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Summary 

Of the thesis ‘Stimulus response methodology for quantitative model development 
of central carbon metabolism in Saccharomyces cerevisiae’ by Made Tri Ari Penia 
Kresnowati 
 

 

The earth’s biodiversity and the advance of genomics provide us with a big potential to exploit 
(micro)biological systems for producing chemicals and pharmaceuticals in an economic and 
sustainable way. However, biological systems are naturally complex. For example, the supposed to 
be simple unicellular microorganism yeast contains thousands of genes and proteins (enzymes) and 
hundreds of metabolites that are wired in a complex regulatory network. Only with a 
comprehensive understanding of the biological system, strain improvement can be performed on a 
rational basis via metabolic engineering rather than by trial and error. In order to enhance the 
understanding of the behavior of biological processes and to reveal the regulation of the system, we 
need to develop proper models, as simple as possible but as complicated as necessary, for which 
high quality data are required.  

The research presented in this thesis focused on the application of stimulus response methodology 
for the quantitative analysis and the development of a quantitative model of the central carbon 
metabolism of the yeast Saccharomyces cerevisiae. The research approach consisted of running a 
well defined chemostat culture of yeast until a steady state condition was achieved. Hereafter the 
culture was perturbed and the transient responses of the system, which contain a lot of information 
about the kinetic characteristics of the system, were monitored. In this research we tried to answer 
the question how to better exploit these transient conditions to obtain as much information as 
possible about the studied biological system. 

Chapter 2 presents a multiomics analysis, that is, a combined metabolome and transcriptome 
analysis of the short (0 – 360 s) transient response to a glucose pulse. No significant changes in the 
measured transcript level were observed within the first 120 s of the transient such that within this 
time window the transcription and mRNA degradation processes could be considered ‘frozen’. 
Furthermore, considering that the translation follows the transcription process in time, the 
commonly used assumption of constant enzyme levels within this short time response to 
perturbations is verified. This allows a dissected dynamic metabolome analysis of the metabolic 
network within this short time interval.  

Overall, within the 330 s of observation a subset of 589 and 565 genes were found up- and 
downregulated respectively. Of the upregulated genes, the functional categories of metabolism, 
specifically amino acid, purine ribonucleotide and nucleotide metabolism; and transcription: 
synthesis, processing and transcription of ribosomal RNA were significantly overrepresented. Of 
the down-regulated genes, the energy and metabolism functional categories were significantly 
enriched. 

The performed type of experiment enables an integrated analysis of the physiological responses at 
various omics levels to the perturbation. In this case, we observed a severe, immediate decrease in 
the energy charge, from 0.85 to about 0.7, and the total adenosine nucleotide pool, up to 50%, 
which were accompanied by a concerted up-regulation of the purine biosynthesis genes, reflecting 
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an immediate high requirement of both energy and purine bases following the glucose pulse. In 
addition, we also observed synergistic metabolome – transcriptome responses to the transition from 
a fully respiratory to a respiro-fermentative condition: the secretion of ethanol, the TCA cycle 
intermediates profiles that may indicate flux discontinuation from α-ketoglutarate to the C4 
metabolites pool, and the concerted down-regulation of genes encoding the TCA cycle enzymes.  

Finally, this perturbation experiment also allowed the estimation of mRNA degradation rate, from 
which the averaged mRNA half-life following the glucose pulse was calculated to be 9 fold faster 
than the value that was previously reported by Wang et al. (2002).  

Chapter 3 presents the development of a method to measure the intracellular pH by applying 
benzoic acid as a tracer. This method allowed us to measure the dynamics in the intracellular pH 
following perturbations such as a glucose or an ethanol pulse, the results of which can be 
incorporated into kinetic models to give a better description of the system behavior. We observed a 
fast significant decrease in the intracellular pH, from the steady state value of about 6.43 to far 
below 6, which was immediately followed by partial alkalinization, to pH 6.0, in response to either 
the glucose or the ethanol pulses.  

Subsequently, Chapter 4 presents an evaluation of the possible causes of the observed dynamics of 
the intracellular pH. The evaluation involves dynamic metabolite charge balances and the weak acid 
transport calculations as well as quantification of the buffering capacity of the cell. So far none of 
the suggested hypothesis, i.e. an increase in the glucose phosphorylation rate or, more properly, an 
intracellular accumulation of phosphorylated metabolites; an accumulation of carbon dioxide or an 
increase in the acetic acid production, could satisfactorily explain the observed decrease in the 
intracellular pH following the perturbation. 

In relation with the immediate decrease in the energy charge and ATP concentration following the 
glucose pulse, we designed a perturbation that was specifically targeted at the ATP consumption 
rate to investigate the role of the ATP concentration and the regulation of the cellular energy 
system. This was achieved by applying an extracellular pH shift to an aerobic-glucose limited 
chemostat culture of yeast that was grown on a medium containing benzoic acid. 

 First, the effects of the presence of benzoic acid on yeast were determined by applying a step 
change of the benzoic acid concentration, from 0 to 0.8 mM, to a steady state yeast chemostat 
culture. The results are presented in Chapter 5. In general the presence of benzoic acid leads to an 
increase in the cellular catabolism rate to meet the high energy requirement for the export of protons 
and benzoate that enters the cell via the passive diffusion of (undissociated) benzoic acid. This 
condition was clearly reflected by a significant increase in the observed specific glucose uptake, 
from 0.53 mmol.gDW-1.h-1 to 0.96 mmol.gDW-1.h-1 (1.8 fold), and oxygen consumption rates, from 
1.46 mmol.gDW-1.h-1 to 3.76 mmol.gDW-1.h-1 (2.6 fold), and was also evidenced by the observed 
intracellular metabolite profiles which indicated a higher flux through the glycolysis and the TCA 
cycle. In addition, the implemented experimental setup also allowed us to follow the transient yeast 
adaptation processes to the presence of benzoic acid, such as a fast induction (< 3000 s) of the 
benzoate exporter (Pdr12) and, within the time frame, a transient increase in energy consumption 
that may be related with the benzoate exporter induction process. 

As responses to the extracellular pH shift to a chemostat culture of yeast grown in the presence of 
benzoic acid in the medium, we observed immediate changes in the concentration of benzoic acid as 
well as in the concentrations of O2 and CO2 both in the liquid and gas phases, which indicates that 
the envisaged perturbation of the ATP consumption rate was successfully achieved (Chapter 6). 
Correspondingly, consistent profiles of the intracellular metabolite concentrations and the 
concentrations of O2 and CO2 in the off-gas, were observed. However, contrary to the expectation 
that the ATP concentration should temporarily increase following the shift to a lower rate of ATP-
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consuming benzoate export (pH step up), a decrease in the ATP concentration and in the energy 
charge were observed. This paradox may be related with the different between the time constant of 
the ATP regeneration process, that was calculated to be 1.7 s, and of the benzoate processes, that 
was calculated to be 22.9 s; such that every additional ATP consumed for the benzoate export will 
be instantaneously replenished. Nevertheless, independent, new dynamic metabolite datasets were 
obtained and will prove of great value in developing kinetic models.   

The last research question dealt with the kinetic model development. Chapter 7 presents a practical 
approach to estimate kinetic parameters of enzymatic rate equations and the control coefficients of a 
metabolic network from transient metabolite data that are directly obtainable from rapid 
perturbation experiments. The method is based on the approximative linear logarithmic (linlog) 
kinetic format, whose linear property allows a simple linear regression method for obtaining the 
initial guess for the kinetic parameters estimation process. The linear property also allows a simple 
and direct way for the evaluation of the information content of the data and also allows the redesign 
of the experiment to improve the accuracy of the estimated parameters. The method was applied to 
a case study consisting of 4 metabolites and 3 reactions and it was found that the method can 
sufficiently estimate the kinetic parameters and control coefficients and that the method is relatively 
robust towards measurement errors. It was also shown that the incorporation of a priory knowledge 
reaction kinetics could improve the accuracy of the estimates. 

In conclusion, this thesis presents both developments and applications of novel experimental and 
theoretical tools for the analysis and development of quantitative model of the central carbon 
metabolism of the yeast S. cerevisiae, providing more insight in the in-vivo kinetics and regulations 
of its central carbon metabolism. However, despite of all the efforts that have been made, such a 
complete and validated quantitative model on the central carbon metabolism has not been obtained 
yet. Some foreseeable challenges and possible approaches to tackle them are suggested in the future 
research directions that are presented in Chapter 8. 
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Samenvatting 

Behorend bij het proefschrift getiteld ‘De stimulus response methode voor het 
ontwikkelen van een kwantitatief model van het centrale koolstofmetabolisme in 
Saccharomyces cerevisiae’ door Made Tri Ari Penia Kresnowati 
 

 

De biodiversiteit van de aarde in combinatie met onze groeiende kennis van genetica maakt het 
vandaag de dag mogelijk om biologische systemen in te schakelen voor de duurzame productie van 
chemicalien en farmaceutische componenten. Biologische systemen zijn echter zeer complex. Zo 
bevat het simpele eencellige microorganisme gist, alleen al duizenden genen en eiwitten (enzymen) 
en honderden metabolieten die verwikkeld zijn in een complex regulatie netwerk. Een goede kennis 
van het biologische system is dus onontbeerlijk om het cel metabolisme op zo’n manier te 
manipuleren dat er betere stammen verkregen worden. Om deze kennis te verkrijgen zijn simpele, 
maar complete modellen nodig en zijn hoog kwaliteit data nodig.  

In dit proefschrift wordt omschreven hoe de stimulus respons methode gebruikt kan worden om het 
centrale koolstofmetabolisme van de gist Saccharomyces cerevisiae te bestuderen en vervolgens te 
modeleren. Deze methode is gebaseerd op het aanbrengen van een verstoring (stimulus) in een 
quasi-statische chemostaat cultuur van gist, gevolgd door het bestuderen van de reactie (respons) 
om meer inzicht in de kinetiek van het onderliggende systeem te verkrijgen. De centrale vraag van 
dit onderzoek luidt: ‘Hoe kunnen deze verstoringen zo goed mogelijk benut worden om zoveel 
mogelijk inzicht in het biologische systeem te verkrijgen’  

In Hoofdstuk 2 wordt een multiomics analyse beschreven, d.w.z. een gecombineerde analyze van 
zowel metaboliet (metabolomics) en transcript (transcriptomics) data gedurende 360 sec na het 
toedienen van een glucose puls. Tijdens de eerste 120 seconden werden geen significante 
veranderingen in de transcript niveaus gevonden. Deze periode van het transcriptieproces kan 
daarom als ‘statisch’ gezien worden. Aangezien translatie langzamer verloopt dan transcriptie, 
zullen de enzym niveaus gedurende deze periode ook constant blijven, waardoor een afzonderlijke 
analyse van de metaboliet data in dit korte tijdsinterval mogelijk is. Over de gehele tijdsduur van 
het experiment genomen waren er respectievelijk, 589 en 565 genen met een verhoogde en een 
verlaagde expressie. Genen betrokken bij metabolisme (purine ribonucleotide en nucleotide 
metabolisme), transcriptie en de synthese en verwerking van ribosomal RNA waren significant 
over-vertegenwoordigd onder de genen met een verhoogde expressie. Genen betrokken bij 
metabolisme en energie-huishouding waren over-vertegenwoordigd onder de genen met een 
verlaagde expressie. Met behulp van het uitgevoerde experiment was het mogelijk om de 
fysiologische reactie op een stimulus geintegreerd te analyzeren. We observeerden een directe 
daling van de energetisch lading in de cel van 0.85 naar 0.7, en een halvering van de de adenosine 
nucleotide pool. Verder werd er een verhoogde expressie van de purine biosynthese genen 
waargenomen, wat duidde op een verhoogde vraag naar energie (bv. ATP) en purine base na een 
glucose puls. Tevens observeerden we een synergistische metaboliet-transcript respons gedurende 
de transitie van volledige respiratoire naar respira-fermentatieve condities: de excretie van ethanol, 
metaboliet profielen van citroenzuurcyclus intermediateren die wijzen op een flux afname van alfa-
ketogluteraat naar C4 componenten, en een verlaagde expressie van de enzymen in de 
citroenzuurcyclus. Daarnaast was het in dit experiment ook mogelijk om de halfwaarde tijd voor 
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mRNA afbraak te meten, welke na een glucose puls 9 keer sneller bleek dan eerder beschreven 
(Wang et al., 2002).  

In Hoofdstuk 3 wordt een model beschreven om de intracellulaire pH te meten met benzoëzuur  als 
tracer. Deze tracer maakt het mogelijk om veranderingen in intracellulaire pH na een verstoring van 
het systeem (glucose of ethanol puls) te meten. Met behulp van deze techniek kan een dynamisch 
systeem beter gekarakteriseerd worden. Met behulp van deze techniek werd geconstateerd dat een 
glucose of ethanol pulse tot een significante verlaging van de intracellulaire pH leidt (0.4 pH 
eenheden). 

In hoofdstuk 4 wordt getracht om de gevonden daling in de intracellulaire pH te verklaren. Hiertoe 
werd gekeken naar de dynamische balans van metaboliet ladingen, de transport capaciteit van zwak 
zuur, en de buffercapaciteit van de cel. Geen van de opgestelde hypotheses, d.w.z. een opeenhoping 
van gefosforyleerde metabolieten, een opstapeling van koolstofdioxide of een verhoging van de 
azijnzuur productie kon echter de verlaging in intracellulaire pH volledig verklaren. 

Om een verklaring te vinden voor de eerder gevonden verlaagde ATP concentratie in gist na het 
toedienen van een glucose puls (Hoofdstuk 2), werd een specifieke vestoring van ATP consumptie 
snelheid in de cel aangebracht, door in een aerobe, glucose-gelimiteerde chemostaat cultuur van gist 
(in de aanwezigheid van benzoëzuur in het medium) de extracellulaire pH te verschuiven. Voordat 
dit experiment werd uitgevoerd, werd echter eerst  het effect van benzoëzuur op gist cellen getest 
door de benzoëzuur concentratie van 0 tot 0.8 mM te verhogen in een chemostaat cultuur van gist 
(Hoofdstuk 5). In principe, zal de aanwezigheid van benzoëzuur in het medium leiden tot een 
verhoogd catabool metabolisme in de cel als gevolg van een verhoogde vraag naar energie (ATP). 
Deze energie is nodig om de combinatie van een proton en het gedisocieerde benzoëzuur (benzoaat) 
uit de cel te exporteren. Belangrijk hierbij op te merken is, dat het transport van benzoëzuur de cel 
in via passieve diffusie verloopt en dus geen energie kost.  Zoals verwacht werd er een significante 
toename van de specifieke glucose opname (0.53 mmol.gDW-1.h-1 naar 0.96 mmol.gDW-1.hr-1) en 
zuurstof consumptie snelheid waargenomen (1.46 mmol.gDW-1.hr-1 naar 3.76 mmol.gDW-1.h-1). 
Daarnaast duidde de gemeten intracellulaire metaboliet profielen ook op een hogere flux door de 
glycolyse en de citroenzuurcyclus. Een bijkomend voordeel van deze experimentele setup was dat 
het tevens mogelijk was om het adaptie proces van de gist aan benzoëzuur te bestuderen, zoals de 
snele inductie van de benzoaat exporter (Pdr12). 

In hoofdstuk 6 is te zien dat de verandering van de extracellulaire pH in een chemostaat cultuur van 
gist met benzoëzuur in het medium leidt tot directe veranderingen in de concentraties van benzoaat, 
en O2 en CO2 (in zowel de gas als vloeistoffase). De beoogde verstoring van de ATP consumptie 
snelheid was dus een feit. Tevens werden consistente profielen gevonden tussen de intracellulaire 
metaboliet concentraties en O2 en CO2 concentraties in de uitgaande beluchtingsstroom. Tegen de 
verwachting in werd echter een verlaging van de ATP concentratie en energetische lading van de 
cel gemeten wanneer extracellulaire pH verhoogd werd, waarmee een nieuwe energieparadox zich 
aan diende. De gevonden verlaging van de ATP concentratie zou mogelijk verklaard kunnen 
worden door verschillende tijdscontanten in het ATP regeneratieproces en het benzoaat export 
process.  

In hoofdstuk 7 wordt een praktische aanpak beschreven waarmee kinetische parameters en controle 
coefficienten in transiente metaboliet data geschat kunnen worden. De methode is gebasseerd op het 
‘approximative lineair logaritmisch (linlog) kinetisch’ format, welke het mogelijk maakt om een 
eerste schatting van de kinetische parameters in de cel te verkrijgen via een simpele lineaire 
optimalisatie. Tevens maakt deze methode het mogelijk om snel data te evalueren en de 
experimenten te herontwerpen om de nauwkeurigheid van de geschatte parameters te verhogen. 
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Concluderend, beschrijft dit proefschrift de ontwikkeling en toepassing van zowel nieuwe 
experimentele als nieuwe theoretische methoden om een kwantitatief model voor het centrale 
koolstofmetabolisme in de gist Saccharomyces cerevisiae te ontwikkelen, waarmee meer inzicht in 
in-vivo kinetiek en regulatie van het centrale koolstofmetabolisme kan worden verkregen. Ondanks 
de vooruitgang beschreven in dit proefschrift is het nog niet mogelijk om een compleet en 
gevalideerd model van het centrale koolstofmetabolisme te construeren. Een aantal aanbevelingen 
voor verder onderzoek zijn beschreven in hoofdstuk 8. 
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Chapter 1 

Introduction 
 

 

Background 

History of microbiological studies and bioprocess applications, especially in 
industry 
Studies on microorganisms had just started in the 17th century, when Antonie van Leeuwenhoek 
used his hand-made microscope to study the structures of small organisms he first found in water, 
which he referred to as ‘animacules’ (Dobell, 1960). However, until the beginning of the 19th 
century the existence of microbes as living organisms was still a matter of debate (Barnett, 2003a; 
2000; 1998): it was debated whether alcohol was the product of a chemical reaction catalyzed by 
the beer-yeast that functions as a common chemical catalyst, or whether the alcohol production was 
the result of physiological activity of yeast, thus of the living activity of yeast. Afterwards 
researches on microbiology have advanced further: a variety of microorganisms were classified; 
different cell organelles, e.g. vacuole and nucleus, were identified and characterized; physiology, 
metabolism and subsequently detailed enzymatic reactions and the metabolic pathways were 
studied. The discovery of the double helix structure of DNA by Watson and Crick in 1953 
highlighted the beginning of the molecular biology study (an overview can be found in MacGregor 
Jr. and Poon, 2003). The advanced in molecular biology tools allowed the searches for genes 
responsible for particular processes, the deletion of unwanted genes, or the introduction of genes 
responsible for a process of interest (recombinant DNA). Along with the fast development of high 
throughput technologies, in the last decade we also witnessed the emerging studies on genomics, 
proteomics and metabolomics: profiling the genes, transcripts, proteins and metabolites of the cell 
and hence completing our source of information about the living system. Nowadays various types 
of information on genes, proteins and metabolites of particular microorganism can be obtained from 
databases (e.g.  http://www.mips.biochem.mpg.de, http://www.brenda.uni-koeln.de, 
http://www.proteome.com, http://www.kegg.com, http://genome-www.stanford.edu). 

On the other hand, the application of bioprocesses in human life has a longer history. For example 
the use of yeast for the preparation of wine and bread, can actually be traced back to ancient human 
civilizations. The oldest evidence date back to 5400 – 5500 BC, from which a pottery jar which 
contained wine with a pistacia tree resin additive in a Neolithic village in the Zagros mountains, 
Northern Iran, was found (McGovern et al., 1996). Another archeological report described the 
finding of a Babylonian clay tablet from the period of Urukagina, King of Lagash, which records 
the existence of bread at about 2600 BC (Chen et al., 1985; Trivedi et al., 1986). Nowadays 
bioprocesses are widely applied in industry, not only for beer, wine or bread production, but also in 
other food industries, pharmaceutical industries, or for the production of bulk and fine chemicals; 
with Escherichia coli, Corynebacterium, Streptococcus, Lactobacillus and Pseudomonas as the 
main bacterial platform, Saccharomyces as a frequently applied yeast, Aspergillus and Penicillium 
as ‘work-horses’ amongst the fungi. As an example, Saccharomyces cerevisiae is widely used 
because of the amount of available information on it (e.g. completeness of genome sequence), its 
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easiness to cultivate (e.g. moderate temperature, simple nutritional requirement, resilience to a 
variety of stresses), its relatively high maximum specific growth rate and its GRAS (Generally 
Recognized As Safe) status, which is beneficial for the marketing of the products. This yeast 
species is being used in the industrial production of insulin, hepatitis B vaccine, hydrocortisone, 
bioethanol (Shouval et al., 2003; Szczebara et al., 2003; van Maris et al., 2006) and is also a 
potential candidate for the production of glycerol and lactate (Geertman et al., 2006; Overkamp et 
al., 2002; Remize et al., 2001; van Maris et al., 2004), aside from its traditional use for the 
production of beer, wine and bread. 

 

The need of a thorough understanding about systems to better exploit 
microbiological processes  
The economics of industrial applications of micro organisms require the optimal production of the 
desired products by the microorganisms. Related with this, various approaches including the 
isolation and selection of potential strains from nature as well as from random mutagenesis, e.g. by 
ultraviolet or gamma irradiation, followed by screening for the best mutants have been undertaken 
for strain improvement. The latter processes are random and poorly characterized, thus are merely a 
combination between science and arts. Hence, the strain improvement is normally an expensive and 
laborious effort.  

The advance in genetic engineering allows the precise modification of specific genes, and therefore 
offers the potential of the directed modification of microbioprocesses. This triggered the birth of 
metabolic engineering, which is defined as the directed improvement of product formation or 
cellular properties through the modification of specific biochemical reaction(s) or the introduction 
of new one(s) with the use of recombinant DNA technology (Stephanopolous et al., 1998). An 
obvious implementation of metabolic engineering is the expression of new genes in various host 
cells for the production of exogenous products. An excellent example of this is the introduction of 
Artemisia annua genes into yeast for the production of artemisin, a medicine against malaria (Ro et 
al., 2006). This compound can now be cheaply produced on an industrial scale. Another 
straightforward implementation of metabolic engineering is the removal of the bottleneck (rate-
limiting step) in the production of the desired product by the amplification of endogenous enzymes. 
In practice, however, this approach has seldom been successfully implemented (Bailey, 1999; 
Cornish-Bowden, 1995; Cornish-Bowden et al., 1995; Niederberger et al., 1992). This failure can 
be ascribed to the complexity of the regulation network of the cell and it serves as an impetus to 
perform a holistic analysis of the microbiological system to find suitable targets for genetic 
manipulation. Such approaches are not yet commonly performed in the studies of biological 
systems but they can be potentially facilitated with the recent advances in high throughput multi-
omics technology (Vermuri and Aristidou, 2005). 

Studies on biological systems are usually focused on a particular part of interest (reductionistic 
approach). An enzyme of interest, for example, is extracted from the cells, purified and then studied 
for its structure and kinetics. In the past, this approach was used to elucidate the enzymatic reactions 
composing the glycolytic pathway of yeast or muscle cells (a summary can be found in Barnett, 
2003b). However, the availability of detailed information on each separate component of the 
biological system is not sufficient to fully explain what happens inside a cell, what makes it a living 
system and how it responds and adapts to changes in its environment. This situation was nicely 
illustrated by Lazebnik (2002) who compared the studies of a living organism with fixing a radio. 
He described that, in general, biologists are in the process of identifying and characterizing all the 
components in the radio: transistors, capacitors, resistors, etc, but do not have any idea about how 
those components are interconnected or about the grand design or purpose of the radio itself. With  
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this state of knowledge, intuitive approaches to fix the radio (to improve the product formation or 
cellular properties of the (micro)biological system) are likely to lead to failure. 

Studies on the metabolic network indicate that the control of metabolic fluxes is not exerted by a 
single rate-limiting enzymatic reaction. Instead it is shared among many enzymes in the 
network/pathways (Ehlde and Zacchi, 1997; Fell and Sauro, 1985; Kascer and Burns, 1973, 1979; 
Stephanopoulos et al., 1998; Visser et al., 2004a). Consequently, instead of removing the bottleneck 
by simply amplifying the related enzyme, the kinetics and regulatory networks of the product 
formation pathway needs to be resolved. On the other hand, product formation requires metabolic 
precursors and cofactors (ATP, NAD/NADH) that need to be generated in the central carbon 
metabolism (see Box 1). To prevent the situation that the availability of these compounds becomes 
the limiting factor, the kinetics and regulation of the central carbon metabolism as well as the 
kinetics and regulation of other pathways consuming the same metabolic precursors and cofactors 
should also be taken into account. To summarize, the implementation of metabolic engineering 
involves the analysis and alteration of network stoichiometry, the improvement of pathway kinetics 
and the engineering of regulatory networks (Bulter et al., 2003). 

 

System biology 

Systemic approach 
As discussed above, the cell is actually a multilevel organization of innumerable components and 
processes which work simultaneously creating a complex network (Figure 1.1). A yeast cell, a 
single cell microorganism representing the smallest entity of biological systems after the viruses, is 
actually a collection of at least about six hundred different metabolites (metabolome), thousands of 
enzymes and other proteins (proteome), and about six thousand four hundred genes (genome) and 
their corresponding transcripts (transcriptome) (Forster et al., 2003; Goffeau, 2000), all of which 
interact (interactome): working together, cooperatively and simultaneously, creating a viable 
system. 

As has been briefly discussed above, in order to understand the system, i.e. to resolve the 
stoichiometry and kinetics of metabolic and regulatory pathways, it is not sufficient to study all the 
components and processes in detail without studying how they interact. Quoting a statement by 
Aristotle (von Bertalanffy, 1975) ‘The whole is more than the sum of the components’. A systemic 
approach is necessary to address the complexity of living systems. Such an approach, which is now 
well-known as ‘system biology’, has actually been proposed many years ago, e.g. the general 
system theory of Von Bertalanffy (as summarized in Von Bertalanffy, 1968 and 1975). 

 

The need for quantitative approaches to investigate the system 
An implicit requirement for the application of a systemic approach in studying a biological system 
is a quantitative attitude. This does not only mean that everything should be measured accurately, 
but it also means that the measurement/analysis methods used should be proper and validated and 
the samples from which the data are taken should be obtained from a well-designed experiment and 
processed by a proper and validated method. Only then can the experimental results from different 
laboratories be compared or further used in combination. A nice example of the importance of this 
so called standardization is shown in Figure 1.2, which shows the increasing profile of energy 
charge measured in E.coli cultures over the past five decades. At first glance, this figure might be  
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Figure 1.1 Living cell is a complex system 
The cell contains thousands of genes (genome). Depending on the environment a selected set of the genes will be 

transcribed into mRNA (transcriptome), which will further be translated into protein (proteome). Some proteins are the 
enzymes which catalyze metabolic reactions. The metabolic reactions interconvert metabolites (metabolome), from the 

substrates into finally the products. The distribution of intracellular metabolite concentrations affects the activity of 
enzymes, either via mass action effects, allosteric control mechanisms or enzyme modifications via 

(de)phosphorylation. It is a closed control loop, since the change in enzyme activity in its turn changes the metabolite 
concentrations. On the other hand metabolites can also affect the translation process of enzyme via the so-called 

riboswitch mechanism (Sudarsan et al., 2006). Moreover, metabolites can also affect the transcription process via the 
transcription factors (TF) that are involved in signaling pathways. Resulting changes in the mRNA distribution will 

change the translated protein (enzymes). 

 

 

Figure 1.2 The bogus evolution of energy charge in the cell, which is in fact caused by the use of 
improper sampling and analysis methods (reproduced from Chapman and Atkinson, 1977). The dots 

give the experimental data, whereas the line gives the yearly average data with standard deviation 
shown as the squares 
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interpreted as a rapid evolution that microorganisms have undergone to obtain a higher energy 
level. Is it real? The answer may be related to the development of methods for sampling and 
extraction of metabolites. Considering the fast turnover time ATP of about 0.7 – 2.9 s (Chapman 
and Atkinson, 1977), inappropriate sampling and extraction methods may lead to the degradation of 
ATP to ADP and AMP during the sample processing which leads to the underestimation of the 
energy charge. 

Another important argument in support of taking a systemic approach is our brain’s limitation to 
mentally simulate complex systems. It is not enough to work only with our intuitive knowledge and 
therefore it is mandatory to have mathematical models representing complex biological systems. 
Thanks to the advances in computer programming, we can now simulate systems of hundreds of 
(differential) equations just in the order of minutes. Before setting up a mathematical model, it is 
important to set up the goal which we want to achieve with the developed model (Bailey, 1998). It 
determines the type of model which should be made and also the level of complexity which should 
be dealt with. 

To summarize: both a strong mathematical modeling platform and a solid experimental and analysis 
platform are essential for the systemic analysis of biological systems. To this end a range of 
experimental and modeling tools have been developed, which are briefly discussed below. 

 

Modeling platform 
Metabolic model development has attracted quite some attention during the last few years. A 
database search (with pubmed: http://www.ncbi.nlm.nih.gov/) for articles with metabolic modeling 
term in the titles or key words shows a significant growth from 70 articles in 2000 to 159 articles in 
2005, whereas until the end of the third quarter of 2006, 149 articles have been published. In 
general the modeling approaches taken can be classified as stoichiometric modelling (including 
steady state metabolic flux analysis), kinetic modelling and metabolic control analysis. 

Stoichiometric models 
Metabolic fluxes represent a quantitative phenotype of the cell. The metabolic fluxes at steady state 
condition can be estimated by the stoichiometric analysis, also called steady state metabolic flux 
analysis (MFA). At steady state, the intracellular metabolite mass balances can be expressed as 

0 μ= = ⋅ − ⋅x S v x           (1.1) 

In which x is a (m x 1) vector of intracellular metabolite concentrations, S  is the (m x n) 
stoichiometry matrix, v is a (n x 1) vector of metabolic fluxes and μ is the biomass specific growth 
rate. For a fully determined or overdetermined system, all intracellular metabolic fluxes can be 
calculated from the measured extracellular fluxes.  

For an underdetermined system, a linear programming approach is needed to estimate the 
intracellular fluxes. It searches for the optimimum of an assumed objective function, e.g. maximum 
growth rate, or minimum energy requirement within a solution space that is constrained by the 
metabolite mass balances. This approach has been applied, for example, to estimate the intracellular 
metabolic fluxes of S.cerevisiae growing on mixed substrates (van Gulik et al., 1995, Vanrolleghem 
and Heijnen, 1998) or at different growth rates (Nissen et al., 1997). 

This method, however, cannot be used to quantify each rate of reversible reactions or to fully 
quantify the split ratio through parallel metabolic pathways. To solve this problem, a combination 
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of stoichiometric analysis and the isotope labeling method, e.g. using 13C labeled substrate, can be 
applied. In this method the rates of the reversible reactions and the split ratios of parallel pathways 
can be deduced from measured labeling patterns of metabolites (a review can be found in 
Wittmann, 2002). Based on the 13C label distributions of amino acids in cell protein, for example, 
Gombert et al. (2001) estimated the intracellular flux distribution of S. cerevisiae growing either 
under glucose limitation or in glucose excess whereas Blank et al. (2004) estimated the TCA cycle 
fluxes under different environmental conditions. Based on the 13C label distributions of the 
intracellular metabolites, for example, Kleijn et al. (2006) and van Winden et al. (2005) estimated 
the metabolic flux distribution and in particular the split ratio between glycolysis and pentose 
phosphate pathway in a wild type and a quadruple mutant strain of S. cerevisiae. 

The stoichiometric models that are used for steady state flux analysis have strongly grown in size 
over the past decade. The availability of the genome of S. cerevisiae and the increasingly complete 
annotation thereof has led to the reconstruction of genome scale stoichiometric models of this 
eukaryote (e.g. Forster et al., 2003; Duarte et al., 2004a, 2004b). These are typically 
underdetermined and have thus far only been used to estimate intracellular fluxes via the linear 
programming approach; not yet for 13C labeling analysis. 

Kinetic models 
In the stoichiometric analysis, metabolic flux distributions are calculated based on the stoichiometry 
of the reactions in the metabolic network without considering the regulation effects, e.g. by 
metabolite mass action effects and allosteric effects, which makes stoichiometric models unsuitable 
for quantitatively predicting the metabolic rate distribution in genetically modified strains or under 
dynamic conditions. To allow for such predictions, information on the kinetics of reactions, e.g. the 
mechanistic kinetics of reactions (Michaelis Menten, Hill, etc.) or the approximative kinetics of 
reactions (linear approximation, power law approximation (e.g. Voit, 2000), (log)linear 
approximation (Hatzimanikatis et al., 1997) or linlog approximation (Heijnen, 2005)), must be 
incorporated into the mass balances. Subsequently, these systems of differential equations can be 
solved for the steady state intracellular metabolite concentrations and fluxes. Alternatively, they can 
be used for numerical simulation of time profiles of metabolite concentrations and reaction rates. In 
general the kinetics of a reaction is expressed as v = f(e,c,x); where v is the reaction rate, e is the 
enzyme activity, c and x are the concentrations of extracellular and intracellular metabolites. Hence, 
the dynamic intracellular metabolite mass balance can be described as  

( ), ,f μ= ⋅ − ⋅x S e x c x            (1.2) 

An inherent problem with kinetic analysis is the availability of detailed kinetic information on 
metabolic reactions: what type of kinetic equation and what values of the kinetic parameters should 
be used? 

