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A transformation that relates a compressible wall-bounded turbulent flow with nonuni-
form fluid properties to an equivalent incompressible flow with uniform fluid properties
is derived and validated. The transformation accounts for both variable-property and
intrinsic compressibility effects, the latter being the key improvement over the current state
of the art. The importance of intrinsic compressibility effects contradicts the renowned
Morkovin’s hypothesis.

DOI: 10.1103/PhysRevFluids.8.L112601

Introduction. The law of the wall for incompressible turbulent flows is one of the cornerstones
of fluid dynamics [1]. Such a universal law is still missing for compressible flows, because the
interplay of thermodynamics and hydrodynamics leads to significantly richer flow physics and even
more intricate phenomena in turbulence. Efforts have long been devoted to find a transformation
that reduces the mean velocity profile of compressible wall-bounded flows to that of incompressible,
constant-property flows [2]. Such a transformation can assist in extending the incompressible mod-
eling techniques to compressible flows, eventually enabling better flow and heat transfer predictions
for a range of applications.

The history of velocity transformations dates back to the 1950s when Van Driest [3] (hereafter
VD) proposed a correction to the incompressible law of the wall, accounting for mean density
variations in the friction velocity scale. Zhang et al. [2] proposed a transformation that improves the
collapse in the wake region of compressible boundary layers. However, both transformations were
developed for adiabatic boundary layers, and as such, they fail for diabatic flows. In 2016, Trettel
and Larsson [4] (hereafter TL) formally derived an alternative to the VD transformation, suggesting
that the semilocal wall coordinate, previously defined on intuitive grounds by Huang et al. [5], is
the correct scaling to account for changes in the viscous length scale. Patel et al. [6] developed a
mathematically equivalent velocity transformation by studying the effect of variable density and
viscosity on turbulence in channel flows at the zero Mach number limit. Their findings revealed
that the primary influence of variable properties on the velocity transformation can be effectively
characterized by the semilocal Reynolds number. Despite being accurate for channel flows, these
transformations are inaccurate for high-speed boundary layers [4,7–9], typically yielding higher
log-law intercept as compared to incompressible flows. Recently, Griffin et al. [8] (hereafter GFM)
derived a new transformation based on the universality of the ratio of production and dissipation, and
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a stress-based blending function. The GFM transformation improves the collapse of the velocity pro-
file for compressible boundary layers, however, it is inaccurate for ideal gas flows with non-air-like
viscosity laws, and for flows with fluids at supercritical pressures [10]. Volpiani et al. [11] proposed
a data-driven transformation which also improves the results for compressible boundary layers,
although not rooted in physical principles. The lack of a universal, physics-driven compressibility
transformation for turbulent wall-bounded flows sets up the motivation for this Letter.

All transformations outlined above rely on the implicit assumption that intrinsic compressibility
effects are insignificant, and that only mean fluid property variations matter for this problem. This
is Morkovin’s hypothesis [12], often advocated in the theoretical analysis of compressible turbulent
wall-bounded flows. However, depending on the flow conditions, intrinsic compressibility effects
associated with density changes of fluid elements in response to changes in pressure can also be
important [13]. These density changes generate dilatational velocity fluctuations that can modulate
the near-wall dynamics, thereby affecting the turbulence statistics [14–18]. Yet, their influence on
mean velocity scaling is unclear.

Objectives. The first objective of this Letter is to argue that Morkovin’s hypothesis is not quite
accurate and that intrinsic compressibility effects can modify the mean velocity profile, and the
second objective is to derive a transformation that accounts for these effects. To address the
first goal, we perform direct numerical simulations (DNS) of compressible channel flow at high
Mach numbers, in which we isolate intrinsic compressibility effects by eliminating mean property
variations. To attain approximately constant mean properties, we follow the method proposed by
Coleman et al. [19], in which viscous heating is removed from the energy equation. These “constant
property” (CP) simulations are performed at bulk Mach numbers (Mb, namely the ratio of the bulk
velocity to the speed of sound based on the wall temperature) of 0.3, 2.28, 3, and 4, and a friction
Reynolds number (Reτ , defined below) of 550, using STREAmS [20] with an ideal gas equation of
state and a power-law for the dynamic viscosity.

