, a more convex underside, and an increased camber near the
trailing edge.

The improved shape gives a more evenly distributed pressure over the surface,
permitting the section to be thicker without causing more drag at high-subsonic
airspeeds than its predecessors. More recently was designed the GAW-2 airfoil
for application on the low-subsonic general aviation airplanes. This airfoil type
produces reduced drag coefficients and an increased maximum lift coefficient.
Figure 4.4 gives the nomenclature in defining the shape of an airfoil. The mean
camber line determines the amount of curvature and is the line that is situated in
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Figure 4.3 Historical review of airfoil shapes
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Figure 4.4 Airfoil geometry and nomenclature

the middle between upper and lower surfaces. The ends of the mean camber line
are the leading edge and the trailing edge points. The chord line is the straight line
joining the two ends of the mean camber line. The chord is the distance between
leading edge and trailing edge points, measured along the chord line. The angle
between the freestream direction and the chord line is the angle of attack .

The two-dimensional lift, drag and moment coefficients are, according to Equa-
tions (4.15) and (4.16),

y4
c,= “4.17)
t %pvzc

d
C,=— (4.18)
d %szc

m
Cn= =", 4.19)
m %pvzcz

where ¢, d and m are the lift, drag and pitching moment of the aerodynamic force
per unit width of the wing, respectively (Figure 4.5). The moment m is usually
specified in reference to the quarter-chord point. At low velocities, this point is
very close to the aerodynamic center of the airfoil. The latter point is the point
about which the pitching moment for a given freestream velocity is essentially in-
dependent of the angle of attack. Characteristic curves, showing the variations of
lift, drag and moment coefficients with angle of attack, are sketched in Figure 4.6.
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Figure 4.6 Typical c,-a, c,-a, - curves for cambered airfoil

Apparently, up to a large angle of attack, the ¢, versus ¢ curve may be represented
by a straight line. Notice also that the moment coefficients have negative values.
As the angle of attack is increased up to the stall point, ¢, is reached. Beyond
this critical angle of attack, the airflow separates from the upper surface, with the
result that the lift coefficient is strongly reduced. Computational methods have
been developed for the determination of the coefficients c,, ¢, and ¢,,. Also, a
large amount of experimental airfoil data from wind tunnel tests is available in
literature; see e.g. Reference 13.

Figure 4.7 shows the most important parameters specifying the geometry of an
airplane wing. The wing span b is the length in Y -direction between the wing tips.
The wing area S, is the area of the wing projected onto the X Y-plane, and may be
written as

b/2

s= [ ey (4.20)

—b)2
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where c is the chord length, which often varies with the Y-coordinate. The ratio
¢;/cr is named the taper ratio. As illustrated in Figure 4.8, the wing area, arbitrar-
ily, comprises also the central part of the wing covered by the fuselage.

geometric
twist €
S —> Y-axis
sweep angle A\

quarter chord i
line ! -7 —

o chord |c s
cy = ~p=dy Ttip

X-axis
wing span b

v = Yexis

- s
0 dihedral angle I”

Figure 4.7 Wing geometry Figure 4.8 Wing area

The mean geometric chord, ¢,g, is the arithmetic mean of the chord lengths,

S
Cng =7 4.21)

The ratio of the wing span to the mean geometric chord is known as the aspect
ratio and given the symbol A,
b b

A= —

4.22
P (4.22)

A wing parameter of importance in quantifying the moment coefficient is the mean
aerodynamic chord ¢, which is defined as

b/2

i=— / A(y)dy. (4.23)

—b/2

As with wing area S, we usually specify ¢(y) over the part of the wing occupied by
the fuselage by extending the leading and trailing edges to the plane of symmetry
of the airplane.

Geometric twist €, is the variation in direction of a section chord line relative to
the direction of the chord line at the root section of the wing. We may modify the
spanwise distribution of lift by twisting the wing to give a desired angle-of-attack
variation along the span.

The dihedral angle I" is the angle between the quarter-chord line and its projection
on the XY-plane. Dihedral is applied as a means to improve lateral stability. The
last term denotes the ability of the airplane to restore to its original attitude after
an unwanted displacement about the X, -axis, without pilot assistance.
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Figure 4.9 Finite wing flow

We end our enumeration of wing geometrical parameters with the sweep angle
A, which may be represented by the angle between the Y-axis and the projection
of the wing leading edge onto the XY-plane. Sweeping the wing is an important
measure to reduce the magnitude of the freestream velocity normal to the leading
edge, which component determines the velocity and pressure distributions over
the wing sections.
Next we have to consider the influence of the finite width of the wing on lift and
drag coefficients, when using two-dimensional airfoil data.
Since the pressure on the bottom surface is greater than that on the top surface,
there will arise a circular motion of air around the wing tips, and consequently, a
reduced lift coefficient at a given angle of attack (Figure 4.9).
In exchange for this loss of lift, we get from the spanwise inflow above the wing
and the outflow below the wing, two discrete wing tip vortices in the flow down-
stream of the wing.
A theoretical analysis yields the following approximate formula for the value of
the wing lift-curve slope at subsonic velocities (Reference 14):
% = 22” . (4.24)
L

Now we can examine the example where we want to achieve the same lift coeffi-
cient from a wing placed in a three-dimensional flow as predicted by the aerody-
namic properties of the composing wing sections.

From Figure 4.10, we see that this is obtained by increasing the angle of attack of
the wing in the actual three-dimensional flow by a small value Ao over that for
the wing in two-dimensional flow. The latter flow condition is the same as would
prevail for a wing of infinite span.

In terms of drag, the effect of the increased angle of attack is expressed as follows;
the drag coefficient for the wing in the three-dimensional flow is equal to the two-
dimensional drag coefficient Cp,, plus the induced drag coefficient Cp;:

Cp=Cp,+Cp;. (4.25)
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Figure 4.10 Wing lift coefficient as a function of angle of attack
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Figure 4.11 Effect of flap deflection on lift curve
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The coefficient C Dp in Equation (4.25) is called the profile drag coefficient (due to
pressure drag and skin friction drag in the two-dimensional situation at the given
lift coefficient C; ).

In order to raise the maximum lift coefficient C; . during takeoff and landing,
aerodynamic devices are affixed to the wing. The most usual devices to facilitate
takeoff and landing are trailing-edge flaps, which may also extend the wing area.
In particular, the increase in C; . is obtained by a change in airfoil shape and/or
by increased camber.

The effects of the use of flaps is indicated in Figure 4.11, where it is shown that
the lift coefficients are increased over the whole range of angles of attack, and
that the critical angle of attack may be slightly decreased from that of the wing
with flaps up. Flaps also increase the wing drag. Therefore, full flap deflection

slots
C:::f\ plain flap g K double slotted flap

split flap R \ Fowler flap
slat
I lex slotted
C B single slotted flap Gm-_ complex
\\ flap with slat

Figure 4.12 Types of wing flaps
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Figure 4.13 Effect of a slot on wing lift curve

is applied to decelerate the airplane during the landing maneuver. The different
types of trailing-edge flaps are shown in Figure 4.12. The maximum lift coefficient
may also be increased by use of a slot formed by an auxiliary device called slat,
which is placed in front of the wing leading edge. The air flowing through the
slot is accelerated, through which flow separation is delayed and so increasing
the critical angle of attack and the maximum lift coefficient. The effect of the
presence of a slot on the lift coefficient is illustrated in Figure 4.13. Notice that
a slot extends C, .. without any shift of the lift curve. Detrimental to the view
from the flight deck is the higher stall angle required.
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4.3 The lift-drag polar

Figure 4.14 shows the lift and drag coefficients as a function of angle of attack
for a low-subsonic airplane in clean configuration (fixed landing gear). Note that
these curves have essentially the same form as for a wing section. At an angle of
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attack of about 16°, separation of the flow from the wing begins, which leads to
a substantial loss of lift and increase in airplane drag. Therefore, the airplane can
only fly at an angle of attack below a_.

By elimination of ¢ from the relations C, = f(¢t) and C,, = f(a), the lift-drag
polar is obtained,

Cp = f(C}). (4.26)

The lift-drag polar which results from Figure 4.14 is given in Figure 4.15. In addi-
tion, also the lift-drag polar for the airplane with wing flaps down is plotted. Due
to the deflection of the flaps, the maximum lift-coefficient is increased consider-
ably. Using the relationship (4.26) we should remember that a lift-drag polar is
only of significance if the following parameters are known:

e actual shape of the airplane (control surface deflections and airplane condi-
tion)

e Reynolds number

e flight Mach number.

In most performance calculations, it turns out that drag increments due to control
surface deflections are negligible. Therefore, throughout this text the effects of
these trim forces on the lift-drag polar will be omitted.

Concerning the airplane condition, typical configurations may be distinguished to
be present in the various flight phases encountered by the airplane. This means
that lift-drag polars will be used that are representative for the condition of the
airplane during particular flight phases, such as:

o takeoff (flaps partly deflected and landing gear down)
e cruise (flaps and landing gear retracted)
e landing (flaps fully deflected and landing gear down).

From the remarks made above, it is evident that any presentation of a lift-drag
polar should be accompanied by a record of the several associated conditions on
which the curve depends. The lift-drag polars of a transport airplane with re-
tractable landing gear, as given in Figure 4.16, show that in addition to the in-
crease of drag coefficient due to flap deflection, also the landing gear furnishes a
considerable contribution to the total drag of the airplane.

As has previously been noted, the viscous effects in the flow manifest in the pres-
ence of a boundary layer. An important effect on the boundary layer condition has
the Reynolds number. At low Reynolds numbers the flow in the boundary layer is
laminar, i.e. streamline (see Figure 4.2). At high Reynolds numbers, mostly tur-
bulent flow prevails. In turbulent flow there are oscillations of air particles across
the boundary layer, by which there is an exchange of kinetic energy among the
laminae and a transfer of energy from the freestream to the boundary layer. Fig-
ure 4.17 shows the velocity profiles across the boundary layer for both laminar and
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Figure 4.16 Typical lift-drag polars for propeller-driven transport airplane (estimated)
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Figure 4.17 Typical laminar and turbulent boundary layer velocity profiles

turbulent flow. Assuming the same flow conditions, the turbulent boundary layer
is thicker than the laminar boundary layer. Another important difference is that
near the surface the velocity gradient of the turbulent layer is much greater than
that of the laminar boundary layer. Then, Equation (4.2) tells us that transition to
turbulence must result in an increase in skin friction drag.

Referenced to the wing chord, as characteristic linear measure, airplanes experi-
ence Reynolds numbers of 5 x 10° to 10® or higher. At these typical high Reynolds
numbers, turbulent flow is present over a very large portion, let’s say, 90 % of the
wing chord.

In Figure 4.18 is sketched the development of the boundary layer over the upper
surface of a wing. Over the front portion, near the leading edge, there is always a
laminar boundary layer. The thickness of this layer increases when the flow moves
from the nose of the wing. Then very soon after the point for minimum local
air pressure, transition to turbulence occurs which is accompanied by a drastic
thickening of the boundary layer. The turbulent boundary layer goes on to grow
in thickness with increasing downstream distance. When moving over the rear
portion of the wing surface, the air particles must press against both the viscous
forces and the increasing local pressures. At a certain point the flow collapses and
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Figure 4.18 Development of the boundary layer over the wing

a wake emanates from the flow separation.

At lower angles of attack, separation occurs generally close to the trailing edge.
As the angle of attack is increased, the boundary layer thickness increases, the sep-
aration point shifts forward, and the drag coefficient builds up. Finally a complete
break-away of the flow occurs, which sets an upper limit to the lift coefficient.

As the Reynolds number increases, the boundary layer becomes turbulent further
upstream. At the same time, separation is delayed, resulting in a smaller wake.
The size of the wake is a measure of the drag caused by the separation. The
smaller the wake, the smaller the pressure drag component, and hence, the smaller
the total drag coefficient. On the other hand, the maximum lift coefficient that can
be obtained increases slightly with increasing Reynolds number.

At this point it is worth noting that in order to detect an approaching stall of an
airplane, there must be an adequate stall warning, with flaps and landing gear in
any normal position, in straight and turning flight. The warning may be furnished
either through the inherent behavior of the airplane or by an artificial stall warning
device. The latter system generally consists of a pressure vent near the leading
edge of the wing, located so that just prior to the stall point the stagnation pressure
crosses the aperture and the pressure there varies quickly in consequence. This
large pressure change is used to produce an acoustic signal or warning light to
advise the pilot that the angle of attack is near the stall angle. The stall warning
begins at a speed exceeding the stalling speed and continues until stall occurs.
The stall angle may also be determined by a small vane on the side of the fuselage
near the nose. The vane can rotate freely so that it is aligned to the flight path,
whereby the vane angle is converted into an electrical signal that is transmitted to
an indicator in the cockpit.

Returning to the preceding discussion on the Reynolds number, we can summarize
its effects as follows:

1. For a given condition of the wing (roughness of the surface) and shape of
the wing sections (pressure distribution over the surface), the value of the
Reynolds number determines the location of both the transition and the sep-
aration point.

2. With increasing Reynolds number, the transition point moves forward and
the separation point moves backward over the wing. As a result, the general
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trends are a somewhat higher value of maximum lift coefficient and a lower
profile drag coefficient when the Reynolds number becomes greater.

Concerning the variations of maximum lift coefficient and profile drag coefficient,
it is important to note that these coefficients vary merely at a very small rate within
the normal ranges of Reynolds numbers encountered in the various flight phases.
This observation implies that, usually, it will be sufficient to consider in each flight
phase a mean value of the Reynolds number.

Let us now look at the effects of flight Mach number on the lift-drag polar. For that
we consider the pressure disturbances in the air produced by an airplane (Figure
4.19). When the airplane is flying at a low airspeed, the air in front of the airplane
is subjected to these disturbances amply before the airplane appears so that the air
will flow smoothly about the airplane. This situation may be illustrated by Figure
4.19a, where for convenience the airplane is represented by a point source with
zero dimensions. The circles indicate the locations of the pressure disturbances
which have been created by the source at certain moments and are transmitted at
the speed of sound. Obviously, the disturbances are closer together in the direction
of motion.

Figure 4.19 Pressure perturbations from a moving source

As the airspeed comes to the speed of sound, the pressure disturbances are con-
fined to a smaller area ahead of the source, and the time between the arrival of the
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disturbances and the appearance of the source diminishes. This means that some
adjustment must take place in a very short time (Figure 4.19b).

As the airspeed equals the speed of sound, the pressure disturbances and the
source move at the same speed (Figure 4.19c). Now, the disturbances form a
so-called Mach wave, which is the limiting case of an infinitely weak shock wave.
Ahead of a source with finite dimensions, such as an airplane, a normal shock
wave occurs (Figure 4.19d). According to Appendix D, a shock wave is an almost
sudden increase in pressure, temperature and density, and a decrease in velocity
and total pressure. As a result, there is a change in pressure distribution over the
surface from that experienced at low airspeeds, and hence, there is a change in the
aerodynamic coefficients of the airplane. In Figure 4.19¢ we see the condition in
which the speed of the point source exceeds the speed of sound. Now, the Mach
wave is the line tangent to all the circles of disturbances. From Figure 4.19¢ we
obtain

w=sin"! [%} =sin"! [1\1_/1} . (4.27)

where the angle u is the Mach angle, being the angle the Mach wave makes with
the direction of the flight velocity. As shown in Figure 4.19f, at the nose of a high
speed airplane, an oblique shock wave is produced, which is inclined at an angle,
B > u (see Appendix D).

In Figure 4.20 the various flight regimes are classified in terms of Mach number.
For Mach numbers smaller than approx. 0.5, we have low-subsonic flow, where
in aerodynamics the air is treated as though it is incompressible (constant air den-
sity). For Mach numbers between 0.5 and 0.8, say, we have high-subsonic flow,
where the compressibility of the air cannot be ignored. Transonic flow concerns
the speed regime in which the flow pattern changes from subsonic to supersonic.
This regime covers the Mach numbers between 0.8 and 1.2 approximately. For
Mach numbers greater than 1.2, we have supersonic flow, where compressibility
effects are of paramount importance. Now the velocity of the main flow about
the airplane in every place exceeds the speed of sound and oblique shock waves
occur.

For Mach numbers exceeding 5, we speak about hypersonic flow. Owing to the
high temperatures developed around the nose of a body in a hypersonic flow, dis-
sociation and ionization processes occur, causing that the assumption of a perfect
gas is no longer valid.

Figure 4.21 illustrates the development of shock waves about an airfoil. Up to
a flight Mach number of about M = 0.5 the flow is subsonic everywhere (Figure
4.21a). Since the local Mach number M* will be higher than the flight Mach
number, a particular flight Mach number comes about at which locally sonic flow
first occurs on the surface (Figure 4.21b). The corresponding flight Mach number
is termed the critical Mach number, M_,.
As the flight Mach number increases further, regions of supersonic flow come
forth, which end through the occurrence of normal shock waves (Figures 4.21c
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Figure 4.21 Shock wave formation about an airfoil

and d). The normal shock on the upper surface in Figure 4.21d produces an in-
creased static pressure behind the wave. Usually, the boundary layer is unable to
withstand the large pressure rise across the wave. Then, separation of the bound-
ary layer flow occurs, which causes an increase in wake thickness and so in section
drag and a reduction of the maximum lift coefficient. This type of separation is
known as shock induced boundary layer separation.

Figure 4.21e shows the flow pattern at a flight Mach number close to M = 1,
where large regions are supersonic. At supersonic airspeeds, finally, an oblique
shock wave is present around the nose and at the trailing edge of the airfoil (Figure
4.211).
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The actual variation of the drag coefficient at constant-lift coefficient versus Mach
number for a supersonic airplane is illustrated by the curves in Figure 4.22a. The
corresponding lift-drag polars are plotted in Figure 4.22b. The curves show that
up to a Mach number of about 0.9, the lift-drag polar remains fairly the same.
The slight decrease in drag coefficient at constant lift coefficient in Figure 4.22a
is caused by the circumstance that the effect of an increasing Mach number is to
increase the slope of the C;-a curve (Figure 4.23). Note also that, on the other

hand, an increasing Mach number leads to a lower C; .. value.
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Figure 4.22 Aerodynamic properties of a supersonic airplane

The extra drag at transonic and supersonic flight Mach numbers in Figure 4.22, is
called wave drag and results from the formation of shock waves. The shock waves
convert a substantial part of the freestream kinetic energy into heat, which results
in airplane drag. In addition, the interaction between shock wave and boundary
layer at high-subsonic and transonic speeds creates a further increase in the drag
coefficients. The flight Mach number at which the drag coefficient at constant lift
coefficient begins to rise sharply, is named the drag-divergence Mach number, M,
(Md > Mcrit)'
An effective means of increasing the drag-divergence Mach number of high-subsonic
airplanes is the use of supercritical airfoils. Another adequate means is the appli-
cation of wing sweep (Figure 4.24), which also delays the shock formation on the
wing surface. As was mentioned earlier, this behavior is due to the fact that the
velocity and pressure distribution around the wing sections is a function of the
velocity perpendicular to the leading edge. From Figure 4.24a it can be seen that
for a swept wing the operative Mach number normal to the front edge of the wing,
M, is related to the airspeed by

Vi

M,=—= KcosA. (4.28)
c c

Hence, sweeping the wings of high-subsonic airplanes will, in principle, increase
the critical Mach numbers by a factor 1/cosA.
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elevons

The wave drag occurring in transonic and supersonic flight lessens markedly with
the slenderness of the body. In consequence, supersonic airplanes show a slender
fuselage and low aspect ratio wings with thin airfoils.

The combination of a large sweep angle and a reduced aspect ratio may then result
in a slender delta wing. Pitch and roll control may be provided by elevons on the
trailing edges of the delta wing (Figure 4.24b). Elevons work together as elevators
and differentially as ailerons.

If the wing fits within the shock wave cone from the fuselage nose, as shown in
Figure 4.24b, the operative velocity at the wing leading edges is subsonic, which
condition furnishes less wave drag.

At low speeds and high angles of attack, the delta wing reveals a special flow con-
dition as shown in Figure 4.25. Because of the sharp leading edge and the large
sweep angle, the flow over the delta wing forms leading edge vortices. The for-
mation of these vortices create a high-lift effect and obviate total flow separation.
As aresult, a delta wing shows a very large stall angle.
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4.4 Parabolic lift-drag polar

The total drag of an airplane may be divided into the drag of the wing D,, and the
sum of the component drags D,,,

D =D, +D,. (4.29)

Referring to Equation (4.25), we can write the wing drag as the sum of the induced
drag D, and the profile drag D,. With this, Equation (4.29) becomes

D=D,+D,+D,. (4.30)

The nature of the induced drag (or drag due to lift), has already been discussed
in Section 4.2. The profile drag consists of pressure drag, skin friction drag and
wave drag. The wave drag is zero for subsonic airspeeds below the critical Mach
number. Pressure drag, skin friction drag and wave drag together, form also the
drag of the airplane components. Since the drag coefficient of each component
part, C,,, is based on a certain area S, as the reference area, the total airplane
drag is given by

1 1 1 1
CDEpVZS - CDiEpVZS—i— CDPEpV2S+ (ZCDnSn)EpVZ. (4.31)

Accordingly, the drag coefficient of an airplane is (see Figure 4.26)

ZCDn S”

2 4.32)

Cp=Cpi+Cp, +
where the quantity @ is called the parasite drag coefficient.
Theoretical aerodynamics predicts that the induced drag coefficient is directly pro-
portional to the square of the lift coefficient C;, and inversely proportional to the
aspect ratio A and a wing efficiency factor ¢,

Ci

D= TAG 4.33)

The factor ¢ depends primarily on the wing planform since it indicates how close
the elliptic spanwise lift distribution is obtained. For an elliptic lift distribution
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¢ = 1 (minimum induced drag coefficient). In all other cases ¢ will be less than
one. Thus, the drag coefficient of the airplane is

z:CDnS n

¢
— Oyt = (4.34)

C =
b rA¢

Since also the profile drag and parasite drag coefficients are dependent on the
angle of attack, Equation (4.34) may be written as

C? >Cr S
C,=—L +xCc?+|C Dn”1t . 435
D ﬂ:A(p + L+ |: Dp+ S CL:O ( )

The term X Cg represents the assumed parabolic change of the profile and parasite
drag coefficients with lift coefficient. The quantity in parentheses is termed zero-
lift drag coefficient and given the symbol Cp, .
Then, Equation (4.35) can be transformed into

Ct

C.=C & 4.36
D D0+TEA€, ( )

where the factor e follows from

1:XfrA—i— l, (4.37)
e ¢
and is called the Oswald’s efficiency factor. Apparently, this factor accounts for
the variation of the profile and parasite drag coefficients with lift coefficient, and
the effect of the actual spanwise lift distribution on induced drag coefficient. For
most airplane types the value of e varies between 0.6 and 0.9. Sometimes, Equa-
tion (4.37) is expressed in the form

Cp =Cpy +kCT, (4.38)
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Figure 4.27 Parabolic approximation of lift-drag polar of low-subsonic airplane

where k = 1/(mAe) is called the induced drag factor.

In Figure 4.27 the drag coefficient of Figure 4.15 is plotted against Cz. The devi-
ation from the parabolic form is represented by the divergence from the straight
(dotted) line. We see that a considerable part of the Iift-drag polar is indeed a
parabola, but there is some extra drag at lift coefficients beyond about 1.0.

The parabolic lift-drag polar can be used not only at subsonic speeds, but also
at both transonic and supersonic airspeeds, if in Equation (4.38) the values of
Cp, and k are adjusted appropriately. Anticipating later discussions, it may here
be noted that in many respects the performance of airplanes are determined by
the following aerodynamic ratios: C, /Cj,, C; /C3, and C, /C3. In particular the
maximum values of these ratios are of importance.

For maximum C, /C,, we differentiate this ratio with respect to C; and set the first
derivative equal to zero, i.e.

dac,
d(C/Cp) _ Cp _CLﬁ
dc, —  C}

=0.

Since Cj, # 0, we have the condition

acp _Gp

= —=. 4.39
dac, C; (4.39)
Using the parabolic lift-drag polar, Equation (4.36), we obtain
2C;, Cp,+Ci/mA
2 CptCijmhe o e we. (4.40)
mAe C, o

Substitution of the latter result into Equation (4.36) yields (see Figure 4.28)

Cp,=2Cp,, and (4.41)

<&> _ VCp,rde Do”Ae e 4.42)
max

CD Do



4. Aeroynamic basis

85

18
lift c?
; L 16
coefficient
nhe Lift-Drag
CL c T ratio i
o o | C
" Yeo
(CL/C0), 12
10r
2 8
CL
~C0=C00" g
6} sub- | tran- | super-
sonic | sonic sonic
L ;
04 08 16 20 24
drag coefficient Cp Mach number

Figure 4.28 Maximum value of C, /C,,

Figure 4.29 Maximum lift-to-drag ratios

For maximum Cz / Clz) in like manner, differentiation furnishes the general condi-

tion
dc Cc
D _ é_D_ (4.43)
dac, 2C,
Making use of the parabolic lift-drag polar gives
2C, 3 [Cp,+C}/(mAe)
L | e BV C, =./3C, mAe. 4.44
tAe 2 [ C, L DoTtA¢ (444
Substitution of Equation (4.44) into (4.36) yields
C,=4Cp, and (4.45)
c3 3C, mAe,/3C, mAe 3./3 A
(—5) — TDo OV TDo T V3 e, |TAC (4.46)
Ch/ max 16 Cp, 16 Cp,
. S o . d(C)CR) ..
Similarly, for maximizing C, /Cp, setting —dc, = 0 yields the condition
dc 1C
D ___D (4.47)
dac, 2C,
Then in case of a parabolic lift-drag polar, we find
1
C = §CD07'CAe, (4.48)
4
Cp= §CD0 and (4.49)
<CL> - 3Cp,Ae ~ 3V3 [nAe (4.50)
C% max % C%() 16 Cgo
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We end this subject by remarking that, especially, the maximum lift-to-drag ratio,
(C;/Cp)max. is a significant acrodynamic quantity of an airplane. In Figure 4.29
are depicted the order of magnitude values of this ratio for transport airplanes.
The curve of Figure 4.29 shows that the attainable value of (C; /C/))max is about
16 at subsonic velocities. The maximum lift-to-drag ratio falls off abruptly in the
transonic region and approaches to a value of approximately 7.5 in the supersonic
region.



Chapter 5

AIR DATA INSTRUMENTS

5.1 Introduction

The instrument panel in the cockpit may consist of a large number of indicators,
which provide essential data on the flight condition and the orientation of the
airplane relative to the Earth. Likewise, these readings present to the pilot complex
information for control and guidance of the airplane.

Generally, the various instruments and flight systems can be divided into four
categories, namely,

e Air data instruments, which include the altimeter, the vertical-speed indica-
tor, the airspeed indicator, the Machmeter, and the air thermometer.

e FEngine instruments, like tachometers (engine-speed indicators), tempera-
ture and pressure gauges, and fuel-flow meters.

e Blind flying instruments, under which fall for example the turn and slip
indicator, the direction indicator, and the artificial horizon.

e Avionics systems, such as applied for communication, navigation, flight con-
trol, and flight management.

In the light of the aim of this course book, however, only the air data instruments
are inside the scope of our inquiry. This means that the principles of the engine
instruments and the gyroscopic devices of the third category, will not be discussed
here. Also, for any explanation of the avionics systems, the interested reader is
referred to the literature dealing with these special topics.

5.2 The altimeter

The altimeter indicates the vertical distance of the airplane above ground level. As
shown schematically in Figure 5.1, the instrument is simply a pressure measuring
device since it is actuated by the static pressure of the atmosphere.

Essentially, the altimeter is made up of an air-tight case, where a differential-
pressure capsule is placed. The capsule is made up of two diaphragms which are
connected and sealed at their edges to form a hollow room.

The instrument chamber is connected to a static pressure tapping on the airplane
so that the interior of the case is at the ambient air pressure. The diaphragm unit
is evacuated, with the result that it will expand when the air pressure decreases. A
linkage structure conveys the displacement of the capsule to the indicator pointer.

87
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Figure 5.1 Principle of altimeter

To provide an indication of height instead of pressure, the scale is calibrated ac-
cording to the pressure-height relationship in the International Standard Atmo-
sphere (I.S.A.). Then, for use in the troposphere, the calibration equation in terms
of geopotential pressure height is (see Section 2.4)

_RA
H, = [(f) N —1] % (5.1)
0

where

the pressure at sea level p, = 101325 N/m?.

the temperature at sea level T, = 288.15 K,

the gas constant R = 287.05 m?/s’K,

the temperature gradient A = —0.0065 K/m,

the acceleration of gravity at sea level g, = 9.80665 m/ s2.

Naturally, in the stratosphere and mesosphere calibration equations different from
Equation (5.1) must be used. E.g., an altimeter which is to be used op to an altitude
of 20 km will have to be calibrated according to Equation (5.1) up to 11,000 m
and thereafter will have to use the following calibration equation:
szHs—ﬂlnﬁ. (5.2)
8o Ps
where the subscript ’s”” denotes tropopause (Hy = 11,000 m).
Noteworthy is the fact that, although in the International Standard Atmosphere
height is defined in terms of meter, the altimeter scale almost always uses the
foot as a measure of altitude. On the other hand, horizontal length such as range
of vision and takeoff and landing distances are normally expressed in SI-units
(meter or km).
As we have pointed out already in chapter 2, the pressure occurring at the geopo-
tential pressure height H,,, as measured by the altimeter in any atmosphere is equal
to the pressure at the same geopotential height H in the International Standard At-
mosphere.
It will be clear that when the atmospheric conditions depart from the values as-
sumed in the International Standard Atmosphere an altimeter is in error, that is, the
geopotential pressure altitude differs from the actual geopotential height. Thus,
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Figure 5.2 Definition of altimeter settings

the quantity geopotential pressure height provides the actual air pressure but fur-
nishes only an approximation of the geometric or true height above the ground.
The greatest error is caused by the influence of the sea-level pressure p,. In order
to correct the altimeter reading for the occurring pressure at ground level, the
altimeter is provided with a subsidiary scale. Now the datum pressure at which
the altimeter will read zero altitude can be set on this subscale. This may be
accomplished by means of a manually operated adjustment knob on the instrument
(Figure 5.1). The adjustment knob can be turned until the altimeter reads the
elevation of the airport above mean sea level (MSL) or zero height at the airport
level.

Three settings of the datum pressure on the subscale can be distinguished, which
are designated by the following codes (Figure 5.2):

QNE - setting the standard sea-level pressure of 101325 N/m?.

QNH - pressure setting such that the altimeter reads altitude above mean sea level
at the airport level.

QFE - pressure setting such that the altimeter reads zero height at the airport level.

The QNE setting is used for test work and for normal flight operations above a
prescribed transition altitude. Then the altimeter is a pressure measuring apparatus
and a means to secure the vertical separation of airplanes.

The QNH and QFE settings are applied for takeoff and landing maneuvers and for
low-level flights at or below transition altitude.

It will be clear from the foregoing that the vertical position of an airplane during
climb after takeoff is expressed in terms of altitude (feet) until it arrives at the tran-
sition altitude above which the vertical position is given in terms of pressure level,
usually called flight level (FL). E.g., FL 100 means that the altimeter indicates a
geopotential pressure height of 10,000 ft. Likewise, on approach the vertical po-
sition is given in terms of flight level until the airplane reaches the transition level
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below which the vertical position is expressed again in terms of altitude.

The reading of the altimeter may also be subject to inaccuracies in the instrument
itself. Permissible limits of this instrumental error are maintained by a current
calibration procedure.

The freestream static pressure which is fed to the altimeter is measured by means
of a static pressure probe, or alternatively by a set of static vents in the side of the
fuselage of the airplane. The probe is directed forward and may be mounted on
the forebody, wing, or vertical tail.

Figure 5.3 shows the static probe and the pressure distribution along the stream-
lines following the surface of the probe.

According to Appendix D, the variation of the static pressure along a streamline
may be described by Bernoulli’s equation for compressible isentropic flow,

Y
pPi=p [1 + MPVZ} o = constant, (5.3)
2y p
where p; is the total pressure and p, p and V are the local values of static pressure,
air density, and flow velocity, respectively.
From Figure 5.3, we see that ahead of the probe the local static pressure equals
the freestream static pressure. There, the local velocity is equal to the freestream
velocity. Approaching the nose of the probe the velocity decreases and the static
pressure increases. At the stagnation point the velocity is zero and the local static
pressure equals the total pressure.
Moving from the nose along the surface of the probe, the velocity increases again
and the local static pressure decreases. At some point behind the nose of the probe
the velocity and pressure return to their freestream values. At that point there are
static holes which are connected with the altimeter.
The pressure at the instrument and at the measurement point may be different due
to system lag during alterations of height or speed. Moreover, the presence of the
airplane and/or the positioning of the probe in the pressure field may cause a local
pressure at the measurement point which differs from the freestream value. To
avoid or minimize this so-called position error, the freestream static pressure must
be measured outside the pressure field of the airplane.
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When executing flight-test work, a usual way of obtaining the proper static pres-
sure is to trail a static tube at some distance below the airplane (Figure 5.4). Since
this device is limited to a maximum airspeed of approximately 450 km/h, as an
alternative, a static cone can be trailed behind the airplane (Figure 5.5). Position
error is dependent on altitude and airspeed so that it differs all through the entire
operating range of the airplane. Therefore, a convenient method of measurement
of position error corrections is to fly in formation with a reference airplane hav-
ing a well-calibrated static system. Then immediate comparison of the indicated
altitude can be made between the two altimeter readings.

For a detailed discussion on the determination of error corrections, the reader is
referred to Reference 15.

5.3 The vertical-speed indicator

The vertical-speed indicator displays whether the airplane is continuing level flight,
or measures the rate of climb or descent.

As sketched in Figure 5.6, in the vertical-speed indicator the static pressure source
is connected directly to the diaphragm capsule and to the instrument chamber via
a capillary tube.

When level flight is maintained, the pressure inside the capsule equals the pressure
in the casing and the instrument reading is zero.

During climb or descent, the pressure led into the instrument changes continu-
ously. However, the capillary tube controls the rate of air flow into or out of the
instrument chamber and so the pressure surrounding the capsule. Due to the re-
strained choke, the pressure change in the instrument chamber is delayed relative
to the pressure in the diaphragm capsule. In other words, the diaphragm unit con-
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tracts or expands in terms of a rate of change of pressure. This deflection of the
capsule is calibrated to yield an indication of vertical speed.

For test work, almost always, use is made of the altimeter reading to establish
the rate of climb or descent by measuring the time interval Az to cover a certain
vertical distance AH.

In the absence of vertical wind, the rate of climb, RC, at the mean height between
two successive measurement points may be approximated by

AH
RC=—. 5.4
A (5.4)
In calculating the rate of climb, we must take into account that the (true) height
interval AH in Equation (5.4) differs from the indicated height interval AH,, when
the actual atmosphere does not conform to the standard reference conditions.

Generally, from the aerostatic equation (Equation (2.1)) and the equation of state
p/p =RT,

P P
dp=—-"_gdH=——"—gdH,  or (5.5)
RT RTISA
T
dH = dH, —. (5.6)
Tisa

In Equation (5.6), Tig, is the temperature in the International Standard Atmo-
sphere and T is the prevailing temperature at the same altitude H,. Combining
Equations (5.4) and (5.6) yields the following expression,

AH T AH,

RC=—= —
At Tigh A1

(5.7)

where AH), is the measured height interval, and 7" and T;g, are the temperatures
at the mean geopotential pressure altitude.

5.4 The airspeed indicator

The determination of airspeed is based on the measurement of the differential
pressure,

Pi—P =4, (5.8)
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where p;, is the total pressure and p is the freestream static pressure. The difference
between these pressures, g, is termed impact pressure.

As depicted in Figure 5.7, the pressures p; and p are fed separately into the in-
strument and the pressure difference is measured by employing an air-tight case
in which a diaphragm unit is placed. The total pressure is sensed by a pitot probe,
which has an orifice at the stagnation point on the nose (Figure 5.8). Often, the
pitot probe is combined with the static probe, which assembly is called a pitot-
static probe or pressure head (Figure 5.9). The relationship between the impact
pressure g, and the airspeed V is obtained by substitution of Equation (5.3) into
Equation (5.8),

Y
] 7
Qo=pi—p=Dp <1+7pv2>7 1| or (5.9)
2y p
5 y=1
v=, L2 (1+u> Tl (5.10)
y—1p p

Besides the pressure difference (p, — p), in Equation (5.10) also are present the
air pressure p and density p so that the resulting airspeed at a given value of
(p; — p) is a function of altitude. To derive a unique calibration equation for the
airspeed indicator, the concept of calibrated airspeed V. is used. By definition,
V. is obtained by making the assumptions that in Equation (5.10) p = p, is the
pressure sea-level reference value of 101325 N/m? and p = P, is the density sea-
level reference value of 1.225 kg/ m?. Thus, airspeed indicators are calibrated to

pitot orifice static vents
/ total pressure

=

N static pressure

Figure 5.9 Pitot-static probe
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the equation

L

1py
pi—pP=Dp 1+7 V) —1]. (5.11)
! 0 < 2y py
Evidently, the calibrated airspeed V. is only equal to the true airspeed V, when the
actual atmospheric conditions match the standard sea-level reference conditions.
From Equations (5.10) and (5.11), we see that the true airspeed can be determined
from its relation to calibrated airspeed and the prevailing values of pressure and

density,
<1+y povg) —1H —-1|. .12
2y

Apparently, the computation of true airspeed requires that calibrated airspeed,
geopotential pressure altitude, and air temperature are measured.

At low subsonic airspeeds, a simplified procedure for the determination of the true
airspeed can be established by assuming that the measured pressure difference is
related to the airspeed by Bernoulli’s equation for incompressible isentropic flow
(see Appendix D),

2rp
y—=1p

1470
p

1
p—p=5pV? or V=|=(p,—p) (5.13)

In this case, the airspeed indicator reading is called equivalent airspeed, V,. This
quantity satisfies Equation (5.13) at sea level for standard sea-level density,
1 2 2

pt—p:EpOVe or V.= ,/—(p;—p). (5.14)
Po

From Equations (5.13) and (5.14), we also find the relation
Po
p
An insight into the accuracy of the true airspeed when calculated by means of

Equation (5.15) instead of Equation (5.12) can be obtained by comparing these
equations for a given instrument reading. Thus, from Equations (5.11) to (5.13)

V=V, (5.15)

r—1

1 v
Y Po Y=1Poy2) 7! _
s [1+p[(1+2”v) 1“ 1

Y

Vinc: Po Y=1Poy2) 7!
Do | (14 5t 2oy2) T g

(5.16)

This equation shows that the ratio between the resulting compressible and in-
compressible airspeeds varies with the calibrated airspeed and the static pressure.
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The effect of compressibility is visualized in Figure 5.10, where the ratio (5.16)
is plotted as functions of calibrated airspeed and geopotential pressure altitude.
The curves confirm that the relevance of the equivalent airspeed is limited to low-
subsonic airspeeds.

At supersonic speeds, a normal shock will appear ahead of the pitot probe as
shown in Figure 5.11. With the relations M =V /¢, ¢ = \/YRT, and p/p = RT,
we get

M= . (5.17)

Substitution of Equation (5.17) into Equation (5.3) yields the freestream total pres-
sure in terms of static air pressure and flight Mach number

Y
~1 =
pt:p<1+72M2> . (5.18)
The shock wave causes that the total pressure p; measured at the stagnation point
on the probe is less than the freestream total pressure p,. As derived in Appendix
D, the ratio of the total pressure behind the shock to the freestream static pressure
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Figure 5.12 Total pressure for Isentropic flow and behind normal shock wave (y = 1.4)

is related to the flight Mach number by the following equation, which is called the
Rayleigh formula,

v uE
P (vl o \TT (2yME oy =1\ T
= (2 M el yal) (5.19)

In Figure 5.12 are plotted the ratios p,/p and p;/p versus Mach number. The
curves show that the difference between the total pressure for isentropic flow and
behind a normal shock grows larger as the freestream (supersonic) Mach number
becomes greater. E.g., the ratio p;/p, decreases from 1.0 at M = 1 to 0.721 at
M=2(y=1.4).

Since also at supersonic speeds the freestream static pressure can be obtained by
applying a pitot-static probe or via a static source located on the surface of the
fuselage of the airplane, we find that the measured impact pressure difference is
given by

1
T—

Y 1
o [(TEL )T (M _y =TT
pi—p=p < 5 M P 1. (5.20)

Using the sea-level reference values p = p, and p = p,,, we obtain the following
relationship from Equations (5.17) and (5.20),

Y 1
1 71 2 —1\T7
(&&‘/}) <—&Vc2_ Y_> —1
2y py Y+1py y+1
This is the calibration equation of the airspeed indicator for supersonic flight.
The reading of the airspeed indicator is called the indicated airspeed V;. Possible
inaccuracies emanating from instrument errors and from the pitot-static system

constitute the difference between indicated airspeed and calibrated airspeed. Fi-
nally, the various airspeeds considered in this section are summarized below:

pi—P="rg (5.21)
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We close this section with the observation that airspeed indicator scales almost
always use the knot (nautical mile per hour) as a measure of airspeed.

5.5 The machmeter

The Machmeter is the instrument which measures the flight Mach number, M =
V /c. Equations (5.18) and (5.20) indicate that in both the supersonic and subsonic
speed regime, the flight Mach number can be determined by measuring the pres-
sure ratio (p; — p)/p. Figure 5.13 shows that the Machmeter is a compound flight
instrument which consists of an airspeed indicator and an altimeter. The pressure
difference p, — p is measured by means of the airspeed capsule and the static pres-
sure is obtained from the movement of the altitude capsule. The deflections of the
two mechanisms are combined and then transmitted to the indicator pointer.

The result of the previous section also show that the flight Mach number can be
computed from known values of V. and H,,. Figure 5.14 gives the subsonic flight
Mach number as a function of the calibrated airspeed for various geopotential
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pressure altitudes, calculated from Equations (5.11) and (5.18).

5.6 Ambient air temperature measurement

The prediction of airplane performance and the operation of airplanes requires
that the freeair static pressure and the total pressure are known. In addition, the
ambient or freeair static temperature at the flight altitude is needed for getting the
true airspeed or to compute the density of the air for instance.

The air thermometer on an airplane commonly is made up of a temperature probe
attached to the outer surface of the airplane and an indicator in the cockpit.
Mostly, the temperature sensed by the temperature probe is higher than the ambi-
ent air temperature because of the adiabatic heating effect of the air flow on the
temperature sensing element.

If the air at the measurement point could be brought to rest by an adiabatic pro-
cess, the total temperalure, 7,, would be registered, which quantity is a direct
function of the ambient temperature and the flight Mach number in both subsonic
and supersonic flow (see Appendix D),

7;:7‘<L+YZIAF>. (5.22)

In actual circumstances, however, the instrument usually displays a temperature
which is somewhat less than the total temperature. This phenomenon, which is
due to a heat flow from the sensor to the surrounding body, is conveniently ex-
pressed by the ratio

k= hi=T

= 2
g (5.23)

where T; is the indicated temperature and K is the recovery factor of the probe,
denoting the relative amount of the adiabatic temperature rise which is accom-
plished by the thermometer. If the recovery factor is included in Equation (5.22),
we obtain

EZTO+K1%hﬁ>. (5.24)

A graphic representation of Equation (5.24) is given in Figure 5.15, where is
shown the variation of the ratio 7;/T versus M? for six K-values. As used in
this diagram, the recovery factor of typical installations ranges from 0.5 to 1.0.
The value of K for a particular thermometer can be determined from calibration
tests in a wind tunnel or by the execution of flight tests. For example, from flight
runs at a constant altitude, the relationship between 7T; and M? can be established
by direct measurement of flight Mach number and indicated temperature. Then,
as may be seen from Figure 5.15, extrapolation to M = 0 of the curve through
the test data gives the ambient temperature at the measurement height, whilst the
slope of the curve furnishes the associated value of K.
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Figure 5.16 Sketch of the total temperature probe

Present-day installations for measuring the air temperature are virtually always to-
tal temperature probes, having a tube shaped stagnation chamber in which a sens-
ing element is placed (Figure 5.16). The thermometer element usually consists of
a temperature sensitive resistor included in a electrical bridge circuit. These elec-
tric thermometers supply a current arising from the bridge unbalance. This current
is a function of the resistance and, thus, a measure of the prevailing temperature
(References 16 and 17).



Chapter 6

PROPULSION

6.1 Types of airplane propulsion systems

The four types of main propulsion systems to be considered here are the recipro-
cating piston engine with propeller, the turbojet, the turboprop (the turbo-engine
and propeller combination), and the turbofan.

These all are named airbreathing engines because of the fact that they employ the
oxygen from the atmospheric air to burn the fuel.

All these devices also have the common property that they generate a propulsive
force through application of Newton’s third law (action = reaction), by acceler-
ating air backwards with respect to the airplane. In accordance with Newton’s
second law of motion (see Appendix A), the magnitude of the thrust supplied is
equal to the time rate of change of linear momentum given to the mass of air or
gas (air mixed with combustion products).

The piston engine plus propeller is used today in the small general aviation air-
planes only. These engines have four or six cylinders, are aircooled and operate
on the four-stroke cycle principle. The cylinders are virtually always arranged
in horizontally opposed pairs (Figure 6.1). Fuel may be supplied by individual
injection to each cylinder or by a carburetor which mixes the fuel and air to the
right proportions and leads this mixture to the cylinders via the inlet manifold.
Each cylinder has an intake valve and an exhaust valve and inside the cylinder is
a piston moving up and down by the high gas pressures obtained from burning
the mixture of fuel and air. The pistons drive the crankshaft via connecting rods,
which change the reciprocating motion of the pistons to the rotational motion of
the crankshaft.

The power delivered to the crankshaft is called shaft brake power, which designa-
tion has as origin the measurement of the engine output by coupling the crankshaft

cylinder
piston

crankshaft
connecting rod

Figure 6.1 Four-cylinder piston engine with propeller
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to a brake system (dynamometer). On the other hand, it is also possible to deter-
mine the shaft power in flight by means of a torque meter (Reference 16).
The crankshaft, in turn, drives the propeller, which device produces the thrust by
accelerating atmospheric air with respect to the airplane.
The useful power available for propulsion is given by the product of thrust 7 and
airspeed V. This quantity is called power available and denoted by the symbol P,.
The ratio of power available to shaft brake power is the propulsive efficiency of
the propeller,

n;= ;—V = % 6.1)
br br
We shall discuss the subject of propeller efficiency further in Chapter 7. It is
suffice here to realize that the piston engine converts the heat energy in the fuel to
shaft brake power and that this power then is used by the propeller to effectuate
power available. There are, thus, two separate and different conversion processes
involved; an energy conversion process and a power conversion process.
The usefulness of the piston engine and propeller combination is limited to low
subsonic airspeeds. The development of the turbojet in the thirties and forties of
the twentieth century came as an answer to the demand for higher flight speeds.
In this engine, a mass flow of air is heated by burning fuel and ejected rearward
as a blast of hot gas at high velocity. In Figure 6.2 is sketched the basic layout
of the turbojet. It consists of five distinct components; air intake, compressor,
combustor, turbine and exhaust nozzle. The core of the engine comprising the
compressor, combustor and turbine may be termed the gas generator. A picture of
the typical changes in pressure, temperature and velocity of the air or gas flowing
through the engine is also shown in Figure 6.2. The changes in intake and nozzle
are only effectuated by way of the form of the passages through which the fluid
flows.
Due to external compression, the air enters the intake at a velocity which is some-
what lower than the flight speed. In the intake the air is slowed down further,
giving a substantial pressure and temperature rise of the air.
Two types of compressor may be found; centrifugal and axial (Figure 6.3). In the
centrifugal compressor the air is taken in near the center of an impeller, which
flings the air in the direction of the circumference. This gives a high pressure at
the compressor exit.
In modern gas turbine engines, mostly the axial flow compressor is found, which
consists of a series of rotating many-bladed fans. These fans rotate between sets of
fixed stator blades. Each set of fixed and rotating blades forms a compressor stage
and delivers a certain increase in pressure. Therefore, in the compressor which
may incorporate a large number of stages, the passing air obtains a very high
pressure rise. This is accompanied by a considerable increase in temperature.
In the combustor heat energy of fuel is released in the air flow, providing a high
turbine entry temperature. Normally, there is a maximum turbine entry temper-
ature because of the critical thermal load of the blades of the turbine. To keep
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the gas temperature at the turbine inlet within acceptable limits, much more air is
used in the turbojet than is required for combustion. This large mass flow is also
needed to get a high thrust.

In passing through the turbine, energy is extracted from the gas flow in order to
drive the compressor. This is coupled with a drop in pressure and temperature in
the turbine. Most turbojets have two compressors, one after the other, each driven
by an independent turbine through concentric unconnected shafts (Figure 6.4). As
each rotating assembly, consisting of a turbine, a drive shaft and a compressor or
fan is a spool, the arrangement shown in Figure 6.4 is called a two-spool engine.
The remaining energy from the gas generator is expanded in the nozzle and ex-
hausted as a high-velocity jet. If the turbojet is designed for use at subsonic air-
speeds, the nozzle is convergent. In the case of an engine aimed to fly at supersonic

flame
fl\.lel holders

afterburner duct

Figure 6.4 Two-spool turbojet without and with afterburner
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reduction gear

Figure 6.5 Turboprop Figure 6.6 Two-spool turbofan

velocities, a convergent-divergent exhaust nozzle is used to obtain maximum jet
velocity.

Gas turbine engines may be equipped with a reheat system or afterburner. In the
case of afterburning, supplementary fuel is injected into the exhaust nozzle as is
also illustrated in Figure 6.4. Burning of extra fuel is possible because the exhaust
gas entering the nozzle comprises an excess of unburned oxygen. Afterburning
is a method to achieve a temporary increase in thrust for takeoff and climb or for
transition from subsonic to supersonic flight velocities.

In contrast to the piston engine, the various processes in the turbojet are contin-
uous. In combination with the absence of reciprocating parts, the turbojet runs
smoother and enables more heat energy to be released.

Another essential difference between jet and propeller propulsion is the nature of
the rearward mass flow. In the case of the propeller a large mass flow of cold air is
transported at a relatively low speed, whereas the turbojet produces a thrust by ac-
celerating a relative small amount of hot gas to a very high velocity. This implies,
as will be explained in subsequent sections, that the turbojet is only effective at
high flight speeds, whereas the propeller is an efficient means of producing thrust
at low-subsonic airspeeds.

The problem of the inefficiency of the turbojet at low flight speeds can be solved
through extracting most of the power from the hot gases by means of an enlarged
turbine, and then to supply the power to a propeller. This arrangement is called
a turboprop. Figure 6.5 shows the layout of a single shaft engine, where turbine,
compressor and propeller are all mechanically connected. A reduction gear is
present between the compressor and the propeller since the propeller must rotate
at a much lower speed than the gas generator in order to avoid extreme tip speeds.
Normally it will be possible to use the residual energy after the turbine to eject the
gases from an exhaust nozzle at a rather high speed and so to generate some extra
thrust.

A compromise between the turboprop and the turbojet is the rurbofan, which en-
gine type operates efficiently in the high subsonic speed range. In this case a
ducted fan takes the place of the propeller of the turboprop. As sketched in Figure
6.6, usually, the fan is placed at the front of the engine, where it is an integral part
of the low-speed compressor. This arrangement is designated as front fan. Part of
the air impelled by the fan passes through the bypass duct and is discharged as a
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cold jet. The rest of the fan flow goes through the engine and forms the hot flow.
A characteristic design figure for a turbofan is the bypass ratio, which is the ratio
of the mass flow rate of the cold (secondary) flow passing through the bypass duct
to the mass flow rate of the hot (primary) flow passing through the gas generator.
In formula

B="c 6.2)
my,

where B denotes the bypass ratio and m. and m,, are the mass flow rates of the
cold and hot stream, respectively.
Since m = m. + m,,, we also have the relationships

me B m 1

I and #:B—H. (6.3)
Today’s turbofan engines have a bypass ratio between 4 and 8. Advanced propul-
sion systems with a bypass ratio beyond the current values are called ultra-high
bypass ratio (UHBR) engines.
To accelerate the cold stream, a large percentage of the energy available from the
gas generator is supplied as shaft power to the fan. Therefore, in principle, the
turbofan is similar to the turboprop except that its bypass ratio is much lower.
Nevertheless, in addition to the thrust produced by the hot jet, the fan also accel-
erates such a large mass of cold air that it supplies a generous contribution to the
total thrust. An added benefit of bypassing of air is reduced jet-generated noise.

6.2 The piston engine

The working cycle of the four-stroke piston engine requires two revolutions of the
crankshaft; two strokes down and two strokes up. The four events are illustrated
in Figure 6.7 in the form of a plot of pressure versus volume:

The intake stroke (1). The piston travels from the cylinder head (top dead cen-
ter) to the bottom of the cylinder (bottom dead center). An amount of fuel
and air is sucked into the cylinder through the open intake valve.

The compression stroke (2). The piston moves upward to the top of the cylinder,
and the charge is almost isentropically compressed from the inlet-manifold
pressure p, to a pressure p;. When the piston approaches the top of the
stroke, the mass of gas confined in the cylinder is ignited by the ignition
system. Between points 3 and 4, combustion takes place at approximately
constant volume and the pressure increases to p,.

The power stroke (3). The high pressure pushes the piston downward and the
burning gas expands more or less isentropically to the pressure ps. Just
before the piston reaches the bottom of the stroke the exhaust valve opens
and the pressure inside the cylinder drops to the value py (pe = p)).
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Figure 6.7 Working cycle of the four-stroke piston engine

The exhaust stroke (4). The piston again moves upward and the burned gases in
the cylinder are forced out through the exhaust valve.

The compression ratio of the piston engine is the volume of space in the cylinder
when the piston is at bottom dead center divided by the volume when the piston
is at top dead center.

The cycle or thermal efficiency is the ratio of the power developed in the engine
and the heat release per unit time or thermal input,

NP, NP,
=0 = i (64)
where N is the number of cylinders and P, is the indicated power, which is the
power developed in one cylinder. The thermal input Q can be written as the prod-
uct of the fuel mass flow rate m y and the heating value of the fuel H. For aviation

fuels the heating value is about 4.3 x 107 Joule/kg.

The conversion of the heat energy released during combustion to mechanical
power, usually, is analyzed by considering the Otto-cycle, which consists of four
ideal processes (Figure 6.8). Point 2 in Figure 6.8 stands for the mixture of air and
fuel in the cylinder at the inlet-manifold pressure that is compressed isentropically
along the line 2-3. From 3 to 4 heat is added to the charge by burning the fuel at
constant volume, thereby considerably increasing the pressure. Then, the gases
are expanded isentropically along the line 4-5 to the pressure ps. Finally, from 5
to 2, the cycle is completed by the discharge of the gases at constant volume.
When making use of the Poisson relations between p, 7' and p (see Appendix D),
the highest thermal efficiency is easily obtained as

1
My =1- er-1’ (6.5)
where € is the compression ratio of the engine and 7y is the ratio of the specific
heats of the fuel-air mixture. Depending on the composition of the gas, the value
of y varies between 1.2 and 1.4.
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Figure 6.8 The Otto-cycle

It should be noted that due to heat and friction losses, the actual value of the
thermal efficiency is lower than that forecasted by Equation (6.5).

The net work per cylinder done during one cycle, W,, is represented by the hatched
area in Figure 6.8 since this work is given by

W= fpav. (6:6)

At an engine speed n (revolutions per second), the number of power strokes in one
second is n/2. Hence,
n
B=w. ©67)
When we neglect the friction losses between the moving parts of the engine, the
power delivered to the shaft, £, may be set equal to the total indicated power,

P,=NP,. (6.8)
Combination of Equations (6.7) and (6.8) yields
n
P,=N W’E (6.9)
The power P, and the work W; are habitually related to each other by means of the
mean effective pressure, p,, which quantity is defined by

W,

i
, (6.10)
DS

Pe=
where D is the diameter of the piston (the bore) and § is the length of the dis-
placement of the piston (the stroke). Clearly, the pressure p, in Equation (6.10) is
a fictitious parameter, which is broadly used as an index in determining the shaft
brake power. Insertion of Equation (6.10) into (6.9) yields

T,
PerPeZDzszN, (6.11)



6. Propulsion 107

Max
o FULL-THROTTLE
, ALTITUDE
@ PERFORMANCE
f Pz
5 ~ - 3
H I,
a L
P 922 a,v
o ®,
B L N,
- L
2 Pz
@ D
S8q
4 throttie T level
manifold pressure —a pressure altitude —

Figure 6.9 Standard power diagram (I.S.A.)

where the quantity %DZSN is the total volume displaced by the piston during one
stroke (the total piston displacement of the engine).