Mechanistic enzyme kinetics equations give a detailed description of the reaction. However, such 
equations are commonly complex and highly non-linear. Hence, for all except very small cases, it is  
practically impossible to analytically solve the system of differential equations describing the 
metabolic network. Moreover, this type of kinetic equation usually contains many kinetic 
parameters. Some studies that used in vitro determined kinetic parameters (from the reductionist 
type of experiment) have shown that there are significant differences between the in-vitro 
determined and the in-vivo kinetic parameters (Mulquiney et al., 1999; Teusink et al., 2000). This 
leads to the additional problem of estimating the numerous kinetic parameters under in-vivo 
conditions. 
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 Approximative kinetics are in fact a trade off between accuracy of the description of the exact 
kinetics on the one hand and a standardized format containing fewer kinetic parameters on the other 
hand. The simplicity of approximative kinetic formats can give more insight in the behaviour of 
metabolic systems. In one type of approximative kinetics, the linlog kinetics (Heijnen, 2005; Visser 
and Heijnen, 2003; Wu et al., 2004), the rate is proportional to the enzyme concentration (e) and 
linear in the kinetic parameters and in the logarithms of the intracellular (x) and extracellular (c) 
metabolite concentrations, hence non-linear in metabolite concentrations. In its normalized format 
(toward a reference state) the rate can be written as 

⎡ ⎤ ⎛ ⎞= × + × + ×⎜⎢ ⎥⎣ ⎦ ⎝ ⎠
0 0
x c0 0 0 0

v e x ci E ln E ln ⎟j e x c
       (1.3) 

Here, Ex
0 and Ec

0 are matrices containing the elasticity coefficients (ε0) respectively for intracellular 
and extracellular metabolites belonging to the given reference state (superscript 0). The logarithms 
of the metabolite concentrations make the relation between rate and metabolites more realistic than 
those of the linear approximation. On the other hand, the linear relation between the rate and the 
kinetic parameters allows the usage of linear algebra tools, which is a great advantage for the 
estimation of the linlog kinetic parameters. A method to estimate the linlog kinetic parameters is 
one of the topics of this research and is covered in Chapter 7 of this thesis.  

Metabolic control analysis 
A different type of modeling approach is the metabolic control analysis (MCA) which is a 
quantitative framework to assess the control of metabolism. It is a systematic approach to assess the 
relative effect of changes in the levels of different enzymes on fluxes and metabolites when they 
operate simultaneously. Mathematically, the concentration control coefficient (Cx) and the flux 
control coefficient (CJ) are defined as 
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In which e, x, J are respectively the enzyme activity, the metabolite concentration and the flux level.  

This concept was introduced in the early seventies by Heinrich and Rapoport (1974) and Kascer and 
Burns (1973) and has been widely studied (e.g. Crabtree et al., 1987; Ehlde et al. , 1997; Fell et al., 
1985, 1992, 1997; Giersch, 1995; Kascer et al., 1979, 1987; Reder, 1988; Westerhoff et al.,1987). 
The concept has shown that the control of metabolism is shared amongst all enzymes in the 
metabolic network/pathway rather than that the control is exerted by a single rate limiting-enzyme. 

The major obstacles in applying MCA in practice are difficulties in obtaining the control parameters 
from experiments (Fell, 1997), such as how to introduce infinitesimal changes in enzyme activities 
and how to accurately measure the resulting infinitesimal changes in fluxes and metabolite levels 
in-vivo.  

Another approach is to theoretically derive the control coefficients from the definition of control 
coefficient given the kinetic equation of the reaction. This approach, however, points back to the 
problem of estimating the kinetic parameters that has been discussed previously. In the nineties 
Delgado and Liao (Delgado and Liao, 1992a and 1992b; Liao and Delgado, 1992) proposed a 
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method to estimate control coefficients from transient metabolite data. However this method was 
shown to be sensitive to errors in the data (Ehlde et al., 1996). An extension of this method is 
discussed in the Chapter 7 of this thesis. 

 

Experimental platform 
It has been mentioned that a solid experimental and analysis platform is required to generate 
reliable data for the systemic analysis of metabolism. On the other hand, experience tells us that 
biological experiments are often more an art than science. There are many potential differences 
between repeated experiments, e.g. variability of medium composition, the possibility of 
contaminations, the exact time at which samples are taken, that may compromise the reproducibility 
of the results. In that respect, standardization of experiments and the execution of these experiments 
in a controlled way is indispensable (Sonnleitner, 1996). Subsequently, a highly reproducible 
method of sample processing, and an accurate analysis method are required.  

Chemostat cultivation 
The chemostat is well known as the workhorse of fermentation research. It consists of a stirred tank 
reactor into which substrate flows in at a defined rate and from which fermentation broth is 
withdrawn at a defined rate (Novick and Szilard, 1955). This setting allows one to establish a 
defined, steady state condition of the yeast fermentation in which the specific growth rate of the 
yeast is set by the dilution rate of the chemostat. With regards to the standardization of experiments 
a number of probes, e.g. pH, temperature, flow rate, dissolved O2 and CO2 and pressure, need to be 
installed, which serve as inputs for control loops that control these fermentation parameters. To 
check the steady state condition of the yeast fermentation, periodic biomass dry weight samples as 
well as the online off-gas measurement can be performed. 

The chemostat system allows one to study the micro organism of interest at any chosen growth rate, 
allowing for the investigation of various metabolic regimes. This contrasts with the use of batch 
fermentations where the growth rate of cells in not controlled. 

Stimulus response experiments 
Transient data are richer in information than steady state data. As a simple illustration, one can 
consider the parameter estimation of a reversible reaction. From transient data we can estimate the 
kinetic parameters of the reaction, which are impossible to determine from steady state data (see 
Box 2). Rizzi et al. (1997) and Vaseghi et al. (1999) developed a kinetic model of glycolysis, TCA 
cycle and pentose phosphate pathway of S. cerevisiae containing complex non-linear enzyme 
kinetic equations and estimated the numerous parameters from transient intracellular and 
extracellular metabolite data obtained following a glucose pulse to a steady state chemostat system. 
Hynne et al. (2001) developed a full scale glycolytic model from the combined transient metabolic 
data obtained following cell oscillations near the Hopf bifurcation point, a large set of stationary 
data and other data from comparable batch experiments.  

Stimulus response experiment (SRE) is an approach designed to generate transient data. Simply put, 
the approach is ‘to kick the bugs and see how they respond to it’. The term ‘stimulus response’ was 
originally introduced in behavioral science (psychology) to describe the famous experiment of 
Pavlov in 1927 that correlated the response (behavior) of a dog to a bell and food (stimulus). Later, 
the term has been widely applied in other fields such as neurology (e.g. Schroeder and Shinnick-
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Gallagher, 2004), business and economics (e.g. Nelson, 1975) and (micro)biology (reviewed by 
Wahl et al., 2006).  

In the field of microbial physiology, SRE consists of running a well defined steady state chemostat 
system to obtain the reference steady state condition, performing a controlled perturbation to this 
defined steady state condition and maintaining other experimental parameters constant during the 
transient. By doing this, uncontrolled metabolic responses due to changes in multiple experimental 
parameters, which occur in batch shake-flask cultivations, are minimized and the observed transient 
responses can be attributed only to the performed perturbation, e.g. a changed extracellular glucose 
concentration. This is very important considering the complexity of the biological system. The SRE 
methodology has become increasingly popular in recent years for the applications to 
microbiological systems (Aboka et al., 2006; Mashego et al., 2006a; Nasution et al., 2006; 
Theobald et al., 1997; Vaseghi et al., 2001, 1999; Visser et al., 2004b; Wu et al., 2006a, 2006b, 
2003). 

 

 

The timeframe within which the transient responses should be measured is very much dependent on 
the goal of the experiment itself and, correspondingly, the type of perturbation which is performed. 
Stephanopoulos et al. (1998) presented the characteristic times of different cell processes (Figure 
1.3). Based on this information if we would like to focus our analysis on the primary responses on 
metabolites, for example, we should monitor the dynamic responses within the order of 100 s 
following the perturbation. Within this period of time, other levels of regulation such as changes in 
enzyme level or enzyme activity are considered frozen and thus the observed transient responses 
can be attributed to the dynamics in metabolite levels only. However, this assumption had not been 
experimentally verified thus far. In order to do so, we performed a combined dynamic metabolome 
– transcriptome study following a glucose pulse to a steady state glucose limited aerobic yeast 
system. The results are presented in Chapter 2. 
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On the other hand, it is also important to consider the type of perturbation performed. When a step 
change perturbation is implemented, e.g. a step up of the benzoic acid concentration in the 
fermentor (Chapter 6 of this thesis), the transient responses could be monitored until the new 
(pseudo) steady state condition is attained. In this case it was 3 residence times. When a pulse 
perturbation is applied to the fermentation, e.g. a glucose pulse or, officially, a glucose bolus 
(Chapter 3 of this thesis), it is not useful to monitor the transient responses for the timeframe of 
more than 1 residence time since the residual glucose concentration has already returned to its 
initial steady state condition within 1.5 – 2 hours after the perturbation. 

 

 

Figure 1.3 Characteristic time of different cellular processes (adapted from Stephanopolous et al., 
1998) 

 

Considering the fast turnover time of metabolites, for example 0.7 – 2.9 s for ATP (Chapman and 
Atkinson, 1977), rapid sampling and quenching of metabolism become a very important aspect of 
SRE in order to properly capture the actual dynamic condition of the transient experiment. Related 
with this, a special sampling system, i.e. rapid sampling system (Lange et al., 2001; Theobald et al., 
1993), quenching and metabolite extraction method (de Koning and van Dam, 1992; Gonzales et 
al., 1997; Mashego et al., 2003; Schaub et al., 2006; Villas-Boas et al., 2005; Wu et al., 2005) have 
been developed to meet this constraint. To get a proper dynamic picture of this short time response, 
quite a number of samples, about 10 – 16 samples, should be taken.  

We also have to consider that normally more than 1 type of sample should be taken, e.g. samples 
for intracellular metabolite analyses, samples for extracellular metabolite analyses, samples for 
enzyme activity analyses and samples for transcript analyses, for which different sample processing 
methods are required.  In the end, the sampling process becomes quite laborious. In order to avoid 
a-specific perturbations caused by the volume change of the fermentor, the number of samples that 
can be taken in one experiment is limited by the size of the fermentor. On the other hand, once the 
fermentation has been perturbed we need to wait for another stable steady state condition before we 
can do another perturbation. For these purposes, having a satellite reactor at which the perturbation 
is performed outside the fermentor, e.g. the BioSCOPE (see Box 3) is of great value in allowing 
reproducible repeats of perturbations (Visser et al., 2002; Mashego et al., 2006a).  
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Scope of the thesis work: central carbon metabolism of yeast 

In order to focus the study, the research performed within the scope of this thesis has focused on the 
quantitative analysis and model development of central carbon metabolism in the yeast S. 
cerevisiae. Apart from the reasons that have been discussed above, yeast was also chosen as the 
model system because it is a eukaryotic cell. Thus, it also offers a suitable platform to study 
important cellular aspects of higher organisms. 
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Outline of the thesis 

The quantitative analysis and in vivo kinetic model development of central carbon metabolism in 
various model microorganisms (S. cerevisiae, P. chrysogenum) has been the research focus of the 
Bioprocess Technology Group, Department of Biotechnology, Delft University of Technology over 
the past 10 years. In the experimental aspect, the group has developed a method for sampling and 
for sample processing: the steel beads method for processing samples for extracellular metabolites 
analyses (Mashego et al., 2003); a specialized rapid sampling device, rapid quenching and 
extraction methods for processing samples for intracellular metabolites analysis (Lange et al., 
2002); an ion exchange LC-ESI-MS/MS method for accurately analyzing the intracellular 
metabolites (van Dam et al., 2002) as well as an addition of 13C metabolite internal standard to 
correct the recovery and improve the  accuracy of the metabolite measurements (Wu et al., 2005a). 

In the modeling aspect, the group has developed methods for analyzing the steady state metabolic 
flux distribution, either based on the stoichiometry model coupled to linear programming (Stuckrath 
et al., 2002; van Gulik et al., 1995) or based on the combined stoichiometry and 13C label 
distribution analysis  (Kleijn et al., 2006; van Winden et al., 2005), and proposed, developed and 
applied the linlog approximative kinetics (Heijnen, 2005; Visser et al., 2004a; Wu et al., 2004, 
2005b and 2006b). The research performed within the scope of this thesis focuses on the 
development and application of novel stimulus response methodologies for the quantitative analysis 
and modeling of the yeast S. cerevisiae as model organism. The central research question is how to 
better exploit the transient condition to obtain as much information as possible about the studied 
biological system. 

In order to reduce the complexity of the studied biological regulation network the first question to 
be answered is how to carefully dissect the interactions between multiple levels of regulation. 
Chapter 2 presents a first analysis of the transient multiomic (metabolomic and transcriptomic) 
responses to a glucose pulse perturbation, which allows the determination of the time constants of 
each level of regulation and verifying the common assumption of constant enzyme levels within 
hundreds of seconds following a perturbation. The results also show some interesting correlations 
between the metabolomic and transcriptomic responses.  

Another commonly made assumption in metabolic models is a constant intracellular pH, which is 
an important parameter for the dynamics of biological systems but is notoriously difficult to 
measure. This assumption is verified in Chapter 3 and 4. Chapter 3 presents the development of a 
method to measure fast transient intracellular pH in S. cerevisiae. Subsequently, the applications of 
this method to study the transient intracellular pH in response to a glucose pulse and an ethanol 
pulse experiments are presented in Chapter 4. This chapter also evaluates the physiological 
responses to a glucose and an ethanol pulse perturbations that are potential causes of the observed 
dynamics in the intracellular pH (Chapter 4). 

Previous studies on the fast transient metabolic response of S.cerevisiae to a glucose pulse 
perturbation showed a fast decrease of both the ATP concentration and of the total adenine 
nucleotide pool (Theobald et al., 1996 and also Chapter 2 of this thesis). This observation is also 
supported by the observed fast synergistic up-regulation of the purine biosynthesis transcripts 
presented in Chapter 2. To study this issue further, a specific perturbation experiment which 
specifically targets the ATP system is designed, by exploiting the fact that benzoic acid  dissipates 
ATP by acting as an uncoupling agent (Verduyn et al., 1992). First, the energetic and metabolic 
effects of benzoic acid on cell metabolism are quantitatively studied, which is presented in Chapter 
5. Subsequently, the application of a benzoic acid perturbation experiment to study the dynamic 
response of the metabolism to the perturbation of the energy consumption rate of the cell are 
performed and presented in Chapter 6. 
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Having obtained a collection of different transient data sets from multiple independent perturbation 
experiments, the last topic dealt in this research is directly related with the metabolic model 
development answering the question how to estimate kinetic parameters from such data. In Chapter 
7 a theoretical approach to estimate the linlog kinetic model parameters from transient metabolites 
data is presented and applied to a small exemplary network model.  
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When transcriptome meets metabolome:   
Fast cellular responses of yeast to sudden relief 
of glucose limitation 
 

 

Summary  

Within the first 5 minutes after a sudden relief from glucose limitation, Saccharomyces cerevisiae 
exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. 
Integration of transcriptome and metabolome data revealed tight relationships between the changes 
at these two levels. Transcriptome as well as metabolites changes reflected a major investment in 
two processes: adaptation from fully respiratory to respiro-fermentative metabolism and preparation 
for growth acceleration. At the metabolite level, a severe drop of the AXP pools directly after 
glucose addition was not accompanied by any of the other three NXP. To counter balance this loss, 
purine biosynthesis and salvage pathways were transcriptionally upregulated in a concerted manner, 
reflecting a sudden increase of the purine demand. The short-term dynamics of the transcriptome 
revealed a remarkably fast decrease in the average half-life of downregulated genes. This 
acceleration of mRNA decay can both be interpreted as an additional nucleotide salvage pathway 
and an additional level of glucose-induced regulation of gene expression. 

 

 

 

 

 

 

 

 

This chapter has been published as  
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P. Daran-Lapujade, J.T. Pronk, J.J. Heijnen, J.M. Daran  
in Molecular System Biology, 2006, 2:49 
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Introduction 

It is essential for any organism to rapidly and efficiently adjust its metabolism and physiology to 
changes in nutrient availability and other environmental parameters (Causton et al., 2001; Gasch 
and Werner-Washburne, 2002). In the yeast Saccharomyces cerevisiae, nutrient responses have 
been most extensively studied for glucose, the preferred carbon and energy source for this yeast (for 
review please see Gancedo, 1998; Rolland et al., 2002). Changes in extracellular glucose 
availability trigger a variety of cellular responses.  

Addition of glucose to S. cerevisiae cells that exhibit a fully respiratory metabolism elicits a range 
of transcriptional, translational and post-translational modifications. These changes are preceded 
and, to a large extent, triggered by changes of intracellular metabolites and low-molecular weight 
effectors. Changes of intracellular metabolite pools occur within seconds of a perturbation of the 
extracellular glucose concentration. For example, after a glucose pulse to respiring cells, the 
concentrations of metabolites of the upper part of glycolysis (e.g. fructose-6-phosphate (F6P) and 
fructose-1,6-bisphosphate (F1,6P2)) rapidly increase, while the concentration of metabolites of the 
lower part of glycolysis (e.g. 2- and 3-phosphoglycerate (2PG, 3PG) and phosphoenolpyruvate 
(PEP)) rapidly decrease (Theobald et al., 1993; Visser et al.,  2004). These changes have a strong 
impact on the energy status of the cells. Immediately after a glucose pulse, intracellular ATP 
concentration decreases, while ADP and AMP levels slightly increase, thus leading to a decrease in 
the energy charge. Remarkably, a substantial decrease in the overall adenine nucleotide (‘AXP’) 
pools is reproducibly observed in studies on the fast dynamics of glucose responses in S. cerevisiae 
(Theobald et al., 1997). This phenomenon is among the aspects of glucose responses in yeast that 
remain to be elucidated.  

In addition to metabolites and cofactors, perturbation of the extracellular glucose concentration 
causes rapid changes of second messenger molecules such as cAMP (Thevelein et al., 2005) and D-
myo-inositol-(1,4,5)-triphosphate (IP3) (Belde et al., 1993). These in turn contribute to responses at 
the transcriptional level and at the post-transcriptional level, where glucose triggers the specific 
inactivation and proteolysis of many proteins, including the gluconeogenic enzymes fructose-1,6-
biphosphatase and several hexose transporters via a process called catabolite inactivation (Mazon et 
al.,  1982; Mercado et al., 1991). 

The most extensively documented way in which glucose affects transcription is called glucose 
catabolite repression and encompasses the coordinated down-regulation of the transcription of large 
groups of genes involved in respiration, metabolism of non-glucose carbon sources and several 
hexose transporters (Gancedo, 1998). In addition to a down regulation of transcription, glucose 
induces accelerated degradation of specific mRNAs, such as the transcript of SDH1 and SDH2 that 
encode subunits of succinate dehydrogenase (Lombardo et al., 1992; Cereghino et al., 1995) and 
SUC2 that encodes invertase (sucrose utilization) (Cereghino and Scheffler, 1996).  

For a quantitative systems analysis of the dynamic responses to glucose availability, it is essential 
that experimental conditions are tightly controlled. Steady-state chemostat cultures are excellently 
suited as a reproducible and stable experimental baseline (Hoskisson and Hobbs, 2005, Ronen and 
Botstein, 2006). A typical experimental design then consists in the application of a defined 
perturbation (e.g. a glucose pulse) to a steady-state chemostat culture, followed by rapid sampling, 
quenching of metabolism and analysis of relevant intracellular and extracellular components 
(Theobald et al., 1997).  

So far, analysis of the rapid transient (time scale 1s to 5 min after a perturbation) has mainly been 
studied at the metabolome level (Theobald et al., 1997; Visser et al., 2004b). An often-implicit 
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assumption in these studies was that, over these short time periods, the concentrations of active 
enzymes in the cells remain constant. In that case, the measured responses allow for direct 
identification and quantification of kinetic interactions at the metabolome level.  However, 
verification of this important assumption by simultaneous analysis of gene expression at the 
transcriptional or translational level has so far not been attempted.  

The present study represents the first dedicated attempt to integrate quantitative datasets obtained at 
the metabolite and transcript level during the first minutes after a defined metabolic perturbation of 
S. cerevisiae. To this end, we analyzed levels of key metabolites in primary metabolism as well as 
genome-wide mRNA levels in the first 5 minutes after glucose pulse to aerobic, glucose-limited 
chemostat cultures of yeast. To investigate the apparent lack of conservation of the adenine 
nucleotide pool observed in previous studies, special attention was paid to the dynamics of purine 
metabolism. Our results provide new insights into the chronology of events between the metabolic 
and the primary transcriptional responses to glucose in S. cerevisiae and show a biologically 
significant correlation between metabolome and transcriptome with respect to energy requirement 
and nucleotide metabolism during the initial phase of growth acceleration after glucose pulse. 

 

Materials and Methods 

Strains and growth conditions  
Saccharomyces cerevisiae (CEN PK 113-7D) was cultivated in an aerobic carbon-limited chemostat 
culture in a 7 L fermentor (Applikon, Schiedam The Netherlands) with a working volume of 4 L on 
the adapted doubled mineral medium (Verduyn et al., 1992) with 27.1 g.L-1 of glucose and 1.42 g.L-

1 of ethanol, to support a biomass concentration of about 15 g DW.L-1. The dilution rate was 0.05 
hr-1 and the airflow rate was 200 L.hr-1. Other fermentation parameters are: a pH controlled at 5, a 
temperature controlled at 30˚C, an overpressure of 0.3 bar, stirrer speed of 600 rpm and dissolved 
oxygen higher than 70%. 

Glucose pulse experiment   
At the age of 140 hr, the steady state chemostat culture was perturbed by the addition of 20 mL of 
glucose solution (200 g.L-1) to the fermentor so that the residual glucose concentration was 
suddenly increased to about 1 g.L-1 (5.56 mM). The glucose solution was rapidly injected by a 
pneumatic system (< 1 s). Samples were taken prior to the glucose pulse (steady state samples) and 
within 360 s transient after the perturbation. 

Sampling methods 
Sample for intracellular metabolite analysis was obtained by withdrawing 1 mL of broth from the 
fermentor by a rapid sampling set up (Lange et al., 2001) into 5 mL of 60% (v/v) methanol/water at 
–40oC to immediately quench the metabolic activities. The sample was then processed according 
the intracellular sampling processing method described by Wu et al. (2005) to give about 500 μL 
intracellular metabolite solution that is ready for further analysis.  

Sample for extracellular metabolite analysis was obtained following the method described by 
Mashego et al. (2003).  

Samples for microarray analysis, probe preparation, and hybridization to Affymetrix Genechip® 
microarrays were performed as described previously in Piper et al. (2002). The presented results 
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were derived from at least two independently cultured replicates, except for the time point 210 
seconds which was derived from a single culture. 

Data acquisition and analysis of microarray results  
Acquisition and quantification of array images and data filtering were performed using Affymetrix 
Gene Chip Operating System (GCOS). Before comparison, all arrays were globally scaled to a 
target value of 150 using the average signal from all gene features using GCOS. The complete set of 
.CEL files is deposited at Genome Expression Omnibus database (Barrett et al., 2005) 
(http://www.ncbi.nlm.nih.gov/geo) series accession number GSE3821. To eliminate insignificant 
variations, genes with values below 12 were set to 12 as described in Piper et al. (2002). From the 
9335 transcript features on the YG-S98 array, a filter was applied to extract 6383 yeast open 
reading frames, of which there were 6084 different genes. This discrepancy was due to several 
genes being represented more than once when sub-optimal probe sets were used in the array design. 
To represent the variation in replicate measurements, the coefficient of variation (mean deviation 
divided by the mean) was calculated as described previously in (Boer et al., 2003). 

For statistical analyses, the Microsoft Excel running the significance analysis of microarrays (SAM 
Version 1.12) add-in (Tusher et al., 2001) was used for multiclass analysis. Genes were called 
significantly changed in expression using SAM with an expected median false discovery rate of 
0.6%. Hierarchical clustering of the obtained sets of significantly changed expression levels was 
subsequently performed using Genespring Version 7.2 (Agilent Technologies, Inc., Palo Alto, CA). 
Two main profiles (ascendent and descendent) were identified. K-means analysis of ascending and 
descending profiles gene subsets was performed using Genespring Version 7.2 (Agilent 
Technologies, Inc., Palo Alto, CA). 

For the statistical assessment of over-representation of MIPS functional categories (FUNCAT) 
(http://mips.gsf.de/projects/funcat) (Ruepp et al.,  2004) and GO biological processes 
(http://www.geneontology.org/) (Eilbeck et al.,  2005) in the SAM-identified transcripts, a test 
employing hypergeometric distribution, FunSpec (http://funspec.med.utoronto.ca/) (Robinson et al.,  
2002) was used using a p-value cut-off of 0.01 with a Bonferroni correction. The probability was 
calculated as follows:  the p-value of observing z genes, belonging to the same functional category 
is: 
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where N is the total number of genes in a functional category (Ruepp et al.,  2004), M is the total 
number of genes in the cluster (Upregulated clusters A,B, C and downregulated clusters D, E) and 
G is the total number of  gene features on the YG98S array (6383). 

The up- and down- regulated data inspection for overrepresentation of transcription factors as 
defined by ChIP on chip analysis  (http://jura.wi.mit.edu/fraenkel/download/release_v24/ 
bound_by_factor/ORFs_bound_by_factor_v24.0.p005b_041213.txt) was also performed employing 
an in-house version of the hypergeometric distribution test. Applying the same formula, the 
probability was calculated as follows: where N is the total number of genes where the TF can bind 
upstream (Harbison et al., 2004), M is the total number of genes in the cluster (upregulated clusters 
A,B, C and downregulated clusters D, E) and G is the total number of  gene features on the YG98S 
array (6383). 

A search for conserved octa-nucleotide sequences in 3’untranslated region (250nt) was performed 
using Regulatory Sequence Analysis tools (van Helden et al., 2000) 
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(http://rsat.scmbb.ulb.ac.be/rsat/). The occurrence of the discovered motif in the group of genes 
tested (163 genes) was compared with the expected occurrence of a group of same size randomly 
picked. The E-value represents the number of patterns with the same level of over-representation, 
which would be expected by chance alone. For instance, the E-value of a given motif is of the order 
of 10-6, indicating that, if we would submit random sequences to the program, such a level of over-
representation would be expected every 1,000,000 trials. Motif structures were edited using the 
Weblogo program (Crooks et al., 2004). 

Analysis of extracellular metabolites 
The concentration of glucose and glycerol in the supernatant were measured with the EnzytecTM 
enzymatic kit (kit no 1002781 for glucose, 1002809 for glycerol). The pyruvate concentration was 
measured by Sigma Diagnostic kit (726-UV). The concentration of ethanol and acetic acid were 
measured by gas chromatography using a Chromopack CP 9001 with CP 9010 liquid sampler, 
connected to a Flame Ionisation Detector (FID) on a Innowax 15m column (Hewlett Packard) with 
helium as the carrier gas. 

Analysis of Intracellular metabolites 
Glycolytic intermediates (G6P, F6P, F1,6P2, F2,6P2, 2PG, 3PG, PEP), and TCA cycle intermediates 
(citrate, α-ketoglutarate, succinate, fumarate and malate), pentose phosphate pathway intermediate 
(6PG) and carbon storage intermediates  (G1P,  T6P) were analyzed by LC-ESI-MS/MS according 
to van Dam et al. (2002). Nucleotide concentrations in the cell extract were analyzed by an ion 
pairing LC-ESI-MS/MS method as was described in Wu et al. (2006a). Metabolite quantification 
was performed applying isotope dilution (IDMS) method (Wu et al., 2005a). In case of F2,6P2, only 
peaks were measured instead of the absolute level and therefore the data are presented as the ratio to 
the steady state condition. NAD/NADH ratio was calculated by assuming that the lumped reaction 
catalyzed by aldolase, triphosphate-isomerase, glyceraldehydes-dehydrogenase, phosphoglycerate-
kinase and phosphoglucomutase is close to equilibrium such that 
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The NAD/NADH ratio is presented as the normalized value to the steady state condition.  

Calculation of mRNA half life  
mRNA degradation is modeled as  
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in which kd is the mRNA degradation constant, A is an additional model parameter to take into 
account measurement inaccuracy and tdelay is a time variable corresponding to the inflexion point of 
the transcript profile. A Matlab (The MathWorks, Inc.) based non-linear weighted least square 
program was developed to fit the above model parameters (A, kd) to the mRNA degradation profile, 
with the inverse variance of the measurements used as the weight. Furthermore the mRNA half life 
(t1/2) was calculated from the mRNA degradation constant (kd) following 
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The results were compared with the mRNA half-life calculated by Wang et al. (2002) which is 
available at the following URL: http://www-genome.stanford.edu/turnover/.  

 

Results and discussion 

Global transcriptional responses following a glucose pulse 
In glucose-limited cultures of S. cerevisiae where metabolism is fully respiratory, the very low 
residual glucose concentration (0.15 mM) was instantaneously increased to 5.6 mM by pulsing a 
concentrated glucose solution (Figure 2.1a). Three independent cultures were pulsed with glucose 
and samples for transcriptome analysis were taken at various time points up to 330s after glucose 
addition. These three independent pulses were highly reproducible and the average coefficient of 
variation for transcript levels measured at replicate time points was below 19% (Table 2.1). 

 

Table 2.1 Microarray experiment quality parameters 
The CV (%) represents the average of the coefficient of variation (mean deviation divided by the mean) for all genes 
except the genes with a mean expression value lower than 12 in all time points. 

Time (s) 0 30 60 120 210 300 330 
CV (%) 18.85 12.6 10.67 11.67 - 16.27 12.32 
Arrays nb 3 2 2 3 1 3 2 
 

Multi-class statistical analysis yielded a set of 1154 genes that displayed significant changes in 
transcription between at least two time points. Analysis of this set of genes by K-means clustering 
identified five glucose-responsive gene clusters (Figure 2.1b). Clusters A, B and C (589 genes) 
grouped genes of which the expression was increased after glucose addition, while clusters D and E 
(565 genes) showed the opposite trend (Figure 2.1b). Significant changes in genes transcription 
only started between 120 s and 210 s after the glucose pulse (Figure 2.1b), thus providing an exact 
quantification of the time required for glucose signal transduction and activation of transcription. 

Glucose responsive transcripts were subsequently analyzed to assess the enrichment of functional 
categories (Figure 2.2). The gene clusters that were transcriptionally upregulated after the glucose 
pulse showed a significant enrichment of metabolic functions and more specifically of amino acid, 
purine ribonucleotide and nucleotide metabolism. Other significantly overrepresented categories 
among the upregulated transcripts were involved in the transcription, synthesis and processing of 
ribosomal RNA (Figure 2.2). The gene clusters downregulated after the glucose pulse exhibited a 
significant enrichment in the “energy and metabolism” functional categories (Figure 2.2). This 
global analysis revealed that drastic metabolic rearrangements are set in motion in the first minutes 
after release from glucose limitation. 

In order to identify the regulatory networks responsible for the transcriptional response to the 
glucose pulse, our dataset was combined with the genome-wide yeast location analysis dataset for 
102 transcription factors from Harbison et al. (2004). Thus 12 transcription factors could be 
assigned to the clusters of upregulated genes with high confidence (Table 2.2). The function of 
these transcription factors obviously overlapped with the enriched functional categories. The most 
overrepresented factor was Bas1p, which corroborated the enrichment in purines and nucleotides 
metabolism categories. In addition to Bas1p, several sets of transcription factors could be 
distinguished and assigned to specific cellular functions (Table 2.2). A first coherent set including 
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Met4p, Met31p, Met32p and Cbf1p, all members of a transcriptional complex, revealed a major 
transcriptional reprogramming of sulfur metabolism (Rouillon et al., 2000). Gcn4p and Leu3p are 
involved in amino acid metabolism and biosynthesis. Fhl1p, Rap1p and Abf1p could be intuitively 
connected to ribosome biogenesis transcriptional control (Lascaris et al., 2000; Martin et al., 2004; 
Rudra et al., 2005). However, the involvement of Ash1p (involved in filamentous growth (Pan and 
Heitman, 2000)) and Swi4p (cell cycle (Nasmyth and Dirick, 1991)) could not be predicted from 
the enriched functional categories (Figure 2.2). 

The 12 transcription factors found significantly linked to the clusters of downregulated genes were 
in good agreement with the transcriptional network involved in glucose catabolite repression (Table 
2.2), such as the Cyc8p-Tup1p associated factors Nrg1p and Sko1p, and general regulator as 
Ume6p (Williams et al., 2002) and the activator of the gluconeogenic regulon Sip4 (Schuller, 
2003), known to be repressed in presence of excess glucose. Additionally, overrepresentation of 
Msn2p and Msn4p, STRE (Stress Responsive Element) transcription factors, which are part of 
Gpr1p/Gpa2p glucose sensing pathway (Gelade et al., 2003), were observed, completing this 
regulatory network. 