Definitions. Before analyzing the flow cases, it is necessary to introduce a few important quanti-
ties. The friction velocity and the viscous length scales at the wall are defined as uτ = √

τw/ρw and
δv = μw/(ρwuτ ), respectively, where τw is the wall shear stress, and ρw, μw are the wall density
and viscosity. The friction Reynolds number is defined as Reτ = δ/δv , where δ is either the channel
half-height or the thickness of the boundary layer. To account for variations in the fluid properties,
the semilocal friction velocity and viscous length scales are defined based on the local density
and viscosity as u∗

τ = √
τw/ρ̄ and δ∗

v = μ̄/(ρ̄ u∗
τ ). Hence, both these scales vary in the wall-normal

direction. Superscripts + and ∗ are used to denote scaling with wall or semilocal quantities,
respectively. The overbar symbol is used to denote Reynolds averaging, and single and double
primes are used to denote fluctuations from Reynolds averages and from Favre (density-weighted)
averages, respectively.

Intrinsic compressibility effects on mean velocity. Figure 1(a) shows the mean velocity profiles
for the four CP cases. The velocity profile for the low-Mach number case (Mb = 0.3) collapses with
the incompressible case of Moser et al. [26] at a similar Reynolds number. However, as the Mach
number increases, a clear increase in the log-law intercept is observed. Due to roughly constant
mean properties and negligible fluctuations generated by heat transfer, the log-law shift can be
solely attributed to intrinsic compressibility effects, which contradicts Morkovin’s hypothesis.

After identifying the impact of intrinsic compressibility effects, the next crucial step is to
determine the most suitable parameter for quantifying them. From dimensional analysis in the
near-wall region of compressible boundary layers, Bradshaw [12] deduced uτ = √

τw/ρw to be
the relevant velocity scale, and aw = √

γ RTw as the relevant sound speed. Thus, Mτ = uτ /aw was
identified as the most suitable Mach number, as also supported by Smits and Dussauge [27]. In
the semilocal scaling framework, these scales can be redefined using local properties, such that the
semilocal friction Mach number M∗

τ = u∗
τ /ā becomes the relevant parameter, with ā =

√
γ RT̄ being

the speed of sound based on the local temperature. However, for ideal gas flows, u∗
τ ∼

√
T̄ (due to
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FIG. 1. (a) Mean velocity profiles in constant-property compressible channel flows, after TL transformation
[4,6] defined as dŪ +

T L = (1 − y/δ∗
v dδ∗

v/dy)
√

ρ̄ /ρwdū+ (since property variations are absent in these cases, the
transformed velocity is equivalent to ū+). (Inset): Log-law constant CT L as a function of Mτ . Ideal gas: (Large
closed stars) constant-property compressible channels; (open �) cooled channels [4]; (closed �) adiabatic
channels with pseudo heat sources [21]; (open �) cooled and (closed �) adiabatic boundary layers ([22–25];
[7] Mach 2 and 14 cases only); (closed ◦) channels with non-air-like viscosity power-law exponent of −0.5
[9,21]. The dashed line shows a fit for the constant-property cases, whereas the gray shaded area indicates an
error bar of +/−5%. Note that low-Reynolds number cases (less than 300) are excluded. (b) Turbulent shear
stress for the constant-property compressible cases. (Inset): Kolmogorov length scale, scaled by the semilocal
viscous length scale δ∗

v . The black symbols are the incompressible case of Moser et al. [26], in both (a) and (b).

constant mean pressure), implying that the semilocal friction Mach number is nearly constant across
the boundary layer, and hence approximately equal to Mτ .

Another argument in support of Mτ being the most suitable parameter can be provided as follows.
Coleman et al. [19] suggested that the pressure fluctuations in relation to the mean thermody-
namic pressure, p′/p̄, is an appropriate indicator of intrinsic compressibility effects because the
isentropic changes in fluid volume (dilatational fluctuations) are related to pressure fluctuations
through ∂u′

i/∂xi ≈ −1/γ D(p′/p̄)/Dt [13], where D()/Dt denotes material derivative, and Einstein
summation is implied. On the other hand, Bernardini and Pirozzoli [22], and Duan et al. [28]
noticed that p′ scaled by the hydrodynamic scale τw shows a weak Mach number dependence.
Combining these statements, we can write p′/p̄ = τw/p̄ (p′/τw ) ≈ γ M2

τ (p′/τw ). This shows that
the Mach number dependence of the quantity p′/p̄, and consequently dilatation, can be attributed
to the factor γ M2

τ . It further underscores the importance of Mτ as the correct parameter for gauging
intrinsic compressibility effects. These arguments are substantiated by the observations made by Yu
et al. [21], who found that intrinsic compressibility effects on the wall-shear-stress and wall-pressure
fluctuations accurately scale with Mτ .

