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ABSTRACT 
Today’s connected products increasingly allow us to collect 

and analyze information on how they are actually used. An engi-
neering activity where usage data can prove particularly useful, 
and be converted to actionable engineering knowledge, is simu-
lation: user behavior is often hard to model, and collected data 
representing real user interactions as simulation input can in-
crease realism of simulations. This is especially useful for (i) in-
vestigating use-related phenomena that influence the product’s 
performance and (ii) evaluating design variations on how they 
succeed in coping with real users and their behaviors. In this pa-
per we explored time-stamped usage data from connected refrig-
erators, investigating the influence of door openings on energy 
consumption and evaluating control-related design variations en-
visaged to mitigate negative effects of door openings. We used a 
fast-executing simulation setup that allowed us to simulate much 
faster than real time and investigate usage over a longer time. 
According to our first outcomes, door openings do not affect en-
ergy consumption as much as some literature suggests. Through 
what-if studies we could evaluate three design variations and 
nevertheless point out that particular solution elements resulted 
in better ways of dealing with door openings in terms of energy 
consumption.  

1. INTRODUCTION
Product usage information (PUI) can be considered a valua-

ble source of knowledge for predicting usage and behaviors of 
current and future products, and related services1. With ‘usage’ 
we mean, in this particular context, the way users use the product 
and how they interact with it. It is not to be confused with ‘usage’ 
as consumption of resources and supplies, which we consider 
here as an aspect of product performance. 

1 Services are not addressed in this paper 

Traditional ways of collecting PUI include observation of 
human subjects and conducting user surveys. However, now that 
products are increasingly becoming equipped with their own ca-
pabilities of collecting use-related data, and a growing number 
of products is getting connected to the Internet, it becomes easier 
for manufacturers to collect data from fielded products [1]. 

In the EU-funded FALCON project (see Section 3), we have 
investigated the opportunities of exploiting such collected data 
in several ways. The main deliverable of this project was a soft-
ware platform to collect and process data generated by connected 
products and related social media, with the objective to extract 
actionable knowledge that could be used as input for (re)design 
of products and related services [2]. One of the studies conducted 
in this context aimed to report on, and implement, methods and 
tools for forecasting and simulation based on time-stamped PUI, 
or TPUI – i.e., each data sample holds information about the time 
of usage or non-usage. Both forecasting and simulation enable 
predictions, i.e. descriptions of expected future processes as po-
tential carriers of actionable knowledge. 

On the one hand, TPUI potentially holds patterns that may 
repeat themselves in the future or represent trends that can be 
projected into the future. Applying methods and tools to that end 
is generally known as forecasting. It is typically based on data 
analytics and data mining, with data mining typically associated 
with computationally executed knowledge-discovery [3], and 
data analytics the umbrella term that also includes human tasks 
such as interpreting data visualizations [4]. 

Simulations, on the other hand, can be used to predict prod-
uct performance under different circumstances, or of design al-
ternatives. Having realistic usage data available makes it possi-
ble to (i) investigate the influences of different ways of using the 
product, and based on these, explore design variations tailored to 
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these uses, and (ii) compare design variations under the same 
real-life usage circumstances. 

The investigation of simulation potential in FALCON is the 
topic of this paper, which is structured as follows. In Section 2, 
we report on related work on simulations with data. Section 3 
clarifies the role of simulations in the project. Section 4 intro-
duces the simulation reference scenario provided by consortium 
partner Arçelik regarding the influence of usage and design con-
siderations on energy consumption of a domestic refrigerator. 
Subsequently, Section 5 summarizes the relevant literature re-
porting on energy consumption of refrigerators, and how it is in-
fluenced by usage. Next, in Section 6 we discuss considerations 
regarding data collection and sampling. Section 7 presents our 
simulation model. Selection and preprocessing of the usage data 
is discussed in Section 8. In Section 9 we describe the simulation 
setup and the explored scenarios and Section 10 presents our first 
simulation results. In Section 11 we discuss these results, and, 
finally, in Section 12, we discuss what could be done next. 

2. SIMULATION WITH DATA: RELATED WORK
Simulations are typically applied in the beginning-of-life

stage of a product to evaluate design proposals based on mathe-
matically defined behavioral models. Shannon [5] defined simu-
lation as conducting experiments with an input-output model of 
a real system in order to predict probable future output of a sys-
tem for a given input, to understand the system behavior and/or 
to evaluate system operation strategies. He points out that that 
gathering reliable input data can be time consuming and that 
questionable input data cannot be compensated by a good simu-
lation model. 

In many cases, products operate based on frequently applied 
and well-understood physics principles (e.g., electric motor, heat 
pump), that can adequately be captured in well-validated engi-
neering simulation models. Yet, other processes may be involved 
that cannot be straightforwardly described by mathematical 
models, e.g., human behavior or the weather. This is where the 
dependability of the input data becomes crucial – consider for 
instance makeshift models that are created to generate input sig-
nals based on assumptions, such as pulse signals representing 
load patterns [e.g., 6,7]. Instead of such workarounds, we pro-
pose to use real-life TPUI, as it is increasingly becoming availa-
ble from connected products. 