 

Table 2.2 Transcription factor analysis, the 1154 differentially expressed genes were intersected with 
transcription factor target genes according ChIP on chip analysis (Harbison et al.,  2004) and the 
probability that the representation of each factor occurred by chance was assessed by hypergeometric 
distribution. The table displays significant factors with returned a p-value lower than 0.05

Upregulated genes (589 genes) Downregulated genes (565 genes) 

TF 

No. of TF 
targets 

according 
to ChIP on 

chip 

TF targets 
in up-

regulated 

Hypergeo
metric 

distribution 
p-value 

TF 

No. of TF 
targets 

according 
to ChIP on 

chip 

TF targets 
in down-
regulated 

Hypergeo
metric 

distribution 
p-value 

Bas1 45 21 5.94E-11 Msn2 138 29 7.50E-06
Gcn4 323 66 2.02E-10 Sut1 77 18 9.66E-05
Leu3 43 16 5.62E-07 Nrg1 205 32 9.99E-04
Met31 32 11 7.99E-05 Ume6 243 36 1.31E-03
Met4 13 6 5.86E-04 Skn7 240 31 1.98E-02
Cbf1 254 38 1.74E-03 Cin5 282 35 2.42E-02
Met32 38 10 1.80E-03 Sko1 41 8 2.50E-02
Swi4 153 22 2.33E-02 Aft2 248 31 2.99E-02
Ash1 57 10 3.38E-02 Fkh2 231 29 3.32E-02
Rap1 310 38 4.06E-02 Snt2 38 7 4.63E-02
Fhl1 219 28 4.62E-02 Msn4 143 19 4.68E-02
Abf1 430 50 4.83E-02 Sip4 16 4 4.68E-02
 

 

Addition of glucose to carbon-limited chemostat cultures results in a drain of the 
adenine nucleotides 
The 5.6 mM glucose pulse to aerobic, carbon-limited cultures resulted in an immediate increase in 
the rate of glucose consumption. As described previously, the acceleration of glucose consumption 
was accompanied by the switching to respire-fermentative metabolism (Visser et al., 2004b), 
evidenced  by  the  accumulation  of  ethanol  and,  to  a  lesser  extent,  acetate  and  pyruvate in the 
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A 

B 

Figure 2.1 Response of glucose-limited chemostat (D=0.05 h-1) to a 5.6 mM glucose pulse  
(A) Extracellular concentration of glucose (circle), ethanol (square), glycerol (down triangle) and acetate (up triangle) 
are plotted as a function of time (s). Data from two independent pulse experiments are represented, (B) 2-dimensional 

clustering heat-map of the differentially expressed genes in the glucose pulse experiment.  Each expression data 
represents the average of at least two independent culture replicates, except for t=210 which was obtained from a single 

culture. Orange (relatively high expression) and blue (relatively low expression) squares were used to represent the 
transcription profiles of genes deemed specifically changed. K-means clusters of genes with ascendant profiles (A, B 

and C) and descendent profiles (D, E). The thick black line represents the average of the median normalized expression 
data of the genes comprising the cluster  
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Figure 2.2 Interpretation of transcriptome data  
The 1154 differentially expressed genes were distributed over MIPS functional categories as a function of time (s). The 

number mentioned between brackets indicates the total number of genes found in the categories. Overrepresented 
primary and secondary functional categories according a hypergeometric distribution analysis with a threshold p-value 

of 0.01 with Bonferoni correction are mentioned together with their calculated p-value 

 

cultures (Figure 2.1a). Intracellular metabolites were analyzed with a particular emphasis on mono-, 
di- and tri-phosphate nucleotides (NXP). As previously shown, (Theobald et al., 1993; Theobald et 
al., 1997) an immediate dramatic decrease of intracellular ATP concentration and a concomitant 
increase in AMP were observed, followed by slow recovery (Figure 2.3). However, contrary to 
earlier assumption this drop in ATP could neither be entirely attributed to the hydrolysis of ATP for 
energy transfer process such as glucose phosphorylation nor to the increase in RNA synthesis 
(Theobald et al., 1997).  First of all, the net increase in AMP and ADP did not balance the ATP 
loss. The adenine moiety pool (ATP, ADP plus AMP) was not conserved over time: after a clear 
drop within the first 60 s the sum AXP rose (Figure 2.3). Secondly, the profiles of the UXP, CXP 
and GXP showed similar initial decreases compared to the AXP profiles, albeit in different absolute 
level, the amplitude of the GXP drop was 20-fold lower than for the AXP pool (Figure 2.3). The U, 
G and C nucleotide pools has once returned to their initial concentrations or increased beyond 
whose within the first 200 s after the glucose pulse.  

Since RNA biosynthesis consumes all four nucleotides (ATP, UTP, GTP and CTP) in a 
0.254:0.246:0.226:0.274 molar ratios (Herbert et al., 1971) and assuming that the biosynthesis of 
the nucleotides does not immediately increase to the demand, AXP consumption for RNA 
biosynthesis can be calculated from the lowest drop in nucleotide pools, i.e. CXP. This calculation 
reveals that RNA biosynthesis would only account for 5% of the decreased AXP pool (Figure 
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2.3C). Estimation of the other ATP consuming processes compatible with an increase in the growth 
rate to its maximum (CEN.PK113-7DμMAX=0.45 h-1 (van Dijken et al., 2000)) in DNA, histidine and co-
factors biosynthesis are far from sufficient to explain the observed drop in sum AXP (Figures 2.3 I 
and J, Table 2.3). This clearly indicated that the AXP nucleotide pool was involved in unknown 
processes during the first 60 s after the addition of glucose. Quantitative determination of other 
possible adenine moiety sinks: free adenosine, adenine, hypoxanthine, nicotinamide adenine 
dinucleotide (NAD/NADH) and other adenosine containing molecules as S-adenosylmethionine, S-
adenosylhomocysteine, or even activated sugars (ADP- and UDP-glucose), is of primary 
importance to understand this still unsolved phenomenon. The LC-MS/MS methods for the 
quantification of these metabolites are still under development.  

 

 

Figure 2.3 Intracellular concentrations of mono-, di- and tri-phosphate nucleotides (AXP, CXP, GXP, 
UXP) [in µmol/g DW] following 5.6 mM glucose pulse, (A) ATP, (B) ADP, (C) AMP, (D) e-charge 
[=(ATP + 0.5 ADP)/(ATP+ADP+AMP)], (E) ΣAXP, (F) ΣGXP, (G) ΣCXP, (H) ΣUXP, (I) Possible 

adenine nucleotide utilization: ATP, ADP, AMP and cAMP comprise the adenine nucleotide (AXP) 
pool in which any reactions between them does not cause any depletion in the pool size. Outside the 
circle are the reactions that are consuming the adenine moiety of the AXP. Adapted from Chapman 

and Atkinson (Chapman and Atkinson, 1977), (J) Theoretical distribution of AXP based on change in 
synthesis rate due to growth acceleration (from μ = 0.05/h to μmax = 0.45 h-1), detailed calculations are 

provided in Table 2.3. The data plotted originate from at least two independent pulse experiments 
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Following its early drop, the AXP pool recovered at a rate of approximately 0.01 μmol.gDW-1.s-1 
(calculated from the total nucleotide pool slope) whereas at steady state the net adenine nucleotide 
synthesis rate was only 0.0001 μmol.gDW-1.s-1 (calculated from AXP concentration at steady state 
at a growth rate of 0.05 h-1, see Table 2.3), i.e. about two orders of magnitude lower than the 
observed recovery rate. This implies a strong increase in the adenine biosynthesis rate and an 
important role of the salvage pathway.  

 

Table 2.3 Theoretical distribution of AXP based on change in synthesis rate 

 Composition in cell 
[µmol/g dw] 

Possible changes in 
synthesis rate due to 
the addition of 1 g/L 

glucose pulsea

[µmol/g dw min] 

% of total free 
adenine nucleotide 

lost 

Free adenine nucleotide  
(ATP, ADP and AMP) 9.4 5.1  
Histidine 66b,c 0.440 8.6% 
DNA 4bb,d 0.027 0.5% 
RNA 36 b,d 0.256f 5.0% 
NAD 5.8e 0.039 0.8% 
unexplained AXP lost   85.1% 

a. Change in synthesis rate was calculated based on assumption that the specific growth rate changes following the 
glucose pulse, from μ = 0.05/h to μmax = 0.45/h. The synthesis rate was calculated as qy = Cy. μ, in which qy is 
defined as the specific synthesis rate of compound y, Cy is the composition of compound y in the cell as described 
in the second column in the table and μ is the specific growth rate 

b. The value was taken from Forster et al. (2003). 
c. 1 molecule of ATP was consumed per 1 molecule of histidine synthesized 
d. adenine deoxyribonucleotide composition of DNA 
e. the value was taken from Theobald et al. (1997) 
f. calculated from the depletion rate of free cytidine nucleotide in the cell following the glucose pulse 
 

Metabolic interrelations explain transcriptome co-responses: the adenine 
nucleotide pool drain is accompanied by upregulation of purine biosynthesis, C1 
and sulfur metabolism 
Consistent with the drop in adenosine nucleotide pool that has been previously discussed, the genes 
of the de novo purine biosynthesis pathway, by which the AXP pool is synthesized, were found 
significantly overrepresented among the upregulated genes (Figure 2.2). All but one of the 13 genes 
composing that pathway, were upregulated (Figure 2.4), only ADE16, encoding a bi-functional IMP 
cyclohydrolase - phosphoribosyl-amino imidazole carboxamide formyltransferase was expressed 
constitutively. The expression of genes encoding one-carbon (C1) metabolism as SHM2, MTD1 and 
ADE3, were concurrently upregulated (Figure 2.4). In addition to purine biosynthesis, the C1 
metabolism, using folate coenzymes, is essential for glycine, methionine and methyl group 
biogenesis. Genes encoding mitochondrial glycine cleavage pathway (GCV1, GCV2, GCV3), genes 
encoding methionine biosynthesis (MET3, MET14, MET16, MET28, MET31, MET32, MET2 and 
MET6) and S-adenosyl methionine (methyl-donor) biosynthesis (SAM1 and SAM2) were also 
upregulated accordingly (Figure 2.4).  Piper et al. (2000) proposed a model in which cytosolic 5,10-
methylene-THF is mainly directed to methionine biosynthesis for methylation reaction and 
mitochondrial one carbon units derived from glycine are directed to purine biosynthesis. The 
simultaneous upregulation of the GCV genes encoding mitochondrial glycine decarboxylase and 
SHM2 encoding the cytosolic serine-hydroxymethylransferase clearly suggested that not only 
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purine but also generation of S-adenosyl-methionine was important for the cell upon glucose 
exposure. Furthermore the co-regulation of both folate metabolism branches revealed the fast 
utilization and recycling of 5,10-methylene-THF since the upregulation of the GCV genes is an 
indicator of a low level of 5,10-methylene-THF (Piper et al.,  2000). To further support the 
hypothesis that C1 metabolism is central in the transition described here, the genes encoding serine 
biosynthesis pathway (SER1, SER2, SER3 and SER33) that converts 3P-glycerate to serine, were all 
significantly upregulated. Serine is indeed a co-substrate with THF for glycine and 10-formyl-THF 
biosynthesis (Figure 2.4).   

 

 

Figure 2.4 Coordinated upregulation of the purine biosynthesis, sulfur assimilation, and methionine 
and adenine salvage pathways, the numbers indicated represent the fold change calculated between 

the expression values obtained at 330 s and the values obtained at the initial steady state (0 s) 

 

The transcriptional regulation of the purine biosynthesis and part of the 10-formyl THF (SHM2 and 
MTD1) pathways has been shown to be under the control of Bas1p, a myb-like transcriptional 
activator (Denis et al., 1998; Denis and Daignan-Fornier, 1998). In agreement with this, the 
transcript level of BAS1 itself was coordinately upregulated more than two-fold. Integration of the 
data presented in this study and the supporting Bas1p location analysis by chromatin immuno-
precipitation data (Harbison et al., 2004) agreed on the regulation of the glycine cleavage pathway 
(ADE3, GCV1, GCV2 and GCV3) by Bas1p as well. These results were also supported by the 
presence of TGACTC Bas1p binding site in the promoter of the latter genes. Altogether these data 
would confirm the regulation by Bas1p of both purine and C1 metabolism derived from glycine. 

On the other hand, in a time-dependent manner, a complex including differentially expressed 
MET28, MET31 and MET32 transcriptionally regulated the sulfur metabolism (Figure 2.2). Genes 
encoding methionine uptake transport system (MUP1, MUP3), sulfate assimilation to methionine 
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(MET3, MET14, MET16, MET2, and MET6) and formation of methyl donor AdoMet (SAM1, 
SAM2) were all upregulated. Adomet, a sulfur-containing compound that functions as a methylating 
agent may reflect an increase in methylation processes as will be discussed in the following section.  

Finally, the methyl transfer converts Adomet to S-adenosylhomocysteine, which can be recycled to 
methionine via a few steps, in which an adenosine moiety is released. The gene involved in this 
pathway, SAH1 was also found significantly upregulated (Figure 2.4). The released adenosine can 
be recycled to the adenosine nucleotide pool via purine salvage pathway (involving upregulated 
AAH1, HTP1) reducing the cost of AMP synthesis via de novo purine biosynthesis pathway (which 
required five ATP and one GTP to form one AMP molecule from PRPP).  

Although the metabolic cross-talks are quite apparent from a biochemical network, the regulatory 
network that coordinates the upregulation of genes involved in de-novo purine biosynthesis, serine 
biosynthesis, THF metabolism, sulfur metabolism and purine salvage pathway is not trivial. 
Separately, upregulation of purine and THF metabolism on one hand and sulfur metabolism on the 
other can be explained as discussed above. However, no available reports can relate serine 
biosynthesis gene regulation to THF metabolism as current transcriptome and metabolome data 
seem to relate them to one another.  

 

 

Figure 2.5 Genes upregulated during the glucose pulse involved in transcription and translation 
functions according to MIPS categories, the independent replicate transcriptome data sets for each 

time point were averaged and then compared, blue (relatively low expression) and orange (relatively 
high expression) squares are used to represent the transcription profiles of genes deemed specifically 

changed 
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Although some phenotypic evidences relate the serine biosynthetic pathway to purine metabolism 
since a mutation in SER1 (initially named ADE9) leads to an adenine requirement, no molecular 
basis had been demonstrated so far (Buc and Rolfes, 1999).   While the search for BAS1 binding 
motif (TGACTC) in the promoter sequences of the SER1, SER2, SER3 and SER33 identified this 
binding motif in SER2 and SER33, location analysis data for BAS1 failed to report any binding 
activity on SER genes promoters.  However, ChIP on chip data revealed that the SER33 promoter 
sequence was bound by Cbf1 (Harbison et al., 2004), member of the Cbf1/Met30/Met4/Met28 
complex (Thomas and Surdin-Kerjan, 1997; Blaiseau and Thomas, 1998) that regulates sulfur 
metabolism. Furthermore, genome-wide transcriptome analysis of S.cerevisiae grown in chemostat 
revealed that SER33 was specifically upregulated under sulfur-limitation (Tai et al., 2005). These 
experimental facts suggest that cytosolic processes leading to C1 transfer for methionine and 
Adomet biosynthesis (serine biosynthesis, 5-methyl-THF synthesis) are coordinately controlled by 
central sulfur metabolism regulation. 

 

Ribosome biogenesis is upregulated after relief from glucose limitation 
The higher requirement of methylation substrate as deduced from the data mentioned above could 
be sustained as many genes involved in ribosomal RNA synthesis, processing and modification 
were upregulated following glucose addition (Figure 2.2). This major induction of rRNA synthesis 
and ribosome biogenesis is indicative of a rapid synthesis and recruitment of the translational 
machinery. Among the 565 genes displaying a continuous increase in expression after pulsing 
glucose, 180 were related to transcription and protein synthesis of which 145 were involved in the 
assembly and activity of the translation machinery (Figure 2.5). Although the microarrays used in 
this study cannot provide quantitative information on rRNA, the upregulation of the components of 
the machinery involved in their transcription suggested an increased transcription of the genes 
encoding for rRNA. Indeed five subunits (RPA12, RPA135, RPA34, RPA43, RPA49) and two 
essential initiation factors (RRN7 and RRN11) of the RNA polymerase I (RNA-pol I) involved in 
the transcription of the rDNA, were upregulated. Four additional genes (RPB10, RPB8, RPB5, 
RPO26) encoding subunits shared by RNA-pol I, II and III and RPC19 encoding a shared subunit of 
RNA-pol I and III were also upregulated. Besides, seven genes encoding subunits of either RNA-
pol II (RPB9, RPB11, ROX3) or RNA polymerase III (RPC11, RPC31, RPC37, RPC82) displayed 
increasing transcription profiles. These data clearly illustrated the concerted upregulation of all 
three RNA polymerases. In conjunction with an upregulation of the RNA-pol I subunits, 23 genes 
coding for ribosomal proteins and 121 genes encoding proteins involved in processing, maturation, 
export, modification and transcription of rRNA and ribosome components shared a similar increase 
in expression (Figure 2.5). The ribosomes undergo modifications such as conversion of uridines 
into pseudouridines and addition of methyl group to specific nucleotides with a majority at the 2’-
O-position of the ribose (Bachellerie and Cavaille, 1997). Consistently, five genes participating in 
Adomet dependent methylation activity were upregulated (NOP1 +2.1, NOP58 +2.7, SNU13 +2.9, 
SPB1 +2.3, DIM1 +2.0). In good agreement with literature, FHL1 and RAP1 (transcription factors 
involved in transcriptional control of ribosome biogenesis) targets were significantly 
overrepresented within the set of upregulated genes (Table 2.2). The significant upregulation of 
genes encoding specialized methyltransferases involved in translation initiation (GCD10 +2.0 and 
GCD14 +1.9) and tRNA modifications (NCL1+2.3, TRM82 +2.0, TRM2 +2.1, TRM7 +1.8) 
indicated the importance of Adomet role in the metabolic circumstance described in this study 
(Figure 2.5). 

The role of methylation reactions using Adomet should be taken into consideration in explaining a 
part of the drain of the AXP pools in the first minute following the addition of glucose (Figure 2.3). 
As shown here, this hypothesis would be in line with the upregulation of the purine and the 
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methionine salvage pathways in response to the increase of S-adenosyl homocysteine when Adomet 
is used as methyl donor.  

 

New insight in central carbon metabolism by integration of metabolites and 
transcript levels 
The transcriptome analysis of the response of S.cerevisiae to a sudden relief from glucose limitation 
classified 565 genes with downregulated transcription (clusters D and E, Figure 2.1b). These 
clusters showed a specific enrichment for genes involved in energy generation and metabolism 
(Figure 2.2). In previous chemostat-based studies (Boer et al., 2003; Tai et al., 2005), 19 genes 
exhibited consistent repression at high glucose concentration, irrespective of the limiting 
macronutrient (nitrogen, sulfur or phosphorus). In the current study which applied dynamic glucose 
perturbation, 15 of these genes were found downregulated (JEN1, CSR2, HXK1, SUC2, SUC4, 
ISF1, GAL4, SOL1, MRK1, YLR327C, YFR017C, YER067W, YGR243W, YIL057C, YMR206W) 
confirming the occurrence of glucose repression even within the short time interval of 330 s. 

In addition, the integration of the central carbon metabolism metabolite data with transcript analysis 
allows better understanding of the very early metabolic response of the cell facing a sudden increase 
of environmental glucose concentration. As previously reported (Theobald et al., 1997; Visser et 
al., 2004b), a rapid and transient increase of the metabolites of the top part of the glycolysis 
(Figures 2.6a - c) was observed while the metabolites of the lower part followed the opposite trend 
(Figures 2.6e - f). This metabolite distribution was regarded as a direct consequence of the rate-
limiting phospho-fructokinase activity (Theobald et al., 1997). However, the constant increase of 
the F1,6-P2/F6P concentration ratio (as calculated from Figures 2.6 b and c) contradicts this initial 
hypothesis and instead supports the hypothesis that the increase of the glyceraldehyde-3-phosphate 
dehydrogenase reaction rate and the delayed increase in ethanol formation (Figure 2.1) affect the 
redox status of the cell, as shown by the large increase of NADH/NAD ratio (Figure 2.6o). This 
increase likely inhibits glyceraldehyde-3-phosphate dehydrogenase that explains the observed 
reduction of metabolite concentrations of lower part of the glycolysis (Figures 2.6e - f).  

To restore redox homeostasis, yeast produces ethanol and glycerol (Figure 2.1) and fine-tunes the 
tricarboxylic acid (TCA) cycle that is a source of reduced co-factor. In contrast to regulation of 
glycolysis in steady state cultures, which predominantly takes place at the posttranscriptional level 
(Daran-Lapujade et al., 2004), TCA cycle regulation was visible at metabolome and transcriptome 
levels. The concentration of TCA cycle intermediates such as malate, fumarate, and α-ketoglutarate 
increased to reach a new pseudo steady state level, whereas the citrate concentration was constant 
throughout the pulse experiment (Figures 2.6j to n), which indicated flux discontinuation from α-
ketoglutarate to C4 pool. This complies with the previous observation that under respiro-
fermentative condition the TCA cycle is not performing as a cycle but as two separate branches: an 
oxidative branch from pyruvate to α-ketoglutarate and a reductive branch from pyruvate to malate 
and fumarate (Gombert et al., 2001). Moreover, the transcriptome data clearly illustrate rapid 
transcriptional responses of the structural genes encoding TCA-cycle enzymes (Figure 2.7). 11 
genes (KGD2, MDH1, SDH3, SDH1, ACO1, IDP3, MDH2, IDH2, LSC1, YMR118C, YLR164W) 
involved in the TCA cycle were immediately downregulated, whereas CIT2 and PYC1 were 
upregulated (Figure 2.7). Transcription of HAP4, which encodes the activator of the 
Hap2p/3p/4p/5p complex involved in the transcriptional regulation of TCA cycle genes (Lascaris et 
al., 2003), was concomitantly downregulated more than eight-fold. 

Our results are consistent with the notion that trehalose-6-phosphate (T6P) inhibition of glucose 
phosphorylation is required to avoid excessive phosphorylation and “glucose accelerated death” 
(Blazquez et al., 1993; Francois and Parrou, 2001). The concentration of T6P increased by 15-fold 
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within the first 180 seconds following the addition of glucose (Figure 2.6i) to reach a concentration 
of 4.8mM that suffices for the complete in vitro inhibition of both hexokinase I (Ki= 40μM) and II 
(Ki=200 μM) (Blazquez et al.,  1993).  In the meantime, the genes GLK1, HXK1 and HXK2 
encoding gluco- and hexokinases, were also downregulated, thus reinforcing the notion that the cell 
limits glucose phosphorylation in response to a sudden increase in glucose availability.  

 

 

Figure 2.6 Intracellular concentration of glycolytic and tricarboxylic acid cycle intermediates 
following 5.6 mM glucose pulse 

The presented data are expressed in [μmol/g DW] except mentioned otherwise, (A) glucose-6-phosphate (G6P), (B) 
fructose-6-phosphate (F6P), (C) fructose-1, 6-biphosphate (F1,6P2), (D) fructose-2, 6-biphosphate (F2,6P2) expressed as 

normalized to steady state value (see materials and methods), (E) 2 and 3 phosphoglycerate (2PG + 3PG), (F) 
phosphoenolpyruvate (PEP), (G) 6-phosphogluconate (6PG), (H) glucose-1-phosphate (G1P), (I) trehalose-6-phosphate 
(T6P), (J) citrate (CIT), (K) α-keto-glutarate (αKG), (L) succinate (SUC), (M) fumarate (FUM), (N) malate (MAL), (O) 

NADH/NAD ratio expressed as normalized to steady state value, the data plotted originates from at least two 
independent pulse experiments 
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Figure 2.7 Effect of glucose pulse on expression of genes of the glycolytic, storage carbohydrate and 
TCA cycle metabolic pathways, the numbers represent the fold change calculated between the 
expression values obtained at 330 s and at the initial steady state (0 s), green labels represent a 

downregulation and red labels represent an upregulation 
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The response of the metabolites of the upper part of the glycolysis was extremely rapid (within the 
first 30 s) and preceded all detectable transcriptional control. However, we also measured a 
significant increase in F2,6P2 about 120 s after the perturbation (Figure 2.6d). This rise was 
accompanied by a concomitant transcriptional upregulation of PFK27 (encoding a 6-phosphofructo-
2-kinase (+2.74)), and a downregulation of PFK26 (encoding the second form of the 6-
phosphofructose-2-kinase (-3.43)) and FBP26 (encoding the fructose-2, 6-bisphosphatase (-1.8)) 
that is involved in the degradation of F2,6P2 (Figure 2.7). The accumulation of F2,6P2 fitted with its 
role in activating the phosphofructokinase activity rate while the substrates levels (F6P and ATP) 
were low, maintaining a high product (F1,6P2) concentration. This correlation between metabolites 
and related transcripts levels illustrates how complex and synergistic metabolic and transcriptional 
control are in fine-tuning metabolic pathway regulations to master the large changes in metabolite 
concentration. 

 

Fast decay of downregulated transcripts indicates active mRNA degradation 
The average half-life of yeast poly (A)+ mRNA in S. cerevisiae has previously been estimated 
around 30 min using a temperature-sensitive RNA-pol II mutant (Wang et al., 2002). Figure 2.9A 
shows a comparison of mRNA half-lives observed in Wang et al. (2002) with those calculated from 
the present study. In our experiments, simultaneous transcription and degradation may occur, which 
should lead to an underestimation of the presented mRNA decay constant. Nevertheless, the set of 
565 downregulated transcripts displayed an order of magnitude faster decay with an average half-
life of 4 min (Figure 2.8a). This suggests that active mRNA degradation, which has previously been 
described for SDH1, SDH2 and SUC2 affects large sets of genes involved in processes such as the 
TCA cycle and storage carbohydrate metabolism. For example, 18 genes involved in the latter 
process (TPS1, TPS2, TSL1, ATH1, NTH2, GSY1, GSY2, GLG1, GLC3, GAC1, GPH1, GDB1, 
PGM2, UGP1, GIP2 FSP2, PIG2, PIG1) showed a much faster decay than expected based on 
previous data on mRNA half-lives (Wang et al., 2002). 

In S. cerevisiae and higher eukaryotes, mRNA degradation can be initiated by poly (A) tail 
shortening (van Hoof and Parker, 2002). After poly (A) tail removal, mRNA degradation involves 
the decapping enzyme Dcp1p (LaGrandeur and Parker, 1998) and the 5’-to-3’exonuclease Xrn1p 
(Heyer et al., 1995). This mechanism was indeed proposed for the faster decay of SHD1, 2 and 
SUC2 genes (Prieto et al., 2000). Additionally, 3’ degradation may occur, which involves the 
exosome, a complex of 3’-to-5’ exonucleases. In addition to the mRNA degradation the exosome is 
involved in the processing of several RNA species. In yeast the exosome is recruited via the fixation 
of Puf3p on AU rich motif located in the 3’UTR of a gene (Olivas and Parker, 2000; Jackson et al., 
2004). 

Possible involvement of 3’ degradation was investigated by a systematic analysis of the 250 base 
pairs downstream of the stop codon of 163 downregulated genes belonging to the significantly 
overrepresented functional categories (Figure 2.2). Four consensus motifs were found statistically 
overrepresented compared to their respective genome representation by binomial probability 
(Figures 2.8b - c).  Three of them were close variations of the already described Puf3p motif 
(UGUANAUA). A fourth motif was found in a small subset of 19 genes. Out of the 163 genes 
tested, 116 genes harbored at least one of the four motifs, and 80 genes carried two or more 
elements. The observed correlation between fast mRNA decay and the presence of conserved 
3’UTR sequences supported a widespread involvement of active mRNA degradation in the fast 
response of S. cerevisiae to glucose. This mechanistic synergy results in an accelerated 
disappearance of translational substrate that might find its reason in energy saving and in optimizing 
the translational efficiency of newly transcribed mRNA. However, in the metabolic context 
described in this study, this mechanism could also be considered as a nucleotides salvage pathway. 
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The RNA degradation recovery might be of importance regarding the fitness of a strain to adapt to 
rapid change in environment. 

With the exception of the responses in purine and sulfur metabolism, many of the transcriptional 
events after the relief from glucose limitation have previously been linked to the TOR signal 
transduction pathway. In particular, the TOR pathway has been implicated in the regulation of 
mRNA turnover in S. cerevisiae (Albig and Decker, 2001) and in the expression of genes for 
ribosomal RNA and ribosomal proteins (Martin et al., 2004; Schawalder et al., 2004; Rudra et al., 
2005). In mammalian cells, mTOR has been proposed to be a homeostatic ATP sensor (Dennis et 
al., 2001). Based on the transcript levels alone, this would have offered an attractive explanation for 
the observed upregulation of TOR targets after relief from glucose limitation. However, the 
metabolite data revealed that, in fact, intracellular ATP concentrations decreased after the glucose 
pulse. This observation underlines how simultaneous analysis at different information levels 
(transcriptome, metabolome) can improve interpretation of biological phenomena.   

 

 

Conclusion 

In the present study, we exploit the accurate control of chemostat cultures to generate reproducible 
perturbation experiments. While this approach has been previously achieved to study the rapid 
dynamics of metabolite pools in S. cerevisiae (Theobald et al., 1997; Visser et al., 2004b), this is 
the first time this approach has been integrated with simultaneous transcriptome analyses. Our data 
reveal a clear and sequential adaptation of vital cellular processes in response to a sudden relief of 
glucose limitation. The first significant changes in gene expression were only visible between 120 s 
and 210 s and were restricted to specific functional categories (Figure 2.2). The incorporation of 
transcription factor binding activity data provided a regulatory map that was in agreement with the 
overrepresented categories (Table 2.2). The nature of the metabolome and the transcriptome 
responses were highly correlated. Our results indicate that, upon relief of glucose limitation, yeast 
cells are confronted with several physiological stresses, including a significant decrease of the 
energy charge and AXP pool. At the same time they are gearing up to accelerate growth as shown 
by the reprogramming of the transcription and translation machinery. Restoration of the cellular 
homeostasis was measurable at both metabolome and transcriptome levels. The early drop in 
cellular AXP pool was followed by the upregulation of genes involved in purine biosynthesis, C1 
metabolism, sulfur assimilation and purine salvage (Figure 2.4). A significant increase of T6P was 
measured after the relief of glucose limitation, followed by the coordinated down regulation of the 
three hexokinase encoding genes (Figures 2.6 and 2.7), consistent with a response to prevent 
“glucose accelerated death”. As the glucose concentration decreased, a major expression decrease 
of the genes involved in T6P synthesis was observed.  Redox balancing appeared to involve a 
regulation of central carbon metabolism and, in particular, glycolysis. This regulation occurred both 
an adjustment of metabolites and effectors concentrations (e.g. F2,6P2), adjustment of the 
expression of genes encoding TCA cycle enzymes and a tight control of mRNA turn-over (synthesis 
and degradation) (Figures 2.7 and 8). Our results showed that the decay rate of downregulated 
transcripts was nine-fold faster than reported earlier, suggesting that mRNA degradation 
participates actively in the regulation of translation.   

Dynamic stimulus response studies are a vital element in integrative systems biology. The present 
study illustrates how high-quality data can be generated by the use of tightly controlled cultivation 
conditions and appropriate analytical tools. Experiments that, in addition to transcriptome and 
metabolome data, include information at other relevant information levels (e.g. proteome, 
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phosphoproteome and fluxome, references) will be essential to meet the longstanding challenge of 
cellular physiology/systems biology: to come to an integral understanding of the responses of living 
cells to their physical and chemical environment 

 

 

 

Figure 2.8 (A) Scatter plot comparing mRNA half-life measured by Wang et al. (2002) and the mRNA 
half-life calculated from the data of this study. The dashed line represents the average value of half-

life, (B) Motifs identified in 3’untranslated regions of the 163 genes downregulated belonging to 
overrepresented functional categories “energy” and “metabolism”, (C) Significance of the 

representation of motif identified in the tested set 
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Measurement of fast dynamic intracellular pH 
in Saccharomyces cerevisiae using benzoic acid 
pulse 
 

  

Summary 

pH affects many processes on cell metabolism, such as enzyme kinetics. To enhance the 
understanding of the living cells, it is therefore indispensable to have a method to monitor the pH in 
living cells. To accomplish this, a dynamic intracellular pH measurement method applying low 
concentration benzoic acid pulse was developed. The method was thoroughly validated and 
successfully implemented for measuring fast dynamic intracellular pH of Saccharomyces cerevisiae 
in response to a glucose pulse perturbation performed in the BioSCOPE set-up. Fast drop in 
intracellular pH followed by partial alkalinization was observed following the pulse. The low 
concentration benzoic acid pulse which was implemented in the method avoids the undesirable 
effects that may be introduced by benzoic acid to cells metabolism. 
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Introduction 

pH plays an important role in the regulation of cell metabolism (Busa and Nuccitelli, 1984). pH 
affects enzyme activities either directly in case of the involvement of proton as the substrate or the 
product of a reaction, or indirectly by changing the ionization state of substrate and the binding of 
substrate to the active site, by changing the ionization state of the amino acid in enzyme active site 
or by varying the protein structure of the enzyme (Voet et al., 1999). Changes in enzyme activities 
involved in the metabolic pathways, in their turn change the overall system condition. Therefore an 
incorrect assumption of (constant) intracellular pH in a metabolic model may lead to model 
inaccuracy. 

 Any organism rapidly reacts to changes in its environment in order to adjust to the new condition. 
This transient behavior provides a lot of information about metabolic network regulation. The 
transient responses within seconds order are particularly interesting for kinetic model development. 
Considering the characteristic time for enzyme induction (Stephanopoulos et al., 1998), enzyme 
concentration can be assumed to be constant within this time frame. Thus, the responses in 
metabolites can be assigned to dynamic interaction between metabolites and enzymes only. 
Stimulus Response Technology (SRT) was designed to explore this property. It is performed by 
introducing a perturbation to microorganisms in a steady state chemostat system and measuring its 
transient responses with special emphasis on the short time frame responses of 0 – 100 seconds. For 
the practical execution of such experiments a rapid sampling set-up (Lange et al., 2001; Theobald et 
al., 1997) and a so-called BioSCOPE (Mashego et al., 2006a; Visser et al., 2002) have been 
developed. These enable accurate sampling of extracellular and intracellular samples within seconds 
which is necessary to capture the dynamics in metabolite concentrations responding to the 
perturbation given. In order to get a thorough understanding about the studied biological system, it 
is necessary to include intracellular pH quantification in a stimulus response experiment.   

Several methods have been used to quantify intracellular pH such as weak acid or base distribution, 
i.e. measuring benzoic acid inside the biomass and in the supernatant (Krebs et al., 1983; Ramos et 
al., 1989), microelectrodes, fluorimetry with pH sensitive fluorescent dyes (Cimprich et al., 1995; 
Franck et al., 1996), or with pH sensitive fluorescent green protein (Miesenbock et al., 1998) and 
31P-NMR spectroscopy which infers intracellular pH from the NMR-shift of inorganic phosphate 
(Pi) (den Hollander et al., 1981; Gonzalez et al., 2000; Neves et al., 1999; Nicolay et al., 1982; van 
Urk et al., 1989). Microelectrodes permit continuous monitoring of intracellular pH and allow 
measurement of small pH changes, but they can only be applied to fairly large, immobile and 
accessible cells. Fluorimetry involves a staining process by a fluorochrome substance, which may 
alter the transient condition one wants to capture. The introduction of high copy genes expressing 
pH sensitive fluorescent protein may lead to changes in transcription, translation and cell 
metabolism in general (Bailey, 1993). 31P-NMR spectroscopy is a non-invasive measurement 
technique, however it requires a dense cell culture and the measurement is too slow to follow the 
transient intracellular pH in a time frame of 0-100 seconds following a perturbation in a stimulus 
response experiment.  