Apparently, the shaft brake power delivered by a given engine is a function of
mean effective pressure and engine speed,

Py = By (pesn). 6.12)

Further thermodynamic analysis learns that the pressure p, varies proportional to
the quotient of pressure and temperature of the fuel-air mixture at the beginning
of the compression stroke (point 2 in Figure 6.8). This means that p, depends
on the density of the atmospheric air and the throttle setting § (0 < & < 1.0).
Accordingly, we have

P,.=P, (H,6,n) =F (HT), (6.13)

where I'=T(0,n) is the engine control setting.

The charts as generally supplied by the engine manufacturers are of the form
sketched in Figure 6.9. In this so-called standard power diagram the shaft brake
power in International Standard Atmosphere is given, assuming a mixture control
which furnishes maximum power.

In the left hand diagram is given the power at sea level: B, = B, ,(6,n). The
throttle setting is expressed in terms of inlet manifold pressure p,. The power is
limited by the maximum permissible engine speed and maximum inlet manifold
pressure, which corresponds to the full-throttle condition (fully opened throttle
valve; 8 = 1.0). The effect of altitude on full-throttle power is shown in the right
hand diagram of Figure 6.9 (P, ., = P, (H,n)). The chart gives also the prevailing
inlet manifold pressures. In the full-throttle condition and for a given engine speed
the shaft brake power decreases with increasing height due to the decreasing air
density.

An empirical relationship often used to account for the effect of altitude is:

P
S 322 0132,
br0 Po
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a. supercharger b. turbocharger

Figure 6.10 Supercharging

where the subscript ”0” denotes sea-level condition. In order to determine the
power at altitude for a part-throttle condition for given values of altitude, engine
speed, inlet manifold pressure, and air temperature, the following procedure is
employed:

1. Locate point A on sea-level curve for the known values of inlet manifold
pressure and engine speed and transfer to B.

2. Locate point C on full-throttle altitude curve for the given inlet manifold
pressure and engine speed.

3. Determine power output at the required height (point D) by linear interpola-
tion between points B and C. Note that along the straight line B-C the power
increases somewhat due to the decreasing air temperature.

4. Modify the power B, (L.S.A.) at point D for the deviation of air tempera-
ture T from standard altitude temperature 7} 4 , by the following empirical
formula:

T
P, =P (1S.A) I-;-A- : (6.14)

where P, is the actual power output and 7" and T;g , are expressed in
kelvin.

To improve the performance of a normally aspirated engine a supercharger is used,
which provides a greater pressure at the intake valve. The supercharger is usu-
ally positioned between carburetor and inlet manifold. It may be driven by the
crankshaft as sketched in Figure 6.10a. Alternatively, there may be a turbocharger,
a supercharger impelled by a small turbine which in turn is driven by the exhaust
gas stream. The latter assembly is more economic than a gear-driven supercharger
since it utilizes the heat energy present in the exhaust gases.

Figure 6.11 shows a picture of the standard power diagram of a supercharged
engine. Depending on engine speed, the maximum inlet manifold pressure is
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Figure 6.11 Standard power diagram (supercharged)

increased at sea level and hence the altitude performance. In order to avoid un-
acceptable high engine loads, it is not possible to use the high inlet manifold
pressures at lower attitudes. Therefore, limitations are put on the inlet manifold
pressure, and only when altitude is gained it is licensed to open the throttle grad-
ually in order to compensate for the loss in atmospheric pressure.

The altitude at which the throttle becomes fully open is termed the critical altitude
of the engine for the given engine speed and inlet manifold pressure. Above the
critical altitude, the power output decreases with increasing height due to the re-
duction of air density as in the case of an aspirated engine.

An important engine characteristic is the amount of fuel required to generate the
shaft brake power. This may be expressed as the fuel weight flow rate, F', divided
by shaft brake power,

_F _me 6.15
CP Pbr Pb 9 ( )

where ¢ is the specific fuel consumption, which has the dimensions N/Wh or
N/kWh.

A comparison of Equation (6.15) with Equations (6.4) and (6.8) reveals that the
specific fuel consumption is an inverse criterion of thermal efficiency,

_ 8
Hny,

Cp (6.16)
The working cycle of the piston engine gives a high thermal efficiency over a wide
range of inlet manifold pressures, engine speeds, and flight altitudes. A cruising
thermal efficiency of 35% (cp = 2.4 N/kWh) is fairly representative of airplane
piston engines. The thermal efficiency, however, is only half the problem since
the conversion of shaft brake power into power available is also coupled with
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Figure 6.12 Thrust and drag of a turbojet

losses. The overall efficiency of the complete propulsion process can be written
as

TV TV P
Mot = == —nn,, (6.17)

mH Py mH

where, according to Equation (6.1), n; =TV /P, is the propulsive efficiency.

6.3 Definition of thrust for jet propulsion

In order to explain the customary definition of thrust for jet propulsion, a nacelle
mounted turbojet engine is considered in Figure 6.12.
Since the resultant force in a steady flow is conveniently established by the ap-
plication of the momentum equation (see Appendix D), in Figure 6.12 a control
volume is specified around the engine, which extends far upstream where the pres-
sure and velocity have their freestream values p, and V|,. The side boundaries are
parallel to the velocity V,, and are, just like the aft control surface, sufficiently far
removed from the engine that the local pressures are equal to the freestream pres-
sure p,. In Figure 6.12 also are distinguished the air flows passing through and
around the engine duct.
The air mass flow rate of the internal flow crossing the boundary at the front is
given by m = p,V,A,. The mixture of air and combustion products crosses the aft
plane through an area A ; with a velocity w ;.
The force obtained as a result from the time rate of change of linear momentum
of the fluid that passes through the engine, and by assuming uniform flow over the
area A, is given by the equation

F,=T,+T

oi int

+1,; = (m+mpw; —mV, (6.18)
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where T, and T, ; are component forces in the direction parallel to the freestream
velocity arising from the pressure forces acting on the boundary of the pre-entry
streamtube and the post-exit streamtube, respectively. The force T, is called the
intrinsic thrust, and is associated with the pressure and friction forces acting on
the internal surfaces of the nacelle and engine.
The first term on the right-hand side of Equation (6.18) includes also the linear
momentum of the fuel flow rate, m /W s as seen relative to the engine. It should
be noticed that in the derivation of the forces in Equation (6.18) all pressures are
referred to the freestream pressure as a datum.
The force obtained as a result from the rate of increase of momentum of the air
which passes around the outside of the nacelle is given by

Fy=-T,+Tu—T,

0i ej?

(6.19)

where T, is called the extrinsic thrust, which is the force in the direction parallel
to the freestream velocity arising from the pressure and friction forces acting on
the external surface of the nacelle.
The net engine force F, which is imparted to the airplane structure is the sum
of the forces exerted over the internal and external surfaces of the engine-nacelle
combination,

F=T

int

+ Toxe- (6.20)
Combining Equation (6.18) to (6.20) yields
F=F+F=m+m;)w;,—mVy+F,. (6.21)

Conventionally, the net force acting on the airplane in its flight direction is divided
into thrust and drag.

Such division is a matter of definition. If we define —F, as nacelle (or airplane)
drag, then Equation (6.21) tells us that the thrust is given by the force F|. This
means that the thrust is defined as the time rate of change of momentum of the
flow through the engine between the stations 0 and j in Figure 6.12.

However, there is an inconvenience in this definition of the thrust due to the diffi-
culty which is encountered when we want to determine the velocity w ;. Certainly
for a convergent nozzle, there is in fact hardly a physical post-exit streamtube
because of the exchange of energy between internal and external flows.

In order to avoid this complication, engine manufacturers normally express the
thrust as the rate of increase of momentum between the stations o and e in Figure
6.12,

T=T,+T, —(m—l—mf)we—mVO—i—Ag(pe—pO). (6.22)

int
The thrust so defined depends on the conditions in the undisturbed stream and at

the nozzle exit, which both are known or determinable.
When applying the momentum equation for the jet

Ae(Pe*PQ)“‘Tej:(m+mf)(wjfwe)a (6.23)
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we readily find the following expression for the net engine force
F= (m+mf)we_mv() +Ae(pe_p0) - (Toi_Text)' (6.24)

Apparently, using Equation (6.22) for the calculation of the thrust requires that the
drag is defined by the last term of the right-hand side of Equation (6.24). Clearly,
the physical complexity of the problem is now confined to the determination of
T, and T, as the components of the drag force. Anyway, Equation (6.22) will
form the basis for our evaluations of engine thrust throughout this book.
According to our discussion in Section 3.5 the linear momentum of the fuel flow
rate relative to the engine can be omitted in Equation (6.22). We thus obtain

T =m(we — V) +Ac(pe — pyy)- (6.25)

A convenient form for the thrust equation is obtained when we introduce the
equivalent jet velocity, (w,)eq, defined by

A
(We)eg = We+ —(pe = Py). (6.26)
Using this definition we get
T=m((We)eqg—Vp) - (6.27)

An important measure for the relationship between the thrust and the size of the
engine is the thrust per unit air weight flow rate or specific thrust
T We)eq — V,
Yp=—= (")e#‘ (6.28)
mg 8
With this definition the specific thrust has the dimension of second.
If the nozzle exit pressure equals the ambient pressure, then we obtain
T w.—V,
vp=— =0 (6.29)
mg 8
Expressing the thrust as the product of weight flow rate of the air through the en-
gine and specific thrust, will be useful for our subsequent discussions on turbojet
performance.

6.4 Ideal turbojet cycle

The working cycle of the turbojet is different from that of the piston engine in
Figures 6.8 insofar that the combustion process in the gas turbine engine is very
nearly isobaric with an increase in volume of the gas.

In examining the thermodynamic behavior of the fluid as it flows through the
turbojet, we will consider here the ideal turbojet cycle or Brayton-cycle. The
idealization implies that the following assumptions are made:
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a. The working fluid behaves as a perfect gas with constant specific heats,
which are equal to those of air.

b. All compression and expansion processes are isentropic.

c. Combustion takes place at constant total pressure.

d. In the exhaust nozzle the flow is expanded to the freestream static pressure.

The resulting cycle is shown in Figure 6.13 in terms of pressure versus specific
volume. Specific volume, v, is the volume per unit mass of the working fluid and
hence the inverse of the density, v = 1/p. The various engine components are
assigned by numerical engine stations as defined in Figure 6.2.
As shown in Appendix D, static pressure and temperature and velocity of an
airstream are equivalent to the total pressure and temperature. Hence, in study-
ing the conditions of the flow through the engine the kinetic energy is taken into
account implicitly by using the total properties.
If p; denotes the total pressure, p the static pressure, and M the flow Mach number,
we have for isentropic compression or expansion,
1]

p=p [1 + %Mﬂ : (6.30)
For adiabatic and isentropic compression or expansion the total temperature is
given by

T=T [l—l—%le}, (6.31)
where again subscript # denotes the stagnation state.
Starting from the freestream conditions p,, 7, and M, or V, in point O of Figure
6.13, the air passes successively through the following engine components:

1. The intake (0-2). The pressure rises from p,, to about p,, = p,, at the inlet of
the compressor. The increase in pressure is due to the external and internal
deceleration of the air relative to the engine, and is called the ram pressure
rise,

R
Y-l
P =P =Py [1 + TMO . (6.32)
Likewise, the temperature at engine station 2 equals the freestream total
temperature

ry—1
T,=T,=T, {1 + _Mg} : (6.33)

2

2. The compressor (2-3). From Equations (6.30) and (6.31) we obtain

r—1
T Pl 7
o (B 34
= [5] 620
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Figure 6.13 Ideal cycle for gas turbine engine (Brayton-cycle)

—1
But, according to Appendix D, T'/( p)YT = constant for an isentropic pro-
cess so that Equation (6.34) becomes
T
L = constant. (6.35)
(P) 7

Applying Equation (6.35) to the isentropic compression process, we have
the compressor outlet temperature given by

71
T3 =Ty(&) 7, (6.36)
where & = p,3/p,, is the pressure ratio of the compressor.

3. The combustor (3-4). As a consequence of the simplification that the drop
in total pressure during combustion is zero, we get

Dia = Py3- (6.37)

From the steady flow energy equation in Appendix D, we find for the heat
added to the flow per unit time

0= me =mcp(T,

4+ Ts), (6.38)

where H is the heating value of the fuel, 7}, the turbine entry temperature,
and c), is the specific heat of air at constant pressure.

4. The turbine (4-5). The temperature at the turbine exit is found from the
condition that turbine power equals compressor power. In formula

mcy (T, —Ts) =mcy(T,s—T,), or (6.39)

Ts=Tu— (T3 —Tp)- (6.40)

t t

The pressure at the turbine outlet is given by

Tis | 71
DPis = P4 T_4 - (6.41)
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5. The exhaust nozzle (5-e). If we assume that in flowing through the nozzle
the pressure of the gas falls to ambient pressure, the Mach number at the
nozzle exit can be found from Equation (6.30),

Y

1 7
@—@—[H—V Mfy . or (6.42)
Pe Po 2
2 r=1
Y
M, = ﬁHZ_f} —1]. (6.43)
0

Referring to Equations (6.30) and (6.31), we see that the temperature 7, can be
written as

T; T
T, = y’_ = (6.44)
1+ =M [IL] K
Po
Using Equation (2.20) for the speed of sound, the jet velocity becomes
2YR &
7

We = Myr/YRT, = | 21, |1 {&} . (6.45)

Y- 1 Pre

An expression for the specific thrust is obtained by substituting Equation (6.45)
into Equation (6.29)

r=1
1— [&] ! ] —V,|. (6.46)

The thermal efficiency of the working cycle of the turbojet is defined as the in-
crease in kinetic energy of the gas stream in unit time divided by the heat energy

added to the flow in unit time,
1 2_ .2
sm(wg —vj)
Ny = mf# (6.47)
The energy equation in terms of total temperature reads (Appendix D)
V2
L, =T+_—. (6.48)
2¢)

Substitution of Equation (6.48) into Equation (6.47) yields

Ny, =1——7, (6.49)

where € is the overall pressure ratio of the cycle,

_ P _ PP _

Y
1 71
= & {H—Y—Mg} . (6.50)
Po P Po

2
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Figure 6.14 Thermal efficiency for Brayton-cycle

A graphic representation of Equation (6.49) is given in Figure 6.14. This chart
emphasizes the importance of applying a high overall pressure ratio, that is, a high
flight Mach number and a high engine speed in order to accomplish a satisfactory
thermal efficiency.

The optimum thermal efficiency as given by Equation (6.49) is independent of the
temperature to which the gas stream is raised in the burner. It should be realized,
however, that the compression of the air goes together with an increase in temper-
ature. The higher the overall compression ratio, the less the amount of fuel which
can be supplied to the conbustion chamber without going beyond the bounds of
the turbine entry temperature. Thus, the maximum pressure ratio increases with
increasing turbine entry temperature and with that the maximum attainable ther-
mal efficiency.

The propulsive efficiency of the turbojet engine is defined as the ratio of power
available to the increase in kinetic energy of the gas stream,
P, TV,
N=—=—>=-9 _ (6.51)

! Pj %m(wg _Voz)‘

Substituting Equation (6.25) into Equation (6.51) yields (p, = p,)

—Vy)V, 2 2
oVl 22 (6.52)
im(we—VO) 1+VO 2+m
The overall efficiency of the entire propulsion process is given by
TV, TV, ITm(w? — V@)
Mot =~ = 02— 02— m,. (6.53)

me %m(wg—\/oz) me
In the case of jet propulsion the fuel consumption is related to the thrust,

F=c, T, (6.54)
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Figure 6.15 Ideal turbojet cycle performance

where F is the fuel weight flow rate and ¢ is the thrust specific fuel consumption,
or in short specific fuel consumption (SFC), which has the dimensions of N/N s
or N/N h.

The specific fuel consumption is related to the overall efficiency by

F_s VY%

Cp=—= ) (6.55)
T Hnyg

Specific fuel consumption is an important engine characteristic since it is a mea-
sure of the efficiency of the engine. A low value of ¢, means a high overall
efficiency.

We conclude this section with presenting Figure 6.15, where are shown typical
results of a series of design point calculations which apply to a subsonic flight
condition of H = 11,000 m (I.S.A.) and M, = 0.80.

In Figure 6.15 is plotted specific fuel consumption versus specific thrust for a
range of compressor pressure ratios and turbine entry temperatures. The curves
indicate that specific thrust and specific fuel consumption increase with increasing
turbine entry temperature. Ata constant 7,, , however, an increase in pressure ratio
€. causes a reduction in specific fuel consumption.

6.5 Component efficiencies

In Section 6.4 we saw that for a given flight condition of altitude and airspeed,
both specific thrust and specific fuel consumption of the ideal turbojet cycle were
completely determined by compressor pressure ratio and turbine entry tempera-
ture.

The actual performance, however, will also depend on the efficiencies of the en-
gine components. Deviations from the ideal behavior arise mainly from the effects
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of friction and turbulence in the flow, through which for example we have non-
isentropic compression in the intake and compressor, and nonisentropic expansion
in the turbine. In the following a short description of most of the imperfections is
given.

In the intake the air is decelerated to a very low velocity before it flows into the
compressor. Because, at least in principle, there is no heat transfer, the total tem-
perature remains constant as the flow velocity reduces from the flight speed ahead
of the intake to the low velocity at the compressor inlet. In the case of subsonic
intakes, viscous effects result in a reduction of total pressure, whilst for supersonic
intakes a further cause for total pressure loss is the occurrence of shock waves.
To describe the efficiency of the intake, the ratio of total pressure at the compressor
inlet to the freestream total pressure may be used,

n, =22, (6.56)

Pio
The quantity 7, is termed the pressure recovery factor of the intake.
A typical variation of 7, with flight Mach number for well-designed intakes is
shown in Figure 6.16.
Alternatively, the intake adiabatic efficiency may be employed, which is defined
by

_ (Y;Z)is — TO

=", 7,

(6.57)

where T, is the actual temperature at the compressor inlet and (7,), is the total
temperature which would have been reached after isentropic compression from p,,

to p,,.
Since T}, = T,,, we find from Equations (6.30) and (6.31) that

=

[%02} F -1 D y—1.n 7

=il o _t:{Hnd_MO] . (6.58)
Mg Po 2

Combination of Equation (6.56) and Equation (6.58) produces the relationship:

r—1

()7 [1+5AMG] 1

= (6.59)

Ng=
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For subsonic intakes, both 7, and 1, are experienced to be virtually constant with
flight Mach number. At supersonic airspeeds it is most common to specify the
intake losses by means of the intake pressure recovery factor as a function of
Mach number M.

The efficiency of the compressor may be expressed in terms of the compressor
isentropic efficiency, which is the ratio of the ideal and actual compressor powers,

_ mep((T3)is — Tn) _ (TtS)is_TtZ‘

o mey(T3 —T,y) B Ts—T,

(6.60)

Equation (6.60) expresses that for a given compressor pressure ratio, the actual
total temperature rise exceeds the isentropic value so that the actual compression
process requires more power than the ideal process.

The temperature rise for a given compressor pressure ratio &, from Equation
(6.60), is found as follows,

{(sc)y—yl _ 1} . (6.61)

A disadvantage of the isentropic efficiency is the fact that it is dependent on the

magnitude of the compressor pressure ratio. For this reason, we may use the

concept of polytropic efficiency, which is the isentropic efficiency of an infinitely

small pressure change such that it has a fixed value throughout the entire process.
Then

_ (1)

npol - th

IS — constant. (6.62)

Also, from Equation (6.35), we have for an isentropic process

(th)is — ’yfl @

(6.63)
T Y P
Combination of Equations (6.62) and (6.63) gives
drT; —1d
Moo ot = L= P (6.64)
T, Y P
Integrating between the limits 2 and 3 furnish
n(pa/Pp) 7
WP/ Pra) ”
n . ,=—-=—"12=_ or (6.65)
POl In(T,5/T,,)
T, r-]
3 = (SC) npol ‘y. (666)
Ty

Substitution of Equation (6.66) into Equation (6.61) produces the following re-
lation between the polytropic and the isentropic efficiency of the compression
process,
y—1
Ne = (8)7% (6.67)
(gc) ™ot " —1
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Figure 6.17 Isentropic efficiencies

Nonisentropic expansion in the turbine makes that for a given turbine pressure ra-
tio the gas comes out at a higher temperature than in the ideal case. This behavior
may be expressed by the turbine isentropic efficiency, which is defined as the ratio
of the actual and ideal turbine powers,

n, = me(T;4 — ];5) _ ’1—;4 — ];5 (6 68)

;= = . .
mep(Tiy—(Tis)is) Ty — (Tis)s

Combining Equations (6.41) and (6.68) results in an expression for the turbine
pressure ratio at a given temperature drop,

v
Pis _ [1 _L_Tﬁ] o (6.69)
D4 N1y

Similarly, since for an expansion 1, = dT;/(dT,),q, it follows that

is?

Y
nis _ [Ls] T

T Consequently, (6.70)
Pry t4
Moo (r=1)
[
2
n, = 4—7;] (6.71)
| Ps |
! |:pr4i|

Typical variations of 1. and 7, as functions of pressure ratio are given in Figure
6.17 for a polytropic efficiency of 0.85. The curves show that 7. decreases and 7,
increases with increasing pressure ratio.
Another factor that can affect the output of the actual turbojet cycle is the vari-
ation of specific heat ¢, with the conditions of the gas. Under normal working
conditions, generally, ¢, is a function of temperature alone.
Figure 6.18 shows the variation of ¢, with temperature for air and typical com-
bustion gases (Reference 23). The curves indicate that ¢, rises somewhat with
increasing temperature and with increasing fuel-air ratio. The opposite is true of
the specific heat ratio, ¥ = ¢, /c,, since this quantity is given by (see Chapter 2)

1 R,

= (6.72)
P
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Figure 6.19 Temperature rise for standard fuel

where R, is the universal gas constant and M the molecular mass of the gas.

It is important to note that the molecular mass of combustion gases is approx-
imately equal to that of air so that y is related to ¢, by Equation (6.72) with
R=R,/M =287m?/s*K. For design calculations, it is common practice to use the
following mean values of ¢, and y for the compression and expansion processes,
intake and compressor (air): ¢, = 1005 m? / s’K,y = 1.4, turbine and nozzle (gas):
cp = 1147 m? /s’K, y = 1.333.

In order to establish the fuel consumption for given values of 7,5 and T,,, it is
essential to match the heat energy, that is, to balance the sum of the heat energy
in the air mass flow rate at the inlet of the combustion chamber and the fuel mass
flow rate at the fuel temperature to that in the combustion gas at the turbine entry
temperature. The required computations may be facilitated by applying a chart
as given in Figure 6.19, which shows the temperature increase (7;, — 7,5) as a
function of fuel-air ratio for a number of initial temperatures 7,5 (from Reference
23). These data concern complete burning of a reference fuel. When making
use of Figure 6.19, the fuel mass flow rate is easily obtained from the product of
fuel-air ratio and air mass flow rate.
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Figure 6.20 Exhaust nozzles

The combustion process involves two losses, a loss due to imperfect conversion
of fuel to heat energy and a drop in total pressure. A discussion of these subjects,
however, is left to the more advanced studies of propulsion.

Finally, it should be mentioned that some refinement of the ideal performance
may be obtained by taking into consideration the design of the exhaust nozzle. In
this connection, it is important to recognize that a gas turbine engine designed for
subsonic flight speeds, usually, has a convergent nozzle (Figure 6.20).

Since the expansion process in the exhaust nozzle is nearly isentropic, we can
make use of Equation (6.30) to write

Y
1 7T
Pis = Pre = Pe {1 + YTMZ} ) (6.73)
According to Appendix D, in the case of a convergent nozzle a critical pressure
ratio is distinguished, which yields sonic velocity at the nozzle exit. Insertion of
M, = 1 into Equation (6.73) yields

Y
{&} _ [M] y’. (6.74)
Pe cr 2

For air, taking y = 1.4, the critical pressure ratio is 1.893; for gas, using y =
1.333, (pre/Pe)er €quals 1.851. These values apply of course only to the case of
isentropic expansion in the nozzle.

For pressure ratios below the critical value, the pressure p, in Equation (6.73) may
be set equal to p,. Then

Y
T
Pie _ {”_1} . (6.75)

Py 2

When the latter condition exists we have unchoked flow. This implies that M, <
1 and p, = p, so that the jet flows out as a cylindrical stream (Figure 6.20a).
Because of the equality p, = p,, the pressure term in Equation (6.25) for the thrust
is zero, and the nozzle exit Mach number is given by Equation (6.43).

When the actual nozzle pressure ratio is greater than the critical value, we have

Y
-1
Pre o |YELITT (6.76)
Po 2
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Figure 6.21 Thermal efficiency

Now we speak of choked flow since the mass flow rate has its maximum value.
The Mach number is unity at the exit plane, and the static pressure at the nozzle
exit becomes

Pre _ VH} VTyl, 6.77)
Pe 2

where p, > p,.

For most control settings and flight conditions of interest to gas turbine engines
the flow at the nozzle exit will be choked so that the flow behind the exit plane
will expand further (Figure 6.20b).

To achieve optimum thrust under such conditions, clearly, the nozzle would have
to be convergent-divergent (Figure 6.20c). Especially at supersonic flight speeds,
where high pressure ratios occur, it is essential to use a convergent-divergent noz-
zle in order that the pressure p, matches the ambient pressure p,,.

Figure 6.21 presents again the thermal efficiencies of turbojet cycles, but now with
typical efficiency values for intake, compressor and turbine, and with application
of convergent nozzles. As assumed in Figure 6.15, the flight Mach number is 0.8
and the flight altitude 11,000 meters (I.S.A.). To simplify matters, it is adopted
that the working fluid behaves throughout the engine as a perfect gas with fixed
thermodynamic properties, which are equal to those of air. Also the assumptions
are made of perfect combustion and isentropic expansion of the flow in the exhaust
nozzle.

It is seen from Figure 6.21 that as the compressor pressure ratio is enlarged for
a given turbine entry temperature the thermal efficiency is increased until a peak
value is achieved. Further increase in pressure ratio then diminishes the thermal
efficiency. Apparently, there is a maximum pressure ratio corresponding to some
given turbine entry temperature.

In order to demonstrate how the specific fuel consumption and specific thrust are
affected by the efficiencies of intake, compressor and turbine, results of design
point calculations are presented in Figure 6.22, using the same basic figures and
assumptions as in Figure 6.21. Looking at the actual and ideal performance in
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Figure 6.22 Turbojet cycle performance

Figure 6.22 and 6.15, we see that the picture is largely the same, except that no-
ticeable performance penalties arise from the imperfections.

6.6 Typical turbojet performance

The reader is reminded that in Sections 6.4 and 6.5 we have been considering the
design point performance. This term indicates the performance when the engine is
running at the particular compressor pressure ratio, turbine entry temperature, at-
mospheric conditions and forward speed for which the components are designed.
For a given engine the remaining problem is then to provide the off-design perfor-
mance, being the performance over the entire operating range of control settings,
airspeeds and atmospheric conditions.

The methods of attaining of such data are wholly beyond the scope of this book.
Here we will merely illustrate the typical effects of the operational variables on
the performance of the turbojet.

The engine speed is controlled by the fuel flow rate. However, for a given supply
of fuel, thrust and specific fuel consumption are affected by the conditions of
the air entering the intake. These conditions are defined by four variables: (1)
airspeed V, or flight Mach number M,, (2) ambient pressure p, or geopotential
pressure altftude H), (3) ambient temperature 7, and (4) humidity g. Thus we
can write

T =T (T, My, Hp, Ty, q) } _ (6.78)

CT = CT(F7M()7HP7 TOJQ)

The symbol T" in these equations is used for the engine control setting, which,
usually, is represented by compressor rpm (revolutions per minute) instead of fuel
flow rate.
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Figure 6.23 Typical static performance of turbojet

When standard atmospheric conditions are assumed, the state of the incoming
airstream is completely described by flight Mach number and altitude, and the
relations (6.78) reduce to

T =T(T,M,H) } (6.79)

cp =cp(T,My,H)

Figure 6.23 depicts how static thrust, air mass flow rate and specific fuel consump-
tion vary with control setting. The three quantities show a strong dependence on
compressor speed, owing to the increase of compressor pressure ratio and air mass
flow rate with increasing compressor rpm.

It should be noticed that the engine rating full power in Figure 6.23 can be used
only for a limited duration (for example, five minutes) in order to avoid a risk of
damage to the engine. Therefore, the manufacturer designates a number of ratings
at which the engine may be running for short periods and at which the engine may
be operated continuously. E.g., the maximum thrust permitted for continuous
operation, which is often named maximum except takeoff (METO-)power. The
maximum control setting permitted in the cruise portion of the flight may be called
maximum cruise.

Typical variations in thrust and specific fuel consumption with change in engine
control setting and Mach number for a turbojet operating at a fixed altitude, are
shown in Figure 6.24. It is seen that for any given Mach number thrust increases
significantly with increasing engine rating.

As Mach number increases from static, thrust at constant rotational speed de-
creases because the increase of jet velocity with flight speed is relatively small.
Hence, the difference between w, and V, goes down as airspeed increases so that
according to Equation (6.28) the specific thrust will become less.

At higher airspeeds, a beneficial effect of an increasing mass rate of air flow
through the system more than balances, and thrust starts to rise. As a result, in
the subsonic speed regime the thrust is more or less constant with airspeed.
Figure 6.24 also shows how specific fuel consumption varies with Mach number.
Apparently, some change for the worse occurs with increasing airspeed.
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Figure 6.24 Sea-level performance of typical turbojet engine

With respect to the observation that the thrust is approximately independent of
airspeed, mention must be made of the circumstance that at supersonic airspeeds
the air mass flow rate becomes so large that a substantial increase in thrust takes
place. The curves in Figure 6.25 illustrate the strong dependence of turbojet thrust
on airspeed at Mach numbers greater than one.

It is also seen from Figure 6.25 that thrust decreases markedly with increasing alti-
tude. As shown in Figure 6.26, the same influence of altitude on thrust is found for
a typical subsonic turbojet. Specific fuel consumption, however, manifests some
improvement as the airplane gains altitude. The minimum value of the specific
fuel consumption occurs in the stratosphere (I.S.A.).

The effect of altitude on thrust can be explained by considering the separate in-
fluences of atmospheric pressure and temperature. Looking back to the cycle
analysis in Section 6.4, it may be understood that specific thrust is not dependent
on the magnitude of the ambient pressure, but only on pressure ratio and the am-
bient temperature. Thereby, it appears that specific thrust increases as the ambient
temperature becomes less. This means that as height is gained in the troposphere,
the reduction of temperature will cause an increase in specific thrust. On the con-
trary, at a given engine control setting and flight Mach number the mass flow rate
decreases with increasing altitude due to the decreasing air density. Owing to this
opposing influence of altitude on specific thrust and mass flow, the variation of
thrust with altitude may be written as

n

% - [p] , (6.80)
0o LPo

where the subscript ”’0” designates sea-level condition. For turbojet thrust, in the

troposphere (I.S.A.), the power n is about 0.75, giving a thrust at the tropopause

which is approximately 40% of its sea-level value (Figure 6.27).

In the lower stratosphere (I.S.A.), where the air temperature is constant, the thrust
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where the subscript ’s” denotes the condition at the tropopause.

At a given geopotential pressure altitude, a significant variable in the thrust equa-
tions is the temperature. From previous discussions we know that when the air
temperature increases, air mass flow rate and specific thrust decrease. Conse-
quently, less thrust will be delivered by the engine. In Figure 6.28 calculation
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Figure 6.28 Effect of air temperature on thrust and power

results for the ratio of thrust in standard and in off-standard atmosphere are plot-
ted against air temperature. Also is shown that the power of the piston engine is
less sensitive to temperature variations than turbojet thrust.

Clearly, during warm days it may be necessary to restore the thrust. A temporary
increase in thrust can be obtained by liquid injection, through which the air en-
tering the engine is cooled by means of vaporization of a mixture of water and
methanol. Addition of the coolant to the flow is usually achieved by spraying the
liquid into the compressor inlet or directly into the combustion chamber.

Finally, the effect of the presence of humidity in the atmosphere must be men-
tioned. Investigations in Reference 24 indicate, however, that the effect of humid-
ity on turbojet performance is generally small. The test results for which the static
performance data of a turbojet at sea level were determined at constant engine
speed and air temperature, show a decrease of about 5 percent in thrust for the
large variation in specific humidity from zero to 0.04 (Figure 6.29). In order to il-
lustrate the humidities that might be encountered in the operation of airplanes, the
calculated variation of saturation specific humidity with altitude is also presented
in Figure 6.29.

For comparison, in Figure 6.29 also is depicted the effect of humidity on the shaft
power of the piston engine (Reference 25). It is clearly seen that there is a much
greater effect of atmospheric humidity on piston engine power.
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6.7 The turboprop engine

Figure 6.30 shows a two-spool configuration of the turboprop. This arrangement
has a separate high-pressure compressor/turbine system, which is mechanically
independent of the low-pressure compressor/turbine system. The low-pressure
turbine extracts from the gas flow the useful power to drive the propeller.
We proceed with an examination of the thermodynamic processes in the gas gen-
erator. For simplicity’s sake, we shall assume that the pressure of the gas falls
completely to ambient pressure in going through the turbines.
Working through the cycle the points will be numbered as in Figure 6.30. Thus,
the total temperature at the compressor inlet comes from

T,=T, [1 + YTlMg} , (6.82)
where 7T, is the ambient temperature and M, the flight Mach number. Likewise,
the total pressure at station 2 is given by

b

1 =1
P =P {1 + ndyTMé} : (6.83)
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where 1, is the adiabatic efficiency of the intake. By inserting Equation (6.66) into
Equation (6.39), we obtain the turbine power required to drive the compressor per
unit air weight flow rate as

P. cp =1

m—g = ET;Z |:(gc) Tool? 1 , (6.84)
where €. = p,5/p,, is the compressor pressure ratio and Mol the polytropic effi-
ciency of the compressor. Note that in deriving Equation (6.84) use is made of the
assumption that ¢, is constant throughout the engine. The quantity P./mg may be
called specific compressor power.
We can use Equation (6.70) to solve for the total specific turbine power

Moot (Y=1)

p Y
_:_al_Fz , (6.85)

where now ol is the polytropic efficiency of the turbine.

Admitting here the simplification of assuming that in the turbine the flow expands
to ambient pressure, the specific output of the engine from Equations (6.84) and
(6.85) then turns out to be

Moot (V=1 1
P, ¢ o] T =
br P 0 Moot”
v,= 2L ="2|T 1—[—- —T[@)ml—q . (6.86)
P mg g 14 Pua 2 ¢

As in the case of the piston engine, the specific fuel consumption of the turboprop
is expressed as the fuel weight flow rate divided by shaft brake power. Using
Equation (6.38) produces the following expression

F m& _ cp(Tyy—Tp)

e E _ , (6.87)
PR ypmg H yp

where ¢ has the dimensions N/Wh or N/kWh.

In Figure 6.31 are presented specific shaft power and specific fuel consumption
of the gas generator for matched expansion in the power turbine (p,s = pe = py).
These have been calculated for a range of turbine entry temperatures and com-
pressor pressure ratios and apply to a flight Mach number of M, = 0.4 and an
altitude of 4000 m (I.S.A.). Used is the assumption that ¢, and y have everywhere
the same values as in ambient air.

It is seen again that in a gas turbine engine an increase in turbine entry tempera-
ture results in a considerable increase in specific output. The curves in Figure 6.31
also show that there is for any given turbine entry temperature, an optimal com-
pressor pressure ratio producing maximum specific power. Increase in pressure
ratio beyond this optimum reduces specific power, but provides an improvement
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Figure 6.31 Gas generator cycle performance

of specific fuel consumption. The curves also make clear that for any given tur-
bine entry temperature there exists an optimal value of compressor pressure ratio
yielding the minimum specific fuel consumption.

Comparison of the curves in Figure 6.31 and in Figure 6.22 shows a complete
similarity, only that at a given pressure ratio, the specific fuel consumption in the
turboprop tends to improve somewhat with increasing turbine entry temperature,
whereas in the turbojet there is an attendant increase in specific fuel consumption.
The actual turboprop performance differs from the gas generator output in Figure
6.31 in that some of the useful power becomes available as jet thrust. This is due
to the fact that when designing a turboprop, the pressure of the gas at the turbine
exit is always chosen greater than ambient pressure in order to use the pressure
drop after the turbines to eject the gases from a jet nozzle (Figure 6.30). In cruise
the power produced from the exhaust thrust may amount to 10-20 percent of the
useful power.

The contribution of the jet thrust, T; to the power output is usually expressed in
terms of an apparent increase in shaft power.

The definition of the so-called equivalent shaft power, Pq follows from

Py =TVy=n;R+ TV, (6.88)

where F; is the power available for propulsion, and 1; the propulsive efficiency.
Hence,

P, TV,

p.—fa_p L0 (6.89)
o, n;

br
When the airplane is not moving, it is assumed that the propeller generates a fixed
amount of thrust per unit shaft power. Thus, the static equivalent shaft power can
be expressed as

T
Py =Pyt L. (6.90)
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Figure 6.32 Static performance at sea level of turboprop

For an average propeller, the factor K is approximately 15 N/kW. Although the
output of the turboprop often is specified in terms of equivalent shaft power, it
might be worthwhile for any analysis to detail both shaft power and jet thrust.
From the above discussion it may be clear that the performance of a turboprop is
dependent on the same parameters as those used for turbojet performance. When
the restriction is made of operation in the International Standard Atmosphere, we
can write

P.= Pbr(F,MO,H)
T,=T(T\My,H) . (6.91)
cp=cp(I',M,,H)

Figure 6.32 shows schematically the static performance of the turboprop at sea
level as a function of control setting.

The typical variations of shaft power, jet thrust, and specific fuel consumption
with flight Mach number are illustrated by the curves in Figure 6.33a. The shaft
power and specific fuel consumption show some improvement with increasing
forward speed, whereas the thrust strongly decreases as the airspeed increases.
The qualitative effect of altitude on turboprop performance is sketched in Figure
6.33b. It can be seen that there is a loss of power and thrust and an improvement
in specific fuel consumption with increasing altitude.

Like the thrust of the turbojet, also the equivalent shaft power of the turboprop at
any given altitude may be related to its sea-level value by the relationship

Fq _ {ﬂr 6.92
(Peq)o Pol ©52)

where again in the troposphere, the exponent n has a value of approximately 0.75.
At a given pressure altitude, the effect of an increase in air temperature is a loss of
shaft power and jet thrust, and a worsening of specific fuel consumption (see also
Figure 6.28).
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Figure 6.34 Three-spool turbofan

6.8 The turbofan

In the turbofan engine, the available energy from the gas generator is converted
to one of greater mass flow rate and lower exhaust velocity, than it was directly
expanded in the hot nozzle. As sketched in Figure 6.6, this is accomplished by
combining the ideas of the turbojet and the turboprop.

In the two-spool layout of Figure 6.6 the fan is driven by a low-pressure turbine.
This configuration is suitable for mediate compressor pressure ratios and bypass
ratios. At very high values of these parameters, the three-spool system of Figure
6.34 may be required to keep the fan rotational speed within acceptable bounds.
To understand the workings of gas turbine engines it will be useful to follow a nu-
merical example of the method of calculating turbofan specific thrust and specific
fuel consumption. Therefore we shall determine the design point performance
of a hypothetical two-spool turbofan engine with convergent nozzle, for a flight
Mach number of 0.8 and an altitude of 11,000 m (I.S.A.).

The four design parameters for the engine are:
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Figure 6.35 Turbofan station designations

bypass ratio 3.5
total compressor pressure ratio 20
fan pressure ratio 1.7
turbine entry temperature 1300 K

Using the engine stations as numbered in Figure 6.35, we have at the fan inlet with
T,=217Kand y=1.4

v—1
T,=T, [1 + TM&} =217(1+0.2 x 0.64) = 245 K.
If the pressure recovery factor of the intake is 0.95, the pressure ratio at station 2
has the following value:
1 7
P _q, [1 + YT 3} =0.95(1+0.2 x0.64)>5 = 1.448.
Py

At the fan exit we have

y—1
Moo?
T,=T, B’%} P — 245(1.7)0336 = 203K,

12

where for the polytropic efficiency a value of 0.85 is used.
The related pressure ratio is
P _ P Po _
Po P Po

1.7 x 1.448 =2.462.

Thus, the cold nozzle pressure ratio is

P3 _ 5 462,

Po

When the expansion processes in the nozzles are accepted to be 100% efficient,
the critical pressure ratio, from Equation (6.74) is

Y

1 —1

_1;3 - [_7; T =(1.2)*° =1.893.
8



6. Propulsion 135

Since p,3/py > p,3/ g the cold nozzle is choked so that My = 1.0 and pg > p,,.
Hence,

2 1
T.=T. [ —"—) =293 — ) =244K
8 ‘3<y+1> 93(1.2) ’

Py _ Py P3 _ 2.462 _
Do Pps Py 1.893

The cold nozzle outlet velocity is

1.301.

wg = Mg \/YRT; = 1/1.4 x 287 x 244 =313 m/s.
The contribution of the cold stream to the specific thrust of the engine is given by

T1; mc(WS*VO)_i_AS(Ps*Po)

mg mg mg

where V, = M,,/YRT, = 0.84/1.4 x 287 x 217 = 236m/s.

Using the familiar relationships m. = pgwgAg, pg = 1% amd 7¢ =

follows that
RT, D,
We—V, +,/_8[1__0} .
(8 0) y Pe

Putting in numerical values yields

. 35 1 287 x 244 1
o2 |(313-236 - =10.25s.
mg  (3.5+1) 9.8l l( )+ 14 [ 1.301H °

)

_B_

g7 it readily

T. B 1

mg B+lg

The pressure ratio of the high-pressure compressor is

Pu_PuPo_ 20 _ ) 65

P Py Pr3 1.7

The total temperature at the outlet from the high-pressure compressor comes from

y—1
n 0
T,=T, E"‘} M1 293 (11.765)°33 = 671K,

13

where again is adopted: Mpol = 0.85.

The high-pressure turbine temperature drop follows from the equality of com-
pressor and turbine powers. Admitting the assumption that throughout the engine
the specific heats of the working fluid have the same values as in atmospheric air
(cp =1005m?/s’K, y= 1.4, R = 287m? /s>K), we obtain

1

Is—Tg= n_m(Tm_Tg)a
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where 1, is the mechanical efficiency. This factor takes into account the losses
which occur when power is transmitted from the turbine to the compressor. Setting
Nm = 0.98, we find the temperature behind the high-pressure turbine to be
! (T,—T5)=1300 ! (671 —293) =914K
Mm@ 53 0.98 N ’

t

T

6= 1,

15
The low-pressure turbine temperature drop follows from the power demand of the
low-pressure compressor,

1
my(Te — Ti7) = n_m(Tts —Tp)-

m

Remembering that m/m, = B+ 1, and using 1,, = 0.98

(B+1) (3.5+1)
Ty =Te— —(Tt3_th) =914 - ———

: Gog (293245 = 694K,
m .

To calculate the hot nozzle pressure ratio we write

Prr _ Py Pis P Prs,
Py Pis P Pi3 Po

The total turbine pressure ratio is given by

Y
P _ [&] oo

Dis T;s

With a turbine polytropic efficiency of 85% we get

P [ 694
Pis

4.118

The pressure loss in the combustor is assumed to be 5% of the compressor delivery
pressure, so that
Pis
P4

=0.95.

With the substitution of these numbers, the nozzle pressure ratio becomes

% =0.07544 x 0.95 x 11.765 x 2.462 = 2.076.
0

It appears that also the hot nozzle is choked so that M, = 1.0 and p, > p,,.
Accordingly,

2 1
T.=T-(——)=694(—) =578 K
e t7(,y+1) 9 (12) J
&:&@:M:Log]

Do Ps Po 1.893
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The jet velocity of the hot stream is

We = M,+/YRT, = 1//1.4 X 287 x 578 = 482 m/s.
The contribution of the hot stream to the specific thrust of the engine is given by

T, _ my,(we —Vp) 4 Ae(pe—py)
mg mg mg

Recalling that m, /m = 1/(B+1), we find

1 1 RT, Py
i = iy (W) [l—;‘:ﬂ
1 287+578
(3.5+1) 981 [(482 236)+ /e 1+ 1097]} =63s.

The total specific thrust is

T, T,
v, =<+ —=102463=165s.
mg  mg

The specific fuel consumption comes by dividing the fuel weight flow rate by the
thrust
8

T

The fuel flow equation may be written as

CT:

MymH = mycp(Ts —Ty),

where H is the heating value of the fuel (H = 4.31 x 107 J/kg) and n, is the
combustion efficiency, which is introduced to take into account the incomplete
burning of the fuel flow. Combining the latter two equations leads to

P 1 Cp (Tzs_Tm)'
" B+1Hn,

Assuming 1, = 0.95, we obtain

o 1005(1300 — 671)3600
T (3.54+1)4.31 x 107 x0.95 x 16.5

=0.76N/Nh.

The above calculations indicate that bypassing of air results in a low specific thrust
compared with the turbojet (see Figure 6.22). On the other hand, the figure ob-
tained for the specific fuel consumption illustrates that at a flight Mach number
M, = 0.8 the efficiency of the turbofan is markedly better than that of the turbojet.
To explain the principal flight regimes for application of a specific engine type,
particularly, the propulsive efficiency may be used. According to Equation (6.51),
the propulsive efficiency is given by the ratio of power available to the increase in
kinetic energy of the flow. In terms of the equivalent jet velocity, we have

2

Tl)eq’ and also (693)
14 o

77,:
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2
S
2+

n; (6.94)
Clearly, propulsive efficiency increases with increasing flight speed and mass flow
rate, and decreases with decreasing jet velocity.

A comparison of propulsive efficiency values for the various types of engines is
sketched in Figure 6.36. Since turbojet thrust is produced at high jet velocities, the
higher the flight speed, the higher is its propulsive efficiency. Due to the increased
mass flow rate and reduced mean exhaust velocity of the turbofan, this engine
type is best in the high-subsonic speed range. At low-subsonic flight speeds, the
propeller remains much to be preferred to the other forms of propulsion.

Of course, the ultimate basis on which the engine types must be compared is the
overall efficiency, which follows from the product of propulsive efficiency and
thermal efficiency.

The thermal efficiency is determined by the parameters defining the thermody-
namic cycle of the flow, through which it is mainly within the control of the en-
gine designer. Obviously, measures to improve the propulsive efficiency are only
valuable if there is a resultant increase in overall efficiency.

The way in which for a turbofan with given gasgenerator, thrust and specific fuel
consumption vary with bypass ratio, is sketched in Figure 6.37. Two flight condi-
tions, takeoff and cruise at the tropopause (I.S.A.) are shown. The main features
are that thrust increases and specific fuel consumption decreases by application of
a greater bypass ratio.

The typical variation of thrust and specific fuel consumption with flight Mach
number and control setting, is explained by the curves in Figure 6.38. Compressor
speed, expressed as percentage of maximum, is used to specify the engine control
setting. From these plots we may see that in comparison with the turbojet there
are vital reductions in specific fuel consumption (cf. Figure 6.24). On the other
hand, the turbofan thrust shows a significant decrease with airspeed.

The variation of turbofan thrust with altitude may also be represented by Equation
(6.80). Now, the value of the exponent depends on bypass ratio, and because of
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Figure 6.38 Typical turbofan engine performance

the large mass flow rates involved, » is usually near one.

Finally, it should be realized that the calculations made in this section concern the
bare engine. The airplane performance equations, of course, require the use of
the installed thrust and specific fuel consumption, which include both the detri-
mental effects associated with the integration of engine and airplane structure and
the losses owing to bleeding compressed air and power extraction. However, a
detailed analysis of all these effects is not simple and certainly beyond the scope
of this text.



Chapter 7

PROPELLER PERFORMANCE

7.1 Propeller thrust and efficiency

As illustrated in Figure 7.1, an airplane propeller consists of two or more blades of
which the blade sections are airfoil shaped. The propeller blades convert the shaft
power of the engine into a thrust by pushing air backward, whereby the propeller
thrust is given by the time rate of change of momentum of the air that passes
through the propeller. The control surface 0 in Figure 7.1 is far upstream of the
propeller where air pressure and flow velocity have their freestream values p,, and
Vjy- The aft plane ¢ is sufficiently far downstream that the local pressure equals the
freestream pressure p,. Then

T =m(w,—V,), (7.1)

where w, is the final slipstream velocity.

Equation (7.1) defines the thrust which is obtained in the absence of the airframe.
Therefore, this force may be called the freeair thrust.

The work done by the thrust per unit time is the power available P,, and the ratio of
P, to shaft power P, | is the propulsive efficiency of the propeller (see also Equation

(6.1)),

n=t=—0 (72)

T = njﬁ. (7.3)

From our discussion in Chapter 6 we know that at a given altitude and engine
control setting, it is a good approximation to assume that the shaft power is inde-
pendent of forward velocity. If we also assume that 1) j has a constant value, the

tp

airfoil sections

spinner

Figure 7.1 Shape and propulsive action of airplane propeller

140
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Figure 7.2 Typical propeller performance

thrust predicted by Equation (7.3) will strongly diminish as airspeed increases.
This strong dependence of thrust on airspeed holds also for an actual propeller,
as sketched in Figure 7.2. At zero velocity the actual propeller generates a finite
thrust, which is called static thrust. Under this condition, the propulsive efficiency
from Equation (7.2) is zero. In the first instance 1, increases considerably with
airspeed, but beyond 200 km/h the propulsive efficiency remains more or less con-
stant until, at about 700 km/h, the efficiency is seriously impaired as the blade tips
approach the speed of sound.

Essentially, the speed of the propeller blade tip relative to the air is the vector
sum of the forward velocity V,, in the direction of the propeller axis and the rota-
tional velocity wR, directed perpendicular to the propeller axis (Figure 7.3). The
magnitude of the propeller tip speed is thus given by

v, = \/VOZ +(0R)? = \/Vg + (nn,D)?, 74

where R is the blade radius,  is the angular velocity and 7, is the number of
revolutions per second of the propeller (@ = 27n,). On the small airplanes with
piston-engine, the propeller may be connected directly with the engine crankshaft.
In this case the propeller speed n, equals the engine speed n. On turboprop air-
planes there is always a gearbox, which makes that the propeller turns much more
slowly than the turbine shaft that drives it so that the ratio 1, /n is less than one.
As the tip speed V, approaches the speed of sound, the compressibility effects will
dramatically reduce the propulsive efficiency of the propeller. This factor limits
the use of the current propellers to a maximum flight Mach number of about 0.6
(see Figures 7.2 and 6.36).

Some further insight into the fundamental relationship between thrust, shaft power,
propulsive efficiency and airspeed can be obtained from a classic treatment which
is known as the momentum theory. As depicted in Figure 7.4, the assumption is
made that the flow passing through the propeller forms a well-defined streamtube,
where the propeller is replaced by an actuator disk. Furthermore, this theory as-
sumes that the pressures and velocities are evenly distributed over the disk area
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and that the flow is incompressible and irrotational. By the action of the propeller
the freestream velocity V) is increased to the slipstream velocity (V) +V,3), and a
certain contraction of the air flow passing through the disk occurs.

As the flow approaches the disk, the freestream velocity V|, increases to a value
(Vy + Vo) at the disk. At the same time the static pressure p, falls to p, just in
front of the disk. In the slipstream behind the disk the velocity rises to a value
(Vy +V,3). The pressure increases to p, on passing through the disk and decays to
the freestream value p,, in the slipstream.

Since the thrust is given by the time rate of change of axial momentum, we get

T
T:pﬂﬂ%+%ﬂm (7.5)
where p is the ambient density and D is the diameter of the disk.

The thrust acting on the disk is also given by

T
T:ZW@fmJ (7.6)
Application of Bernoulli’s equation (Appendix D) on each side of the actuator

disk yields

mip=p ot md L o
Pr+3P(Vo+Va)* = py+3p(Vy+V,3)
From Equations (7.6) and (7.7), we find
T 1
T:pZD%%+5%ﬂ%y (7.8)

Comparing Equations (7.5) and (7.8), we obtain

1
Va= Va5 (1.9)
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Figure 7.4 Velocities and pressures of the momentum theory

The latter equality shows that half the total increment in velocity occurs in front
of the disk. The shaft power may be expressed as the increase in kinetic energy of
the air mass flow rate,

T
P, 1»0%%fwﬂmﬁwkff%}qu%%fnﬁny (7.10)

r = 2Fg
By combining Equations (7.5) and (7.10) we get the following expression for the
propulsive efficiency (cf. Equation (6.52))

. TV, Vo 1 7.11)
= = frd or .
IR, Vot Ve 1+%
2
n,= 7V (7.12)
T
Evidently, the propulsive efficiency can also be expressed in terms of the thrust,
2
n;,= " ] - (7.13)
TV T g

Emphasis is made that Equations (7.12) and (7.13) represent the theoretical up-
per limit of the attainable propulsive efficiency since the underlying theory does
not include rotational kinetic energy in the slipstream and assumes that the axial
velocity is uniform over the disk.

Clearly, the value of the momentum theory lies especially in providing a qualita-
tive appreciation of the way in which propellers are likely to act under different
design and operating conditions. E.g., Equation (7.12) indicates that at a given
airspeed the propulsive efficiency increases as the slipstream velocity decreases.
Further, Equation (7.13) tells us that in order to achieve this improvement of 1 jat
a constant value of the thrust, the propeller diameter must be enlarged.
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Figure 7.5 Variation of propulsive efficiency with airspeed

Another result of the momentum theory is illustrated by Figure 7.5, where is plot-
ted the propulsive efficiency as a function of airspeed for various values of the
loading of the propeller, £,/ %Dz. It is seen that lower efficiencies may be ex-
pected as this quantity increases.

The values of P, ./ %D2 considered in Figure 7.5 represent the loading of propellers
which are currently in service. The order of magnitude of these loadings is such
that all existing propellers may be typified as lightly loaded This term is used to
indicate that their performance may be effectively examined to the neglect of the
rotational kinetic energy in the slipstream. Under this condition the propulsive
efficiency, especially, is determined by losses owing to the profile drag of the
blades.

A second category of losses comes about in consequence of the fact that the pro-
peller blades are also subject to induced drag. The general cause of losses is of
course that not all kinetic energy in the slipstream can be recovered and converted
into thrust. The portion that axial and rotational kinetic energy contributes to the
total losses is dependent on the number of blades, tip speed and propeller loading.
Because of the need to conserve fuel, in the last decades of the twentieth century
the propeller has been considered again as a propulsor for large commercial air
transports (Reference 28). Figure 7.6 shows schematically the various advanced
turboprop concepts which have been proposed for future application at high- sub-
sonic airspeeds. The powerplants incorporate a sophisticated gas generator and
one or two multibladed small-diameter propellers known as propfans. To reduce
compressibility losses, the thickness-to-chord ratios of the blades are roughly half
those of the modern conventional propeller blades. In addition, the blade tips show
a large angle of sweep. The development programs were directed toward tractor
and pusher configurations and concerned single-rotating propfans and counterro-
tating systems. The counterrotating propfan consists of two rows of blades rotat-
ing in opposite directions. These systems have the potential of a recovery of the
swirl losses because the rotational velocities of the front row may be removed by
the rear half. Both single and counterrotating propfans have advanced gearboxes
capable of transmitting high engine powers and pitch-change mechanisms capable
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Figure 7.6 Advanced turboprop sysems
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of governing the eight to ten highly loaded fan blades (Figure 7.7). Of importance
was also the program for a gearless counterrotating pusher engine, the unducted
fan (UDF), where the propfans are directly connected to counterrotating turbine
stages. From aerodynamic and acoustic considerations, there is a strong need to
limit the tip speed of the blades. This requirement explains the relative small fan
diameters, which together with the high engine powers involved cause a propeller
loading of about three times that of the conventional turboprops. This implies cor-
respondingly high torque forces that are responded by imparting a large amount of
angular momentum to the slipstream. The resulting high rotational kinetic energy
in the airflow contributes directly to the reduced losses of the system and leads to
the indication “highly loaded” for this class of propellers.