A concept related to TPUI-based simulation is data-driven 
simulation, where data from the process to be simulated, corre-
sponding to outputs as well as inputs of the simulation model, is 
used to optimize the simulation model [e.g., 8]. In some cases, 
data from an ongoing process is even used to continuously fine-
tune a simulation that is running ahead [e.g., 9]. 

In the case of TPUI-based simulation, real-life data is only 
used as simulation input, while the simulation model itself is 
considered to be sufficiently dependable. Hence, it is assumed 
that the simulation results, can be used to (i) evaluate the perfor-
mance of the product in realistic circumstances, (ii) identify mis-
matches between assumed inputs and real inputs, (iii) support 
finding directions to improve the design based on (i) and/or (ii), 
and (iv) evaluate (virtual simulation models of) alternative de-
signs based on real inputs. 

Our focus has been on input data that represents human (in-
ter)actions. To add realism to simulations if inputs by human us-
ers have to be considered, interactive simulations with real hu-
mans in the loop [e.g., 10,11] have been put forward. These have 
the drawback that they must run in real time and cannot be ac-
celerated to investigate usage over a longer time interval [12]. 
Moreover, deploying real users in testing is known to be expen-
sive [13]. Figure 1 illustrates how TPUI from real-life usage of 
fielded  products can fill the gap by providing realistic human 
inputs and thus contribute to more realistic results [14], without 
the need to slow down to real-time execution or recruit human 
subjects.  

Our literature search revealed that in most other reports on 
product simulations with TPUI, also output data was processed 
in a data-driven simulation setup, and the focus was on optimiz-
ing models – particularly discrete-event simulation models of 
manufacturing systems [15–17]. A notable exception is the work 
reported by Pei et al. [18], who did not only compare and opti-
mize different simulation models of electronics-packaging deg-
radation based on TPUI from 100 mobile computing devices, but 
also used the simulation results to derive more realistic require-
ments for next-generation designs. However, their research was 
a one-time trial, with TPUI-collection capabilities added to prod-
uct units just for this particular study. In such a case, researchers 
can optimally match the collected amounts and frequencies of 
data to their needs. TPUI-recording products often impose prac-
tical limits restricting the amount of available simulation input 
data. 

A rare example where PUI was only used as simulation in-
put, and not for optimizing simulation models, was reported by 
Urban and Roth [19]. In simulations comparing performance of 
smart thermostats, temperature set-points based on real values 
collected from end users were used. However, these simulations 
used fixed constellations of set-points per user, i.e., non-time-
stamped, whereas our intention is to consider dynamically 
changing inputs to dynamic simulations. 

3. SIMULATIONS IN FALCON
In the FALCON project we aimed to obtain actionable in-

formation from conventional engineering simulations through 
exploitation of TPUI. In that context, ‘actionable’ means 

Figure 1. Filling the gap between virtual-user input and 
real-user real-time input (arrow depicts increasing realism) 
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providing insights in how the product can be improved in terms 
of performance, by a design that better anticipates actual usage. 
Here, ‘performance’ denotes any output measure that determines 
the quality of the product’s functioning to any involved stake-
holder. Examples of performance indicators are speed of opera-
tion, supplies consumption, noise production, and quality of 
product outputs.  

Our reasoning has been that dynamic simulation with TPUI 
as input can only produce actionable information with added 
value if the investigated performance measure of the product (i) 
can actually be assessed based on the simulation results and (ii) 
is influenced by the timing of changes in the TPUI. 

As prerequisite (i) suggests, some performance measures 
cannot be assessed based on simulation results. This is for in-
stance the case for subjective performance measures, such as the 
taste of coffee produced by a coffee maker. 

Concerning (ii), for many products the available PUI is 
likely to represent the type, intensity and timing of user interac-
tions. If, for instance, we consider a washing machine, the pre-
dominant interactions are program selection and inserting/re-
moving the laundry. The timing of these interactions usually does 
not influence typical performance measures such as energy con-
sumption and program duration. These are determined by what 
happens when the program is executed, after program selection 
and laundry insertion and before laundry removal – in other 
words, there is no direct interplay between user interactions and 
the part of product operation that determines performance, unless 
the user interrupts program execution – which can be considered 
an exceptional case. In order to assess performance, the simula-
tion only needs the input parameters related to user interaction 
for each washing cycle (i.e., selected program and characteristics 
of the laundry), not their timing: the implicit assumption that 
these inputs have taken place before the start of the program is 
enough. Except for determining the total time span of data col-
lection, the time stamps have no added value. 

In the case of a refrigerator, on the other hand, there is direct 
interplay between interactions with its doors and its contents and 
the part of product operation that determines performance, which 
is actually its continuously ongoing. In this case we need to con-
sider use interactions with their timing as input for dynamic sim-
ulations. The effect of two door openings of 5s at 10s apart is 
likely to differ from the same openings at 60s apart. 