This paper presents the development of a fast dynamic intracellular pH quantification method using 
an SRT experimental set-up and a benzoic acid pulse. The research covers method validation, 
answering the question whether benzoic acid perturbs cell metabolism and therefore is a suitable 
intracellular pH tracer, and the application of the method to obtain the transient intracellular pH of 
S.cerevisiae within a time window of 100 seconds following a glucose pulse in a BioSCOPE set-up. 
A physiological discussion of the dynamics of the intracellular pH will be presented in Chapter 4.  
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Theoretical aspects 

In solution benzoic acid (B) quickly attains a pH dependent equilibrium between its undissociated 
(HB) and dissociated (benzoate, B-) form following 

H B

HB

C C
K

C
+ ⋅

=
−

          (3.1) 

in which K is the acid dissociation constant of benzoic acid. Cell membranes are normally only 
permeable to the uncharged, undissociated form of the weak acid (HB) which consequently can 
passively diffuse through the cell membrane.  

Upon its entrance inside the cell the undissociated form of benzoic acid will re-equilibrate based on 
the intracellular pH. Because the dissociated benzoic acid (B-) cannot pass through the membrane, 
benzoate will be accumulated inside the cell until equilibrium between intracellular and 
extracellular undissociated benzoic acid concentration is reached (CHBin = CHBex). Thus, the 
distribution of intracellular and extracellular total benzoate is determined by the difference in 
intracellular and extracellular pH. This forms the basic principle for intracellular pH inference from 
measured weak acid distribution between intracellular and extracellular compartment. 

However, it has been reported that S.cerevisiae cells grown in the presence of weak acid are able to 
extrude this acid from the cells by means of the inducible ABC transporter. In the case of benzoate 
this has been reported to be Pdr12 (Henriques et al., 1997; Holyoak et al., 1999; Piper et al., 1998). 
This transporter uses one ATP molecule to expel one benzoate molecule from the cell. In the 
presence of this transporter the distribution of intracellular and extracellular benzoate is not only 
determined by the pH difference and, consequently, determination of intracellular pH from the 
weak acid distribution will be misleading.  

It should be noted that in the absence of weak acid stress Pdr12 is still expressed, but at a very low 
level (Piper et al., 1998). To synthesize this protein, characteristic time of mRNA regulation (102-
103 s) and protein synthesis (>103 s) (Stephanopoulos et al., 1998) should be taken into 
consideration. Others have suggested that the induction process of this protein can take 28 hours 
(Holyoak et al., 1999). Given these considerations the condition in our experimental set-up, in 
which the benzoic acid is absent before it is added as a pulse, should indeed not induce the 
expression of pdr12 or other possible benzoate transporter genes within a short timescale, 0 – 100 s, 
in which the transient response is monitored. 

Benzoic acid is well known for its ‘anti-fungal’ action, which means that at a certain concentration 
it does affect metabolism significantly. It has been reported by Krebs et al. (1983), that the 
intracellular pH is identical when 2.5 µM and 10 µM total benzoate (experiments were performed at 
extracellular pH 2.5, fHB = 0.98, to yeast suspension). However at 2 mM total benzoate (same 
experiment condition, thus corresponds to 1.96 mM undissociated benzoic acid), the intracellular 
pH was found to be half pH unit lower. This drop in the intracellular pH inhibits the activity of 
phosphofructokinase in yeast cells. The occurrence of inhibition can be observed as the 
accumulation of glucose-6-phosphate (G6P) and fructose-6-phosphate (F6P) and the depletion of 
fructose-1,6-biphosphate (F1,6P2) and adenosine triphosphate (ATP), such as observed by himself 
and also by  Francois et al. (1986). Benzoate export by the ABC transporters has also been observed 
to lead to consumption of extra ATP and an increase in the specific oxygen consumption (qO2) 
(Verduyn et al.,1992). Consequently, to use benzoic acid as intracellular pH tracer, the 
concentration used should be chosen as such that, within a short time frame, it hardly affects cell 
metabolism and does not induce benzoate export by the ABC transporters. 
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Inside the cell benzoic acid is distributed over various cell compartments. Most resides in the 
cytosol, some part resides in the vacuole (vac) which composes an estimated faction of 0.25 of yeast 
cell volume (Wiemken et al., 1979), and some part resides in the plasma membrane (pm) of which 
lipid is the major component. In equilibrium condition the undissociated benzoic acid concentration 
in all compartments is the same, except the concentration in the plasmic membrane which is 
proportional to the partition coefficient of water and lipid (Kow), such that CHBin = CHBvac = 
CHBpm/Kow. The benzoic acid distribution is summarized in Figure 3.1.  

 

 

Figure 3.1 Benzoic acid distribution in the cell 

 

In a defined closed system,  

broth pulse sup bioV V V V+ = +          (3.2) 

In which Vbroth is the volume of fermentation broth flowing into the BioSCOPE (see materials and 
methods section), Vpulse is the volume of pulse solution added into the BioSCOPE, Vsup is the total 
volume of supernatant and Vbio is the total volume of the biomass (Vbio= Vx.Cx.Vbroth, where Vx is 
specific cell volume and Cx is biomass density). For fcyt, fvac and fpm, subsequently fractions of 
cytosol, vacuole and plasmic membrane in the biomass  

bio cyt bio vac bio pm bioV f V f V f V= ⋅ + ⋅ + ⋅         (3.3) 

As has been observed previously, benzoic acid is conserved and not metabolized by the yeast cells, 
and therefore the total benzoate (B = B- + HB) mass balance over the system after the benzoic acid 
pulse is introduced is 

0 ex in vac pmpulse B sup B cyt bio B vac bio B pm bioB
C V C V C f V C f V C f V⋅ = ⋅ + ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅    (3.4) 

In which CB0 is the total benzoate concentration in the pulse solution. Assuming that benzoic acid is 
only transported by the passive diffusion of its undissociated form and that the transport of benzoic 
acid between cell compartments is much faster than the diffusion of extracellular benzoic acid into 
the cell (pseudo-equilibrium reaction), the driving force for the benzoic acid transport process into 
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cells will be the difference in the extracellular undissociated benzoic acid concentration (CHBex) and 
the cytosolic undissociated benzoic acid (CHBin), which equals the plasma membrane undissociated 
benzoic acid concentration (CHBpm/Kow). The dynamic mass balance of extracellular benzoic acid 
concentration is 

pmex
ex

HBB
sup m HB

ow

CdC
V k A C

dt K

⎛ ⎞
⋅ = − ⋅ ⋅ −⎜⎜

⎝ ⎠
⎟⎟        (3.5) 

The total surface area (Am) can be calculated from biomass density (Cx) by assuming a spherical 
shape of the cell (Am = 6Vbio/dx, where dx is the specific cell diameter).  

Except for the plasma membrane compartment in which the benzoic acid is uniquely present in the 
undissociated form, the undissociated benzoic acid concentration can be calculated from the total 
benzoate concentration (CB) as 

1 10
B

HB pH pKa
CC −=

+
          (3.6) 

By rearranging eq.(3.2) and eq.(3.3) and for a defined ratio (r) of pulse and broth volume, the 
plasma membrane benzoic acid concentration can be calculated from the extracellular benzoic acid 
concentration as 
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Combining eq.(3.7) and eq.(3.2) with eq.(3.5) gives 
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    (3.8) 

which shows that the change in total extracellular benzoate concentration is a function of the 
biomass concentration, the initial total benzoate concentration, the extracellular and intracellular 
pH. Considering that fpm is negligible and that pHvac is very acid, the cell compartmentalization can 
be neglected and eq.(3.8) can be simplified to  

( )
( )

0 16.
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exex ex
ex in
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dt d r V C V C− −

⎛ ⎞⋅ − + − ⋅ ⋅⎛ ⎞ ⎜ ⎟= − ⋅ ⋅ −⎜ ⎟ ⎜ ⎟+ − + +⎝ ⎠ ⎝ ⎠
  (3.9) 

At steady state equilibirum condition (dCBex/dt = 0), eq. (3.5) shows that CHBex = CHBpm/Kow = CHBin 
and using (3.6) leads to (Verduyn et al., 1990) 

( )

( )
10 1
10 1

in
in

ex
ex

pH pKa
B

pH pKa
B

C
C

−

−

+
=

+
         (3.10) 

53 



Chapter 3 

The benzoic acid transport parameter (k) in eqs. (3.8) and (3.9) can be estimated from the measured 
transient extracellular benzoic acid concentration following a small pulse of benzoic acid only, 
where the intracellular pH which has to be simultaneously fitted can be considered constant. The 
estimation of k and pHin was done by non-linear least square fitting of eq. (3.9) using Sequential 
Quadratic Programming in MATLAB (The MathWorks, Inc., Natick, MA, USA) to the transient 
benzoic acid pulse data. In this fit the pulse to broth volume ratio (r), biomass density (Cx), transient 
total extracellular benzoate concentration (CBex) and extracellular pH (pHex) data were taken from 
measurements. Other model parameters: cell specific volume (Vx = 2 mL.gDW-1) and diameter (dx 
= 5 µm), volume fraction of plasma membrane and vacuole (fpm = 0.05, fvac = 0.25), partition 
coefficient of benzoic acid over lipid water (Kow = 74) and benzoic acid dissociation constant (pKa= 
10-Ka = 4.19) were taken from literatures (Krebs et al., 1983; Lange and Heijnen, 2001; Walker, 
1998; Wiemken et al., 1979) and internet database (http://logkow.cisti.nrc.ca/logkow/index.jsp). 

Once k has been estimated from a benzoic acid pulse to a metabolic steady state system, the 
transient intracellular pH following a glucose pulse is estimated from the measured transient 
extracellular benzoic acid concentration following a combined glucose and benzoic acid pulse. This 
estimation proceeds identically to the one described above for estimating k, except that k is now 
known and pHin is no longer considered constant. 

 

Materials and methods 

Strain 
The Saccharomyces cerevisiae strains used in this study included CEN PK 113-7D and IMK050  
(Hazelwood et al., 2006), in which the latter is a CEN PK 113-7D strain with knock out of the 
benzoate transporter gene, pdr12. The latter was kindly provided by the Industrial Microbiology 
Group, Delft University of Technology, The Netherlands. 

Fermentation conditions 
The strains were cultivated in an aerobic carbon-limited chemostat culture of 4 L working volume 
in a 7 L fermentor (Applikon, Schiedam, The Netherlands) at a dilution rate of 0.05 hr-1. The pH 
was controlled at 5 and temperature at 30oC. The air flow rate was set at 200 L.hr-1, with 0.3 bar 
overpressure and stirrer speed of 600 rpm to ensure a sufficiently high dissolved oxygen level 
(>80%, measured online, in-situ with a Mettler Toledo DOT sensor (Mettler-Toledo GmbH, 
Switzerland). The medium composition was based on doubled mineral medium  with 27.1 g.L-1 of 
glucose and 1.42 g.L-1 of ethanol, to support a biomass concentration of about 15 g DW.L-1. Ethanol 
was added to avoid the occurrence of oscillations. The chemostat was considered to be in steady 
state condition after 5 residence times after the end of the batch phase, which was checked with 
constant biomass concentration measurement and O2/CO2 off-gas analysis.  

Assessing benzoic acid mass balance 
A benzoic acid mass balance was established to check the analytical procedure and the absence of 
benzoate metabolism. Two experiments were performed, in each 140 mL sample of fermentation 
broth (pH = 5) was taken from fermentor and mixed with 11 mL of 5.31 mM benzoic acid solution. 
The solution was mixed for 30 minutes at 30oC to allow the equilibrium between intracellular and 
extracellular benzoic acid concentration. Subsequently four 30 mL aliquots were centrifuged at 
5,000 g for 15 min (Heraeus Biofuge stratos, Thermo Electron Corporateion, Waltham, MA, USA) 
for separation of biomass and supernatant, which was collected for extracellular benzoic acid 
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concentration measurement. Afterward the biomass pellets were resuspended in alkaline buffer 
solution and mixed for 30 minutes to extract all the intracellular benzoic acid. In the first 
experiment buffer pH 7 was used and in the second experiment buffer pH 10 was used. The biomass 
was then again separated from the solution by centrifugation and the supernatant was collected for 
the measurement of the extracted intracellular benzoic acid concentration. 

Perturbation experiments 
Perturbation experiments were performed either directly in the fermentor or in the BioSCOPE set-
up (Mashego, et al., 2006a; Visser et al., 2002). In short, the BioSCOPE is a long (6.51 m), small 
volume (3.46 mL) plug flow reactor that is fed with flow of broth (typically 1 – 3 mL.min-1) 
originating from a steady state fermentation system and a small flow of perturbing agent (pulse 
solution). The perturbed broth flows through a channel and can be sampled at various points along 
the channel, corresponding with various times of incubation with the perturbing agent. In this way 
many perturbations can be performed on biomass from a single fermentation without disturbing its 
steady state condition. Samples taken from BioSCOPE perturbation experiments cover a short 
transient time window, up to 100 s. The ratio of pulse to broth flow rate in BioSCOPE set-up was 
determined in every experiment by measuring the change of the weight of pulse solution and 
effluent flow over time with precise analytical balances (Mettler Toledo GmbH, Switzerland).  

Perturbation experiments in the fermentor were conducted by adding a 20 mL pulse solution 
directly to the fermentation by means of a pneumatic system. Transient samples were taken 
afterwards via a rapid sampling set-up . 

Sample processing for intracellular metabolites 
1 mL of broth was withdrawn either from the fermentor by a rapid sampling set-up or from the 
BioSCOPE into 5 mL of 60% (v/v) methanol/water at –40oC to immediately quench the metabolic 
activities. The sample was then processed according the intracellular sampling processing method 
as described in Wu et al. (2005a). 

Sample processing for extracellular metabolites 
To directly separate supernatant from the biomass 1 mL of broth was withdrawn from the 
BioSCOPE to a syringe connected to an evacuated tube through a 0.45 μm pore size filter 
(Millipore, USA) to instantaneously separate supernatant from the biomass. The supernatant 
collected in the tube is stored at –80o C until further analysis. Extracellular samples taken from the 
fermentor were processed as described in Mashego et al. (2003). 

Analysis 
The benzoic acid concentration was measured as total benzoate (CB = CHB + CB-) by an isocratic 
HPLC method on Platinum EPS C18 column (Waters, USA) which is connected to a UV-detector. 
A 28% (v/v) acetonitril in phosphate buffer (pH = 3.5) solution was used as the eluent. Glucose 
analysis was performed spectrophotometrically (Agilent 8453 UV–visible spectroscopy system, 
Germany) using an Enzytec kit (Scil Diagnostics GmbH, Germany) according to the manufacturer’s 
instructions. Glycolytic and TCA cycle intermediates were analysed by LC-ESI-MS/MS method as 
described in van Dam et al. (2002). ATP was analysed by an ion pairing LC-ESI-MS/MS method as 
described in Wu et al. (2006). Oxygen and carbon dioxide concentrations in the exhaust gas of the 
fermentation were measured on-line by combined oxygen (paramagnetic) and carbon dioxide 
(infrared) analyzer (Rosemount NGA 2000, Rosemount Analytical, USA). Extracellular pH in the 
BioSCOPE samples was measured off-line with a pH meter (Metrohm, Switzerland). 
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Assessing benzoic acid effects to yeast metabolism 
A benzoic acid pulse to a final concentration of 200 μM (at extracellular pH = 5.0, fHB = 0.13 or 
corresponds to 26.8 µM undissociated benzoic acid and also corresponds to max. intracellular total 
benzoic acid concentration of 6 mM) in the fermentor was given to steady state fermentations. The 
applied concentration was chosen based on benzoic acid effects on cell metabolism, as has been 
discussed in the theoretical aspects section and the high buffering capacity of the cell (30 – 80 mM 
[H+] or [OH-]/pH unit for fungi (Sanders and Slayman, 1982), and between 50 – 1800 µmol [H+] or 
[OH-]/pH unit/g protein for bacteria (Rius et al., 1994 and 1995). The transient responses of the 
culture were followed in terms of dissolved oxygen level and intracellular ATP, glycolytic and TCA 
cycle intermediate concentrations. 

Assessing the presence of Pdr12 transporter 
A benzoic acid pulse to give a final concentration of 200 μM was added to the BioSCOPE system 
connected to a steady state fermentation in which either the wild type or the mutant were grown. 
The transient responses were followed by analyzing the extracellular benzoic acid concentration. A 
benzoic acid pulse with the same final benzoic acid concentration was also given to the same steady 
state fermentor. The fermentor transient responses were followed for a time window of about 15 
minutes by analyzing extracellular benzoic acid concentration and dissolved oxygen level. 

Benzoic acid transport study 
A set of benzoic acid pulses was performed in the BioSCOPE set-up in which the initial benzoic 
acid concentration, extracellular pH and biomass concentration were varied. The variation in initial 
benzoic acid concentration was implemented by varying the benzoic acid concentration in the pulse 
solution. The variation in extracellular pH was achieved by varying the pH of the pulse solution by 
adding KOH or HCl. The variation of biomass concentration was implemented by varying the ratio 
between the pulse and fermentation broth flowing to the BioSCOPE. The benzoic acid 
concentration in the pulse solution was adjusted to maintain constant initial benzoic acid 
concentration when the biomass concentration and pH were varied.  

Determination of transient intracellular pH following a glucose pulse 
The glucose pulse experiment, in which the fast transient intracellular pH is to be determined, was 
conducted in the BioSCOPE set-up. A pulse solution of 10 g.L-1 glucose, 2 mM benzoic acid 
(giving final concentration of 1 g.L-1 glucose and 200 μM benzoic acid) was added to the 
BioSCOPE system which was connected to a steady state fermentation and the transient response 
was followed in terms of extracellular and intracellular metabolites and extracellular benzoic acid 
concentration. To check whether the addition of benzoic acid altered the dynamic response of a 
glucose pulse, a control experiment was performed in which only glucose pulse solution of the same 
concentration as the previous glucose and benzoic acid pulse experiment was added to the 
BioSCOPE. 

 

 

56 



Fast dynamic intracellular pH 

Results 

Benzoic acid is not metabolized by yeast cells 
Before using benzoic acid as a tracer of intracellular pH, it is important to confirm that benzoic acid 
is not metabolized by yeast cells. To this end, we performed a mass balance calculation, in which 
the experiment was performed as described in the materials and methods section ‘assessing the 
benzoic acid mass balance’. Eq.(3.6) shows that in alkaline condition (i.e. pH > 7) all the benzoic 
acid (>99%) is present in the dissociated form. Thus, the alkaline condition applied to the separated 
cell pellet supports the extraction of all benzoic acid from the biomass (either from vacuole, cytosol 
or plasmic membrane) to the buffer solution. Table 3.1 shows that the total amount of benzoic acid 
added to the broth is recovered from the intracellular and extracellular samples both when the cell 
pellets were resuspended in buffer pH 7 or buffer pH 10, which confirms that benzoic acid is not 
metabolized by yeast cells. It is then sufficient to measure the initial total benzoate added and the 
total extracellular benzoate concentration only. Further, the intracellular benzoic acid concentration 
can be calculated from the mass balance (Eq. 3.4). 

 

Table 3.1 Benzoic acid mass balance 

Initial 

benzoic acid 

Extracellular 

benzoic acid 

(Extracted) 

Intracellular 

Benzoic acid 

Total 

recovery pH 

[μmol] [μmol] [μmol] [%] 

7 11.5 ± 0.1 8.9 ± 0.0 3.0 ± 0.0 103 

10 11.7 ± 0.1 9.0 ± 0.0 3.2 ± 0.0 104 

*the initial amount of benzoic acid is the measured benzoic acid concentration 
 of the initial sample mix (total volume of 151 mL) multiplied by the sample volume (30 mL) 

 

Effect of benzoic acid on cell metabolism 
No significant change in the cell metabolism was observed as a response to the benzoic acid pulse 
at a final concentration of about 200 μM in the broth solution. The intracellular metabolite 
responses are presented in Figure 3.2. Neither accumulation of G6P, F6P nor depletion of F1,6P2 
due to the reported inhibition of phosphofructo kinase in the presence of benzoic acid  was 
observed. No drop in ATP due to the energy uncoupling effect  was observed either at this low 
benzoic acid concentration.  

A significant transient response was observed in the dissolved oxygen and off gas profile (O2 and 
CO2 level) (Figure 3.2), which is suspected to be a response to the volume change due to the pulse 
addition and sampling. Although the volume of pulse solution added to the fermentor and the 
change in fermentation volume due to sampling are only about 0.5% and 5% of fermentation 
volume, the fast transient response to these volume change is measurable. This hypothesis was 
confirmed further by the addition of a blank (water) pulse to the fermentor, which resulted in a 
similar response. Thus the change in dissolved oxygen cannot be attributed to a significant increase 
of energy requirement due to active export benzoate from to the cell.  
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Figure 3.2 Transient response of intracellular metabolites and off gas composition following the 
addition of 200 μM benzoic acid pulse to the fermentor, for metabolites each points were average of 2 
independent samples with the error bar giving the standard deviation between the samples, the first 

two data points (t < 0) are steady state samples 

 

These results were further confirmed by comparing the transient metabolite profile during 
perturbation experiments with only glucose (5 mM) and with a combination of glucose (5 mM) and 
benzoic acid (200 µM) in the BioSCOPE. No significant difference in the glycolytic and TCA cycle 
intermediates was observed between the two sets of results (Figure 3.3).  

These observations suggest that within this short time frame, the addition of benzoic acid at low 
concentration (200 μM) does not affect yeast metabolism, which together with the previously 
discussed confirmation that benzoate is not metabolized supports the use of benzoic acid at low 
concentration of about 200 μM as an intracellular pH tracer for yeast cells. 

 

Fast transient response to benzoic acid pulse in Δpdr12 mutant 
In order to investigate whether Pdr12 transporters are induced in the wild type strain in the 
experimental set-up used in this investigation, a negative control experiment with a mutant strain 
IMK050 was performed. The conditions for the culture were identical to those of the wild type. 
Hence, a different response between the mutant and the wild type strain would indicate the 
expression of this transporter in the wild type. Figure 3.4a shows the extracellular concentration of 
total benzoate as a transient response to a benzoic acid pulse given to steady state cultures of either 
wild type or the mutant, in the fermentor. The wild type shows a total extracellular benzoate 
concentration profile which is highly similar to the mutant. This suggests that the benzoic acid 
transport mechanism should be similar in both strains. Similar responses were also observed for the 
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dissolved oxygen and off gas responses in both the mutant and wild type strains (Figure 3.4b), 
strengthening the assumption that in the wild type the benzoic acid is not exported by any energy 
dependent mechanism and that the benzoic acid is uniquely transported by passive diffusion. 

 

 

Figure 3.3 Transient response of intracellular metabolites following the addition of 1 g.L-1 glucose and 
200 μM benzoic acid pulse or 1 g/L glucose pulse only to the BioSCOPE: G6P, F6P, F16BP, PEP and 

ATP (each points were average of 2 independent samples with the error bar giving the standard 
deviation between the samples) 
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Figure 3.4 Transient response to 200 μM benzoic acid pulse to the fermentor in the wild type and the 
Δpdr12 mutant; A. extracellular benzoic acid profile (circles denote the wild type responses from 2 

independent experiments and triangles denote the mutant responses), B. dissolved oxygen and off gas 
composition profile (solid, black lines denote the wild-type and the dash and dot, grey lines denote the 

mutant) 

 

 

Figure 3.5 The goodness of fit of the benzoic acid transport model simulated with the averaged 
estimated parameters (k = 0.92 x 10-5 m.s-1, pHin = 6.43) with the benzoic acid pulse data  

 

Passive diffusion of benzoic acid 
The transport of benzoic acid in S.cerevisiae was studied by performing several benzoic acid pulse 
experiments in the BioSCOPE. Parameterization of the dynamic benzoic acid transport model was 
performed by fitting the model in eq.(3.9) to these experimental data sets. In practice it was found 
that it was difficult to obtain the accurate value of the initial concentration of the benzoic acid in the 
supernatant (t = 0), because of the difficulty in obtaining the accurate value of the pulse to broth 
ratio and because of the inaccuracy of the pulse solution concentration analysis, since its 
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concentration is far beyond the calibration range and therefore it needs to be diluted prior to the 
analysis. Therefore an additional degree of freedom was added to accommodate the error in the 
initial concentration of benzoic acid. From 9 independent dynamic data sets of benzoic acid 
addition experiment in the BioSCOPE, the mass transfer coefficient (k) was estimated to be (0. 92 ± 
0.74) x10- 5 m.s-1 and at normal condition (pHex = 5), the intracellular pH was estimated to be 6.43 ± 
0.18. The goodness of fit of the model is shown in Figure 3.5. Comparable values for intracellular 
pH were obtained from the steady state data (after giving the benzoic acid pulse to the fermentor, 
Figure 3.4a) using eq.(3.9), giving pHin of 6.56 ± 0.05. 

The assumed model of passive transport of benzoic acid in S.cerevisiae was validated by 
performing experiments in which the benzoic acid concentration in the pulse solution, extracellular 
pH and biomass concentration were varied. The results show that the rate of benzoic acid transport 
is enhanced by the increase in the biomass concentration which increases the surface area for 
diffusion (Figure 3.6a), by the increase in the initial benzoic acid concentration (Figure 3.6b) and by 
the decrease in the extracellular pH (Figure 3.6c), both of which increase the concentration of 
undissociated benzoic acid and thereby increase the driving force for the diffusion process.  
Additionally, the model in eq.(3.9) was simulated with the previously estimated parameters for 
different biomass concentration, pHex and initial benzoic acid concentration. The simulation results 
are shown to be in a good agreement with the experimental data (Figure 3.6).  

 

Figure 3.6 Transient extracellular benzoic acid profile following benzoic acid pulse; A. with variation 
in biomass concentration, B. with variation in initial benzoic acid concentration, C. with variation in 
extracellular pH; model values are simulated using the previously estimated parameters, not fitted 
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Figure 3.6 also shows that the equilibrium between intracellular and extracellular benzoic acid is 
only reached about 30 s after the pulse is given. This is too slow to assume immediate equilibrium 
between extracellular and intracellular concentration of benzoic acid in the glucose pulse 
experiments in which samples are taken approximately every 5 seconds following the various kind 
of perturbations. Consequently, the kinetics of benzoic acid transport should be taken into account 
in analyzing the fast transient intracellular pH following a glucose pulse perturbation.  

 

Fast transient intracellular pH after glucose pulse 
The extracellular benzoic acid profile following glucose plus benzoic acid pulse in the BioSCOPE 
is shown in Figure 3.7. The decrease in extracellular benzoic acid concentration is less with the 
glucose pulse than the decrease in absence of glucose pulse, which indicates a drop in intracellular 
pH during the glucose pulse. Estimation of the transient intracellular pH using eq.(3.9) shows that 
the addition of glucose pulse causes a sudden decrease in intracellular pH from 6.5 to 5.2 which is 
immediately followed by partial alkalinization, where pH increases to about 6.0 (Figure 3.8).  

It is hypothesized that cells respond to the internal acidification by initiating proton efflux that 
results in both an increase in the intracellular pH and a decrease in the extracellular pH. Since there 
is no pH controller in the BioSCOPE set-up, the drop in the extracellular pH can be directly seen in 
the extracellular pH profile following a glucose pulse (Figure 3.8). The later (t > 30 s) decrease in 
the intracellular pH may be related to cell adjustment to the lowered extracellular pH.  

 

 

Figure 3.7 Transient extracellular benzoic acid profile (Bex) as following 1 g.L-1 glucose pulse, 
(normalized to the initial concentration (Bo)). Circles denote glucose plus benzoic acid pulse, squares 

denotes benzoic acid pulse (without glucose), combined data of three replicates are shown 

 

Discussion 

In our study the benzoic acid transport coefficient was estimated to be (0.92 ± 0.74) x 10-5 m.s-1.  
The value of the benzoic acid transport coefficient in cell membranes has been previously reported, 
e.g. Warth (1989) measured the transport coefficients of benzoic acid for Z. bailii to be 2.69 x 10-8 
m.s-1, which is a factor 500 less. Z. bailii was claimed to be more acid resistant compared to 
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Figure 3.8 Dynamic intracellular pH profile following a 1 g.L-1 glucose pulse 

 

S.cerevisiae which agrees with a lower transport coefficient. S.cerevisiae was reported to take up 
propanoic acid about 16 time faster than Z.bailii (Warth, 1989). Using this data to extrapolate the 
benzoic acid transport coefficient in S.cerevisiae from Z.bailii, we obtained 0.436 x 10-6 m.s-1, 
which is still much lower than the value obtained in this study. The benzoic acid transport 
coefficient could also be estimated from the increased of specific oxygen consumption rates at 
various extracellular benzoic acid concentrations (the data were obtained from Verduyn et al., 
1992), based on the assumption that 2 molecules of ATP are required per molecule of benzoate 
exported (one for transporting benzoate [B-] and one for symporting the proton [H+]), P/O ratio is 
1.46 (Stuckrath et al., 2002) and that intracellular benzoic acid concentration was kept negligible 
due to the action of the benzoate exporter. This calculation gives a transport coefficient of 0.94 x 
10-6 m.s-1, which is also lower than the value estimated in this study. The difference between the 
estimated transport values can be caused by differences in strains and experimental conditions. 
Different strains used, e.g. Z.bailii , S.cerevisiae CEN PK 113-7D (this work) or S.cerevisiae CBS 
8066 (Verduyn et al., 1992), may introduce different specific diameter and volume as well as 
different membrane composition that can affect benzoic acid permeability estimation. Prolonged 
growing of the yeast cell in the presence of high benzoic acid concentration in the medium  can be 
expected to induce some changes in membrane properties, yielding cells with less permeable 
membranes  to minimize the effects of  the energetic uncoupling of benzoic acid.  

The presented experimental results have demonstrated that the method can be applied for inferring 
intracellular pH in steady state condition, either from the model parameter estimation (eq. 3.9) or 
from the equilibrium relation of benzoic acid in steady state condition (eq. 3.10). The intracellular 
pH value obtained here, 6.43, agrees with the value of intracellular pH measured previously with 
weak acid  for S.cerevisiae (Henriques et al., 1997; Krebs et al., 1983), however it is lower than the 
previously reported intracellular pH value measured with 31P-NMR, 6.8 - 7.5 (Gonzalez et al., 
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2000; den Hollander et al., 1981; Van Urk et al., 1989),  and it is higher than another reported 
intracellular pH value measured with the fluorometry, which was 5.5 (Cimprich et al., 1995). It 
seems that there is no agreement in the intracellular pH measured with different methods. However 
the data were obtained from various strains and physiological conditions, which are partly dictated 
by the employed measurement technique. No single sample was measured with more than one 
method for verification.  

Potential inaccuracy of the intracellular pH measurement using the weak acid method may arise 
from the assumption of constant cellular internal volume (Bracey et al., 1998). The internal volume 
of S.cerevisiae CEN PK indeed has not been specifically defined yet. A literature review on the 
internal volume of S.cerevisiae gave several values which are 1.93 mL.gDW-1 (Larsson et al., 
2000), 2 mL.gDW-1 for S.cerevisiae CBS 8066  and 2.38 mL.gDW-1 (Ditzelmuller et al.,1983). The 
value used in the calculations presented here was then chosen to be within this range, 2.0 mL.gDW-

1. Further, a significant part of the protoplast is occupied by cellular organelles, most importantly 
the vacuole which may occupy about 25% of the cell volume, which was not considered in the 
estimation process and may lead to an incorrect assumption of the cell volume. To investigate the 
effect of the variation in the internal volume on the calculated intracellular pH, a sensitivity analysis 
was performed (Figure 3.9). It shows that change in the assumed cytosolic volume between 1.5 
mL.gDW-1 and 2.4 mL.gDW-1 decreases the estimated intracellular pH from 6.56 to 6.35, a pH 
variation of about 0.2 pH unit. The intracellular pH is concluded to be relatively insensitive towards 
variation in the internal volume. Based on this, the effects of possible errors in the assumed internal 
volume can be neglected. 

 

 

Figure 3.9 Sensitivity analysis of intracellular pH calculation with respect to variation in cell specific 
volume 

 

Besides affecting the accuracy of the assumed cellular internal volume, the presence of cellular 
organelles may also lead to the inaccuracy of the intracellular pH measurement using the weak acid 
method due to the compartmentation of the weak acid inside the cells. However, at the intracellular 
pH of 6 – 7 the intracellular benzoic acid is mostly present in the dissociated form, which will 
lessen the leaks of benzoic acid to cell organelles via passive diffusion mechanism. Moreover the 
transport of the dissociated form of benzoic acid to cell organelles should be detected by some 
decrease in the ATP level, which was not observed in this study. In case of vacuole, although it 
composes a significant fraction of cell volume, it is normally claimed to be acid and its internal pH 
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is lower than the cytosolic pH (Calahorra et al., 1998). Should there be any leaks of benzoic acid 
into the vacuole, it will be maintained at its undissociated form and therefore the equilibrium 
between the cytosol and the vacuole will be easily reached or, in other words, the vacuole will be 
easily ‘saturated’. Hence the vacuolar benzoic acid remains very small. For example at an 
intracellular pH of 6.43 and vacuolar pH of 5.0, and if the vacuole occupies 25% of the total cell 
volume, the fraction of benzoic acid in the vacuole will be less than 2.5%. On the other hand, the 
plasmic membrane that is mainly composed of lipid can hold a lot of benzoic acid. However, the 
plasmic membrane only composes a very small fraction of cell volume. It is then concluded that 
these contributions are very small.   