Flight tests have shown that actually significant improvements in propulsive effi-
ciency can be achieved. However, interior and exterior noise problems seem to
introduce prohibitive objections for practical applications.

7.2 Propeller geometry

Under normal flight conditions the direction of the propeller axis may be consid-
ered as coinciding with the direction of the flight velocity (Figure 7.8). If induced
velocities in the flow through the propeller are neglected, then, as in Equation
(7.4), the velocity of a blade section relative to the air is composed of a transla-
tion with airspeed Vj, and a simultaneous rotation about the propeller axis with
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Figure 7.9 Variation of advance angle and blade angle from hub to tip

rotational speed @r:

V.= \/VO2 +(0r)? = \/V02 + (27n,r)2.

Evidently, the component Vj, has the same value at each blade section, whilst the
rotational speed is proportional to the distance r from the propeller axis to the

(7.14)

blade section.
The angle between the relative velocity V, and the plane of propeller rotation is

called the advance angle, ¢. From Figure 7.8 we find

tan ¢ Y Y (7.15)
anp =-—=—. .
wr 27m1,r

For given values of airspeed V|, and angular velocity @, the advance angle de-
creases from the root to the tip of the blade since the root sections are revolving

slower than the tip sections (Figure 7.9).
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Figure 7.10 Effective and geometric propeller pitch

The advance angle of the tip section is given by

Yo _ %
OR  7n,D

tan @, = . (7.16)
The dimensionless quantity V,,/(n,D) is called the advance ratio and given the
symbol J,

Vo
J=—==mtan¢,. (7.17)

npD
After one revolution of the propeller axis, the propeller has advanced a certain
distance in the direction of flight. This length is called the effective pitch, p,., of
the helical motion performed by each point on the propeller (Figure 7.10a).
The effective pitch of the propeller is related to the advance angle and propeller
speed by

o

v,
Pe=2mrtan¢ = 27rr2—0 =9, (7.18)
nnpr I’lp

It can be further seen that

VO Pe
= np—D =5 (7.19)
Hence the advance ratio is a measure of the effective pitch. A low value of J
implies a fine pitch and a high J a course pitch.
The angle from the plane of propeller rotation to the well-defined chord line of the
blade section is the blade angle B (see Figure 7.8). The angle f3 is the sum of the
advance angle and the angle of attack,

B=o+a. (7.20)

At this point we state that a low drag behavior of the propeller requires that the
angle of attack at each blade radius has approximately the same value as will be
explained in the next section. For that reason, the propeller blades always appear
to be twisted with the smallest blade angle at the tip and the greatest at the hub,
owing to the increase in advance angle (see Figure 7.9).
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Figure 7.11 Geometric data of a propeller blade

Figure 7.11 shows for a given propeller the variation of the blade angle along the
blade radius, which, customarily, is designated by specifying 8 at 75% or 70%
of the radial distance. The higher the airspeed for which a propeller is designed,
the greater the angle 3,5 or B, and thus all blade angles at which the blade
sections are set.

The blade angles are often given in terms of the geometric pitch p,. This param-
eter is obtained from the geometry of Figure 7.10b. When expressed in terms of

By 75 We get

3
pg =2mrtanf} = ZEZRtanﬁms. Thus, (7.21)
4|40
— 1 8
ﬁ0_75 = tan |:§ E_D:| . (722)

Geometric pitch is the distance that the propeller would travel per complete turn-
ing if it were rotated in a solid medium. The difference between the geometric
pitch and the effective pitch is called propeller slip.

Figure 7.11 shows also the typical distribution of maximum blade thickness-to-
chord ratio, /¢, and relative chord length, ¢/D. Especially, structural require-
ments make that near the root the thickness of the blade sections is relatively
large. Also, for structural reasons the chord lengths over the outer part of the
blade radius is kept constant.

7.3 Blade element theories

The calculation of propeller characteristics from experimental airfoil data is known
as the blade element theory. In order to determine the forces at any blade radius,
the blades are divided into radial elements of width dr and chord length ¢ (Figure
7.12).

The method requires that the blade elements can be considered individually. In
other words, the blade element theory assumes that there are no forces acting in
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Figure 7.13 Blade element velocity and force diagram

radial direction so that each element is subjected to two-dimensional flow.

The velocity and force diagram of a blade element at a radius r is depicted in
Figure 7.13. Under the influence of the forces produced by the propeller, an extra
velocity V; is induced at the blade element, which shifts the relative velocity V,
through an angle J.

The axial component V,, = V;cos ¢, is related to the thrust generated by the blade
element while the presence of the component V, = V;sin ¢, represents the rotation
imparted to the slipstream.

Apparently, the effect of V; is to lower the angle of attack ¢ to the effective angle
of attack c,.

The effective velocity V, experienced by the blade element is obtained by the rel-
ative velocity V; and the induced velocity V;. As indicated in Figure 7.13, the
induced velocity is approximately perpendicular to V,, giving

Ve = /V2+ (0r)2— V2. (7.23)

The angle formed by the effective velocity and the plane of rotation may be called
the aerodynamic advance angle ¢,.
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From Figure 7.13, the following relations are apparent:

B =0+
(07 :ﬁ_¢a
o —o+5 (- (7.24)
o =06+0,.

By definition, the lift dL is perpendicular to V,, and the drag dD is precisely in the
direction of V.

The vector sum of dL and dD forms the aerodynamic force dR. The component
of dR parallel to the propeller axis furnishes the thrust produced by a single blade
element,

dT =dLcos ¢, —dDsin ¢,. (7.25)
The force opposing the rotation of the blade element is

dK =dLsin¢,+dDcos @,. (7.26)
The power required to rotate the blade element is given by

dP, = or dK = wr(dLsin ¢, +dDcos ¢,). (7.27)
Substituting the relationships dL = c Z% pVZcdrand dD = c 4 % pV2cdr in Equations

(7.25) and (7.27) gives the expressions for dT and dP, respectively:

1
dT = EpVezc(cZ cos @ — c;singy,) dr (7.28)

1
Py = pVZor c(c,sing, +c, cos ¢g)dr. (7.29)

Emphasis is made that the coefficients ¢, and ¢, are functions of angle of attack
0, helical Mach number M, =V, /c, and Reynolds number (see Chapter 4),

¢, = ¢,(0e,M,Re) (7.30)

¢, =c, (0, M,Re). (7.31)

Essentially, the difficulty in determining thrust and propeller power at given pro-
peller operating conditions is to find the value of o, at each radial station. This
angle, in turn, is dependent on the induced velocity. Although V; is normally rel-
atively small, it is essential to account for its effect when the aim is to obtain
accurate results.

We may attack the problem by using the simple momentum theory of Section 7.1,
which predicts that the axial component of the induced velocity at the propeller
plane has a value of one-half the final velocity in the slipstream. This enables us
to express the propulsive force produced by all blade elements located at a radial
distance r from the propeller axis as (cf. Equation (7.8))

BdT = 2nrdrp (V0 +V,cos q),l)ZVi cos ¢y, (7.32)
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where B represents the number of propeller blades.

In deriving Equation (7.32) the assumption is made that the total thrust BdT is
given by the average time rate of change of axial momentum of the air flowing
through an annular stream tube, which at the propeller plane has a radius r and is
dr wide.

The preceding system of equations can now be solved to obtain the value of the ef-
fective angle of attack. Once the angle ¢, has been found, the propeller thrust and
propeller power are obtained by integrating Equations (7.28) and (7.29) between
r = H (propeller hub) and r = R (propeller tip). Thus

R R
1
T= B/dT = B/ EpVezc(cecos ¢q —c,sing,)dr (7.33)
H H

R R
1
P,= B/de = B/ EpVeza)rc(cé sin @, —c,cos ¢ ) dr. (7.34)
H H

The above combination of theories is called momentum blade element theory. This
technique furnishes a rapid method for calculating the performance of propellers
of known design. However, such factors as non-uniform flow, blade interference
effects, and tip losses are ignored by this approach. For that, other blade element
theories are available of which most elements are based on treatments enunciated
in the first half of this century (see References 29-35). A detailed discussion
of these so-called vortex theories, however, is rather complicated and certainly
beyond the intended scope of this course book.

Momentum blade element theory requires the input of airfoil aerodynamic data
for the calculation of thrust and power. The last fifty years, the airfoils employed
for propellers have been largely restricted to the NACA 16-series sections (Figure
7.15). These airfoil types were developed in the late thirties by the National Advi-
sory Committee for Aeronautics (NACA) in the U.S.A., and found exclusive use
in propellers. We note that in 1958 a new name was given to the NACA research
agency: National Aeronautics and Space Administration (NASA).

More recently became available two new series of blade sections, developed in the
U.K. and in the U.S.A. for use on the modern generation turboprop airplanes (Ref-
erences 36 and 37). Their increased performance characteristics are illustrated in
Figure 7.15, where a comparison is made between the lift-to-drag ratios of a con-
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ventional section and an advanced propeller blade section airfoil (from Reference
36).

Notice also that significantly higher values of maximum lift/drag ratio are ob-
tained on a propeller blade section than are achieved in the case of an airplane
wing section. This phenomenon might be explained by considering the effect of
reduced boundary layer thickness due to the centrifugal field in which the blade
sections are operating.

At this point, let us return to our discussion on propeller geometry of the pre-
ceding section in order to make a few remarks about the necessity for twisting
the propeller blades. According to its definition, the propulsive efficiency of the

propeller is given by
TV, TV,
n=ot=5 (1.35)
br p

The blade element theory uses a similar notion, the blade element efficiency,

_dTV,

. . 7.36
n; dP, (7.36)

Through insertion of Equations (7.28) and (7.29) into Equation (7.36), and by
making use of the relationship V, = wrtan ¢ (see Figure 7.13), we obtain
_ [epco8¢a—c,sing,

= tan 7. 7.37
¢ ¢;psing, +c,cos @, an (7.37)

We gain further insight by adopting in Equation (7.37) the approximation that
the induced velocity at the blade section is sufficiently small so that ¢, may be
replaced by ¢. Now Equation (7.37) can readily be manipulated into the following
form:

tan ¢

Ne = m7 (7.38)

where tand = c,;/c,.
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Figure 7.16 Propeller blade element efficiency versus liftldrag ratio

Figure 7.16 shows the relationship of blade element efficiency with lift/drag ratio
and advance angle. Apparently, the magnitude of the angle ¢ has only a relatively
small influence on the efficiency of the blade element. Therefore, we may con-
sider a mean curve in Figure 7.16. This unique relation between 1, and c,/c,
reveals that the optimum angle of attack is that angle for which the lift/drag ra-
tio attains its maximum value. Hence, if the propeller blade has the same airfoil
section throughout its entire length, the optimum angle of attack must be uni-
form along the blade, which results in a decreasing blade angle from hub to tip.
Though, mostly, the blade sections are not shaped equally, it continues in force
that propeller blades are twisted strongly (Figure 7.11).

The results of the blade element theory may also be used to explain the term
activity factor, or shortly AF, which evaluates the distribution of the blade area
along the radius and expresses the ability of a propeller blade to absorb power.
The factor AF may be defined by

105 1 105 Ferrd gr

AF= - 3d:—/—[f} a(r) 7.3

DS/Crr16 plrl “\R) (7.39)
0.2R 0.2

where the lower limit of integration represents the outer radius of the hub.

The meaning of Equation (7.39) can be explained by examining Figure 7.13.

When neglecting again the induced velocity, the power required to rotate the blade
element may be expressed as (cf. Equation (7.29))

1
dP, = Eerzwrc(cé sing +c cos ¢) dr. (7.40)

Using the relationship V. = wrsec @, Equation (7.40) can be written as
1
dpP, = (Epw3sec2¢)(cesin¢ +c,cos¢)cr’ dr. (7.41)

For given working conditions and blade section shape, the factors between brack-
ets are constants so that for the whole blade the power absorption capacity is

R
proportional to [ ¢r3dr. To make this quantity dimensionless, it is divided by
0.2R
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D’. The constant 10° in Equation (7.39) is only used to give the activity factor a
convenient magnitude.

Thus, for a given propeller and operating at given conditions, the ability to absorb
power is directly correlated to the activity factor, so that

P, = constant X B x AF,

where the product B x AF is called the total activity factor, TAF.

For a blade having a constant chord length, we find from Equation (7.39), AF =
1560 ¢/D. For the propeller blade considered in Figure 7.11 the activity factor
becomes AF = 121.

The thrust producing capability of a propeller blade is characterized by the inte-
grated design lift coefficient,

= 4/% [;}351 (%) , (7.42)

where ¢, is the design lift coefficient of a blade element at zero incidence, defining
the sectional camber. A propeller blade with a high C; ;-value is able to generate
more thrust for the same chord length distribution.

7.4 Propeller charts

From the preceding discussions it may be appreciated that for a propeller with a
given number of blades and given blade shape, the thrust will be determined by the
density of air, the propeller speed, the propeller diameter, the freestream velocity,
the blade setting, the speed of sound, and the viscosity of the air. Therefore,

T =T(p,np,D,Vy,By75:¢, ). (7.43)

Utilizing the technique of dimensional analysis as described in Chapter 4, we may
write

T = K(p*nb DV e/ u). (7.44)
Then, in term of the units mass [M], length [L] and time [7], we have

ML M1eT11 S TL1 LY (M8

K= =] = = — . 7.45

(5] [ w7 7] [ @49

By equating exponents we obtain

1 =a +g
1 =-3a +d+e+f —g (7.46)
-2 = —b —e—f —g

When we solve the three equations for the exponents a, b and d in terms of e, f
and g, we get
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a =1 —g
b =2—e—f —g (7.47)
d =4—e—f —2g

Using these powers in Equation (7.44) yields

V. 1¢ S g
T = Kpn2D* [0] [C] [ K ] or (7.48)
npD Vo pVoD
24 ye 1 / 1 #
T =Kpn;D"J¢ | — — . 7.49
e ] &) @
If we set

ke[ L) e
M, Re| T

we can write Equation (7.49) as
T =Cppn;D*, (7.50)

where C; is the dimensionless thrust coefficient of which the value may vary with
blade angle 3 ;5. advance ratio J, flight Mach number M, and Reynolds number
Re.

Carrying out a similar dimensional analysis on propeller power, we find

P, =Cppm) D, (7.51)

where C,, is the power coefficient.
Hence for a given propeller it follows that

Cr =Cr(By75.7/, My, Re) (7.52)

Cp = Cp(By 75,/ My;Re). (7.53)

Now, as shown in Figure 7.17, the propeller chart may give the values of C;. and
Cp as functions of 3, ;5 and J. Here, the points on the various curves Cp versus J
for constant value of f3, ;5 that correspond to the same value of C;- are connected.

The data in this figure represent experimental results obtained at fixed values of
Mach number and Reynolds number.
By making use of Equations (7.50) and (7.51) we can express the propulsive effi-
ciency in the form

LTV, CrpmpDYV, G,

| — P 0 Sy 754
=", T G’ T G, (754
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Figure 7.18 Propulsive efficiency

Figure 7.18 gives the propeller performance in terms of 1;, J and By75- The
optimum performance curve is indicated by the dashed line, joining the points of
maximum propulsive efficiency. Notice that the graph refers to the same propeller
as considered in Figure 7.17.

Inspection of Figure 7.18 shows that the blade setting has a marked influence on
the propulsive efficiency. On a so-called fixed-pitch propeller the blade angle B, ;5
has one particular value so that optimum efficiency occurs for a given design con-
dition of V|, and n,,. It is also seen that for this type of propeller a high efficiency
is gained in only a very narrow range of advance ratios. For example, low effi-
ciencies are obtained at takeoff and climb if the propeller is designed for cruising
conditions. On the other hand, the airplane may be equipped with a climb pro-
peller, which has a smaller blade angle or lower pitch. This increases performance
during takeoff and climb, but decreases performance during cruise.

Apparently, for optimum propulsive efficiency it would be of advantage to pro-
vide a pitch-change mechanism to change the blade setting as the advance ratio
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varies. This requirement has resulted in a solution which is known as the variable-
pitch propeller. As can be seen from the curves in Figure 7.18, the variable-pitch
propeller furnishes improved performance over a broad range of operating con-
ditions. This explains that nowadays fixed-pitch propellers only are used on the
small single-engine airplanes.

An airplane equipped with a variable-pitch propeller has an engine throttle con-
trol for the engine output and a pitch control to regulate the propeller speed. A
so-called constant speed propeller is equipped with a governor, which changes
the blade angles in response to any departure in propeller speed from the value
selected by the pilot.

Constant speed propellers on most of the larger modern airplanes have the pos-
sibility for full feathering in flight, that is, the blades can be turned edge-on to
the oncoming air to prevent the occurrence of high windmilling-drag in case of
engine failure (Figure 7.19). Also, the pitch-change mechanism may be designed
to permit the selection of a large negative blade angle after landing, thus creating
reverse thrust for rapid deceleration of the airplane during ground run.

The governor adjusts the propeller speed by changing the blade setting to ensure
that the power required by the propeller equals the shaft power at the selected
rotational speed:

P,=P,. (7.55)

For given values of p, V|, D, n,, and F,, the power coefficient and the advance
ratio follow from

Cp,= Por (7.56)
P pm D’ '
VO
J=—9. (7.57)
n[,D

Now the blade angle 3 ;5 and the thrust coefficient C;. are known from the pro-
peller chart in Figure 7.17. The thrust, finally, is found from Equation (7.50).

It is worth mentioning that the piston-engine generates its shaft power evenly over
a wide range of engine speeds (Figure 7.20). For airborne operation, a piston-
engine uses approximately 40% of the rpm-range in which the propeller blade an-
gle varies between about 20° at flight idle to 45° at maximum airspeed. The turbo-
prop, on the contrary, operates within a narrow range of high rotational speeds in
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order to achieve its low specific fuel consumption characteristics. Consequently,
the turboprop-propeller blade angle during a glide at minimum power is smaller
than that of a piston-engine propeller. The blade angle of a turboprop propeller
therefore changes from about 5° to 45° in only 10% of the flight range of engine
speeds so that the blades change angle at a much faster rate than the blades of a
piston-engine propeller. This implies that the turboprop provides a better thrust
response to control lever movement than a piston-engine.

We close this section with remarking that also the control of the turboprop may
differ from that of the reciprocating engine since the pilot of a turboprop airplane,
generally, has the disposal of only one control lever, which regulates the fuel flow
to the engine. In this case, the fuel control operates in conjunction with the pitch
control in the flight range of the engine speeds to ensure that the operating lim-
its of the engine will not be exceeded. It is convenient to specify the output of
such a turboprop system in terms of compressor speed (see Chapter 6). When
the engine is operating at rotational speeds below flight idle, it is said to be in
the ground-handling or beta-range (Figure 7.20). In this low-power region, the
propeller blade angle is controlled directly by the pilot’s control lever and may be
varied progressively from forward thrust through zero to reverse for braking and
taxiing.
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7.5 Installed propeller performance

From the existing methods on propeller performance prediction, generally, the
freeair thrust is obtained. However, the installation of propeller and engine in the
airplane leads naturally to a flow through the propeller disk which differs from the
isolated behavior. The mutual interference of propeller slipstream and airframe
results in two important installation effects:

- The presence of nacelle and wing or fuselage behind the propeller causes a
retardation of the air flow through the propeller disk.

- The airframe parts which are immersed in the slipstream deliver a higher
drag than the freestream value, because of the higher local flow velocities.

In order to take account of these effects when executing airplane performance
calculations, the effective thrust, T is used. This is the thrust of the isolated
propeller corrected for all effects emanating from the presence of airframe parts
in the slipstream.

Since the drag of a propeller-driven airplane is defined for zero thrust, the actual
or propeller efficiency becomes

Teff VO )

P (7.58)

Ny =
We may simplify the problem by looking only at the increment in profile drag
of the airframe parts that are exposed to the propeller slipstream. From Equation
(7.5) and (7.9), the freeair thrust is

T AV
T = pZDZ(v0 + T)AV, (7.59)
where AV is the increase in velocity in the slipstream.

The increase in dynamic pressure of the flow through the propeller disk is given

by
1
Ag=5p [(Vo+AV)? —V{]. (7.60)

Combining Equations (7.59) and (7.60) yields

T

Ag= .
0

(7.61)
If the airframe parts immersed in the slipstream of one propeller have a parasite
drag area X(C)),Sy), the increase in airplane drag per propeller can be expressed in
the form

T
AD = AGE(Cp,Sy) = 5 E(CpyS5)- (7.62)
4
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Now we are able to relate the propeller efficiency and the propulsive efficiency as
follows
_(T-AD)V, TV,

AD
= o = T 52— |1 He). 7.63)

In practice, the drag coefficient in Equation (7.63) usually is treated as a constant,
irrespective of the operating conditions. Based on wetted area, Cj,; = 0.004 may
be used (Reference 14).

Propeller efficiencies given in propeller charts may be derived from windtunnel
tests on the propeller with spinner mounted in front of the proper nacelle-wing
combination (Figure 7.21). In this case the effective thrust is the measured resul-
tant force of the propeller-body combination plus the drag of the body measured
without the propeller.



Chapter 8

THE AIRPLANE IN SYMMETRIC FLIGHT

8.1 Fundamental equations

In view of the importance of symmetric flight in airplane performance considera-
tions, it is appropriate to extend the analyses of Chapter 3 to this type of flight.

In this section we shall devote our attention to examining the fundamental equa-
tions which govern the accelerated motion of the center of gravity of a rigid air-
plane along a curved flight path.

As depicted in Figure 8.1, at a given point on the trajectory, the X,-axis and the
Zq-axis of the air-path axis system and the X, -axis of the body axis system are
set up. The X,-axis is tangent to the flight path and the Z,-axis lies in the vertical
plane through the X,-axis, perpendicular to the local flight direction.

The flight condition at one instant along the trajectory is characterized by the
following kinematic and geometric parameters:

e Airspeed V, which is the velocity vector of the center of gravity of the air-
plane. The velocity vector coincides with the X,-axis and lies in the plane
of symmetry of the airplane.

e Angle o, which defines the inclination of the thrust vector to the X,-axis.

o Flight-path angle v, which is the angle between the X,-axis and its projec-
tion on the horizontal plane. The angle 7 is positive if the airplane climbs
relative to the air, and negative if the airplane descends. Thus, from vertical
climb to vertical dive the flight-path angle varies from 7 /2 to — /2 (Figure
8.2).

e Angle of attack o, which is the angle between the X, -axis of the body axis
system and the X,-axis. The angle of attack represents the attitude of the
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Figure 8.1 Airplane In symmetric flight
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Figure 8.2 Sign of flight-path angle

airplane relative to the oncoming air, and is positive if the X, -axis is turned
in positive sense to the X,-axis.

e Angle of pitch 6, which is the angle between the X -axis and the horizontal.
According to the sign convention for the flight-path angle, the angle 6 has
a positive value if the X -axis lies above the horizontal plane, and negative
when it is below this plane.

In symmetric flight the angle of pitch, the angle of attack and the flight-path angle
are related by

0=0+7. (8.1)

In Figure 8.1 also are indicated the three principal forces acting on the airplane
that determine its performance. These forces are:

e Airplane weight W, which acts vertically downward.

e Thrust T', which is assumed to make an angle o, with the X,-axis.

e Aerodynamic force R, and its components lift L and drag D. The forces L
and D act along the negative Z,-axis and negative X,-axis, respectively.

Applying Newton’s second law of motion along the X,-axis yields the equation

W dv .

EE:TcosaT—D—Wsmy, (8.2)
where dV /dt is the acceleration tangent to the flight path.
Along the Z,-axis, we have

w V2

E?:TsinaT—i—L—Wcosy, (8.3)

where R is the local radius of curvature of the flight path.

The left-hand side of Equation (8.3) is the centrifugal force due to the curvilinear
motion (see Section 1.3). With the familiar relationship V = Rdy/dt, the centrifu-
gal force can also be expressed as

WV _w dy

= ) 8.4
g R g dt (84)



8. The airplane in symmetric flight 163

The lift can be written as (see Chapter 4)
L 2
L=CLqS=CL§pV S, (8.5)

where C; is the lift coefficient, g = %sz is the dynamic pressure and S is the
wing area. Similarly, we have

1
D=CpqS= CDEpVZS, (8.6)

where Cj, is the drag coefficient.
Consequently, the equations of motion for an airplane in symmetric flight are
found to be

W dv 1

Pl —Cp7pV2S—Wsiny @7
W Vv: W._dy . |

E ? = EVE = TSHI(XT +CLEPV S_WCOSY. (88)

Since the weight of the airplane decreases continuously due to the consumption
of fuel by the engine(s), we have the relationship
aw

F = — (8.9)
where F denotes the fuel weight flow rate.
In this connection, it should be remarked that in principle the motion of the air-
plane must be determined for the case of a body with variable mass. From our
discussion in Section 3.5, we know that Equations (8.7) and (8.8) are correct if
the rate of increase of linear momentum of the fuel flow relative to the airplane is
included in the expression for the thrust. For airbreathing engines, however, this
contribution to the entire time rate of change of linear momentum is such small
that we may ignore the effect of a variable mass in Equations (8.7) and (8.8).
In the absence of wind, the variation of true altitude per unit time is the rate of
climb RC of the airplane, which is equal to the vertical component of the airspeed
v,

RC = % =Vsiny. (8.10)
The rate of climb is positive when the airplane ascends relative to the air, and
negative when the airplane descends.
When we consider an airplane that flies in the International Standard Atmosphere
(I.S.A.), the atmospheric conditions are completely determined by the geopoten-
tial altitude H. Also, we will use the approximation that 7 = H in Equation (8.10).
Further, we make the assumption that at each point of time the aerodynamic forces
in accelerated flight equate the air loads in steady flow with the momentary values
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of angle of attack, airspeed and altitude. Then, from the discussions in Section
4.1, we know that for an airplane with given configuration the coefficients C; and
Cj, in Equation (8.7) and (8.8) are functions of angle of attack, flight Mach number
and Reynolds number,

C, =C,(a,M,Re) 8.11)

C,, =Cp(a, M,Re). (8.12)
Since M = M(V,H) and Re = Re(V, H), it follows that

C, =C,(a,V,H) (8.13)

Cp =Cpla,V,H). (8.14)

Similarly, from Chapter 6, we have
T=T(T,V,H) (8.15)

F =F(T,V,H). (8.16)

Finally, the angle o in the equations of motion is a function of the angle of attack,
o = o (a). (8.17)

From the foregoing it is thus evident that Equations (8.7) and (8.8) contain the
following variables:

t,W,o.,V,H,v,T.

If we take the time t as independent variable, the other six are the dependent
variables, which define the flight condition at each point of time.

To find these six unknowns, four equations (Equations (8.7) to (8.10)) are available
so that the course of the flight is fully determined if two dependent variables are
prescribed as a function of time.

The two variables which can be chosen freely, are called control variables, and
the remaining four variables are the state variables.

The functions which describe the time history of the control variables are called
control laws, e.g.,

o =o(t)
r=r() } (8.18)

With these two control laws we have a system of six equations to solve the six
unknowns.

The two basic controls on the airplane about which the pilot has the disposal in
symmetric flight, namely, the elevator to adjust the angle of attack (pitch control)
and the engine control lever to select the power output (engine control), allow the
realization of the prescribed control laws (Figure 8.3).
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Figure 8.4 Pitch control

The name given to the combination of the two control laws in Equation (8.18) is
flight technique or flight program.

To the preceding system of equations describing the translational motion in sym-
metric flight, we can add Equation (3.24) for the rotational motion.

Since in symmetric flight we are concerned with longitudinal motion only, this
moment equation reduces to
dg _ d%6

I

Zh="ah (8.19)

M, =
in which 6 = a+7.

The longitudinal control about the lateral axis is provided by the tail load carried
by the horizontal stabilizer (Figure 8.4). The magnitude of the tail force depends
on the elevator deflection. This tail force is, in addition to aerodynamic force R,
thrust 7 and weight W, the fourth force acting on the airplane in symmetric flight.
The tail force must be counteracted by the lift when it is directed downward.
Clearly, the higher the downward tail load the higher the total lift, which implies
more drag. This means that in symmetric flight the lift and drag coefficients in
general have the following functional relationships:

C,=C,(o,V,H,0,)

C,=Cp(a,V,H,8,) " (8:20)
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Thus, by inserting Equation (8.19) into the system of equations we are faced with
only one extra variable so that the number of control variables continues to be
two.

Though the use of Equation (8.19) may be needed, it is often possible to assume
that the elevator deflection &, is instantly reactive to the prescribed control law
o = (). Equation (8.19) can then be omitted. This simplification implies that
the effect of elevator deflection on the resultant aerodynamic force is neglected.

8.2 Integral and point performance

Equations (8.7) to (8.19) describe the unsteady airplane motion along a curvilinear
path. They can be applied to determine the so-called path performance or inte-
gral performance values, which are related to the course of the flight. Examples
of integral performance values are time to climb to a certain altitude, range and
endurance in cruise, and takeoff and landing distances.

On the other hand, we distinguish the point performance of an airplane. This
name identifies the study of performance parameters which occur at a given point
of time or at a given point on the flight path.

Hence, the designation “point performance” refers to instantaneous quantities
such as maximum and minimum speed in level flight, maximum climb angle and
rate of climb, and minimum radius of turn.

Studies of integral performance and point performance both may fall within the
category of flight dynamics. Recall from Chapter 3 that this term classifies the
study of performance problems in which the exchange between kinetic and poten-
tial energies is of significance. In particular, the integral and point performance
achieved when flying along optimum trajectories, but also the unsteady motion
during takeoff and landing belong to the class of dynamic performance.

Generally, Equations (8.7) and (8.8), which form a system of nonlinear differential
equations, are not very suitable for analytical integration. To make these equations
amenable to treatment, several simplifications and approximations are generally
introduced. In this light, as an engineering approach, integral performance values
from general translational motion of an airplane in accelerated flight are often
determined by the use of the simplifying assumption that the airplane executes a
quasi-steady flight.

In this text, we are interested mainly in the last-mentioned case where the accel-
eration can be assumed to be zero. The airplane’s performance concerning such
steady-state flight conditions are called static performance. This last type of per-
formance analysis leads in many applications to sufficient accurate computations
of the parameters which define the performance capabilities of an airplane.

On the other hand, when predicting the integral performance of airplanes, the
variations of airplane weight and/or altitude may be neglected. E.g., these as-
sumptions may be reasonable in the case that the time passed in a specific flight
phase is very short, such as in takeoff and landing maneuvers.
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Figure 8.5 Equilibrium of forces In quasi-steady level symmetric flight

8.3 Airloads

All loads applied to an airplane that is airborne are produced through accelerations
of the vehicle as a result of a control action by the pilot (maneuvering loads) or by
encountering atmospheric turbulence (gust loads).

To enter into the details of the idea of air load we consider an instant along a hor-
izontal flight path (Figure 8.5a). When symmetric flight is maintained at constant
airspeed and altitude, all forces are in balance. For this condition the flight-path
angle y in Equations (8.7) and (8.8) is zero. Then, the left-hand sides of these
equations are zero, yielding

1

0= TcosanCDEpVZS (8.21)
1

0=Tsinoy + CLEpVZS —W. (8.22)

Since for most conventional airplane types the angle o is very small, we may
assume that cos ot = 1 and sin o = 0. Then, from Equations (8.21) and (8.22),
we find that at each instant during the flight the thrust is equal to the drag and the
weight is equal to the lift (Figure 8.5b),

1 1
T=D= CDEpVZS = Cszovfs (8.23)

1 1
W=L=C. pVis = cLipovjs. (8.24)

In these equations V, is the equivalent airspeed (E.A.S.) and p,, is the standard
sea-level density (I.S.A.). Now assume that, starting from the quasi-steady level
flight condition in Figure 8.6a, the pilot moves the elevator in the negative direc-
tion. From Figure 8.4 this results in a positive pitching (clockwise) motion of the
airplane, through which at the given flight speed the angle of attack is suddenly
increased by Aa. Consequently, equilibrium of forces no longer exists and an
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Figure 8.6 Lift In steady and accelerated flight

acceleration will take place, which causes a curvature of the flight path (Figure
8.6b). The increased values of lift and drag may be expressed as

1
L'=L+AL=(C, + ACL)zp\/zS (8.25)

1
D' =D+AD = (C,, +ACD)§pV2S. (8.26)

In describing the air load, the load factor is used, which parameter refers to the
ratio of the resultant aerodynamic force to the weight of the airplane,

Ll
W
where n denotes the load factor and A is the vector sum of the aecrodynamic force
R and the thrust T'.
However, as portrayed in Figure 8.6b, the increase in lift will be of prime signifi-
cance and therefore the loads from accelerations normal to the X,-axis.
Consequently, the load factor in its usual form is obtained by dividing the lift by
the weight,

(8.27)

L% 8.28
==l (8.28)

The equation of motion along the Z,-axis can be written as
w
—a,=L—W, (8.29)
8

where a,, is the acceleration toward the center of curvature (centripetal accelera-
tion). Equations (8.28) and (8.29) give for this acceleration normal to flight path,

ap=g(n—1). (8.30)

In quasi-steady level symmetric flight a,, is zero, meaning that the lift equals the
weight of the airplane and that the load factor is equal to one.

As pointed out already, a load factor other than one may occur as a result of a
maneuver or due to an external cause in the form of a gust.
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Obviously, the greatest maneuvering load factors will occur if the maximum amount
of lift is generated. In other words, if the angle of attack is increased up to the crit-
ical angle of attack. Hence

1
n—= CLmaxfszS

" (8.31)

As will be explained in the next section, the maximum [ift coefficient is related to
the minimum stalling speed V¢ by

1
W= CLmaXEpV,\%,SS. (8.32)

Thus from Equations (8.31) and (8.32), the value of n that can be achieved from
maneuvering, can be expressed as

V2

P (8.33)
Vis

Equation (8.33) shows that the obtainable load factor strongly increases with in-
creasing airspeed.

8.4 Stalling speeds

Most performance requirements are specified in reference to the minimum stalling
speed, V¢, that is the minimum speed in a stall, of the airplane.

The minimum stalling speed is defined in the airworthiness requirements as the
minimum speed reached during a prescribed stall maneuver with the airplane in
a given configuration. In conducting the stall maneuver, the following proce-
dure is utilized (Figure 8.7): The airplane is flown at a steady speed 20% to 40%
above the anticipated minimum stalling speed with the engine(s) at idle. The flight
speed is reduced with elevator control until the speed is slightly above the mini-
mum stalling speed. Then the elevator control is pulled back so that the airplane
is slowed down at a constant deceleration dV /dr (stall entry rate) until the mini-
mum airspeed is reached. This speed is recognized by uncontrollable downward
pitching motions, owing to breaking away of flow from the upper surface of the
wing.

As sketched in Figure 8.7, in approaching the stall, the load factor first remains
roughly constant and the lift coefficient gradually increases according to the equa-
tion

w 1
—a, :CLEszS—W (8.34)
g

or with Equation (8.30)

C, = % (8.35)
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Immediately beyond the point of time at which the maximum lift coefficient oc-
curs, the load factor drops considerably, indicating that stalling phenomena are
advancing quickly.
As soon as the airplane is stalled, the pilot recovers the motion by pitching down
the nose, producing an increase in airspeed.
Since the resulting minimum stalling speed depends strongly on the magnitude of
the stall entry rate, a sufficient number of stall maneuvers are executed to obtain
enough data points to define the minimum stalling speed at a prescribed value of
dV /dt = —1 knot per second (Figure 8.8a). The stall entry rate is defined as the
slope of the line connecting the minimum stalling speed and a value 10% above
Vys- That is:
av. Vys—1.1Vy
dr At '
Furthermore, minimum stalling speeds are determined for every flap and landing
gear position that is used in the various flight phases.
Besides V)¢, also the minimum speed at which the lift equals the weight of the
airplane can be deduced from the measurement data,

2 1
Vo= Wz : (8.37)
SpCLmax
o \
|

(8.36)
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Figure 8.7 Determination of minimum Figure 8.8 Effect of stall entry rate
stalling speed

The speed Vs is called the one-g stalling speed or simply stalling speed, and is
thus the minimum steady speed in free air under one-g conditions at minimum
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Figure 8.9 Basic load factor envelopes

engine control setting. Typically, V,,; may be as low as 0.94 Vg at dV /dt = —1
knot/s.
In Figure 8.7, the minimum stalling speed has also been reduced to an apparent
maximum lift coefficient by using the L = W condition,

w

=— (8.38)
Lmax % VA%SS

It is evident that the C; ..
(Figure 8.8b).

Using V,,q = 0.94V;, we find that the latter maximum lift coefficient may be
quoted at a value some 13% higher than the C; .. obtained by calculation meth-
ods or wind tunnel tests. Whenever appropriate in this text, a tacit enlargement of
the “physical” C; .. -values in this manner will be supposed.

-value thus obtained is a function of the stall entry rate

8.5 Load factor envelopes

All existing airworthiness requirements prescribe that the airframe, the load-carrying
structure of the airplane, is strong enough to withstand certain limit load factors
on the boundaries of a representative flight envelope.

The basic maneuvering envelope which defines the symmetrical flight maneuver-
ing loads for which the airframe is constructed, is shown in Figure 8.9a. The
various design speeds, as selected by the airplane designer, are given in terms of
equivalent airspeeds (E.A.S.). The curve OA is the stall line and represents the
load factor according to Equation (8.33).

The design maneuvering speed V, is obtained at the positive limit maneuvering
load factor n;:

Vi = Vi /711 (8.39)

where V, ¢ is the minimum stalling speed with wing flaps retracted.
In Figure 8.9a, the speed V. is the design cruising speed, V}, is the design diving
speed, and Vy; is the design speed with flaps fully deflected.
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Figure 8.10 Effect of vertical gust on angle of attack

A pull-down maneuver, a sudden decrease of the angle of attack, yields a load
factor less than one and can even cause a negative load factor. Since the nega-
tive value of C; _ is generally less than the positive C; .., the negative limit
maneuvering load factor n, in Figure 8.9a is lower than its positive counterpart.
Values of the limit maneuvering load factors as used for strength requirements are

roughly as follows:
ny, =25 and ny=-—1.0 for civil transport airplanes

ny, =80 and ny;=-3.5 formilitary airplanes.

The airplane is also assumed to be subjected to symmetrical vertical gusts when
flying through turbulent air. As sketched in Figure 8.10, in the simplest case there
may be a sudden sharp-edged gust with speed U. Then, the alteration of the lift
coefficient is

dcC dc, U
AC, = —LAo=+—L_ 8.40
L= g% da 'V’ (8.40)

where the minus sign refers to a downward gust.
Substitution of Equation (8.40) into (8.28) and using Equation (8.24) yields the
following expression for the gust load factor

dCy, 3poUeVe

—1+
" do. W/S '

(8.41)
where U, is the gust velocity expressed in terms of an equivalent velocity.
Conform the airworthiness requirements listed at the end of this section, the gust
load factors must be computed from
ac, Lp,U.V,
=1+K—L 202 8.42

" do. WJ/S (842)
in which K is an adjusting factor, referred to as gust alleviation factor. This factor
takes account of the fact that actual gust velocity profiles will never be sharp-
edged but will have a more uniform shape so that, depending on airplane size and
weight, there will be some response by the airplane.
Equations (8.41) and (8.42) clearly demonstrate that gust load factors are of spe-
cial importance to high-speed airplanes having low wing loadings. Hence, in the
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presence of high gust velocities the flight will be executed at a much slower speed
than in still air.

The limit gust load factor, according to the current airworthiness standards, must
correspond to particular positive and negative values of U,. An example of a
basic gust load factor envelope is given in Figure 8.9b. The dashed lines show the
gust load factors for given gust velocities. The gust velocities used at the design
cruising speed are assumed to be 50 ft/s (15.24 m/s) equivalent speed at altitudes
between sea level and 20,000 ft (6096 m). These gust velocities may be reduced
linearly from 50 ft/s at 20,000 ft to 25 ft/s (7.62 m/s) at 50,000 ft (15240 m).
Also positive and negative gusts of 25 ft/s at the design diving speed V;, must be
considered at altitudes between sea level and 20,000 ft. Above 20,000 ft this value
may be reduced linearly to 12.5 ft/s (3.81 m/s) at 50,000 ft. Furthermore, rough
air gusts of £ 66 ft/s (20.12 m/s) must be considered at altitudes between sea level
and 20,000 ft. This maximum gust velocity may be reduced linearly from 66 ft/s
at 20,000 ft to 38 ft/s at 50,000 ft.

At given altitude and airplane weight, the maximum gust velocity determines the
speed Vy in Figure 8.9b. This is the speed at which the assumed gust velocity
causes the airplane to stall. The speed Vj is called the design speed for maximum
gust velocity or rough airspeed.

The limit load factors considered in this section represent the maximum air loads
which might be expected in normal operation. Airworthiness requirements are
also specified in terms of ultimate load factors, being the limit load multiplied by
a factor of safety. This measure provides that the structure does not fail before the
ultimate load is reached. Normally, a factor of safety of 1.5 must be applied to the
prescribed limit load factors.

Finally, it is worth noting that the airworthiness standards encompass much more
items than the requirements on design strength as described above.
”Airworthiness” has to do generally with a chain of involvements contributing to
an overall aviation safety level. This is achieved by controlling the various stages
in the life of an airplane; reaching from its design phase via type certification to its
operation by the airline and specification of maintenance standards. Airworthiness
requirements are promulgated by national authorities and are based primarily on
past experience. All existing rules remain subject to continuous updating as a
consequence of implementation of new experience and advanced developments.
For conventional civil airplanes, the two codes of current requirements most fre-
quently cited are:

- FAR; Federal Aviation Regulations issued by the Federal Aviation Admin-
istration (FAA) of the United States of America.

- JAR; Joint Airworthiness Requirements produced by a number of European
countries and published by the Civil Aviation Authority, England on behalf
of the Airworthiness Authorities Steering Committee (AASC).
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Moreover, there exist similar codes of requirements published for military air-
planes.



Chapter 9

PERFORMANCE IN STEADY
SYMMETRIC FLIGHT

9.1 Basic relations

Consider an instant along the flight path of an airplane in steady symmetric climb-
ing flight, as shown in Figure 9.1a. Summing forces parallel to the flight path, we
have

Tcosoyy —D—Wsiny=0, ©.1)
and perpendicular to the flight path, we get
Tsinoy +L—Wcosy=0. 9.2)

For most airplane types and in normal flight conditions, the component 7 sin o in
Equation (9.2) is relatively small in comparison with the other terms. Therefore,
it is useful to ignore this force and to assume that the thrustline inclination from
the flight path is zero so that the propulsive force T points into the direction of the
velocity V' (Figure 9.1b). Then, Equations (9.1) and (9.2) reduce to

T—-D—Wsiny=0 9.3)

L—Wcosy=0. 9.4)

Although not essential, it is often convenient to multiply Equation (9.3) with air-
speed V,

TV —DV —WVsiny=0. 9.5)

b. er=0

Wcos ¥ "W

Figure 9.1 Airplane In steady symmetric flight
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a. turbojet airplane b. propeller airplane
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Figure 9.2 Performance diagram
Equation (9.5) expresses the work per unit time done by the forces in the direction

of flight, and is frequently used in this form.
By introduction of the rate of climb RC of the airplane,

RC =V siny, 9.6)
Equation (9.5) becomes
TV =DV +W(RC). 9.7

The left-hand side of Equation (9.7) is the power delivered by the powerplant at
the airspeed V. This quantity is called power available P,,

P,=TV. 9.8)

The term DV on the right-hand side of Equation (9.7) is the power required for
flight at velocity V or shortly power required P,

P.-=DV. 9.9)
The difference between power available and power required is the excess power,

P.=P,—P. (9.10)
Thus, the excess power P. refers to the power that in steady flight is used to climb

P. = W(RC). ©.11)

In Chapter 8, we demonstrated that at a given point of time (given airplane weight
and altitude) the flight condition depends on the following four variables:

- angle of attack, o

- airspeed, V

- flight-path angle, y

- engine control setting, I".
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When o (elevator stick position) and I" (control lever position) are chosen, then
the flight-path angle and airspeed can be obtained from the Equations (9.3) to
9.5).

To solve these equations, the performance diagram or Penaud diagram may be
used, where, for a given altitude, airplane weight, configuration and engine control
setting, the drag or power required and the thrust or power available are plotted
against airspeed.

Figure 9.2 shows typical shapes of performance curves in terms of both force and
power. Putting together the two curves of thrust and drag is useful when analyzing
turbojet and turbofan powered airplanes since their engines are rated in terms of
thrust (Figure 9.2a). On the other hand, piston- and turboprop engines are rated
in terms of shaft power. Then, it is more convenient to examine their performance
by combining the curves of power required and power available rather than force
curves (Figure 9.2b).

Before discussing the deductions which can be made from the performance dia-
gram, let us first consider the nature of the power and force curves separately as
their variations with flight velocity are essential to the resultant performance.

9.2 Drag and power required

From Equations (9.4) and (9.9), and using the relationships L = CL%psz and
D= CD%szS, we easily find that

W21
/ 12
V= Lcosy (9.12)

C
D=-Lwcosy (9.13)
CL
w2cE

These expressions show that for a low-subsonic airplane with a given weight and
flying at a given altitude (given air density), the airspeed V, drag D and power
required P, are functions of angle of attack o and flight-path angle . In its turn,
the flight-path angle depends via the thrust term in Equation (9.3) on the engine
control setting I

In climbing flight, of course, the flight-path angle is unequal to zero. Nevertheless,
performance analyses are customarily simplified by neglecting the effect of y on
V, D and P,. Also in this book, we shall assume that the flight-path angle is
sufficiently small so that its cosine may be replaced by unity, unless otherwise
stated. The approximation cosy = 1 means that at a given height, the lift and drag
coefficients and thus the drag and power required are functions of airspeed only.
In other words, these relationships are given by single curves which apply to all
engines control settings.
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A main point to note is that, although cosy = 1, the sine of the flight-path angle
remains unequal to zero. With this conventional assumption, Equations (9.12) to
(9.14) reduce to

w21
V= 50G 9.15)

C
D= 2w 9.16
c, (9.16)
W 2 C3
P=W,—= =2 9.17

Table 9.1 Drag and power required for a low-subsonic airplane

airplane weight W =20,000 N
wing area §=25m?
flight altitude H=0m(1S.A)

C, C, CJC, V,m/s V,kmh D,N P, kW
15 0210 7.14 295 1062 2801 82.63
14 0.164 854 305 1098 2342 7143
13 0143 909 317 1141 2200 69.74
12 0124 968 330 1188 2066 68.18
1.0 0097 1031 361 1300 1940  70.03
08 0076 10.53 404 1454 1899  76.72
0.6 0061 984 467 1681 2033  94.94
04 0049 816 571 2056 2451 139.95
03 0045 667 660  237.6 2999 197.93
02 0042 476 808 2909 4202 339.52

As a first example, let us consider a propeller-driven small airplane of 20,000 N
weight with a wing area of 25 m?. In Table 9.1 are calculated the drag and power
required values at sea level (I.S.A.), starting from chosen values of lift coeffi-
cient C;. For each C, the airspeed V is calculated from Equation (9.15), using
py = 1.225kg/ m? (see Appendix C). Since our example concerns an airplane de-
signed for low-subsonic airspeeds, the corresponding values of C;, follow directly
from the known Iift-drag polar (Figure 9.3). Now, from Equation (9.16) the drag
is determined. Finally, power required is calculated from Equation (9.17). The
results of Table 9.1 are plotted as a function of airspeed in Figure 9.4. On the two
curves special points can be distinguished which correspond to particular points
on the lift-drag polar:

e Minimum airspeed in steady flight (point A). From Equation (9.15), we
see that the airspeed decreases as the lift coefficient increases so that the
minimum airspeed is obtained for maximum lift coefficient, C, ... Then,
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Figure 9.3 Typical lift-drag polar of a propeller-driven airplane

according to Equation (8.37), the minimum airspeed is the stalling speed
Vs.

e Minimum power required (point B). Figure 9.4 shows clearly that the power
required curve reaches a minimum value at an airspeed greater than the
stalling speed V. From Equation (9.17) we see that minimum power re-
quired occurs at an angle of attack for maximum climb factor, (C3 /C3)max-

e Minimum drag (point C). The angle between any radius from the origin to
a point on the power required curve in Figure 9.4 is a measure for P./V
and so for the drag (see Equation (9.9)). The point C on the power required
curve that corresponds to minimum drag is thus found by drawing a straight
line from the origin tangent to the P.-curve, as shown in Figure 9.4. Hence,
minimum drag is always obtained at a higher airspeed and a lower lift coef-
ficient (smaller angle of attack) than minimum power required.

Equation (9.16) tells us that minimum drag will be obtained when the air-
plane is flying at an angle of attack for which C, /C}, is the maximum.

An analytical representation of drag and power required curves can be obtained
by using the parabolic approximation for the lift-drag polar,
Ci

C,= — 9.18
D DO+TEA6, ( )

where Cp is the zero-lift drag coefficient, A is the wing aspect ratio and e is
the Oswald’s efficiency factor (see Section 4.4). Introducing the parabolic drag
equation, we can write Equation (9.13) as

D=C lp1/25+ C—%lpVZS. (9.19)
Doy TAe 2

From the basic equation L = W, we have

w

CL
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Substituting Equation (9.20) into Equation (9.19) yields
2

1
D=Cpy=pV?S+—t =
pozP mAelpV2S

D,+D,;. 9.21)
In Equation (9.21), D, is the zero-lift drag and D, is the induced drag of the air-
plane. Examination of this expression indicates that at a given altitude the zero-
lift drag increases with V, while the induced drag decreases with increasing flight
velocity. These two contributions to the total drag D are sketched as separate
functions of airspeed in Figure 9.5.

The speed for minimum drag corresponds to the condition dD/dV = 0. Differen-
tiating Equation (9.21) with respect to V and setting the derivative equal to zero,
we readily obtain

W2 1

Vpmin = 1] o~ — -
Dmin S p /CpymAe

(9.22)
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Insertion of this expression into Equation (9.21) produces

C

D,=D,=W 773(2 and (9.23)
CDO

Dy =2W 1| 2. (9.24)

Equation (9.23) shows that at the velocity for minimum airplane drag, correspond-
ing to Cj = 2C), and C; = /C)yymAe, zero-lift and induced drags are equal (see
Figure 9.5.

Notice that Equation (9.24) can also be derived by combining the expression for
maximum lift-to-drag ratio, Equation (4.42), with Equation (9.16),

w c
D = =2W,/ 20 9.25
min = (€, /Cpmax nAe ©:2)
Similarly, using Equations (9.18) and (9.20) leads to the following expression for
the power required

2

— 9.26
TAetpVS ©-20)

1 1
P = CDEpV3S = cmipv3s+

For minimum power required, dP./dV = 0. Taking the derivative of Equation
(9.26) with respect to V, equating it to zero, leads to the following expression for
the speed for minimum power required

w2 1
Ve = c—ee——. 9.27
Frmin S p \/3CpymAe 027

Substituting Equation (9.27) into Equation (9.26) furnishes the expression for
minimum power required. Thus

(9.28)

Note that substitution of the expression for maximum climb factor, Equation
(4.46), into Equation (9.17) also will produce Equation (9.28).
By combining Equations (9.22) and (9.27), we find the relationship,

Vi = V3V . (9.29)

rmin

Apparently, based on the parabolic lift-drag polar, the minimum drag speed is 1.32
times the speed for minimum power required.

As we shall see later on in this text, V), . and V,  represent very important
flight conditions because of operational as well as economical reasons.
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Figure 9.6 Parabolic approximation of lift-drag polar

Figure 9.6a displays the parabolic approximation of the lift-drag polar of our il-
lustrative propeller-driven small airplane. The values of Cj,, and e are determined
by drawing the parabola that fits best the empirical curve.

We see from Figure 9.6a that at a certain value of the lift coefficient, the drag
coefficient ceases to be parabolic with C;. As the lift coefficient increases past a
value of about 1.0, the actual drag coefficient increases strongly from that expected
from the parabolic behavior. Beyond the stalling point the C; drops again as the
angle of attack is further increased.

The parabolic lift-drag polar on the other hand, is simply broken off at the maxi-
mum lift coefficient. At this point a large deviation from the actual drag coefficient
occurs.

Therefore, as is clearly seen by inspection of the illustrative diagrams in Figure
9.6b, the shapes of the P.- and D-curves at airspeeds near the stalling speed are
somewhat different for the two types of C; versus Cj,-curves. For the actual lift-
drag polar the drag and power required values will be greater than obtained from
its parabolic approximation. Furthermore, the actual P,- and D-curves are convex
in a way that they have vertical tangents at the stalling speed.

Figure 9.7a presents typical parabolic lift-drag polars for a high-subsonic com-
mercial turbofan airplane. The same data are given in Figure 9.7b by means of the
zero-lift drag coefficient C,, and the induced drag factor k = 1/(mwAe) as func-
tions of flight Mach number. The curves illustrate that the drag coefficients rise
sharply at Mach numbers greater than 0.70.

The procedure of calculating the drag and power required curves is accomplished
in Table 9.2 for the aerodynamic data of Figure 9.7, assuming an airplane weight
of 2500 kN, a wing area of 365 m2, and a flight altitude of 9000 m (I.S.A.) . The
Mach number corresponding to a given forward velocity is given by

=Y __V_ (9.30)

¢ JYRT’

where T is air temperature = 229.65 K. The lift coefficient follows from Equation
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Figure 9.7 Lift-drag polars for high-subsonic transport airplane
Table 9.2 Drag and power required for a high-subsonic airplane
airplane weight W =2500 kN
wing area S =365 m?
flight altitude H =9,000m (I.S.A.)
C | M Cp C; /C D D, P,
m/s kN kW

1.40 1449 0477 0.1229 11.39 219.4 31795
1.20 156.5 0.515 0.0933 12.86 194.4 30426
1.00 171.5 0.564 0.0700 14.29 175.0 30013
0.80 191.7 0.631 0.0513 15.58 160.4 30756
0.70 2049 0.675 0.0441 15.89 157.3 32235
0.60 221.4 0.729 0.0389 15.42 162.1 35885
0.50 2425 0.798 0.0360 13.89 180.0 43650
045 2556 0.841 0.0370 12.16 205.7 52565
0.40 271.1 0.892 0.0386 10.36 241.3 65403

(9.20) with p = 0.4663 kg/m? (see Appendix C).
For each pair of C; and M values, the drag ooefficient is found through the drag
equation

Cp = Cpy +kCi. (9.31)

The numerical results are plotted in Figure 9.8. From a comparison with Figure
9.4, it is apparent that there is no fundamental difference in the general shapes of
the power required and drag curves for propeller-driven and jet-driven airplanes.

As a third example, in Table 9.3 the drag and power required curves are produced
for a supersonic airplane with a weight of 85 kN and a wing area of 35 m”. The
flight is executed at an altitude of 11,000 m (I.S.A.). At this height the air density



184 Elements of airplane performance

Table 9.3 Drag and power required for a supersonic airplane

airplane weight W =285,000 N
wing area S =35m?
flight altitude H =11,000 m ([.S.A.)
M v, o c, C./Cp D, P
m/s kN kW
0.47 138.1 0.7000 0.2095 3.34 254 3513
0.50 147.5 0.6271 0.1697  3.70 23.0 3394
0.60 177.0 0.4355 0.0839 5.19 16.4 2897
0.80 236.1 0.2447 0.0308 7.96 10.7 2522
1.00 295.1 0.1567 0.0273  5.75 14.8 4366
1.10 324.6 0.1295 0.0386 3.36 253 8213
1.20 354.1 0.1088 0.0343  3.18 26.8 9476
1.60 472.1 0.0612 0.0252 2.43 35.0 16530
220 649.2 0.0324 0.0195 1.66 51.3 33271

= 0.3639 kg/m> and the air temperature = 216.65 K. Figure 9.9 furnishes the
aerodynamic data for the vehicle. In the calculations, values of Mach number
are chosen. The corresponding airspeeds follow from Equation (9.30) and the lift
coefficients are given by Equation (9.20). From Equation (9.31) the lift coefficient
at a given Mach number determines the drag coefficient and so the drag and power
required.

The graphic representation of the calculation results is given in Figure 9.10. The
curves portray that there is a dramatic rise in drag and power required due to
compressibility when the airplane flies at transonic and supersonic speeds. Since
the drag coefficient decreases with increasing supersonic flight velocity, the drag
rises above M = 1.1 at a slower rate than below the sonic speed.