With the simulations, we aimed to perform what-if studies 
to assess the influence of interactions (door openings) on perfor-
mance measures – energy consumption and temperature of 
stored food items – and to explore, by comparison, design varia-
tions that may potentially compensate for negative effects of the 
interactions. 

The main deliverable of the FALCON project was a virtual 
open platform (VOP) that enables, among other things, the col-
lection of TPUI and performing descriptive analytics on the col-
lected data. The VOP supports simulations by offering a Data 
Export Module that converts user-specified selections from the 
collected data to a comma-separated values (CSV) file, a basic 
table format that can be read by most simulation packages. The 
user-specified selection of the TPUI to be listed in the CSV file 

is handled by a VOP module called PUI query builder, which 
works together with another module responsible for Knowledge 
Consolidation & Cross sectoral Management (KCCM) [2].  

4. REFERENCE SCENARIO: EFFECT OF DOOR
OPENINGS ON REFRIGERATOR POWER 
CONSUMPTION
To demonstrate the potential of TPUI-based simulation a

simulation model was implemented to explore a business sce-
nario provided by Arçelik, a consumer electronics and household 
appliance manufacturer based in Turkey, partner in the FALCON 
consortium and envisaged user of the VOP. In this scenario, a 
product development team wants to exploit TPUI by performing 
what-if type simulations to explore improvement options for up-
coming refrigerator models, or firmware updates for the current 
model. For simulation modeling and execution, we have used 
MATLAB/SimulinkTM, as it is widely used for engineering sim-
ulations [20], and provides a basic refrigeration model that we 
could adapt and extend for use in our investigations. 

The concrete case that we elaborated concerned an investi-
gation on how the door openings by the end user affect energy 
consumption, and/or the course of the inside temperature. To that 
end, the VOP user starts out using the PUI Query Builder and the 
KCCM to select a representative refrigerator unit – for instance 
a ‘worst-case’ sample of which the doors are opened very fre-
quently. Using the Data Export Module in conjunction with the 
KCCM, they create a CSV file that can be read by Simulink. In 
the Simulink simulation, the effect of the selected users’ door-
opening behavior on energy consumption can be studied. Based 
on these outcomes different control regimes for the thermostat 
and/or the interior fan can be considered and the influence on 
these regimes on the energy consumption can be evaluated. 

5. ENERGY CONSUMPTION OF REFRIGERATORS:
RELATED WORK
The influence of door openings on the performance of re-

frigerators is subject of ongoing debate [21]. The frequency and 
duration of door openings have influence on the thermodynamic 
performance and the energy consumption of a refrigerator [22]. 
On the one hand, there are authors who point out that other use-
related factors, such as temperature setting and room temperature 
have a much stronger influence [23], on the other hand, with 
other factors constant, door openings are reported to increase en-
ergy consumption by 1-8% according to several sources re-
viewed in [24]. Considering that the refrigerator is known to be 
one of the largest electricity consumers in a household – for in-
stance, according to data from [25], refrigerators, refrigerator-
freezer combinations and freezers are accountable for 33.6% of 
the total electricity consumption per household in the United 
Kingdom – reducing the influence of door openings can have a 
large impact. However, note that in countries where HVACs are 
common, the relative share will likely be lower. 

To investigate the influence of door openings, simulations 
have also been devised [26,27], but the door-opening patterns in 
these simulations were not based on data collected from real us-
age. Also, the papers reporting on these simulations do not 
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discuss the simulation speed, and therefore we can assume that 
investigating longer periods of use, as in our case, has not been 
considered. 

6. DATA COLLECTION AND SAMPLING
CONSIDERATIONS
The original data produced by Arçelik’s connected refriger-

ators contains time-stamped values of readouts from various sen-
sors. The defaulted interval between successive readouts is 
tsample » 1h. Among these are (i) the end time of the interval (the 
time stamp), (ii) the total door opening times for the top and bot-
tom – freezer – compartment, and (iii) the numbers of door open-
ings during the elapsed interval. These and other readouts, such 
as compartment temperatures, can be selected for inclusion in the 
CSV file using the PUI Query Manager. 

Currently, exact timings of door openings are not included: 
To further increase realism in simulations, data would have to be 
collected at shorter intervals. For now, we have approximated the 
occurrence of door openings by taking the total opening time per 
hour, starting at the time of data transfer. If during the interval 
(ttransfer – tsample, ttransfer] the door has been open n times for the 
cumulative duration 

with the individual Dtopen,i not specified in the data, we have 
simulated that, starting at ttransfer, the door was open for 
Dtopen(ttransfer). With this processing scheme, a future setup in 
which event-based data transfer provides data at the end of every 
door opening, so that n = 1 for each transfer and Dtopen(ttransfer) is 
no longer cumulative, would enable us to simulate the actual 
door openings. 