One important parameter in intracellular pH determination with weak acid is the weak acid 
dissociation constant, which is actually a function of activities (a = γ.c), instead of concentrations 
(c). The activity coefficient (γ) is affected by the ionic strength (I) of the solution. In dilute aqueous 
solution (I ≈ 0) the activity coefficient (γ) is unity, thus activity is equal to concentration. However, 
when the ionic strength of the solution is higher than zero, the activity coefficients will deviate from 
unity and therefore the dissociation constant value should be corrected by the effect of the ionic 
strength (Alberty, 2003). The correction of benzoic acid dissociation constant is shown in Figure 
3.10. The effect of ionic strength in intracellular pH calculation, however, is minimized if the ionic 
strength of the intracellular and the extracellular solutions are more or less similar (Figure 3.10). 

A decrease in the intracellular pH followed by alkalinization as the response of the addition of 
glucose to the medium has been observed previously in yeast, however, using different 
experimental set-ups. The lower time resolution of the observation in those experimental set-ups 
might hinder the observation of the very fast intracellular pH drop up to 1.2 pH unit which occurs in 
less than 10 s after the glucose addition. In the presented method, samples are quenched to 
immediately stop the metabolism and then sent for benzoic acid analysis. This intracellular pH 
analysis method thus provides a higher time resolution of the intracellular pH measurement.   

 

 

Figure 3.10 (above) Effect of ionic strength towards diffusion constant; (bottom) sensitivity analysis of 
intracellular pH calculation with respect to variation in intracellular and extracellular ionic strength 

(Iex) 
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The initial pH drop during the glucose pulse shows that there is initial acid accumulation inside the 
cell, because of an imbalance between proton production and consumption/removal. Likely 
candidates are the transient dynamic of intracellular metabolites and possibly the acetic acid 
formation.  

 

 

Conclusion 

A method to measure fast transient intracellular pH by using benzoic acid as a tracer has been 
developed. The preconditions for applying this method, namely transport mechanism of the weak 
acid by passive diffusion only, absence of catabolism of the acid or of inference with cellular 
metabolism are all met in S.cerevisiae. The method offers a simple, cheap, yet accurate way to 
measure intracellular pH. This method has been successfully applied to measure fast dynamic 
intracellular pH following a glucose pulse in S.cerevisiae with a BioSCOPE set-up. Further, the 
method can be applied for any cell type grown in suspension that meets same preconditions. 
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Quantitative physiological study  
of the fast dynamics in the intracellular pH  
of Saccharomyces cerevisiae in response to 
glucose and ethanol pulses 
 

 

Summary 

Considering the effects of pH on many aspects of cell metabolism, such as its role in signaling 
processes and enzyme kinetics, it is indispensable to include the measurement of the dynamics of 
the intracellular pH, when studying the fast dynamic response of cells to perturbations. It has been 
shown previously that the intracellular pH rapidly drops following an increase in external glucose 
concentration (Kresnowati et al., 2007a; Ramos et al., 1989; Van Urk et al., 1989). The mechanism 
for this fast intracellular acidification, however, has not been elucidated yet. This paper presents a 
metabolome based analysis to reveal the physiological phenomena that cause the fast intracellular 
acidification following either a glucose pulse or an ethanol pulse to carbon-limited chemostat 
cultures of S. cerevisiae. This quantitative study, which includes the determination of intracellular 
buffering capacity, the calculation of electric charge balance and the quantification of weak organic 
acid transport shows that none of the previously suggested mechanisms, i.e. increase in glucose 
phosphorylation and accumulation of CO2, is sufficient to explain the measured decrease in 
intracellular pH following a glucose pulse.  
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Introduction 

Microorganisms rapidly react to changes in their environment in order to adapt to new conditions. 
This transient behavior is a rich source of information about metabolic reaction network regulation. 
Considering the characteristic time for enzyme induction (Kresnowati et al., 2006; Stephanopoulos 
et al., 1998), enzyme concentrations can be assumed constant within a period of a few hundred 
seconds following changes in the environment of the cells. Thus, the responses of metabolites to 
perturbations within this short time frame can be assigned to dynamic interactions between 
metabolites only, which are particularly interesting for kinetic model development. Stimulus 
Response Technology (SRT) was designed to explore this property. It is performed by introducing a 
defined perturbation to steady state microorganisms cultivated in a chemostat system, e.g. by 
increasing the glucose concentration of a steady state glucose limited culture, while maintaining all 
other parameters, e.g. temperature and pH, constant and measuring the transient responses with 
special emphasis on the fast dynamic response, that is within a time frame of 0 to 300 s. For the 
practical execution of such experiments a rapid sampling set up (Lange et al., 2001; Theobald et al., 
1997) and a mini satellite reactor, the so-called BioSCOPE (Mashego et al., 2006a; Visser et al., 
2002) have been developed to enable accurate withdrawal of samples within a time frame of 
seconds. 

It is well known that the pH affects enzyme activities either directly, such as the involvement of 
protons as substrate or product of a reaction which changes the mass action ratio of the reaction, or 
indirectly e.g. by changing the charge of a substrate and thereby influencing the binding of substrate 
to the active site, or by changing the charge of amino acids and thereby influencing the protein 
structure of the enzyme (Voet et al., 1999). As a consequence, pH plays an important role in 
metabolic regulation. In addition to this, it has been reported that pH also takes part in signaling 
processes. As an example, intracellular acidification has been reported to stimulate the RAS-
adenylate cyclase pathway of yeast which is part of the glucose signaling pathway (Thevelein, 
1991). Intracellular acidification has also been suggested to act as a trigger for the acquisition of 
thermotolerance (Coote et al., 1991; Weitzel et al., 1987). By consequence an incorrect assumption 
of intracellular pH in a metabolic model may lead to model inaccuracy.  

Although the extracellular pH in such SRT experiments is controlled, this does not assure a constant 
intracellular pH. Therefore, it is necessary to include measurement of the dynamics of the 
intracellular pH in SRT experiments.   

Indeed, transient changes in intracellular pH have been observed in S .cerevisiae subjected to an 
increased extracellular glucose concentration. Kresnowati et al. (2007a) reported that when a steady 
state glucose limited chemostat culture of S. cerevisiae was subjected to a glucose pulse, it 
responded with a fast decrease of the intracellular pH from 6.43 to 5.2, within less than 10 s, 
followed by a partial increase to pH 6.0. In this experiment the fast dynamics of the intracellular pH 
was measured via the benzoic acid tracer method. In a 31P NMR study on glucose addition to yeast, 
Van Urk et al. (1989) found an intracellular pH decrease from 6.8 to 6.5, followed by alkalinization 
to the initial pH. In other studies (Ramos et al., 1989; Valle et al., 1987; van Urk et al., 1989) the 
intracellular pH was reported to decrease by 0.4 - 0.6 pH unit as response to glucose addition. 
Although those experiments were performed in a different experimental setup, a significant 
decrease of the intracellular pH as response to a sudden increase of the glucose concentration was 
consistently observed in all experiments. However, the mechanism behind the observed 
acidification has not been elucidated yet. Among others, accumulation of CO2 (den Hollander et al., 
1981) and an increase in the glucose phosphorylation rate (Ramos et al., 1989) were suggested as 
the causes for the observed intracellular acidification.  
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To obtain a better understanding of this phenomenon, we performed a systematic analysis of the 
transient metabolic response of S. cerevisiae, grown under well defined conditions in an aerobic 
glucose limited chemostat culture, to a glucose pulse. In order to obtain a comprehensive view, the 
analysis was performed using quantitative experimentally-obtained data and quantitative analysis of 
the previously mentioned different explanations for the intracellular acidification, including 
measurement of the buffering capacity of the cell, dynamic calculation of the electric charge 
balance and study of the transport of weak organic acids. To challenge our hypotheses, we also 
performed an ethanol pulse to an aerobic glucose limited chemostat culture of S. cerevisiae as an 
independent type of perturbation and studied the resulting dynamic responses of both the 
intracellular pH and the metabolome.  

 

Theory 

In order to properly identify the physiological mechanism behind the observed rapid decrease of the 
intracellular pH of S. cerevisiae as response to a glucose pulse, a quantitative approach is required. 
Correspondingly all relevant aspects need to be addressed, such as the buffering capacity of the cell, 
the charge dynamics due to the dynamics in the intracellular metabolite concentrations, and 
secretion of charged metabolites. The quantification of the buffering capacity of the cell, 
particularly in the physiological pH range, is necessary to determine how many protons are required 
to explain the observed change in the intracellular pH.  

A change of the intracellular pH is the result of an imbalance between proton production and 
consumption/removal by various metabolic reactions and transport processes. At a physiological pH 
range, proton production occurs for example in the ATP consuming glucose phosphorylation 
reaction by hexokinase: 

Glucose + ATP4- ⇒ G6P2- + ADP3- + H+ 

Whereas proton consumption occurs for example in the conversion of phosphoenolpyruvate to 
pyruvate by pyruvate kinase, where ATP is produced: 

PEP3- + ADP3- + H+ ⇒ Pyruvate- + ATP4- 

From a systemic point of view, the net production and consumption of protons in metabolic 
reactions is reflected in changes of the intracellular concentrations of charged metabolites, such as 
organic and inorganic phosphates, amino acids and weak acids. Hence, the proton accumulation or 
depletion related to metabolic processes can be calculated from the accumulation of the charged 
metabolites, in which the charge values are influenced by the intracellular pH.  

It is well known that S. cerevisiae secretes ethanol and acetic acid under fermentative or respiro-
fermentative conditions, which is accompanied by CO2 production. The intracellular pools of acetic 
acid and CO2, which are required to generate the driving force for the export of these compounds, 
also contribute to the a decrease of the intracellular pH. Assuming that these compounds are only 
transported via passive diffusion mechanism, the intracellular accumulation of acetic acid and CO2 
can be estimated from their secretion rates in combination with their membrane permeabilities. 
Subsequently, the proton accumulation or depletion related to the dynamics of these compounds can 
be calculated from their charge distributions, following the dissociation equilibrium. 
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Distribution of various dissociation states of metabolites 
In solution, metabolites attain a pH dependent equilibrium between their undissociated and 
dissociated forms. For a single charge metabolite, e.g. acetate, the dissociation equilibrium relation 
can be written as: 

.
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HOAc H OAc K

C
+ −+ −+ =       (4.1) 

in which K is the acetic acid dissociation constant, HOAc is the undissociated form of the acid and 
OAc- is its dissociated form. Thus, for a certain measurable total acetate concentration (CAc = COAc- 
+ CHOAc), the fraction of the dissociated (charged) state can be calculated as  
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The electric charge distribution of the other intracellular metabolites was calculated following the 
corresponding equilibrium relations, based on the previously determined intracellular pH measured 
during steady state, aerobic, carbon limited chemostat growth of S.cerevisiae (Kresnowati et al., 
2007a). The values of the dissociation constants for the metabolites were obtained from Alberty 
(2003), Voet et al. (1999) and an internet database (http://www.zirchrom.com/organic.htm). The 
calculation of the charge distribution of each intracellular metabolite: glycolytic intermediates and 
other phosphorylated metabolites, TCA cycle weak acids, nucleotides, bicarbonates and inorganic 
phosphates can be found in the Appendix. 

Because the cells try to maintain charge homeostasis, the change in the sum of all negative charges 
should be equal to the total release of protons, and hence the dynamic proton profile related to the 
dynamic profiles of the measured intracellular metabolites can be calculated (see Appendix).  

 

Export of weak acids 
A sudden increase in the net production rate of weak acids by the cells, e.g. acetic acid and CO2 as 
response to a perturbation, implies a temporary intracellular accumulation of these weak acids. This 
accumulation leads to an increased gradient between the intracellular and extracellular 
concentrations, and thus to an increase of the driving force for transport of these compounds across 
the cell membrane. Because of the dissociation equilibrium relation, the intracellular accumulation 
of weak acids also leads to accumulation of protons, resulting in a decrease of the intracellular pH. 

Cell membranes are normally only permeable to the undissociated form of relatively apolar weak 
acids, therefore such molecules can passively diffuse through cell membranes. By assuming that the 
weak acid will be transported by passive diffusion of the undissociated form only, the biomass 
specific secretion rate of the undissociated weak acid (qHX [mol.kgDW-1.s-1]) can be modeled as: 
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in which k [m.s-1] is the membrane permeability constant, Vx [m3.kgDW-1] and dx [m] are the 
specific cell volume and diameter, which are respectively defined to be 2  x 10-3 m3. kgDW-1 and 5 x 
10-6 m (Walker, 1998), CHXin and CHXex [mol.m-3] are the intracellular and extracellular 
concentrations of undissociated weak acids.  

Over a short time period of 0-100 s following the glucose and the ethanol pulses, in which the wash 
out from the chemostat can be neglected, the accumulation of acetic acid in the broth is only caused 
by the secretion of acetic acid from the cells. In this case, the dynamic mass balance for total 
extracellular acetate (CAcex) can be expressed as 

.exAc
HOAc x

dC
q C

dt
=           (4.4) 

here Cx [kgDW.m-3] is the biomass density. Since the total intracellular acetate concentration (CAcin) 
could not be measured, the intracellular (undissociated) acetic acid concentration (CHOAcin) was 
estimated from the secretion rate of acetic acid, which was obtained from the measured total 
extracellular acetate concentration (CAcex), and the membrane transport kinetics (passive diffusion, 
eq. (4.3)) as: 
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Accordingly the intracellular concentration of dissociated acetic acid (COAc-in) can be calculated 
from the undissociated acetic acid concentration (CHOAcin) given a particular intracellular pH (pHin) 
according to eq. (4.1).  

In case of CO2, part of the produced CO2 is transported to the gas phase, and therefore the mass 
balances on both liquid and gas phases (eqs. 4.6 – 4.7) are needed to calculate the CO2 production 
rate (qCO2 [mol.kgDW-1.s-1]). The transient intracellular carbon dioxide concentration (CCO2in*) can 
be calculated, similarly to the acetic acid, from the calculated transient CO2 production rate and 
dissolved CO2 profile following eq. (4.8) using a proper cell membrane permeability constant 
parameter, kCO2, for CO2. 
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Here VL [m3] and NG [mol] are the liquid volume and gas hold up of the fermentor; CCO2,in, CCO2, 
CCO2,in* [mol.m-3] are respectively the concentrations of carbon dioxide in the feed medium, 
fermentation broth and the intracellular concentration; xCO2 is the carbon dioxide mol fraction in the 
gas; φL [m3.s-1] and φG,in , φG,out [mol.s-1] are successively the medium, inlet and outlet gas flow 
rates; klaCO2 [s-1] and kCO2 [m.s-1] are the gas-liquid transfer coefficients and the membrane 
permeability coefficient for CO2; and mCO2 is the CO2 partition coefficient between gas and liquid 
which is derived from the Henry coefficient for carbon dioxide; whereas p, T, R are successively 
the fermentor pressure, temperature and universal gas constant.  
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Material and methods 

Strain and fermentation condition 
The haploid yeast, Saccharomyces cerevisiae CEN PK 113-7D, was cultivated in an aerobic 
glucose-limited chemostat culture of 4 L working volume (in a 7 L Applikon fermentor) at a 
dilution rate of 0.05 hr-1. The pH was controlled at 5.0 using 4 M NaOH and temperature at 30oC. 
The aeration rate was 200 L.hr-1 (≈ 8.05 mol.hr-1), whereas the fermentation was operated at 0.3 bar 
overpressure and stirrer speed of 600 rpm to ensure a sufficiently high dissolved oxygen level 
(>80%), measured online, in-situ with a Mettler Toledo DOT sensor (Mettler-Toledo GmbH, 
Switzerland). The medium (Mashego et al., 2005) contains 27.1 g.L-1 of glucose and 1.42 g.L-1 of 
ethanol, to support a biomass concentration of about 14.5 g DW. L-1. Ethanol was added to avoid 
the occurrence of oscillations. The chemostat was considered to obtain its steady state conditions 
after a period of 5 residence times (the counting of the chemostat age was started after the end of 
the batch phase) which was checked by the measured constant biomass concentration and constant 
O2 consumption, CO2 production rate from off-gas analysis.  

Perturbation experiment 
Perturbation experiments were performed in a satellite plug flow reactor, the so-called BioSCOPE 
(Mashego et al., 2006a), with a working volume of 3.46 mL. In this satellite plug flow reactor the 
perturbing agent (pulse solution) was mixed with the fermentation broth from the steady state 
chemostat culture and 10 samples were taken at various distances of the plug flow reactor, 
corresponding to different exposure times to the perturbation. The total flow rate applied in these 
BioSCOPE experiments, 2.34 – 2.81 mL.min-1, gives sampling times between 1.9 s and 78.1 – 88.1 
s. Two different kinds of perturbation experiments were performed: a glucose pulse (giving a final 
glucose concentration in the mixed flow of about 7 mM) and an ethanol pulse (giving a final 
ethanol concentration in the mixed flow of about 8.4 mM). Each perturbation experiment was 
carried out in duplicate. For each experiment two independent samples were taken at each time 
point. 

Measurement of the fast dynamic in intracellular pH  
Measurement of the dynamics of the intracellular pH during the glucose and ethanol pulse 
experiments in the BioSCOPE was performed by adding a trace amount of benzoic acid to the pulse 
solution, equivalent to an initial total benzoate concentration (CXT) of about 200 µM in the mixed 
flow in the BioSCOPE. The calculation of intracellular pH was performed based on the method 
described previously by Kresnowati et al (2007a): the dynamics in the intracellular pH was inferred 
from the measured extracellular benzoic acid concentration and extracellular pH profile using the 
passive diffusion rate equation (eq.4.3), a predetermined membrane permeability constant for 
benzoic acid and assuming that benzoic acid is not metabolized by the cell. The intracellular pH at 
the initial steady state condition cannot be determined along because the benzoic acid is only added 
together with the perturbing solution and not yet present in the initial steady state condition. 
Therefore, the initial steady state intracellular pH needs to be estimated separately, i.e. from the 
transient benzoic acid profile following the benzoic acid tracer perturbation in the BioSCOPE 
(Kresnowati et al., 2007a) to the same or an identical fermentation. 

Sample processing for intracellular metabolite analysis 
1 mL of broth was withdrawn from the BioSCOPE into 5 mL of 60% (v/v) methanol/water at –40oC 
to immediately quench all enzyme activities. Subsequently the samples were processed according 
the intracellular metabolite sample processing method as described in by Wu et al. (2005a). 
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Sample processing for extracellular metabolite analysis 
To directly separate the supernatant from the biomass, 1 mL of broth was withdrawn from the 
BioSCOPE into an evacuated tube through a 0.45 μm pore size filter (Millipore, USA). The 
supernatant collected in the tube was then stored at –80o C until further analysis for extracellular 
metabolites.  

Metabolite analysis 
The extracellular total benzoic acid level was measured by an isocratic HPLC method using a 
Platinum EPS C18 column (Waters, USA) with 28% (v/v) acetonitril in phosphate buffer at pH 3.5 
as eluent.  

Measurement of the residual glucose concentration in the supernatant was performed 
spectrophotometrically (Agilent 8453 UV–visible spectroscopy system, Waldbronn, Germany) 
using an Enzytec kit (cat. no. 1002808) according to the manufacturer’s instructions.  

Measurement of the acetic acid and ethanol concentrations in the supernatant was carried out by gas 
chromatography using a Chromopack CP 9001 with CP 9010 liquid sampler, connected to a Flame 
Ionisation Detector (FID) on a Innowax 15m column (Agilent, USA) with helium as the carrier gas.  

Concentrations of glycolytic, pentose phosphate, storage carbohydrate and TCA cycle intermediates 
(G6P, F6P, F1,6P2, pool of 2PG and 3PG, PEP, 6PG, G1P, M6P, T6P, pyruvate, pool of citrate and 
isocitrate, α-keto glutarate, fumarate, succinate and malate) in the cell extracts were measured with 
an ion exchange based LC-ESI-MS/MS method as described in van Dam et al. (2002). 
Quantification of all metabolite concentrations was performed based on isotopic dilution (IDMS) 
concept as described in Wu et al. (2005a). 

With respect to the determination of the intracellular acetic acid concentration, the low molecular 
weight as well as the volatility of this compound hampers its accurate quantification. Significant 
amounts of acetic acid were lost during the quenching, washing and the evaporation steps of the 
intracellular sample processing. The use of 13C labeled acetic acid as internal standard, which was 
added to the samples after quenching and washing of the cells and before extraction in boiling 
ethanol (Wu et al., 2005a), could not correct for the loss of acetic acid into the quenching solution 
due to the passive diffusion of intracellular acetic acid to the quenching solution. The intracellular 
acetic acid concentration during the pulse experiments was thus not measured and, instead, was 
estimated as has been described in the theory section.  

Dynamic concentrations of nucleotides (ATP, ADP, AMP) were not measured here. To complete 
the analysis, data on dynamic nucleotide concentration profiles as response to a glucose pulse were 
taken from a similar perturbation experiment which was performed directly in the fermentor (Wu et 
al., 2006a), whereas data on dynamic nucleotide concentration profiles as response to an ethanol 
pulse were taken from an similar BioSCOPE perturbation (Visser et al., 2004b). 

Dynamics in inorganic phosphate concentration profile following both pulses were inferred from 
the dynamics in the organic phosphate concentrations (glycolytic, pentose phosphate and storage 
carbohydrate intermediates as well as nucleotides) based on the assumption that the total 
intracellular phosphate concentration is conserved during these perturbation experiments (Wu et al., 
2006a).  

The pH of the supernatants of the BioSCOPE samples was measured off-line with a pH meter 
(Metrohm, Switzerland). 
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Off gas analysis 
Oxygen and carbon dioxide concentrations in the exhaust gas of the fermentation were measured 
on-line by a combined oxygen (paramagnetic) and carbon dioxide (infrared) analyzer NGA 2000 
(Fisher-Rosemount, Germany). Since it is not possible to measure the dynamic off-gas profile 
during perturbation experiments in the BioSCOPE, these profiles were obtained from similar 
glucose and ethanol perturbation experiments performed in the fermentor, as described by Bloemen 
et al. (2003) and Wu et al. (2003).  

Measurement of cell buffering capacity  
To prepare samples of the cell free extract, the fermentation broth was withdrawn from the 
fermentor and centrifuged (Heraeus Biofuge stratos, Heraeus Instrument, Germany) at 5,000 g for 
15 min to separate cell pellets from supernatant. The cell pellets were washed in an isotonic 
aqueous solution (KCl 0.1 N) and mixed well before centrifugation. The washed cell pellets were 
then redisolved in the isotonic solution and mixed well before they were disrupted by a French 
Pressure Cell (Constant System Ltd, UK). Subsequently the disrupted cells were centrifuged to 
remove cell debris. The supernatant, i.e. the cell free extract, was used for the buffering capacity 
determination. Samples and vessels (falcon tubes, beakers, etc) were weighted before and after each 
step to allow the calculation of the buffering capacity which was normalized to the biomass 
concentration in the samples [µmol H+ or OH- per gDW per pH unit]. 

Determination of the buffering capacity was conducted by titration; using a pH probe, acid pump 
and base pump connected to and monitored by an ADI 1030 Biocontroller (Applikon, The 
Netherlands). 0.1 M HCl and 0.1 M KOH were used for the titration. During titration the pH was 
recorded along with the time during which either pump was active (dosage monitor function), 
allowing the quantification of the added amounts of acid or base. Prior to the experiment, the acid 
and base pumps were manually calibrated. The sample was first titrated with alkaline to about pH 8, 
followed by back titration with acid to about pH 3.5. Finally the pH was increased again to pH 7. 

The buffering capacity (βT [µmol H+ or OH- per gDW per pH unit]) was calculated as the molar 
amount of acid or base needed to change the pH by 1 unit, normalized to gram dry weight of 
sample, within the pH range of 5 – 7. This value was obtained from the slope of titration curve (pH 
versus amount of acid or base added and normalized to gram dry weight of sample used to obtain 
the cell extract) between pH 5 and 7. 

 
 

Results 

Fast dynamics of the intracellular pH during glucose and ethanol pulse 
experiments 
A sudden increase in the extracellular glucose concentration from the residual concentration of 0.2 
mM during glucose limited chemostat growth to about 7 mM in the glucose pulse experiment, leads 
to 4 to 5 fold increase in the glucose uptake rate (see Figure 4.1a). As was previously reported 
(Kresnowati et al., 2007a), this leads to a fast decrease in the intracellular pH (Figure 4.2a). It can 
be seen from this figure that within less than 5 seconds following the glucose pulse the calculated 
intracellular pH decreases from 6.4 to 5.2, which is immediately followed by rapid partial 
alkalinization, in which the intracellular pH increases to 6.0. Also in case of an ethanol pulse 
(Figure 4.1b) the intracellular pH rapidly decreases from 6.4 to 5.5 before it returns to a stable value 
of 6.0 (Figure 4.2b).  
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Figure 4.1 Measured glucose and ethanol concentration profiles during the perturbation experiments 
(a) glucose pulse, (b) ethanol pulse 

 

 

Figure 4.2 Dynamic intracellular and extracellular pH (a) as response to a glucose pulse, (b) as 
response to an ethanol pulse. Instead of representing the standard deviation of the measurements, the 

error bars represent the results of sensitivity analysis of the intracellular pH towards membrane 
permeability coefficient for benzoic acid 

 

An important parameter for the calculation of the dynamic behavior of the intracellular pH with the 
benzoic acid tracer method is the membrane permeability for this compound. It is important to note 
that the previously estimated membrane permeability constant for benzoic acid which is used in the 
intracellular pH calculation, 0.92 ± 0.74 x 10-5 m.s-1 (Kresnowati et al., 2007a), has a relatively 
large standard deviation. This leads to uncertainty in the estimated intracellular pH, particularly 
when the pH is calculated from a highly dynamic benzoic acid profile. For that reason we 
performed a sensitivity analysis of the calculated intracellular pH by changing the benzoic acid 
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permeability constant to a 50% lower and a 50% higher level and we plotted the results as the error 
bars in Figure 4.2. Large uncertainties of the calculated intracellular pH particularly within the fast 
dynamic region, < 10 s following the perturbation, are observed. 

Despite the broad error bars, it is clear that both perturbations lead to a significant intracellular 
acidification, in which the intracellular pH decreases from 6.4 to about 5.8. After about 20 s, a new 
pseudo steady state condition is reached, in which the rate of proton removal is equivalent to the 
rate of proton production, leading to a constant intracellular pH of around 6.0.  

 

Cell buffering capacity 
The determination of the buffering capacity of the cells was performed with four independent 
samples, to each of which three independent titrations were performed. Results of a titration 
experiment are shown in Figure 4.3. It can be seen from this figure that within a range of pH 5.0 to 
7.0 the relation between the amount of acid or alkaline added to the cell extract, normalized to gram 
dry weight of biomass in the sample, and the change in pH is linear. The average buffering capacity 
(βT) obtained from these experiments is 403 ± 39 μmol H+ or OH- per gram dry weight of biomass 
in sample to create 1 unit pH change. The obtained value seems to be reasonable, when compared to 
reported cell buffering capacities which vary between 380 – 456 µmol NaOH/gDW/pH unit for cell 
free extract of yeast (Sigler et al., 1981; where the result was presented as 11.4 mM NaOH/pH unit 
for 25 – 30 gDW.L-1 yeast cell suspension). 

 

Table 4.1 Calculated cytosolic buffering capacity [in µmol of H+ or OH-/gDW/pH unit] within pH 
range 5.0 – 7.0 

 sample 1 sample 2 sample 3 sample 4 

titration 1  466 446 404 

titration 2 447 396 393 342 

titration 3 404 399 399 342 

Average 403 ± 39 
 

 

Figure 4.3 Acid and base titration of the cell free extract to determine the buffering capacity 
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The measured buffering capacity of the cell quantifies how many protons are needed to explain the 
decrease in the intracellular pH as response to either the glucose or the ethanol pulse. It was 
calculated that 160 μmol.gDW-1 of protons are required to lower the intracellular pH from the 
steady state value of 6.4 to 6.0, the new pseudo state intracellular pH in both experiments. These 
numbers can be used further to evaluate possible mechanisms, which are responsible for the 
observed dynamic behavior of the intracellular pH as response to the glucose or ethanol pulses.  

 

General metabolic responses and dynamic charge analysis after the glucose pulse 
and the ethanol pulse perturbations 
Transient metabolite profiles following glucose and ethanol pulses observed in our experiments are 
presented in Figures 4.4 and 4.5. Reproducible profiles were obtained for the two independent 
experiments carried out for each perturbation, whereas the standard deviations between the 
duplicate samples for each time point are relatively small. The observed metabolite profiles are very 
comparable to the previous studies (Visser et al., 2004b; Wu et al., 2006a; Kresnowati et al., 2006) 
except for the dynamic profiles of TCA cycle intermediates following the ethanol pulse experiment, 
which were not measured in the previous experiment. In short, the glucose pulse leads to the 
accumulation of metabolites of the upper glycolytic pathway (G6P, F6P and F1,6P2), the 
accumulation of intermediates of storage carbohydrate biosynthesic pathways (G1P, T6P and M6P), 
the accumulation of TCA cycle intermediates (citrate, α-ketoglutarate, succinate, fumarate and 
malate) and the depletion of metabolites of the lower glycolytic pathway (PEP, 2PG and 3PG). In 
contrast, the ethanol pulse does not significantly change the concentrations of the intermediates of 
the upper glycolytic pathway (except for F1,6P2 which shows a slight increase), the intermediates of 
storage carbohydrate metabolism and TCA cycle metabolites. However, the ethanol pulse induces a 
significant depletion of metabolites of the lower glycolytic pathway. An important difference 
between the glucose and the ethanol pulse is that the glucose pulse leads to the secretion of ethanol 
and increases both the O2 consumption and CO2 production rates, whereas the ethanol pulse leads to 
an increase in the O2 consumption rate but to a decrease in the CO2 production rate (Figure 4.6). In 
both pulse experiments a significant amount of acetic acid is secreted (Figure 4.7). Discussion on 
the physiological phenomena behind the observed transient metabolite profiles which are typically 
observed in these glucose and ethanol pulse experiments have been given previously, e.g. by Visser 
et al. (2004), Wu et al. (2006a) or Kresnowati et al. (2006). 

The calculation of the dynamic charge distribution for the glucose and the ethanol pulse 
experiments was performed using the measured dynamic patterns of the TCA cycle weak acids 
(pyruvate, pool of citrate and isocitrate, α-keto glutarate, succinate, fumarate and malate) and the 
phosphorylated metabolites of the central carbon metabolism (G6P, F6P, F1,6P2, pool of 2PG and 
3PG, PEP, 6PG, G1P, T6P, M6P), by assuming a constant intracellular pH of 6.43. In order to 
complete the analysis, the contribution to the dynamic charge distribution of the adenosine 
nucleotides (ATP, ADP, AMP) and inorganic phosphate, of which the levels were not measured in 
our experiment, were also performed using previously reported data sets from a similar glucose 
pulse experiment carried out directly in a chemostat (Wu et al., 2006a; Kresnowati et al., 2006) and 
from a similar ethanol pulse experiment performed in the BioSCOPE (Visser et al., 2004b). 
Furthermore the dynamic pattern of the inorganic phosphate concentration was inferred from the 
measured intracellular concentration of inorganic phosphate (see Materials and Methods). It has 
been found previously that within the time frame of the perturbation experiments, 0 – 100 s, no 
significant changes in the free amino acid pools occurred as response to the glucose pulse (Wu et 
al., 2006a). Therefore no further analyses and calculations on proton accumulation due to dynamic 
of amino acid concentrations were performed in this study.  



 

 
 
 
 
 

 
 

Figure 4.4 Time profiles of the intracellular concentrations of weak acids and TCA cycle intermediates as response to a glucose pulse (squares, left) and an 
ethanol pulse (triangles, right) 

 



 
 
 

 

Figure 4.5 Time profiles of the intracellular concentrations of glycolytic intermediates and other phosphorylated metabolites as response to a glucose pulse 
(squares, left) and an ethanol pulse (triangles, right) 
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Because the dissociation constants of the weak acids in the TCA cycle are mostly lower than 5.0 
(see Appendix), these acids are primarily present in the dissociated form within a physiological 
range of the intracellular pH of 6.0 - 6.43. This implies that changes in their concentration contri-
bute to the transient change in the intracellular pH. However, with exception of citrate and malate, 
the intracellular concentrations of the TCA cycle intermediates are relatively low (< 0.5 μmol. 
gDW-1) and the changes of the concentrations as response to either the glucose pulse or the ethanol 
pulse are relatively small (Figure 4.4). Accordingly, the calculated dynamic proton accumulation 
from the measured dynamic concentration profiles of the weak acids in the TCA cycle is very small, 
for both the glucose pulse and the ethanol pulse experiment. In both cases the calculated proton 
accumulation from these intermediates is less than 10 μmol.gDW-1 (Figure 4.8), which is by far 
insufficient to explain the observed decrease of the intracellular pH. These results clearly indicate 
that the fast decrease of the intracellular pH as response to either the glucose pulse or the ethanol 
pulse can not be explained by the transient accumulation of TCA cycle intermediates.  

As has been briefly discussed, no significant accumulation of phosphorylated metabolites is 
observed as responses to the ethanol pulse (Figure 4.5). The fact that intracellular acidification was 
also observed as response to an ethanol pulse where, in contrast to what is observed for the glucose 
pulse, hardly any accumulation of phosphorylated compounds occurred (Figure 4.5) contradicts, in 
a qualitative sense, the hypothesis that intracellular acidification is caused by an increased rate of 
glucose phosphorylation (Ramos et al, 1989).  

Quantitatively, the calculation of the dynamics of proton accumulation as result of the transient 
changes in the concentration of the negatively charged metabolites in the glycolytic pathway and 
carbon storage metabolism as response to the glucose pulse leads to a maximal proton accumulation 
in the order of 60-80 μmol.gDW-1, which is achieved about 20 s after the glucose pulse (Figure 4.8). 
The biggest contribution is given by F1,6P2 which is mainly present as F1,6P2

-3 and F1,6P2
-4 in the 

physiological pH range (see Appendix) and shows an up to 35 fold increase in concentration, from 
0.5 up to 19 μmol.gDW-1 (see Figure 4.5). This maximum proton accumulation brought about by 
the increase of the F1,6P2 concentration may explain a significant fraction (up to 50%) of the new 
pseudo steady state value of the intracellular pH value  the glucose pulse. A similar calculation of 
the effect of the metabolite dynamics following the ethanol pulse results in a proton accumulation 
of less than 10 μmol.gDW-1. According to this calculation it is very unlikely that the intracellular 
acidification observed in the ethanol pulse experiment is caused by the increase in intracellular 
phosphorylated intermediates. 