9.3 Thrust and power available

Figure 9.11 indicates the typical variation of thrust with flight Mach number for
turbojets, turbofans and propeller propulsion systems. The data are presented as
the fraction of the thrust at a given Mach number to the static thrust (V = 0).

The curves show that throughout the subsonic flight regime the thrust of a tur-
bojet is reasonably constant with airspeed (cf. Figure 6.24). On the other hand,
propeller thrust declines rapidly with increasing Mach number. For moderate by-
pass ratios, the curves for the turbofans have shapes in the middle between that of
turbojets and propeller propulsion systems.

As depicted in Figure 9.12a, the behavior of the propeller thrust results in a power
available remaining relatively constant with airspeed, except at high and low for-
ward velocities where the propulsive efficiency falls off (see Figure 7.2). In con-
trast, the almost constant value of turbojet thrust causes that its power available
increases essentially linearly with airspeed (Figure 9.12b). Obviously, if the air-
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Figure 9.12 Typical power available curves

plane is equipped with turbofan engines, the power available curve will lie ap-
proximately halfway between that of the pure turbojet and propeller propulsion
systems.

Since the performance characteristics of turbojet and turbofan engines are speci-
fied in terms of thrust, the power available curves for these engine types are simply
obtained from P, = T'V. For propeller-driven airplanes the calculation procedure
is definitely more complicated as the available power is obtained from the product
of shaft brake power of the engine and propulsive efficiency of the propeller,

Pi=1P,. (9.32)

First of all, we will explain the derivation of the power available versus V-curve
for an airplane with piston-engine and propeller. This type of airplane may be
equipped with a constant speed propeller or a fixed-pitch propeller. In both cases,
power available is determined at a given inlet manifold pressure. Thus, as ex-
plained in Section 6.2, for the flight at a given altitude, shaft brake power as a
function of engine rpm is known from the standard power diagram.

For the combination of piston-engine and constant speed propeller, the pilot can
control the inlet manifold pressure and the propeller blade angle separately such
that the engine speed remains constant.

Accordingly, at a given altitude (given air density), shaft brake power is directly
known from selected values of inlet manifold pressure and engine speed.
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Table 9.4 Power available and thrust for piston-engine and constant speed propeller

flight altitude H=0m (I.S.A))

propeller diameter D =2.60 m

propeller gear ratio ny/n=1.0

inlet manifold pressure p. = 115140 N/m?

engine speed n =2300 rpm
v, Vv, B, Cp J Cr n; P, T,
m/s km/h kW kW N

10 36 295 0.0360 0.100 0.090 0.250 73.75 7375
20 72 295 0.0360 0.201 0.081 0.452 133.34 6667
30 108 295 0.0360 0.301 0.070 0.585 172.58 5753
40 144 295 0.0360 0.401 0.061 0.680 200.60 5015
50 180 295 0.0360 0.502 0.054 0.753 222.14 4443
60 216 295 0.0360 0.602 0.048 0.803 236.89 3948
70 252 295 0.0360 0.702 0.044 0.858 253.11 3616
80 288 295 0.0360 0.803 0.040 0.892 263.14 3289

In Table 9.4 is carried out the calculation of power available and thrust for

187

our

illustrative propeller-driven small airplane of the preceding section, using the cho-

sen set of data.

The procedure of finding power available and propeller thrust at successive values

of airspeed is illustrated in the following.

1. For the selected values of inlet manifold pressure and engine speed we find

the shaft brake power from the standard power diagram in Figure 9.13.

2. The power coefficient of the propeller is computed from the equilibrium

condition P, = A, :

_ Pbr

P pniD>

3. The advance ratio at each chosen value of airspeed V is obtained from
relationship

\%
J=—.
npD

the

4. The value of C; for the Cp and J found in steps 2 and 3 is taken from Figure

9.14, and the propulsive efficiency is computed from

=
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Figure 9.13 Standard power diagram of piston-engine (illustrative)

5. Power available and thrust are determined by using the two equations
Py=nP a T=n
a=T il or an =1 jv.

When dealing with a fixed-pitch propeller the blade angle f3, ;5 is constant. This
implies that the power required for rotation and so the propeller speed will vary
with forward velocity.

At flight speeds lower than a chosen design speed the propeller power require-
ments slow the rotational speed down, and at higher airspeeds it is necessary to
reduce the engine control setting in order to avoid overspeeding of the engine.
When starting from given values of airspeed, the determination of power available
and thrust requires a very cumbersome calculation method since the engine speed,
defined by the equilibrium condition P, = B, can only be found by trial and error.
A working procedure to determine successive points of the power available curve
for a piston-engine with a fixed-pitch propeller is to start from chosen values of
engine speed. Then, in combination with the selected inlet manifold pressure,
shaft brake power is directly known, and the resulting airspeed follows from the
condition P, = F .

The values of power available and thrust can now be found in four steps:

1. Determine A, from the standard power diagram for each chosen value of
engine speed.

2. Compute the power coefficient from

_ Pbr

Cp= .
P pn3D3

3. Take from the propeller chart the values of J and C; which correspond to
this Cp and the selected blade angle f3, ;5 and compute V and 1 j by using

C
V =Jn,D and nj:C—iJ.
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Figure 9.15 Power available curves for piston-engine propeller combination

4. Compute the available power and thrust by using

Pbr
Pa:anbr and T:njv.

The procedure is executed in Table 9.5 for the airplane of the preceding example,
but now for the case of a constant propeller blade setting. The numerical results in
Tables 9.4 and 9.5 are plotted in Figure 9.15, showing that the curve for the fixed-
pitch propeller is not very different from that for the constant speed propeller,
except that there will be less excess power.

In a turboprop, most of the gas generator power is extracted from the gas stream
through the engine by the turbine to drive the propeller, while a small portion is
used to develop jet thrust through expansion of the exhaust gases in the nozzle.
Therefore, the power available produced by the turboprop is the sum of the power
delivered by the propeller plus the power equivalent of the jet thrust,

Po=nPy+TY, 9.33)
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Table 9.5 Power available and thrust for piston-engine and fixed-pitch propeller

flight altitude H=0m(I.S.A.)
propeller diameter D =2.60 m
inlet manifold pressure p. = 115140 N/m?
propeller blade angle By = 19°
np=n, P, Cp J Cr Vv v.om P, T,
rpm kW m/s km/h kW N

1800 233 0.0593 0.18 0.102 140 504 0.309 720 5143
1900 245 0.0530 0.54 0.074 40.2 1447 0.749 183.5 4565
2000 258 0.0479 0.60 0.066 52.0 187.2 0.826 213.0 4096
2100 270 0.0433 0.66 0.056 60.1 216.2 0.853 230.5 3835
2200 283 0.0394 0.71 0.048 67.7 24377 0.871 246.5 3641
2300 295 0.0360 0.74 0.043 73.8 265.7 0.875 258.0 3496

where the shaft power £, and the additional jet thrust T; may be known from the
engine brochure and n jcan be found according to the procedure for the constant
speed propeller in Table 9.4.

9.4 The performance diagram

Figure 9.16 shows the two performance curves in terms of power for our illus-
trative small airplane with piston-engine and constant speed propeller. Power re-
quired and power available are taken from the previous Tables 9.1 and 9.4.
The maximum forward velocity at which level unaccelerated flight can be main-
tained, is determined by the condition that P, = 0 in Equation (9.10). Thus

P, —p. (9.34)

In Figure 9.16, this equality holds for the intersection of the P, and P.-curves.
At all speeds lower than the maximum level flight speed Vinax, power available
exceeds power required for level flight. The excess power can be used for increas-
ing the potential energy of the vehicle, i.e., climbing flight and/or for increasing
kinetic energy, i.e., accelerated flight.

Now, suppose the pilot wishes to slow down the airspeed in order to change to
a steady climbing flight. For that, he must pull back the control stick to operate
the elevators such that the angle of attack is increased. In the first instant, before
the airspeed is altered, increased lift and drag are produced. The extra lift causes
an upward directed acceleration and the excess drag reduces the flight velocity.
Ultimately, the control action may lead to a new state of steady climbing flight
where, from Equations (9.10) and (9.11), the rate of climb is given by
P,—P

—w

Using Equation (9.35), the rate of climb follows directly from the excess power in
Figure 9.16.

RC = (9.35)
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Figure 9.16 Performance diagram for small propeller-driven airplane

Table 9.6 Calculation of rate of climb
V, P, P P. RC
km/h kW kW kW m/s
106.2 170.0 82.6 874 4.37
120.0 183.0 68.0 1150 5.75
140.0 197.0 740 1250 6.15
160.0 210.0 88.0 122.0 6.10
180.0 221.0 107.0 114.0 5.70
200.0 231.0 1320 99.0 4095
220.0 240.0 1650 750 3.75
240.0 248.0 204.0 440 2.20
260.0 256.0 247.0 9.0 0.45
280.0 262.0 2930 -31.0 -1.55

This procedure is carried out in Table 9.6 and the resulting RC is plotted versus V
in Figure 9.17a. The maximum rate of climb is then found to be RCy,x = 6.2 m/s.
Naturally, the maximum rate of climb is of great importance to minimize the time
for the airplane to attain its cruise altitude.

From the curve in Figure 9.17a, we also see that the best speed for climbing is
Vicmax = 150 km/h.

Since the rate of climb is maximum at the airspeed at which the excess power is
maximum, the optimum speed for maximum rate of climb can also be found in

Figure 9.16 as the abscissa where the two power curves have parallel tangents.

Another curve that can be used to display the climb performance is the hodograph,
which is the plot of the rate of climb against the horizontal component of the
airspeed, V, =V cosy (Figure 9.17b). In the latter diagram, a radius vector from
the origin and intersecting the curve has the slope:

RC _ Vsiny .y

= any.
V, Vcosy ¥

Hence, the angle between the abscissa and a straight line from the origin to the
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Figure 9.17 Rate of climb versus airspeed and climb performance hodograph

RC curve represents the flight-path angle or angle of climb,

}/:tarf1 [R—C} = sin ! [E} .
Vi Vv

It is also apparent that the length of the radius vector from the origin to any point
on the curve serves as a measure of the airspeed V.

Furthermore, it is seen that the maximum climb angle in steady symmetric flight
is determined by the tangent to the hodograph. From Figure 9.17b, ¥max = 9.93°.
The corresponding speed for steepest climbing is found as Vyyax = 120 km/h.
The flight with maximum climb angle is of importance to minimize the horizontal
distance for the airplane to arrive at a particular altitude.

We further notice that the airspeed for best climb angle is less than the speed for
best rate of climb.

As matters of interest, the airspeeds for minimum drag, Vy and minimum

min’
power required, V, , have also been marked in Figure 9.16. It is seen that Vi
is greater than the minimum drag speed and that Vy . is nearby the minimum

power required speed.

At the engine control setting considered in Figure 9.16, a large excess power is
available at the stalling speed, through which the airplane will climb if steady
flight is maintained. In order to perform a level flight at the stall, of course, the
engine must be throttled back until power available equals power required.
Another point to note with respect to the flight at low airspeeds is that in case
the pilot desires to increase the rate of climb, the control stick has to be pushed
forward in order to attain an increased airspeed. This control action will lead to
the wanted effect of a higher rate of climb owing to the greater vertical distance
between the performance curves in Figure 9.16. The region wherein this phe-
nomenon occurs is referred to as the region of reversed command. This situation
is connected with the problem of speed instability, which complication shall be
discussed in Section 11.3.

In Figure 9.18, the performance curves of Figure 9.16 are repeated. In addition,
the power available curve for the fixed-pitch propeller of the previous Table 9.5
is drawn. The blade setting of the latter propeller is such that both propulsion
systems provide the same maximum level flight speed.
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Figure 9.18 Performance diagrams for small propeller-driven airplane

As we have learned in the preceding section, due to the decrease in engine speed
with decreasing airspeed, shaft brake power and so power available is lower for
the fixed-pitch propeller. Consequently, the rate of climb and the climb angle at
each flight velocity will be less for the airplane with fixed-pitch propeller.

From our discussion in Section 9.1, we know that it is convenient in considering
the performance of jet propelled airplanes to work with thrust and drag curves.
This type of performance diagram is presented in Figure 9.19 for our illustrative
high-subsonic turbofan transport of Table 9.2. The thrust curve is sketched ac-
cording to the typical variation of high-bypass ratio turbofan thrust.

The intersection of the thrust and drag curves in Figure 9.19 defines the maximum
airspeed for level flight,

T =D. (9.36)

At velocities below Viax, the excess thrust determines directly the angle of climb
since from Equation (9.3) we find that
. T-D

siny = W (9.37)
This equation indicates that the maximum climb angle is obtained for maximum
excess thrust. Inspection of Figure 9.19 shows that for the jet airplane steepest
climbing occurs in the proximity of the minimum drag speed.
The high thrust to weight ratios for jet airplanes allow relative large climb angles.
Therefore, in the light of Equations (9.12) to (9.14), it is worthwhile to examine
the validity of the approximation that y is sufficiently small to assume that cos y
is equal to one.
The effect of this approximation can best be studied by considering steady sym-
metric flight conditions at a given airspeed. Then, the performance diagram di-
rectly yields the climb angle and the rate of climb, using drag and power required
for level flight.
At a given airspeed, the lift coefficient in level flight is greater than in climbing
flight (C; = W /(qS) instead of C; = W cosy/(¢S). Consequently, also the drag
coefficient and so the drag and power required in level flight are greater than in
climbing flight.
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Figure 9.19 Performance diagram for turbofan transport airplane

It is thus evident that when using the performance diagram, we have the safe
situation that climb angle and rate of climb are underestimated.
Apparently, the increased drag and power required values result from the use of
wrong lift coefficients (wrong induced drag coefficients). Hence we may provide
a relationship between the actual climb angle and the climb angle using cosy = 1
by writing:

T-D T-D;, AD,

ny=-——= —t. .38
siny % W +W (9.38)

where the subscript 1" denotes the case cosy = 1 and AD; is the surplus of in-
duced drag.
However, AD; = ACDZ.% pV2S; hence, from Equation (9.38)

3PV?S
siny = siny; +ACp, = —— W

: — 12
Now since Cp,; = kCj,

1pV2s
T

siny = siny, +k(C}, —C7)

Substituting C;; =W /(3pV?2S) and C;, = W cos y/(3pV2S), results in the expres-
sion:

w
siny = siny; + ksin? ylszS (9.39)

The problem may be adequately described by setting y = 7; in the second term on
the right-hand side of Equation (9.39), so that

siny  RC
siny, RC

w
=1+ksin 9.40
Nt oe Loy (9.40)
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To illustrate the result of the preceding analysis we now look as an example at a
typical turbofan transport with a wing loading of 6850 N/m?. For this airplane
the induced drag factor is k£ = 0.053 and the maximum sea-level climb angle y, =
15°. If the corresponding speed for steepest climbing is 425 km/h, we have from
Equation (9.40),

siny  RC 6850

= — = 1+0.053 x 0.2588 =1.011.
smy, RC, 8 0.5 x 1.225 x (425/3.6)2

From this numerical result, we see that the error is only 1.1 %. Nevertheless, if
desired, the result can easily be improved by iteration.

9.5 Performance prediction using analytical expressions

The performance diagram enables us to determine graphically the point perfor-
mance for airplanes for which the lift-drag polar and the variation of thrust or
power available with forward speed are known in any arbitrary form.

In Section 9.2, we described an analytical procedure for deriving the drag and
power required curves from the approximation that the drag coefficient increases
parabolically with the lift coefficient (see Equations (9.21) and (9.26)).

In order to obtain a complete analytical representation of the performance curves
we have to introduce also simplifying assumptions with regard to the shape of the
thrust and power available curves.

Obviously, such analytical methods of performance computation will only provide
an assessment of the actual performance and are especially of importance to obtain
an insight into the effects on performance of the various parameters.

As discussed in Chapter 6, the thrust of a turbofan engine is produced by the cold
air flowing through the bypass duct and the hot air passing through the exhaust
nozzle (see Figure 6.6). Typically, the turbofan thrust decreases with airspeed,
which behavior may be conveniently described by:

=1-k(V)2, (9.41)

Tstatic

where k& is a constant for a given bypass ratio, control setting and altitude.
Although it is a laborious task, from Equations (9.21) and (9.41), formulae for the
performance of the airplane can be derived.

Returning to Figure 9.11, we see that the variation of turbofan thrust with air-
speed lies between that of the turboprop and the turbojet. Moreover, Figure 9.11
shows that the turbofan becomes more and more a turboprop as the bypass ratio is
enlarged, and that the turbofan resembles a pure turbojet if its bypass ratio is low.
Therefore, it is convenient in analyzing performance using analytical expressions
for thrust and drag, to consider successively the extreme cases of propulsion by a
propeller and a pure jet.
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As we have learned in Section 9.3, for a constant speed propeller the power avail-
able is essentially constant throughout the speed range of the airplane. Hence,
power available for propeller-driven airplanes may be assumed to be independent
of airspeed, provided that engine control setting and altitude remain unchanged.
The variation of power available with altitude may be described by a relationship
similar to Equation (6.92), namely,

P, P >"
e (£ . 9.42)
P (Po

in which the subscript 0" designates sea-level condition and the power 7 is less
than 1.0 (in the troposphere).

Returning again to Figure 9.11, we note that the thrust of a subsonic turbojet en-
gine is relatively constant with flight velocity. Accordingly, it appears worthwhile
to assume that the thrust of a jet-powered airplane has a constant value through-
out the subsonic speed range. As stated previously (see Equation (6.80)), we may
relate the thrust of the turbojet at any given altitude to its sea-level value by

T p >”
— == . 9.43
r-(£ ©0.43)

Figure 9.20a shows schematically the performance diagram with the assumption
P, is constant. On the power required curve are indicated special points which
correspond to definite points on the Iift-drag polar, sketched in Figure 9.20b. The
meanings of these points are reviewed in Table 9.7, where points 2, 3 and 6 require
some further explanation.

The angle inclined between any straight line through point 0’ in Figure 9.20a and
intersecting the power required curve and the horizontal P,-line is approximately
a measure of the climb angle since, from Equations (9.6) and (9.35), v is given by

RC P,—P
y=sin" ! |—=| =sin ! | £—L]|. (9.44)
1% wv

Hence, at point 2 we find the speed for steepest climbing and the corresponding
maximum climb angle as this point is located by the tangent from point 0 to the
P.-curve. The exact location of point 2, clearly, depends on the magnitude of
power available.

Recalling Equation (9.35) for the rate of climb, we find that when power available
is unchanging, the maximum rate of climb is given by

P,—P

RCinax = Trmm (9.45)

Point 3 in Figure 9.20 a indicates the speed at which the power required curve has
a minimum value. Substitution of Equation (9.17) into Equation (9.45) results in

P, w2 1
RCpax = — — | == . 9.46
max W S p (Cz/C%)max ( )
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Table 9.7 Point performance in steady symmetric flight
performance lift-drag equation
P, = constant ‘ T = constant polar
: w2l
1 stalling speed C max V= \/§5 o
. . . PafP’_
2 maximum climb angle ‘ — — siny = S+*
2
minimum power required P=W \/ % % g—‘z’
3 (CL/Ch )max
maximum rate of cimb — RC ==& “V;P’
minimum drag D= %W
L
4 (CL/ CD)maX
: : - _T-D
— maximum climb angle siny = -
5 — maximum rate of climb - RC =& “VT,P L
6 maximum level flight speed — P,=P
\ L=W

Thus, we see that point 3 on the lift-drag polar represents the angle of attack at
which the climb factor Cz /C3 is maximum.

Regarding point 6, it should be noticed that an analytical prediction of the max-
imum level flight speed starting from a given value of P, and using Equations
(9.34), (9.17) and (9.31) is very complicated as it requires the solution of a fourth
power equation in C; .

A working approach to the problem is to specify Vipax and then to determine the
power available needed to satisfy the equilibrium condition P, = P,.

Figure 9.20c shows the performance diagram in terms of power for a jet airplane
with constant thrust. In this case power available varies linearly with airspeed.
The meanings of the special points in Figures 9.20b and 9.20c are also listed in
Table 9.7, where now the points 4, 5 and 6 may need some additional explanation.



198 Elements of airplane performance

For the climb angle (point 4) we can write, from Equations (9.37) and (9.16),

T-D T Cp
ny=——=———"~. 9.47

siny W T (9.47)
At constant thrust, the climb angle appears to be maximum at the minimum drag
speed and thus at the maximum lift-to-drag ratio,

T 1
W (/)

In reference to Figure 9.20b, the point at which C; /C, is maximum is found by
drawing a line from the origin tangent to the lift-drag polar.
Maximum rate of climb occurs at point 5, where the excess power is maximum.
Clearly, the location of the corresponding point on the lift-drag polar depends on
the magnitude of the thrust, which defines the slope of the P,-line in Figure 9.20c.
Combining Equations (9.15) and (9.47) results in the following expression for the
rate of climb,

W21 |T
L L

The maximum rate of climb can be obtained by setting the first derivative of Equa-
tion (9.49) with respect to C; equal to zero, i.e.,

dRC _ d
dc, dc,

Carrying out this differentiation yields the condition for maximum rate of climb
that

T _Cp_,dCy

. 50
W c, “dc, (930)

For a parabolic variation of Cj, with C; we can substitute Equation (9.18) into
Equation (9.50) to give

T (& C
— —3b0_ *L 951
w C, TAe ( )

This quadratic equation in C; can be solved to obtain the lift coefficient for maxi-
mum rate of climb,

Ae T c 2
c, =" —1+\/1+12L°<K> . (9.52)

2w wAe \ T
The maximum level steady flight speed at point 6 is described by the conditions:

1
W= CLEpVZS (9.53)
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1 2
T =CpzpV7S. (9.54)
Substituting Equation (9.21) into Equation (9.54) yields a quadratic equation in
Vmax,
1 w?
T =CposPVaaxS+——1—5— (9.55)
2 mAespVi.iS

which can be solved to obtain an expression for the maximum level flight speed,

C 2
4-—D0 <W> . (9.56)
PCphoS mAe \ T

Vmax =

In principle, there are two solutions for the level steady flight speed. The plus sign
in Equation (9.56) represents the high-speed intersection of the thrust and drag
curves, and the minus sign is coupled with the possibility of a low-speed intersec-
tion (Figure 9.21). In the latter case, the stalling speed cannot be reached in level
steady flight. On the other hand, there are speeds, depending on airplane weight,
configuration, altitude and engine rating, at which the equation 7 = D cannot be
satisfied at a lift coefficient less than or equal to C; ... Then the minimum air-
speed equals the stalling speed.



Chapter 10

EFFECT OF ALTITUDE

10.1 Effect of altitude on drag and power required

The effect of altitude on point performance in steady symmetric flight arises from
the decrease in air density with increasing altitude. The attendant modification
of the performance diagram may be examined by repeating the construction of
the two performance curves for each altitude in the way described in Sections 9.2
and 9.3. However, the influence of altitude on drag and power required curves
can best be studied by considering flight conditions at different altitudes but at the
same angle of attack. Using the subscript 1 ” to denote the conditions at altitude
H,, the relevant equations are:

w21 Cp W 2 C3
Vi=\|w—=, D=2w P =w/-Z2
SpiCL €L SpiCg

At an altitude H, > H|, designated by the subscript ”2”, we have

W21 C W 2 C3
Vy=y| ==, Dy=22W, P,=W,|[-—2.
S PGy 93 SpCp

Let us assume that we can neglect the effect on the lift-drag polar of the alteration
of the flight Mach number that is coupled with the altitude variation at constant
dynamic pressure. Then, the lift and drag coefficients also remain unchanged, and
we obtain,

a_ [P (10.1)
4 P>
by (10.2)
- .

1
P
o _ [P (10.3)
B %)

The ratios (10.1) to (10.3) show that at a given angle of attack the values of air-
speed and power required increase with increasing altitude, whereas the drag is
independent of height. To illustrate the results of this analysis, consider as an
example an airplane powered by two turboprop engines, having the following
characteristics:

200
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Figure 10.1 Altitude effects on drag and power required

airplane weight W = 150,000 N

wing area S =70 m?

wing aspect ratio A =12

lift-drag polar Cp =Cpy+Ci/(mAe)
zero-lift drag coefficient  Cp, =0.013

Oswald’s efficiency factor e =0.76

maximum lift coefficient  C; .. =1.5.

Figure 10.1 presents drag and power required curves for four altitudes. According
to Equations (10.1) and (10.2), the drag curves experience a horizontal translation
to the right when altitude increases. The power required curves show a shift to the
right as well as an upward displacement. In this respect, from Equation (10.1) and
(10.3), we can write,

) = 2 (10.4)
P, rl V]
Equation (10.4) shows that corresponding points for a given angle of attack lie at
a straight line through the origin. Consequently, all power required curves have
only one joint tangent, which defines the locations of the points for minimum drag
(D P/V)

min — ( min) .

10.2 Rate of climb and climb angle

Figure 10.2a shows a graph of representative power available curves for our illus-
trative turboprop airplane of the preceding section. Sketched are typical variations
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Figure 10.2 Performance diagrams and rate of climb curves

of P, with V for a given engine control setting, where it is assumed that at each
velocity the available power varies with height according to Equation (9.42). Also
plotted is the set of power required curves, as given in the previous Figure 10.1.
Figure 10.2a shows that the variations of power required and power available with
altitude result in a decrease in the vertical distances between the performance
curves. We also see that the stalling speed (T.A.S.) increases, whilst the maxi-
mum level steady flight speed first remains more or less unchanged, and later falls
off with increasing altitude.

The altitude effects on the RC vs V-curves, resulting from the performance curves,
are shown in Figure 10.2b. These plots show that as altitude increases the maxi-
mum rate of climb decreases.

This is illustrated by Figure 10.3, where is plotted RCyax against altitude. It ap-
pears that the latter curve is practically linear. A point to note is that in the case of
a supercharged piston engine the linear decrease of maximum rate of climb with
altitude is only valid above the critical altitude of the engine since from thereon
the power output decreases linearly with air density. This behavior is illustrated
by the dashed lines in Figure 10.3.

The altitude at which maximum rate of climb becomes equal to zero is called the
absolute ceiling or theoretical ceiling of the airplane. At this height the P, -curve
is tangent to the P,-curve, i.e., the highspeed and the low-speed intersections of the
performance curves coincide and no positive excess power exists (Figure 10.3).
Note that the theoretical ceiling depends on airplane configuration, airplane weight
and engine control setting.

The time to climb from sea level to any given altitude H is given by the integral

7 T aH
/ (10.5)
0

dH/dt ~ ] RC’
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Figure 10.3 Maximum rate of climb versus altitude

Hence, the minimum time to arrive at the theoretical ceiling, H, is

Hy,
dH
— / (10.6)
0

RCrmax

Since maximum rate of climb diminishes to zero at the theoretical ceiling, the
time needed for reaching this altitude becomes infinite. This makes the idea of the
theoretical ceiling inadequate for use as a criterion for the climbing capability of
an airplane. Therefore, as a practical upper limit of flight altitude, the service ceil-
ing is used, which is defined as that altitude at which the maximum rate of climb
is reduced to 0.5 m/s (100 ft/min). In our example in Figure 10.3 the difference
between the two ceilings is seen to be 500 meters.

Let us assume for the sake of discussion that power available would be indepen-
dent of airspeed. Then, the maximum rate of climb is given by Equation (9.46),
which is repeated here for convenience,

P, W 2 1
RChux=—— | —————5—. 10.7
max W S D (Cz/clz))max ( )

This equation clearly shows that, at a given engine control setting, the maximum
rate of climb diminishes with increasing height due to the fact that both P, and
p lessen. Equation (10.7) also indicates that for F, is constant with airspeed, the
angle of attack for maximum rate of climb does not vary with altitude. Hence,
the equilibrium condition W =C L% pV2S requires that the dynamic pressure must
remain fixed (Figure 10.4a). Accordingly, we draw the interesting conclusion that
the equivalent airspeed for maximum rate of climb is invariable with height,

2 1
VC’RC = Kii (108)
‘max S P() (CL) (Cz/clz))max




204 Elements of airplane performance

a. P, independent of V b. T independent of V ceiling
(propeller airplane) { jet airplane]
altitude altitude
ceiling x
o
E
O
&
S 8
S =
= <
§ &
i &
g |3
& °

true airspeed true airspeed

Figure 10.4 Typical variations of climb speed with altitude

The corresponding variation of true airspeed is

W2 1
Ve, = \/ e (10.9)

5P Ce/cz)m

It must be emphasized that this reasoning is only valid as far as P, is independent
of airspeed. When the actual variations of power available are taken into account,
the fastest climb will occur at a somewhat higher equivalent airspeed than pre-
dicted by Equation (10.8).

As was seen in Chapter 9, in the case of a propeller-driven airplane we cannot de-
rive analytic expressions for the steepest climb conditions. However, from Figure
9.17b one thing is sure; at sea level the airspeed for steepest climb is lower than
that for maximum rate of climb and lies very close to the stalling speed. Since
the airspeeds for steepest climb and fastest climb must coincide at the theoretical
ceiling, we conclude that the equivalent airspeed for steepest climb will increase
with altitude (Figure 10.4a).

We will proceed to examine the effect of altitude on the two special climb speeds
for jet airplanes, assuming that the engine thrust is constant with airspeed. Then,
the maximum climb angle is given by Equation (9.48), which is rewritten below,

T 1
sin = (10.10)
T =W T (CL/Cman
This equation shows that at constant engine control setting the climb angle will
decrease as the altitude increases. At the theoretical ceiling of the airplane, the

steepest climb angle becomes zero,

Tw 1 (10.11)
W (CL/Cp)max

SiN Ymax =

Obviously, the angle of attack for steepest climb is independent of altitude so
that now we have the special condition that the airspeed for best angle of climb
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Figure 10.5 Lift coefficient for fastest climb

corresponds to a constant equivalent airspeed,

/N LSS — (10.12)
S po (Co)ic, sc,)

Also with respect to the airspeed for fastest climb, a different behavior occurs
compared with the case of propeller propulsion. According to Equation (9.50),
the condition for maximum rate of climb reads,
T _3C 4%

w ¢, dc,

max

(10.13)

For an airplane with parabolic lift-drag polar, C;, = Cp,, + kC?, Equation (10.13)
can be written as (see also Equation (9.51))

T Cpo

W —3C—L—kCL. (10.14)
The condition (10.14) is plotted in Figure 10.5 for an airplane that has a drag
equation with Cp; = 0.017 and k£ = 0.053.
An important thing to notice is that the lift coefficient for maximum rate of climb
increases with increasing altitude, owing to the fact that the thrust falls off when
height is gained. This observation implies that the equivalent airspeed for best rate
of climb also falls off with height although the corresponding true airspeed may
increase somewhat with height (Figure 10.4b). At the theoretical ceiling, we have

T, C
~th — =D (10.15)
wooC

Substitution of Equation (10.15) into Equation (10.13) confirms the result of the
previous Equation (10.11) that at the theoretical ceiling the airplane flies at that
angle of attack where the ratio C, /C}, is the maximum.

Although the foregoing results are based on the assumption of a thrust which is
independent of airspeed, they certainly indicate the typical features of the climb
speeds for Ymax and RCpax.-
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10.3 Stall, propulsion and buffet boundaries

For the case of constant engine control setting and given airplane weight and con-
figuration, the influence of height on the possible flight speeds is sketched in Fig-
ure 10.6. For the sake of completeness, also are indicated the typical variations of
the climb speeds.

The altitude effects on the high-speed and low-speed boundaries due to engine
output and stall characteristics are, basically, identical for the various types of
subsonic airplanes with turbo-engines and for airplanes with aspirated (nonsuper-
charged) piston engines.

With regard to minimum airspeed, two different altitude regions must be distin-
guished. At lower heights, the magnitude of power available is such that a steady
flight with maximum lift coefficient can be executed without losing height (see
also Figure 9.21). Therefore, in this region, the minimum airspeed is equal to the
stalling speed, which follows from

2 1
Vo= w2 ) (10.16)
S pCLmax

At heights near the theoretical ceiling, power available has been reduced to the
extent that power required for steady level flight at maximum lift coefficient ex-
ceeds P, . In this region, the minimum airspeed is determined by the low-speed
intersection of the performance curves, whereby the required angle of attack is
smaller than the critical angle of attack. This condition is also depicted in Figure
10.6.

The high-speed boundary is formed by the maximum level steady flight speeds. In
accordance with the performance diagrams in the previous Figure 10.2, the max-
imum airspeed in Figure 10.6 initially remains approximately constant and then
becomes smaller with increasing altitude down to the speed Vymax = Ve nax &t the
theoretical ceiling.

Let us first examine in some detail the variation of Vi, with altitude for propeller-
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driven airplanes. In this case, we may use our approximation that P, is constant
with airspeed. Using Equation (9.17) and the condition P, = P,, we get the rela-
tionship

W 2 CA
Po=W, ==L, (10.17)
SpC;

Solving Equation (10.17) for the climb factor yields

c; w321

e S P (10.18)
Equation (10.18) indicates that because p and P, decrease with increasing altitude,
the climb factor will increase up to its maximum value (C3/C3))max When the
airplane is at the theoretical ceiling. As can be seen in Figure 10.7, there will be
an attendant increase in angle of attack so that also the lift and drag coefficients at
which the airplane flies will become greater as altitude increases.

The relationship between the maximum level steady flight speed and the changing
values of p, P, and « is given by

1
P, = CDEpvniaxs or (10.19)

[P, 2 1
v 3fla ) 10.2

In studying the variation of Vj,x with altitude on the basis of Equation (10.20),
we have to include an assumption about the relationship between power available
and height. To this end, we consider the following three characteristic altitude
changes of P, :

a. Power available is directly proportional to air density. In this case, it is
seen from Equation (10.20) that Vi« decreases continuously with height,
as sketched in Figure 10.8a.
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b. Power available is independent of altitude. Now, the decrease of p will
dominate the increase of Cp), resulting in a rise in Vipax (Figure 10.8b). This
condition can be used in the case of airplanes with supercharged piston en-
gines at heights below the critical altitude of the engines.

Beyond the critical height, the piston engine output varies linearly with den-
sity. Consequently, Vinax will inevitably decrease so that from thereon the
Vmax VS H-curve is similar to the curve in Figure 10.8a.

c. The ratio P,/p increases with height according to Equation (9.42). Under
this condition, we may find that at first Vjax increases somewhat. Above
a certain altitude the influence of the increasing C;, will dominate and, ac-
cordingly, Vinax will fall off (Figure 10.8c). This behavior is typical for
turboprop airplanes.

The same traits are true of the turbojet airplane. From the condition of equilibrium
T = D at Vj,¢, We obtain

T= C—DW whence (10.21)
¢

¢ w

—= = 10.22

-7 (10.22)

Using the approximation that 7" is constant with V, we find that in consequence
of the fact that the thrust falls off with altitude, the lift-to-drag ratio in Equation
(10.22) will increase up to (C, /Cp))max at the theoretical ceiling (Figure 10.7).
Now the relation between Vinax, p, 7 and « is governed by

1
T = CDEerﬁaxS or (10.23)

T2 1
Vinax = | < == 10.24
max SpC, (10.24)

If the assumption is made that the thrust decreases in direct proportion to ambi-
ent density, it follows from Equation (10.24) that V.« decreases with height, as
shown in Figure 10.8a.
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Figure 10.10 Altitude effects on performance of supersonic airplane

In point of fact, V. Will be almost constant up to a large flight altitude. This
picture of the maximum level flight speed variation is shown in Figures 10.6 and
10.8c and comes about because of the increase in the ratio 7'/p with altitude (see
Equations (6.80) and (9.43)).

In Figure 10.9 are presented the performance diagrams for three altitudes for a
supersonic airplane with a weight of 82 kN and having its jet thrust augmented by
afterburning.

The altitude effects resulting from these graphs are shown in Figure 10.10.

In contrast with its subsonic counterparts, the maximum level steady flight speed
appears to increase strongly when a supersonic airplane climbs from sea level to
a higher altitude. The reason for this lies in the combined effect of an increas-
ing thrust and decreasing drag coefficient with supersonic flight velocity. Fig-
ure 10.10a shows that the very highest airspeed is reached near the tropopause
(I.S.A)).

Apparently, high excess powers are present at both subsonic and supersonic speeds,
through which in each of the two speed regimes a maximum rate of climb speed
can be recognized (Figure 10.10b).
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The flight regime of an airplane is also determined by its buffet characteristics.
Buffeting concerns an undesirable shaking of the airplane and its controls, which
is caused by the turbulence in the flow when the boundary layer separates from
the outer surface of the airplane. Boundary layer separation can happen at any
airspeed. Therefore, buffeting can affect the low-speed as well as the high-speed
boundary.

Generally, there is a marked tendency for the stalling angle of attack to go down
with increasing flight Mach number. The actual maximum usable angles of attack,
of course, can only be obtained from flight testing over the entire Mach number
range of a specific type of airplane. In Figure 10.11 is sketched the typical vari-
ation of the maximum attainable lift coefficient against flight Mach number for a
high-subsonic type of airplane (buffeting limit).

At low Mach numbers, buffeting occurs as the stall is approached, and the maxi-
mum achievable lift coefficient is close to the C; . -value of the airplane.

As described in Chapter 4, when an airplane exceeds the critical Mach number,
shock waves on the airplane surface will be formed. Due to the large pressure in-
crease through the waves, shock-induced boundary layer separation comes about
and the resulting turbulence in the wake may cause buffeting. The objectionable
phenomena also include pitching and yawing oscillations from rapid changes of
pressure distribution. In consequence of this, buffeting becomes more pronounced
and maximum C; decreases with increasing Mach number up to transonic speeds,
at which it may cause a complete collapse of the lift.

In Figure 10.11 also are plotted curves of constant values of n%, where n is the
0
load factor. The curves are calculated from
1
W =Cp5y pM?S, (10.25)

which is a basic lift equation for level flight if the load factor is not equal to unity
(see Section 8.3).

Clearly, plots such as in Figure 10.11 can be used to determine the operating
envelope of an airplane with respect to buffeting since for any given wing loading,
altitude and load factor there is a minimum and maximum Mach number defined
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Figure 10.13 Flight envelope of jet airplane

by the points at which the buffet boundary crosses the appropriate nl‘;v/—éi vs M-
curve.

In order to determine the operational envelope where level steady flight speeds
can be maintained, our hypothetical buffet boundary is plotted again in Figure
10.12a. Superimposed on the buffet plot are now C; vs M-curves for level steady
flight, calculated from the condition W = C, 3ypM?S, using W /S = 5 kN/m>. We
clearly see that the range of possible level flight speeds becomes smaller as altitude
increases. At a certain altitude the low-speed and high-speed stall coincide. This
altitude is called the aerodynamic ceiling of the airplane.

Figure 10.12b shows the resulting flight Mach numbers as a function of altitude.
It is evident that these flight speed limits depend on airplane configuration, weight
and load factor.

10.4 Flight envelope

The flight envelope describes the area of altitude and airspeed where an airplane
is constrained to operate (Figure 10.13). Within the boundaries of this diagram
fall all the possible combinations of airspeed, altitude and load factor.

The flight envelope is defined by the various limitations on the performance of the
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airplane, such as available engine power, stalling, buffet characteristics, structural
considerations and requirements on external noise production.

The selected high-speed boundary depends highly on the chosen value of the de-
sign cruising speed V., which is the maximum equivalent or calibrated level flight
speed at which the structure is strong enough to withstand prescribed loads im-
posed by allowable flight maneuvers and gusts encountered in rough air. The con-
ditions defining the flight loads are specified in the airworthiness regulations. As
explained in the previous Section 8.5, the basic maneuvering and gust envelopes
(V-n diagrams) define the symmetrical flight loads for which the airplane structure
is designed.

From the speed-altitude operating limits in Figure 10.13, which refer to jet air-
planes, the following boundaries are recognized:

e The maximum operating speed V, ., which is the calibrated airspeed that
may not be deliberately exceeded in any type of flight. The airspeed V), is
so established that it is not greater than the design cruising speed V,-. Flying
at Vy,, the associated flight Mach number increases with altitude and an
altitude may be reached at which it would be impossible to fly because
of compressibility effects. For this reason, there is a maximum operating
Mach number M, ,, which cuts off V,,, so that the airplane remains free
from undesirable flying qualities associated with buffeting.

e The design diving speed V}, and the design diving Mach number M,,, which
limit the maximum level flight speeds at which the airplane is designed to
remain controllable and to withstand particular flight loads. The difference
between V), and V,,, and between M, and M, is the safety margin for
unintentional increments of speed.

e The maximum flight altitude for airplanes with a pressurized cabin. This
altitude limit is determined by the maximum pressure differential load for
which the airplane structure is designed.

e The stall limit, which is formed by the calibrated mininum stalling speed,
that is the calibrated minimum steady flight speed with power off at which
the airplane is controllable. The maneuver conducted to measure this speed
has previously been described in section 8.4.

Remember that at constant indicated airspeed the flight Mach number will in-
crease with altitude. Therefore, the calibrated minimum stalling speed may in-
crease with altitude due to the effects of near-stall buffeting on maximum lift co-
efficient. It is also important to remember that the stall boundary depends strongly
on airplane weight and configuration.

For supersonic airplanes similar flight speed limitations occur. In addition to the
boundaries indicated in Figure 10.13, maximum speed may be limited by detri-
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mental effects of compressibility on flying qualities. Also, the serious deteriora-
tion of the strength of materials due to aerodynamic heating in supersonic flight
may constrain the achievable level flight speed.

The relationship between the temperature at the stagnation points on the leading
edge of the wing or at the nose of the fuselage and the flight Mach number is given
by the expression, as derived in Appendix D,

T—T [1 + %MZ} , (10.26)
where 7, represents the total temperature at a stagnation point and 7 is the ambient
temperature.

For instance, let us assume a flight in the lower stratosphere (I.S.A.) at a Mach
number of 2.5. Then Equation (10.26) yields: 7; = 488K = 215°C. This fig-
ure may confirm that extra structural problems are present in supersonic airplane
design as a result of kinetic heating of the skin surfaces.

In order to warrant safe and economic operations throughout the entire range of
flight speeds, each airplane is furnished with a flight manual, specifying the con-
ditions under which the airplane can be used safely.

The possible area of altitude and airspeed where hypersonic airplanes may operate
is depicted in Figure 10.14.

The maximum altitude boundary is attained when the sum of aerodynamic lift and
centrifugal force becomes insufficient to balance the component of the airplane
weight perpendicular to the flight path. On the other hand, for a given airspeed
the airplane cannot fly below a certain altitude where the adverse effects of high
total pressures or high skin temperatures on structural strength, become too great.
When an airplane is flying along a curvilinear path in a great-circle plane, the
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upper boundary can be found from the equality

1, WV
CLEpV S+ <R =Wcosy, (10.27)
where R is the radius of curvature of the flight path and 7 is the angle the flight
path makes with the local horizontal (Figure 10.15).
With the assumption of a small flight-path angle (cosy = 1), we can transform
Equation (10.27) into the form

=W. (10.28)

In this equation R, is the radius of the (spherical) Earth and # is the flight altitude.
Substitution of Equation (1.18) into Equation (10.28) produces the following ex-
pression for the relationship between the flight velocity V and the altitude 4,

| g V2
CLZpV S Wogo {1 ch] , (10.29)
where W, is the weight of the airplane at sea level and V. is the circular velocity.
As exemplified in Figure 10.14, there exists a narrow flight corridor which links
atmospheric flight to space flight and visa versa. Through the flight corridor a
lifting vehicle can reach the circular velocity and become a satellite or can perform
a lifting re-entry trajectory.

The three boundaries in Figure 10.14 are determined for the value W, /(C,S) =
4800N/m?, a permissible total pressure of p,/p, = 2, and a maximum allow-
able total temperature of 1900 °C. For the variation of temperature, pressure and
density with altitude in the upper atmosphere, the data in Reference 38 are used.



Chapter 11

FLIGHT AND AIRPLANE CONDITION
EFFECTS

11.1 Effect of weight

To study the effect of changing the weight of an airplane, we consider here steady
symmetric flight at an initial weight W,. For the purpose of calculating new values
of airspeed, drag and power required at a weight W,, let the flight altitude and the
angle of attack remain fixed. If further possible effects of compressibility are
ignored, we can utilize the fact that C; and Cj, are invariable at constant angle of
attack. Then, from Equations (9.15) to (9.17), we have the following ratios,

V. W.
2 |2, (11.1)
Vl Wl

D, W

Z2_ "2 (11.2)
Dl Wl

P. w,1°

12 — {—2] . (11.3)
Prl Wl

Thus, starting from the weight W/, for each angle of attack the new speed V,, drag
D, and power required P, can be calculated.

Figure 11.1 shows the effect of weight on drag and power required curves of our
illustrative turboprop airplane with a wing area of 70 m?, a parabolic lift-drag
polar, Cp, = 0.023 4 0.035 C% and a maximum lift coefficient of 1.5.

As can be seen from Equations (11.1) and (11.2), all corresponding points on the
drag curves which have the same angle of attack are located on a quadratic curve
through the origin,

D, [V,]?
—2 - [—2} . (11.4)
Dl Vl

Similarly, from Equations (11.1) and (11.3), we find that with changing weight all

corresponding points on the power required curves move along a third order curve
through the origin,

3
b _ [Vﬂ . (11.5)

It is important to realize again that the foregoing relations hold only at low-
subsonic velocities and that at high-subsonic and supersonic velocities the effect

215
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Figure 11.1 Effect of weight on drag and power required

of weight must be determined by calculating the drag and power required curves
according to the procedure described in Section 9.2.

Using a parabolic lift-drag polar, the effect of changing the weight of the airplane
can also be examined from Equation (9.26) which is repeated below for conve-
nience,

2

e 11.6
mAelpVS (1.0

1 3

B = CD(J 3 pV>S+
Inspection of Equation (11.6) shows that the weight only affects that part of power
required that is associated with induced drag. Since at constant weight the relative
importance of this part of power required increases with decreasing velocity and
air density, the effect of changes in weight on performance are especially notice-
able at lower airspeeds and/or greater heights (Figure 11.2).
As far as the minimum airspeed is determined by stalling, from Equation (11.1),
we have

Voo _ W

- " (11.7)
VSl Wl

A change in weight, particularly, has a considerable influence on climb perfor-

mance. Of special interest is of course the effect of weight on the maximum rate
of climb. From Equation (9.35), we find that

(Pa - Pr)max

RCax = W

(11.8)
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Figure 11.3 Effect of weight on performance

It will be appreciated that at each flight speed the numerator of Equation (11.8)
decreases with increasing weight. Consequently, the total outcome of Equation
(11.8) is a dramatic reduction of the maximum rate of climb. Also, there is a
higher speed for fastest climb as the weight increases. Obviously, the same effects
on maximum climb angle and steepest climb speed will occur.

In the high-speed range, the first term of the right-hand side of Equation (11.6)
prevails so that there the influence of a change in weight on maximum level flight
speed will be much smaller, certainly at low altitudes. This is confirmed by the
performance curves in Figure 11.2, which show that there is only a slight reduction
in maximum airspeed as weight increases.

For our example airplane, a complete picture of the effect of weight on perfor-
mance in level steady flight and climb is presented in Figure 11.3. It can be seen
that also the absolute ceiling goes down significantly with weight.
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Table 11.1 Takeoff climb requirements for transport airplanes

minimum climb gradient

number of engines 2 3 4
first segment

(T.O.-power and flaps, >00% 03% 0.5%
ianding gear down)

second segment

(T.O.-power and flaps, 24%  2.7% 3.0%
landing gear up)

third segment

(METO-power, flapsand  1.2% 1.4% 1.5%
landing gear up)

From the preceding discussion it may be clear that for each flight, the maximum
allowable weight of the airplane and so the maximum load the airplane can carry is
determined by requirements on takeoff and landing distances, climb performance,
and en route obstacle clearance. Therefore, a close relationship exists between
actual takeoff weight and the airworthiness standards.

To illustrate this connection, Table 11.1 gives the minimum climb requirements to
be achieved by transport airplanes with the critical engine out, as specified in the
Federal Aviation Regulations (FAR) (see Section 8.5). The climb requirements are
expressed as climb gradients, that is to say, in terms of siny = Ii,—c, and expressed
in percent. As portrayed in Figure 11.4, the takeoff path with engine failure is
broken down into three climb segments. The takeoff reference speeds V; - and V,
in Figure 11.4 are specified in terms of the calibrated minimum stalling speed V¢
for the appropriate airplane configuration and weight. To ensure a safe climbout,
the speed at liftoff, V, ., normally, is 15 to 25 percent higher than the minimum
stalling speed. Dependent on the type of powerplant and number of engines, the
minimum value of the speed at the obstacle height, the takeoff safety speed V,,
may not be less than 1.15 V¢ or 1.2 V, ;¢ (Chapter 16).

From a complete investigation of each segment, weight limits are determined
which are available to the pilot in the form of graphs where the takeoff weight
is given in terms of humidity, pressure altitude, and ambient temperature (Figure
11.5). In conclusion we can say that for safe operation the pilot should know ex-
actly at which weight he is flying. He also should have a good understanding of
the performance characteristics under different conditions of number of operative
engines, engine control setting, flap setting, and landing gear position. The typical
effects of the latter conditions will be discussed in the following sections.
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11.2 Effect of engine failure

Malfunction of one or more engines on multi-engine airplanes leads, as a matter
of course, to a considerable loss in power available. E.g., in the case of a two-
engine airplane, after engine failure we have only half the commencing thrust.
With the resulting reduction in excess thrust and power, maximum level flight
speeds, maximum rates of climb and ceilings deteriorate.

In Figure 11.6 are sketched the qualitative effects of the number of operative en-
gines on maximum rate of climb for a two-engine and a four-engine airplane. It
is important to notice that engine failure must be considered for multi-engine air-
planes in all flight phases. With respect to cruise flying, especially, the lowering of
the theoretical and practical ceilings is of great importance to flight safety. Need-
less to say that the load the airplane carries as well as the selected route must
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warrant the condition that there is no risk of en route terrain collisions. A point to
note is that on four-engine airplanes the occurrence of two inoperative engines in
cruising flight must be awaited.

Failure of an engine in flight not only means loss of thrust, but also an increment
in drag as caused by (Figure 11.7):

e additional drag from control surface deflections
e additional drag produced by the dead engine.

For a propeller airplane it is important to avoid the existence of windmilling drag.
A propeller being windmilled by the oncoming air and thus driving the inoperative
engine causes a considerable additional drag.

Also, there is a great risk of further damage to the engine. Fortunately, wind-
milling drag can be almost completely eliminated by feathering the propeller (see
Chapter 7).

The methods of calculating windmilling drag are beyond the scope of this presen-
tation. For information about this subject the reader is referred to Reference 39.
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As portrayed in Figure 11.7, failure of the starboard engine of a twin-engined
airplane causes an unbalanced thrust yawing moment to the right. Under this
condition, there will be a direct tendency to yaw toward the dead engine.

Assuming a pure yawing motion, the angle of sideslip remains zero so that the
velocity vector of the center of gravity lies in the plane of symmetry (Figure 11.8).
The airplane travels along a curvilinear flight path of which the radius is given by

R=—, (11.9)

r

where r is the angular velocity of the yawing motion.
From Figure 11.8, it is seen that the wing tips of the airplane have velocity differ-
ences from the flight speed by an amount

AV:rQ. (11.10)
2

The changes in local velocity along the span due to the yawing velocity will cause
an increase in lift and drag on the outer wing and a decrease in lift and drag on the
inner wing. Also a side force Y, occurs due to a change in the angle of attack at
the vertical stabilizer.
Clearly, the yawing motion considered in Figure 11.8 will create a rolling moment
to the right and, although to a lesser degree, also a yawing moment to the left
(Figure 11.9).
Furthermore, in the case of failure of a wing-mounted propeller engine, the asym-
metric lift from the part of the wing submerged in the slipstream of the propeller
will cause an adddional rolling moment toward the dead engine (Figure 11.10).

The resulting yawing moment to the right in combination with the rolling mo-
ment in the same direction will cause, if allowed to continue uncontrolled, a spiral
dive. Evidently, when engine failure occurs the yawing motion must be stopped
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promptly. A resolute application of rudder deflection toward the live engine will
be required to generate a rudder-induced yawing moment (see Figure 11.7). Also
a deflection of the ailerons will be needed to overcome the rolling moment.
Figure 11.11 shows a new condition of steady straight level flight, which may be
established by applying a sideslip angle 8 and giving the airplane a slight angle
of bank ® toward the live engine.

From Figure 11.11, we now obtain the following force equations, expressed in
terms of their components along the air-path axes (cf. Equation (3.33)),

—D +Tcosp =0
—S —TsinB +Wsin®d+S, =0 5. (11.11)
—L + Wcos® =0

The forces S and S, in the equations are the lateral forces due to the sideslipping
motion and rudder deflection, respectively. Recall that for consistency with lift
and drag, the forces S and S, are taken positive in the direction of the negative Y-
axis. Normally, a sideslip at B > 0 produces a side force to port (S > 0). According
to Equation (4.15), we have S = C S% P V2S, where C ; 18 the lateral force coefficient
which varies essentially linearly with angle of sideslip.

Note that @ < 0 in Figure 11.11 because the bank angle customarily is taken
positive when the airplane is rotating clockwise about its longitudinal axis.
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Figure 11.12 Steady straight level nonsldeslipping flight with bank angle

Of special relevance is the flight condition at an angle of sideslip 8 =0 and ® #0.
The force equations (11.11) then become (Figure 11.12)

—-D+T =0
+Wsin®+S, =0 ;. (11.12)
—L+Wcos® =0

In this flight condition the lowest airplane drag will occur, furnishing maximum
flight speed.

Emphasis is made that the maximum side force the rudder can establish, decreases
with decreasing airspeed. The airspeed at which the maximum amount of moment
exerted by full rudder equals the unbalanced yawing moment developed by the in-
operative engine, determines the lowest speed at which the airplane can be flown
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while keeping straight.The latter airspeed is called the minimum control speed,
Viic» and represents the minimum speed for fully controlled flight at a given air-
plane weight, configuration and altitude, and at any particular engine control set-
ting. Clearly, the airspeed always must be maintained above the minimum control
speed in a flight with one or more engines inoperative. During the takeoff maneu-
ver, especially, the minimum control speed is an essential factor and must be at
least 10% below the takeoff safety speed V, at the obstacle height in Figure 11.4.
When engine failure occurs the operative engine(s) will be called on to generate
extra thrust or power by choosing a higher control setting. We shall look at the
effect of changes of engine control setting on airplane performance in some detail
in the next section.

11.3 Effect of changes of engine control setting

In order to get increased thrust or power, a higher engine control setting must
be selected by the pilot. The occurrence of engine failure, as discussed in the
preceding section, is an example of a condition in which additional thrust from
the live engine may be asked to maintain height and/or airspeed.

Also in the flight with all engines operating, the pilot can affect the engine out-
put by changing the engine control setting. In Figure 11.13 are sketched typical
performance curves for an airplane powered by turboprop engines. The power
available curves are drawn for a number of characteristic power settings.

As we have learned in Chapter 8, airspeed and engine control setting in climbing
flight can be chosen independently of each other, whereas in steady level flight
the flight condition is fully determined by one of the variables, o, V or I'. Thus,
when flying at a given altitude, particular values of flight speed and engine control
setting are coupled. This is illustrated in Figure 11.13 by the intersections A to
F, which define the relationship between engine control setting and level flight
velocity.

When the engine throttles are fully opened, emergency or full power will be ob-
tained. This condition is represented in Figure 11.13 by the upper power avail-
able curve. As mentioned earlier in Chapter 6, full power can be allowed for a
short time only. The maximum rating permitted for unlimited duration is therefore
lower and is known as METO (maximum except takeoff) or maximum continuous.

The effects of lowering the engine control setting are apparent from Figure 11.13;
a decreasing maximum level flight speed and a decrease in rate of climb at each
airspeed. Also note that at low engine ratings the minimum flight speed is deter-
mined by the low-speed intersection of the P, and P.-curves. Then, steady level
flight at either of two velocities is possible. One faster and one slower than the
airspeed at which maximum excess power occurs (see also Figure 9.21).

Operating at the greater airspeed is known as flying the normal or front side of the
power curve, while operation in the low-speed region is called flying the back side
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of the power curve or flying in the region of reversed command (see Chapter 9).
To explain this, suppose the pilot is flying in the high-speed region and that due to
an external cause, the airplane experiences a sudden change in airspeed from the
equilibrium condition in point E in Figure 11.13.