7. SIMULATION MODEL
Figure 2 shows our simulation model of the refrigerator. It

is based on a refrigeration model provided with Simulink [28] 

(Refrigeration cycle model […]), which was modeled using Sim-
scape, a Simulink environment for simulating physical systems. 
As our main goal was to investigate the opportunities TPUI-
based simulation offers for conducting what-if studies, we have 
not spent efforts in fine-tuning the simulation model so that it 
gives the best possible behavioral approximation of a particular 
specific refrigerator design. Assuming that door-opening behav-
iors in using refrigerator-freezer combinations do not depend on 
the particular make of the appliance, our investigations in this 
paper can be said to apply to a hypothetical refrigerator design 
and variations on it. This way, we also did not have to expose 
company-confidential design information. 

To consider the effect of door openings we applied the fol-
lowing modifications and extensions (names in italics refer to 
block names in Figure 2): 
1. Adding a TPUI Data Import block to import the CSV file

using the ‘Signal Builder’.
2. Adding a Stateflow chart Interpolation removal to remove

meaningless interpolated values that the Signal Builder adds
between entries in the CSV file. Stateflow is a Simulink en-
vironment for modelling decision logic based on state ma-
chines and flowcharts.

3. Adding a subsystem Manual Override to allow interactive
checking of the effect of door openings (Figure 3). It con-
sists of two manual switches, which toggle between their
two input ports if the simulation user double-clicks on them,

∑∆ = ∆
=

t t t( )open transfer open i
i

n

,
1

Figure 2. Refrigerator simulation model 

Figure 3. Manual override. 
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even while the simulation is running. 
To use the TPUI data, the left-hand 
switch is set as shown in Figure 3. In 
the other position, the simulation in-
teractively receives its door open-
ings from the bottom switch. To run 
a reference simulation with the door 
closed all the time, the manual input 
is permanently set to its ‘0’ port. A 
comparison of this reference situa-
tion with a simulation based on 
TPUI reveals the actual influence of 
door openings. 

4. Modification of the Simscape model
of the Compartment of the refrigera-
tor. A starting point for this compart-
ment model was provided in [28] as 
well, but it was considerably altered 
to include the effect of door open-
ings in its heat management. Also, a 
compartment fan was added to ‘upgrade’ the model to that 
of a frost-free refrigerator with interior fan, in accordance 
with Arçelik’s connected refrigerators. The design varia-
tions that we wanted to compare are: (i) no fan, (ii) a fan that 
is controlled based on compressor activity only and (iii) a 
controlled fan that is off as long as the door is open. More 
details on model modifications are described after this list-
ing. 

5. Replacing the relay that was used to model the Thermostat
by a Stateflow chart, to allow more complex control regimes
for the compressor in what-if studies.

6. Adapting values regarding dimensions, etc., to values corre-
sponding to those of a typical household refrigerator.

7. Creating outputs to allow assessment of (i) energy consump-
tion by the compressor and the fan (Energy, numeric), and
(ii) Average temperatures inside the compartment, including
some food items. These are the performance measures tar-
geted by our investigations. In addition, graphical output of
the temperatures as a function of time is provided by the
block Temperature graphs.

8. Adjusting the simulation duration to start and end times
from the CSV file.
Figure 4 shows the adapted model of the refrigerator com-

partment to allow investigation of door 
openings. We added a subsystem Door 
Influence […] that reacts on the door-
opening data. We also added two blocks 
representing food items in the refrigera-
tor, one of which has as its initial temper-
ature the initial ‘cold’ starting tempera-
ture of the refrigerator interior, and the 
other is initially at room temperature, 
i.e., it represents food that has just been
put into the refrigerator. The Evapora-
tor Convection block is a var-
convection block that is discussed in

the next paragraph. Its convection coefficient is an input signal, 
based on which it can represent the situation with no fan, with a 
non-controlled fan and with a controlled fan. 

Figure 5 shows the ‘Door Influence & Fan control’ subsys-
tem. It features custom blocks which are modifications of the 
standard blocks for heat convection and heat conduction between 
two points, i.e., in our case between the inside and the outside of 
the refrigerator. Instead of having a fixed value for the convec-
tion coefficient, the varconvection block ‘Door convection 
[…]’ takes a variable value as input from an input port. In our 
model, this variable is controlled by the Statechart shown on the 
left. Likewise, the varconduction block ‘Insulation […]’ re-
ceives a variable for the insulator area, which is reduced by the 
size of the door if the door is open. The logic of the Statechart is 
shown as a truth table in Table 1. 

The top compartment and the freezer compartment each 
have a 3W fan. Through iterative exploration we found that op-
timum positive influence on the energy consumption is achieved 
if the fans are synchronized with the compressor, with the 
switch-on timing delayed by 21s for the top compartment and 
141s for the freezer, while switching off at the same time as the 
compressor for the top compartment and delayed by 18s for the 
freezer. These timings were implemented in the same Statechart. 