Also changes in nucleotide concentrations could lead to changes in the intracellular pH. It has been 
reported previously that the size of the adenosine nucleotide pool decreased by half in a similar 
glucose pulse experiment (Wu et al., 2006a; Kresnowati et al., 2006). In absolute amounts the 
decrease was ∼5 μmol.gDW-1 of ATP and ∼2 μmol.gDW-1 of ADP which would lead to a depletion 
of protons in order of 15 – 20 μmol.gDW-1 (Figure 4.8). On the other hand, it has been reported 
previously that in a similar ethanol pulse experiment no significant changes in the ATP 
concentrations was observed (Visser et al., 2004b). These observations imply that the dynamics of 
the nucleotide concentrations in both the glucose and the ethanol pulse experiments are not likely to 
result in any significant proton accumulation that can explain the fast decrease in the intracellular 
pH. Instead, in case of the glucose pulse the effect would be proton depletion instead of 
accumulation (see Figure 4.8). 

Another important factor that may contribute to the dynamics in intracellular pH is the free 
phosphate pool. Here the dynamics in the inorganic phosphate pool concentration was inferred from 
the dynamics of the intracellular organic phosphate concentrations, e.g.  phosphorylated metabolites 
and nucleotides (see Materials and Methods). By combining the nucleotide concentration data from 
Wu et al. (2006a) and our data on phosphorylated metabolite concentrations, we found that the free 
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phosphate pool is depleted by 40 μmol.gDW-1 during the glucose pulse which corresponds with a 
proton depletion of about 70 μmol.gDW-1 (Figure 4.8).  

It can be inferred from these calculations that the dynamics of proton accumulation due to the 
dynamics in the concentrations of phosphorylated metabolites cannot be considered separately, 
without considering the dynamics in the nucleotide and the inorganic phosphate concentrations. The 
reason for this is that all these compounds are related by phosphate transfer processes. Overall, the 
dynamics in the intracellular charge distribution related to the dynamics in the intracellular 
metabolites as response to the glucose pulse may account for a proton accumulation of about 10 
μmol.gDW-1, whereas in case of the ethanol pulse the overall effect is negligible. From these results 
it can be concluded that the calculated magnitude of proton accumulation is far from sufficient to 
explain the observed decrease in the intracellular pH for both the glucose and the ethanol pulses.  

 

 

Figure 4.6 Estimated dynamic OUR (black lines) and CER (grey lines) profile as a response to (a) 
glucose pulse or (b) ethanol pulse 

 

Carbon dioxide secretion 
The glucose pulse leads to a substantial increase in the CO2 production. Within the first 30 s after 
the pulse, the carbon dioxide production rate increases from 0.4 to 1.2 μmol.gDW-1.s-1 (Figure 4.6). 
This trend corresponds with the increase in ethanol and acetic acid production, since the conversion 
of pyruvate to acetaldehyde, the intermediate for both ethanol and acetic acid, via pyruvate 
decarboxylase produces CO2 as a side product. On the other hand, a significant drop of the CO2 
production rate, up to 60% of the initial steady state value, was observed within 30 s after the 
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ethanol pulse. The fact that an increase in the CO2 production rate was observed for the glucose 
pulse whereas a decrease in the CO2 production rate was observed for the ethanol pulse already 
qualitatively discards the hypothesis that the observed intracellular acidification in both the glucose 
and the ethanol pulses can be caused by intracellular CO2 accumulation.  

However, in order to quantify the contribution of CO2 production to the intracellular acidification, 
the intracellular accumulation of CO2 was calculated from the estimated transient CO2 production 
rate profile (Figure 4.6) and the transient CO2 concentration in the fermentation broth following eq. 
(4.8), using a membrane permeability parameter for CO2 of 0.5 x 10-2 m.s-1 (Gutknecht et al., 1988; 
Jones and Greenfield, 1982). This high permeability of the cell membrane for CO2 implies that a 
relatively low driving force, or low difference between the extracellular and intracellular CO2 
concentration, is required to remove the produced CO2. Consequently, a low intracellular CO2 
accumulation is calculated, which is about 2 μmol.gDW-1. Considering the equilibrium constant of 
the CO2 hydration and the dissociation constants of H2CO3 (eqs. 4.6 – 4.8), the proton accumulation 
related to the accumulation of intracellular CO2 within the first 30 s after the glucose pulse is 
calculated to be less than 1 μmol.gDW-1, which is 2 orders of magnitude too low to explain the 
observed intracellular acidification.  

 

Secretion of acetic acid 
In both the glucose and the ethanol pulse experiments, an immediate and significant secretion of 
acetic acid from the yeast cells was observed. As can be seen from Figure 4.7, the measured 
concentration patterns for the glucose and the ethanol pulses were very similar. This qualitatively 
indicates that intracellular accumulation of metabolically produced acetic acid could be a potential 
candidate for the cause of the rapid intracellular acidification observed in both pulses. To verify 
this, the intracellular concentration of undissociated acetic acid (CHOAcin) was calculated from the 
secretion rate of acetic acid, which was calculated from the extracellular acetic acid concentration 
profile using eqs. (4.3 – 4.4). The cell membrane permeability for the undissociated acetic acid used 
in the calculation was assumed to be 1.1 x 10-7 m.s-1. This value was extrapolated from the 
estimated benzoic acid transport coefficient for the yeast strain used in this study, 0.92 ± 0.74 x 10-5 
m.s-1 (Kresnowati et al., 2007a), and the ratio of the transport coefficients of acetic acid and benzoic 
acid determined for a Mueller-Rudin synthetic lipid membrane (which are respectively 5.5 x 10-3 
m.s-1 and 6.6 x 10-5 m.s-1 for benzoic acid and acetic acid) yielding a ratio of acetic acid to benzoic 
acid permeability of about 1:90 (Walter and Gutknecht, 1984)). The estimated time profile of the 
intracellular concentration of undissociated acetic acid (CHOAcin) was used to calculate the time 
profile for total intracellular acetate (CAcin) and the resulting proton accumulation profile.  

 

Figure 4.7 Time profiles of extracellular acetic acid concentration as a response to a glucose pulse 
(squares) and ethanol pulse (triangles) 
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Figure 4.8 Time profiles of proton accumulation due to dynamics in glycolytic intermediates and other 
phosphorylated metabolites, TCA cycle weak acids, nucleotides and inorganic phosphates as responses 

to a glucose pulse (squares, left) and an ethanol pulse (triangles, right)  

 
 

This calculation reveals that to achieve the observed acetic acid secretion rate by passive diffusion 
only, a driving force for undissociated acetic acid (CHOAcin – CHOAcex) in the order of 1 mmol.L-1 is 
required, which implies that the calculated intracellular concentration of undissociated acetic acid 
should be in the order of 2 µmol.gDW-1. Assuming a constant intracellular pH of 6.43, this value is 
equivalent with an intracellular total acetate or proton accumulation of about 100 µmol.gDW-1. This 
amount of released protons contributes to about 63 % of the total amount of proton accumulation 
needed to explain the pH at the new pseudo steady state for both the ethanol and glucose pulses. It 
appears that the transient intracellular accumulation of acetic acid certainly could provide a 
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significant contribution for the intracellular acidification as response to both the glucose pulse and 
the ethanol pulses. 

On the other hand, assuming that there is no other carbon source to synthesize the acetate than the 
pulsed glucose or ethanol, the maximal uptake rate of these pulsed compounds limits the maximal 
rate of acetate accumulation. Assuming that maximally only 2 mol acetate can be produced from 1 
mol of glucose, thus within 20 s following the glucose pulse perturbation, the increase in the 
glucose uptake rate will maximally yield 25.7 µmol.gDW-1 acetate, which is 4 fold too low 
compared to the required total acetate accumulation estimated from the secretion by passive 
diffusion and 6 fold too low compared to the required acetate accumulation to explain the observed 
intracellular acidification. Similarly, only 1 mol of acetate can be produced from 1 mol of ethanol, 
and thus within 20 s following the ethanol pulse perturbation, the increase in the ethanol uptake rate 
will maximally yield 5.5 µmol.gDW-1 acetate. These calculated maximal rates of acetate 
accumulation may be underestimated due to the mobilization of storage materials following the 
pulse perturbations. However, this is highly unlikely to fully explain the large differences.  

Another source for the discrepancies may be the overestimation of the permeability coefficient of 
acetic acid. A 4 fold higher permeability coefficient, for example, would decrease the required 
accumulation of intracellular acetate by about 4 fold, such that the required acetate accumulation to 
explain the observed secretion rate following the glucose pulse matches the maximal rate calculated 
from the flux balance. However, this lower acetate accumulation could not explain the observed 
intracellular pH profiles. 

 

Discussion 

Despite the uncertainties in the estimation of the short time dynamics of the intracellular pH in the 
glucose and ethanol pulse experiments with the benzoate tracer method, the magnitude of the 
decrease during the pseudo steady state could be reliably estimated. Taking into account the 
measured buffering capacity, which was measured to be in the order of 400 µmol H+ or OH- per 
gram dry weight of biomass per pH unit, the estimated decrease of the intracellular pH of about 0.4 
pH unit would require an intracellular proton accumulation of 160 µmol.gDW-1. Our quantitative 
evaluation suggests that none of the discussed possible sources of intracellular proton, that are, 
changes in the concentrations of phosphorylated metabolites, adenosine nucleotides and the free 
phosphate pool, changes in the concentration of TCA cycle intermediates, the secretion of carbon 
dioxide and the secretion of acetic acid, is able to accumulate that much of proton within the same 
time window as the occurrence of intracellular pH drop. This study also shows that the most likely 
candidate for explaining the intracellular pH drop is the intracellular accumulation of acetic acid, 
which slowly permeates the cell membrane. Nonetheless, there is still a discrepancy between the 
calculated overall proton accumulation and the observed pH drop. This may point at a quantitative 
evaluation of other processes that may contribute to the dynamics in intracellular pH, e.g. dynamics 
in membrane transport processes, or that one of our quantitative measurement needs further 
improvement. 

By far a decrease in the intracellular pH as response to a sudden increase in the extracellular 
glucose concentration is consistently observed in various studies (Kresnowati et al., 2006; van Urk 
et al., 1989; Ramos et al., 1989; Valle et al., 1987). However, these experiments were performed in 
completely different experimental sets up and the intracellular pH was measured by different 
methods. Therefore the absolute intracellular pH values obtained from these experiments are not 
comparable.  

84 



Quantitative Physiology 
 

The buffering capacity measurement gives a narrow standard deviation, 403 ± 39 µmol H+ or OH- 
per gram dry weight of biomass per pH unit, and the estimated value is comparable to the reported 
value of 380 – 456 µmol NaOH/gDW/pH unit for cell free extract of yeast (Sigler et al., 1981). 
However, this relatively high value implies that a large accumulation of acid is required in order to 
explain the observed change in the intracellular pH. It is important to note here that our buffering 
capacity measurements as well as the one reported by Sigler et al. were carried out in-vitro, which 
may not reflect the in-vivo condition. Although we aimed at the determination of cytosolic 
buffering capacity, we did not perform any particular organelles separation in the sample 
preparation process. Hence the measured value is actually the overall cell buffering capacity 
whereas there might be some variations in the buffering capacity of different organelles. This adds 
some uncertainties to the measured value. For eukaryotic cells compartmentalized analyses of 
intracellular pH, buffering capacity, charge dynamics and other related metabolic processes would 
therefore be more appropriate. In addition, the preparation of cell free extract itself may change the 
conformation of proteins and may release proteases that degrade proteins, thereby changing the 
buffering capacity of the sample. From the above it can be concluded that it is necessary to develop 
a suitable method to measure the actual, in-vivo buffering capacity of the (compartmentalized) cell. 
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Appendix 

The distribution of various dissociation states of metabolites 

 

The dissociation equilibrium for a single charge metabolite is written as: 

.
H X

HX

C C
HX H X K

C
+ −+ −+ =       (A-1) 

And thus, for a certain measurable total concentration of this metabolite (CXT = CX- + CHX), the 
fraction of the undissociated state can be calculated as  
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For a double charge metabolite, the dissociation equilibrium is written as 
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Accordingly the fraction of each dissociated state can be calculated as 
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For a triple charge metabolite, the dissociation equilibrium is written as 
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And accordingly the fraction of each dissociated state can be calculated as 
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Correspondingly, the total proton accumulation can be calculated as the total charges of the 
metabolites as 
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In case of incomplete information on the dissociation constants of particular metabolites, as was the 
case for the some phosphorylated metabolites, the dissociation constant was then assumed to be 
similar to the dissociation constant of the most structurally close metabolite, e.g. the dissociation 
constant of 6PG, T6P and M6P were assumed to be the same as the one of G6P.  

In case of incomplete information on the dissociation constants of the various species of a particular 
metabolite, such is the case for most of the phosphorylated metabolites, the calculation of charge 
distribution was performed based on the number of dissociation constants available per metabolite, 
instead of maximal number of dissociation species. This simplification is acceptable considering the 
low first dissociation constant phosphate (H3PO4 ↔ H+ + PO4

-, pK = 2.12) which give negligible 
concentration of the uncharged specie at the physiological pH. To clarify this, an example on the 
calculation of total proton accumulation related with G6P profile at pH 6.43 is presented as follow: 
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Table A Dissociation constants and distribution of various metabolite dissociation states calculated for 
a constant intracellular pH 6.43 

Component  pK Total charge per mol metabolite 
at pH 6.43 

G6P 26 6G P H G P− + −+  6.42 -1.506 
F6P 26 6F P H F P− + −+  6.27 -1.591 

F1,6P2 
3 4

2 2
2 3

2 2

1,6 1,6

1,6 1,6

F P H F P

F P H F P

− +

− +

+

+

−

−
 6.05 

6.65 -3.092 

2PG + 3PG 2 32 2PG H PG− + + −  7.53 -2.066 
PEP 2 3PEP H PEP− + −+  7.00 -2.212 
6PG 2 36 6PG H PG− + + −  7.00 -2.406 
G1P 21 1G P H G P− + −+  6.50 -1.460 
T6P 26 6T P H T P− + −+  7.00 -1.460 
M6P 26 6M P H M P− + −+  6.42 -1.506 

ATP 
3 4

2 3

ATP H ATP

ATP H ATP

− + −

− +

+

+ −
 7.60 

4.68 -3.046 
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2 3
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+
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4.36 -2.143 
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2AMP H AMP
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+
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pyruvate pyr H pyr+ −+  2.39 -1.000 
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2 3
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-2.507 

α keto glutarate 2

kg H kg

kg H kg

α α

α α

+ −

− + −

+

+
 2.47 

4.68 -1.983 
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In case of carbon dioxide, the hydration/dehydration reaction also needs to be taken into account in 
the calculation, such as  
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The first two reactions are sometimes combine, lead to a combined pK value of 6.35. 
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Energetic and metabolic transient response  
of Saccharomyces cerevisiae to benzoic acid 
 

 

Summary 

Saccharomyces cerevisiae is known to be able to adapt to the presence of the commonly-used-food-
preservative benzoic acid at a large expense of energy. This property offers the possibility of using 
benzoic acid as a tool for a targeted perturbation of the energy system, i.e. ATP, which is highly 
important to study the kinetics and regulation of central carbon metabolism of S.cerevisiae. This 
paper presents the application of a well defined aerobic, glucose-limited chemostat system and the 
stimulus response approach to quantitatively study the energetic and metabolic aspects of the 
transient adaptation of S.cerevisiae to a shift-up in benzoic acid concentration, from 0 to 0.8 mM, 
which will serve as the basis information for performing such a energy targeted perturbation 
experiment. From this experimental set up we found a fast induction of the benzoate transporter 
within 3000 s. During this short induction period significant transient increases in the oxygen 
consumption and the carbon dioxide production rates, of about 50%, are observed in the culture 
which are probably caused by a high energy requirement for the synthesis of the benzoate exporters 
and appear to be fueled by the mobilization of storage carbohydrates that leading to the higher 
glycolytic flux, as is indicated by the temporary ethanol secretion. We also found that within a 
longer time of exposure to benzoic acid, S.cerevisiae decreases the cell membrane permeability for 
this weak acid by a factor 10 and decreases the cell size to about 80% of the initial size. The 
intracellular metabolite profile in the new steady state condition indicates increases in the glycolytic 
and TCA cycle fluxes which agree with the observed increases in specific glucose and oxygen 
uptake rates.  
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Introduction 

Benzoic acid has since long been an important value for food industries. Along with other weak 
acids such as sulfite and sulfur dioxide, sorbic acid, acetic acid, propionic acid and lactic acid; 
benzoic acid is used on a large scale as food preservative, preventing microbial spoilage in foods 
and beverages.  

The optimum condition for this type of preservatives is a low pH. In acidic media, particularly at 
pH values lower than the pKa (the dissociation constant) of the weak acid, the weak acid is mostly 
present in its undissociated form, which is able to permeate the cell membranes. Because of the high 
intracellular pH, 6.4 – 7.5 (Kresnowati et al., 2007a; Gonzalez et al., 2000; van Urk et al., 1989; 
den Hollander et al., 1981; Henriques et al., 1997) the intruding undissociated acid will dissociate 
into its anion with the release of a proton. This results in intracellular acidification (Krebs et al., 
1983) which affects the homeostasis of metabolism such that a substantial portion of energy is 
required to overcome the acidification by actively pumping out protons. This energy consuming 
process consequently leads to a decrease in the biomass yield, as has been observed by Verduyn et 
al. (1992). At sufficiently high concentrations benzoate is reported to inhibit glycolysis (Krebs et 
al., 1983; Francois et al., 1986; Pearce et al., 2001) leading to the cessation of growth. Furthermore 
it is also reported to cause oxidative stress in aerobically cultivated yeast (Piper et al., 1999). 

However some yeasts such as Saccharomyces cerevisiae and Zygosaccharomyces bailii, both of 
which are known as important food spoilage yeasts, are able to adapt to the presence of these weak 
acids at a large expense of energy and hence they are able to increase their tolerance to these weak 
acids up to a certain concentration. This implies that in order to significantly inhibit the growth of 
these yeasts a high dose of weak acids would be required for food preservation, whereas a low 
maximum concentration is permitted.  

It has been reported that these yeasts adapt to the presence of weak acids by inducing an ATP 
binding cassette (ABC) transporter, Pdr12, to actively expel the accumulated ‘dissociated’ weak 
acids (Holyoak et al., 1999; Piper et al., 1998) and by adapting the membrane permeability to these 
acids (Warth, 1989), thereby reducing the passive diffusion of undissociated acid and accordingly 
limiting the influx of these weak acid and reducing the effects of these weak acids on cell 
metabolism. An overview of these adaptation mechanisms is shown in Figure 5.1.  

The fact that the presence of benzoic acid introduces an independent ATP drain in cell metabolism 
may also be of interest for those who want to study the regulation of cell energetics and metabolism. 
It offers the possibility to perturb, in a targeted way, the ATP pool, which is important in the in vivo 
kinetic evaluation of central carbon metabolism. However, to be able to perform this kind of 
experiment, solid quantitative information on the effect of benzoic acid on cell energetics and 
metabolism is required. 

Although some mechanisms for the adaptation to benzoic acid have been suggested, very few 
quantitative data on this mechanism have been presented. Moreover these studies have mostly been 
performed in shake flask cultures (Pampulha et al., 2000; Quintas et al., 2005), where the 
environment cannot be tightly controlled nor monitored. Thus, changes observed in the metabolism 
may be caused by changes in multiple experimental parameters that complicate the interpretation of 
the results. Also steady state chemostat studies have been performed to examine the energetic 
aspects of growth in the presence of benzoic acid (Verduyn et al., 1992). However, adaptation is 
best revealed by a transient study. This study presents the combined use of a well defined, tightly 
controlled aerobic, glucose-limited chemostat system and the application of a stimulus response 
approach to quantitatively study the transient adaptation of Saccharomyces cerevisiae to benzoic 
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acid.  Hereby  a glucose limited steady state chemostat culture of S.cerevisiae was suddenly 
exposed to a certain extracellular benzoic acid concentration (a step change perturbation from 0 to 
0.8 mM benzoic acid, at pH 4.5) whereafter the transient response of the culture was monitored. 
The analysis focuses on the quantitative energetic aspects of the transient adaptation, to reveal the 
metabolic regulation and perturbation of central carbon metabolism. To complete the analysis, the 
fermentation characteristics as well as the intracellular metabolite distributions between the two 
steady state condition, with and without the presence of benzoic acid, were also compared. 

 

 

Figure 5.1 The general response of S.cerevisiae to benzoic acid 
(a) benzoic acid enters cell via passive diffusion, the released proton is expulsed by an energy consuming H+ - ATPase 

(Pma1), whereas the dissociated benzoic acid may still introduce some toxicity effects; (b) induction of ABC transporter 
Pdr12 to actively expel benzoate, the expulsion of benzoate however cause a futile cycle of benzoic acid diffusion and 

subsequent active export; (c) changes in membrane characteristic to limit the influx of benzoic acid into the cell 

 

 

Material and methods 

Strain and fermentation condition 
The haploid yeast Saccharomyces cerevisiae CEN PK 113-7D was cultivated in an aerobic glucose-
limited chemostat culture of 4 L working volume (in a 7 L Applikon fermentor) at dilution rate of 
0.05 hr-1. The temperature was controlled at 30oC, while the pH was controlled at 4.5 using 1 N 
KOH. The air flow rate was set on 200 L.hr-1 (8.05 mol.hr-1), whereas the fermentor was set on 0.3 
bar overpressure and the stirrer speed was set on 500 rpm to ensure a sufficient dissolved O2 level 
throughout the experiment (> 60% air saturation). The medium composition was based on the 
mineral medium described by Verduyn et al., (1992) with doubled concentrations of salts, vitamins 
and trace elements, supplemented with 27.1 g.L-1 of glucose and 1.42 g.L-1 of ethanol. The ethanol 
was added to avoid the occurrence of oscillations. This medium supports a steady state biomass 
concentration of about 14.5 gDW.L-1. All benzoate addition experiments were performed to steady 
state chemostat cultures, which is generally obtained after a period of 5 residence times and was 
confirmed both by checking the steady state off-gas profile of the fermentation and by measuring 
the biomass concentration.  
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Benzoic acid shift-up experiment 
The shift-up of the benzoic acid concentration in the fermentor was attained by replacing the 
chemostat medium without benzoic acid with an identical medium except that it contained 0.8 mM 
of total benzoate. Simultaneous with the medium switch, sodium benzoate solution of pH 4.5 was 
rapidly injected, via a pneumatic system, into the fermentor to give an almost instantaneous final 
total benzoate concentration of 0.8 mM. 

Sampling methods 
Samples for the determination of the biomass concentration were withdrawn aseptically and further 
processed as described by Mashego et al. (2005). Samples for extracellular metabolite analyses 
were obtained using the cold steel bead method as described by Mashego et al. (2003). Samples for 
intracellular metabolite analyses were withdrawn directly into a cold 60% methanol solution (-
400C) to rapidly quench enzyme activities, via a dedicated port and a rapid sampling system (Lange 
et al., 2001). These samples were further processed following the intracellular sample processing 
method as described by Wu et al. (2005a).  

Analytical procedures 
Oxygen and carbon dioxide concentrations in the exhaust gas of the fermentation were measured 
on-line by a combined oxygen (paramagnetic) and carbon dioxide (infrared) analyzer (NGA 2000, 
Fisher-Rosemount, Germany). Dissolved O2 and CO2 concentrations in the fermentation broth were 
measured by a DOT sensor (Ingold, Mettler-Toledo GmbH, Switzerland) and by a CO2 probe (In 
Pro 5100e, Mettler-Toledo GmbH, Switzerland).  

The total benzoate level (CB = CB- + CHB) was measured by an isocratic HPLC method using a 
Platinum EPS C18 column (Waters, USA) with 28% (v/v) acetonitril in phosphate buffer at pH 3.5 
as the eluent.  

The measurements of glucose, ethanol and acetic acid concentration were performed 
spectrophotometrically using enzymatic kits from Boehringer Mannheim (Roche, Germany). 

Intracellular glycolytic, TCA cycle, pentose phosphate pathway and storage carbohydrate 
intermediates (G6P, F6P, F1,6P2, a pool of 2PG and 3PG, PEP, pyruvate, a pool of citrate and 
isocitrate, alphaketoglutarate, succinate, fumarate, malate, glyoxylate, 6PG, G1P, T6P and M6P) 
were analyzed by an LC-ESI-MS/MS method as described by van Dam et al. (2002). ATP, ADP 
and AMP were analyzed by an ion pairing LC-ESI-MS/MS method (Wu et al., 2006a). For the 
metabolite quantification the method by Wu et al. (2005a), where U-13C labeled internal standards 
of all metabolites were added before the boiling ethanol extraction process, was employed. 

Cell images were taken using an Olympus IMT-2 reverse microscope (Olympus Nederland, 
Zoeterwoude, The Netherlands). Cell size and morphology were analysed using a Leica DFC 320 
digital camera and image analyzer Leica QWin Pro version 3.2.1 software (Leica-microsystem, 
Rijswijk, The Netherlands). 

Mass balance calculations for O2 uptake, CO2 production and biomass production  
The transient oxygen consumption rate (OUR [mol.s-1]) and carbon dioxide production rate (CER 
[mol.s-1]) following the increase of total benzoate concentration were calculated from the mass 
balances of oxygen and carbon dioxide for the gas phase and the liquid phase as shown in equations 
(5.1 - 5.4).  
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VL [m3] and NG [mol] are the liquid volume and gas hold up in the fermentor; CO2 and CCO2 [mol.m-

3] are the dissolved oxygen and carbon dioxide concentrations in the fermentation broth; xO2 and 
xCO2 are the mol fractions of oxygen and carbon dioxide in the gas; φL [m3.s-1] and φG [mol.s-1] are 
the volumetric medium and gas flow rates; klaO2 and klaCO2 [s-1] are the gas-liquid transfer 
coefficients for O2 and CO2, respectively; mO2 and mCO2 are the partition coefficients of O2 and CO2 
between gas and liquid which are derived from the Henry coefficients for oxygen and carbon 
dioxide; whereas p, T, R are successively the fermentor’s pressure [bar], fermentation temperature 
[K] and universal gas constant [bar.m3.mol-1.K-1]. 

Combination of eqs. 5.1 and 5.2 yields: 
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Combination of eqs. 5.3 and 5.4 yields: 

2 2
2 2 2, , , , ,. . . . .CO CO

L CO L G out CO g G in CO g in G

dC dx
CER C V x x N

dt dt
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It should be noted that the OUR and the CER can be obtained alternatively from the liquid phase 
balances only (eqs. 5.1 and 5.3), assuming that the gas-liquid transfer coefficients (klaO2 and klaCO2) 
do not change during the benzoate shift experiment and thus can be calculated from the steady state 
data, using the gas phase balances for O2 and CO2. 

The specific O2 consumption rate (qO2 [mol.kgDW-1.s-1]) was calculated by dividing the OUR by 
the amount of biomass in the fermentor (Cx.Vx [kgDW]). During the transient the biomass 
production rate (rX [C-mol X.s-1]) can be obtained online from online measurement of the O2 uptake 
rate and CO2 production rate (eqs. 5.5 – 5.6) using the total carbon balance (eq. 5.7) or the balance 
of degree of reduction (γ) (eq. 5.8). 

, ,. .L glu in L EtOH in XC C CER r 0φ φ+ − − =

0

        (5.7) 

2 2, ,. .glu L glu in EtOH L EtOH in O O X XC C r rγ φ γ φ γ γ⋅ + ⋅ + ⋅ − ⋅ =      (5.8) 

These two independent rX values should be identical in the absence of by-product formation. If this 
is the case, the biomass concentration can be calculated from the biomass mass balance as: 
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For this calculation, the biomass composition was assumed to be 
CH1.748N0.148O0.596P0.009S0.0019M0.018, in which M is the lumped trace metal content, and accordingly 
the biomass molecular weight is 26.4 g.C-mol-1 (Lange and Heijnen, 2001).  

Benzoic acid transport calculation 
In solution benzoic acid attains a pH dependent equilibrium between the undissociated and 
dissociated forms,  

.
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in which K is the benzoic acid dissociation constant, HB is the undissociated form of the acid and 
B- is the dissociated form (benzoate). Thus, for a certain measurable total benzoate concentration 
(CB = CB- + CHB), the fraction of the undissociated (protonated) state can be calculated as  
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Cell membranes are normally permeable to the undissociated form of relatively apolar weak acids, 
therefore such molecules can passively diffuse through cell membranes. By assuming that benzoic 
acid is transported by passive diffusion only, which holds when the benzoate exporter is not induced 
(Kresnowati et al., 2007a), the uptake rate of benzoic acid (qHB [mol.kgDW-1.s-1]) can be modeled 
as: 
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in which k [m.s-1] is the membrane permeability coefficient for benzoic acid, CHBex and CHBin 
[mol.m-3] are successively the extracellular and intracellular undissociated benzoic acid 
concentration, Vx [m3.kgDW-1] and dx [m] are respectively the cell volume per gram dry weight of 
biomass and cell diameter. The values used in the calculation are dx = 5 x 10-6 m (Walker, 1998), Vx 
= 2 x 10-3 m3.kgDW-1 and k = 0.92 x 10-5 m.s-1 (Kresnowati et al., 2007a).  

At steady state and in the absence of an active exporter, the intracellular undissociated benzoic acid 
is in equilibrium with the extracellular undissociated benzoic acid and thus their concentrations are 
equal. Hence, following the dissociation equation (eq. 5.10) the ratio of total intracellular to total 
extracellular benzoate concentration reflects the difference in the intracellular and extracellular pH 
as  
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It is known that benzoic acid is not metabolized by the yeast cells (Piper et al., 2001; Kresnowati et 
al., 2007a). Under this condition, the accumulation of total benzoate inside the cells (CBin) can be 
calculated from the total benzoate mass balance. Considering that the fraction of total cell volume is 
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negligible compare to the total broth volume, Cx.Vx << V, the total concentration of intracellular 
benzoate can be calculated as 
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in which CB0 is the initial total benzoate concentration in the medium. By combining eqs. 5.13 and 
5.14 we can calculate the intracellular pH (pHin) from the added/initial total benzoate in the 
medium, the measured extracellular total benzoate concentration, the biomass concentration and the 
extracellular pH (pHex) 
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In the presence of a benzoate exporter, such as Pdr12, intracellular benzoate is actively exported, 
the process of which consumes energy. This leads to an increase in the extracellular total benzoate 
concentration, a decrease in the intracellular total benzoate concentration and additional O2 
consumption. To maintain the intracellular charge balance, a proton is actively co-transported. 
Assuming that 1 ATP is consumed for the export of each of these species, a defined P/O ratio = 
1.46 (Stuckrath et al., 2002), and that all benzoic acid which enters the cell via passive diffusion is 
exported, the influx of benzoic acid via passive diffusion can be related to the additional O2 
consumption (OUR – OUR0) as: 

( )0 . 2. / 2. . .HB x LOUR OUR P O q C V− =        (5.16)  

Here OUR0 is the oxygen consumption rate (mol.s-1) in the absence of benzoate. This equation 
shows that the export of 1 mol of benzoate leads to an extra oxygen consumption of 1/(P/O) = 0.68 
mol. If the exporter would export benzoic acid instead of the benzoate anion, which does not lead to 
intracellular charge imbalance, the export would lead to 0.34 mol of additional oxygen consumption 
per mol of benzoate. 

 

 

Results 

S. cerevisiae was cultivated in a glucose limited chemostat at a dilution rate of 0.05 h-1 until a 
steady state was reached. Thereafter a benzoic acid shift-up experiment was performed by a 
simultaneous stepwise increase of the total benzoate concentration in the feed medium and in the 
broth from 0 to 0.8 mM. The steady state characteristics of the fermentation prior to the shift-up 
experiment are shown in Table 5.1. It was calculated that the carbon and degree of reduction 
balances close well, respectively 97.6% carbon recovery and 96.1% degree of reduction recovery. 

Directly after the shift-up of the benzoic acid concentration the transient responses of the culture to 
the perturbation were followed in terms of extracellular metabolite concentrations, dissolved 
concentrations of O2 and CO2, offgas concentrations of O2 and CO2, biomass concentration and cell 
morphology. Thereafter a new steady state was reached which is characterized by a significantly 
lower biomass concentration and significantly higher specific rates of glucose and oxygen 
consumption (see Table 5.1). 
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Table 5.1 Characterization of the steady state fermentation prior and after the shift-up of benzoic acid 
concentration  

Benzoic acid concentration in the medium Fermentation characteristics 
0 mM 0.8 mM 

Cx [kgDW.m-3] 14.09 ± 0.17 7.81 

µ [h-1] 0.05 0.05 

qO2 [mmol.gDW-1.h-1] 1.46 ± 0.06 3.76 

qCO2 [mol.kgDW-1.h-1] 1.45 ± 0.04 3.72 

qS glucose [mmol.gDW-1.h-1] 0.53 ± 0.01 0.96 

 

 

Transient benzoic acid profile 
Shortly (within 20 s) after the shift-up of the benzoic acid concentration, the total extracellular 
benzoate concentration drops to 250 µM, which is 30% of the added concentration in the medium 
(Figure 5.2a). After about 1 hour, the extracellular total benzoate concentration slowly starts to 
increase to a concentration of approximately 500 µM after 6 hours and finally to a stable steady 
concentration of about 650 µM, which is 80% of the added total benzoate in the feed medium. This 
steady state condition is reached at 24 – 30 hours after the start of the transient. 