In the case that the pilot maintains level flight at a fixed engine control setting,
there will be a negative excess power when speed increases and a positive excess
power when speed falls off (Figure 11.14). Hence, in both situations the airplane
will tend to restore the original airspeed. Apparently, the equilibrium condition in
point E is stable. On the other hand, in the low-speed region, e.g. in point F in
Figure 11.13, any speed disturbance will tend to diverge the speed further from its
original value.

What is argued above about the behavior of the speed following a speed distur-
bance is all we can state from considering equilibrium conditions. The transition
from one steady flight condition to another is, as a matter of course, intrinsically
connected with unsteady motions and should be studied by means of the full sys-
tem of equations of motion as derived in Chapter 3. However, consistent with the
scope of this text, we need not concern ourselves with the dynamic behavior of
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Figure 11.15 Selection of flight region

the airplane in response to the forces and moments developed. In any case, fly-
ing in the low-speed region must be avoided in all circumstances in which loss of
airspeed or altitude may be dangerous.

The boundary between the two speed regions is found at the airspeed where the
performance curves have parallel tangents which, of course, is at the fastest climb
speed.

Provided that power available is constant with airspeed the transition point occurs
at the minimum power required speed (Figure 11.15a). Likewise, in the case of a
jet airplane the transition point is approximately the speed for minimum drag (Fig-
ure 11.15b). The jet picture in Figure 11.15b illustrates that besides the variation
of power available with airspeed, there is a second characteristic of a jet airplane
that is different from a propeller-driven airplane. Meant is the relative stretching
and flatness of the power required curve in the low-speed region.

In order to assure a sufficient degree of speed stability, the pilot will select a flight
speed greater than the minimum drag speed. Generally, for jet airplanes as well
as propeller airplanes:

V>V, =11V,

Dmin? (11.13)
where V), is called minimum comfortable airspeed.

If an airplane is cruising at V < V,, a loss of speed due to a disturbance will
require immediate elevator control as well as thrust increase to avoid undesired
speed deviations and/or loss of altitude.

Assuming a parabolic variation of C; with Cj,, we obtain from Equations (11.13),
(9.22) and (10.16) the ratio of the minimum comfortable airspeed to the stalling

speed as

VM CL
Mg, | e 11.14
Ve /CpoTiAe (1

Equation (11.14) shows that for jet airplanes relative high values of the ratio
Viu/ Vs will occur, owing to their comparative low values of zero-lift drag coeffi-
cient Cj,, and wing aspect ratio A. This is especially true for supersonic airplanes
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with slender delta wings.

The necessity to correct the engine control setting continually arises at all flight
speeds lying in the low-speed region and at which the pilot tries to maintain a
straight flight path. A critical situation may be the approach path before landing,
where application of an automatic throttle control system may be needed to solve
the problem artificially.

Equation (11.14) indicates that lack of sufficient speed stability can also be at-
tacked by increasing the zero-lift drag coefficient and/or wing aspect ratio. In the
case of highly swept supersonic wings, variable wing geometry can be a suitable
design feature providing, among other things, an improved aspect ratio and thus
a reduced approach speed (Figure 11.16a). In order to stabilize the descent speed
on approach by drag increase, the airplane uses high-drag devices. In addition
to wing flaps and landing gear, the airplane may be equipped with speed-brakes
in the form of extensible panels attached to the fuselage (Figure 11.16b). Also
use may be made of spoilers. The latter high-drag devices are opening panels in
the upper surface of the wing positioned spanwise between fuselage and ailerons
(Figure 11.16¢). They are extended symmetrically across the plane of symmetry
of the airplane. When used in combination with flaps, a large extra drag results.
Besides for providing a high drag, spoilers are used to supply additional roll con-
trol. For this purpose, only the spoilers on the downgoing wing are up to cancel
the lift at that wing and thus rolling the airplane. They also have a practical mean-
ing, in the case of a glider, as a control to vary the lift-to-drag ratio and with that
the glide angle (Chapter 13). Further, during ground run with spoilers opened, the
lift is destroyed to increase the frictional force between wheels and ground surface
(Chapter 16).

11.4 Effect of airplane configuration

In this section we shall illustrate the effect of landing gear position and flap de-
flection on low-altitude flight performance.



228 Elements of airplane performance

28

CL wing area: S=70m?
24
20
16} 6§=15°
takeoff flap
setting
12
B;=0°
osf '
landing flap setting
04
0 . .
0 o008 016 0.24 032
Co
Figure 11.17 Typical low-speed lift-drag polars
4 W =150kN =
el H=0m(1S.A) © E,‘:.E ®

kW 2000 zero- flaps
P two gear: [y, n /9P gt

1600 | engines
1200 Pr 6
800
3
400

Fn one engine

0

: - : 0
0 100 200 300 400 SO0 O
airspeed, km/h airspeed, km/h

Figure 11.18 Effect of undercarriage-drag on climb performance

The importance of landing gear down and flap deflection will be considered on the
basis of the typical set of lift-drag polars in Figure 4.16, which are reshown in Fig-
ure 11.17 for convenience. The curves, which apply to a hypothetical two-engine
turboprop airplane, show that a considerable contribution to the drag coefficient
is supplied by the landing gear; approximately a doubling of the zero-lift drag
coefficient of the clean airplane. As explained earlier in Chapter 4, we also see
that a flapped configuration affects both drag and lift coefficients. Let us assume
that our turboprop airplane has a weight of 150 kN and that it flies at sea level
(I.S.A.). Figure 11.18a shows the corresponding graph of power required versus
airspeed for the clean airplane and for the configuration with landing gear down.
Also are sketched representative power available curves at maximum continuous
engine rating, considering the flight with two operative engines and the case of
one inoperative engine with propeller feathered. Expressed in terms of rate of
climb against airspeed, the power data in Figure 11.18a look as plotted in Figure
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Figure 11.19 Effect of flap-angle on climb performance

11.18b. It appears that the landing gear drag causes a considerable deterioration
of the performance of the airplane. Especially, in the case of engine failure, the
influence of the landing gear on maximum rate of climb is dramatic.

The effect of flap deflection on the performance curves and rate of climb is pre-
sented in Figure 11.19, for the case of one and two operative engines. At a fixed
airspeed V, the lift coefficient C, is also fixed by the condition L = W, or

w21

L_?EW. (11.15)
This conclusion implies that at a given flight velocity, the drag coefficient Cj,
increases with increasing flap angle. As a consequence, power required enlarges
and, hence, rate of climb worsens as the flap setting becomes greater.

On the other hand, flaps reduce the stalling speed V by increasing the maximum
lift coefficient C; .. and/or wing area S. The relationship between these quanti-
ties again follows from the condition that lift equals weight in steady flight

2 1
Vo= w2 ) (11.16)
S pCLmax

Apparently, when taking off, the effect of flap deflection is twofold; it decreases
the ground run distance by a reduced liftoff speed and it increases the airborne
distance through reduced rate of climb. Nevertheless, a flapped configuration can
produce a shortening of the takeoff distance (Figure 11.4). However, the flap
angle for minimum takeoff distance varies considerably with runway and ambient
conditions so that the selection of the optimum flap setting requires extensive
calculations.

Concerning the use of flaps it is important to notice that the maximum flap angle

that can be applied is usually limited by the climbout performance. To illustrate
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this statement, we recall that according to the Federal Aviation Regulations (FAR)
for transport category airplanes, compliance with the climb gradient requirements
at an airspeed V, = 1.20V, ¢ and at one engine inoperative, must be shown (see
Section 11.1). From Figure 11.19b, we find that at a flap angle of 40°, the climb
gradient is insufficient (y < 2.4%). This observation also explains why during
takeoff the flaps virtually always are partly deflected (8, = 10° — 15°). For small
airplanes even zero flap setting may be selected.

On the other hand, during landing operations it is necessary to apply full flaps in
order to furnish a high drag required to handle the airplane on the approach path
and during the ground run after landing. When an expedited descent is required
also a flap setting beyond the normal landing setting (5f = 50° — 90°) may be
used.

It is worth to mention that all movable aerodynamic devices affixed to the airplane
for producing high lift or high drag, usually have a speed limitation for extension.
Also the landing gear, when used as a speedbrake, has such a speed limit, but
when locked down it might be used up to higher airspeeds.

We end this section by emphasizing that, although the evaluation of the low-speed
capabilities in the foregoing example pertains to a propeller-driven airplane, the
picture for jet-powered airplanes is practically the same.



Chapter 12

TURNING PERFORMANCE

12.1 Governing equations

As mentioned earlier in Section 3.4, the basic maneuver to change the flight path
heading is the true banked or coordinated turn. For that reason, in discussing the
maneuverability of airplanes, the emphasis is primarily on steady curvilinear flight
with wings banked and without sideslip, as visualized in the previous Figure 3.8.
Remember that in the coordinated turn we have the special conditions that the
inward centripetal force required to pull to airplane toward the center of the turn
is accomplished by the horizontal component of the lift and that both the resultant
aerodynamic force (R + T') and the vector sum of the weight and the outward
centrifugal force (W + C) are in the plane of symmetry of the airplane.

In accordance with our approach to analyzing point performance in Chapters 9 to
11, we shall continue to adopt that the thrust vector is tangent to the flight path
(0 = 0). Then, from the system of equations (3.36), we find that the instanta-
neous conditions on the spiral flight path are described by (Figure 12.1):

T—D—-Wsiny =0 (12.1)
Wecosysiny —Ccospu =0 (12.2)
—L+Wcosycosuu +Csinu  =0. (12.3)

Rather than the conventional air-path axis system used for symmetric flight, it is
more convenient to employ for turning flight an additional axis system with axes
X., Y, and Z,. With the origin of the system at the center of gravity of the airplane,
the X;-axis coincides with the X,-axis (and thus with the velocity vector). The
Y;-axis lies in the horizontal plane along the radius of curvature. The Z;-axis lies
in the vertical plane and is perpendicular to both the X, and Y; axes (see Figure
12.1.

Resolving the forces along the latter coordinate system produces the following
series of equations (cf. Equation (3.37)):

T—-D—-Wsiny =0 (12.4)
Lsinu—C =0 (12.5)
—Lcospu+Wecosy =0. (12.6)

In examining the instantaneous flight condition in a coordinated turn, it is custom-
ary to assume level flight (y = 0) since the resulting performance in level turning
flight can be used to represent the performance in all normal climbing and de-
scending turns. Then, from Equation (3.35), we see that the aerodynamic angle of
roll equals the angle of bank (u = ®). Further, the centrifugal force C is given by
_wv (12.7)

g R

231
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Figure 12.1 Forces In the coordinated turn

where R is the turning radius and g is the acceleration of gravity (g = g, =
9.80665 m/s?).
Thus, the governing force equations alter, for steady level turning flight, to

T—-D =0 (12.8)
2
Lsian—EV— =0 (12.9)
g R
—Lcos®+W =0. (12.10)

These equations can also be found directly from Figure 12.2, where are shown the
forces in a turn to the right when looking from behind and down on the airplane.
The figure illustrates that in a true banked turn the centripetal force is completely
balanced by the centrifugal force. This condition provides that the airplane has
no tendency to move either inward or outward so that the airplane travels along a
circular path. Figure 12.2 also shows that the weight is balanced by the vertical
component of the lift and that the drag equals the thrust.

Substitution of the relationships L =C L% pV2Sand D=C D% pV2S into Equations
(12.8) to (12.10) yields

1
T:CDEpsz (12.11)
wv? 1
e :CLiszSsinQD (12.12)
1
w ZCLEPVZSCOSQ). (12.13)

For given values of W and p, the three Equations (12.11) to (12.13) contain five
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variables: o, V, I', R and ® so that the flight condition is determined by two
control variables.

In the next section we will express the various performance items in terms of angle
of attack o (C; and Cp,), and the angle of bank ®.

12.2 Equations for the performance in a coordinated turn

The airspeed in a constant altitude turn, from Equation (12.13), is given by

w21 1
V=4~ . (12.14)
S pC,cos®

The drag follows from Equation (12.11) and (12.13) as

o 1

D= .
C; cos®

(12.15)

An expression for the power required is found by multiplying Equation (12.15)
with Equation (12.14) to give

wW2C3 1
P=DV=W,<=2——. (12.16)
S p Cj cos’ @

The Equations (12.14) to (12.16) can also be expressed in terms of angle of at-
tack and load factor. According to its definition, the load factor n follows from
Equation (12.10) as

L 1
n=—=——, (12.17)
W cos®

which shows that the load factor changes inversely as the cosine of the bank angle.
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Using Equation (12.17), we can write

nWw?21
V=/——— 12.18
Vs e (12.18)

C
D =nW=2 (12.19)
CL
2 C2
P.=nW ﬂ——g’. (12.20)
S pC;

Expressions for the radius of turn are obtained from Equations (12.12) and (12.13),
whence

211 1
_Wall 1 (12.21)
S pgC;sin®
V2
R= 12.22
gtan® of ( )
w211
R=—Z2_ " and (12.23)
SpgC vn2—1
V2
Re— (12.24)
gvnt—1

These equations tell us that the larger the bank angle or the load factor and the
lower the airspeed in a turn, the smaller the radius of turn will be.
The rate of turn can be found from Equations (12.22) and (12.24) as

V.  gtan®  gvn?—1

=" 12.25
R~V v (1225

It might be interesting to mention that well-defined rates of turn are in common
use. These turning rates are expressed in terms of the number of degrees the air-
plane changes heading in one second, namely,

Rate ]l d=3°/s
Rate2 d=6°/s
Rate3 d=12°/s
Rate4 @ =24°/s.

When turning at Rate 1, the airplane executes what is known as a standard rate
turn, where a complete reversal of flight direction (180° turn) takes one minute.
From Equation (12.25), we see that the time needed to execute a 180° turn (7
radians) is given by

T VvV 1'%

T:—: = .
TQ gtan® g2

(12.26)

Equation (12.26) shows that the lower the airspeed the smaller the angle of bank
(load factor) required for a desired turning time 7. For example, at an airspeed
of 300 km/h (162 knot), the angle of bank for a Rate 1 turn (7;; = 1 minute) is 24°,
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and at V = 150 km/h (81 knot) we find: & = 12.5°.

If for a given rate of turn the angle of bank is too small, the unbalanced centrifugal
force will pull the airplane to the outside of the turn. Under this condition the
airplane is said to be skidding out of turn, whereby the nose of the airplane will
swing toward the inside of the flight path (Figure 12.3a). On the other hand, if the
airplane banking is too large for the rate of turn the airplane will be pulled to the
inside of the turn, and the nose will swing toward the outside; slipping into turn
(Figure 12.3b).

Obviously, during an incorrect banked turn, also the occupants will tend to slide
inward or outward on their seats.

To indicate to the pilot whether or not the angle of bank is correct for a particular
rate of turn, the instrument panel in the cockpit is equipped with a turn and slip
indicator. This instrument is actually a combination of two separate mechanisms,
which are brought together in one casing; a turn needle and a ball which can move
freely in a curved transparent tube. The dial presentation of a conventional turn
and slip indicator is sketched in Figure 12.4.

The turn needle is a gyroscopically controlled pointer mechanism and indicates
the rate at which the airplane is turning about its vertical axis. We leave the de-
scription of the way in which the turn indicator works to specialized books on
aircraft instruments. For instance, see Reference 16.

For our aim it is merely of interest to understand the operation of the slip indicator.
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Therefore, let us examine Figure 12.5, where the position of the ball in the tube
indicates skid or slip and is determined by the gravitational forces acting on the
ball.

During symmetric flight as well as in a coordinated turn, the ball is in the lowest
point of the tube because the resultant of the gravitational forces acts in the plane
of symmetry of the airplane (Figures 12.5a and b). If the gravitational forces are
unbalanced, such as during a skid or a slip, the ball moves away from the center
position in the direction of the horizontal excess force (Figures 12.5¢ and d).

The influence of banking and turning on drag and power required curves can be
examined by considering flight conditions at different load factors (angles of bank)
but at a fixed angle of attack (fixed lift and drag coefficients). From Equations
(12.14) to (12.20), the following simple ratios are obtained when flight conditions
at load factors n; and n, are considered:

cos(I)
=, / =/ — 12.27
n1 cos D, ( )

ny cos<I>
—£ == 12.28
D1 n cosd) ( )

3 3
Bo _ [m] _, []cos® (12.29)
P, n, cos®, | ’

These ratios indicate that at a given angle of attack the values of airspeed, drag and
power required increase as the load factor or the angle of bank becomes greater.
In Figure 12.6 are plotted drag and power required curves at various angles of
bank for the former illustrative two-engine airplane with turboprops. The lift-drag
polar of the airplane is given in the previous Figure 11.17. The curves in Figure
12.6 relate to the clean configuration (flaps and gear up), an airplane weight of
150,000 N, and an altitude of O m (I.S.A.). The following technique was used to
obtain the drag and power required curves at a given angle of bank:

1. Values of C; were chosen.



12. Turning performance 237

26,000
drag,

N 22000 }
18000 |
14,000
10,000 ¢

power 4000
required,

kW 1600

1200
800
400
0 L=

0 100 200 300 400 S00 600
airspeed , km/h

Figure 12.6 Drag and power required at various angles of bank

2. The associated values of Cj, were determined from the lift-drag polar in
Figure 11.17.

3. At each C;, the airspeed was found from Equation (12.14), using p, =
1.225kg/m>.

4. Drag and power required were computed from Equations (12.15) and (12.16),
respectively.

This procedure of finding drag and power required at successive values of C; was
repeated for several values of angle of bank, and in this fashion the system of
curves in Figure 12.6 was determined. Clearly, also the stalling speed in a turn,
Vsg» increases proportional to the square root of the load factor,

[nW?2 1
Vo =1 ————=V, 12.30
SO 2 PCLmaX S\/Ev ( )

where Vs is the stalling speed in symmetric flight.
The dashed lines in Figure 12.6 are formed by the points on the drag and power
required curves that correspond to a given lift coefficient.
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From the Equations (12.27) to (12.29), we find that
D, [V,7?
D, _ H , (12.31)
D, Vi
V. 3
ﬁ:ﬁ%. (12.32)
Prl Vl

Apparently, all corresponding points on the drag and power required curves are
located on quadratic and third order curves, respectively.

The circling motion, in principle, has two effects on the drag characteristics of
the airplane. The first is a change in the flow direction relative to the airplane,
and the second is that the outer wing travels faster than the inner wing (Figure
12.7). Usually, the second of these is the most important effect, implying the
occurrence of nonuniform lift and drag distributions over the wing span, which
give rise to moments affecting the rotation of the airplane (see also Section 11.2).
These additional moments have to be trimmed by extra control surface deflections,
resulting in more drag.

The difference between the wing tip velocity and the flight speed is given by (see
Figure 12.7)

b
AV = QE cos . (12.33)
By substituting Q = V /R, we can write
AV 1D

In order to provide a quantitative impression of the velocity ratio AV /V, we no-

tice that according to Equation (12.21), the turning radius will be least when the

airplane flies at C, . and ® = 90°. Putting these values in Equation (12.21), we
obtain

w21 o1 Ve

fim S pg CLmax 8 .

It is important to realize that actually, of course, this theoretical lower limit of the

(12.35)

radius of turn can never be reached since, as will be demonstrated in Section 12.4,
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Figure 12.8 Performance diagrams for turning flight

the maximum attainable angle of bank depends directly on the thrust-to-weight
ratio T /W.
Nevertheless, we can use Equation (12.35) to judge the importance of the problem.
E.g., for an airplane having a stalling speed V of 60 m/s and a wing span of 25 m,
we get: R, =360 mand AV /V = 0.035.
The latter result may indicate that in actual practice AV /V < 1 so that the maneu-
vering capability of an airplane can be determined, to a first approximation, by
neglecting the effects of rotation on trim drag.
Finally, we may remark that in turning flight an additional trim drag also may
occur because of the fact that at the same airspeed the lift coefficient must be
increased over that required for symmetric flight according to the equation:

C = % (12.36)

FpV=§

The required equilibrium of moments about the lateral axis calls for a greater ele-
vator angle and hence more drag is produced. However, in the present discussion
we shall also neglect this effect on the drag characteristics of the airplane.

12.3 Calculation of turning performance

The preceding analysis on turning performance can best be summarized by look-
ing at an illustrative example. Therefore, in Figure 12.8 are shown sea-level per-
formance diagrams at a given engine control setting and at various angles of bank
for the turboprop airplane of Section 12.2.

In order that the airplane executes a level-flight turn, power required must be equal
to power available at each airspeed. Owing to this requirement, we make the
interesting observation that in Figure 12.8 the total range of flight speeds, from
the stalling speed (V)g_ up to the maximum level flight speed Vpax, can be
divided into two distinct parts, from (Vs) oo to V* and from V* to Vipax.
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Table 12.1 Calculation of turning performance

v, Cp Cr L, n o, R, T
km/h kN deg. m S
176 0.124 145 1500 1.00 0.0 o oo
200 0.124 145 1922 1.28 38.6 395 22
240  0.124 145 276.6 1.84 57.1 293 14
260 0.118 1.44 321.8 2.15 623 279 12
300 0.079 1.26 3749 250 664 309 11
340 0.056 0.99 3783 252 66.6 393 13
380 0.040 0.71 3395 226 63.7 561 17
420 0.030 045 2628 1.75 552 967 26
450 0.024 020 150.0 1.00 0.0 e oo

In the first region (VS)(I):O <V < V*, the airplane can execute a turn at maximum
lift coefficient. Since power available prevails in this interval, the pilot must lower
the engine control setting until the power available becomes equal to the power
required. The value of P, can be found from

1

3
Cran 3PS (12.37)

Fo= (CD)

It should be noticed that limiting values of lift coefficient from buffet onset phe-
nomena may be relevant to the possible stalling speeds in a turn. When a stall
occurs during a turn, there is a tendency for the airplane to follow a descending
spiral path in its stalled-state. This yawing-rolling motion is called spin. To guard
against the danger of a turning stall, it is usual practice to keep the permissible
maximum angle of attack below the critical value.

In the second region (V* <V < Vpax), the airplane cannot perform a level turn
at C; . because of limitations imposed by the power available curve in Figure
12.8. Now, at a given airspeed the allowable turning drag coefficient follows from

P,
Cp=1—r5c
FpV-S

(12.38)

Starting from the conditions as specified by the Equations (12.37) and (12.38), the
turning performance can be deduced from the envelope of the performance curves
in Figure 12.8, which for the sake of clearness are repeated separately in Figure
12.9a.

The calculation procedure is demonstrated in Table 12.1. At each combination
of airspeed, drag coefficient, and lift coefficient, the lift is computed from L =
C,ApV?2S, the load factor from n = L/W, the angle of bank from (® = cos~!(1/n),
the radius of turn from R = V2/gtan®, and the time in a 180° turn from 7, =
7R /V. The results tabulated in Table 12.1 are plotted in Figures 12.9b to 12.9d.
Evidently, at Vg and Vi, the airplane is in steady level symmetric flight, where
n=1, &®=0, R=o0, Q=0 and T; = . The curves show that the airspeed
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Figure 12.9 Turning performance

for minimum turning radius is not the same as that for minimum turning time.
Likewise, the speed for fastest turn differs from the speed at which the bank angle
and load factor are maximum. Apparently, we have:

Ve <Vp <V,

. . Nmax
min Tmin
To prove that this order has a general validity, we write

TR
Tn—: 7

This expression indicates that the location of the airspeed for fastest turn is found
by drawing the tangent from the origin to the R-V curve in Figure 12.9b, giving
VTn’min > VRmin' From Equation (12.26), the angle of bank is tan® = %TL,, so that
we find that the tangent to the 7;-V curve in Figure 12.9c locates the point where
the angle of bank and the load factor are maximum, yielding V,max >V .

To this point in our discussion, only sea-level turning performance has been ex-
emplified. In order to demonstrate the impact on maneuverability due to altitude
effects, let us return to our transport airplane with turbofan engines of which the
aerodynamic data are given in Figure 9.7, and having a wing area of 365 m?, a
weight of 2500 kN, and a maximum sea-level 7 /W of 0.25. Since for this high-

subsonic airplane compressibility drag may occur, at each flight velocity the lift
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Figure 12.10 Effect of altitude on turning performance

and drag coefficients must be determined from the lift-drag polar for the turning
flight Mach number.

Figure 12.10 shows for three altitudes the radius of turn, turning time and load
factor as functions of airspeed for this turbofan airplane, when flying at constant
engine control setting. As the general tendency is for the thrust to decrease with
altitude, also the resulting turning performance deteriorates strongly with increas-
ing height.

12.4 Analytic expressions for best turning performance

As we have seen in the preceding section, the airspeeds for maximum bank angle
or load factor and minimum turning radius, define a speed region where optimum
conditions are present for performing a turn.

Therefore, an interesting way of looking at the turning performance problem is to
estimate the performance features at the boundaries of this velocity range. Here,
this will be done by means of analytic expressions, which for their developments
require the adoption of simplifying assumptions with regard to the variation of
thrust and power available with flight speed.

We first consider the estimation of the bank angle. Inserting 7 = D and P, = P,
into Equations (12.15) and (12.16) results in the following expressions,

wC
cos®=——-L and (12.39)
TC,
1
w2 2 3 3
W2icg/c
cos® = L’)/;) (12.40)
(Pa/W)

If we take up the case of a subsonic jet airplane, we recall from Figure 9.11 that
the thrust for this type of airplane is more or less constant with airspeed. Using
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the idealized behavior that T does not vary with airspeed, then from Equation
(12.39), we draw the conclusion that the steepest turn (maximum bank angle and
maximum load factor) occurs when is flown at the angle of attack for maximum
lift-to-drag ratio, (C; /Cp))max-

Likewise, it appears from Equation (12.40) that in the case of a propeller-driven
airplane for which we can make the working approximation that power available
is independent of airspeed, the steepest turn is obtained in the flight at the angle
of attack for maximum climb factor, (Cz /C?) max-

Furthermore, we see that at constant engine control setting, the maximum angle
of bank falls off with altitude due to the decrease of thrust or power available and
air density with height. Note that the height has the same deteriorating influence
on the associated values of turning radius and turning time, as can be seen from
Equations (12.21) and (12.26). The related airspeed, on the contrary, will show
a gradual increase with altitude, as may be appreciated when we consider the
equilibrium condition that the drag is equal to the thrust (see Equation (12.11)):

T2 1
V= 5T (12.41)

In terms of power available, we have

P2 1
V=232, (12.42)
pSCp

In analyzing the variation of the airspeeds for steepest turn, Vg, .,
sume that the ratios 7' /p and P, /p both increase somewhat with height (see Chap-
ter 9). Under these conditions, we find at constant C;, an increasing value of
V(Dmax'

The foregoing analysis shows anew that the maneuverability of an airplane im-
proves as the flight altitude is decreased. When drawing this conclusion, how-
ever, it is important to remember that the maximum achievable load factor may be
greater than the maximum allowable load factor. As mentioned in Chapter 8, the
value of the limit maneuvering load factor is based on strength requirements and
may vary from 2.5 for transports up to roughly 7 for fighter airplanes. Moreover,
passenger comfort in civil airplanes and the possibility of physical damage of the
human body due to large accelerations and decelerations in combat airplanes may
limit the maneuverability (Reference 44).

From Equation (12.21), the condition for the tightest turn (minimum radius of
turn) can be expressed as

we may as-

w2l 1

A . S 12.43
M S p g (Cpsin®)max ( )

where, for a jet powered airplane, the relationship between C; and ® may be given
by Equation (12.39). Elimination of the bank angle from Equations (12.39) and
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(12.43) yields

—_

w2l

Ruin=557¢ lCL\/W]

This expression shows that at a given engine control setting and altitude (given
value of 7 /W), the tightest turn occurs at an angle of attack which lies between
the angle of attack for maximum lift coefficient and that for maximum lift-to-drag
ratio.

The exact lift coefficient for minimum turning radius can be derived by differen-
tiating the quantity between brackets in Equation (12.44) with respect to C; and
setting the result equal to zero,

(12.44)

max

d 21¢,1?
—— |Cpy[1— [K} D =0.
dc, T C,
This yields the following condition:
Cp dC T\?
S _ <W> . (12.45)
L9t

Introducing in Equation (12.45) a parabolic variation of C; with C,, thatis Cp) =
Cpy +C7/(mAe), we find the lift coefficient as

LT\ .

From Equation (12.46), it is apparent that the lift coefficient for the tightest turn
decreases with increasing height so that its largest value occurs at sea level, where
the thrust is at a maximum. At low heights, however, the lift coefficient demanded
by Equation (12.46) generally exceeds the maximum lift coefficient of the airplane
so that only an actual minimum turning radius can be realized at the (calibrated)
stalling speed in the turn, V4. This observation also emphasizes the significance
of a large value of the maximum lift coefficient in obtaining a small turning radius.
At the theoretical ceiling, where R = oo, we have T /W = C,,/C, in Equation
(12.45), yielding dC;,/dC,; = C,/C,, which is the condition for maximum lift-
to-drag ratio (see Section 4.4). Therefore, the airspeed Vj, . normally increases
from Vg, at sea level up to the minimum drag speed in level flight, V;, at the
theoretical ceiling.

min’

In the same manner, we can readily produce an expression, giving the lift coeffi-
cient for minimum radius of turn analogous to Equation (12.46), for a propeller-
driven airplane with power available independent of airspeed.
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Figure 12.11 Effect of altitude on airspeeds for optimum turning performance

The required lift coefficient then turns out to be

_[27(Pyw)?

(mAe)* — Cpy mAe. (12.47)

Now, the reader can easily make certain for himself that the lift coefficient given
by the last equation will vary from C, =C, . atsealevel downtoC; =
\/3CpmAe at the theoretical ceiling, where is flown at the minimum power re-
quired speed.

As a consequence, there is again the tendency for the airspeed for tightest turn to
increase with altitude.

It will also be evident from the foregoing analyses that as a result of the difference
in wing loading and in the variation of thrust with airspeed for jet-powered and
propeller-driven airplanes, there is the particular quality of the latter airplane types
that most of the speeds for best turning performance are somewhat less than those
of their jet-driven counterparts.

We end this section with Figure 12.11, where the qualitative relationships are
sketched between the three airspeeds for best turning performance. For the sake
of completeness, the minimum and maximum level flight speeds have also been
indicated.

12.5 Climbing and descending turns

Sometimes it may be needed to execute a climbing or descending turn, e.g., when
height must be altered in a flight over a restricted area.

From Equations (12.4) to (12.6), the expressions for the airspeed, drag, power
required and load factor in a climbing turn may be written as follows:

W21 cosy
Y 12.48
v V S pCpcosu ( )
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C
D= Sy Lo8Y (12.49)
C, cosu
W 2 C% cos3
P=w, | ZZDEE Y (12.50)
S p Cj cos’
n= 07 (12.51)
cos 1

According to Equation (3.35), the aerodynamic angle of roll i in these expres-
sions is related to the bank angle ® and the flight-path angle y by

(12.52)

Comparing Equations (12.49) and (12.50) with Equations (12.15) and (12.16)
shows that for climbing flight, the drag and power required at given angle of at-
tack and bank angle are unequal to the corresponding values for a constant altitude
turn. Nevertheless, for small flight-path angles, say, Y < 15°, it is acceptable to
assume cos Y = 1 so that drag and power required are given by Equations (12.15)
and (12.16). With this, the following approximations to the flight-path angle and
the rate of climb in a climbing turn hold:
T-D T Cp 1

Y=y T WiCiLcosd)

!
P,—P. P w2Cc2 1
RC=te—tr_fa_ W=t ~ (12.54)
w w S p C; cos’ @

Of course, the extension of a symmetric climb with a turn will have the effect that
the rate of climb becomes less than that in straight flight, provided that during the
maneuver the engine control setting remains unchanged.

Similarly, a greater rate of descent occurs in a descending turn than in a symmetric
descent. As we have remarked in Chapter 3, in order to lose height in approaching
for landing, small airplanes may perform a straight sideslipping flight. In this

(12.53)

respect it may be more effective to execute a descending turn and in particular a
slipping turn, where the airplane is subjected to a large drag.

The latter maneuver is characterized by the fact that the bank angle is too large for
the rate of turn. Under this condition the airplane slips into the turn with its nose
pointing toward the outside of the turn (see Figure 12.3b). Figure 12.12 gives by
way of illustration the forces acting on the airplane in a slipping level turn to the
right (B > 0). When resolving the forces along the X, ¥; and Z, axes, we get the
following equations for level slipping turning flight:

—D+TcosPB =0 (12.55)

Lsin® —Tsinfcos®—Scos®—-C =0 (12.56)
—Lcos®—TsinBsin® — Ssin®d+W =0. (12.57)
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Figure 12.12 Forces In a slipping turn

A special type of flight is the gliding turn, which for example is carried out by a
glider pilot when circling in rising air to gain height and also as a means to lose
height when descending toward the airfield for landing. We shall look at this type
of maneuver in Chapter 13.

As we have previously mentioned, in a turn the outer wing will move faster than
the inner wing, and therefore will produce more lift. As a consequence, it may
be found necessary to apply opposite aileron deflections in order to maintain the
desired angle of bank. This intervention of the pilot is called holding off bank.

A point to note is that this phenomenon is different in climbing and descending
turns. To explain this, we consider the three rotations of the airplane about its
body axes.

Recalling that Q =¥, we find from Equation (1.22) the angular velocities as
follows (see also Figure 1.20).

rate of roll p = —Qsin6 (12.58)
rate of pitch ¢ = QcosOsing (12.59)
rate of yaw r = Qcos6cos¢. (12.60)

In these equations 6 is the angle of pitch and ¢ is the angle of roll. Note that
the rate of turn  is positive when pointing along the positive Z,-axis (vertically
downward).
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In a climbing turn (8 > 0), the airplane is besides pitching and yawing, also rolling
outward. Conversely, in a descending turn the airplane is rolling inward.

The roll to the outside of the turn in a climb increases the angle of attack at the
outer wing above that of the inner wing. In combination with its higher velocity,
the outer wing generates more lift so that the airplane may have a tendency to
overbank.

The inward roll of the descending turn causes a greater angle of attack at the
inner wing. The additional lift obtained in this fashion may balance the extra lift
furnished by the outer wing due to its higher speed. Accordingly, in a descending
turn the problem of hold off bank generally is absent.



Chapter 13

GLIDING FLIGHT

13.1 Symmetric flight

Gliding flight, by definition, is the flight with zero thrust. Naturally, this is true in
the case of an engineless glider or sailplane, but also when an airplane is flying
with the engine(s) at idling, the propulsive force usually is sufficiently small that
its contribution to the resultant aerodynamic force can be ignored. Furthermore,
zero thrust can be expected when an airplane has shortage of fuel or when a single-
engine airplane has engine failure.

Setting 7 = 0 in Equations (9.1) and (9.2), we obtain the following equations (see
also Figure 9.1)

—D—Wsiny=0 (13.1)

L—Wcosy=0. (13.2)

Equations (13.1) and (13.2) describe the equilibrium of forces for symmetric un-
powered flight and show that the weight must be balanced by the lift and drag
only. Since the drag is directed along the negative X,-axis, a state of equilibrium
exists if the weight furnishes a force component in the direction of flight. In other
words, the airplane must travel downward so that y < 0 (Figure 13.1).

When an airplane flies at a negative flight-path angle, it is said to be in either a
descent or a dive. The term descent is used when the flight path makes a relatively
small angle with the horizontal plane, whilst a dive concerns the occurrence of a
steep slope of the flight path. Descents and dives may be executed in the flight
with either power-on or power-off. The subject of the present chapter is the glide,
which is thus a descending or diving flight with 7 = 0.

R
L1
horizontal Vh_ Wsing
T
. - \-RD w0
Xg [ v ; 0
X WcosY o> 0
9 w
¥
Zb Za

Figure 13.1 Steady symmetric glide conditions
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Figure 13.2 Plot of parabolic lift-drag polar for glider

In order to avoid the use of negative flight-path angles in formulae, one conven-
tionally defines

Ya=—7 (13.3)

Hence the angle v, is counted positive downward and is called the angle of descent
or angle of glide.

Similarly, a negative rate of climb may be replaced by a positive rate of descent
(rate of sink),

RD = —RC. (13.4)

Substituting ¥, = —¥ into Equations (13.1) and (13.2) and using the familiar ex-
pressions; L = CL%psz and D = CD%pVZS, we obtain in a glide

1
D =Cp5pV*s =Wsiny, (13.5)

1
L:CLEszS:Wcosyd. (13.6)

From Equation (13.6), the airspeed can be written as
2
V= —E—cos}/d. (13.7)

Dividing Equation (13.5) by Equation (13.6) gives
tany, = Cp/C;. (13.8)

From Equations (13.7) and (13.8), the rate of descent in gliding flight is found to
be

C W 2 C?
RD:Vsinyd:VC—Dcosyd: HEEC—?COS%Q. (13.9)
L L

In the Equations (13.7) to (13.9), note that - at low subsonic flight speeds and ig-
noring Reynolds number effects - the quantities V, v, and RD are fully determined
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Figure 13.3 Hodograph curve for gliding flight

by the angle of attack of the airplane, which single control variable in its turn is
controlled by the elevator.

Equations (13.7) to (13.9) form the basis of our analyses on performance in gliding
flight. In the following we proceed by examining the variations of V, y, and RD
with angle of attack for a specified type of glider. Let us assume that this airplane
has a parabolic lift-drag polar with Cp, = 0.012 + 0.02C% and a maximum lift
coefficient of 1.5.

Figure 13.2 shows a graph of the drag equation, where also are plotted the vari-
ations of the lift-to-drag ratio C; /C}, and the climb factor Cz / C% with lift coeffi-
cient. The computations are made in Table 13.1, presuming a flight at an altitude
of 2,000 m (I.S.A.) and a wing loading of 400N/m?. The airplane data speci-
fied for our numerical example may illustrate the general features that airplanes
designed for gliding have a comparatively low wing loading, a low induced drag
factor (large wing aspect ratio), and a small Cp,, value.

A graphic representation of the point performance in symmetric flight is sketched
in Figure 13.3 in the form of the hodograph curve. As we have seen in Chapter 9,
this diagram is a plot of the vertical velocity RD =V siny, versus the horizontal
velocity V, =V cosy,.

Clearly, the length of the vector from the origin O to a point on the hodograph
represents the magnitude of the airspeed along the flight path that corresponds to
that point. The angle confined between a radius vector and the horizontal axis is a
measure of the angle of descent.

From an inspection of the hodograph curve, the following features are apparent:

e From the stalling speed at maximum lift coefficient, the airspeed increases
continuously with decreasing lift coefficient. When flying at C; = 0, the
airplane is in a steady vertical dive (y, = 90°), where the flight velocity is
maximum.
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Table 13.1 Calculation of glide performance

airplane weight W =4,000 N
wing area S=10m?
altitude H =2,000m (I.S.A.)
configuration clean
C, c, C,/C, C;/C Y, v, RD, v,
deg. km/h m/s km/h

1.50 0.0570 26.3 1038.8 2.176  82.8 0.874  82.8
1.40 0.0512 27.3 1046.8 2.094 857 0.871  85.7
1.30 0.0458 28.4 10474 2018 89.0 0.870  88.9
1.20 0.0408 29.4 1038.1 1947 926 0.874 92.6
1.10 0.0362 304 10157 1.885 96.7 0.884  96.7
1.00 0.0320 31.3  976.6 1.833 101.5 0.901 101.4
0.90 0.0282 319 9167 1.795 107.0 0.930 106.9
0.80 0.0248 323 8325 1776 1134 0976 1134
0.70 0.0218 321 7217 1.784 1213 1.049 121.2
0.60 0.0192 31.3 5859 1.833 131.0 1.164 130.9
0.50 0.0170 294 4325 1947 1435 1.354 1434
0.40 0.0152 263 2770 2176 160.4 1.692 160.3
0.30 0.0138 217 141.8 2.634 185.2 2.364 185.0
0.20 0.0128 15.6 48.8  3.662 226.7 4.022 2263
0.10 0.0122 8.2 6.7 6956 319.8 10.757 317.4
0.00 0.0120 0.0 0.0 90.000 926.8 257.435 0.0

e The minimum value for the rate of descent occurs at that point where the
hodograph has a horizontal tangent.

e The point on the hodograph that corresponds to the minimum angle of de-
scent is found by drawing a line from the origin tangent to the curve.

An expression for the terminal-speed in the vertical dive is obtained by substitut-
ing Cp, = Cp and siny, = 1 in Equation (13.5), which furnishes

Vinax = === (13.10)

For our illustrative glider we find Vipax = 927 km/h, which value will strongly
exceed the design diving speed for which the airplane is designed to withstand.
A typical value of the maximum allowable airspeed for a glider is of the order of
250 km/h (Reference 45).

Minimum rate of descent is of interest to the pilot when he wants to perform a
flight with maximum endurance, that is, the maximum length of time that the



13. Gliding flight 253

Tdmi
H v min

Smax

Figure 13.4 Maximum distance covered In quasi-steady glide

glider can stay in the air,

0 0
~dH [ dH

H RDmin H RDmin .

(13.11)

Imax =

Minimum angle of descent is of importance to the pilot if he wants to glide as far
as possible (Figure 13.4),

0

dH H

smaxz/ = . (13.12)
H tan Yd min tan Yd min

From Equation (13.8) we see that the smallest angle of descent, and hence the
maximum horizontal distance that the glider can travel, is obtained when the angle
of attack is such that the lift-to-drag ratio is the maximum, so that

CL

K =H
max CD

, (13.13)

Notice that there is no effect of weight on the minimum angle of descent and so on
maximum range. On the other hand, weight affects the airspeed at a given height
and lift coefficient and with that the corresponding endurance.

From Table 13.1, we observe that when considering a glide in the normal range
of airspeeds, the angle of descent remains small enough to assume cos ¥, = 1.
Using this approximation in the Equations (13.7) to (13.9) yields the following
expressions for gliding flight:

w21
V= Soc (13.14)

C
y,=tan~! | =2 | =sin~! |2 (13.15)
d C
L L
W 2C2
RD=,|—=22. (13.16)
SpC;
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Figure 13.5 Glide performance hodograph assuming cos vy, = 1

Equation (13.16) shows that with the assumption cos ¥, = 1, the minimum rate of
descent is obtained when the climb factor C; /C3, is the maximum. We also see
that at the speed for best glide angle the airplane drag is minimum,

w
D . =Wsiny, . =—7—»—1——° 13.17
min MY min (CL/CD)max ( )
Likewise, it follows that at the speed for minimum rate of descent, the power

required is minimum,

P

rmin

= (DV)in = (WVsiny,)

min :W(RD (13.18)

min min)'
Figure 13.5 gives again the hodograph for our illustrative glider, but now calcu-
lated from Equations (13.14) to (13.16), and for the speed range extending from
the stall to about the maximum allowable airspeed.

With the adoption of a parabolic lift-drag polar, Cj, = Cp, + C7/(Ae), the air-
speeds for best glide angle and for minimum rate of descent can easily be deduced
from Equation (13.14) as

w2 o1
= ——  and (13.19)

V. — R
Yamin S p \/CpyAe

[W 2 1
Van =] o ———. 13.20
RDrin S p \/3CpmAe (1320

For our glider the lift coefficients for flattest glide and for minimum rate of descent
are 0.78 and 1.34, respectively. As discussed in Chapter 4, a large part of the Iift-
drag polar is indeed roughly parabolic, but there may be some additional drag
at lift ooefficients above about 1.0. This means that the actual minimum rate of
descent tends to be worse than the parabolic drag equation forecasts.

13.2 Effect of altitude

To investigate the effect of altitude on the performance in gliding flight, two flight
conditions at different altitudes but at the same angle of attack are considered. The
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latter requirement says that the lift and drag coefficients remain constant as the al-
titude varies, provided that slight Reynolds number effects on the lift-drag polar
can be ignored. Since from Equation (13.8) the glide angle is completely deter-
mined by the lift-to-drag ratio, we discover that this angle also remains unchanged.
Using the subscripts 717 and 2" to denote the set of conditions at altitudes H, and
H,, the ratio of the horizontal velocities is

/W2 1
vV F—CTCOS'}/dCOS'}/d
% _ W"; - _ |P1 (13.21)
ht ST, C08 Y CO8 Y, Py

Similarly, for the ratio of the vertical velocities we obtain

2 .
RD S cosy,siny,
2V Pzz P1 (13.22)
Py

T
CL

RD, 1 a
CL

wul=|| L=

cosy,siny, [2))

Combining Equations (13.21) and (13.22) yields

Via _ RD, (13.23)
V,, RD, :

Let us now consider Figure 13.6a, where for our illustrative glider are shown
the hodograph curves for three altitudes. According to Equation (13.23), corre-
sponding points on the curves shift to the left and upward along a straight line
through the origin when altitude decreases (increasing air density). Consequently,
all curves have a joint tangent which defines the minimum angle of glide. Note
that the related airspeed decreases with decreasing height. Likewise, we find that
at a given angle of attack the rate of descent and the corresponding airspeed both
fall off with decreasing altitude.

Looking at Equations (13.11) to (13.16), we see that the flight program for max-
imum range as well as for maximum endurance requires that the pilot controls
the airplane in such a way that throughout the glide the dynamic pressure remains
constant. In other words, the equivalent airspeed must be kept constant and the
airplane executes a quasi-steady flight, where the true airspeed increases when the
airplane descends.

It will be evident from the foregoing discussion that plotting the hodograph curves
on the basis of equivalent airspeeds will lead again to a single curve applying at
all altitudes (Figure 13.6b).

In this respect, it is worth to note that the pilot is faced with two sorts of speed
data. The airspeed indicator, in principle, displays equivalent airspeeds, whereas
the readings of the vertical-speed indicator are close to true speeds.

Widely used for indicating the vertical velocity of a glider is the mechanical vari-
ometer, which is - like the vertical-speed indicator discussed earlier in Chapter 5 -
a pressure operated device. As shown in Figure 13.7, one side of the variometer is
connected to the static pressure tapping on the glider and the other to a vacuum-
insulated capacity. When the airplane descends, the increasing air pressure forces
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Figure 13.6 Effect of altitude on glide performance

air to flow into the device through the clearance between the vane and the case;
the flow direction, naturally, is reversed when climbing. The pointer, which is
directly connected to the vane, shows a displacement owing to the different pres-
sures acting on the two sides of the vane.

capacity

vane

static pressure )
source pointer

Figure 13.7 Principle of varlometer

So far, hodograph curves have been considered, which relate low-subsonic flight
speeds. However, as the angle of glide and/or the wing loading of the airplane are
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greater, the glide will be executed at a higher airspeed.

Of special note is the orbiter stage of the United States Space Shuttle. The Orbiter
is a reusable delta-winged space vehicle/glider, powered by three rocket engines,
which are contained in the aft fuselage (Figure 13.8). The liquid propellants for
these engines are carried in an external jettisonable tank, attached to the vehicle at
liftoff. In addition, two jettisonable and reusable solid rocket boosters are mounted
on the fuel tank for liftoff. The complete Space Shuttle system is launched verti-
cally, with all engines operating.

rudder
payload bay

reaction control
engines
main engines

elevons

double-delta wing
vehicle mass 68,000 kg
37m

length
wing span 2Lm

Figure 13.8 Space shuttle system and orbiter

The Orbiter can deliver to Earth orbit a crew of seven persons and a mass of 29,500
kg payload. After completion of a mission, the orbiter reenters the atmosphere and
returns to the surface of the Earth where it lands as a conventional airplane.

In the upper layer of the atmosphere, the spacecraft is steered by a reaction control
system, but in the lower more dense atmosphere, the vehicle is controlled aero-
dynamically by rudder and elevons. When traveling back from orbit to Earth, the
Orbiter behaves as a lifting vehicle, performing a glide through the flight corridor,
as shown in the previous Figure 10.14. During the return to sea level the orbital
speed range is encountered so that the lift-drag polar will strongly depend on flight
Mach number,

C, =C,(a,M) (13.24)

Cp =Cpla, M) (13.25)

Not only the Orbiter, but also the conventional jet airplanes with their high wing
loadings attain flight speeds at which the effects of compressibility cannot be ig-
nored. Consequently, the glide performance of all these airplane types can no
longer be represented by a single hodograph curve as in Figure 13.6b. If we
want to determine their hodograph curves, we now have for the point performance
(given values of altitude and airplane weight) at a given flight Mach number:

V = Mec (13.26)
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CL lift-drag polar
at given Mach number

Cr

Figure 13.9 Establishing the angle of attack from known value of C,

w21

LZ?EWCOS’Yd:fl(O‘) (1327)

Cp=Cpy+kCi = fy(a) (13.28)

%1=tanl[%9}==/50%) (13.29)
L

RD =Vsiny, = fy(a). (13.30)

Since Equations (13.27) to (13.30) contain the angle of attack in implicit form, we
must solve the problem iteratively starting from cosy, = 1.

The angle of attack can also be determined graphically from the condition R =W
or (cf. Equation (4.14))

W

Cpr=—+——"+. 13.31
R Lo ( )

For the lift-drag polar at a given Mach number we have at each angle of attack the
relationship (Figure 13.9)

Cp=/CE+C2. (13.32)

Since at a given airplane weight, altitude and Mach number, the value of Cy is
known from Equation (13.31), we obtain the corresponding values of C; and C,
at that point on the lift-drag polar where the curve intersects a circle having a
radius Cy, and of which the center is located at the origin O.

13.3 Effect of wind

it is important to realize that in our discussions on gliding flight so far the atmo-
sphere is supposed to be at rest with respect to the Earth.

As we have learned in Chapter 1, in the presence of wind, the velocity of the
airplane relative to the ground or ground speed V,, is the vector sum of the airspeed
V and the wind velocity V,, (see Figure 1.21).
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In considering the effect of wind on gliding, for simplification, we shall assume a
steady wind. We shall also assume that the wind blows in a direction parallel to
the plane of symmetry of the airplane. Under these conditions, the wind velocity
can be added to the flight velocities given by the hodograph curve in still air to
give the ground speed.

In Figure 13.10 the hodograph curve of Figure 13.5 is plotted again, together with
a hodograph illustrating the effect of a steady wind. The latter curve shows that as
a result of the upward component of the wind velocity, a positive rate of climb is
possible. Apparently, the presence of wind may be of great importance to gliding
since in the case of an upwind that is greater than the rate of descent, the airplane
will climb relative to the Earth.

The resulting type of flight is known as soaring, which mostly is performed using
rising currents of warm air. These vertical updrafts usually are called thermals
and occur due to local heating of the Earth’s surface by the Sun (see Section 2.6).
Obviously, to gain the maximum rate of climb in a thermal, the pilot must select
the airspeed which provides the minimum rate of descent with respect to the air.

Figure 13.11 illustrates the usual technique to find the performance in soaring
against wind from the hodograph curve in still air. For this purpose, ground speed
V, is measured relative to replaced axes of which the origin is shifted over a dis-
tance equal to the wind velocity and in a direction opposite to the wind direction.
The angle v, P is the actual glide angle (glide angle relative to the Earth’s surface).
Figure 13.12 illustrates the effects of horizontal and vertical wind velocities on
flattest glide. If the pilot wants to achieve the best glide angle over the ground
in the presence of an upwind, then the best airspeed to glide will correspond to
point A in Figure 13.12a, such that O’A is the tangent to the hodograph curve. In
the case of a downwind the origin is displaced upward and the minimum angle of
glide is found by drawing the tangent O’B.

When a pilot wants to fly at the best angle of glide relative to the ground in the
presence of a headwind or tailwind, then points C and D in Figure 13.12b represent
the best airspeeds.



260 Elements of airplane performance

o 3
tail- | head-
daw= wind | wind
0 Vh o' 0 0 Vh
up- Ymin ¥d g min
wind
o A D
~‘dg min
C
RD B RD
a. vertical wind b. horizontal wind

Figure 13.12 Vertical and horizontal wind velocities In the hodograph diagram
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Figure 13.13 Effect of wind on heading

Emphasis is made that the foregoing analyses are based on a wind blowing in a
direction parallel to the flight path. Under most circumstances, however, the wind
velocity will be directed at some angle to the desired flight path of the airplane
over the ground. Figure 13.13a shows, as an example, the path of an airplane in
level flight as resulting from its airspeed and a horizontal wind velocity. Since the
wind is blowing from the left, the airplane will drift to the right, through which
the velocity vector of the ground speed is at a drift angle with the intended course.
Therefore, in addition to the preceding simplified treatment of the effect of wind,
it is worth to recognize that the pilot often must counteract the wind velocity by
changing the heading of the airplane in order that the track coincides with the
intended course. The latter situation is depicted in Figure 13.13b. Apparently, the
ground speed is given by

Ve =V cosd —V,coseg, (13.33)

where 6 is the angle between the flight velocity vector and the track, the so-called
wind correction angle, and € is the angle between the wind velocity vector and
the desired path. Equation (13.33) can be manipulated to yield

2
1%
Vo=V /11— [VW} sin® € — V,, cos&. (13.34)
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An inspection of Equation (13.34) indicates that a wind directed perpendicular
to the track reduces the flight speed relative to the ground, although it has no
component along the track. Clearly, this effect occurs because the heading of the
airplane is into the wind in order that the actual flight path over the ground shall
be in the right direction.

13.4 Turning flight

In the preceding section, we have seen that a glider can gain height by flying
in ascending warm air masses. Owing to their small horizontal dimensions, the
glider pilot must execute turning flights to utilize these thermals.

A horizontal cross-section through a thermal may be taken as circular, with the
greatest vertical velocity at the center and falling off toward the outside. The most
appropriate radius of turn and the associated values of angle of bank and airspeed
for optimum climb performance will then depend on the manner in which the
vertical velocity in the thermal varies with radius.

For this reason, the relationship between the minimum rate of descent and the
radius of turn of the airplane is of importance.

To investigate this connection, let us consider the equations governing the trans-
lational motion of the airplane in a steady coordinated turn. Then, by substitution
of T'=0and y = —v, in Equations (12.4) to (12.6), we obtain

-D +Wsiny, =0 (13.35)
Lsinpu -C =0 (13.36)
—Lcosyt + Wcosy, =0, (13.37)
where, from Equation (3.31), the centrifugal force C is
w wv:
C=—VQcosy,=——cos"v,. (13.38)
g e R

With the substitution of Equation (13.38), D = C,3pV?2S and L = C, 1pVS, the
equations for turning in a glide become

1 .
CDEpsz = Wsiny, (13.39)
1 w W V2
CLEpszsinu = Evgcos Y = EFcos2 Y (13.40)
1
CLEpV2Scosu =Wcosy,. (13.41)

For a given airplane weight and atmospheric conditions, Equations (13.39) to
(13.41) contain five variables, namely: o, V, ;> 1 and R so that each instan-
taneous flight condition is defined by the selection of two control variables.
Expressing the performance items in terms of angle of attack (C; and C},) and the
aerodynamic angle of roll i, we readily find

v (W21 cosy, (13.42)
S pCycosu
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c, 1
tany, = 2 (13.43)
L

(13.44)

n=-—= = —=siny, (13.45)

-~ gtanu EE(ECTL sin (13.46)
\%4 t
Q- L;’:‘ Ya _ g—z“/““ (13.47)
T TR
= 6 Veosy (13.48)
f

However, in consonance with our earlier experience that in a normal glide the an-
gles of descent remain small, we may assume that cos y, is approximately equal to
unity in the equations listed above. Moreover, because we are considering coor-
dinated turns, we get from Equation (3.35) that in consequence of the assumption
cosy, = 1, the aerodynamic angle of roll u is equal to the angle of bank ®. Then
the governing series of equations reduce to

w21 1
V_

N A 13.49
S pC,cos® ( )
C, 1
t =2 13.
any, C, cos® (13.50)
wW2Cy 1
RD=,/—=2L (13.51)
S p C3 cos’®@
L 1 C, .
= = =L 13.52
"W cos® C SN Y ( )
V2 w211 1
_ - (13.53)
gtan® S pgC, sin®
V.  gtan®
Q=— = 13.5
R v (13.54)
T 7©R
T,=—=—. 13.5
=6V (13.55)

The effect of banking on the hodograph curve can be examined by considering
again two flight conditions at different bank angles but at a fixed angle of attack.
Assuming that at constant o also the lift and drag coefficients remain the same,
we find

1/2 1/2
Vip _ [oos® )" _ )" (13.56)
Vi cos®, o .
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Figure 13.14 Effect of angle of bank on hodograph curve
RD, cos®, 3/2 n, 3/2
—t=|— =|-= and (13.57)
RD, cos @, n
3
RD V
2|2 (13.58)
RD, Vi

where the subscripts 717 and 2" indicate the conditions at bank angles ®,; and
@,, respectively.