Figure 4. Simscape model of the compartment 

Figure 5. Simulation model of door influence and fan control 
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8. INPUT DATA: PRODUCT USAGE INFORMATION
The data that we used originated from 43 fielded refrigerator

units collected over a 432-days’ time span. The total number of 
samples over all units was 67,234, out of which 7,826 turned out 
to be duplicates. Figure 6 shows some overall statistics, after re-
moval of duplicates, obtained with RapidMinerTM data-mining 
software. The data-collection time span per unit varied from 0 to 
431.7 days (Figure 6a). The majority of units collected data for 
less than 200 days. The seven units that collected data for less 
than one day were excluded from further analysis. Figure 6b 
shows the average number of data samples collected per unit per 
day for the remaining 36 units. Ideally, this number should be 24 
(one sample per hour) but the majority of the units present a con-
siderably lower sample density. The lower numbers of data sam-
ples in this figure can partially be accounted to units that were 
installed after the beginning of the data collection period, but fur-
ther analysis also revealed time gaps in the data series: in total, 
the data contained 202 gaps of more than a day, each unit show-
ing one or more such gaps in its data series. Since these gaps 
cannot be ascribed to lack of user interactions – which would 
have led to data samples reporting zero door openings – we have 
assumed that they are caused by connectivity problems.  

To get a first impression of how the units installed in differ-
ent households compare in terms of door-openings, we extracted 
the average time the freezer of each unit was open each day. We 
focused on the freezer compartment first, because it uses the bulk 
of the total energy.  The distribution of the average daily freezer-
open duration shown in Figure 6c. It suggests that, on average 
per day, the majority of users opens their freezer for only a few 
seconds, but that there are a small number of users that open their 
freezer for more than 20s. However, the averages in this result 
concern the whole dataset per unit, including possible multi-day 
gaps, from the first day until the last day 
they were online. 

To obtain ‘cleaner’ data, intervals 
lacking long gaps had to be selected 
manually. We selected 9 out of the 36 
units that covered a reasonable spread 
over the daily open durations in Figure 
6c, and for each, selected the longest 
possible contiguous interval of sam-
plings that did not contain gaps of more 
than a day. The overview of the selected 
refrigerators in Table 2 shows that the 

average daily open duration over the whole observed interval is 
not proportional to the daily average over the simulated contigu-
ous intervals. 

9. SIMULATION SETUP AND SCENARIOS
Figure 7 shows an example of typical simulation output.

Since in simulations based on TPUI interesting phenomena in 
the graph are too far apart in time to produce an illustrative pic-
ture, it was created interactively by manually operating the 
switch in Figure 3. Figure 7 shows the course of the temperature 
in the compartment, as well as the temperatures of already-cold 
food (T_food_1) and the just inserted food at room temperature 
(T_food_2). The influence of door openings is obvious (anno-
tated as ‘door open’ and ‘door closed’, respectively). The figure 
also gives evidence of a boot-up effect that reflects the commis-
sioning of the refrigerator. Since this is a one-time event that is 
atypical for everyday steady-state use, we have eliminated its in-
fluence by ignoring the first 4,000 seconds of each simulation. 

The actual refrigerator from which the data was collected 
uses one compressor for both compartments. We simplified this 
set-up by running separate simulations for the top compartment 
and the freezer unit, each with their own door-opening data and 
set temperatures (277K and 255K, respectively), and merged the 
results afterwards. Consequently, we also did not consider heat 
exchange between the two compartments. 

Table 1 Influence of door openings on heat transfer mode 
Heat transfer 

Door Fan Evaporator Interior Door Outside 
closed off/absent natural convection natural convection conduction natural convection 
closed on forced convection forced convection conduction natural convection 

open off/absent natural convection natural convection infinite conduction* and 
convection** infinite convection** 

open on forced convection infinite convection** infinite conduction* and 
convection** infinite convection** 

*enabled by reducing area in varconduction block to include only walls, bottom and top; ** based on the principle that if the door is open, there should be
only one heat-transport barrier (convection or conduction) between the inside air and the outside (if the door is closed, there is convection on both sides
of the door).

Figure 6. Statistics of collected refrigerator data 

Table 2 Overview of simulated refrigerator units 

0

n=14

400

a) total data collection
time, days (N=43)

200

range: 0 - 431.7
average: 104
σ = 113

0

n=23

5

c) average daily freezer
open duration, s (N=36)

25 40

range: 0.03 – 41.2
average: 3.78
σ = 7.63

b) average # data
samples/day (N=36)

0

n=7

22.510

range: 0.18 – 23.0
average: 14.6
σ = 6.54

A B C D E F G H J
all-time 24.5 0.4 0.9 41.2 4.2 1.2 0.5 2.2 2.2

simulated 
interval

14.6 27.5 1.9 41.2 5.3 1.9 2.0 4.0 4.0

46.2 15.1 50.8 21.2 49.4 51.3 32.8 15.8 27.9
length of simulated 

interval, days

average daily 
freezer open 

duration, s

unit
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To complete our base scenario, we have assumed that the 
refrigerator was situated in a kitchen in Turkey with room tem-
perature 296K (73°F / 23°C). The three design variations speci-
fied in Section 7 (number 4 in the listing), each applied to the 
two compartments, provided six what-if scenarios to be simu-
lated, and to be combined to represent the refrigerator as a whole. 