The inset in Fig. 1(a) shows the variation of the log-law intercept of the transformed mean
velocity profile (CT L, evaluated as in Trettel and Larsson [4] using integration bounds from
y∗ = y/δ∗

v ≈ 50 to y/δ ≈ 0.1) as a function of the friction Mach number Mτ for the four CP
cases, and for several compressible ideal gas channel flows and boundary layers available in the
literature. To account for mean property variations, the semilocal velocity transformation [4,6] (also
known as the TL transformation) is utilized. This transformation does not incorporate intrinsic
compressibility effects and is thus strictly valid for low-speed heated/cooled wall-bounded flows
only, such as the zero-Mach number cases of Patel et al. [6]. Hence, its application to high-speed
flows can help isolate intrinsic compressibility effects. The trend line in the inset of Fig. 1(a) is
obtained by considering the CP cases only, hence it is a measure of the log-law shift due to intrinsic
compressibility alone. Interestingly, the majority of the other cases follow the trend line, suggesting
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that increase in the log-law intercept, as also observed in the literature [see, e.g. 4,7–9], is mainly due
to intrinsic compressibility effects. Deviations from the common trend can be attributed to effects
other than those directly related to mean property variations (within the assumptions of the semilocal
scaling theory) and intrinsic compressibility, as we briefly discuss at the end of this Letter. Note that
nonnegligible scatter is also observed in incompressible flows [29], which suggests that the precise
determination of the log-law constant is sensitive to numerical/experimental uncertainties.

The subsequent discussion outlines the physical mechanism for the occurrence of a log-law shift.
The TL transformation assumes universality of the turbulent shear stress (and hence, viscous shear
stress) in the inner layer. However, Fig. 1(b) shows an outward shift of the turbulent shear stress
for the CP cases, with increasing Mach number. This shift can be explained in terms of delayed
development of active turbulence (wall-normal fluctuations) away from the wall, as observed in
literature [7,23,30], because it directly controls the production of the turbulent shear stress [31].
The delay in active fluctuations is caused by reduced intercomponent energy transfer from the
streamwise to the lateral components, as observed previously in compressible channels [32] and
boundary layers [30]. The outward shift in the turbulent shear stress implies an analogous outward
shift in the viscous shear stress, such that the total shear stress remains unchanged. Since the
TL-transformed mean velocity profile results from the integration of the viscous shear stress [4,6],
its outward shift is responsible for increase of the log-law intercept.

To account for the outward shift outlined above, we drop the universality assumption of the
turbulent shear stress, made in Trettel and Larsson [4], and derive a mean velocity transformation
accounting for intrinsic compressibility effects.

Derivation. In the inner layer of parallel (or quasiparallel) shear flows, integration of the mean
momentum equation implies that the sum of viscous and turbulent shear stresses is equal to the total
shear stress, given as

μ̄
dū

dy
− ρu′′v′′ ≈ τt , (1)

where τt ≈ τw in boundary layers and it varies linearly in channel flows. Note that terms due to
viscosity fluctuations are neglected. Normalizing Eq. (1) by τw and using the definitions of u∗

τ and
δ∗
v , we get the nondimensional form as

δ∗
v

u∗
τ

dū

dy︸ ︷︷ ︸
dŪ +

T L/dy∗

+r+
uv ≈ τ+

t , (2)

where r+
uv = −ρu′′v′′/τw and τ+

t = τt/τw. Next, following Trettel and Larsson [4], we assume
universality of the total shear stress and equate Eq. (2) with its incompressible counterpart to get

dŪ +

dY + + R+
uv = δ∗

v

u∗
τ

dū

dy
+ r+

uv, (3)

where Ū + = Ū/uτ and Y + = Y/δv denote the nondimensional velocity and wall-normal coordinate
of an incompressible flow that constitute the universal law of the wall.

Introducing the definition of the eddy viscosity for incompressible flows (superscript “i”) as
μi

t/μw = R+
uv/(dŪ +/dY +), and similarly for compressible flows (superscript “c”) as μc

t /μ̄ =
r+

uv/([δ∗
v/u∗

τ ]dū/dy), Eq. (3) can be written as

(
1 + μi

t/μw

)(dŪ +

dY +

)
= (1 + μc

t /μ̄)

(
δ∗
v

u∗
τ

dū

dy

)
, (4)

which upon rearrangement yields

dŪ +

dū+ =
(

1 + μc
t /μ̄

1 + μi
t/μw

)
δ∗
v

δv

dY +

dy+
uτ

u∗
τ

. (5)
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Equation (5) offers a very general eddy-viscosity-based framework for deriving compressibility
transformations for wall-bounded flows that satisfy Eq. (1). This equation in dimensional form is
similar to that proposed by Iyer et al. [33], where it is employed to deduce an eddy viscosity model,
provided a velocity transformation kernel is known (see also Ref. [34]).