 

Transient oxygen and carbon dioxide profiles 
The concentrations of oxygen and carbon dioxide (Figure 5.2b and 5.2c) show interesting dynamic 
patterns following the shift-up in benzoic acid concentration. Shortly after the shift-up, the oxygen 
concentrations both in the liquid and the gas phase rapidly decrease. After a minimum value is 
reached, which is attained within less than 1000 s following the benzoate shift-up, the oxygen 
concentrations restore, make an overshoot and then slowly stabilize. The new steady state condition, 
however, is only achieved about 30 hours after the shift-up. Opposite transient profiles are observed 
for the carbon dioxide concentrations (Figure 5.2c). 

 

Transient extracellular metabolite profiles 
Consistent with the carbon limited condition of the chemostat culture, the residual glucose 
concentration remains low after the shift-up of the benzoic acid concentration. Within 1000 s after 
the shift-up, the ethanol concentration shoots up from a very low residual concentration of below 5 
mg.L-1 to 15 mg.L-1 (Figure 5.2d) and is shortly followed by an increase of the acetic acid 
concentration up to 10 mg.L-1 (Figure 5.2e). After 1000 s these concentrations return to the steady 
state values measured before the shift-up and remain low afterwards. 

 

Transient cell morphology 
We also observe changes in the cell morphology following the shift-up of the benzoic acid 
concentration in the medium (Table 5.2). From cell image analysis of broth samples which were 
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taken during transient condition following the shift-up of the benzoic acid concentration 
experiment, at 18.7, 48.4 and 72.1 hours, we observe that despite the large standard deviation of the 
data, there is a clear trend that the cell equivalent diameter decreases with time and that cells get 
more elongated. The latter can be inferred from the increase of the cell roundness index (the 
roundness is defined as (perimeter2 x 1000)/(4 x π x Area), the roundness of a circle = 1) and the 
cell aspect ratio index (the cell aspect ratio is defined as the ratio between the two axial diameters of 
the object, the aspect ratio of a circle = 1). 

 

 

Figure 5.2 Transient responses to the shift-up of the benzoic acid concentration I  
(a) benzoic acid profile, (b) oxygen profiles in liquid (grey solid line) and gas phase (black dashed line), (c) carbon 

dioxide profiles in liquid (grey solid line) and gas phase (black dashed line), (d) ethanol concentration profile, (e) acetic 
acid concentration profile; the timing of shift-up is marked as the dashed vertical line 
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Table 5.2 Response in cell morphology following the shift-up of benzoic acid concentration in the 
medium 

Age [h] Equivalent 
diameter [µm] Roundness1 Aspect 

ratio2 
Sample 
number 

-6.8 4.94 ± 1.30 1.12 ± 0.11 1.25 ± 0.18 615 
18.7 4.31 ± 1.24 1.14 ± 0.11 1.32 ± 0.21 474 
48.4 4.38 ± 0.96 1.15 ± 0.12 1.36 ± 0.24 1180 
72.1 4.06 ± 0.91 1.15 ± 0.11 1.47 ± 0.29 911 

1. Roundness measure the shape of the object, it is defined as (perimeter2 x 1000)/(4 x π x Area). The roundness of a 
circle = 1  

2. Aspect ratio gives the ratio between the two axes of the object. The aspect ratio of a circle is similar to the aspect 
ratio of a square = 1 

 

Transient O2 uptake, CO2 production and biomass production rates 
The observed fast decrease in the oxygen concentration both in the gas and the liquid phases and the 
fast increase in the carbon dioxide concentration in both phases following the shift-up of the 
benzoic acid concentration reflect a rapid increase in both OUR and CER (Figure 5.3a - 5.3b). Two 
methods for calculating the OUR were applied: 1) from the O2 balance in liquid phase only and 2) 
from the total O2 balance, combining both balances for the liquid and the gas phases (see Materials 
and Methods). Both methods yield different maximum OUR values during the transient, although 
the patterns are very similar (see Figure 5.3a). In a previous study on the same experimental set up 
(Bloemen et al., 2003), it was shown that the response time of the dissolved O2 probe is normally 
smaller than the response time of the off-gas measurement, for which the contribution of the 
dilution in the size of the fermentor headspace, the length of tubing connecting the fermentor with 
the off-gas analyzer and the response time of the off-gas analyzer itself should be accounted for. 
Consequently, the OUR that is reconstructed from the combined liquid and gas phases mass 
balance, or in other words from the measured concentration profiles of oxygen both in the liquid 
and gas phases, may be different from the OUR that is reconstructed from only the liquid phase 
mass balance. This is particularly the case for a fast dynamic condition. Indeed the measured 
oxygen concentration in the gas phase is also used in the liquid phase mass balance of oxygen, to 
calculate the maximum solubility of oxygen in the liquid phase (see eq. (5.2)), however, the 
contribution of this term to the overall equation is small. Hence, the OUR that is calculated from 
only the liquid phase mass balance should provide a better description about the fast dynamic 
condition.  

The maximum increase in the OUR calculated from the liquid phase mass balance, is 1.5 fold (from 
80 mmol.hr-1 to 120 mmol.hr-1) whereas a 1.8 fold increase (from 80 mmol.hr-1 to 146 mmol.hr-1) is 
calculated from the combined liquid and gas phase balances. Virtually the same dynamic pattern is 
obtained for the CER, which also increases 1.8 fold compared to the steady state value, within 600 s 
after the shift-up. Thereafter both the OUR and the CER slowly decrease to nearly their previous 
steady state values. However, from about 3000 s after the shift-up, the OUR and CER are observed 
to slowly increase again. At the end of the observation window, about 72 hours after the start of the 
transient, new steady values of 117 mmol.h-1 for both OUR and CER (i.e. a 1.5 fold increase 
compared to the initial steady state values) are calculated. During the observation the respiration 
quotient (RQ) is always close to 1. 

The long term OUR and CER profiles indicate a significant decrease in the biomass production rate 
(rX) (Figure 5.3c), such that at the new steady state the biomass production rate is calculated to be 
about 65% of the initial steady state value (110 mmol-X.h-1 to 70 mmol-X.h-1). Accordingly, the 
calculated biomass concentration has decreased from 14.9 to 9.6 kgDW.m-3 (Figure 5.3d). This is  
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Figure 5.3 Transient responses to the shift-up of benzoic acid concentration II  
 (a) Oxygen consumption rate (OUR; the grey curve represents the short term transient response OUR calculated from 
the liquid phase balance only), (b) Carbon dioxide production rate (CER), (c) calculated biomass production rate, (d) 
calculated and measured biomass concentrations, black circles represent the measured values; for graphs c and d both 
the calculated values from the total carbon balance (black lines) and from the degree of reduction balance (grey lines) 
are shown, and (e) specific oxygen consumption (steady state value is indicated by the grey dashed line); the timing of 

shift-up is marked as the dashed vertical line 
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confirmed by the measured biomass concentrations (Figure 3d) which decrease by 10% from 14.1 
kgDW.m-3 to 12.7 kgDW.m-3 within 5.3 hours following the shift-up and by 55%, that is to a value 
of 7.8 kgDW.m-3 at 72 h after the shift-up, when the experiment was finished. Surprisingly, the 
calculated biomass concentrations appear to be 4 - 25% higher than the measured values (Figure 
5.3d). However, it should be realized that the calculated recoveries of carbon and degree of 
reduction during the transient, using eqs. 5.7 and 5.8 and the experimental data of the biomass 
concentrations, OUR and CER are found to deviate respectively by 5 – 11% and 5 – 28%. 
Furthermore, the observed changes in cell morphology and adaptation to benzoic acid may also 
change cell structure and composition, hence the assumption of constant biomass molecular weight 
may not have been valid and may have introduced errors in the calculated biomass concentration. If 
this is indeed the case, the discrepancy in the total carbon balance indicates up to 25% deviation in 
the cell molecular weight, which is highly unlikely. Another possible source of the discrepancy in 
the total carbon and degree of reduction balance is by-product formation. However, the biomass 
production rates (rX) calculated from both carbon and degree of reduction balances agree with each 
other, which does not point to significant byproducts formation. This leaves us to the possibility of 
systematic errors in the measurement, particularly during the transient. 

During the entire observation period of 72 h after the shift-up of the benzoic acid concentration, the 
increase of the OUR, and the decrease of the biomass concentration in the chemostat result in a 
strong and steady increase in the biomass specific O2 consumption rate (see Figure 5.3e), reaching a 
final value which is 2.2 fold higher than the initial steady state value. During the first hour after the 
shift-up the biomass concentration does not change and the therefore the qO2 profile is similar to the 
OUR profile.  

The final steady state increase in the specific O2 and glucose consumption rates after the switch to a 
feed medium containing 0.8 mM benzoic acid (corresponds to residual total benzoate concentration 
of 0.64 mM) are comparable to the increase in specific O2 and glucose consumption rates between 
the chemostat culture without benzoic acid and the chemostat culture with residual total benzoate 
concentration of 2 mM (Verduyn et al., 1992). Although the total benzoate concentration in the 
latter experiment is higher, i.e. 2 mM, that set of experiments were performed at extracellular pH 
5.0, at which the undissociated benzoic acid fraction is lower. The undissociated benzoic acid 
concentration which corresponds to total benzoate concentration of 2.0 mM at extracellular pH = 
5.0 is 0.27 mM, only 25% higher than the undissociated benzoic acid concentration which 
corresponds to the total benzoate concentration of 0.64 mM at extracellular pH 4.5 (0.21 mM). In 
our experiments the measured specific O2 consumption increases from 1.46 to 3.76 mmol.h-1 (2.6 
fold), whereas in Verduyn’s experiments (at µ = 0.1 h-1) it increases from 2.5 to 6 mmol.h-1 (2.4 
fold).  

 

Steady state intracellular metabolite profiles 
Intracellular metabolite concentrations, i.e. glycolytic, TCA cycle, pentose phosphate pathway and 
storage carbohydrate intermediates as well as adenine nucleotides, were measured during the two 
steady state conditions, with and without benzoic acid in the feed medium (Table 5.3). The values 
presented are the averaged of 6 independent samples, each of which was measured in duplicate. The 
calculated standard deviations, of about 5%, are relatively low, indicating the quality of the sample 
processing method and the analysis. 

In the presence of benzoic acid we observed significantly lower concentrations of ATP, ADP and 
AMP which lead to a slightly higher energy charge level successively 0.87 ± 0.004 and 0.85 ± 
0.005 with and without benzoic acid (Table 5.3). This is remarkable considering the much higher 
ATP fluxes due to the higher specific O2 consumption in the presence of benzoate.  
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Table 5.3 Intracellular metabolite concentrations [in µmol.gDW-1] measured during the steady state 
without and with the presence of 0.8 mM benzoic acid in medium, the presented values are an 
averaged of 6 independent samples 

Benzoic acid concentration in the medium 0 mM 0.8 mM 
Nucleotides 
ATP 7.94 ± 0.30 6.61 ± 0.23 
ADP 1.74 ± 0.03 1.35 ± 0.03 
AMP 0.64 ± 0.02 0.37 ± 0.02 
ΣAXP 10.32 ± 0.31 8.33 ± 0.24 
Energy charge1 0.85 ± 0.00 0.87 ± 0.00 
Glycolytic intermediates and other phosphorylated metabolites 
G6P 1.74 ± 0.08 1.59 ± 0.08 
F6P 0.27 ± 0.01 0.25 ± 0.02 
6PG 0.20 ± 0.01 0.29 ± 0.02 
G1P 0.29 ± 0.01 0.34 ± 0.02 
M6P 0.70 ± 0.02 0.71 ± 0.05 
T6P 0.22 ± 0.01 0.19 ± 0.00 
F1,6bP 0.16 ± 0.00 0.31 ± 0.01 
PEP 0.66 ± 0.02 0.43 ± 0.03 
2PG/3PG 0.81 ± 0.03 0.61 ± 0.03 
G3P 0.01 ± 0.00 0.05 ± 0.00 
TCA cycle weak acids 
Glyoxylate 0.01 ± 0.00 0.04 ± 0.00 
Pyruvate 0.09 ± 0.01 0.24 ± 0.01 
Citrate 5.26 ± 0.16 7.26 ± 0.36 
Alfa-KG 0.06 ± 0.00 0.25 ± 0.01 
Succinate 0.04 ± 0.01 0.34 ± 0.02 
Fumarate 0.04 ± 0.00 0.39 ± 0.02 
Malate 0.21 ± 0.01 2.02 ± 0.10 

1. dimensionless unit 

 

For the glycolytic intermediates, we observe that the presence of benzoic acid leads to increase 
levels of F1,6P2 (2 fold) and G3P (5 fold) as well as decreased levels of  PEP and the 2PG+3PG 
pool, respectively by 65% and 75% of their concentration without the presence of benzoic acid 
(Table 5.3).  

One striking observation on the difference between the two steady states is that the concentrations 
of the weak acids in the TCA cycle (pyruvate, citrate, alphaketoglutarate, succinate, fumarate and 
malate) in the presence of benzoic acid are all significantly higher (1.4 – 9.9 fold) than those 
concentrations without  the presence of benzoic acid (Table 5.3).  

 

Discussion 

To study this interesting transient behavior following the shift-up of benzoic acid concentration 
further, the analysis was focused on two different time windows: short term responses (0 – 3000 s), 
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and long term responses (> 3000 s). To complete the overview, comparison between the two steady 
state condition, with and without the presence of benzoic acid is presented first. 

 

Steady state comparison with and without the presence of benzoic acid: increase in 
catabolism 
The comparison between the steady state fermentation characteristics, with and without the 
presence of benzoic acid, show that in general the presence of benzoic acid results in a higher 
specific O2 consumption and glucose uptake rates as well as a decrease in the biomass 
concentration. These observations are supported by the intracellular metabolite measurement 
results. The observed patterns of the glycolytic intermediates, higher level of F1,6P2 and lower 
levels of  PEP and the 2PG+3PG pool in the presence of benzoic acid compared to without the 
presence of benzoic acid (Table 5.3), are commonly observed as response to a glucose pulse 
(Kresnowati et al., 2006; Visser et al., 2004b; Wu et al., 2006a) and indicate an increase in the 
glycolytic flux in the presence of benzoic acid. The increase in the glycolytic flux is consistent with 
the calculated increased in the glucose uptake rate (Table 5.1). Interestingly the presence of benzoic 
acid also leads to a higher level of G3P (5 fold), which indicates a higher cytosolic NADH/NAD 
ratio. The higher value of the NADH/NAD ratio is verified by calculation of the NADH/NAD ratio 
from the lumped reactions of aldolase, triose phosphate isomerase, glyceraldehydes-3-phosphate 
dehydrogenase, phosphoglycerate kinase and phosphoglycerate mutase (Wu et al., 2006a), which 
gives a calculated 1.7 fold increase in the NADH/NAD ratio in the presence of benzoic acid. The 
higher NADH/NAD ratio agrees with the higher glycolytic flux and also agrees with the higher 
specific O2 consumption rate, which is probably stimulated by the higher NADH/NAD ratio. On the 
other hand, the observed higher concentrations of the weak acids in the TCA cycle in the presence 
of benzoic acid reflect the much higher TCA cycle flux.  

Overall, intracellular metabolite profiles show that in the presence of benzoic acid the cells 
accelerate their catabolism to generate more energy to overcome the ATP drain for exporting 
benzoate and proton. It confirms the black box energetic observations of the increased specific O2 
consumption and glucose uptake rates. 

 

Transient benzoic acid profile indicates the timing of benzoic acid transporter 
induction 
The fermentation was started without benzoic acid in the medium. In this condition we can expect 
that the benzoate transporter, such as Pdr12p, is absent and thus benzoic acid will be distributed 
inside and outside the cell following the intracellular and extracellular pH difference (Krebs et al., 
1983), such as described in eq. (5.13). Accordingly, the intracellular pH can be calculated from the 
transient total benzoate profile. Within the first 3000 s following the shift-up of the benzoic acid 
concentration the intracellular pH is calculated to be 6.44 – 6.65. This value is in agreement with 
the reference value of steady state intracellular pH for this yeast species (Kresnowati et al., 2007a 
reported intracellular pH of 6.43 at extracellular pH 5.0). This shows that within this time window 
the benzoate transporter is not present and that only passive diffusion occurs.  

On the longer term, after more than 1 hour following the shift-up, we observe that the extracellular 
total benzoate concentration increases (Figure 5.4a). Accordingly, the intracellular total benzoate 
concentration, which is calculated from the measured extracellular total benzoate concentration 
decreases (Figure 5.4b). This observation could be explained by a decrease in the intracellular pH, 
which would shift the distribution of benzoic acid towards the extracellular compartment. However, 
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considering the tightly controlled pH homeostasis, it is not likely that cells permanently lower the 
intracellular pH. Because the decrease in the intracellular total benzoate concentration coincides 
with an increase in the O2 uptake rate (Figure 5.3a), it is most likely that this is caused by induction 
of the benzoate exporter. If this is indeed the case, the time required to induce the benzoate exporter 
observed in this study would be about 3000 s, which is much faster than the previously reported 
value of 28 hours, at which the extrusion of benzoic acid became apparent (Henriques et al., 1997). 
The observed continuous increase in extracellular total benzoate concentration, from 3000 s until 
about 24 - 30 hours after the medium shift, would indicate the slow completion of the induction of 
this transporter.  

 

 

Figure 5.4 Transient (a) measured extracellular total benzoate concentration, (b) calculated 
intracellular total benzoate concentration following the shift-up of benzoic acid concentration (marked 

as the dashed vertical line) 

 

 

Long term transient response following the shift-up of benzoic acid concentration: 
adaptations in membrane properties and cell size to the presence of benzoic acid  
In order to study the adaptation of the cells to benzoic acid, we use the transient O2 consumption 
profile to reconstitute the dynamics in benzoic acid transport. By assuming that the increase in O2 
consumption is the result of the additional ATP production needed for the export of protons and 
benzoate from the cells and that all the incoming benzoic acid (via passive diffusion) is exported 
back to the medium, the net influx of benzoic acid is reconstructed, following eq. (5.16). As 
comparison the total – fermentor scale - benzoic acid influx profile via passive diffusion (= 
k.A.(CHBex-CHBin)) is also calculated from the available extracellular and intracellular benzoic acid 
concentration profiles following eq. (5.12), under assumption that intracellular pH is constant at 6.5, 
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which is the averaged intracellular pH calculated during the short term dynamic as has been 
discussed previously.  

In Figure 5.5 we show the step by step calculation. Figure 5.5a shows the driving force for the 
benzoic acid passive diffusion, CHBex - CHBin. Figure 5.5b shows the total membrane surface area 
available for the benzoic acid transport during the transient observation based on the measured 
changes in the cell concentration (Figure 5.3d) and cell diameter (Table 5.2), and assuming a 
constant biomass dry weight specific volume (Vx = m3.kgDW-1). Figure 5.5c shows the expected 
total benzoic acid influx via passive diffusion. This rate profile was calculated based on the 
membrane permeability value of benzoic acid of 0.92 x 10-5 m.s-1 (Kresnowati et al., 2007a), which 
was estimated from an unadapted S.cerevisiae chemostat culture. Figure 5.5d shows the additional 
O2 consumption due to the addition of benzoic acid.  

Figure 5.5c and 5.5d show that the ratio between the calculated benzoate export flux and the 
additional O2 consumption rate is about 11 mol O2 per mol benzoate exported, which is much 
higher than the expected value of 1.46 (see eq. 5.16). This discrepancy is very likely caused by 
changes in cell membrane properties, which is reflected by the change in the membrane 
permeability for benzoic acid. The apparent membrane permeability constant of benzoic acid 
(Figure 5.5e), which was calculated from the measured additional O2 consumption (Figure 5.5d), 
transient total membrane surface area (Figure 5.5b) and the driving force for the passive diffusion of 
benzoic acid (Figure 5.5a), is much lower than the previously reported value that was estimated 
from the unadapted cells and shows an interesting dynamics, particularly within the first 20 hours (∼ 
1 generation time) of the transient. It is remarkable that such a decrease in membrane permeability 
is achieved only within 1 generation time and points to the associated genetic regulation of the 
synthesis of membrane molecules, such that the membrane composition of the adapted cell is less 
permeable for benzoic acid. This calls for the analysis of the transcript distribution and the analysis 
of membrane composition over the transient of benzoic acid adaptation.  

It is important to notice that the above calculation was performed based on assumption of constant 
biomass dry weight specific volume (Vx). This entails that as the cell size decreases the cell reduces 
its organic mass (cellular machinery), which is proportional to the cubic of diameter, and reduces its 
surface area, which is proportional to the square of diameter. This may indicate that along with the 
decrease in the benzoic acid influx, which is proportional to the cell surface area, the cell also 
decrease its cellular machinery that may imply decreases in metabolic fluxes. This would make the 
decrease in cell diameter a counterintuitive response. To verify what actually happens in the 
transient, accurate measurement of cell volume distribution and cell mass distribution in the 
transient are necessary.  

Overall, these long term responses show that cells are able to adapt to benzoic acid by decreasing 
their specific surface area and their membrane permeability, as has also been shown by Warth et al. 
(1989). The observed steady increase in specific O2 consumption after 20 h, results in the steady 
decrease in the biomass concentration, which leads to an increasing profile of extracellular total 
benzoate and accordingly an increasing driving force profile for the benzoic acid passive diffusion. 

  

Short term transient response following the shift-up of benzoic acid concentration: 
boost up of energy generation  
The observed rapid increase of the OUR and CER shortly after the shift-up of the benzoic acid 
concentration (Figure 5.3a – 5.3b) indicates a fast flux rearrangement inside the cell. It implies that 
more glucose is used for energy generation and that the glycolytic flux temporarily increases. This  
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Figure 5.5 Transient (a) undissociated extracellular (solid line) and intracellular (dashed line) benzoic 
acid concentrations, (b) total cell surface area in the fermentor, (c) benzoic acid influx rate calculated 

via passive diffusion, (d) additional OUR, (e) apparent membrane permeability for benzoic acid 
following the shift-up of the benzoic acid concentration  (marked as the dashed vertical line) 

 

hypothesis is supported by the observed transient increase in extracellular ethanol which was 
followed by a transient increase in extracellular acetic acid (Figure 5.2d – 5.2-e).  

Moreover, the timing of the previously discussed observations gives us other information about cell 
regulation. It has been reported that ethanol production in S.cerevisiae is a direct consequence of the 
accumulation of pyruvate, which is the end product glycolysis (van Urk et al., 1989). The fact that 
the shoot up of ethanol concentration is observed before the shoot up of acetic acid concentration 
and OUR suggests that the cells can rapidly increase the glycolytic flux whereas the adjustment of 
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respiration is slower. As a consequence of the rapid increase in the glycolytic flux NADH 
concentration is rapidly built up which trigger the rate acceleration of reactions consuming NADH, 
e.g. the alcohol dehydrogenase that synthesizes ethanol and the oxidative phosphorylation. The 
increase in ethanol concentration shows cell requirement to balance the fast NADH accumulation, 
which could not be directly accommodated by the oxidative phosphorylation. The capacity of the 
latter process later increases, as is observed as the increased in OUR and CER as well as the acetate 
shoot up (the ethanol is converted back to acetate and produce approximately 2 NADH per mol 
ethanol).  

It is interesting to note that under carbon limited condition S.cerevisiae is able to rapidly increase 
the rate of O2 consumption by 1.5 fold, showing that, in spite of the constant feed rate of glucose in 
the glucose limited chemostat, the cell can rapidly increase glucose catabolism. It is even more 
interesting to see that after the initial increase the O2 consumption is observed to rapidly decreases 
again, at about 500 s after the shift-up experiment, almost to reach its initial steady state value 
(Figure 5.3a).  

There are two possible explanations for the origin of the transient increase of glucose catabolism: a 
decrease in the biomass production rate allowing an increased channeling of glucose towards 
catabolism or temporary mobilization of storage carbohydrates. The observed dynamic pattern of 
the O2 consumption profile during this short transient of 0 – 3000 s, the temporary increase 
followed by the decrease in O2 consumption profile, is most likely related to the mobilization of 
storage carbohydrate compounds such as trehalose and glycogen, which are available in the cells in 
limited amounts. Although transient levels of these storage carbohydrate compounds were not 
measured in this experiment, the cellular contents of these intracellular compounds during glucose 
limited steady state chemostat growth are about 50 g.kgDW-1 (∼ 1.8 C-mol.kgDW-1) of glycogen 
and 75 g.kgDW-1 (∼ 2.6 C-mol.kgDW-1) of trehalose (Mashego, 2005) which correspond to about 
0.25 C-mol of carbohydrates for the complete fermentor, which contains 4 L of broth. This amount 
is more than sufficient to explain the total additional consumption of O2 during the first 3000 s of 
the transient, which corresponds to a cumulative oxygen consumption of about 45 mmol O2 for the 
whole fermentor. Assuming that 1 C-mol of glucose can generate 3.5 mmol ATP and a P/O value of 
1.46 (Stuckrath et al., 2002), the additional 45 mmol O2 consumed is equivalent to the catabolic 
consumption of 0.037 C-mol of storage carbohydrates which is only 15% of the total storage 
carbohydrate available.  

The shoot up of the O2 consumption rate reflects the cells’ high energy requirement upon the 
sudden increase in the extracellular benzoic acid concentration. The remaining question is why the 
cells need the energy.  A first possible answer to this question is that cells need to maintain 
intracellular pH homeostasis via the activation of a proton exporter, H+-ATPase, during the fast 
intrusion of benzoic acid by passive diffusion. It is calculated that the total influx of benzoic acid 
within the first 3000 s is about 2 mmol for the total 4 L fermentor scale. However, assuming a P/O-
ratio of 1.46, the estimated additional O2 consumption for the active export of 2 mmol of protons 
would be 1.4 mmol O2, which is far less than the observed additional O2 consumption of 45 mmol. 

An alternative answer is that the active benzoate exporter is already present during steady state 
chemostat growth in the absence of benzoic acid, which would immediately result in an ATP 
dissipating futile cycle consisting of benzoic acid diffusion into the cells and subsequent active 
export. This hypothesis is contradictory to a previous study (Kresnowati et al., 2007a) comparing 
the responses of wild type S. cerevisiae (CEN PK 113-7D) and a Δpdr12 mutant (S.cerevisiae 
IMK050) to a 0.2 mM total benzoic acid pulse, in which no significantly different metabolic and 
energetic responses were observed for the observation time of 3000 s. However, it is important to 
note that the previous experiment was performed at extracellular pH 5.0 which implies that the 
undissociated benzoic acid concentration in the broth in this experiment was only one-tenth of the 
undissociated benzoic acid concentration in the present experiment.  
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Another alternative explanation would be the diffusion of benzoic acid into the mitochondria which 
may strongly enhance endogenous production of superoxide free radicals by the mitochondrial 
electron transport chain, leading to oxidative stress (Piper et al., 1999). However this does not 
explain the observed increasing and decreasing profile in O2 consumption within about 3000 s.  

Yet another interesting alternative is the synthesis of the benzoate exporter, i.e. Pdr12. It has been 
reported that upon weak acid stress, in this case by sorbic acid, Pdr12 became one of the most 
abundant plasma membrane proteins (Piper et al., 2001) whereby the measured level of Pdr12 was 
comparable to the level of H+-ATPase. Holyoak et al. (1996) and van der Rest et al. (1995) reported 
that the level of H+-ATPase represented 20% - 50% of the total amount of plasma membrane 
proteins. Assuming that the level of Pdr12 that needs to be synthesized is 35% of the total amount 
of plasma membrane proteins and that the total amount of plasma membrane proteins composes 5% 
of the total protein lead to the abundance of Pdr12 of about 1.75% of the total protein content, 
which is a reasonable number. As comparison the glyceraldehydephosphate dehydrogenase 
composes 3.5% of the total protein content and alcohol dehydrogenase composes 1.8% of the total 
protein content (van Hoek, 2000). Subsequently, by assuming that protein composes 38.5% of 
cellular dry weight (Lange and Heijnen, 2001) and that 0.62 mol ATP is required to synthesis 1 C-
mol protein (Stuckrath et al., 2002), the synthesis of Pdr12 will totally consume 10.4 mmol ATP 
and thus lead to 7.6 mmol additional O2 consumption. This may be an underestimate of the 
additional ATP requirement, since the energy cost to synthesize additional amino acid has not been 
considered here. In the end this calculation supports the hypothesis that the cells rapidly, within the 
first 3000 s of transient, synthesize the benzoate exporter. Furthermore, this hypothesis agrees very 
well with the observed extracellular total benzoate concentration profile which shows that the 
benzoate transporter is induced within the first 3000 s of the transient. To verify this hypothesis 
measurement of transcript and protein levels during this short transient response will be necessary. 
The difference in timing between the observed fast shoot up of specific oxygen consumption, at 
about 600 s, and the start of benzoate extrusion, at about 3000 s, indicates the duration of the 
synthesis and maturation, e.g. the transport and installation, of the benzoate exporter. 

Furthermore, additional energy may also be needed for the synthesis of other membrane molecules 
e.g. phosphatigycerol and phosphatidylinositol that have been reported to increase the activity of 
H+-ATPase (Serano et al., 1988; Trivedi et al., 1987), while the level of H+-ATPase itself is not 
reported to change significantly as a response to the presence of benzoic acid. To verify this, the 
analysis of the membrane composition during this short transient is necessary. 

 

 

Conclusion 

The use of well defined, tightly controlled chemostat cultures provides a good platform for 
quantitative analysis of the transient responses in microbial metabolism. Combined with a step 
change perturbation, this kind of analysis provides better insight in the metabolic response and 
adaptation mechanisms. Using this approach, the metabolic responses and adaptation mechanism of 
S.cerevisiae to benzoic acid exposure have been studied.  

We found that the short term transient responses strongly indicate an immediate, ≤ 3000 s, 
induction and activation of a benzoate exporter, which requires so much additional energy that 
storage carbohydrate compounds are mobilized for catabolic purposes resulting in an immediate 
transient increase in the specific oxygen consumption and carbon dioxide production rates.  
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The long term transient responses show that, as part of the adaptation mechanisms, cells decrease 
the cell size to about 80% of the initial size and in addition decrease the membrane permeability to 
benzoic acid, by a factor 10, to limit the benzoic acid influx and thus minimize the futile cycle 
caused by benzoic acid diffusion and subsequent active export. 

The steady state obtained after continuous benzoic acid exposure is characterized by significantly 
higher specific O2 consumption and specific glucose uptake rates as well as a significantly lower 
biomass yield. In agreement with these observations, the intracellular metabolite profiles indicate 
higher glycolytic and TCA cycle fluxes.  
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Dynamic in vivo metabolome response 
of Saccharomyces cerevisiae to a stepwise 
perturbation of the ATP requirement for 
benzoate export 
 

 

Summary 

As ATP is involved in many reactions in cell metabolism, it plays an important role in the metabolic 
regulation. Although much information is available on its in vitro role in regulation, the in vivo 
kinetics of reactions in which ATP plays a role are only partly known. In order to study such 
reactions it is therefore necessary to study the role of ATP in vivo. This study presents an in vivo, 
targeted perturbation of ATP flux in aerobic glucose limited chemostat cultures of Saccharomyces 
cerevisiae, which was accomplished by transiently changing the extracellular undissociated benzoic 
acid concentration via the pH of the culture. The performed pH shifts resulted in a fast (in about 20 
s) 42% decrease (pH step up) or a 17% increase (pH step down) in the ATP consumption rate. 
Consistent responses were observed in the metabolic fluxes, the offgas concentrations of oxygen 
and carbon dioxide and intracellular metabolite concentrations. It was found that the decrease in 
ATP consumption in response to the pH step up resulted in an increase in the fluxes towards storage 
carbohydrates and a strong (40%) decrease in the glycolytic and TCA cycle fluxes. Contrary to the 
expectation, the transient intracellular ATP concentration profile increased upon an increase in the 
ATP consumption for benzoate export and vice versa. This demonstrates that our knowledge on the 
kinetics of central carbon metabolism of yeast is still limited. The new dynamic metabolite datasets 
obtained in this study will prove of great value in developing kinetic models.  

 

 

 

 

 

 

111 



Chapter 6 

Introduction 

Adenine nucleotides play an important role in cell metabolism. A database search for S. cerevisiae 
(KEGG database http://www.genome.ac.jp, October 20th 2006) gave 470 reactions involving ATP, 
397 reactions involving ADP and 163 reactions involving AMP. Of these reactions 31 involve the 
transfer of the adenine part from the adenine nucleotides, while the remaining are mostly the 
interconversions of ATP, ADP and AMP where the adenine moiety is conserved. The latter class of 
reactions is related to the energy transfer process. The involvement of ATP in many reactions 
interconnects various parts of cell metabolism, creating a complex network of reactions and 
metabolic regulations. Hence, a perturbation of the adenine nucleotide pool can be expected to lead 
to the perturbation of the complete cell metabolism.  

In studies on the effect of a sudden increase of the growth limiting substrate concentration on the 
glycolytic pathway by applying a glucose pulse to a glucose limited steady state chemostat culture, 
a rapid decrease in ATP concentration and in the total adenine nucleotide pool have been observed 
(Kresnowati et al., 2006; Theobald et al., 1993, 1997; Wu et al., 2006a). By consequence, such 
perturbations were not exclusively targeted to the central carbon metabolism but also to the amino 
acid and protein synthesis, nucleotide biosynthesis and other energy requiring processes and 
therefore led to a complex response of carbon, redox and energy metabolism. This leads to the 
question how to isolate the effects of ATP in cell metabolism, that is, how to design a targeted 
experiment to specifically perturb the ATP system so that the primary response of the metabolic 
network to the dynamics in ATP concentration can be monitored. Such an experiment will also 
provide a unique and independent data set for kinetic model development. 