The hodograph curves of Figure 13.14 show the performance of our illustrative
glider when turning at fixed angles of bank. The curves are deduced from the
hodograph curve in straight flight, in the way described before. The points on the
curves that correspond to the same value of C; are joined by dashed lines.

Figure 13.15 presents the rate of descent as a function of radius of turn for various
angles of bank, as calculated from Equations (13.51) and (13.53). Here the points
are connected that correspond to the same value of V.

The upper dashed line in Figure 13.15 represents the minimum rate of descent
which can be obtained at each particular radius of turn. Along this line the air-
speed and the bank angle increase as the radius of turn decreases.

A mathematical formulation of the relationship between RD and R is derived by
elimination of the angle of bank from Equations (13.51) and (13.53). This yields
the equation

2 2
D = W D . (13.59)

E; |:C%— <%%é%>2:|3/2

Apparently, at given values of airplane weight, air density and radius of turn, the
minimum rate of descent will be obtained when the term between brackets in
Equation (13.59) is a minimum.

An expression for the corresponding lift coefficient is derived by taking the deriva-
tive of that term with respect to C; and equating it to zero. Using the parabolic
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Figure 13.15 Rate of descent versus radius of turn for various angles of bank

drag equation, Cp, = Cy,, +C7/(mAe), the optimum lift coefficient for minimum
rate of descent is found to be

w211)\2

This equation shows that for minimum rate of descent the glider should obviously
fly at a large lift coefficient that varies between the value at which the climb factor
is the maximum (R = o) and a value close to the maximum lift coefficient (R =
Rmin)'

In order to demonstrate the determination of the maximum rate of climb, we will
assume the presence of a very simple thermal in which the variation of the vertical
velocity with radius r is given by

Viy = Vig max [1 - : } . (13.61)
max

The linear velocity profile of this thermal is shown as the upper line in Figure
13.16, assuming V}y, . =4 m/s and ryax = 200 m.

By taking various points at particular radii on the thermal line and subtracting
from the vertical air velocity the minimum rate of descent of the glider in still air
when turning at the same radius (see the upper dashed curve in Figure 13.15), we
find the lower curve in Figure 13.16. This curve shows the eventual result since
it gives the rate of climb relative to the Earth versus radius of turn when circling
concentrically with the thermal.

Clearly, the maximum rate of climb for our example is achieved at a radius of
about 80 m. According to Figure 13.15, the corresponding lift coefficient is ap-
proximately 1.5 (= C; ..). Using these figures in Equation (13.53) learns that

max
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Figure 13.17 Representation of cross-country flying

optimum climb performance is achieved at an angle of bank of 43° and an air-
speed of 97 km/h.

We end this section by noting that it may be possible to execute a glide which com-
bines turning in thermals with some “dolphin” flying. The latter term denotes the
performance condition in which a glider flies through a series of updrafts during
a straight glide. Then the resulting flight path exhibits a series of leaps, somewhat
comparable with the manner of moving on of a dolphin.

13.5 Cross-country flight

The normal flight of a glider consists of a series of climbs made by turning in
thermals and a series of straight symmetric glides between the thermals (Figure
13.17a).

In Section 13.4 we have demonstrated how to determine the maximum rate of
climb in a given thermal. Here we will consider the problem of maximizing the
average speed for the whole flight.

For that end, all the climbs and all the straight glides are taken together and rep-
resented by a single climb followed by a single glide. Further, the assumption is
made that the start and the end of the flight are at the same height and that the
glide takes place in still air (Figure 13.17b).

Presuming that the mean rate of climb of the airplane in the thermal is RC, and
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the gain of height is AH, then the time spent in the climb is

AH

tr=—. 13.62
= Fe. (13.62)
Similarly, the time gone in the glide is

AH

ty=——. 13.63

P= %D ( )
Thus the total time for the whole flight becomes

1 1 AH
tr+tp=AH| —+—-=) =—-—+—--(RC,+RD). 13.64
c*'p <RCg+RD> RngRD( s tRD) (1369

The distance traveled can be expressed as the average speed V times the total time.
Hence, the horizontal distance s becomes

s =V(to+1p)cosy,. (13.65)

Making use of the relationships s = AH /tany, and RD = V siny,, we obtain
V=" (13.66)

By combination of Equations (13.64) and (13.66), we find the average speed as

— 1%

=RCy . 13.67
V=RG (RCg+RD) ( )

Clearly, the problem is to select the flight speed V in the glide so as to make V
an extremity at a known value of the rate of climb RC,. Therefore, consider the
hodograph diagram in Figure 13.18a where from a point A, such that the length
OA expresses RC, , a line is drawn to a point B on the hodograph curve.

" A "l A v
9 Q!C h=V RC ;l =
A{g Vh= 9 0 C Vh=V

RD
D

B

RD RD

© ®

Figure 13.18 The average cross-country speed in the hodograph diagram

With the approximation that V, ~ V, the distance DB represents the flight speed
V during the glide.

Observing that the triangles AOC and ADB are similar, we find that the relation-
ship between the various speeds in Figure 13.18a corresponds to Equation (13.67)
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Figure 13.19 Determination of the optimum airspeed during glide between thermals

if the speed V is represented by OC. It is also clear that the optimum value for
V is found by drawing the tangent from point A to the hodograph curve (Figure
13.18b).

By considering a large number of rate of climb values RC, in Figure 13.5, for our
illustrative glider the curves of Figure 13.19a can be produced.

A convenient tool in optimizing a cross-country flight is the MacCready ring,
which is a rotatable ring added to the variometer (Figure 13.19b).

When gliding between the thermals, the datum mark on the ring is set opposite
the figure on the rate of climb scale which equals the prevailing value of RC,. The
ring is calibrated such that the connection between the airspeeds V on the ring
and the rates of descent RD on the variometer scale corresponds to the relation-
ship between V and (RC, + RD) in Figure 13.19a. This makes that, for a given
wing loading and height, the pointer designates directly the airspeed for optimum
cross-country flying on the ring. It should be understood that the airspeed thus
found depends entirely on the pilot’s assessment of RC, (2 m/s in Figure 13.19b).

Modern gliders may be equipped with water tanks so that their weight can be
increased by carrying water ballast. This provision can lead to an improved cross-
country performance, at least as the vertical velocities in the thermals are suffi-
ciently large.

To illustrate the influence of the extra weight on the optimum value for the speed
V we consider Figure 13.20, where are sketched the hodograph curves for an
airplane weight W, and for an increased weight W,.

From Equations (13.14) and (13.16), it is immediately apparent that the two hodo-
graph curves relating to the higher wing loading are obtained by multiplying cor-
responding V and RD values on the initial curves by the factor /W, /W,.

It is interesting to note that the effect of an increased weight on the hodograph
curve is precisely the same as the effect of an increase in altitude, i.e., the curve is
displaced downward and to the right (cf. Figure 13.6a).

As depicted in Figure 13.20, the rate of climb RCy in a given thermal will decrease
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and the best speed in the glide V will increase with weight. This visualization of
the problem indicates that in the case of strong thermals, the average speed V may
increase and hence the presence of ballast in the airplane promises to be beneficial
(Figure 13.20a). When, on the other hand, the thermals are quite weak, it does not
pay to fly with ballast, and jettisoning water may be gainful (Figure 13.20b).

T_r\

RC v
ql \ Vi 7

RCq
Vhav [RCE Vh=V

RD

e — ———-]\(w1
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Figure 13.20 Effect of airplane weight on optimum speed



Chapter 14

SYMMETRIC CLIMB AND DESCENT

14.1 Quasi-steady symmetric flight

To this point, we have dealt mainly with point performance problems. For the re-
mainder of this book, emphasis will be placed on the path performance or integral
performance values, which, as we have defined in Chapter 8, are related to the
course of the flight. With regard to the climb to a particular altitude, three integral
performance values are of paramount importance, namely,

o the length of time required to climb
o the horizontal distance covered during climb
e the amount of fuel consumed during climb.

In the absence of wind, the time rate of change of altitude is the rate of climb of
the airplane, which is equal to the vertical component of the airspeed,

dh
— =RC =Vsiny and (14.1)
dt
dh dH
dt = — = —. (14.2)
RC RC

The time to climb from an altitude H, to an altitude H, is obtained by integrating
Equation (14.2) between H, and H,

sz
H
= / . (14.3)
RC
Hl

where, for a given airplane, RC is a function of airplane weight, engine control
setting, selected flight speed and altitude. The related range (= horizontal distance)
in the absence of wind is given by

s:/Vcosydt: — (14.4)

The weight of the fuel consumed during a climb from H, to H, is
h ,
F
= /th = [ —dH, (14.5)
RC
h H,

where F is the fuel weight flow rate.

269
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Figure 14.1 Time to climb determination

Let us look at the determination of the minimum time to climb from sea level
to a given altitude, using the approach of quasi-steady flight conditions. Then,
Equation (14.3) tells us that to minimize ¢, the rate of climb must be maximum at
each altitude (cf. Equation (10.6)),
H

. dH

min RCmax '

0

(14.6)

Assuming that the maximum rate of climb decreases linearly with height, we can
write
RCpmax H,j,—H

13
= , (14.7)
RCmax,  H,,

where the subscripts ”0” and "th” denote sea level and theoretical ceiling, respec-

tively.
Using this relationship, Equation (14.6) can be integrated to give
H 1
foin = oot 1 : 14.8
min Rcmax(, t (1 — i) ( )
Hy,

When no analytic expression is obtainable that relates RCy,ax to H, the integration
of Equation (14.6) can be accomplished graphically. Then, as shown in Figure
14.1b, the minimum time to climb to a given altitude is derived by plotting the
curve RC,,) against H and determining the shaded area on the left-hand side
of the curve. The present relationship is based on the RCpx versus H-curve in
Figure 14.1a. This curve is repeated from the previous Figure 10.3, and concerns
our illustrative two-engine turboprop airplane of Chapter 10. The result in Figure
14.1c shows that the minimum time needed to reach the service ceiling (H = 9250
m) is 47.5 minutes.

The time required to climb to a given altitude may also be obtained by adding
increments in time between altitude intervals,

t [AH

t= ; [R_c,] : (14.9)

1
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Table 14.1 Calculation of time to climb

H, RCpax, RC;,, At t, H, RCpyax, RC;, At, t,
m m/s m/s min min m m/s m/s min min
0.00 5.05 1.65 1242

0 8.60 5000  4.80
8.50 0.98 0098 460 1.81 14.23

500  8.40 5500 4.40
8.25 1.01 1.99 4.15 201 16.24

1000  8.10 6000  3.90
790 1.05 3.04 3.65 2.28 18.52

1500 7.70 6500 3.40
755 1.10 4.14 325 256 21.08

2000  7.40 7000  2.90
720 1.16 5.30 2.65 3.15 24.23

2500  7.00 7500 240
6.80 123 6.53 2.15 3.88 28.11

3000 6.60 8000  1.90
6.35 131 7.84 1.65 5.05 33.16

3500 6.10 8500 1.40
590 141 925 1.10 7.58 40.74

4000 5.70 9000  0.80
5.50 1.52 10.77 0.65 6.41 47.15

4500  5.30 9250  0.50

In this summation form of Equation (14.6), RC; is the average value of the rate
of climb within each interval AH. The mean and cumulative values for the air-
plane considered in Figure 14.1, are tabulated in Table 14.1. When using this
numerical procedure, it is fairly simple to include the effect of the variation of
airplane weight due to the consumption of fuel. For this purpose, at the end of
each interval AH, the weight of the fuel consumed is determined, AWﬁ = FAt,
where F; is the average value of the fuel weight flow rate within an interval AH.
Then, the rate of climb in the adjacent interval is calculated at an airplane weight,
W, W, — AWﬂ. Of course, the total fuel consumed during climb can be found

i+1 =
from Wf = ZAWﬁ.

We conclude this section with the observation that the downward flight with en-
gine(s) working differs from the climb only in that at the descent speed the sign
of the flight-path angle is negative so that the thrust will be less than the drag.
Therefore, the formulae for descending flight are included in the preceding gen-
eral performance theory and need not to be developed separately.

Descent programs may be expressed as a constant engine control setting and con-
stant Mach number schedule until a particular operating speed is reached, after
which a constant E.A.S. is maintained. Needless to say that local air traffic con-
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trol regulations may cause considerable alterations to recommended schedules.

14.2 The unsteady quasi-rectilinear climb

In Figure 14.1 and Table 14.1, the determination of minimum time to climb was
carried out using quasi-steady-state climb data. In fact, the airspeed at which the
maximum rate of climb occurs, increases with height, as can be seen in Figure
10.4. This implies that we must use a portion of the available excess power to
accelerate the airplane along its flight path.

In order to examine the effect of the dynamic behavior of the airplane on the rate of
climb, we consider the equation of motion in the direction of flight (cf. Equation

(8.7)),

Ed—V:T—D—Wsiny, (14.10)
g dt

where the thrust vector lies along the velocity vector.
Assuming quasi-rectilinear flight, we have normal to the flight path the following
approximate equilibrium condition, determining the angle of attack,

L=Wcosy. (14.11)

With the assumption of a small flight-path angle, so that cosy can be set equal to
unity, Equation (14.11) reduces to

L=W. (14.12)

Equation (14.10) can be rewritten by multiplying with V' as

W_ dV dh

—V——=TV —-DV —WVsiny. 14.13

¢ dhdi sy (14.13)
Using dh/dt = Vsiny = RC, TV = P, and DV = P,, and rearranging Equation
(14.13) yields

VdV} :Pa—P, (14.14)

RC {1 + 2 dn W
where the numerator of the right-hand term is the excess power, that can be used
for climb and acceleration. The excess power per unit airplane weight is called
the specific excess power.

When performing a quasi-steady climb, the excess power is used for climbing
only. Neglecting the possible effects of accelerations on the lift-drag polar, allows
that power required in Equation (14.14) can be taken equal to its value in quasi-
steady flight at the same momentary conditions. Hence,

PP
w

= RC;. (14.15)
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where the subscript ”’s” is used to denote a quasi-steady flight condition. When
we put Equation (14.15) into Equation (14.14), we obtain

RC; RC;
RC=TTvaor =17 vaw (14.16)
g dh g dH

where the acceleration of gravity g, has the standard sea-level value (9.80665
m/s?). The denominator of the far right-hand term represents the effect of the
acceleration of the airplane along the flight path on the actual rate of climb RC,
and is called the kinetic energy correction factor.

Division of Equation (14.16) by V yields a similar expression for the climb angle

sin ¥,

1 Yave
gy dH

siny = (14.17)

where ¥ and ; are the angles of climb in actual flight and in quasi-steady climb,
respectively.

The results derived above can be applied to particular climb programs, like the
climb at constant equivalent airspeed, which we go through as a first example of
an unsteady airplane motion. In this case the relationship between airspeed V
(T.A.S.) and equivalent airspeed (E.A.S.) is

V =V.(p,/p)"/%. (14.18)

In the climb with constant equivalent airspeed the true airspeed continually in-
creases with height so that the airplane is gaining kinetic energy (dV /dH > 0).
Consequently, the actual rate of climb values are smaller than their quasi-steady-
state counterparts (RC < RCy).

Using Equation (14.18) and V, = constant, the kinetic energy correction factor can
be written as

1 dv? 2d
1+Kd—V:H——dL:l—|—V—eM. Then (14.19)
gy dH 2gy dH 2g, dH
R i 1
RCC _ s‘mY _ ERTENER (14.20)
s Sy 1_*_?;0#

For the International Standard Atmosphere, the density ratio p,/p and altitude H
are related by the previous Equations (2.13) and (2.16).

Using the equation of state p = pRT, the relationship %sz = %’}/pMz and the
hydrostatic equation dp = —pg,dH, we can easily develop the following detailed
expression for the kinetic energy correction factor in terms of the instantaneous
flight Mach number,

(14.21)
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Figure 14.2 Kinetic energy correction

When we put Equation (14.21) into Equation (14.20), we find in the troposphere
(LS.A.) with dT /dH = —0.0065 K/m (see Figure 2.3),

RC  siny 1

= = . 14.22
RCy;  siny,  14+0.567M? ( )
In the lower stratosphere (I.S.A.), where dT /dH = 0, we obtain
R i 1
RC _ siny _ (14.23)

RC; siny, 1+0.7M2%

Note that in the climb with constant equivalent airspeed, the Mach number in
Equations (14.22) and (14.23) increases with altitude according to 1p,V? = $ypM?,

or
M=v, [P0 (14.24)
P

In Figure 14.2 is plotted the ratio RC/RC; against equivalent airspeed for a number
of altitudes. The points on the curves that correspond to the same value of V are
connected by dashed lines. Clearly, the kinetic energy correction factor increases
with increasing airspeed and altitude.

Climb programs commonly consist of a constant E.A.S. schedule until the cruise
Mach number is reached, followed by a climb at this Mach number toward the
cruise altitude. Therefore, as a second example of a practical flight technique we
consider the climb at constant flight Mach number.

Using V2 = M?¢? = M?yRT, we find that

vV dv 1 R dT
I+ ——= =14+ -yM* ==~ 14.25
+ o dH +57 g0 dH (14.25)
For a climb in the troposphere (I.S.A.), we get
R i 1
C _siny _ (14.26)

RC; siny, 1—0.133M2"



14. Symmetric climb and descent 275

Climbing in this region at constant Mach number means a decreasing airspeed
with altitude. Equation (14.26) confirms that which we would expect: RC > RC;
and y > ;.

In the lower part of the stratosphere (I.S.A.), the airspeed remains unchanged and
hence RC = RC.

14.3 Optimum climb

In Section 14.1, we demonstrated the usual method for obtaining the minimum
time to climb to a given altitude. The relationship between maximum rate of
climb in quasi-steady flight and altitude for a given engine control setting was
used to establish the required length of time.

In Section 14.2, we made clear that the actual rate of climb values may differ from
the corresponding quasi-steady-state values because some of the excess power
must be used to accelerate the airplane along its flight path. Therefore, the con-
ventional approach may be inadequate for high-subsonic and supersonic airplanes
since the problem not only concerns climbing to a given height but also attaining
effectively any desired airspeed at that height.

The mathematical method which is capable of handling the problem of optimizing
the dynamic performance of airplanes is the optimal control theory or the calculus
of variations. A discussion of this subject, however, is definitely beyond the scope
of this book. The interested reader is referred to References 46 and 47, which
contain detailed teaching texts in the field of airplane performance optimization.

As mentioned already in Section 14.1, there are three dynamic performance prob-
lems of special interest. They are fastest climb or least time to climb, steepest
climb or minimum range during climb, and most economical climb where the
smallest amount of fuel is consumed. A fairly simple approach to these climb tra-
jectories is to formulate the dynamics of the airplane in terms of its total energy.
This is the socalled energy-state approximation that will be explained briefly in
this section. The present dynamic model neglects accelerations normal to the
flight path and assumes a flight in a single vertical plane and a no-wind condition
(References 48 and 49).
Then the total energy of the airplane, E, is given by the sum of the potential energy
and the kinetic energy. Thus
E= WH—i—lKVZ. (14.27)
28
The total energy per unit airplane weight is termed energy height and denoted here
by the symbol H,,
V2
H,=H+ T (14.28)
8o
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The energy height is a measure of the geopotential and geometric altitude that can
be attained if the airplane loses all its kinetic energy and trades it for increased
potential energy.

By differentiating Equation (14.28) with respect to time, and using dH/dt =
V siny, we obtain

dH _dH Vv
dt — dt g, dt

1
=V [siny—i— —d—V] . (14.29)
8 dt

Combining Equations (14.10), (14.15) and (14.29) furnishes

dH, (T—D)V
=~ —RC,. 14.30
i W s ( )

This remarkable result says that the time derivative of the energy height is equal
to the rate of climb of the airplane in quasi-steady flight. Therefore, dH,/dt is
also called specific excess power.

From Equations (14.3) and (14.16), the time to climb can be expressed as

t= [ —— 14.31
/ RC (14.31)

By differentiating Equation (14.28) with respect to H and substituting the result
into Equation (14.31), we can write the time to climb from one energy height to
another as follows:

He,
dH,
t= . 14.32
g oo
H,,

Cy

By the same token, Equations (14.4) and (14.5) can also be transformed into inte-
grals with independent variable H,,

H,,
dH,
5= / ¢ (14.33)
tan Y
H,,
HezF
W,= | —dH,. 14.34
= [ e He (14.34)
H,

1
Thus the trajectories for minimum time, steepest climb and minimum expenditure
of fuel between any two altitude/airspeed combinations are optimized by maxi-
mizing the quasi-steady-state performance parameters RCy, RC;/F, and 7; at each
energy height. In this connection, it is important to remember that the time-history
of the airplane motion is fully determined if two control variables are specified as
a function of time, and appropriate boundary conditions are known, e.g., the initial
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Figure 14.4 Curves of constant rate of climb for a supersonic airplane

flight condition (see Chapter 8).

The importance of the energy height concept is exemplified here by applying this
approach to the minimum time to climb problem. Therefore, typical contours of
constant RC; are plotted in Figure 14.3a for a high-subsonic airplane and in Figure
14.4 for a supersonic airplane. These curves are constructed by determining the
RC; values for a series of altitudes, assuming a constant engine control setting and
airplane weight. The RC; equal to zero contours represent the level flight speed
envelopes as portrayed in the previous Figures 10.6 and 10.10.

The plots in Figures 14.3a and 14.4 are enhanced by superimposing lines of con-
stant energy height, which are calculated from Equation (14.28). Since a base of
H versus V?/(2g,) is used, the constant H, lines are straight.

From Equation (14.32) it follows that the condition for minimum time to climb is
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given by

s

} =0. (14.35)
H,

In other words, the minimum flight time in Figures 14.3a and 14.4 is obtained
when flying through the points on the RC; curves that are tangent to the constant
energy height lines. The loci of these points of tangency describe the optimum
trajectories. Note that in the supersonic case, the optimum path consists of a
number of stages. Successively we have in Figure 14.4: an accelerated climb
from the initial condition to an appropriate energy height, a zoom dive through the
transonic speed range along a constant energy height line, a continued accelerated
climb at supersonic speeds, and a zoom climb to the final point at almost constant
energy height.

To calculate 7, ; , first plot RC I against H, for various points along the trajectory,
as constructed in Figure 14.3b for the high-subsonic airplane. The shaded area
under the curve represents the minimum flight time from V =V, at sea level
(H=0)toV =Vyat H, = 13800 m.

As indicated by the dashed line in Figure 14.3a, the quasi-steady fastest climb
schedule occurs at altitude/airspeed combinations at which the RC; curves are
tangent to the horizontal lines of constant geopotential altitude. Apparently, this
trajectory does not differ seriously from the unsteady climb schedule so that the
associated times to climb will only be slightly different. In contrast, the supersonic
airplane in Figure 14.4 has a significantly different time schedule and in this case
the energy concept leads to substantial savings in flight time.

14.4 Effects of vertical wind gradients

In this section the situation is considered in which the airplane is faced with the
occurrence of a varying wind velocity during climb and descent. The variations
of wind speed with height and time are called wind shear. It is the object of the
following analysis to show the importance of wind on climb angle and rate of
climb and to derive a suitable means of correcting for its effect.

For simplicity, we shall presume the presence of an increasing or decreasing head-
wind or tailwind which varies with height only: V;;, = V,, (H).

From Figure 14.5a, we find at an airspeed V and headwind Vj;, the components of
the ground speed along the axes of the Earth axis system as (cf. Equation (1.26))

ng =Vcosy—Vy (14.36)
Vyg =0 14.37)
Vzg =Vsiny. (14.38)
The associated acceleration of the airplane is described by the two equations:
dVx, av dy v,
g _ 4V _ Vsiny— W 14.39
dt dr °° yovsm 7/dt dt ( )
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Figure 14.5 Effect of wind on velocities and accelerations

dv.
dtzg = CZ—‘; siny+V cos y%/.
In Equation (14.39), the term dV;; /dt is the time rate of change of the wind ve-
locity as experienced by the airplane.

The components of the acceleration along the air-path axes are given by (Figure

14.5b)

(14.40)

av, dv. dv.

di‘a . dfg cos Y+ dtzg siny (14.41)
av,  dv, v,

dtza = dfg siny+ dtzg COS Y. (14.42)

After substitution of Equations (14.39) and (14.40) into Equations (14.41) and
(14.42), we get

dVy —dv  dVy

X 2T Tw 14.43
dt dt dt cosy ( )
dv, dy dV,

—Zo —y L4 " Wingy. 14.44
dt ar T Y (14.44)

Thus, in the presence of a wind gradient, the equations of motion for the airplane
in symmetric flight read:

W [av dVy .

” [E_WCOSY] =T —D—Wsiny (14.45)
W dy dvy .

ZlyZ e IwW =L— . 14.4
P [V I + I sin y] W cosy. (14.46)

Note that with dV};, /dt = 0, the equations of motion become identical to the Equa-
tions (8.7) and (8.8), which were derived in Chapter 8 for the no-wind condition.
Hence, we can conclude that the motion of the airplane relative to the air is not
affected by a horizontal wind with a constant velocity. However, when the mag-
nitude of the wind velocity varies with altitude, also the motion of the airplane
relative to the air changes. This may be seen by writing,

AV dVdH dv
4V _dVdd Yy d 14.47
df " dH di ~am’ Sy (1447)
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dvy, dVy dH  dVy,
dt  dH dt  dH
where dV;, /dH is the vertical wind gradient.

Assuming a quasi-rectilinear climb and using g = g, we obtain by putting Equa-
tions (14.47) and (14.48) into Equation (14.45),

Vsiny, (14.48)

W [dVv dv,
g_o [d—HVsiny— d—IfIVVsinycos}/} =T—-D—Wsiny. (14.49)
Assuming also that the flight-path angle is sufficiently small, so that its cosine can
be replaced by unity, we can change Equation (14.49) into the forms:

Vav VdVy| T-D

iny|1+ 4 8w —si d 14.50
sm}/[ +gOdH ” dH] = siny an ( )

av, T—D
Vav. v —W} _(T-Dv = RC;. (14.51)

Examining Equations (14.50) and (14.51), we note that the effect of a wind gradi-
ent (dVy, /dH # 0) can be treated in a similar fashion as the effect of accelerated
flight. Furthermore, we note that in the case of a headwind that increases with
height (dVy, /dH > 0), a wind gradient has the tendency to improve the climb
performance, at least as V is held constant. Due to the resulting decrease in accel-
eration with respect to the ground there is a conversion from kinetic to potential
energy, through which both the climb angle and the rate of climb will increase.
Conversely, a negative wind gradient (dV;,, /dH < 0) will reduce the climb perfor-
mance.

As discussed in Chapter 2, due to the surface friction effect of the ground on the
wind, for an open area there will normally be a continuous increase in wind ve-
locity from ground level up to some height (see Figure 2.19). Clearly, large wind
gradients may occur close to the ground so that wind shear effects are of special
significance when taking off or landing in wind.

Before closing this section, we remark that variations in the horizontal wind di-
rection will change the magnitude of the headwind or tailwind component and
therefore will have a similar effect as a change of wind velocity with height.

14.5 Limitations on vertical velocity

The adjustment of the pressures within the air spaces in our head to varying atmo-
spheric pressure during climb and descent can be experienced as unpleasant and
even as painful.

Of special significance is the matching of the air pressure in the middle ear cavity
(Figure 14.6). When the exterior pressure changes, the eardrum bulges outward if
the atmospheric pressure is decreasing, and inward if it is increasing. Equalization
of pressures is obtained by means of the Eustachian tube, which connects the
middle ear with the oral cavity.
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Figure 14.6 The Eustachian tube

When climbing, the higher pressure in the middle ear causes air to escape through
the Eustachian tube. This occurs each time a pressure difference of about 2000
Pa is built up between the inside and outside air. The process of balancing the
pressure in the middle ear is fairly automatic and the occupant is aware only of a
click as the air passes through the Eustachian tube.

When descending, however, the equalization process is most often more difficult.
In going from lower to higher atmospheric pressure, the Eustachian tube does not
open of itself and yawning, swallowing, or blowing with mouth and nose closed
is required in order that compensating air can enter the middle ear. But if there
is a common cold or a sore throat, the Eustachian tube may be blocked. In such
circumstances, overinflation of the eardrums occurs and severe pain will be expe-
rienced during descent.

Generally, the influence of ambient pressure changes on the ears fail to appear if
the time rate of change of pressure is kept within the following limits:

—30 < dp/dt < 18Pa/s. (14.52)

In relating the change in pressure to the rate of climb of the airplane, we write

_dH _dHdp

RC=—=—"—.
dt dp dt

(14.53)

By making use of the hydrostatic equation: dp = —pg,dH, we can express the
rate of climb as

co_Ldp (14.54)

pgo dt’
Obviously, the vertical velocities determined by Equations (14.52) and (14.54)
decrease as altitude decreases. E.g., the maximum allowable rate of climb at sea
level should not exceed 2.5 m/s (500 ft/min) and the rate of descent 1.5 m/s (300
ft/min).
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The use of pressurized airplanes has greatly solved the problem mentioned above.
In this case, the limit on the vertical velocities of the airplane is determined by
the rate of change of cabin pressure. At the normal cruising altitude, the cabin
pressure, p., is equivalent to a geopotential pressure altitude of approximately
1800 m (= 6,000 ft), i.e., p./ Po = 0.8. Under this condition, the minimum time
needed to increase the cabin pressure to the sea-level standard value becomes

~ po(l=pe/py)  101325(1—-0.8)

dp/dr = T = 11255 (18.8 minutes).

Note that this length of time is independent of the cruising altitude. For instance,
during a descent from 9,000 m, the mean allowable rate of descent of the airplane
is 9,000/1125 = 8 m/s (1575 ft/min).



Chapter 15

CRUISE PERFORMANCE

15.1 Range and endurance

As depicted in Figure 15.1, here, the term range is used for the horizontal straight-
line distance an airplane travels in cruising flight, whereas the distance traversed
in climb, cruise, and descent is called toral range, stage length or block distance.
Maximum total range is the distance an airplane can fly between takeoff and land-
ing as limited by its fuel capacity. The fuel consumption per unit time is

Wy 15.1
==, (15.1)
where Wf is the total fuel load.

Since de = —dW, the fuel weight flow rate is related to the weight of the airplane
by (see also Chapter 8)
aw
F=—-——-. 15.2
7 15.2)

The range is obtained from the following definite integral,

2} W, W,
\% \%
RZ/thZ/——dWZ/—dW, (15.3)
F F
il W, W,

where V /F is the specific range (range per unit weight of fuel). The subscripts
”1” and 72”7 refer to the initial and final conditions at start and end of cruise,
respectively.

ey range R —
altitude ’— \F)
Wy t2
i cruise
climb descent
takeotf weight landing weight
e total range (stage length) J

Figure 15.1 Mission nomenclature

283
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The term endurance is used for the length of time spent in cruising flight. The
endurance can be written as

t W W,
E= /dt = _aw = d—W (15.4)
F F
4 W, W,
At this point it is important to remember that in symmetric flight, the time history
of the flight condition depends on the specification of two control laws, that is to
say, the description of the variation of two control variables with time (see Chapter
8).
Generally, both control variables are held constant throughout the cruise so that
the flight condition only changes due to the influence of fuel consumption on
airplane weight.
For airplanes propelled by airbreathing engines, however, there is only a slow
variation of airplane weight. This observation allows us to consider the flight as
a continuous succession of uniform motions under slowly varying conditions. In
other words, the instantaneous values of V /F and F can be determined as though
the airplane is in quasi-steady-state flight.

The procedure for determining F and V /F as a function of airplane weight may
be illustrated by reference to Figures 15.2a and 15.2b for a propeller-driven and
a jet-driven airplane, respectively. In both cases it is assumed that the airplane is
performing a level flight at constant engine control setting.

In the case of propeller propulsion, the problem requires the computation of the
level flight speed at a number of airplane weights from the equilibrium condition
P, = P,. To each flight velocity, there corresponds a particular value of propulsive
efficiency 7, and specific fuel consumption ¢. Then, successive engine powers
can be found by using Equation (6.1),

Fa

P, =
br nj

(15.5)

The corresponding fuel weight flow rates can be computed from Equation (6.15),
F =cph,. (15.6)

Analogously, for the jet picture we may use the respective points of intersection
of the thrust and drag curves to give the successive values of airspeed V, thrust
T, and specific fuel consumption ¢;. According to the definition of ¢;., Equation
(6.54), the fuel weight flow rates can be obtained from

F=c¢,T. (15.7)

Now, Equations (15.3) and (15.4) can be evaluated graphically to give the values
of range and endurance for the chosen cruise technique of constant altitude and
constant engine control setting.
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Figure 15.2 Determination of V /F and F (flight at constant altitude and engine control
setting)
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Figure 15.3 Calculation of range and endurance

Range follows from plotting V/F against W, as shown in Figure 15.3a. The
shaded area under the curve from the final cruise weight W, to the initial cruise
weight W, represents the range. Similarly, the endurance follows from the plot of
1/F versus W, as shown in Figure 15.3b.

If the preceding calculation procedure is done systematically a so-called cruise
chart can be deduced as exemplified in Figure 15.4. The diagram gives for a
specified altitude the typical variations of specific range with airspeed and airplane
weight, showing the various cruise techniques.

In Figure 15.4, the constant engine rating program is represented by the line AB,
the constant speed program by the line AC, and the maximum range program by
the line AD, all for the same initial cruising speed. Of these, the most realistic
cruise program is to maintain a constant airspeed at a fixed altitude (line AC).
In this connection, it may be remarked that, practically, the range achieved by
this cruise technique is virtually the same as that gained by the maximum range
program (Reference 50).

The instantaneous airspeeds which give the greatest distance on a given quantity
of fuel (line AD), may be called maximum range speeds or economic speeds, V..
Obviously, for a particular cruise program, the relationship between specific range
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Figure 15.4 Typical specific range performance at a specified altitude

and airplane weight follows directly from the chart and so the resulting range for
a given amount of fuel.

15.2 Approximate analytic expressions for range and endurance
(propeller propulsion)

To obtain analytic expressions for range and endurance, we note that specific range
and fuel weight flow rate can be related to the characteristics of the airplane and
propulsion system by using Equations (15.5) and (15.6). Assuming quasi-level
and quasi-steady flight, we can write

F=cpP,=cp—=cCp— =cCp—. (15.8)
j j n;
Making use of the relationships of Chapter 9 that V = %%CLL and D = g—’zW, we
obtain
vV n,C 1
M Rt (15.9)
F  cpCyW
W 2 C?
F=Pw, |ZZ2D (15.10)
n VSpC

Substituting Equation (15.9) into Equation (15.3), and Equation (15.10) into Equa-
tion (15.4) gives

Wl
R:/mﬂd—w (15.11)
cpCp W
W,
/C—f — c2/c3) (15.12)
w, Sp
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Figure 15.5 Best range and endurance conditions in level flight for propeller-driven air-
planes

An examination of Equations (15.11) and (15.12) reveals that from an analytical
point of view it is interesting to consider the cruise technique where the angle
of attack is held constant throughout the flight. Furthermore, 17; and ¢, usually
exhibit only small variations over the band of cruising speeds so that it is possible
to assume that they have constant average values.

Then, Equation (15.11) can be integrated to give an approximate analytic expres-
sion for the range,

_nc dW Y
C, W C
CP W2 CP

n] CLl Wl

. 15.13
erCp W, ( )

IW‘

This expression is the classic Breguet formula for range, derived by the French-
man Louis-Charles Breguet (1880-1955).

Inspection of Equation (15.13) learns that to maximize range, flight must be car-
ried out at the angle of attack at which C, /C;, is the maximum. This is the flight
condition for minimum airplane drag (Figure 15.5).

Also note that Equation (15.13) can be used for both constant altitude and climb-
ing flight. If the altitude is kept constant, then we see from the relationship
W= CL%szS that the airspeed must be steadily reduced as fuel is consumed.
On the other hand, if the airspeed is held constant, the cruising height must be
gradually increased during the course of the flight. Therefore, the latter cruise
technique is commonly referred to as cruise-climb flight. It should be remarked
that this type of flight may not be tolerable in many situations because of the
requirements of air traffic control (A.T.C.).

For propeller airplanes powered by piston engines, the term n ; /cp in Equation
(15.13) remains nearly constant when airspeed or altitude are changed. Conse-
quently, there will be no difference in range when the two cruise programs are
compared; only an increase in cruising speed for the cruise-climb flight.

For turboprop airplanes, however, high cruising altitudes are essential, since at a
given engine rating the specific fuel consumption decreases with height. Also it
is important that at the economic airspeed the engines operate at their maximum
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permitted cruise rating in order to achieve the lowest possible specific fuel con-
sumption. Obviously, the only way to attain the optimum cruising condition is to
fly at a high altitude.

To obtain a closed form solution for the endurance we shall consider the realistic
cruise technique of a flight at constant altitude. Then, carrying out the integra-
tion of Equation (15.12), with n; and ¢, assumed constant throughout the flight,
produces the following formula

C3/C2 M 32 W,
L/CD/ aw__m; |G/CH| =2 "
12 ol 12
s, VYW s [ VW,
 |CRICE | 2 2
_ L1/2D - . (15.14)
Cp 55 VW, W,

Introducing the airspeed at the starting point of the cruising flight, that is

w21
V=45, (15.15)
S pC

we modify Equation (15.14) to obtain

Wl
‘/sz 1] . (15.16)

Combination of Equations (15.13) and (15.16) yields the following expression for
the average velocity during the flight

Vavzﬁzw. (15.17)

E " 2(/W, /Wy~ 1)

Equation (15.14) indicates that for best endurance, the airplane must fly at the
angle of attack at which Ci / Cg is the maximum. This is the flight condition for
minimum power required and minimum fuel weight flow rate.
Inspection of Figure 15.5 shows that level flight speeds less than the speed for
best endurance are in the region of reversed command. As was demonstrated
in Section 11.3, flying in this region introduces the problem of speed instability.
Because of this phenomenon the actual cruising speed lies somewhat above the
minimum power required speed, e.g., Ve > 1.1V, . (cf. Equation (11.13)).

nc 1
cpCpV,

E=2

min
15.3 Approximate analytic expressions for range and endurance
(jet propulsion)

Assuming quasi-steady level flight and using the relationship D = g—’ZW, the thrust
can be written as

c
T=D=Lw. (15.18)
CL
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1

With Equation (15.7) and the relationship V = ¥%C_L’

found to equal

the specific range is

v 1 wac,

—=— | =——==. 15.19
F oW\ S pCf) ( )
Substituting Equation (15.19) into Equation (15.3) yields
" 2C
R— Y,%d , (15.20)
P W\ SpCj
2

The corresponding integral, expressing the endurance is obtained by insertion of
Equations (15.7) and (15.18) into Equation (15.4),

1Cd
_/747"" (15.21)
cpCp W

In deriving analytic expressions for range and endurance, first, we shall consider
cruising at a fixed height and at a constant angle of attack. Moreover, we shall
continue to assume that the specific fuel consumption remains constant for the
duration of the flight. The analysis will be further simplified by neglecting the
variation of the effects of compressibility on the aerodynamic characteristics of
the airplane as the flight speed reduces during the course of the flight.

Integrating Equation (15.20), we find

W, W,
el [26 fav _2 [2¢] o
cr\[ SpC3 p VW oer \[SpCE
2 2
2 [2¢
=—, | —= /W, —/W,|. 15.22
cr SPC%[ 1 2] ( )

It should be remarked that /p is present in the denominator of Equation (15.22),
and that this is the essential reason why high cruising altitudes are desired for jet
powered airplanes. By using Equation (15.15), we can rewrite Equation (15.22)
as follows,

vV, C,
—p LXL
cr Cp

S pC3

W,

W2
=l (15.23)

2 [wacg ll_ W,
1

where V/ is the initial airspeed.
Performing the integration of Equation (15.21) gives

o1 ce o w
an‘ =—Lipn-L
w, rp W,

Wl
o tG [V _ 16

15.24
cr CDW w cr Cp ( )
2
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Figure 15.6 Best range and endurance conditions in level flight for jet-powered airplanes

From Equations (15.23) and (15.24) the average airspeed during the flight is found
to be

R 2V (1 — /W, /W)
Vuv - E - ln(Wl /W2) (1525)

An inspection of Equations (15.22) and (15.24) shows that:

e For best range, the airplane should be flown at the angle of attack for maxi-
mum CL/C%. From the relationships V =, / %%CLL and D = g—‘L’W, it may be
seen that this requirement corresponds to the flight condition for minimum
D/V (Figure 15.6).

e At a given angle of attack, range increases with altitude up to the typical
cruising altitude. The favorable effect of a higher altitude is augmented by
the tendency of the specific fuel consumption to decrease with increasing
altitude up to the tropopause (I.S.A.).

e Maximum endurance will be obtained when C; /C}, is the maximum. This

is the flight condition for minimum airplane drag (Figure 15.6).

A second cruise technique of interest for turbojet and turbofan airplanes is the
flight at constant airspeed and angle of attack. For this cruise technique, we
pointed out in Section 15.2 that as fuel is burned, the airplane should ascend in
altitude.

The flight-path angle occurring in this cruise-climb schedule, however, is normally
sufficiently small so as to approve the use of the level-flight conditions that lift is
equal to weight and thrust is equal to drag.

From Equations (15.3), (15.7) and (15.18), we then have

Wl
C
R:/K—Ld—w. (15.26)
cr Cp W
WZ

If again ¢, and C; /C), are assumed to have constant values throughout the flight,
Equation (15.26) can be readily integrated to give the expression
ISR

R n—,
crCp W,

(15.27)
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where the quantity Cl S—L is called the range factor.
T *>~D

Sometimes it may be convenient to express the range in terms of the overall effi-
ciency of the propulsion system. According to Equation (6.55), we have

gV
Nt = ——- (15.28)
tot HCT
Insertion of Equation (15.28) into Equation (15.27) gives
HC, W
R="1Nyy— Lln_L (15.29)

§Cp W,

As mentioned earlier in Chapter 6, the heating value H of all common aviation
fuels (hydrocarbon fuels) is about 4.3 x 107 Joule/kg so that the ratio H/g in
Equation (15.29) is about 4390 km.

Equations (15.27) and (15.29) are also labeled Breguet range equations, although
Breguet’s name was originally associated with range performance of airplanes
driven by the combination of piston-engines and propellers. In this light, it is
worthwhile to remark that Equation (15.29) also holds for propeller-driven air-
planes. This statement can easily be verified by substitution of Equations (6.16)
and (6.17) into Equation (15.13).

At constant airspeed and angle of attack, the endurance is directly found as
R_1Cy W

Vo, Cp W,

(15.30)

Obviously, the greatest endurance will be obtained when C; /C p is the maximum.
Also note that Equation (15.30) is identical to the expression for the endurance in
level flight (see Equation (15.24)).

Equation (15.27) indicates that for a given initial weight and fuel load, the air-
plane should fly at that altitude and airspeed at which the product V(C, /C})) is a
maximum, provided that variations in specific fuel consumption can be neglected.
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The derivation of this flight condition will be demonstrated from a numerical ex-
ample. For this, we return to our illustrative turbofan airplane with its lift-drag
polars given in the previous Figure 9.7. From this data, the curves in Figure 15.7a
are deduced, which give the maximum lift-to-drag ratio and the associated lift
coefficient as a function of flight Mach number. The graph manifests the char-
acteristic behavior that both quantities drop off sharply at Mach numbers greater
than 0.6. In Figure 15.7b are plotted the required altitudes (I.S.A.) versus M as
computed from the relationship W = CL%przS where C; is the lift coefficient at
which C; /C}, is the maximum. The related airspeeds follow from V = Mc.

The final result is shown in Figure 15.7c, in the form of a plot of the product
V(C;/Cp)max against flight Mach number. Clearly, there is an optimum flight
Mach number and an optimum altitude at a given airplane weight. Figure 15.7b
also demonstrates that as the weight of the airplane decreases during cruise the
airplane should climb in altitude to maintain the optimum flight condition.

Note from Equation (15.27) that with the assumptions of constant ¢, and C, /C),,
the range has no absolute maximum. Without compressibility drag, a constrained
optimum is obtained when the magnitude of the airspeed is specified. In this case,
the maximum range will also occur when C; /C}, is the maximum. This condition
requires that the instantaneous height should be that height at which the minimum
drag speed becomes equal to the chosen airspeed.

When our cruise-climb flight is conducted in the lower stratosphere (I.S.A.), where
the speed of sound is constant, a fixed airspeed also means a fixed flight Mach
number. Consequently, the aerodynamic ratio in Equation (15.27) is exactly con-
stant (see Chapter 4). If we look at the force equation

1
T :cDEpvzs, (15.31)

we see that the thrust is directly proportional to the air density. However, at a con-
stant value of T'/p, turbo-engine performance in the lower stratosphere (I.S.A.) is
such that engine control setting is fixed. As a result, also specific fuel consump-
tion remains unchanged (see Chapter 6). Therefore, the desired flight program is
realized if the pilot simply maintains constant readings on the Mach meter and
the engine-speed indicator. The appropriate expression for the range is then ob-
tained by substituting Equation (15.31) into Equation (15.27). The resulting form
becomes

R:i ch—%ln% (15.32)

cr\[ Sp C{’) w,

We observe that the condition for maximum range when flying in the lower strato-
sphere (I.S.A.) at a given engine control setting and airspeed exists when C% / Cg
is the maximum.
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A third constrained optimum is derived for a specified altitude at the starting

point of the cruise-climb flight. Then, insertion of Equation (15.15) into Equa-

tion (15.27) leads to the expression
1 (W 2C W

R= ———=1n

: (15.33)
e\ S PGy W,

where p, is the air density at the initial height H,.

Examination of the above equation reveals that to obtain maximum range, flight
must be executed at maximum C, /C5,.

Taking the initial height of the cruise-climb flight to be the cruising height of
the constant altitude flight and assuming the same angle of attack and specific
fuel consumption, we can derive a simple relationship between the two ranges.
Dividing Equation (15.27) by Equation (15.23) yields

Rva _ _In(W/Wy) (15.34)

Ry 2(1— /W, /W)

The above ratio is presented in Figure 15.8. The graph indicates that the increase
in range by performing a cruise-climb flight becomes greater as the weight ratio
W, /W, increases. In other words, flying cruise-climb appears to be more econom-
ical than level flight, especially when the airplane executes a long-distance flight.
In practice, a cruise-climb flight may be approximated by a sequence of level
flight segments (Figure 15.9). However, when the cruise is executed under the ju-
risdiction of flight traffic control regulations, each altitude change needs approval.
Then cruising altitudes as well as cruising speeds and headings are assigned by air
traffic control in order that sufficient spacing is ensured vertically, longitudinally,
and laterally for safe flight.

15.4 Effect of wind on cruise performance

In this section we shall pay some attention to the effect of wind on cruising per-
formance. For simplicity, we shall consider the presence of a constant headwind
or tailwind only, directed along the flight path.
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From our analysis in Chapter 14, we know that if an airplane flies in a steady
wind, the motion is governed by the same equations as used in still air. Thus, drag
and power required curves are unaffected although now ground speed differs from
airspeed.

In level and quasi-level flight, the relationship between ground speed V,, airspeed
V, and wind velocity Vy;, is given by (cf. Equation (1.24))

Vo=V —Vy, (15.35)

where, according to our sign convention, a headwind is taken positive and a tail-
wind negative.

Wind does not affect the endurance of an airplane because it is a function only of
fuel consumption per unit time. On the contrary, wind has a pronounced effect on

range.
The specific range with respect to the ground can be expressed as
Vo, V-V \4 Vi
Z8 W_"l1—-W (15.36)
F F F 14

Equation (15.36) indicates that the with-wind and zero-wind specific ranges are
different. For example, when V = V;;, the distance traveled relative to the ground
is zero. Clearly, the presence of wind also affects the economic speed. This can
be investigated by considering the following relationships:

v, v, i [V—V,
s Ve T [W] ) (15.37)
cphy,  Cp P

w =
g:ﬁ:i[v—vw}_ (15.38)
F ;T cf D
Note that Equations (15.37) and (15.38) concern the specific range of propeller-
driven airplanes and jet powered airplanes, respectively.
As shown in Figure 15.10, with wind the economic speeds with respect to the
ground are found by determining new origins on the airspeed axes and drawing
tangents to the power required curve and the drag curve. From the constructions
shown, it is seen that for both airplane types the airspeed for maximum specific
range with a headwind is greater than in still-air conditions. The reverse is true
when flying with a tailwind. Further, it may be understood from Figure 15.10 that
maximum specific range, and so the maximum range, is increased by a tailwind
and decreased by a headwind.
An expression for the range relative to the ground with a wind of velocity Vy; is
given by

Wl Wl Wl Wl
v, V-V, 1% aw
R:/—gdW:/i( W)dW:/—deVW/— or
F F F F
W2 W2 W2 W2

R=R — Vi E. (15.39)

(VWZO)
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Figure 15.10 Effect of steady headwind and tailwind on airspeed for maximum specific
range

Again this equation shows that range is affected advantageously by a tailwind and
adversely by a headwind. Therefore, it will be clear that the actual fuel load of
the airplane not only is determined by the flight distance but also by the prevailing
winds along the flight path. These may be known from meteorological forecasts,
completed with seasonal wind data for the airway.

15.5 Weight breakdown

The total weight of the airplane W,,, may be written as the sum of the struc-
tural weight W,, the weight of the propulsion system W,, the payload W), the fuel
weight Wf, and the weight of the reserve fuel Wfr. Thus,

Wip=WetWetWp+ W, +W,,. (15.40)

The total weight is the weight at takeoff brake release (TOW), and depends on
the loading condition. TOW should not exceed the maximum takeoff weight
(MTOW), which is generally determined by structural considerations.

The reserve fuel must be onloaded above the trip fuel to provide for changes in the
intended flight profile or flight program and for diversion to an alternate airport
due to a balked landing at the airport of destination. The amount of reserve fuel
is usually determined by the operator in accordance with operational procedures.
Typically, the procedure allows for a flight to alternate and a standard stacking
time (Figure 15.11).

Payload is the weight of passengers and cargo. The sum of the payload and trip
fuel may be called the useful load W,.

Wy =Wp+W,. (15.41)

The structural weight will include not only the weight of the airframe but also
the weight of fixed and removable equipment, furnishings, and the weight of the
complete crew. The structural weight and the weight of the propulsion system
may be combined into the operational empty weight (OEW) or basic operational
weight W,

W, =W, +W.. (15.42)
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Thus, W, is the weight of the airplane fully equipped excluding only payload and
fuel,

Wip =Wy + Wy + W+ W, (15.43)

If we divide through by the total weight, we obtain the weight breakdown in terms
of weight fractions,

Wp . Wp

W Wy W W
VVl‘() W/fl)

W'

Wy

1 L
Wio

+ + (15.44)
Because of their usefulness, weight fractions are often employed in airplane per-
formance and design considerations. For example, when we assume that the entire
journey length is performed in cruising flight, from Equations (15.27) and (15.29),

the ratio Wf /W,, can be written as

W, R — R
o e YD — e M FCD) (15.45)
Wio

where now R is the total range. Equations (15.45) and (15.44) show that the aim
is obviously to make the range factor as large as possible and to keep the frac-
tion W, /W,,, low in order to obtain a large payload fraction. The weight fraction
W, /W,, may be regarded as the structural efficiency since the lighter the airplane
is built, the greater is the useful load fraction.

Typical weight fractions for a stage length of 6500 km are shown in Figure 15.12
for a high-subsonic turbofan airplane and a supersonic transport with turbojet en-
gines. Due to its lower range factor, the fuel fraction for the supersonic airplane is
higher than for the turbofan airplane. Consequently, the payload fraction for the
supersonic transport is considerably smaller, notwithstanding its higher structural
efficiency.

We also conclude from Equation (15.45) that at a given range factor, a greater fuel
fraction is required as the range becomes longer. This implies that for a given
airplane the payload fraction decreases with range as can be seen from Equation
(15.44).
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Figure 15.13 Payload-range characteristics

In Figure 15.13a the weight breakdown is sketched with respect to stage length in
still air for a typical transport airplane. The line AB gives the takeoff weight at the
maximum payload that can be carried. Point B corresponds to the maximum stage
length with maximum payload. This range is called the design range. Increasing
the total range above the design range requires that payload is replaced by fuel.
This is represented by the line CD. At point D the ultimate range is reached (zero
payload and reserve fuel unconsumed). Usually, the fuel tank capacity is such that
the range cannot be increased beyond point E. The line EF, finally, indicates that
some further increase of the total range is possible by reducing the takeoff weight
when consuming the full fuel load.

The line GH in Figure 15.13a represents a limit to the takeoff weight that may be
dictated on short ranges by the maximum allowable weight of the airplane at the
landing. The maximum landing weight (MLW) is imposed by structural design re-
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quirements. Another weight limit is the maximum zero fuel weight (MZFW), the
maximum allowable weight of the airplane without fuel. Normally, the maximum
landing weight is greater than the maximum zero fuel weight plus the reserve fuel.
Otherwise, payload might be restricted by the limited strength of the landing gear
or airframe structure under particular landing conditions.

The payload-range relationship of Figure 15.13a is separately portrayed in Figure
15.13b. The latter curve may be regarded as the basis of the economic value of a
transport airplane.

15.6 The economic performance of transport airplanes

In this section are summarized the most valuable parameters determining the com-
mercial merit of a transport airplane. These performance items are given below
and will be explained in the order listed:

- block time, Eg
- block speed, Vi
- transport product, Py
- transport productivity, P,

- revenue-earning capacity, P,

The block time is the total time elapsing from starting engines at the departure air-
port to engines off at the destination place. Thus, the block time includes taxi time
from the loading point to the takeoff runway, checks, takeoff, ascent to cruising
height, cruise, descent, final circuits, approach and landing, and taxi time to the
terminal point.

The block speed is the block distance divided by the block time,

V= —. (15.46)

Evidently, the block speed is lower than the cruising speed. According to Refer-
ence 51, the relationship between block time, block distance and cruising speed
can be written as

R
Ep=— +A, (15.47)
VCl'

where R is the block distance, V is the cruising speed and At is the length of time
that accounts for the field operations and the lower airspeeds in flight phases other
than the cruise.

Combining Equations (15.46) and (15.47) results in the following expression for
the block speed,

R
V,=— . 15.48
i v% +Ar ( )
Typical variations of block time and block speed with total range are plotted in
Figure 15.14, using Ar = 50 minutes. The graphs show that at a given cruising
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Figure 15.15 Economic parameters for transport airplane

speed both block time and block speed increase with increasing block distance,
and that raising the cruising speed is more beneficial as the range is greater.
Obviously, the revenues which are gained by transport of passengers and/or freight
are dependent on payload as well as range. Therefore, the transport performance
is given by the product of payload and range,

P, =W,R, (15.49)

where Py is named the transport product and may be expressed in the units tonkm
or passengerkm.

For a transport airplane with payload-range characteristic as depicted in Figures
15.13b and 15.15a, the variation of the transport product versus stage length is as
shown in Figure 15.15b. It is of interest to note that the peak value of the transport
product occurs at a flight distance which is equal to half the ultimate range. In the
case that the latter distance is shorter than the design range, the optimum value
occurs at the design range. Also note that the revenues are directly proportional to
the load factor, the ratio of the payload actually carried over a given route distance
to that payload that could have been carried over the same distance. The reader
should note that the term “load factor” is also used in Chapter 8 in the context of
the loads from flight maneuvers on the airplane structure.

The transport productivity is defined as the transport product delivered per unit
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time. Usually, it is based on block time, so that we can write

_WPR_

P =W,V (15.50)

h— EB
From the combination of the payload range diagram in Figure 15.15a and the
block speed-range relationship in Figure 15.15c, we obtain the curve of Figure
15.15d. This shows the typical variation of transport productivity with block dis-
tance. From the diagrams, we see that the maximum value of P, occurs at the
design range.

The revenue-earning capacity is the transport product per year. If U is the annual
flight utilization of the airplane in hours, we have

Py =PU=W,VgU. (15.51)

For long-haul routes, the annual utilization might reach a value of 4500 hours.
This figure gradually decreases as the route distance (block time) becomes shorter
(Reference 52).

Besides the preceding parameters, the specific costs of operating a commercial
airplane, that is to say, the costs per tonkm or costs per hour are as much of
importance to its economic value.