In order to fully define the velocity transformation, a relationship between Y + and y+ shall be
established. Assuming that the turbulent shear stress is universal in the inner layer, Trettel and
Larsson [4] deduced that Y + = (δv/δ

∗
v )y+ = y∗. However, as seen in Fig. 1(b), the turbulent shear

stress is not universal in the presence of intrinsic compressibility effects, hence the question of
whether or not Y + = y∗ still holds has to be reassessed. Indeed, Y/δv = y/δ∗

v implies that δ∗
v is

the proper length scale for small-scale turbulence and viscous effects in compressible flows, just
like δv in incompressible flows. This was first proposed by Huang et al. [5] and later verified for a
range of turbulence statistics by Patel et al. [6]. The inset of Fig. 1(b) shows the distribution of the
Kolmogorov length scale in semilocal units [6] for the four CP cases and the incompressible case
of Moser et al. [26] at a similar Reynolds number. The nearly universal distribution throughout the
inner layer, despite nonuniversality of the turbulent shear stress, supports the validity of Y + = y∗
also in the presence of intrinsic compressibility effects.

Exploiting the coordinate transformation Y + = y∗, and using dy∗/dy+ = (1 − y∗ dδ∗
v/dy)δv/δ

∗
v

and uτ /u∗
τ = √

ρ̄ /ρw, we obtain the final proposed velocity transformation kernel from Eq. (5) as

dŪ +

dū+ =
(

1 + μc
t /μ̄

1 + μi
t/μw

)
︸ ︷︷ ︸

3

(
1 − y

δ∗
v

dδ∗
v

dy

)
︸ ︷︷ ︸

2

√
ρ̄

ρw︸ ︷︷ ︸
1

. (6)

Equation (6) embodies a sequence of velocity transformations, as outlined below:
(i) Factor 1 is the correction proposed by Van Driest [3] to account for the change in the friction

velocity scale from uτ = √
τw/ρw to u∗

τ = √
τw/ρ̄ .

(ii) Factor 2 is the correction proposed in Trettel and Larsson [4] and Patel et al. [6] to account
for the change in the viscous length scale from δv to δ∗

v . Factors 1 and 2 combined form the TL
transformation kernel, but written in terms of the semilocal viscous length scale, equivalent to that
proposed in Patel et al. [6]. These factors account for the effects of mean property variations on the
velocity transformation.

(iii) Factor 3 is the proposed correction which accounts for additional physics beyond those
captured by the TL transformation.

In order to obtain a closed form of the transformation, the eddy viscosities μi
t and μc

t must
be prescribed. Out of the many possible eddy viscosity models, we consider the Johnson-King
(JK) model [35] to achieve an explicit expression of the transformation. The JK model is built on
Van Driest’s mixing-length arguments in the logarithmic region [3], with a damping function [36]
to reproduce the correct near-wall behavior. The eddy viscosity is defined as μi

t = √
τwρwκY Di,

with Di = [1 − exp(−Y +/A+)]2. The set of constants κ = 0.41, A+ = 17 is commonly used [37],
and yields an incompressible log-law intercept of 5.2. Similarly, for compressible flows, μc

t =√
τwρ̄ κyDc, with the damping function Dc defined based on the the semilocal wall distance (y∗)

to account for mean property variations [34,38]. As outlined previously, intrinsic compressibility
effects modulate the near-wall damping of turbulence, causing the turbulent shear stress to shift
outwards [Fig. 1(b)]. Thus, we modify the damping constant to depend on Mτ , such that the
compressible eddy viscosity model reads

μc
t = √

τwρ̄ κy

[
1 − exp

( −y∗

A+ + f (Mτ )

)]2

︸ ︷︷ ︸
Dc

. (7)

The increase in the effective damping constant [A+ + f (Mτ )] in Eq. (7) implies that the eddy
viscosity (and hence, turbulent shear stress) shifts outwards, with subsequent increase of the log-law
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FIG. 2. Assessment of the (a) TL, (b) GFM, and (c) proposed transformations for 55 ideal gas and two
supercritical fluid cases. Ideal gas: (red solid lines) constant-property compressible channels; (gray solid lines)
cooled channels [4,16], adiabatic channels with pseudo heat sources [14,16,17,21,27], cooled and adiabatic
boundary layers ([22–25,39,40]; [7] Mach 2 and 14 cases only); (gray dashed lines) channels and boundary
layers with non-air-like viscosity power-law exponents of −0.5 and −1.75 [9,21]. Supercritical fluid: (gray
dash dotted lines) channel flows [41]. (Insets): Percent error (ε) in the velocity transformation computed with
respect to the incompressible reference [42], as described in Griffin et al. [8]. Note that the inset for GFM has
larger axis limits, and that the non-air-like case with the largest error of 44% is not shown. Symbols are as in
Fig. 1(a). Additionally, supercritical cases are denoted using closed ♦. Shaded region indicates an error bar of
+/−3%. As in Fig. 1, low-Reynolds number cases (less than 300) are excluded.

intercept (CT L). In fact, it can be readily checked that CT L grows linearly with the damping constant.
Since the log-law intercept also depends linearly on Mτ [see inset of Fig. 1(a)], we argue that the
corrective term f (Mτ ) should be linear. Here, we use f (Mτ ) = 19.3 Mτ to reproduce the linear curve
fit presented in Fig. 1(a).