Apart from the performance of the refrigerator according to 
the simulation model, we also measured the performance of the 
simulation itself. According to [12], where it was applied to un-
related other simulations, simulation performance can be defined 
as 

 

where Tvirtual is the time elapsed in the virtual, simulated 
world and Tsim the duration of the simulation computation on a 
given system. A value psim > 1 indicates a performance psim times 
faster than real-time.  

10. OBTAINED RESULTS 

10.1. Refrigerator performance and influence of 
door openings 
In Table 3 we have brought together our simulation out-

comes for the freezer compartment. The relative influence of 
door openings on the energy was calculated as a percentage, 
based on comparing a scenario with TPUI input with a reference 

scenario in which the door was always closed, all other options 
being the same.  

Beneath the double line, the table shows the outcomes of our 
three scenarios for the freezer. In the reference scenario with 
closed door the energy consumption is 0.80 kWh/day, which is 
reduced by 0.03 kWh/day with a fan (both variants). For three 
units we have also simulated the use of the top compartment. The 
results are shown in Table 4, together with the consequences for 
the refrigerator as a whole. In the reference scenario, the top 
compartment consumes 0.057 kWh/day, which is reduced by 
0.002 kWh/day with a fan.  

In all investigated cases, the relative influence (%) of door 
openings is larger for the top compartment than for the freezer, 
and, on the other hand, the absolute influence (kWh) is larger for 
the freezer. The largest relative influence, namely about 6% in-
crease of energy consumption caused by door openings, could be 
seen in the case of a fan controlled by the compressor only, in the 
top compartment. This is an unlikely design choice (and there-
fore not included in Table 4), since practically every refrigerator 
has lighting in its top compartment, operated by a door-con-
trolled switch that, at the same time, can easily be deployed as a 
door-open sensor to control the fan. For the freezer compartment 
this is different, since – unlike the Arçelik refrigerators from 
which we collected data – many refrigerators have no door sen-
sor and lighting in the freezer compartment. Here, the design var-
iant with fan that is controlled based on compressor activity only 
is a realistic design choice that is worth to be evaluated and that, 
of all remaining options, shows the largest absolute increase of 
energy consumption as a consequence of door openings. 

Based on the computed daily consumption rates shown in 
the tables, the yearly energy consumption can be derived in order 
to validate the realism of the simulation model through compar-
ison with findings from literature. In our case, the total energy 
consumption would be in the range of 330-340 kWh/year. Con-
sidering that the investigated refrigerator-freezer is a recent 
model, and that average energy consumption values from the lit-
erature typically include older units [22,24] while energy savings 
advance with every next generation of refrigerators [29], this ap-
pears to be consistent with the averages of 390 kWh/year that 
Biglia et al. [30] found from 483 fielded refrigerator-freezers, in 
which, on average, the freezer was set at 2.5K colder than in our 
simulation and the top compartment at 1K warmer. 

Regarding the average temperatures that were computed in 
the simulations, it can be said in all cases that the temperature of 
the air in the compartments averaged at exactly the set value, 

virtual
sim

sim

Tp
T

=

Table 3. Overview of simulation outcomes (freezer compartment) 

  

 
Figure 7. Simulation output with annotations 

unit A B C D E F G H J average
14.6 27.5 1.9 41.1 5.3 1.9 2.0 4.0 4.0 11.4

5.5 9.4 1.0 10.0 3.3 1.5 1.0 3.4 2.1 4.1

46.2 15.1 50.8 21.2 49.4 51.3 32.8 15.8 27.9 34.5

no fan 0.14% 0.17% 0.02% 0.24% 0.03% 0.02% 0.08% 0.08% 0.22% 0.11%

fan controlled by compressor only 1.15% 1.20% 0.33% 1.59% 0.47% 0.30% 0.57% 0.57% 0.37% 0.73%

fully controlled fan 0.34% 0.34% 0.25% 0.37% 0.26% 0.23% 0.33% 0.33% 0.23% 0.30%

average daily freezer open frequency (simulated interval)

average daily freezer open duration, s  (simulated interval)

influence of door 
openings on energy 

consumption

length of simulated interval, days

Maxima in bold, minima in bold  italics

boot-up effect

door o
pen

door c
lose

d

t (s)
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while the temperatures of the included food items were always 
slightly lower in the top compartment and slightly higher in the 
freezer compartment. Influences of the various design choices 
and door openings were marginal and did not indicate the exist-
ence of a consistent relationship explaining the differences. 

10.2. Simulation performance 
To conduct the simulations, we relied on hardware with a 

level of processing power that is easily accessible within typical 
engineering environments2. Overall, simulation performance 
was between 450 and 1050, with values around 1000 for the top 
compartment and around 550 for the freezer. We could not find 
any evidence indicating that having to import and process TPUI 
would slow down the simulations. 