The operating costs are usually broken down into direct and indirect costs. The di-
rect operating costs (DOC) are those which are associated with flying operations.
These may include maintenance, crew, airplane service, landing fees, depreciation
of capital invested, insurance, and fuel. The indirect operating costs (IOC), on the
other hand, are independent of the characteristics of the airplane since they are
connected with the costs of operating an airline. They may encompass manage-
ment, administration, sales, housing, and depreciation of ground properties and
equipment.

Beyond doubt, when considering the economic value of an airplane we shall spe-
cially be interested in the direct operating costs as a criterion.

As a means of estimating DOC for comparative purposes, standard methods were
published by the Society of British Aircraft Constructors (SBAC) in 1959 and by
the Air Transport Association of America (ATA) in 1967 (References 52 and 53).
To reflect the effects of inflation and changing technology, renewed and updated
cost models have been developed recently. See, for example, References 54 and
55. These sources will aid the reader in obtaining a proper understanding of the
airplane related cost problem.



Chapter 16

AIRFIELD PERFORMANCE

16.1 The takeoff maneuver

The takeoff can be defined as the maneuver by which the airplane is accelerated
from rest on the runway to the climbout speed V. over a 10.7 m (35 ft) obstacle
(screen height) for civil transports or a 15.2 m (50 ft) obstacle for light propeller-
driven and military airplanes (Figure 16.1).

The takeoff distance may be considered to consist of two main parts: (1) the
ground run distance, and (2) the airborne distance.

The ground run comprises the pre-rotation phase and the rotation phase, where
the airplane successively accelerates from standstill to the rotation speed Vj, and
from Vj, to the liftoff speed V; . The rotation speed is the speed at which the
pilot initiates upward rotation of the airplane and is perhaps the most important
reference speed for the pilot since varying Vj, can greatly affect the takeoff distance
and the overall safety level of the takeoff maneuver.

During the first part of the ground run, the airplane incidence remains fairly un-
changed. Beyond the rotation speed the angle of attack is gradually increased from
the ground attitude toward the liftoff condition such that at V; - the lift equals the
weight and the airplane becomes airborne.

The airborne distance is usually divided into the transition to climbing flight and
the rectilinear climb to the screen height. In the transition phase, where the flight-
path angle is increased from zero at V; . to that of steady climb at screen speed
Vi, is flown with an incremental lift coefficient in order to provide sufficient lift
to accomplish an adequate curvature of the flight path.

During the takeoff maneuver flap deflection and engine control setting remain
constant. However, to improve climb performance, the landing gear is retracted
soon after the airplane has become airborne.

After passing the screen, the airplane travels along the takeoff flight path until it
reaches a safe flight condition at an altitude of about 450 m (1500 ft), where the
continued climb to cruising altitude begins (see Figure 11.4).

According to the airworthiness requirements, for multi-engine civil transport air-
planes the occurrence of single engine failure during the takeoff ground run must
be awaited. To warrant nevertheless adequate safety and handling, a number of
reference speeds are of significance in airfield performance computations. These
speeds are indicated in Figure 16.2 in the order in which they normally occur
during the takeoff maneuver.

The decision speed V| is selected such that when at this speed an engine failure
is recognized, the pilot is able to abort the takeoff and make a full stop on the

301
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Figure 16.2 Takeoff reference speeds for conventional transports

runway, or to continue the takeoff to the screen height with one engine out, in the
same distance (Figure 16.3a).

Takeoff distances based on this condition are called balanced field lengths. The
scheduled takeoff distances are usually determined by the balanced field lengths
or by the distances over the screen height for the all-engines case multiplied by a
factor 1.15, whichever is greater.

The decision speed V| is determined by computing the so-called accelerate stop
and accelerate-climb distances as functions of the engine failure speed, V.. The
former distance is the length required to accelerate to Vi, and thereafter stop the
airplane on the runway. The other distance is the length required to accelerate to
Vr and then continue the takeoff over the screen height with one engine inoper-
ative.

Plotting the two distances as sketched in Figure 16.3b yields the balanced field
length and the decision speed. If an engine should stop at a speed below V| the
pilot should abandon the takeoff, whereas, if an engine fails beyond V, the pilot
should continue the takeoff because of the fact that there may remain not enough
runway length for deceleration to standstill.

The decision speed may be recommended to be somewhat less for wet runway
conditions then for dry conditions to guarantee that the same accelerate-stop dis-
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tance can be achieved.

Returning to Figure 16.2, we see that the decision speed is higher than the mini-
mum control speed, V, -, the minimum speed above which it is possible to main-
tain adequate airplane control for takeoff (see Section 11.2). We also see that
the decision speed is lower than the rotation speed Vj. In its turn, the minimum
acceptable value of V, may not be less than 1.05 V.

The airworthiness requirements also distinguish the minimum liftoff or unstick
speed V,,;, the calibrated minimum speed at which the airplane can safely lift off
the ground, and continue the takeoff. The actual liftoff speed V; - depends on the
rotation speed V. The latter speed must be chosen such that V; . > 1.1V, with
all engines operating or V, .. > 1.05V,,; with one engine out. The requirements
prevent a rotation to an attitude exceeding that at the demonstrated V,,,, and with
that the occurrence of a ground stall and so insufficient ability to liftoff. Further,
Vi must allow the takeoff safety speed V, to be reached at the screen. The speed
V, is referenced as the lowest speed to ensure an adequate and safe climbout with
the critical engine inoperative and the live engine(s) developing full takeoff thrust.
For turboprop airplanes the requirements quote: V, > 1.1V, -~ and V, > 1.2V, ¢ for
two-engine and three-engine airplanes and V, > 1.15V, ¢ for airplanes with more
than three engines. For jet-driven airplanes the takeoff safety speed shall not be
less than: V, = 1.1V}~ and V, = 1.2V, ¢ irrespective of the number of engines.
The speed V), is the minimum stalling speed measured in a flight where the
airspeed is steadily reduced at a rate of 1 knot per second, as already defined in
Section 8.4. For further details and the regulations in the nontransport categories
the reader should consult the airworthiness requirements.

16.2 Takeoff ground run

The forces on the airplane during ground run are shown in Figure 16.4. The
weight of the airplane is balanced by the lift and the reaction force of the ground
surface on the wheels. Thrust is opposed by the rolling friction between wheels
and ground surface in addition to the drag of the airplane.
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Figure 16.4 Forces acting during takeoff ground run

The frictional force D, may be written as

Dg = ng +Dgn = Ur(Nm+Nn)
=u(W—L) = (W _CLg%pvzs)v

where C L is the lift coefficient in the ground run attitude and p, is the coefficient

of rolling friction. Typically, 1, may be taken as 0.02 for a concrete or asphalted

runway and 0.05 for an airstrip with short cut grass.

The equation of motion in forward direction is (assuming zero wind and no run-

way slope)
wav
g dr

(16.1)

1
=T-D-Dg=T— cDgzpv2stg, (16.2)

where CDg is the drag coefficient in the ground running condition. Both C Le and
Cp, will vary during the rotation phase of the ground run.

Combining Equations (16.1) and (16.2), the acceleration of the airplane during
ground run at a speed V becomes

dv

T 1pv?
o =g w — Uy — (CDg *I'irCLg)‘2 ] . (16.3)

w/s

Denoting dV /dt = a and using V = ds/dt, the distance traveled in accelerating
from rest to the liftoff speed can be expressed in the form

LOF LOF

/ vdv T (16.4)
\%4
0 8 |:p{/ I (CDg .urCLg) zul/)/s :|

This equation shows that the distance s, depends on the acceleration during the
ground run, which is a function of V.

Introduction of the lift coefficient (C; ), defined by the condition that the lift at
V; or 1 equal to the weight of the airplane

1
W=L=(Coor5 PViorS, (16.5)
yields for the ground run distance

LOF

/ vdy . (16.6)
0

CDg :ui‘CLg) V2

W r (CL)LOF VLOF
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The length of the ground run may be determined by stepwise integration of Equa-
tion (16.4), that is, calculate the acceleration of the airplane at a number of forward
speeds and then plot V /a against V as shown in Figure 16.5. The area under the
curve from V =0to V =V, is the value for s,.

The ground run distance may be estimated analytically by assuming that the thrust
to weight ratio 7 /W is represented by a mean value of the thrust 7 (W is assumed
constant during takeoff). Further, we assume that the angle of attack is constant.
In the case of a nose-wheel type landing gear, this is achieved by keeping the nose
wheel on the ground until liftoff. Under this condition the quantity (Cp, — t,Cy,,)
in Equation (16.4) may be assumed constant throughout the ground run.

V/a

4 v
/ e LOF
v
Figure 16.5 Graphic determination of Figure 16.6 Effect of ground on tip vor-
ground run distance tices

Integrating Equation (16.6) between V =0 and V =V, ., we have

W/s L
Sg = In — . (16.7)
pe(Cpy—wCrp) 1T CogiCiy)
Dg r~Lg w — Mr Cror
The actual value of T may be described by the relationship 7' = kT, .» Where the

factor k is a function of the ratio T /T, ;.- The latter ratio depends on the type
of propulsion system owing to the different variation of thrust with forward speed
(see Figure 9.11). Another approach to the analytic estimation of the ground run
distance is the use of a mean acceleration @, giving the same distance as the actual
variable acceleration.

Then, from Equation (16.4), we get

V2
Se= oo (16.8)

Usually, a is taken as the acceleration at a speed Vior / ﬁ =0.7 Vior-

It should be remarked that in determining the aerodynamic forces and moments
on the airplane during the ground run, we have to account for the effects of the
proximity of the ground on the flow field around the airplane. The presence of
the ground reduces the induced downwash from the tip vortices since there cannot
be a flow going into the ground (Figure 16.6). Consequently, the airplane’s C, -
o and Cpy-or curves change as sketched in Figure 16.7 (see also Figure 4.10),
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through which at a given altitude of the airplane the lift coefficient increases and
the (induced) drag coefficient decreases.

The proximity of the ground also may have an effect on the contribution of the
horizontal stabilizer to longitudinal stability at large angles of attack. The ground
surface straightens the flow streamlines, thereby decreasing the downwash behind
the wing (Figure 16.8). This results in a greater angle of attack at the tail, which
requires an increased upward deflection of the elevator to keep the airplane in
equilibrium.

The ground effects decrease with increasing wing aspect ratio and are dependent
on the relative distance between wing and ground surface (Reference 56).
Practically, ground effects are of importance during ground run and may be ig-
nored when the airplane is airborne.

Before leaving our examination of the ground run distance, let us call some at-
tention to the effect of a runway slope. Looking at the forces in Figure 16.9, the
equation of motion reads:

W<dV> =T—-D—pu,(Wcos{ —L)—Wsin(, (16.9)
g \ dt ¢

where { is the runway slope, uphill positive.
Adopting in Equation (16.9) the approximation that cos { = 1, we obtain

av r pv?
<E>§ -8 [W‘“’_(Cng—#r%) wys Snel (16.10)
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By combining Equation (16.10) with Equation (16.3), the relationship between
the accelerations with and without runway slope can be written as

(%’)gzd_"_gsmg (16.11)

Any numerical consideration on the effect of gsin{ on the magnitude of the ac-
celeration may show the strong influence of a runway slope on the length of the
ground run.

16.3 The airborne phase of the takeoff maneuver

The airborne distance depends strongly on the way in which the pilot controls
the airplane and can, therefore, only be evaluated when the two control laws are
specified. One of these is already defined by the condition that the engine control
setting is constant during the takeoff maneuver. The second control law may
concern the time-history of the lift coefficient, the normal acceleration, or the
rate of pitch, from the moment the airplane leaves the ground until it reaches the
steady climbing attitude at the end of the transition.

An accurate determination of the flight path between the liftoff point and the
screen height is usually made by step by step calculations, adopting a particular
control law.

Also analytic procedures are developed, assuming C; = constant or d6 /dt = con-
stant during transition. For a detailed description of these techniques, the reader
is referred to References 57 and 58.

In order to examine the airplane motion in the transition flare, let us return to
Equations (8.7) and (8.8), which can be written as (Figure 16.10a)

KVd—v:TcosocT—D—Wsin}/ (16.12)
g ds

wv?

—7:L+TsinaT—Wcosy. (16.13)
8

Assuming that the thrust and the velocity vectors are coincident (o = 0) and that
the flight-path angles are small (siny = y and cosy = 1), the governing equations
of motion reduce to (Figure 16.10b)

W dv

—V—=T-D-W 16.14
¢ ds Y ( )
W V2

——=L-W. (16.15)
g R

Here, a simple analytic approach to the problem is made by supposing that the
path is circular of radius R. Accordingly, we have to consider the transition on
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Figure 16.11 Schematic for transition to steady climb

the condition that at the liftoff point the pilot instantaneously increases the angle
of attack and thereby applies an increment of lift, forcing the airplane to follow a
curved path (Figure 16.11a).

Just after liftoff, the transition lift coefficient, C;,, may be expressed as

(Cr)ror = (Cp)ror +ACL) oF (16.16)

where (C; ), o is defined by Equation (16.5).
The lift coefficient at any point on the transition flight path may then be written as
(Figure 16.11b)

Cr, = (Cp)or +AC,. (16.17)
When we insert Equations (16.5) and (16.17) into Equation (16.15), we get
1 1 1 AC
— = — =+ (16.18)
s8R Vior V° 5%

This expression shows that due to the increase in flight velocity, the value of AC;
and so of C;, must decrease during the transition (see Figure 16.11b).

By combining Equations (16.5), (16.15) and (16.16), we can express the radius R
as

W
R= 2? _ VLZOF (CL)LOF — VLZOF (1619)
P&A(CL) or g8 ACpror 8npor—1) 7
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where n; - is the load factor at liftoff.
When the flight-path angle reaches the value

T—-D
Yo = <—W >C7 (16.20)

the transition is completed and a steady climb at an airspeed V., begins. At that
point of the flight path the instantaneous value of the transition lift coefficient is
suddenly reduced to a value C; -~ associated with the steady speed V-,

w21
Cic=—<=o5 (16.21)
SpVg
If R and 7y, are known, it is an easy matter to obtain from the geometrical pattern

in Figure 16.11a the following relationships:

s =Ry (16.22)
%1
h, = R(1—cosy,) :R?C = 35T (16.23)

Note that in Equation (16.23) we have employed the trigonometric relationship
1 —cosa = 2sin*(e/2). With dh = yds, the speed increment attained during
transition follows from integrating Equation (16.14),

Ve W St hy
/ Z—dV2: / (T —D)ds — / Wdh  or (16.24)
Vior § 0 0
2 2 5
Ve —Vior :/ I-b ds —h.. (16.25)
2¢g w !
0

If the specific excess thrust (7 — D) /W in Equation (16.25) is assumed constant
and equal to its value at V; ., we obtain

V2 _vy?
CTgLOF = YoorSi — i, (16.26)

where ¥; o is the steady flight-path angle at the speed V; .,

T—-D
M (> . (16.27)
LOF w LOF

As the variation of the airspeed during transition usually is very small, it is per-
missible to make the approximation that y. = ¥; . Then, after substitution of
Equations (16.19), (16.22), and (16.23) into Equation (16.26), the following ex-
pression is derived:

(CL)LOF 2
= 1 _
FRor3C,),

Ve

(16.28)
VLOF
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Figure 16.12 Transition and screen height

The quantity (AC, ), is often expressed in terms of the normal acceleration a,
or the load factor n; ,» at liftoff (see also Section 8.3),

W V2 w 1
_—LI?F =—(an)or =W(nor —1) =A(Cp) 1 0F EPVL20FS (16.29)
8 8
or with Equation (16.5),
(an)ror A(Cp)or
SWLOF _ ] = —LJLOF (16.30)
8 ror (Co)ror

As an example we may take (C;); o = Cpnax/1-44 (V,op = 1.2V}¢) and an in-
stantaneous rotation at liftoff to an angle of attack such that (C;,), o = 0.8C; ...
This gives

C -(C
nor _ Cudror = (Cior _ g, 1.44—1=0.152, and n;,, = 1.152.
4 (CL)ror

This result represents a typical value for the normal acceleration as the practical
upper limit may be about 0.2¢(n, o = 1.2).

Sometimes, the screen height is cleared before transition to the steady climb at-
titude is completed. Then the flight-path angle at the screen and the airborne
distance follow from the relationships (Figure 16.12a):

hy=R(1—cosy) =Ry/2 and  s,=RY¥. (16.31)
If hy is greater than £,, then the airborne distance is (Figure 16.12b)

Sq = 8;+ S, (16.32)

where s. = (hs — ;) / tany, is the climb distance.
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16.4 Effect of wind on takeoff

The effect of wind on the takeoff length is examined by considering a steady
headwind of speed Vj;,. The acceleration relative to the ground and the distance
traveled along the runway are given by

dv,  dv,
_ Ve, aVg 16.33
T a T 8 ds, (1633)
(VS)LOF
V,dV,
(Sg)w = / £E (16.34)
0 (lg

In these equations V, is the ground speed (V, =V —V,,). Ata constant wind veloc-
ity we have dV, = dV and ag = a so that the ground run distance with headwind
V., becomes

Vior Veor Vi Vior
(V — VW)dV Vdv Vdv av
(s0)o = - [ [
a a a a
Vi 0 0 Viw
:Sg—sgo—Vw(l‘g)W, (16.35)

where s, is the ground run distance from standstill to V; - in the absence of wind,
S40 is the distance from V =0to V =V,,, and (z,),, is the time elapsed from V =V,
toV =V, p.

Equation (16.35) shows that a headwind reduces the ground run distance required
to attain the liftoff speed V; -

A steady headwind has the same effect on the elapsed time. From a = dV, /dt, we
can write

Vior Vio Vip
dv, dV av
(=" | / ) a T (1636)
0

|
=
o\;i/
)
=

d
a
Viv

where #, is the time during ground run in still air and I is the time elapsed from
V=0tV =V,.

The analyses of the effect of wind in Chapter 14 have learned us that the pres-
ence of a headwind that increases with height is to increase the rate of climb and
therefore to decrease the horizontal distance required to attain a particular height.
In rough considerations, the effect of a wind gradient during the airborne phase is
accounted for as the effect of a constant headwind with a velocity equal to that at
half the height of the screen. Now the airborne distance with headwind V,, is

(Sa)w = Sa — Vlas (16.37)
where 1, is the airborne phase time. At an average airspeed V, we get

_V, %
(sa)w _ Vg W (16.38)
Sa Sa V
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Figure 16.13 Landing maneuver

This expression shows that the effect of a headwind V,, during transition and climb
may be obtained by multiplying the airborne distance in still air by the factor
(1= (Vw/V)), where V = (V, o + V) /2.

It must not be forgotten that our analyses have been based on the presence of a
headwind, and that it is of frequent occurrence that the wind makes some angle
with the runway. Therefore, as a final note, during a so-called crosswind takeoff
there is a tendency of the airplane to rotate about the vertical axis through its
center of gravity. In order to hold heading, wings level and wheels on the ground
during ground run, use of rudder and aileron is necessary.

After liftoff, heading is changed adequately to maintain straight track from the
runway (see Figure 13.13). Typically, maximum safe crosswind-component ve-
locities may vary from about 15 knots (7.7 m/s) for light airplanes up to 30 knots
(15.4 m/s) or more for civil transports.

Similarly, high crosswind components during approach and landing also will re-
quire application of rudder and aileron to overcome the forces acting sidewise on
the airplane (see Figure 3.5).

16.5 The landing maneuver

The landing is the maneuver by which the airplane is brought from a steady ap-
proach speed V, over a 15 m (50 ft) obstacle at the runway threshold (screen
location) to standstill on the runway (Figure 16.13).

Airworthiness requirements stipulate that the steady approach speed shall not be
less than 1.3V, ¢, where V¢ is now the calibrated minimum stalling speed for the
airplane in the landing configuration.

For analysis, the landing distance can be divided into four parts:

1. The part of the final approach in the direction of the extended runway cen-
terline. The distance covered during this phase is the horizontal length of
the flight path between the screen location and the point where the tran-
sition flare starts. During approach flight landing gear and wing flaps are
extended.



16. Airfield performance 313

2. The flare to transit the airplane to a horizontal motion by the time the air-
plane arrives at ground level. During the flare the engine control setting is
progressively throttled back to flight idling so that at touchdown the thrust
is zero and the associated touchdown speed V- is below the speed V, at
the screen. Further, we may assume that under touchdown conditions the
vertical velocity of the airplane is zero and the lift equals the weight.

3. A free roll during which the airplane is rotated down to the ground altitude.

4. The major ground run where the retarding force is increased by application
of the wheel brakes and additional aerodynamic and propulsive means.

Commonly, the required field length is specified as 10/6 times the shortest landing
distance obtained from tests conducted on a dry runway. The factor 10/6 is used
as a safety factor to take care of possible deviations in regular operation. For wet
runway operation, it has become usual to impose an extra 15 percent on the land-
ing distance.

Finally, we remark that the effects of wind on the landing distance are very similar
to those on the takeoff distance. The presence of a headwind component shortens
the landing distance, whereas a tailwind component increases the landing dis-
tance.

16.6 The airborne distance of the landing maneuver

The airborne distance is the horizontal length between the screen location and the
touchdown point at the end of the flare.
The approach part covers a distance (see Figure 16.13)

hy—h
5, = ——t, (16.39)
tany,,
where y,, is the slope of the descent path.
The governing equations for steady descending flight are (Figure 16.14)
—D+Tcosay +Wsiny,, =0 (16.40)
—L—Tsinoy +Wcosy,, =0. (16.41)

Assuming again o =0 and cos ¥, = 1, and using the relationships L=C, , % pVis
and D = CDA%ijS, we find

w21
_ w2 16.42

; D
C r 16.43
i ydA |:CL :| A w ( )
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If the engines are idling during final approach (glide approach), then the airspeed
V, corresponds to a fixed slope of the flight path :

Yyu = sin ! {C—D} . (16.44)
Crla

When performing a power-on approach, the slope of the flight path can be chosen
independent of the angle of attack. The powered descent is always executed in
regular service operations of transport airplanes, which normally fly toward the
runway by means of the Instrument Landing System (ILS). This navigational sys-
tem provides vertical guidance above and below an approach path established at
a fairly small angle of descent of about 3 degrees. Clearly, this condition requires
that the engines deliver a rather high thrust. Maintaining adequate thrust is also
needed to control the flight path and to cope safely with an aborted final approach
or a balked landing.

An assessment of the flare distance s, and the height 7, can be made by represent-
ing the landing flare by a circular arc (Figure 16.15a). This requires, as we know
from the analysis in Section 16.3, that the angle of attack at the beginning of the
flare is instantaneously increased to (Figure 16.15b)

(Cr)p=Cra+AC,,. (16.45)

In this case the formulae for the radius of curvature of the flare are identical to
those in Equation (16.19), except that here V; - must be replaced by V,, so that

w
_ 2y _ V_f% Cra _ Vf% )
pgAC, 4 g AC,  glny—1)
Since at the end of the flare the flight path is tangential to the ground surface, the

horizontal distance covered by the flare and the initial height of the flare can be
expressed as

(16.46)

2
1
5 =Ry and by =R(1—cosy,) =R = sy, (16.47)
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Figure 16.15 Schematic for landing flare analysis

Using appropriate values for y,,, V, and n,, we find from Equations (16.46) and
(16.47) the dimensions of the landing flare.

From known values of s, and 7, it is possible to estimate the reduction in speed by
integration of Equation (16.14),

S

VTW 0
/z—dV2 = /(TfD)ds—/W}/ds. (16.48)
VA ¢ hy

With yds = —v,ds = dh, we obtain

s

T-D VZ-V?
/<> ds=-LT_—A _p. (16.49)
0

w 2g

Using a mean value for the excess thrust during the transition phase, we may write

Vi—Vi (T-D)
2g o

si+hy. (16.50)

In order to transform Equation (16.50) into a suitable form, we set the excess
thrust (7 — D) equal to the mean of its values at the start and the end of the flare.
At the speed V,, from Equation (16.40), we have

(T =D)y=-Wryy, (16.51)

and at touchdown we find with W = C,3pVZAS, D = Cpp 5pVESand T =0,
o
(T —D); =Dy =W | 2] . (16.52)
T

The mean value of the specific excess thrust is therefore

(T-D) (T—-D),+(T—-D); ! [ aa T |:CD:| } _ (16.53)

% W K

€L
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Figure 16.16 Forces acting during landing ground run

Insertion of Equation (16.53) into Equation (16.50) produces the following ex-
pression for the flare distance

V,f*VTZ 1 Cp
T _ D —h,. 16.54
22 2s, Yau T cl, hy (16.54)

As mentioned already in Section 16.5, to comply with most airworthiness regula-
tions, the airspeed V, at the start of the transition flare is more than or equal to 1.3
Vyss- Usually, the pilot technique is such that at touchdown the airspeed is reduced
to about 1.15 V6.

16.7 The landing ground run

After touchdown an adjustment in incidence must be made to settle the airplane
in its ground attitude. This requires some rotation of the airplane, during which a
free roll is traversed before the wheel brakes are applied.

However, for the sake of simplicity, we shall neglect the distance covered during
the rotation phase. In other words, we shall presume that at touchdown the pilot
instantaneously accomplishes an angle of attack reduction to the ground attitude
value at which C; = CLg (see Figure 16.15b).

In Figure 16.16 are shown the forces on the airplane during the landing ground
run. The equation of motion in forward direction reads:

W dv
EE:T—D—Dg, where (16.55)
Dg=u(Ny+Np) =u(W—-L) (16.56)

is the frictional force resulting from the adhesion forces acting between the tires
and the ground (Figure 16.17a). When a brake torque is applied to a wheel, it is
reacted by an increased frictional force, through which the wheel is forced to slow
its rotational speed wr relative to the forward speed V of the wheel. At a brake
torque Q, the rotational motion, approximately, is governed by
dw

IE =Dgr—Q, (16.57)
where 7 is the moment of inertia of the wheel with respect to its axis of rotation,
o the angular velocity of the braked wheel, and r is the wheel radius.



16. Airfield performance 317

a) torces and moments b) typical variation of friction c) typical friction
coefficient with slip ratio coefficients

10 10

L [T Hmax

wet runway
Hskid
(full skid)

S S lush
“? Hmax dry icy iy
py [free roll) surface
0 11 0 "

0 10 0 100 200
s V.km/h

Figure 16.17 Application of brake torque on a rolling wheel

For steady braking, from Equation (16.57), we have the condition
Dg=uN=Q/r, (16.58)

where Q/r is the brake force applied to the wheel.
The generated friction coefficient t varies with the so-called braking slip ratio, s,
defined by

(16.59)

The variation of u with s is illustrated in Figure 16.17b. As the slip ratio increases,
the friction coefficient rises from its free roll value i, at s = 0 to a peak value Linax
at a slip ratio s max-

It should be remarked that up to this slip ratio, practically, there is only an apparent
slip due to the elastic deformation of the tire.

After s, max 18 reached, unless the brake is released, the slip ratio increases rapidly
which leads to skidding of the wheel at s = 1.0 and a low value of the associated
friction coefficient, gy,

From Figure 16.17b and Equation (16.57), it can also be understood that for s <
Symax the wheel rotational motion is in a condition of stable equilibrium. On the
contrary, in the region s > sy max, any rotational speed disturbance will tend to
diverge the slip ratio further from its original value.

From the foregoing discussion it is evident that rolling wheels are forced by brak-
ing action to slow their angular velocity from the free roll condition (@ =V /r)
to a locked condition (w = 0), provided the brake forces continuously exceed the
produced frictional forces.

When the brakes are controlled manually, it is not easy for a pilot to adjust and
maintain a consistent braking condition at s, max. This problem is largely solved
by the use of anti-skid devices in which brake control is achieved automatically
by reference to the slip ratio. These systems avoid excessive tire wear and effec-
tuate an optimum friction coefficient i, at a slip ratio below s . (see Figure
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Figure 16.18 Attainable frictional force during ground run

16.17b). Modern systems may produce a value of 1, up to 90 percent of Uax. As
portrayed in Figure 16.17c, the attainable value of the friction coefficient depends
strongly on the surface condition of the runway and the forward speed (Reference
39, Vol. 3).

At the start of the ground run only a fraction of the available brake torque can
be applied owing to the low normal force on the wheels at high forward speeds.
Therefore, the ground run must be divided into two parts (Figure 16.18). During
the first part, we can assume that the friction coefficient is constant and equal to
U,. This implies that the brake force must be gradually increased with decreas-
ing forward velocity. During the second part, the “torque-limited” brake force,
Omax /1, 1s insufficient to generate the maximum attainable frictional force,

Omax /1 < W, (W —L). (16.60)

Under this condition, the brakes can operate at full capacity and a constant fric-
tional force is obtained at a decreasing friction coefficient as the airplane slows
down,

Dgmax = Omax/r = H(W —L). (16.61)

On a dry runway, the frictional force Dgmax may be 30 to 40 percent of the weight
of the airplane.

The speed V; at which the lift is sufficiently reduced that full braking is permitted,
follows from the equality

1
Dygmax = (W = Cpy5pV5S), (16.62)

Lg 2
where C, , is the lift coefficient in the ground running condition.

Thus, in the speed range from V. down to Vj, the wheels can be made to skid
except if use is made of automatic brakes.

The distance covered from the touchdown speed to rest, in general, is given by

0
vav
5, = / , (16.63)
VT

a
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where a = dV /dt < 0.

For an accurate calculation of s,, Equation (16.63) can be evaluated by step by
step integration. In the following, however, we will develop analytic expressions
which allow direct calculation of the ground run distance. For that end, we assume
automatic brakes, zero thrust, and a constant angle of attack throughout the ground
run. Then from Equations (16.55), (16.56), and (16.63), we readily obtain for the
ground run distance between the speeds V- and Vj,,

Vg

vdv
Spi :/ [ 1/2pV2] ) (16.64)

ty, — (Cpg — Wy Lg) W/S

where the lift and drag coefficients C g and Cp, are, of course, the appropriate
values considering the effect of ground proximity.

Using the condition W = C, . % pV2S, we can transform Equation (16.64) into the
form

sbl_/

Vp

vdv
= , 16.65
/ —gu, [1+Z(V2/V3)] (1669

- Dg “bCLg) V2
gub 1+ WCrr Vz}

where Z = (Cp, — 1,Cp )/ (1,Cpz)- Integrating Equation (16.65) yields

V2 1+Z
Sy= L2 (16.66)
2eu,Z 1+ Z(Vg/Vi)
Below the speed Vj, the acceleration is given by
av g 1
== W(chngvzsfpgmax). (16.67)

From Equation (16.63), with V. replaced by V},, the ground run distance between
the speed Vj; and standstill is

$, = (16.68)
b2 / ~-& CDgszZS+ngax)
Integration gives
w CDg%pvlgs
Sy = +11. (16.69)
CDngS Dy max

The results of the analysis in this section manifest that for a short ground run
distance we need a large deceleration force.
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Figure 16.20 Special types of braking devices

An adequate aid in dissipating kinetic energy of jet-driven airplanes is to divert
the exhaust gas flow of the engines in a forward direction by means of thrust re-
versers (Figure 16.19). In the case of a turbofan engine, negative thrust is obtained
by reversing the cold jet through the fan. Because this airflow provides enough
reverse thrust, the hot jet is then only directed in a normal direction to avoid it
neutralizing the reversal effect from the cold jet.

On propeller-driven airplanes, reverse thrust is accomplished by using reversible
pitch propellers (see Figure 7.19).

In addition to wheel brakes and propulsive means, ground spoilers on the wings
are used to destroy or reduce the lift. This condition increases the ground friction
drag as the normal force on the wheels is increased (see also Section 11.3).
Another aerodynamic means to increase the retardation force during the landing
run is the braking parachute for use on high performance (military) airplanes (Fig-
ure 16.20a). A very special form of a brake system is a cable laid across the flight
deck of an aircraft carrier for catching the arrester hook on the airplane (Figure
16.20b).



Appendices



Appendix A
NEWTONIAN MECHANICS

A.1 Newton’s laws of motion

The essential equations describing the motion of bodies are based on Newton’s
laws of motion. Below are stated these laws for a particle, i.e., a constant mass
concentrated in a point.

Law 1: Every particle continues in a state of rest or uniform motion in a straight
line unless compelled to do otherwise by forces acting on it.

Law 2: The time rate of change of linear momentum of a particle is proportional
to the impressed force and is effective in the direction of the force.

Law 3: Action = reaction; or, the mutual forces that two particles exert on each
other are equal in magnitude and opposite in direction.

A.2 Newton’s first law

It should be fully appreciated that Newton’s first law holds only with respect to a
frame of reference which is in a state of absolute rest. For instance, we may think
on a coordinate system rigidly associated with the "fixed stars” in our solar system.
Such a hypothetical coordinate system is called an inertial frame of reference.
However, Newton’s first law also holds with respect to reference frames which
translate uniformly relative to our inertial frame of reference at rest.

To prove this, let X, Z, be the inertial frame, and assume a frame X,Y,Z, to be
translating uniformly with velocity \7]0 relative to XY, Z, (Figure A.1).

The instantaneous position of a particle in point P with respect to X,Y¥,Z, and
X,Y,Z, is given by the vectors 77, and 7, respectively. The vector R in Figure A.1
indicates at a given point of time the position of the origin of X,Y,Z, relative to
X, YyZ,- The three vectors are related by

o =R+7). (A.])
Differentiating Equation (A.1) gives

do’ = R + 4"y (A.2)

dt dt dt’ '
where the subscript ”0” denotes that the time derivative is taken with respect to
the inertial frame X,Y;,Z,.
Since there is a constant difference between the time coordinates, Equation (A.2)
can be written as

dofy _ R i}

A3
dt dt dt’ (A3)

322
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Xo
Figure A.1 Transformation of coordinates
in which the subscript 717
to the frame XY, Z,.
If the particle is free of force, then its velocity relative to the inertial frame X,¥,,Z,

must be constant.

d,r, - . d,R - . .
Hence, % =V is a constant. Since also % =V, is a constant, it follows from

Equation (A.3) that db—fl =V, being the velocity of the particle relative to the
frame X,Y,Z,, is a constant too. Thus Newton’s first law of motion is valid in any
reference frame that moves uniformly with respect to the frame at rest.
Therefore, all nonaccelerating and nonrotating frames can be used as inertial
frames of reference.

indicates that the derivative of 7 is taken with respect

A.3 Newton’s second law of motion
The mathematical formulation of the second law is

- d =
F=—(MV A4
), (Ad)
where F is the vector force acting, and MlV is the linear momentum of a particle
with mass M; and velocity V.
Since the mass of a particle is constant, Equation (A.4) can be expressed as

—

LAV
F=M=—=Ma (A5)

where Ufz_‘z/ = d is the acceleration of the particle.

It is important to realize that also Equation (A.5) holds only when applied with
respect to an inertial frame of reference. From the preceding discussion of New-
ton’s first law we know that coordinate systems translating uniformly to our frame
at rest somewhere in the universe, also are inertial frames of reference.

To use this statement, the invariance of the second law under the coordinate trans-
formation must be proved. Therefore, consider the particle in point P in Figure
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Z
Zy
k(t)
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Yo Y jlt) Yy
Xo
& i(t+At)
A 1t+
/ Ai
X4

Figure A.2 Frame X,Y,Z, rotating with respect to the frame XY, Z,

A.1. Since the force acting on the particle is invariant (F = ﬁo =F 1), from Equa-
tion (A.3), it follows that the time rates of change of momentum of the particle
with respect to the reference frames XY, Z, and XY, Z, are related by

d d,7 d d,R d,r,
)= )

dt dt
. dR o .
Using % =V, is a constant, we have

dO dOfE) v dlM dl dlfi
U /G0 S e T R /A LR A7
dz[ L dt 0 g Tar M a (A7)

Since the mass M, is a constant, the latter relation reduces to

dy, o d, S

2(MV)==2(MV,). A8

my) = LM A8)
This equality indicates that Equation (A.5) indeed can be applied to both axis

systems.

A.4 Effect of rotation

In order to examine the effect of rotation, consider again the reference frames
XyYyZ, and X,Y,Z,. Now suppose that X,Y,Z, is in a rotational motion relative to
XyYyZ,. As shown in Figure A.2 the rotational motion is about an axis through the
origin and denoted by @,,.

In the frame X,Y, Z, the triad of unit vectors in the respective coordinate directions
at time 7 are 1, fand k. Figure A.2 shows what happens to the unit vector i, when
the frame XY, Z, rotates about the @,,-axis in the time Az.

If the line AB is the perpendicular from the tip of ito the @,,-axis, then the length
of AB is equal to sin¢®. Hence, the indicated change in 7in the time Af is

|Al] = |@,|sin ¢ At. (A.9)
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V=wyXxn

Xo

Figure A.3 Rotating coordinate system

By applying the cross or vector product of two vectors we can write

@, X 1| = |@,] X |{]sing = |@,|sing. (A.10)
Combining Equations (A.9) and (A.10) yields

|AT] = | @, x i|At. (A.11)
By passing to the limit

A;glo%zgzamx? (A.12)

Since i, j and k are similar unit vectors, we have

dr. = @i X1

dyj — g

0/

W< ] ¢ (A.13)
df o =

dr = Oy Xk

From this result we may establish that for a point P fixed in X,Y,Z, and having a
position vector 7, relative to the origin of X,Y,Z,, the velocity due to the rotation
is given by (Figure A.3)

V=d X7 (A.14)

With Equation (A.14) we can derive a relation between the time derivative of the
vector V in the rotating frame X,Y,Z, to the time derivative of that vector in the
nonrotating frame X,Y,Z,. Therefore we proceed to consider the fact that the
vector V can be expressed as

V =Vi+V,j+Vik, (A.15)

where Vy, V) and V, are the components of V in the frame X 1Y,Z,. By differentiat-
ing V with respect to XY, Z, we obtain
dV  dVy. dVy. dV,-

—_ = i+ ik A.16
dt dt o dt It dt ( )
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The subscript 1 is omitted in the derivatives of the three scalar quantities as the
derivative of a scalar quantity is the same in all reference frames.
The derivative of the vector V with respect to XoYoZ, is

AV  dVee dVy. dVeo dyi dyj - dok

A ARt i sy S04 V, —_.

a di T a T a d+ydt < dr
If Equations (A.16) and (A.13) are substituted into Equation (A.17), it follows
that

(A.17)

v dV+w (Vi + Vi j + V2K). (A.18)
= X .

dt — dt 10 Vs

Using Equation (A.15), the latter result can be written as

DV _dV s 5 (A.19)
dt ~ dt 10

It must be emphasized that Equation (A.19) is a general relation which applies to
any vector whatever. Thus for a vector P:

%—chh—Pﬂz‘) x P. (A.20)
dt dt 10

It is also important to note that Equation (A.20) holds for any pair of systems
rotating relative to each other.

A.5 Noninertial reference frames

Now the case is considered that a frame X,Y,Z, is translating and rotating in a
general manner relative to the inertial frame X,Y,Z,.
Using Equation (A.20), we can express Equation (A.2) as follows

dyiy d_R d,r

& ar T TO0xn (2D

Differentiating Equation (A.21) with respect to X,¥,,Z, gives

a3y AR dy [dF, Ao, | dydyg
ar? — der " dt

dt}—i—a)lo o (A.22)

The left-hand term of this equation is the acceleration of P with respect to X,¥,Z,
and is called the absolute acceleration, d. Equation (A.20) enables us to develop
from Equation (A.22) the following expression for the absolute acceleration

AR dydy, . . dir) iy

171 =
S 20 x L (A23)

.
The term d;Tf is the acceleration of the origin of the moving frame X,Y,Z, with

dy@ - . . . .
respect to X,,Y,Z,. The term 0;;10 x I} is called the tangential acceleration owing
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Xp

Figure A.4 System of particles in an inertial frame

to the rotational acceleration of X, Y, Z, relative to XY, Z,. The term @, X (@, X
7) is caused by the rotation of X,Y,Z, with respect to X,¥,Z, and represents the
centripetal acceleration.

The sum of these three terms is the acceleration of the point P fixed to X, Y, Z, as
seen by an observer in the frame XY, 7, and is named the transport acceleration,
a.

The term % is the acceleration of P with respect to the frame XY, Z, and is called
the relative acceleration d,. The term 2(1')10 X %, finally. is the so-called Coriolis
acceleration, d,.. The sum of the last two terms of the right-hand side of Equation
(A.23) is the acceleration of the particle relative to X,Y,Z, for an observer in the
frame X,Y,Z,.

If F is the total force acting on a particle, then according to Equations (A.5) and
(A.23) we can write the following vector equation:

-

F = Md=Ma, + M, + Ma. or (A.24)

F —Ma, — Ma. = Ma,. (A.25)

Apparently, Newton’s second law of motion can be used to determine the motion
of a particle relative to noninertial frames by modifying the actual force according
to the left-hand side of Equation (A.25).

A.6 Systems of particles

We now consider a mass system, which consists of n particles with masses M,
M,, ..., M, and with position vectors |, ,..., 7}, relative to the origin of an
inertial frame X,Y,Z, (Figure A.4). ~

The forces acting on particle p; may be formed by an external force F; and internal
forces due to the interactions among the particles.
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According to Newton’s third law of motion we can write for the internal forces
acting along a straight line between two particles:

— —

Fij = — Fjl., (A.26)

where F; j is the internal force acting on particle p; due to particle p It and Fﬁ is the
internal force acting on particle p j due to particle p;.
Applying Newton’s second law of motion on particle p;, we obtain

no dr
gF d:[ dt] (A.27)

:ru

where the quantity M, dt is the linear momentum of particle p; relative to X,¥,Z,.
Note that the subscript ”0” is not appended to the vector symbols since only the
inertial frame X,Y,,Z, is used in the present analysis.

Summing of all particles of the system gives

i*ﬁz iﬁ:z“dz{ ’dz] (A-28)

Since Equation (A. 26) indicates that the internal forces occur in equal and oppo-

site pairs, we have 2 2 =0, and Equation (A.28) reduces to
i=1j=1

M4 dR] W4
[ Rl VR I VRl y A29
27 ;;dt[ ‘dt} LM (A.29)

i=1 i=1

If we consider an invariable mass system (n is a constant), in Equation (A.29)
summation and differentiation can be interchanged, yielding

. no d2 n
F=YF=— lefi ; (A.30)

where F is the entire external force applied to the system.

Now let 2 M; = M be the total mass of the system. Further we introduce the
i=1
position vector of the center of mass of the system, defined by

- 1<
R.=— MF,. (A.31)
Mi:l Ui
Substituting the latter quantities in Equation (A.30) yields
. d*R,
F=M . A32
e (A.32)

This equation indicates that the translational motion of the center of mass of the
system is the same as if the total mass is located at the center of mass and sub-
jected to the entire external force.
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Equation (A.32) also has an equivalent form regarding angular motion, which is
obtained by vectorial multiplication of Equation (A.27) with 7,

- _ dr.
7 X l+2(?lXF):F’X[A/I’le] (A.33)

The moment of 17“1 with respect to the origin of XY, Z, is expressed by the vector
product of F; and 7, : M, = 7, x F,.

Note that besides the mass also a moment is given the symbol M.

The angular momentum of a particle p; is given by

- iy
B, =F; x M, d_r and hence (A.34)
dB d _ dF. d [ - dr.

FxM—L =7 x — |[M.—1]. A.35
dr dt[ 8 ’dt} r’xdt[ ’dt} ( )

Thus, Equation (A.33) can be written as

i _ 9B, (A.36)
= T odr’ '

"11

For the complete system we obtain
i & dB;

d_ (A.37)

M=
HM:
HM:

‘/1

It easily may be seen from Equation (A.26) that the second term of the left-hand
n o -

side of Equation (A.37) is equal to zero. If we denote Y M; = M as the en-
i=1

tire moment with respect to the origin of the reference frame X,Y,,Z,, then, from

Equations (A.37) and (A.35), we find

L MLdB. ML d _ dF, u qdzf’
M=y "= [ x]\/[ldt} Z[, o ] (A.38)
i i= i=1

Putting again summation and differentiation in the other’s place produces the ex-
pression:

= . (A.39)

Equation (A.39) says that the external moment applied to a system of particles is
equal to the time derivative of its total angular momentum.
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Figure A.5 Position vectors of an element of mass of a body

A.7 General bodies

A body may be considered as being made up of an infinite number of elements
of which the mass is infinitesimally small. Consequently, the summations in the
Equations (A.30) and (A.38) must be altered into integrations. This yields (Figure
AlS)

o [dF
M

N
M

If R, is the position vector of the center of mass of the body and .. is the position
vector of an element of mass dM of the body relative to the mass center, then

=R, 47 (A42)

The vector R, now is defined by
- 1 [,
R. = M/rdM, (A.43)
M
where M = [ dM is the mass of the body.
M

By using Equation (A.42) in Equation (A.23), the absolute acceleration of the
element dM can be written as

&’ d’R.  dd 8%r 87

— = — XFe+ @ X (O XT, +20 X — A.44

a? ~ ae ar e (@ 7e)+ 512 5t (A.44)
where @ is the angular velocity relative to the inertial frame X,Y,Z,, and % and

27 o oo
66;26 are derivatives of the vector 7. with respect to the center of mass of the body.
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Insertion of Equation (A.42) into Equation (A.43) yields

/ 7.dM = 0. (A.45)
M

Combining Equations (A.40), (A.44) and (A.45) furnishes

7 d*R.
dr?

bl dM (A.46)

This is the general equation for the translational motion of an arbitrary deformable
body of mass M.

Similarly, Equation (A.41) for the rotational motion can be expanded to the same
variables by taking the center of mass of the body as the reference point for the
calculations.

The moment due to the entire external force with respect to the center of mass of
the body can be expressed as

-

M.=M-R.xF, (A.47)

where M is the moment relative to the origin of the frame XY, 7.
By substituting Equations (A.40) to (A.42) into Equation (A.47), we find

~ L dF
M, = / e X~z M. (A48)

Insertion of Equation (A.44) into Equation (A.48) yields the equation for rota-
tional motion of a general deformable body,

—

_ . dw
MCZ/VCX ﬁx
M
5—»

+ / 7 X dM—|— / 7o x (28 % E)dM. (A.49)

F) dM+/r"C>< (@ x (& x 7)) dM+
M

2R, .
In deriving this equation, we used the facts that d dtlg“ bears no relation to dM and
[ FedM =0, so that
M

. _d’R. . d’R,
/rCXWdM:/erMX d1‘2
M M

=0. (A.50)
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A.8 Rigid bodies

. . . . . . 22
The rigid body approximation requires that % and 55 t’zc are equal to zero so that

the Equations (A.46) and (A.49) reduce to

. [d’R.
= | 22 dM and (A.51)
M
— N d(;:) = - - — —
MC:/rCX Exrc dM+/er(wx(wxrc))dM. (A.52)
M M

In order to recast Equation (A.52) in a more familiar form, we introduce, from
Equation (A.48), the relationship

. d7
B.— / 7 x d—:dM. (A.53)
M

Inserting Equation (A.42) into (A.53) furnishes

o . _dR. L d.

B, = dM —dM. A.54

¢ /rcx dt +/rcxdt (A.54)
M M

Analogous to Equation (A.50), we find that the first integral of Equation (A.54)
vanishes,

dt
M M

dR dR,
/ch CdM:/r"Cde <=0, (A.55)

Applying Equation (A.20) for the rate of change of the vector 7. we obtain

dr. o,

dt—g“r‘(&))(}?c):#x’_"c. (A.56)

Thus by substituting Equation (A.56) into Equation (A.54) we find that for a rigid
body the total angular momentum relative to the center of mass is given by

B.= /7 X (@ X 7.) dM. (A.57)
M

By combining Equation (A.52) and (A.57) we, finally, get
" . do L =
MCZ/VCX Exrc dM+ o X B,. (A.58)
M

This equation is often used in solving for the rotational motion of rigid bodies.
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a. r=ﬁu"f° b. f=ﬂc+ rc

Figure A.6 Force and moment due to the gravity forces

A.9 Center of gravity

The center of gravity, being the point through which the gravity force or weight
of the body acts, is identical with the center of mass.

To show this, we consider a body as in Figure A.6a. The moment due to the forces
of gravity about the origin of the frame X,Y,Z, is given by

= / 7 x §dM, (A.59)
M

where g is the acceleration of gravity, the gravity force per unit mass.
With 7 = E{) + 77, we obtain

]\712/(1?0—1—?0)xng:ﬁox/ng+/ﬁ)x§dM. (A.60)
M M M

If we assume that g is constant over the body, we can rewrite Equation (A.60) as

M:ﬁOxM§+/ﬁ)de§. (A.61)
M

When we choose the point O in Figure A.6a at the center of mass of the body, the
last term vanishes according to Equation (A.45), giving,

M =R, x Mg, (A.62)

where R, is the position vector of the center of mass of the body (Figure A.6b).
Thus we see that the entire effect of the gravity forces can be replaced by a single
force Mg acting on the center of mass, which point, therefore, also may be called
the center of gravity.

General references for appendix

- N.C. Barford, Mechanics, John Wiley, New York, 1973.

- J.W. Cornelisse, H.ER. Schoyer and K.F. Wakker, Rocket Propulsion and Space-
flight Dynamics, Pitman, London,1979.