Writing eddy viscosities in the nondimensional form as μi
t/μw = κY +Di and μc

t /μ̄ = κy∗Dc,
and replacing Y + by y∗ in μi

t/μw yields the final velocity transformation:

Ū + =
∫ ū+

0

(
1 + κy∗Dc

1 + κy∗Di

)(
1 − y

δ∗
v

dδ∗
v

dy

)√
ρ̄

ρw

dū+. (8)

Results and Discussion. This transformation is tested and compared to the TL and GFM trans-
formations in Fig. 2 for 57 flow cases, including adiabatic and cooled boundary layers, cooled
channels, and nonideal flows, covering a wide range of Mach numbers. The three transformations
are equivalent in the viscous sublayer, because the GFM log-layer transformation is blended with
TL, whereas the current transformation naturally reduces to TL in the viscous sublayer, where
μt ≈ 0 and factor 3 in Eq. (6) reduces to unity. The log-law shift in the TL transformation is
apparent. Such a selective upward shift is not seen in the GFM transformation for the conventional
ideal gas cases. However, it fails for the constant-property cases, ideal gas cases with non-air-like
viscosity laws, and supercritical fluid cases. The present transformation shows the least spread
for the flow cases considered herein, and it effectively removes the log-law shift observed in the
TL-transformation. Note that for all the transformations, the spread is larger in the outer part of
boundary layers and channels, which is arguably beyond their scope, all being focused on the inner,
constant-stress layer.

Despite the improved accuracy, the proposed transformation is only as accurate as the assump-
tions made in its derivation. For instance, the transformation might be inaccurate for cases where
Eq. (1) does not hold, such as in supercritical boundary layers where large density fluctuations
induce a near-wall convective flux in the stress balance equation [43]. Also, we have assumed that
variable-property effects are limited to factors 1 and 2 in Eq. (6), and that these effects do not
contribute to nonuniversality of the turbulent shear stress [factor 3 in Eq. (6)]. However, this is not
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always the case, as suggested by the scatter in the log-law intercept with respect to the fitted curve
in Fig. 1(a), which is eventually reflected in the new transformation [see Fig. 2(c)]. We suspect
cancellation between these unincorporated effects and intrinsic compressibility effects to be the
reason why the TL transformation was found to be very accurate for ideal-gas channel flows, but
not for boundary layers. Incorporating these additional physics is the next step for future studies
aimed at developing an even more general transformation. Lastly, it is important to note that for
ideal gas cases, as outlined above, the semilocal friction Mach number (M∗

τ ) is roughly constant in
the wall-normal direction and is equal to Mτ , however, for cases in which M∗

τ varies significantly in
the domain, Mτ may not be the most suitable parameter.

Implications on turbulence modeling. The eddy viscosity with modified damping function
[Eq. (7)] can be interpreted as a compressibility-corrected wall model for large eddy simulations
(LES), which can be implemented in current codes by simply changing the damping function. The
proposed transformation can also help in developing Reynolds averaged Navier-Stokes (RANS)
turbulence models sensitized to compressibility effects. For instance, the modified damping function
in Eq. (7) can inspire modifications in the mixing lengths of algebraic models [44–46]. Last,
the inverse of the current transformation can be leveraged to improve the drag and heat transfer
predictive theories [47–50].

To summarize, the log-law shift observed in the TL transformation can be primarily attributed
to the nonuniversality of the turbulent shear stress caused by intrinsic compressibility effects.
We ascertain this based on our tailored constant-property compressible cases, in which the only
dominant effect is due to intrinsic compressibility. Taking Mτ as the most suitable parameter to
quantify these effects, we propose a new transformation that effectively removes the log-law shift.
The proposed transformation accounts for the changes in friction velocity and viscous length scales
due to variations in mean properties, and for intrinsic compressibility effects. Thus, it applies to a
wide variety of cases. We anticipate that it may serve as a building block for improved turbulence
models; for example, it could be used directly as an equilibrium wall model.
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