10.3. Regression analysis 
To investigate whether our simulations could be replaced by 

a single generalized relation to predict the relative influence of 
door openings d based on daily opening duration t and frequency 
f, we applied regression analysis. As input we used the values 
from the scenario “fan controlled by compressor only” applied 
to the freezer compartment, i.e., the scenario with the largest ab-
solute impact. To that end we used the Regression Learner app 
in MATLAB, which offers semi-automated analysis using 23 dif-
ferent regression models. The best fit resulted from a simple lin-
ear regression model d = α + β·t + γ·f, with α = 3.05E-03, 
β = 2.08·10-4 and γ = 4.48·10-4, found after 6-folds cross valida-
tion, with root mean square error RMSE = 1.74·10-3. This error 
is rather large considering that the response values are in the 
range 0 to 2% (0 to 2·10-3). Table 5 demonstrates that the practi-
cal value of predictions based on the regression model is indeed 
limited. 

We also explored whether a model could be found that pro-
vides an (almost) exact fit if no validation is applied. The exist-
ence of such a model might indicate that, after validation with 
more training data, the simulation can indeed be replaced by one 
relation that provides the simulation end results much faster. The 
best fit was provided by an exponential Gaussian process model 
with RMSE = 6·10-4, which we consider still too far from an ex-
act fit to merit further investigation, especially since it is a more 
complex model and therefore more prone to overfitting [cf. 31]. 

                                                        
2 2017 Apple MacBook Pro with 3.1 GHz Intel Core i5 processor and 16 

GB of RAM, which was also used for other tasks in parallel. 

11. DISCUSSION AND CONCLUSIONS 
Using TPUI as input for dynamic simulation models only 

makes sense if performance measures are investigated that are 
actually influenced by the timing of changes in the TPUI and if 
these measures form an assessable part of the simulation outputs. 
A domestic refrigerator is a typical product that lends itself for 
such simulations: an important, quantitative performance meas-
ure is its energy consumption, which is dynamically influenced 
by detectable user interactions while the refrigerator is operating 
and consuming energy. 

In this paper we presented first results of using simulations 
to assess the effect of user interactions (door openings) on per-
formance (energy consumption) of a product (refrigerator), and 
to review, in various scenarios, how possible design variations 
can influence these effects. To allow using TPUI as input during 
simulations we created custom simulation-modeling elements 
that accept input signals in order to vary values that are normally 
assumed to be constant. Door openings and closings could effec-
tively be modeled by varying areas and heat transmission prop-
erties of refrigerator construction components during runtime. 
Although our approach and the available hardware allowed us to 
perform simulations at a speed of 450-1050 times real-time and 
investigate use over a longer time interval, an average simulation 
run still took 1-2 hours, which, so far, limited us to investigating 
only three units with both refrigerator compartments and differ-
ent control-regime variations as well as accompanying reference 
scenarios (with door always closed), and six additional units 
where this was done for the freezer only – which has the largest 
impact. Based on our findings, we could at least assess some of 
the statements regarding influence of door openings that we cited 
in Section 5. It turns out that even when the doors are being 
opened rather frequently, the lower end of the 1-8% range men-
tioned in [24] was reached, but only if the freezer compartment 
has a fan that does not react on door openings. In the correspond-
ing design variation in our simulations, door openings had a 0.57 
up to 1.66% impact on energy consumption. In such refrigerators 
it might be worthwhile to consider adding a door switch to con-
trol the fan, or not to have a fan in the freezer compartment. Ob-
viously, the latter is not an option as the fans also have a role in 
defrosting, which we did not consider in our model. At any rate, 

Table 4. Simulation outcomes including top compartment 

 

Table 5. Predictions based on linear regression 

 

unit

top 
comp.

both 
comp.

top 
comp.

both 
comp.

top 
comp.

both 
comp.

no fans 0.50% 0.16% 3.82% 0.48% 0.27% 0.05%
freezer fan controlled by 

compressor only,
top fan fully controlled

1.11% 1.69% 0.32%

fully controlled fans 0.35% 0.55% 0.25%

average daily top compartment open duration, s 
average daily top comp. open frequency 5.5

27.5
3.4

A D G
39.2
10.0

14.6

32.8

Maxima in bold, minima in bold  italics

length of simulated interval, days

influence of 
door 

openings on 
energy 

consumption

46.2 21.2

0.39%3.09%0.51%

absolute 
error

|absolute 
error|

relative 
error

|relative 
error|

A 14.62 5.52 1.15% 0.86% 0.293% 0.293% 25.5% 25.5%
B 27.52 9.39 1.20% 1.30% -0.099% 0.099% -8.2% 8.2%
C 1.89 1.04 0.33% 0.39% -0.061% 0.061% -18.6% 18.6%
D 41.15 9.96 1.59% 1.61% -0.018% 0.018% -1.1% 1.1%
E 5.34 3.32 0.47% 0.57% -0.095% 0.095% -20.2% 20.2%
F 1.91 1.48 0.30% 0.41% -0.112% 0.112% -37.2% 37.2%
G 2.01 1.01 0.57% 0.39% 0.178% 0.178% 31.1% 31.1%
H 3.99 3.42 0.57% 0.54% 0.028% 0.028% 4.9% 4.9%
J 4.02 2.12 0.37% 0.48% -0.114% 0.114% -30.7% 30.7%

avg. 11.38 4.14 0.73% 0.73% 0.000% 0.11% -6.1% 19.74%

unit

pre-
diction

avg. daily 
freezer 

open freq.