- B. Etkin, Dynamics of Atmospheric flight, John Wiley, New York, 1972.
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CONVERSION FACTORS

QUANTITY UNIT SI-EQUIVALENT
Length 1 foot (ft) =0.3048 m

1 mile (statute) =1.60934 km

1 n mile (nautical) =1.85200 km

1 inch (in) =0.0254 m
Area 1 f? =0.092903 m?
Volume 1 imperial gallon =4.54609 dm>

1 U.S. gallon =3.78541 dm?

1 pint (pt) =0.568261 dm>

1 quart (qt) =1. 13652 dm?
Velocity 1 ft/min =0.00508 m/s

1 ft/s =0.3048 m/s

1 mile/h (m.p.h.) =1.60934 km/h

1 n mile/h (knot) = 1.852 km/h
Acceleration 1 ft/s? =0.3048 m/s’
Mass 1 pound (1b) =0.453592 kg

1 slug =14.5939 kg
Mass rate of flow 1 Ib/s =0.453592 kg/s
Volume rate of flow 1 gal/h =4.54609 dm>/h

1 6/ =0.0283168 m?/s
Density 1 b/} =16.0185 kg/m’

1 slug/ft? =515.379 kg/m?
Force 1 kgf =9.80665 N

1 Ibf =4.44822 N
Moment of force 1 Ibf ft =1.35582 Nm
Moment of inertia 11b ft? =0.0421401 kg m?
Pressure and stress 1 Ibf/in® (psi) =6.89476 kPa

1 Ibf/ft? =47.8803 Pa

1 inch mercury (in Hg) =3.38639 kPa

1 atmosphere (atm) =101325 N/m?
Dynamic viscosity 1 Ib/fts =1.48816 kg/m s
Kinematic viscosity 1 ft*/s =0.092903 m?/s
Energy and work 1 ft Ibf =1.35582]J

1 Btu =1.05506 kJ

1 kgf m =9.80665J
Power 1 hp (550 ft 1bf/s) =745.700 W

1 hp (metric; 75 kgf m/s)  =735.499 W

1 ft Ibf/s =1.35582 W

1 kgf m/s =9.80665 W
Heat flow rate 1 Btu/h =0.293071 W
Temperature T °C (celsius; centigrade) = (7 °C +273.15)K

T °F (fahrenheit) =5/9 (T °F +459.67) K

T °R (rankine) =5/9(T °R)K
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INTERNATIONAL STANDARD

ATMOSPHERE
H, T, P, P, c, uxI10?
m K N/m?  kg/m? m/s kg/ms
-1000  294.65 113929 1.3470 344.11  1.8206
-900 294.00 112614 1.3344 343.73 1.8175
-800 293.35 111312 13219 34335 1.8144
=700 292.70 110022 1.3095 34297 1.8113
-600 292.05 108744 1.2971 34259  1.8081
-500  291.40 107478 1.2849 34221  1.8050
-400 290.75 106223 1.2728 341.82  1.8019
-300  290.10 104981 1.2607 341.44  1.7988
-200  289.45 103751 1.2487 341.06 1.7956
-100 288.80 102532 1.2368 340.68  1.7925
0 288.15 101325 1.2250 340.29 1.7894
100 287.50 100129 1.2133 33991  1.7862
200 286.85 98945 1.2017 339.52  1.7831
300 28620 97773  i.1901 339.14  1.7800
400 285.55 96611 1.1787 338.75 1.7768
500 28490 95461 1.1673 338.37  1.7737
600 284.25 94322 1.1560 337.98 1.7705
700 283.60 93193 1.1448 337.59 1.7673
800 28295 92076 1.1337 33721 1.7642
900 28230 90970 1.1226 336.82 1.7610
1000 281.65 89874 1.1117 33643 1.7578
1100 281.00 88790 1.1008 336.04  1.7547
1200 280.35 87715 1.0900 335.65 1.7515
1300 279.70 86652 1.0793 335.27 1.7483
1400 279.05 85599 1.0686 334.88  1.7451
1500 278.40 84556 1.0581 33449 1.7419
1600 277.75 83523 1.0476 334.09 1.7388
1700 277.10 82501 1.0372 333.70 1.7356
1800 276.45 81489 1.0269 333.31 1.7324
1900 275.80 80487 1.0167 33292  1.7292
2000 275.15 79495 1.0065 332.53  1.7260
2100 27450 78513 0.9964 332.13  1.7228
2200 273.85 77541 0.9864 331.74 1.7195
2300 27320 76578 0.9765 331.35 1.7163
2400 272.55 75625 0.9666 330.95 1.7131
2500 271.90 74682 0.9569 330.56 1.7099
2600 271.25 73749 0.9472 330.16 1.7067
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H, T, P P, c, uxI10’
m K N/m? kg/m? m/s  kg/ms
2700 270.60 72825 0.9375 329.77 1.7034
2800 269.95 71910 0.9280 329.37  1.7002
2900 269.30 71004 0.9185 328.97 1.697
3000 268.65 70108 0.9091 328.58  1.6937
3100 268.00 69221 0.8998 328.18  1.6905
3200 267.35 68343 0.8906 327.78  1.6872
3300 266.70 67475 0.8814 327.38  1.6840
3400 266.05 66615 0.8723 32698  1.6807
3500 265.40 65764 0.8632 326.58 1.6775
3600 264.75 64922 0.8543 326.18 1.6742
3700 264.10 64088 0.8454 325.78  1.6709
3800 263.45 63264 0.8366 325.38  1.6677
3900 262.80 62447 0.8278 32498  1.6644
4000 262.15 61640 0.8191 32458 1.6611
4100 261.50 60841 0.8105 324.17 1.6578
4200 260.85 60050 0.8020 323.77 1.6545
4300 260.20 59268 0.7935 323.37 1.6513
4400 259.55 58494 0.7851 32296  1.6480
4500 258.90 57728 0.7768 322.56  1.6447
4600 258.25 56970 0.7685 322.15 1.6414
4700 257.60 56221 0.7603 321.75  1.6381
4800 256.95 55479 0.7522 32134 1.6347
4900 25630 54745 0.7441 32093 1.6314
5000 255.65 54020 0.7361 320.53  1.6281
5100 255.00 53302 0.7282 320.12  1.6248
5200 254.35 52591 0.7203 319.71  1.6215
5300 253.70 51889 0.7125 319.30 1.6181
5400 253.05 51194 0.7048 318.89 1.6148
5500 252.40 50506 0.6971 318.48 1.6115
5600 251.75 49827 0.6895 318.07 1.6081
5700 251.10 49154 0.6820 317.66  1.6048
5800 250.45 48489 0.6745 317.25 1.6014
5900 249.80 47831 0.6671 316.84  1.5981
6000 249.15 47181 0.6597 316.43  1.5947
6100 248.50 46537 0.6524 316.01 1.5914
6200 247.85 45901 0.6452 315.60  1.5880
6300 247.20 45272 0.6380 315.19 1.5846
6400 246.55 44650 0.6309 314.77 1.5813
6500 245.90 44034 0.6238 314.36  1.5779
6600 245.25 43426 0.6169 313.94 1.5745
6700 244.60 42825 0.6099 313.52 1.5711
6800 243.95 42230 0.6031 313.11 1.5677
6900 243.30 41642 0.5963 312.69 1.5644
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H, T, P P, c, uxI10’

m K N/m? kg/m? m/s  kg/ms
7000 242.65 41060 0.5895 312.27 1.5610
7100 242.00 40486 0.5828 311.85 1.5576
7200 241.35 39917 0.5762 311.43 1.5542
7300 240.70 39355 0.5696 311.01 1.5507
7400 240.05 38800 0.5631 310.59 1.5473
7500 239.40 38251 0.5566 310.17  1.5439
7600 238.75 37708 0.5502 309.75 1.5405
7700 238.10 37172 0.5439 309.33  1.5371
7800 237.45 36642 0.5376 308.91 1.5336
7900 236.80 36117 0.5313 308.48  1.5302
8000 236.15 35599 0.5252 308.06  1.5268
8100 23550 35087 0.5190 307.64  1.5233
8200 234.85 34581 0.5130 307.21 1.5199
8300 23420 34081 0.5070 306.79 1.5164
8400 233.55 33587 0.5010 306.36  1.5130
8500 23290 33099 0.4951 305.93 1.5095
8600 232.25 32616 0.4892 305.51 1.5061
8700 231.60 32139 0.4834 305.08 1.5026
8800 230.95 31668 0.4777 304.65 1.4991
8900 230.30 31202 0.4720 304.22 1.4956
9000 229.65 30742 0.4663 303.79 1.4922
9100 229.00 30287 0.4608 303.36  1.4887
9200 228.35 29838 0.4552 302.93 1.4852
9300 227.70 29395 0.4497 302.50 1.4817
9400 227.05 28956 0.4443 302.07 1.4782
9500 226.40 28523 0.4389 301.63 1.4747
9600 225.75 28095 0.4336 301.20 14712
9700 225.10 27673 0.4283 300.77 1.4677
9800 224.45 27255 0.4230 300.33  1.4642
9900 223.80 26843 0.4178 299.90 1.4606
10000 223.15 26436 0.4127 299.46 1.4671
10100 222.50 26034 0.4076 299.03  1.4536
10200 221.85 25636 0.4026 298.59  1.4500
10300 221.20 25244 0.3976 298.15  1.4465
10400 220.55 24857 0.3926 297.71  1.4430
10500 21990 24474 03877 29727 14394
10600 219.25 24096 0.3829 296.83 1.4359
10700 218.60 23723 0.3781 296.39  1.4323
10800 217.95 23355 0.3733 29595  1.4287
10900 217.30 22991 0.3686 295.51 1.4252
11000 216.65 22632 0.3639 295.07 14216
11100 216.65 22278 0.3582 295.07 1.4216
11200 216.65 21929 0.3526 295.07 1.4216
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H, T, P P, c, uxI10’

m K N/m? kg/m? m/s  kg/ms
11300 216.65 21586 0.3471 295.07 1.4216
11400 216.65 21248 0.3417 295.07 14216
11500 216.65 20916 0.3363 295.07 14216
11600 216.65 20589 0.3311 295.07 1.4216
11700 216.65 20266 0.3259 295.07 1.4216
11800 216.65 19949 0.3208 295.07 1.4216
11900 216.65 19637 0.3158 295.07 1.4216
12000 216.65 19330 0.3108 295.07 1.4216
12100 216.65 19028 0.3060 295.07 1.4216
12200 216.65 18730 0.3012 295.07 1.4216
12300 216.65 18437 0.2965 295.07 1.4216
12400 216.65 18148 0.2918 295.07 1.4216
12500 216.65 17865 0.2873 295.07 1.4216
12600 216.65 17585 0.2828 295.07 1.4216
12700 216.65 17310 0.2783 295.07 1.4216
12800 216.65 17039 0.2740 295.07 14216
12900 216.65 16772 0.2697 295.07 1.4216
13000 216.65 16510 0.2655 295.07 1.4216
13100 216.65 16252 0.2613 295.07 1.4216
13200 216.65 15998 0.2572 295.07 1.4216
13300 216.65 15747 0.2532 295.07 1.4216
13400 216.65 15501 0.2493 295.07 1.4216
13500 216.65 15258 0.2454 295.07 1.4216
13600 216.65 15020 0.2415 295.07 1.4216
13700 216.65 14785 0.2377 295.07 1.4216
13800 216.65 14553 0.2340 295.07 1.4216
13900 216.65 14326 0.2304 295.07 1.4216
14000 216.65 14101 0.2268 295.07 1.4216
14100 216.65 13881 0.2232 295.07 14216
14200 216.65 13664 0.2197 295.07 1.4216
14300 216.65 13450 0.2163 295.07 1.4216
14400 216.65 13240 0.2129 295.07 1.4216
14500 216.65 13032 0.2096 295.07 1.4216
14600 216.65 12828 0.2063 295.07 1.4216
14700 216.65 12628 0.2031 295.07 1.4216
14800 216.65 12430 0.1999 295.07 1.4216
14900 216.65 12236 0.1967 295.07 1.4216
15000 216.65 12044 0.1937 295.07 1.4216
15100 216.65 11856 0.1906 295.07 1.4216
15200 216.65 11670 0.1877 295.07 1.4216
15300 216.65 11488 0.1847 295.07 1.4216
15400 216.65 11308 0.1818 295.07 1.4216
15500 216.65 11131 0.1790 295.07 1.4216
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H, T, P P, c, uxI10’

m K N/m? kg/m? m/s  kg/ms
15600 216.65 10957 0.1762 295.07 1.4216
15700 216.65 10786 0.1734 295.07 1.4216
15800 216.65 10617 0.1707 295.07 1.4216
15900 216.65 10451 0.1680 295.07 1.4216
16000 216.65 10287 0.1654 295.07 1.4216
16100 216.65 10126 0.1628 295.07 1.4216
16200 216.65 9968 0.1603 295.07 14216
16300 216.65 9812 0.1578 295.07 14216
16400 216.65 9658 0.1553 295.07 14216
16500 216.65 9507 0.1529 295.07 14216
16600 216.65 9359 0.1505 295.07 14216
16700 216.65 9212 0.1481 295.07 14216
16800 216.65 9068 0.1458 295.07 14216
16900 216.65 8926 0.1435 295.07 1.4216
17000 216.65 8786 0.1413 295.07 1.4216
17100 216.65 8649 0.1391 295.07 1.4216
17200 216.65 8514 0.1369 295.07 1.4216
17300 216.65 8380 0.1348 295.07 1.4216
17400 216.65 8249 0.1326 295.07 1.4216
17500 216.65 8120 0.1306 295.07 1.4216
17600 216.65 7993 0.1285 295.07 14216
17700 216.65 7868 0.1265 295.07 14216
17800 216.65 7745 0.1245 295.07 14216
17900 216.65 7624 0.1226 295.07 14216
18000 216.65 7505 0.1207 295.07 14216
18100 216.65 7387 0.1188 295.07 14216
18200 216.65 7272 0.1169 295.07 14216
18300 216.65 7158 0.1151 295.07 14216
18400 216.65 7046 0.1133  295.07 14216
18500 216.65 6936 0.1115 295.07 1.4216
18600 216.65 6827 0.1098 295.07 1.4216
18700 216.65 6720 0.1081 295.07 1.4216
18800 216.65 6615 0.1064 295.07 1.4216
18900 216.65 6512 0.1047 295.07 1.4216
19000 216.65 6410 0.1031 295.07 1.4216
19100 216.65 6310 0.1015 295.07 1.4216
19200 216.65 6211 0.0999 295.07 1.4216
19300 216.65 6114 0.0983 295.07 1.4216
19400 216.65 6018 0.0968 295.07 1.4216
19500 216.65 5924 0.0953 295.07 1.4216
19600 216.65 5831 0.0938 295.07 14216
19700 216.65 5740 0.0923 295.07 14216
19800 216.65 5650 0.0909 295.07 1.4216
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H, T, P P, c, uxI10’

m K N/m? kg/m? m/s  kg/ms
19900 216.65 5562 0.0894 295.07 14216
20000 216.65 5475 0.0880 295.07 1.4216
20100 216.75 5389 0.0866 295.14  1.4222
20200 216.85 5305 0.0852 29520 1.4227
20300 216.95 5222 0.0839 295.27  1.4233
20400 217.05 5140 0.0825 295.34 14238
20500 217.15 5060 0.0812 295.41 1.4244
20600 217.25 4981 0.0799 29548  1.4249
20700 217.35 4903 0.0786 295.54  1.4255
20800 217.45 4827 0.0773 295.61  1.4260
20900 217.55 4752 0.0761 295.68  1.4266
21000 217.65 4678 0.0749 295.75 1.4271
21100 217.75 4605 0.0737 295.82  1.4277
21200 217.85 4533  0.0725 295.88  1.4282
21300 217.95 4463 0.0713 29595  1.4287
21400 218.05 4393  0.0702 296.02  1.4293
21500 218.15 4325 0.0691 296.09  1.4298
21600 218.25 4258 0.0680 296.16  1.4304
21700 218.35 4192 0.0669 296.22  1.4309
21800 218.45 4127 0.0658 296.29  1.4315
21900 218.55 4063 0.0648 296.36  1.4320
22000 218.65 4000 0.0637 29643 14326
22100 218.75 3938  0.0627 296.49  1.4331
22200 218.85 3877 0.0617 296.56  1.4337
22300 218.95 3817 0.0607 296.63  1.4342
22400 219.05 3758 0.0598 296.70  1.4348
22500 219.15 3699 0.0588 296.77  1.4353
22600 219.25 3642 0.0579 296.83  1.4359
22700 219.35 3586 0.0570 296.90 1.4364
22800 219.45 3530 0.0560 296.97 1.4370
22900 219.55 3476 0.0552 297.04  1.4375
23000 219.65 3422 0.0543 297.10  1.4381
23100 219.75 3370 0.0534 297.17  1.4386
23200 219.85 3318 0.0526 297.24  1.4391
23300 219.95 3266 0.0517 29731  1.4397
23400 220.05 3216 0.0509 29737  1.4402
23500 220.15 3167 0.0501 297.44  1.4408
23600 220.25 3118 0.0493 297.51 1.4413
23700 220.35 3070 0.0485 297.58  1.4419
23800 220.45 3023 0.0478 297.64  1.4424
23900 220.55 2976 0.0470 297.71  1.4430
24000 220.65 2930 0.0463 297.78  1.4435
24100 220.75 2885 0.0455 297.85 1.4441
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H, T, P P, c, uxI10’

m K N/m? kg/m? m/s  kg/ms
24200 220.85 2841 0.0448 29791 1.4446
24300 220.95 2797 0.0441 29798  1.4451
24400 221.05 2755 0.0434 298.05  1.4457
24500 221.15 2712 0.0427 298.12  1.4462
24600 221.25 2671 0.0421 298.18  1.4468
24700 221.35 2630 0.0414 298.25  1.4473
24800 221.45 2590 0.0407 298.32  1.4479
24900 221.55 2550 0.0401 298.39  1.4484
25000 221.65 2511 0.0395 29845  1.4490
25100 221.75 2473 0.0388 298.52  1.4495
25200 221.85 2435 0.0382 298.59  1.4500
25300 221.95 2398 0.0376 298.66  1.4506
25400 222.05 2361 0.0370 298.72  1.4511
25500 222.15 2325 0.0365 298.79  1.4517
25600 222.25 2289 0.0359 298.86  1.4522
25700 222.35 2254 0.0353 29892  1.4528
25800 222.45 2220 0.0348 298.99  1.4533
25900 222.55 2186 0.0342 299.06  1.4539
26000 222.65 2153 0.0337 299.13  1.4544
26100 222.75 2120 0.0332 299.19  1.4549
26200 222.85 2088 0.0326 299.26  1.4555
26300 222.95 2056 0.0321 299.33  1.4560
26400 223.05 2025 0.0316 29939  1.4566
26500 223.15 1994 0.0311 299.46 1.4571
26600 223.25 1964 0.0306 299.53  1.4577
26700 223.35 1934 0.0302 299.60 1.4582
26800 223.45 1905 0.0297 299.66  1.4587
26900 223.55 1876 0.0292 299.73  1.4593
27000 223.65 1847 0.0288 299.80  1.4598
27100 223.75 1819 0.0283 299.86  1.4604
27200 223.85 1792 0.0279 29993  1.4609
27300 223.95 1765 0.0275 300.00 1.4614
27400 224.05 1738 0.0270 300.06  1.4620
27500 224.15 1712 0.0266 300.13  1.4625
27600 224.25 1686 0.0262 300.20 1.4631
27700 224.35 1660 0.0258 300.27 1.4636
27800 224.45 1635 0.0254 300.33 1.4642
27900 224.55 1611 0.0250 300.40 1.4647
28000 224.65 1586 0.0246 300.47  1.4652
28100 224.75 1562 0.0242 300.53 1.4658
28200 224.85 1539 0.0238 300.60 1.4663
28300 224.95 1516 0.0235 300.67  1.4669
28400 225.05 1493 0.0231 300.73 1.4674
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H, T, P P, c, uxI10’

m K N/m? kg/m? m/s  kg/ms
28500 225.15 1470 0.0227 300.80 1.4679
28600 225.25 1448 0.0224 300.87  1.4685
28700 225.35 1426 0.0220 300.93  1.4690
28800 22545 1405 0.0217 301.00 1.4696
28900 225.55 1384 0.0214 301.07 1.4701
29000 225.65 1363 0.0210 301.13  1.4706
29100 225.75 1342 0.0207 301.20 14712
29200 225.85 1322 0.0204 301.27 14717
29300 225.95 1302 0.0201 301.33 1.4723
29400 226.05 1283 0.0198 301.40 1.4728
29500 226.15 1264 0.0195 30147 14733
29600 226.25 1245 0.0192 301.53 1.4739
29700 226.35 1226  0.0189 301.60 1.4744
29800 226.45 1208 0.0186 301.67  1.4750
29900 226.55 1190 0.0183 301.73  1.4755
30000 226.65 1172 0.0180 301.80  1.4760
30100 226.75 1154 0.0177 301.87 1.4766
30200 226.85 1137 0.0175 30193 14771
30300 226.95 1120 0.0172 302.00 14777
30400 227.05 1103 0.0169 302.07 1.4782
30500 227.15 1087 0.0167 302.13  1.4787
30600 227.25 1071 0.0164 30220 1.4793
30700 227.35 1055 0.0162 302.27 1.4798
30800 227.45 1039 0.0159 302.33  1.4803
30900 227.55 1023  0.0157 302.40 1.4809
31000 227.65 1008 0.0154 30247 14814
31100 227.75 993 0.0152 302.53 1.4820
31200 227.85 978 0.0150 302.60  1.4825
31300 227.95 964 0.0147 302.67 1.4830
31400 228.05 949 0.0145 302.73 1.4836
31500 228.15 935 0.0143 302.80 1.4841
31600 228.25 921 0.0141 302.86 1.4846
31700 228.35 908 0.0138 302.93 1.4852
31800 228.45 894 0.0136 303.00  1.4857
31900 228.55 881 0.0134 303.06 1.4863
32000 228.65 868 0.0132 303.13  1.4868




Appendix D

ONE-DIMENSIONAL STEADY FLOW
EQUATIONS

D.1 Continuity equation

The continuity equation expresses the physical principle that mass can be neither
created nor destroyed. Consider a gas flowing through a channel (Figure D.1).
When the flow is steady, there will be no variation with time of the mass of the gas
confined inside the channel between the cross-settions 1 and 2. Consequently, the
same rate of mass flow will cross each section of the channel. Thus, the condition
for continuity is

m = pV A = constant, (D.1)

where m is the mass flow per unit time, V' is the flow velocity and A is the cross-
sectional area.
Equation (D.1) is the continuity equation. In the logarithmic differential form this
equation reads

dp  dV  dA

StV 0. (D.2)

Emphasis is made that Equation (D.1) is derived by using the simplifying con-
ditions of one-dimensional steady flow. This implies that all gas properties are
uniform over any cross-section of the channel and independent of time.

In steady flow, the gas particles move along streamlines, which represent the local
flow direction. Thus, by definition, particles cannot cross a streamline. All the
streamlines that go through the circumference of a surface directed perpendicular
to the flow direction form a streamtube (Figure D.2). Since no particle can enter
or leave the streamtube through its walls, it follows that when dealing with steady
flow, the continuity equation holds also along a streamtube.

cross section A streamlines
/'
Figure D.1 Channel flow Figure D.2 Streamtube

343



344 Elements of airplane performance

|§ 2

1

Figure D.3 Elemental streamtube

D.2 Bernoulli’s equation

Bernoulli’s equation expresses the relationship between pressure and velocity along
a streamline for a frictionless steady flow.

To derive this equation, we may consider an element of an elemental streamtube
with mass pdsdA, where ds is the length and dA is the cross-sectional area of the
element (Figure D.3).

If the effect of altitude on pressure is neglected, we obtain from Newton’s second
law of motion:

dv

—dpdA = pdsdA
pdA=pdsdA—-,

(D.3)

where dp is the difference in pressure across the two cross-sections of the element
of the streamtube. The acceleration of the element is given by

dv _dV ds n A%
dt — dsdt Jt’
Since in steady flow the derivative with respect to time is zero, the acceleration
reduces to
dv dv
—=V—. D.4
dt ds (D4

Insertion of the latter expression into Equation (D.3) furnishes Euler’s equation:

i)—p =-Vdv. D.5)

When the flow is continuous, Equation (D.5) can be integrated between the sta-
tions 1 and 2 of the streamtube in Figure D.2. This yields

Py
dp 1
/—p+7(v22—v12) —0. (D.6)

p 2
Py

If we use the assumption that p is constant, we obtain Bernoulli’s equation:

1

2V22 or (D.7)

1
pr+5pVE=py+
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n
control surface S

Figure D.4 The flow In a control surface

1
pr=p+ EpV2 = constant, (D.8)

where p;, is the total pressure and % pV? is the dynamic pressure.

A flow can only be assumed to be incompressible if the velocity is low, that is,
low when compared with its speed of sound.

For the case of compressible flow, the integral in Equation (D.6) can only be
solved if we have additional information on the variation of density with pressure,
which will be discussed in Section D.7.

D.3 The momentum equation

To derive the momentum equation we consider a gas flowing steadily through a
fixed control volume bounded by a control surface S (Figure D.4).
In order to apply Newton’s second law of motion to the gas, the control volume is
divided into elemental streamtubes of cross-section dA (see Figure D.3).
As the flow is steady, the x-component of the acceleration of a streamtube element
is given by
dVy dVy

ax—W—Vds, (D.9)
where V, is the x-component of the velocity V. The mass of the gas enclosed by
the element is

dM = pdsdA. (D.10)
The x-component of the force acting on the element is therefore
dv,
dFX:pdsdAVd—x. (D.11)
S

To determine the integral of Equation (D.11) extended over the complete con-
trol volume, it is appropriate to first consider the contributions of the individual
streamtubes.
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The contribution of the streamtube 1-2 to the force F, becomes

2 2
/pdsdAV% :/(deA)de, (D.12)
1 1

where the product p V dA represents the mass flow rate, which has a constant value
along the streamtube. Hence

2
/ (pVdA)dV, = pV dA(V, —Vi,). (D.13)
1

Then for the entire system, we can write

Fot W, = /p V (Vy, — Vs, )dA. (D.14)
S

The term on the left-hand side of Equation (D.14) is the sum of the x-components
of the resultant force F' acting on the gas within the control surface S and the
weight W of the gas confined in the control volume.

Evidently, we can write Equation (D.14) as

Fx—l—Wx:/pVchosocdS, (D.15)
N

where dS represents the area of the surface element that an elemental streamtube
cuts out of the control surface. The angle « is the angle between the direction
of the velocity V at the place where the streamtube pierces through the control
surface and the outward normal at the same point. The product V cos ¢ in Equation
(D.15) is the projection of the velocity V on the outward normal of S. Let V,
denote V cos o.. Then, Equation (D.15) becomes

Fx—I—sz/andeS. (D.16)
N

Note that the normal velocity V,, is positive at points where the gas leaves the
control volume and negative at points where the gas goes into the control volume.
Equation (D.16) is the momentum equation, written in a general form. Since the
product pV,dS is the mass flow rate that passes a surface element dS, Equation
(D.16) says that the sum of the components of the external forces in a given di-
rection acting on a gas contained in a control volume equals the rate of change of
momentum of the gas in the same direction.

In the application of the momentum equation, it is normally found convenient to
employ special forms. As a typical example, we will consider here the steady
one-dimensional flow through a channel (Figure D.5).
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control surface S

1

1
i P2Ay

PyA, . :
— \q —\V2

Figure D.5 Flow through a channel

Let the control surface consist of the interior surface of the channel and the cross-
sections 1 and 2. Neglecting the weight of the gas, the momentum equation then
furnishes for the component in the direction of flow of the force exerted by the
walls of the channel on the fluid:

X=m(V,—V|)+p,A, — pA,. (D.17)
In this equation p;A; and p,A, are the forces that the gas outside the portion of
the channel between stations 1 and 2 exerts on the flow within the control volume.
D.4 The energy equation

The energy equation is based on the first law of thermodynamics that states that
energy is conserved in a thermodynamic system. Thus, for a system of gas, the
energy supplied must equal the sum of the increase in the internal energy of the
system and the energy which leaves the system as work. The first law of thermo-
dynamics may be written as

dQ = dE +dw, (D.18)

where dQ is the amount of energy added to the system, dW is the amount of work
done by the system and dE is the corresponding change in internal energy.

It is convenient to employ lower case letters to denote the values of extensive
variables per unit mass of fluid. Then, Equation (D.18) becomes

dq = de+dw. (D.19)

For any system we can break the work dw into two parts:
1
dw=dwy+ pd p) (D.20)

in which pd(1/p) is the increment of work done by the gas on the surrounding
control surfaces and dw,, includes all other forms of work.
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Vdt Vot
§ & T -
I
— 1
Pr—= | j— P2
— —V— —— V- ——

Figure D.6 Channel flow with addition and extraction of energy

The internal energy is all the energy internal to the system boundaries. Neglecting
the potential energy,

V2
e=u+—, (D.21)
2
in which u denotes the internal molecular energy, and V2 /2 is the kinetic energy
of the system per unit mass.
For our analysis, we consider a flow through a channel, and we define the system
as the gas in the channel between the cross-sections 1 and 2 (Figure D.6). After a
time dt, the system will have moved to the position 1’-2". Then, from the principle
of the conservation of energy, the net energy transferred to the system is the energy
in volume 1’-2’ at time  + dt minus the energy in volume 1-2 at time ¢.
For steady flow, the internal energy in region 1’-2 remains unchanged so that the
net energy transferred to the system is also given by the energy in region 2-2' at
time ¢ + dt minus the energy in region 1-1" at time ¢.
Assuming that the properties of the gas masses in the regions 2-2’ and 1-1’ can
be considered to be the same as the properties of the gases when they pass their
respective entry-sections 1 and 2, we obtain the energy balance for a flowing gas
as

Vi VP
[m(q—wm) — (p,V2A, — pVIA))| di =m {(u2 —uy)+ {22 - 21” dt, (D.22)

where m is the mass flow rate and pV A represents the work done by the system on
the surroundings.

Equation (D.22) expresses that in time df, heat is added and energy in the form of
work is extracted at the rates ¢ and w), units of energy per unit mass.

Noting that from Equation (D.1),

m=p,\ViA; = p,V,A,.
we get the following form of the energy equation,

2 2

[P pl} [Vz V1:|
gG—wm= ==L+ uy—u)+ | =—2|, (D.23)

|:p2 P1 (2 1) 2 2
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or in differential form,
dg—dwy, = d(%) fdu+tvav (D.24)

Again, it should be noted that Equations (D.23) and (D.24) refer to a steady one-
dimensional flow of unit mass.

D.5 Isentropic relations

The first law of thermodynamics for an incremental change of state of a system of
gas may be written as

1
dq:du—&—pd(E) . (D.25)
When we use the concept of enthalpy, %, defined as
h=u+? (D.26)
p
then, for an infinitesimal process,
dh=du+ d<1>+1d (D.27)
=du+ pd| — —dp. .
p p
Combination of Equations (D.25) and (D.27) yields
1
dgq=dh— Ea’p. (D.28)

The specific heat at constant pressure is therefore

dq oh
The specific heat at constant volume is
dq du
=== ==. D.30
“ <aT> LT or (D.30)

Assuming that we are dealing with a perfect gas we have the equation of state,
ie.,

£ = RT, (D.31)

where R is the specific gas constant.
For a perfect gas the specific heats are related by

_ 9 a9 _
_a_T(”E)_ aT(u+RT)—cv+R. (D.32)

Cp
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insertion of Equations (D.30) to (D.32) into Equation (D.23) leads to the following
form of the energy equation per unit mass flow rate of a perfect gas:

vZ V2
q—wm:cp(T2—Tl)+72—71. (D.33)
For adiabatic flow (¢ = w;,, = 0) we have
VZ
cpT + 5 = constant, (D.34)
or in differential form
cpdT +VdV =0. (D.35)

For inviscid flow, Equation (D.35) can be combined with Euler’s equation, Equa-
tion (D.5). The resulting form is:

cpdT — ‘i)—p =0. (D.36)

Substituting Equations (D.31) and (D.32) into (D.36), we obtain

d dT
@_ ¥ 4 (D.37)
p Y1 T

where 7 is the ratio of the specific heats, y = c,/c,.

For the case of constant specific heats, Equation (D.37) may be integrated, with
the result that

p

TGo-1) = constant. (D.38)

Using the perfect gas law, Equation (D.31), the latter equation can be transformed
to

% = constant. (D.39)

Equations (D.38) and (D.39) are called the Poisson relations, and provide informa-
tion on the variations of p, T, and p along a streamline in an isentropic (adiabatic
and reversible) flow.

D.6 The speed of sound

The speed of sound is the rate at which a weak disturbance or sound wave propa-
gates through a medium. In order to derive an expression for the speed of sound,
we consider a sound wave moving with speed c through a perfect gas at rest in a
constant area duct (Figure D.7).

Suppose that we are traveling with the sound wave. We then see at both sides of
the sound wave a steady flow to the right. Across the sound wave, the velocity,
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Figure D.7 Derivation of a formula for the speed of sound

pressure, density and temperature of the gas are changed by the amounts dc, dp,
dp and dT, respectively.
Applying the continuity equation, Equation (D.1), we get

pc=(p+dp)(c+dc). (D.40)

When neglecting the product of two small quantities, we obtain from Equation
(D.40)

dc
—_p% D.41
== 4 (DA1)
From Euler’s equation, Equation (D.5), we have
d
de=-2P. (D.42)
pc
Substitution of Equation (D.42) into (D.41) yields
d
2=9P (D.43)
dp

Assuming that the flow through the sound wave is isentropic, the relationship
between pressure and density is given by Equation (D.39),

4

ﬁ = constant = C. (D.44)
Hence

dp d(Cp?) -1_ P

dp _ —yCprt =L (D.45)

dp dp Yep }’p

Combining Equations (D.43) and (D.45) results in the following expression for
the speed of sound,

| P
ey D.46
c yp ( )

Substituting the perfect gas law, Equation (D.31), into Equation (D.46) yields

c=+/YRT. (D.47)

This equation shows that the speed of sound in a perfect gas depends only on the
(absolute) temperature of the gas.
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D.7 Bernoulli’s equation for compressible flow

According to the energy equation for adiabatic flow, Equation (D.34), we may
write

V2
cpT + 5= constant = ¢, Ty, (D.48)

where 7, is the value of the temperature that would occur if the velocity was
slowed down adiabatically to zero velocity and is called the stagnation or fotal
temperature.

Calculations are often facilitated if the flow velocities are taken into account im-
plicitly by introducing the concept of total temperature and by expressing the flow
velocities in terms of Mach number. The Mach number M is defined as

M=V/c, (D.49)

where c is the speed of sound.
For a perfect gas the speed of sound can be expressed diversely as

c= yg = /YRT = \/(y—1)c,T. (D.50)

Combining Equations (D.48) and (D.50) yields the relationships

T; v? Y=l
— =1 =14+"—M". D.51
T +ZCPT + 2 ( )

From Equation (D.51), and the Equations (D.38) and (D.39) we get for the corre-
sponding pressure and density ratios for isentropic flow:

Y Y
7,771 —1 |7
%: {7!] - [H_Yz MZ} ! (D.52)
1 | L
Y — Y

Equations (D.51) to (D.53) show that the static temperature, pressure and density
and the velocity of a moving gas are equivalent in terms of energy to a total tem-
perature, total pressure, and total density. This may be useful, for example, in
studying the gas flow through a jet engine.
With the substitution of Equations (D.49) and (D.50), Equation (D.52) can be
written as
-

P _ [1 Lrte VZ} . (D.54)

P 2y p
The latter form is often called Bernoulli’s equation for compressible flow, where
p; s the total pressure that would occur if the flow was decelerated isentropically
to zero velocity.
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D.8 Isentropic flow of a perfect gas through a channel of
varying cross-section

For steady flow the mass flow rate crossing a section of the flow passage follows
from the continuity equation. Equation (D.1)

m = pVA. (D.55)

For a perfect gas, Equation (D.55) can be transformed to

_r _r Y
m= —M\/YRTA \/T\/; MA. (D.56)

By insertion of Equations (D.51) and (D.52) into Equation (D.56) the mass flow
rate can be expressed in terms of stagnation conditions,

v+l
—1 “37D
m— % \/gM [1+7’TM2] A (D.57)
t

Since for steady isentropic flow the quantities m, 7; and p, are constants, we find
by differentiating Equation (D.57) that

dA dM v am
ATV ITEDE M (59
14 5-M?
Rearranging, we get for the variation of the Mach number with cross-sectional
area
dM 1+ M2 dA
— =2 (D.59)
M 1-M?> A
The related variations of velocity, temperature, pressure and density with area
change follow from Equation (D.59) in combination with the Equations (D.51),
(D.52) and (D.53). These are repeated below for easy reference in the following
analysis and made visible in Figure D.8,

T y—1 - V2
IR Gy S D51
T * 2 * ZCPT ( )
17
Pr _ [1 + y—MZ} (D.52)
p 2
1

_ 1 =1
Pr_ {1 = Mﬂ o (D.53)
p 2

From Figure D.8 we see that the effects of area change are opposite for subsonic
and supersonic flow.

In the case of a converging-diverging channel, the minimum cross-sectional area
is called the throat (dA = 0). There, according to Equation (D.59), the flow must
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type of flow |converging channel (dA<Q) |diverging channel (dA>0])
I
M<t T Ms<l | Mst M<1
—_— — —_ -
subsonic flow M increases M decreases
(M<1) V increases V decreases
T decreases T increases
p decreases p increases
p decregses p increases
M>1 © T M3l [ M2] — M>1
— —_— — —
supersonic e e
flow M decreases M increases
[M=>1) V decreases V increases
T increases T decreases
p increases p decreases
p increases p decreases

Figure D.8 Effects of area change in isentropic flow through a duct

throat
— — — — - — — — —
M<1  Mmax<l M<1 M>1  Mmin>1 M>1 M<1 M=1 M>1
(dM=0) (dM=0) ( choked flow)

Figure D.9 Isentropic flow through a converging-diverging channel

satisfy the condition that the Mach number either shows an extreme (dM = 0) or

is equal to unity (Figure D.9).

Under the first-mentioned condition, in the channel subsonic expansion takes

place followed by subsonic dfffusion or for supersonic flow a decreasing Mach

number in the converging section but not reaching a Mach number of unity, and

in the diverging section an increasing Mach number.

When M = 1 we have the condition where the flow velocity at the throat equals

the local speed of sound.

Under this condition the flow is said to be choked because the mass flow is the

maximum which the throat can cross with the given stagnation temperature and

pressure. The mass flow rate in a choked flow, from Equation (D.57), is given by
y+1

mt = Pr ’)/|:’}/+1:|_2(yl) A*,

VT VR
where an asterisk is used to mark the properties of the flow at the throat. Equating
Equations (D.60) and (D.57) yields

5 (D.60)

r+1

A 1] 2 y—1 511 2D
—=—|— |14+ —M . D.61
A* ML/JA[ + 2 H (D-61)

In Figure D.10 are plotted the ratios T /T,, p/p;, p/p; and A/A* for a perfect gas
of y = 1.4, as expressed by the Equations (D.51), (D.52), (D.53) and (D.61).
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Figure D.10 Characteristic ratios for isentropic flow (y = 1.4)

To find the conditions at a particular section of a channel with a given shape, the
local Mach number follows directly from the ratio A/A* in Figure D.10. Then,
with known stagnation conditions, the curves also give the corresponding values
of T, pand p.

The conditions at the throat are found by setting M = 1 in Equations (D.51) to
(D.53):

% _ %1 —12 (y=14) (D.62)
Y
iy

1% - [%ﬂ T 1893 (y=14) (D.63)
1

% = {%1] e (y=14). (D.64)

In order to establish in a convergent-divergent channel a subsonic expansion in the
convergent part with a Mach number of unity at the throat section, followed by a
supersonic expansion in the divergent part of the channel, the pressure at the throat
must be greater than the ambient pressure at the outlet p,. Thus, the pressure ratio
required for obtaining the condition M* =1 is

v
T
”iz[y;ly —1.893  (y=14) (D.65)
P

Again, in the case of a converging-diverging channel, the presence of a throat
does not necessarily imply M* = 1 because for values of p,/p, lower than given
by Equation (D.63) subsonic flow is found throughout (unchoked flow).

D.9 Normal shock waves

Consider an adiabatic flow through a constant area duct, where the gas properties
change between the cross-sections 1 and 2 (Figure D.11). With the assumption of
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normal shock normal shock
My>1 Mo<1
. Vi V2 —_— —_—
M1.p1.T1. 1 M2.p2.T2.p2 | |
1 @ SD @
Figure D.11 Adiabatic flow In a con- Figure D.12 Shock wave formation in
stant area duct a supersonic flow

a perfect gas, the governing equations are:

The equation of state p =pRT. (D.66)
2. The continuity equation m=p,V,A = p,V,A. (D.67)
The momentum equation (p, — p,)A=m(V, —V,). (D.68)
4. The energy equation cpT) + %12 =cpT, + ‘%22 (D.69)

The above four equations contain the four variables, p, p, T and V. Therefore, the
gas properties at section 2 can be expressed in terms of the properties at section 1.
Substitution of Equation (D.67) into (D.68) yields

PL+PVE =Pyt p, Vs (D.70)

Using the perfect gas law, Equation (D.66), and with Ry/(y — 1) substituted for
the specific heat at constant pressure in Equation (D.69), we obtain

Y P V71277P2V722

= = == . (D.71)
y=1py 2 v=1p, 2
Combining Equations (D.67), (D.70) and (D.71) results in the following single

equation,

Vi [ Vz} [ Vz} Y [ Vz} Y P [ Vz}
A2 -2 =Ly, |1-2 -1 -2 (D.72)
2 v, Vi y=1120 v y—1p, v,

In addition to the trivial solution that V, is equal to V,, a second solution is valid
mathematically, namely,

V'Z[ VZ} . { p]}
dhy2= T \yy 2 (D.73)
2 Vi y=1[1"2 p

We can manipulate Equation (D.73) to produce explicitly the velocity ratio,

Vs Y—l[l 2y py 1}

Vi y+l[ Ty=1p V2

(D.74)
y=1p VP

A velocity variation may be experienced in a supersonic flow in the form of a
discontinuity which is called a shock wave (Figure D.12).
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With V = M+/vp/p and the continuity equation, we can express the relationship
between the velocities before and after the shock in terms of the initial Mach
number M, :

Voa_pp_ 2 1 y-1

D.75
Vi P, y+1Aﬁ y+1 D.75)

The relationship between the pressures p, and p, is found from Equations (D.70)
and (D.75) as

&:H&ﬁ—gﬁzwwﬁWW[z 1 %1 or

Py Dy Py +1 Wl +1

2 -1
Po_ Y ppp Y70 (D.76)
py Y+l y+1

Using Equations (D.66), (D.75) and (D.76), the temperature ratio is found to be

T 2 —1 2 1 —1
g_&&_{yM%V H —+1—} (D.77)
T pipy Ly+l vy Ly+1 My y+1

The corresponding equation for the ratio of the Mach numbers is found, from
Equations (D.75) and (D.77), to be

2 1 y—1 _ 1/2
{Mzr {Vzr T _ v v H'YTIM%] : (D.78)
— = — —_— = 0r = _ . .

2y r—1 2 r—1
M, Vil T ghME— 7 M — 5o

Apparently, for a given value of 7, the ratios p,/p,, T,/Ty, p,/p;, V,/V; and
the Mach number M, are unique functions of the initial Mach number M,. For
M, > 1, we have:

ooy Bsy Py oy <
Py T, Py Vi
Thus, at supersonic velocities, all changes are accompanied by shock waves,
through which the pressure, temperature and density are increased, and the flow
velocity and Mach number are reduced.
The relationship between the initial and final Mach number is plotted in Figure
D.13, which shows that the flow velocity behind a normal shock is always sub-
sonic (M, < 1). The loss in kinetic energy is converted into heat so that the occur-
rence of a shock wave is an irreversible adiabatic (nonisentropic) process.
Though mathematically possible,. the case of M| < 1 with the resulting M, being
greater than unity, is physically impossible, since this solution to the equations is
in defiance of the second law of thermodynamics.
The relationship between the total pressures on the two sides of the normal shock
is given by

P _ Py

1 v
1+ 5-mZ | 7!
D '

r—1
I+ 5 M
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Figure D.13 Final Mach number and total pressure ratio versus initial Mach number for a
normal shock (y = 1.4)

Using Equations (D.76) and (D.78), this ratio can be written

Y

AT 2 77
@_[ vl )} [7(”1)1‘41 y. (D.79)

Py L2yMF—(y—1 2+ (y=1)M;

Figure D.13 shows that, for M| > 1, the total pressure always decreases when the
flow passes a shock wave. Finally, it is worthwhile to derive a similar expression
for the ratio of the total pressure behind the normal shock to the initial static
pressure,

- 1
Po_ PoPi _ {” IMZ} . [ZYMIZ - 1} o (D.80)

P Pa P 2 ! yHL oyt

This relationship is called the Rayleigh formula, and is of importance to the mea-
surement of airspeed.

D.10 Oblique shock waves

If, in a direction parallel to the shock wave, a uniform velocity V; is superimposed
on the flow field of the normal shock, the resultant upstream velocity is (Figure
D.14a)

V,=/V2 +V2 (D.81)

where V,, is the normal component of the velocity V. The inclination of the
velocity V, relative to the shock is given by

B = tan™" (V,,/V,). (D.82)

Since V,, <V, ,, the resultant velocity V, behind the shock makes a smaller angle
with the shock then the upstream velocity. That is, the flow is deflected over an
angle 6 toward the shock.
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shock ’ shock

Figure D.14 Flow through oblique shock

Since in a frictionless steady flow any streamline can be replaced by a boundary,
the oblique shock wave represerts the behavior of a supersonic flow when turning
suddenly through a deflection angle 6 (Figure D.14Db).

The equations relating the gas properties before and after the oblique shock can
be obtained readily, if we recognize that these properties are not affected by the
superposition of a velocity parallel to the shock wave. Thus, all the relations de-
rived in Section D.9 for the normal shock are applicable if the Mach number M, in
the normal shock equations is replaced by M, sin 3, where now M, =V, /c, refers
to the upstream Mach number before the oblique shock. Then, from Equations
(D.75) to (D.77), we have the following ratios across the shock:

&_Vnz_ 2 1 y—1

=== + D.83
Py Vi YHIMEsin’B o y+1 (b5
2 —1
Pr_ ¥ ppsinp -T2 (D.84)
v+l y+1
T. 2 —1] 2 1 -1
2 [—YM% sin2B— ~ S A (D.85)
T, y+1 v+1] |v+1 M2sin®B  y+1
Similarly, from Equation (D.79), the total pressure ratio becomes
L .
P r+1 T _(r)Misin?B |7
—& = — — . (D.86)
Pn | 2yMEsin®f—(y—1) 2+ (y—1)Msin” B
From Figure D.14a and Equation (D.83) we obtain
t — Vv 2 1 -1
an(P~6) _Vu _ +7 (D.87)

tan 3 Voo Y+H1M2sin? B y+ 1

Solving Equation (D.87) for the deflection angle 6 produces the following expres-

sion
M?sin23 —2cot B
6=tan ' |- . D.88
2+ M?2(y+cos2f) (D.88)
Finally, the Mach number M, after the shock may be obtained by writing
My, Vyey  sinf Ve (D.89)

My oV sin(B—0)V, ¢
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Figure D.15 Oblique shock properties

Figure D.16 Supersonic flow in a corner

Noting that ¢, /¢, = /T, /T, and using Equations (D.83) and (D.85) yields

1 1+ %IM]Z sin® B

M? = . (D.90)
> sinX(B-6) yM?sin? B — 1
Combining Equations (D.90) and (D.88) furnishes
)
2 1+ 5 M M cos® B (D.91)

My = .
: yM?sin? B — 11 14+ M2 sin? B

In Figure D.15 is plotted B versus M, for constant values of 6. The points on the
curves that correspond to the same value of M, are joined by dashed lines. The
graph shows that for each value of M, there exists a maximum value of 0. If the
deflection angle is greater than Oy,,x, the gas properties are no longer described by
the preceding equations since a detached shock will occur (Figure D.16).
Examining the curves in Figure D.15, we also see that there are two possible in-
clination angles for each value of M, and 8. The shock with the larger f3 results in
a subsonic M, and is a stronger shock than that with the smaller inclination angle.
Experience indicates, however, that a weak shock with the smaller § usually is
found in actual flow. This means that the Mach number behind an oblique shock
remains supersonic, except for a small range of values of 8 near Opy.
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Clearly, the occurrence of an attached oblique-shock requires that 6 < B, and
an inclination angle such that

> B >sin! {ML] ) (D.92)
1

SN

The upper limit, f = /2, leads to the presence of a normal shock, whilst at the
lower limit of B we have the condition for an infinitely weak shock or Mach wave
(M, = 1). The associated minimum shock inclination is called the Mach angle,
usually given the symbol :

1
-
ﬁmin =H =sm |:ﬁ1:| : (D.93)
When the condition (D.93) is applied to the preceding equations, we find that the
value of 0 is zero and that there is no change whatever in the gas properties across
the Mach wave.

GENERAL REFERENCES FOR APPENDIX D

L. Prandtl and O.G. Tietjens, Applied Hydro- and Aeromechanics, McGraw-Hill,
New York, 1934.

H.W. Liepmann and A. Roshko, Elements of Gasdynamics, John Wiley, New
York, 1957.

A.M. Kuethe and J.D. Schetzer, Foundations of Aerodynamics, John Wiley, New
York, 1959.

R.M. Rotty, Introduction to Gas Dynamics, John Wiley, New York, 1962.

A.M. Kuethe and C. -Y. Chow, Foundations of Aerodynamics, John Wiley, New
York,, 1976.

J.J. Bertin and M.L. Smith, Aerodynamics for Engineers, Prentice-Hall, Inc.,
Englewood-Cliffs, New Jersey, 1979.

M.A. Saad, Compressible Fluid Flow, Prentice-Hall, Inc., Englewood-Cifffs, New
Jersey, 1985.



References

o

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.
20.

21.

J.R. von Mises, Theory of Flight, McGraw-Hill, New York, 1945.
FJ. Hale, Aircraft Performance, Selection, and Design, John Wiley, New
York, 1984.

. J.D. Anderson, Jr., Introduction to Flight, MGraw-Hill, New York, third edi-

tion, 1989.

A.C. Kermode, Mechanics of Flight, Pitman, London, 1962.

A. Miele, Flight Mechanics, Vol 1, Theory of Flight Paths, Addison-Wesley,
Reading, Massachusetts, 1962.

D.O. Dommasch, S.S. Sherby and T.F. Connolly, Airplane Aerodynamics,
Pitman, London, 1961.

H. Ashley, Engineering Analysis of Flight Vehicles, Addison-Wesley, Read-
ing, Massachusetts, 1974.

Anon., Handbook of Geophysics, Macmillan, New York, 1960.

Anon., International Standard Atmosphere (ISA), International Organization
for Standardization, ISO 2533, 1975.

J.V. Iribarne and H.-R. Cho, Atmospheric Physics, D. Reidel Publishing Com-
pany, Dordrecht, Holland, 1980.

Anon., U.S. Standard Atmosphere, 1976, National Oceanic and Atmospheric
Administration, National Aeronautics and Space Administration, United
States Air Force, U.S. Government Printing Office, Washington, D.C., 1976.

EW. Cole, Introduction to Meteorology, John Wiley, New York, 1980.

LLH. Abbot and A.E. von Doenhoff, Theory of Wing Sections, McGraw-Hill,
New York, 1949.

E. Torenbeek, Synthesis of Subsonic Airplane Design, Delft University Press,
1976.

W. Gracey, Measurement of Aircraft Speed and Altitude, John Wiley, New
York, 1981.

E.H.J. Pallett, Aircraft Instruments, Pitman, London, 1981.

J. Andresen, Fundamentals of Aircraft Flight and Engine Instruments, Hay-
den Book Company, New York, 1970.

H. Cohen, G.F.C. Rogers and H.I.LH. Saravanamuttoo, Gas Turbine Theory,
Longman, London, 2001.

P.J. McMahon, Aircraft Propulsion, Pitman, London, 1971.

J.L. Kerrebrock, Aircraft Engines and Gas Turbines, The MIT Press, Mas-
sachusetts, 1977.

P.G. Hill and C.R. Peterson, Mechanics and Thermodynamics of Propulsion,
Addison-Wesley, Reading, Massachusetts, 1965.

362



22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

References 363

M.J. Zucrow, Gas Turbines and Jet Propulsion, Volume II of Aircraft and
Missile Propulsion, John Wiley, New York, 1958.

D. Fielding and J.E.C. Topps, Thenmodynamics Data for the Calculation
of Gas Turbine Performance, Aeronautical Research Council, R.&M. No.
3099, HMSO, London, 1959.

J.C. Samuels and B.M. Gale, Effect of Humidity on Performance of Turbo-
Jjet Engines, National Advisory Committee for Aeronautics, Technical Note
2119, Washington, June 1950.

G. Jackon, The Effect of Atmospheric Humidity and Temperature on the En-
gine Power and Takeoff Performance of a Hastings I, Aeronautical Research
Council, C.P. No. 77, HMSO, London, 1952.

H. Roxbee Cox (Consulting Editor), Gas Turbine Principles and Practice,
George Newnes Limited, London, 1955.

N.D. Van Sickle (Editor), Modern Airmanship, Van Nostrand Reinhold Com-
pany, New York, 1971.

R.D. Hager and D. Vrabel, Advanced Turboprop Project, NASA SP-495,
NASA Scientific and Technical Information Division, Washington, D.C.,
1988.

H. Glauert, Airplane Propellers, Aerodynamic Theory, Vol. IV (William F.
Durand, ed.). Dover Publications Inc., New York, 1963.

T. Theodorsen, Theory of Propellers, McGraw-Hill, New York, 1948.

E.P. Hartman and D. Biermann, The Aerodynamic Characteristics of Full-
Scale Propellers Having 2, 3, and 4 Blades of Clark Y and R.A.F. 6 Airfoil
Sections, NACA Report 640,1937.

B.W. McCormick, Aerodynamics, Aeronautics, and Flight Mechanics, John
Wiley, New York, 1979.

B.W. McCormick, Aerodynamics of V/ISTOL Flight, Academic Press, New
York, 1967.

Hamilton Standard Division, United Aircraft Corp., Generalized Method of
Propeller Performance Estimation, Hamilton Standard Publication PDB 6101
A, 1963.

Anon., SBAC Standard Method of Propellor Performance Estimation, Society
of British Aircraft Constructors Ltd., 1950.

A.J. Bocci, A New Series of Aerofoil Sections Suitable for Aircraft Propellers,
Aeronautical Quarterly, February, 1977.

C. Rohrbach and H.S. Wainauski, Aerodynamic Characteristics of an Ad-
vanced Technology Propeller for Commuter Aircraft, American Institute of
Aeronautics and Astronautics, AIAA Paper No. 81-1565,1981.

Anon., U.S. Standard Atmosphere, 1962, U.S. Government Printing Office,
Washington, D.C., 1962.

Anon., Engineering Sciences Data, Aeronautical Series, Performance Vol.
1-6, Engineering Sciences Data Unit (ESDU) International Ltd., London.
D.P. Davies, Handling the Big Jets, Air Registration Board, Brabazon House,

Redhill, Surrey, England, 1967.



364 Elements of airplane performance

41

42

43.

4.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

. R.S. Shevell, Fundamentals of Flight, Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1983.

. D. Stinton, The Anatomy of the Airplane, G.T. Foulis & Co Ltd., London,
1966.

C.D. Perkins and R.E. Hage, Airplane Performance Stability and Control,
John Wiley, New York, 1949.

F.H. Hawkins, Human Factors in Flight, Gower Technical Press Ltd., Eng-
land, 1987.

A. and L. Welch and F. Irving, Now Soaring Pilot, John Murray, England,
1970.

A.E. Bryson, Jr. and Y.-C. Ho, Applied Optimal Control, Hemisphere Pub-
lishing Corporation, Washington, D.C., 1975.

N.X. Vinh, Optimal Trajectories in Atmospheric Flight, Elsevier, Amsterdam,
1981.

E.S. Rutowski, Energy Approach to the General Aircraft Performance Prob-
lem, Journal of the Aeronautical Sciences, Vol. 21, No. 3, March 1954.

A.E. Bryson, Jr., M.N. Desai and W.C. Hoffman, Energy-State Approximation
in Performance Optimization of Supersonic Aircraft, Journal of Aircraft,
Vol. 6, No. 6, Nov./Dec. 1969.

A.D. Edwards, Performance Estimation of Civil jet Aircraft, Aircraft Engi-
neering, Vol. 22, No. 254, April 1950.

A.H. Stratford, Air Transport Economics in the Supersonic Era, MacMillan,
London, 1973.

Anon., Standard Method for the Estimation of Direct Operating Costs of Air-
craft, Society of British Aircraft Constructors, Issue No. 4, 1959.

Anon., Standard Method of Estimating Comparative Direct Operating Costs
of Turbine Powered Transport Airplanes, Air Transport Association of Amer-
ica, 1967.

D.V. Maddalon, Estimating Airline Operating Costs, NASA Technical Mem-
orandum 78694, May 1978.

Anon., Short-Medium Range Aircraft - AEA Requirements, Association of
European Airlines, Brussels, Nov. 1986.

E. Ower, R. Warden and W.S. Brown, An Investigation of Ground Effect with
a Model of a Mid-Wing Monoplane, Aeronautical Research Council, R.&M.
No. 1847, HMSO, London, 1938.

D.H. Perry, The Airborne Path During Take-off for Constant Rate-of-Pitch
Manoeuvres, Aeronautical Research Council, C.P. No. 1042, HMSO, Lon-
don, 1969.

F.E. Douwes Dekker and D. Lean, Take-off and Landing Performance, AGARD
Flight Test Manual, Volume 1, Chapter 8, Pergamon Press, 1962.

C.E. Padilla, Optimizing Jet Transport Efficiency, Performance, Operations
& Economics. McGraw-Hill, New York, 1996.

J.D. Anderson, Aircraft Performance and Design, McGraw-Hill, New York,
1999.



References 365

61. M.E. Eshelby, Aircraft Performance - Theory and Practice, Arnold, London,
2000.

62. P. Clark, Buying the Big Jets: Fleet planning for airlines, Ashgate Publishing
Ltd. Aldershot, UK, 2001.

63. M. Saarlas, Aircraft Performance, John Wiley, New York, 2007.



Index

absolute acceleration, 326 choked flow, 123

absolute ceiling, 202 clear-air turbulence, 47
accelerate stop distance, 302 cold front occlusion, 49
accelerate-climb distance, 302 combustion efficiency, 137
advance angle, 146 condensation, 38

advance ratio, 147 conditional instability, 41
aerodynamic advance angle, 149 control laws, 164
aerodynamic ceiling, 211 control variables, 164
afterburner, 103 convection, 42

air data instruments, 87 coordinated turn, 60
air-path axis system, 10 Coriolis acceleration, 327
airfoil or wing section, 67 critical pressure ratio, 134
airplane condition, 19 cruise chart, 285

airplane configuration, 19 cruise-climb flight, 287

asymmetric pressure distribution, 63

avionics systems, 87 dew point, 38

dimensional analysis, 65

balanced field lengths, 302 drag-divergence Mach number, 80
banked turn, 59 dry adiabatic rate, 40, 41

Beaufort scale of wind force, 43 dynamic pressure, 345

Bernoulli’s equation for compressible

flow. 352 effective pitch, 147
blade angle ’1 47 effective velocity, 149

Blind flying instruments, 87 endurance, 284

block distance, 283 energy conversion, 101
block speed, 298 energy height, 275
block time. 298 energy-state approximation, 275

Engine instruments, 87

engineless glider, 249

equivalent airspeed, 94, 97

equivalent shaft power, 131

Euler’s equations of rotational motion,
54

Eustachian tube, 280

exosphere, 25

body axis system, 10
braking slip ratio, 317
Brayton-cycle, 112

Breguet formula, 287
Breguet range equations, 291
Buys-Ballot, 46

bypass ratio, 134

calibrated airspeed, 93, 97 exospheric temperature, 26
centrifugal force, 8 external (aerodynamic) moment on the
centripetal acceleration, 327 airplane, 54
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fan pressure ratio, 134
fast-moving cold fronts, 49
Federal Aviation Regulations, 173
first law of thermodynamics, 39
fixed-pitch propeller, 156

flat turn, 59, 60

flight condition, 19

flight dynamics, 55

flight level, 89

flight program, 165

flight technique, 165

freeair thrust, 140

freestream Mach number, 66
frost point, 38

full power, 125

gas generator, 101

geopotential density altitude, 34
geopotential pressure height, 88
gustiness, 47

heterosphere, 24
holding off bank, 247
homosphere, 24
hypersonic flow, 78

ice crystals, 43

ideal turbojet cycle, 112

ILS, 314

impact pressure, 93

indicated airspeed, 97

induced drag factor, 84
Instrument Landing System, 314
intake adiabatic efficiency, 118
integral performance, 166
ionosphere, 26

jet streams, 46
Joint Airworthiness Requirements, 173

kinetic energy correction factor, 273

limit load factors, 171
load factor, 168
lower stratosphere, 25

Mach angle, 78, 361
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Mach number, 65

Mach wave, 78, 361

Machmeter, 97

maximum cruise, 125

maximum except takeoff (METO-)power,
125

mesopause, 25

mesosphere, 25

minimum comfortable airspeed, 226

minimum control speed, 224

minimum stalling speed, 169

momentum blade element theory, 151

momentum theory, 141

off-design performance, 124
one-g stalling speed, 170
Oswald’s efficiency factor, 83
Otto-cycle, 105

ozonepause, 25

parasite drag coefficient, 82
path performance, 166
Penaud diagram, 177
performance diagram, 177
planetary boundary layer, 45
point performance, 166
power available, 101

power conversion process, 101
power output, 39

pressure recovery factor, 118
products of inertia, 54
profile drag coefficient, 72
propeller slip, 148

propfans, 144

QFE, 89
QNE, 89
QNH, 89

range factor, 291

region of reversed command, 192
relative acceleration, 327

relative humidity, 38

resultant aerodynamic force, 52
revenue-earning capacity, 300
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Reynolds number, 66

sailplane, 249

saturation, 38

saturation adiabatic rate, 40, 41

service ceiling, 203

shock induced boundary layer sepa-
ration, 79

shock wave, 356

slat, 73

slow-moving cold fronts, 49

soaring, 259

specific compressor power, 130

specific excess power, 272

specific fuel consumption, 117

specific thrust, 112

speed stability, 226

spin, 240

spiral climb, 56

stability and control, 2

stage length, 283

stagnation temperature, 352

stalling speed, 170

standard power diagram, 107

standard rate turn, 234

static performance, 166

static thrust, 141

stratopause, 25

stratosphere, 25

tangential acceleration, 326

taper ratio, 70

temperature inversion, 41

tensor of inertia, 54

theoretical ceiling, 202
thermodynamic cycle of the flow, 138
thermosphere, 25

thrust, 39

total activity factor, 154

total compressor pressure ratio, 134
total pressure, 345

total range, 283

total temperature, 352

transport acceleration, 327
transport product, 299

transport productivity, 299
tropopause, 25

troposphere, 25

true airspeed, 94, 97

true banked turn, 60

turbine entry temperature, 134
turbine isentropic efficiency, 120
turbofan, 103

turboprop, 103

turbulence, 47

two-spool engine, 102

unchoked flow, 122
upper stratosphere, 25

variable-pitch propeller, 157

variation of temperature with altitude,
40

virtual temperature, 39

warm front, 48

wind correction angle, 260
wind shear, 278

wing area, 67
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