avg. daily 
freezer 
open 

duration

door-
opening 
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prediction deviation
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considering the fact that a refrigerator substantially contributes 
to a household’s overall electricity consumption, even attempts 
to deal with the small influence of door openings that we found 
in our investigations could make sense. 

What we did not include in our simulations was the putting 
in and taking out of food items that goes together with door open-
ings. Items that are put in typically have a higher temperature 
than the compartment, which might partly explain the differ-
ences with findings from literature. With the sensing technolo-
gies currently implemented in refrigerators, it does not seem 
likely that such data can be added to the TPUI already collected. 
Another factor of influence could be the inclusion of older, less 
efficient refrigerators in the field studies discussed in [24]. 

The fact that we could not identify an equivalent regression 
model to replace the simulations seems to confirm that TPUI as 
input for simulations offers added value compared to synthetic 
data such as cyclic load patterns. Apparently, the more complex 
and/or irregular usage patterns captured in the TPUI lead to re-
sults that cannot be predicted based on average door-opening 
times and frequencies alone. However, if we would extract more 
features from the data, such as for instance average times be-
tween door openings, it might be possible to find a suitable 
equivalent model after all. In that case, only a limited series of 
simulations based on TPUI might be enough to derive a suffi-
ciently reliable model based on regression or some other ma-
chine-learning approach. Once such a model would be available, 
fast predictions of the influence of use patterns based on a limited 
set of features extracted from the data would be conceivable. 
However, such models do not lend themselves to incorporation 
of design modifications, and can therefore not be used to evalu-
ate design alternatives. 

The possibility to exploit TPUI by performing simulations 
is likely to have impact on the way future products will be de-
signed. Firstly, in designing each first generation of a product 
range to collect and transfer data, anticipative consideration must 
be paid as to what data collection capacities will be included in 
the design. For example, in the case of refrigerators, changes in 
ambient temperature are known to affect the performance. Since 
the investigated refrigerators were not equipped with external 
temperature sensors, we could not investigate this effect. More-
over, if the refrigerator would be able to keep track of its own 
energy consumption, simulations would no longer be useful in 
the case where only effects on the current design would be stud-
ied – but they would still add value if design alternatives are to 
be explored. 

Secondly, once product units are out on the market, TPUI-
based simulations can be used to study how real-life usage af-
fects performance. If certain manifestations of usage emerging 
from the data raise suspicion of negatively affecting performance 
(as in our case the door openings), comparison with reference 
data that lack these manifestations (in our case fictitious input 
with the door always closed) can reveal the severity of the prob-
lem. If serious enough, designers can ideate possible solutions to 
mitigate the negative effects, implement these in the simulation 
model and run simulations with the real-life data to compare the 
effectiveness of the proposed solutions. 

After selecting an effective solution, it can be implemented 
in a next-generation redesign, or if it can be realized in software, 
as an update for fielded products. TPUI-based simulations will 
mostly facilitate redesign or designing variations on existing de-
signs. After all, the usage-related input signals to the original 
simulation model must also be meaningful in a modified model. 
If the hinged door of a refrigerator is replaced by a sliding door 
or a lid, the collected door data are likely no longer meaningful.  

12. FUTURE WORK 
Up till now, we have applied several simplifications and 

shortcuts in our simulations, which we applied to a limited set of 
units. We could think of several options to further improve the 
realism and the usefulness of TPUI-based simulations. Among 
other things, it seems worthwhile to consider and investigate: 
• influence of usage phenomena such as environment temper-

ature, quantity and temperature of items put in and taken out. 
• inclusion of physics effects currently ignored in the model, 

such as heat exchange between compartments, energy con-
sumption by the light, interior geometry, etc. 

• fine-tuning model parameters by comparison with a physi-
cal specimen of the refrigerator – which is up to the com-
pany, and which might not lead to publishable results due to 
confidentiality issues 

• spreading multiple openings during an hour evenly or ran-
domly over that hour  

• more fielded units, and to apply machine learning to simu-
lation results with more features from the data to create 
faster-computing models for investigating the influence of 
door openings.  

 
Finally, in the context of generalization, it would be interest-

ing to investigate how TPUI-based simulation can be applied to 
other products and how these may benefit from it. Perhaps our 
approach of customizing simulation elements to allow variations 
of values that are normally considered to be fixed will turn out 
to be generally applicable solution for introducing human ma-
nipulations into engineering simulations. 
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