Addition of weak acids, such as benzoic acid, to the medium has long been known to dissipate a 
part of the energy generated by cells for the active export of benzoate and protons to the 
extracellular medium (Verduyn et al., 1992). After addition of benzoic acid to the culture, it enters 
the cells via passive diffusion of the undissociated acid, which is able to permeate the cell 
membrane. Because of the high cytosolic pH, the intruding undissociated acid will dissociate into 
its anion with the release of one proton. To maintain intracellular pH homeostasis, the proton is 
expelled at the cost of 1 ATP/proton. The presence of benzoate has also been reported to induce an 
active benzoate exporter, Pdr12 (Holyoak et al., 1999; Piper et al., 1998), which expels benzoate at 
the cost of 1 ATP/benzoate. The overall effects of benzoic acid to S. cerevisiae are normally 
identified as an increase in the specific oxygen consumption and a decrease in the biomass yield 
(Stratford and Lambert, 1999; Pampulha et al., 2000; Verduyn et al., 1992, and Kresnowati et al., 
2007b).  

Given that only the undissociated form of the weak acid can permeate the cell membrane, the rate of 
ATP dissipation is related to the benzoic acid intrusion into the cell and, accordingly, linearly 
depends on the extracellular concentration of undissociated benzoic acid. The distribution of the 
dissociated and undissociated fraction of benzoic acid is determined by a pH dependent equilibrium 
relation.  

It can be expected that a change in ATP demand, e.g. the change in ATP requirement for expelling 
protons and benzoate, transiently perturbs the ATP system. Thus a transient change of the 
undissociated extracellular concentration of benzoic acid by manipulating the extracellular pH, will 
perturb the ATP metabolism and therefore provides a suitable platform to study the isolated effect 
of changes in ATP concentration on the kinetics of the central carbon metabolism.  

In this study we performed transient ATP perturbation experiments by step changes of the 
extracellular pH of an aerobic glucose limited chemostat culture of Saccharomyces cerevisiae, 
growing in the presence of a low concentration of benzoic acid in the medium. The discussion 
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covers a thorough evaluation of the proposed novel perturbation method, including the analysis of 
a-specific effects of the pH changes, and subsequently the application of the method to study the 
change in the fluxes and intracellular metabolite concentrations in response to the ATP perturbation. 

 

 

Theory 

In solution benzoic acid rapidly attains a pH dependent equilibrium between the undissociated and 
dissociated forms,  

.
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in which K is the benzoic acid dissociation constant, HB is the undissociated form of the acid and 
B- is its dissociated form (benzoate). Thus, for a certain measurable total benzoate concentration 
(CB = CB- + CHB), the fraction of the undissociated/protonated state can be calculated as  
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It has been reported previously that benzoic acid is not metabolized by S. cerevisiae due to the lack 
of benzoate 4-hydroxylase (Mollapour and Piper, 2001). This result was confirmed by Kresnowati 
et al. (2007a) who performed a mass balance based analysis of the recovery of benzoic acid for a 
culture of yeast to which benzoic acid was added. Based on this property, the accumulation of total 
benzoate inside the cells (CBin) can be calculated from the measured total concentration of 
extracellular benzoate (CBex) and the concentration of benzoate added to the medium (CB0) using the 
total benzoate mass balance. Considering that in the performed chemostat experiment, the fraction 
of total cell volume is negligible compared to the total broth volume, Cx.Vx << V, the intracellular 
total benzoate concentration can be calculated as 
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In which Cx [kgDW.m-3] is the biomass concentration and Vx is the specific volume per dry weight 
biomass [2.0 x 10-3 m3.kgDW-1 (Kresnowati et al., 2007a)]. 

Cell membranes are normally permeable to the undissociated form of relatively apolar weak acids, 
therefore such molecules can passively diffuse through cell membranes. By assuming that benzoic 
acid is transported into the cell by passive diffusion only, the net influx of benzoic acid (qHB 
[mol.kgDW-1.s-1]) can be modeled as: 
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in which kpd [m.s-1] is the membrane permeability constant for benzoic acid, CHBex and CHBin are the 
intracellular and extracellular concentrations of undissociated benzoic acid [mol.m-3], and dx [4 x 
10-6 m] is the cell diameter (Kresnowati et al., 2007b).  

In the presence of a benzoate transporter, such as Pdr12 which is reported to be an ABC transporter 
(Piper et al., 1998), intracellular benzoate is actively exported at the expense of ATP. This leads to 
a decrease in the intracellular benzoate and an increase in the extracellular total benzoate 
concentration as well as an additional O2 consumption. The overall mass balance of the intracellular 
total benzoate can be written as: 
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Here the export of benzoate (qB-) is described as a Michaelis-Menten kinetic function of the 
intracellular total benzoate concentration, with kexport [mol.m-3.s-1] and Km,export [= mol.m-3] as the 
kinetic parameter of this export process. 

To maintain the intracellular charge balance a proton must also be exported, i.e. using the well 
known H+-ATPase. Assuming that 1 ATP is consumed for exporting each of these species, i.e. 
proton and benzoate and that all the incoming benzoic acid is exported back to the medium, i.e. that 
the intracellular benzoate concentration is in pseudo steady state (Vx. dCBin/dt = 0), the influx of 
benzoic acid via passive diffusion is related to the additional oxygen consumption as: 

( )0
22 2 / 2 2HB B

qO qO P O q q −− ⋅ ⋅ = ⋅ = ⋅        (6.6)  

where qO2 is the specific oxygen consumption [mol.kgDW-1.s-1], qO2
0 represents the specific 

oxygen consumption in the absence of benzoic acid and the P/O ratio is chosen to be 1.46 
(Stückrath et al., 2002). This equation shows that the export of 1 mol of benzoate and its 
accompanying 1 mol of protons leads to an extra consumption of 1/(P/O) = 0.68 mol O2. 

 

 

Materials and methods 

Strain and fermentation condition 
The haploid yeast, S. cerevisiae CEN PK 113-7D, was cultivated in an aerobic carbon-limited 
chemostat culture of 4 L working volume in a 7 L fermentor (Applikon, The Netherlands) at 
dilution rate of 0.05 hr-1. The pH was controlled at 4.50 and temperature at 30oC. The air flow rate 
was 200 L.hr-1 (8.04 mol.L-1), with 0.3 bar overpressure in the fermentor and stirrer speed of 500 
rpm to ensure sufficient dissolved oxygen level (> 60%), measured online, in-situ with a Mettler-
Toledo DOT sensor (Mettler-Toledo GmbH, Switzerland). The medium composition (Mashego et 
al., 2005) was based on doubled mineral medium with 27.1 g.L-1 of glucose and 1.42 g.L-1 of 
ethanol, which was added to avoid the occurrence of oscillations, to support a biomass 
concentration of about 14.5 kgDW.m-3 in the absence of benzoic acid. Except indicated otherwise, 
800 µM of total benzoic acid was added to the medium. The presence of benzoic acid in the 
medium leads to a decrease in the biomass yield by about 40% (Kresnowati et al., 2007b), leading 
to a biomass concentration of about 8.5 kgDW.m-3. The chemostat was considered to obtain its 
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steady state condition after 5 residence times (counted from the end of the batch phase) and by 
checking the steady state concentrations of O2 and CO2 in the off gas.  

pH perturbation experiments 
Two different kinds of pH perturbation experiments were performed: pH step up and pH step down. 
In the pH step up the fermentation pH was immediately shifted up from 4.50 to 5.25 (in several 
seconds) by injecting base solution (11.4 g of 1 N KOH) and resetting the set point of the pH 
controller to 5.25. The transient responses were followed for about 20 minutes and afterwards the 
pH controller was reset to pH 4.50. The second perturbation, the pH step down from pH 4.50 to pH 
3.75, was conducted about 5 hours after the first perturbation so that there was enough time for the 
fermentation to regain its initial steady state condition but there was not enough time for the culture 
to get into a different steady state condition due to the difference in culture age (Mashego et al., 
2005). This second perturbation experiment was conducted by injecting acid solution (5.2 g of 1 M 
H2SO4) and resetting the set point of the pH controller to 3.75. Similarly, the transient responses 
were followed for about 20 minutes and afterwards the pH controller was reset to pH 4.50. 
Transient conditions following each perturbation were monitored on-line for pH, dissolved oxygen, 
off gas profiles (O2 and CO2) and off-line for intracellular metabolites (adenine nucleotides, 
glycolytic and TCA cycle intermediates), extracellular glucose and benzoic acid concentration. In 
order to distinguish the effect of benzoic acid from the a-specific effects of a changed pH, the same 
pH step changes were performed to an independent fermentation without benzoic acid in the 
medium. This set of experiments is later referred as the pH perturbation control experiments. 

Sampling and sample processing  
For intracellular metabolites analyses, 1 mL of broth was withdrawn from the fermentor by a rapid 
sampling set up (Lange et al., 2001) into 5 mL of 60% (v/v) methanol/water at –40oC to 
immediately quench the metabolic activities. The samples were then processed according to the 
intracellular metabolite sample processing method as described in Wu et al. (2005a) and then stored 
in -80oC before further analysis. Samples for extracellular metabolites analyses were obtained 
following the cold steel beads method as described by Mashego et al. (2003) and then stored in -
80oC before further analysis.  

Analysis 
Intracellular glycolytic and TCA cycle intermediates (G6P, F6P, G1P, T6P, M6P, 6PG, S7P, 
F1,6P2, F2,6P2, G3P, the sum of 2PG and 3PG, PEP, pyruvate, the sum of citrate and isocitrate, 
alpha-ketoglutarate, succinate, fumarate, malate) were analyzed by ion exchange LC- ESI-MS/MS 
as described in van Dam et al. (2002). ATP, ADP and AMP were analyzed by ion pairing reversed 
phase LC-ESI-MS/MS as described in Wu et al. (2006a). Metabolite quantifications were 
performed with the correction of 13C labeled internal standards which were added before the boiling 
ethanol extraction as described previously (Wu et al., 2005a). The concentration of S7P in the 13C 
labeled internal standards is very low so that this metabolite is presented as a relative concentration, 
normalized to the steady state value.  

The total benzoate level was measured by an isocratic HPLC method on Platinum EPS C18 column 
(Waters) with 28% (v/v) acetonitril in phosphate buffer eluent of pH 3.5. Residual glucose 
concentration was measured spectrophotometrically (Agilent 8453 UV-visible spectroscopy system, 
Waldbronn, Germany) using a Boehringer-Manheim kit (Roche, Germany) according to the 
manufacturer’s instructions. 

Oxygen and carbon dioxide concentration in the exhaust gas of the fermentation were measured on-
line by combined oxygen (paramagnetic) and carbon dioxide (infrared) analyzer NGA 2000 (Fisher-
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Rosemount, Germany). Dissolved oxygen tension in the fermentation broth was measured by a 
Clark cell based sensor (Applikon, The Netherlands).  

Rate calculation 
The transient oxygen consumption rate (OUR [mol.s-1]) and carbon dioxide production rate (CER 
[mol.s-1]) were calculated from the mass balance of oxygen and carbon dioxide in the gas and the 
liquid phases (Eqs. 6.7 - 6.10).  
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VL [m3] and NG [mol] are the liquid volume and gas hold up in the fermentor; CO2 and CCO2 [mol.m-

3] are the dissolved oxygen and carbon dioxide concentration in the fermentation broth; xO2 and xCO2 
are the mol fraction of oxygen and carbon dioxide in the gas; φL [m3.s-1] and φG [mol.s-1] are the 
volumetric medium and gas flow rate; klaO2 and klaCO2 [s-1] are the gas-liquid transfer coefficients 
successively for O2 and CO2; mO2 and mCO2 are the partition coefficients of O2 and CO2 between 
gas and liquid which are derived from the Henry coefficient for oxygen and carbon dioxide; and p, 
T, R are successively the pressure [bar], temperature [K] and gas constant [bar.m3.mol-1.K-1]. The 
time delay due to the lag time of the dissolved O2 probes and the offgas analyzer were neglected 
considering the time window of the perturbation experiment. Furthermore, the contribution of the 
accumulation terms, both in the liquid and the gas phase balances (VL.dCO2/dt, VL.dCCO2/dt, 
VG.dxO2/dt, VG.dxCO2/dt) as well as the dilution in the liquid phase (φL. CO2, φL. CCO2) are so small 
that they are neglected in the further calculation (pseudo steady state assumption). The specific 
oxygen consumption (qO2 [mol.kgDW-1.sP-1]) and the specific carbon dioxide production (qCO2 
[mol.kgDW-1.s-1]) were calculated by dividing the OUR and CER by the biomass amount (Cx.V 
[kgDW]). 

The biomass production rate (rX [mol.s-1]) can be calculated from the online measurement of the O2 
uptake rate and CO2 production rate (eqs. 6.7 - 6.10) using the carbon balance (eq. 6.11) or the 
degree of reduction (γ) balance (eq. 12). In this calculation the biomass composition is assumed to 
be CH1.748N0.148O0.596P0.009S0.0019M0.018 (in which M is the trace metal) with molecular weight of 
26.4 g/C-mol (Lange and Heijnen, 2001). A possible change in biomass composition during the 
transient due to the change in storage carbohydrate content is taken into account by including a 
separate rate of storage carbohydrate accumulation (rstorage [mol.s-1]) in the total carbon balance and 
the total degree of reduction balance. 

, ,. .L glu in L EtOH in X storageC C CER r rφ φ+ − − − =       (6.11) 
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2, ,. .glu L glu in EtOH L EtOH in O X X storage storageC C OUR r r 0γ φ γ φ γ γ γ⋅ + ⋅ + ⋅ − ⋅ − ⋅ =    (6.12) 

It is important to note that rX and rstorage are hardly separately identifiable because γX is close to 
γstorage and therefore only the combined term rX + rstorage can be reliably obtained. 

Flux distribution analysis 
The intracellular metabolic flux distribution at the various (pseudo) steady state conditions, 
successively the initial steady state, the pseudo steady state after the pH step up and the pseudo 
steady state after the pH step down, were calculated by metabolic flux balancing using a 
compartmented stoichiometric model for yeast (Daran-Lapujade et al., 2004). 

Some adaptations were introduced to the model to accommodate the effects of benzoic acid. An 
ATP consuming reaction which represents the futile passive import and active export of benzoic 
acid was added. The rate of this ATP consumption equals -2.qHB. This is completely analogous to 
the maintenance reaction with the rate -mATP. 

In order to accommodate the possible change in biomass composition due to the change in storage 
carbohydrate content, additional reactions for the biosynthesis and degradation of trehalose were 
included in the network.  

22 6 3 3 trehalose

trehalose 2 glucose
cyt cyt cyt cyt cyt cyt

cyt cyt

G P ATP H O ADP Pi+ + ⎯⎯→ + +

⎯⎯→
  

Note that only one of the two reactions was added to the model, since their simultaneous inclusion 
would lead to a futile cycle in combination with the hexokinase reaction in which glucose is 
phosphorylated to G6P. The trehalose biosynthesis reaction was used in the intracellular flux 
calculation of the pseudo steady state following the pH step up whereas the trehalose degradation 
reaction was used in the calculation of the pseudo steady state following the pH step down. 

The measured specific conversion rates (qO2, qCO2, µ, qS, qHB and qstorage) were used as inputs for the 
metabolic flux balancing process. The benzoic acid import flux equals the export flux which is 
determined from the additional O2 consumption associated with the presence of benzoic acid (eq. 
6.5). Within 20 minutes during which the response to the perturbation was observed, the biomass 
production rate is assumed not to have changed and hence it was assumed to be constant throughout 
the three (pseudo) steady state conditions. The rate of storage carbohydrate accumulation or 
degradation was calculated from the total carbon mass balance (eq. 6.11). 

The set-up of the stoichiometric models as well as the flux balancing was performed using a 
dedicated software (SPAD it, The Netherlands), the list of reactions composing the network is 
presented in the Appendix I.  
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Results 

Comparison of chemostat culture characteristics with or without benzoic acid in 
the medium 
In agreement with the previously reported effects of benzoic acid on yeast mentioned in the 
Introduction, we observed a 40% decrease of the steady state biomass concentration from 14.09 
kgDW.m-3 in the culture without benzoic acid to 8.30 kgDW.m-3 in the culture with 0.8 mM total 
benzoate in the feed medium. Correspondingly, both the specific oxygen consumption and specific 
glucose consumption rates increased, respectively from 1.46 to 3.66 mmol.gDW-1.h-1 (2.5 fold) and 
from 0.53 to 0.91 mmol.gDW-1.h-1 (1.7 folds) (Table 6.1). It should be noticed that due to the 
partitioning of benzoic acid between the biomass and the extracellular medium, the concentration of 
total benzoate in the supernatant is less than in the feed medium (Table 6.1). A detailed comparison 
(fluxes, metabolome) of the cultures with and without benzoic acid has been given in a previous 
study (Kresnowati et al., 2007b)). 

 

Table 6.1 Comparison of chemostat culture characteristics with or without benzoic acid in the medium 

CB0 [mM] 0 0.8 
CBex [mM] - 0.64 
pH 4.5 4.5 
Cx [kgDW.m-3] 14.09 ± 0.17 8.30 ± 0.29 
µ [h-1] 0.05 0.05 
qO2 [mol.kgDW-1.h-1] 1.46 ± 0.06 3.66 ± 0.35 
qCO2 [C-mol.kgDW-1.h-1] 1.45 ± 0.04 3.63 ± 0.06 
qglucose [C-mol.kgDW-1.h-1] 0.53 ± 0.01 0.91 ± 0.04 
qethanol [C-mol.kgDW-1.h-1] 0.22 ± 0.00 0.36 ± 0.01 

 
 

Manipulation of ATP dissipation via manipulation of the extracellular 
concentration of undissociated benzoic acid 
The extent of ATP dissipation caused by passive diffusion of undissociated benzoic acid and 
subsequent active export was manipulated by a stepwise alteration of the extracellular pH in the 
presence of 0.8 mM of benzoate in the feed medium. Both a step up (from pH 4.50 to 5.25) and a 
step down (from pH 4.50 to 3.75) experiment were performed. In both cases the change in pH was 
rapidly attained, that is within less than 15 s. The extracellular pH profiles during the pH shift 
experiments are presented in Figure 6.1. 

As can be seen from the benzoic acid dissociation equation (eq. 6.1) the fraction of extracellular 
undissociated benzoic acid is lower at high pH which creates a lower driving force for the passive 
diffusion of benzoic acid into the cells and thereby more benzoic acid can be found extracellularly. 
As expected, in response to the pH step up the extracellular total benzoate concentration rapidly 
increased from 640 µM to 770 µM within 20 s and then remained constant during the time of 
observation (Figure 6.2). Subsequently, the measured extracellular total benzoate concentration was 
used to calculate the intracellular total benzoate concentration using eq.(6.3) and the driving force 
for passive diffusion of benzoic acid (= CHBex – CHBin). Figure 6.2 shows the decrease in the 
intracellular total benzoate concentration, from 11.9 mM to 4.3 mM, and a corresponding decrease 
in the driving force for the passive diffusion of undissociated benzoic acid from 142 µM to 37 µM 
following the pH step up. Oppositely, following the pH step down we observed a rapid decrease in  
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Figure 6.1 Extracellular pH profiles during the pH shift experiments: pH step up (left), pH step down 
(right) 

 
 

 

Figure 6.2 Extracellular and intracellular total benzoic acid transient concentration profiles (CBex, 
CBin), transient driving force for benzoic acid passive diffusion profiles (= CHBex – CHBin) following the 

pH step up experiment (left graphs) and the pH step down experiment (right graphs) 
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the extracellular total benzoate concentration from 640 µM to 455 µM, an increase in the 
intracellular total benzoate from 11.9 mM to 22.7 mM and an increase of the driving force for the 
benzoic acid passive diffusion from 142 µM to 205 µM of undissociated benzoic acid. 

The fast response in the extracellular total benzoate concentration to the changes in the extracellular 
pH confirms the pseudo steady state condition of the intracellular total benzoate pool (eq. 6.5) and 
indicates small time constants of passive diffusion of benzoic acid and benzoate export. 

 

Effects of perturbation of the benzoic acid flux on the Oxygen Uptake Rate  
Following the extracellular pH step up from 4.50 to 5.25, we observed an increase in the oxygen 
concentration (Figure 6.3), both in the gas and the liquid phases, which indicates an immediate 
decrease in O2 consumption rate. Consistently, we observed a decrease concentration of carbon 
dioxide in the off gas, which is an indication of a decrease in the CO2 production rate (Figure 6.3). 
Interestingly, after setting back the extracellular pH to its initial value of 4.50 an undershoot in the 
oxygen concentration and an overshoot in the carbon dioxide concentration were observed. A 
similar response, although much less pronounced, was observed in the transient profiles of oxygen 
and carbon dioxide concentration following the pH step up control experiment (without benzoic 
acid in the medium). The pH step up in the control experiment resulted in an increase of the oxygen 
fraction in the gas phase from 19.85% to 20.03% while in the presence of benzoic acid a three fold 
higher increase was observed, from 19.50% to 20.05%. From this increase it was calculated that, for 
the culture with benzoic acid the oxygen consumption rate decreased from 117 mmol.h-1 to 70 
mmol.h-1 (40% decrease). For the control experiment without benzoic acid the oxygen consumption 
the rate decreased from 84 mmol.h-1 to 71 mmol.h-1 (16% decrease) in response to the pH step up. 

The observed undershoot after resetting of the extracellular pH to the initial value of 4.50, led to a 
transient increase in the oxygen consumption rate of 24% relative to the initial steady state value. 
During the whole transient, the respiratory quotient (RQ = CER/OUR) remained close to 1. 

In response to the step down of the extracellular pH from 4.50 to 3.75, we observed opposite 
patterns (Figure 6.3), i.e. a decrease of the oxygen concentration in both the gas and in the liquid 
phases, and an increase in the carbon dioxide concentration in the off gas. The pH step down led to 
an increase in the oxygen consumption rate from 113 mmol.h-1 to 141 mmol.h-1 (25% increase) in 
the presence of benzoic acid, and an increase from 81 mmol.h-1 to 96 mmol.h-1 (18% increase) in 
the corresponding control experiment. Again, the RQ value remained close to 1 during the whole 
transient. 

In general, the observed changes in oxygen consumption and carbon dioxide production rates agree 
very well with the expected changes in the benzoate related ATP dissipation upon changes in the 
undissociated benzoic acid concentration in the broth. 

The observed transient responses of the oxygen consumption and carbon dioxide production rates to 
the pH step up and step down in the control experiment show that a change of the pH itself does 
affect cell metabolism (Figure 6.3). The effect is, however, much smaller than the energy effects 
caused by the manipulation of the undissociated benzoic acid in the medium as shown in Figure 
6.4a. The transient responses that are solely caused by the pH-induced changes in the undissociated 
benzoic acid in the medium can be obtained by correcting the responses for the a-specific effects of 
changing pH that are observed in the control experiments. Under pseudo steady state conditions one 
would expect that the additional O2 consumption, after correcting for the pH effect is hyperbolic to 
the intracellular total benzoate, and is linear to the driving force for passive diffusion of benzoic 
acid (eqs. 6.5 - 6.6). The data in Figures 6.4b and c agree with these expectations. 
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Figure 6.3 Transient oxygen concentration profile in the liquid and gas phase, transient carbon dioxide 
concentration profile in the gas phase, transient oxygen consumption (solid lines) and carbon dioxide 
production rate (dashed lines) profile following the pH step up experiment (left graphs) and following 

the pH step down experiment (right graphs), the grey lines indicate the control experiments which 
were performed without benzoic acid in the medium 
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Figure 6.4 (a) Calculated specific oxygen consumption at different extracellular pH, with (diamonds) 
or without (squares) benzoic acid in the medium, (b) the effect of intracellular total benzoate 

concentration (CBin) to the additional oxygen consumption and (c) the effect of driving force of benzoic 
acid passive diffusion (CHBex-CHBin) to the additional oxygen consumption 

 

 

Time constant analysis of the ATP perturbation method 
One important aspect in the analysis of the transient condition following a perturbation experiment 
is how fast the perturbation is accomplished. Above, it was pointed out that the benzoic acid flux 
reacts very rapidly to a pH shift (Figure 6.2). In addition to this, we have data on the response of the 
oxygen uptake rate after the pH step up and step down from which the kinetics of the passive 
diffusion of benzoic acid and subsequent active export can be evaluated. The kinetic parameters of 
these reactions can be fitted to the pseudo steady state data, i.e. the additional specific oxygen 
consumption as well as the intracellular total benzoate concentration (Figure 6.4b) and the driving 
force for passive diffusion (Figure 6.4c). In this way, an exact calculation of the time constant of the 
perturbation can be performed. Details on this calculation are given in Appendix II. 

The calculation yields a membrane permeability constant for benzoic acid (kpd) value of 1.2 x 10-6 
m.s-1, which is lower than the estimated value of kpd of 9.2 ± 0.74 x 10-6 m.s-1 for a similar S. 
cerevisiae chemostat culture which was not adapted to the presence of benzoic acid, (Kresnowati et 
al., 2007a). On the other hand the value is comparable to estimated value from the study of transient 
adaptation of S. cerevisiae to benzoic acid of about 1 x 10-6 m.s-1 (Kresnowati et al., 2007b) and 
hence, in agreement with the hypothesis that as part of the adaptation mechanisms to the presence 
of benzoic acid, cells decrease the permeability constant for benzoic acid (Kresnowati et al., 
2007b). The calculation also yields the value of the kinetic parameter for benzoate export (kexport’, 
see Appendix II) which was estimated to be 2.5 x 10-2 s-1. From the estimated values of these 
parameters a turnover time of the intracellular total benzoate pool (τBin) of 22.9 s can be calculated, 
which is comparable to the observation in Figure 6.2 that the measured benzoate achieved a pseudo 
steady state within about 20 seconds after the  pH change.  

On the other hand, we also observe that the dissolved oxygen rapidly responded to the pH shift, 
with a time constant of about 120 s (Figure 6.3). Considering that the response time of the DO 
probe is approximately 64 s (Bloemen et al., 2003) and that the value of the klaO2 is about 0.07 s-1 
from which a time constant of O2 mass transfer from the gas to liquid phase of about 15 s can be 
calculated, the observed response of the DO (Figure 6.3) indicates that the characteristic time of the 
response of the in-vivo oxygen uptake rate is in the same time order as the step change of the 
extracellular pH and the resulting step change of the undissociated benzoic acid concentration, 
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which is about 20 s. This shows that the intended perturbation of the ATP fluxes (linked to O2 
fluxes) has been achieved in about 20 s.  

Overall, the above calculation of the time constants for the different sub-processes confirms that we 
can directly, in about 20 s, control the extracellular undissociated benzoic acid concentration by a 
step change of the extracellular pH and thereby control the ATP flux associated with the export of 
benzoate. 

 

Flux distribution analysis of the different (pseudo) steady state conditions 
As has been shown above, the change in the passive benzoic acid influx via a step change of the 
extracellular pH led to an immediate and significant metabolic perturbation (40% decrease and 25% 
increase in OUR respectively for the pH step up and step down experiments). To study the impact 
of these perturbations on the intracellular metabolic fluxes, a flux distribution analysis was 
performed for three (pseudo) steady state conditions: the initial steady state and the (pseudo) steady 
states following the pH step up and step down. The O2, CO2 and benzoate data in Figures 6.2 – 6.3 
show that in all three situations pseudo steady state was indeed achieved. 

Before analyzing the flux distribution, the assumption of a constant biomass production rate 
throughout the transient was verified by evaluating the energy availability for additional growth. 
Table 6.2 shows the carbon balances of the three pseudo steady states without and with the presence 
of benzoic acid when assuming that the growth rate determined at pH=4.50 holds for all three 
situations.  

It is shown that in the presence of 0.8 mM benzoic acid in the medium, there is clearly a surplus of 
carbon consumed (1.88 C-mol.kgDW-1.h-1) after the pH step up and there is insufficient carbon 
consumed (-0.51 C-mol.kgDW-1.h-1) following the pH step down. In case the surplus of carbon 
consumed at pH=5.25 would be used only for increasing the growth rate (i.e. the assumption of 
constant growth after the pH change would be released), one can calculate an increase of the growth 
rate from of 1.89 to 3.77 C-mmol.gDW-1.h-1. This would lead to an increase in oxygen consumption 
for growth.  

Table 6.2 also shows the oxygen consumption measurements at various pseudo steady state 
conditions, with or without benzoic acid. From the data on oxygen consumption rates of the control 
experiment, the yields of biomass on oxygen at each pH, assuming either that the growth rate does 
or does not change with changing pH, can be calculated. Depending on this assumption, a growth 
rate of 3.77 C-mol.kgDW-1.h-1 at pH=5.25 would require between 2.17 and 2.51 mol O2.kgDW-1.h-1

. 
These values exceed the total oxygen consumption measured for yeast in the presence of benzoic 
acid at the same pH, 2.07 mol O2.kgDW-1.h-1 (Table 6.2). That would mean that no oxygen 
consumption would be needed to generate energy production for benzoate export, which is highly 
unlikely. This is in support of our hypothesis that the growth rate does not change and that the 
surplus and the deficit in the carbon balances are more likely explained by the buildup or depletion 
of intracellular pools of storage carbohydrates. 

The results of the overall flux distribution analysis results are presented in Figure 6.5. It can be seen 
from this figure that both the glycolytic and the TCA cycle fluxes decrease in the pseudo steady 
state condition following the pH step up and oppositely, both the glycolytic and the TCA cycle 
fluxes increase in the pseudo steady state condition following the step down. The fluxes in the 
pentose phosphate pathway are shown to be constant in the three different conditions, which is a 
direct consequence of the assumption that the biomass synthesis rate is the same under the three 
different pseudo steady state conditions.  
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Table 6.2 Evaluation of carbon balances and biomass yield on oxygen for the pseudo steady states 
without and with the presence of benzoic acid in the medium at various pH 

CB0 [mM] 0 0.8 

pH 4.5 5.25 3.75 4.5 5.25 3.75 

qglu
1 [C-mol.kgDW-1.h-1] 3.18 3.18 3.18 5.46 5.46 5.46 

qeth
1

 [C-mol.kgDW-1.h-1] 0.22 0.22 0.22 0.36 0.36 0.36 

qbiomass 
2 [C-mol.kgDW-1.h-1] 1.89 1.89 1.89 1.89 1.89 1.89 

qCO2 [C-mol.kgDW-1.h-1] 1.43 1.21 1.65 3.58 2.05 4.44 

ΔqC
3 [C-mol.kgDW-1.hP-1] 0.08 0.3 -0.14 0.35 1.88 -0.51 

qO2 [mol.kgDW-1.h-1] 1.47 1.26 1.7 3.39 2.07 4.16 

Ybiomass/O2 4 [C-mol/mol] 1.29 
(1.34) 

1.50 
(1.74) 

1.11 
(1.03)    

1. glucose and ethanol consumption rates are equal in the three pseudo steady states as residual glucose and 
ethanol concentrations were observed not to change significantly upon the pH step changes (results not 
shown)  

2. calculated assuming that the growth rate remained unchanged following the pH step change 
3. ΔqC=qglu+qeth-qbiomass-qCO2 
4. yield of biomass on oxygen. Values between brackets are calculated assuming that ΔqC represents under 

or overestimated qbiomass 
 

 

Table 6.3 Total ATP generation at (pseudo) steady state of various undissociated benzoic acid 
concentrations, the values are expressed as specific flux normalized to specific glucose uptake rate 
[mol.kgDW-1.h-1.(mol glucose uptake.kgDW-1.h-1-)-1] 

Extracellular pH 4.50 5.25 3.75 

total cytosolic ATP production 3.15 2.04 3.57 

total mitochondrial ATP production 11.09 6.26 13.10 

total ATP production 14.24 8.30 16.67 

ATP consumption related with benzoic acid uncoupling 6.21 
(44%) 

2.53 
(31%) 

7.59 
(46%) 

 

For understanding the dynamics of the ATP pool it is relevant to know the change in the ATP flux 
which is obtained from the flux distribution. Before the perturbation the ATP flux equals 14.2 
mmol/gDW/h, after the pH step up this rate drops with more than 40% to 8.3 mmol/gDW/h and 
after the pH step down the flux increases with about 20% to 16.7 mmol/gDW/h. The ATP 
dissipation due to benzoate in these three states can be calculated to be 6.2, 2.5 and 7.6 
mmol/gDW/h, which shows a major impact of benzoate on ATP. 

As the ATP generation is coupled to the NADH consumption via the oxidative phosphorylation 
process, one can expect that change in benzoic acid flux will also affect the NADH/NAD ratio and 
thereby NADH related reactions. 
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Figure 6.5 Metabolic flux distribution at the (pseudo) steady state conditions of various undissociated 
benzoic acid concentrations. The values are given as the initial steady state condition (pHex = 4.5) / 

following the pH step up experiment  / following the pH step down experiment; the fluxes are 
expressed as mmol.gDW-1.h-1

 

Fast transient responses of intracellular metabolites to the pH step in control 
experiments (without benzoic acid in the culture) 
Figure 6.4a shows that in the control experiments, the specific oxygen consumption and carbon 
dioxide production do not strongly respond to the changes in extracellular pH. It can therefore be 
expected that the metabolic status of the cells is not much perturbed by the pH shift itself. To verify 
this hypothesis, we took two sets of 12 samples during each transient to monitor the fast metabolite 
responses (0- 600 s) of the two pH shift control experiments, in which the yeast cultures were 
grown without benzoic acid in the medium. 
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As expected, not many significant changes were observed in the transient following neither the pH 
step up nor the pH step down control experiments. Following the pH step down control experiment, 
we observed decreasing profiles of the sum of 2PG and 3PG, PEP, 6PG and S7P (Figure 6.6a). 
These concentrations decreased by about 20%, respectively from 0.81 to 0.64 µmol/gDW for the 
2PG+3PG pool, from 0.66 to 0.52 µmol/gDW for the PEP and 0.20 to 0.15 µmol/gDW for 6PG. 
The profiles of PEP and the 2PG+3PG pool, which are similar to the transient profiles in response 
to a glucose pulse experiment, may indicate a slight increase in the glycolytic flux which is 
consistent with the observed small increase in oxygen consumption following the pH step down 
control experiment.  

 

 

 

Figure 6.6 Significant changes in metabolite concentrations (a) following the pH step down control 
experiment: 2PG + 3PG pool, PEP, 6PG and S7P and (b) following the pH step up control experiment: 

succinate, fumarate, malate 

 

On the other hand some TCA cycle metabolites (succinate, fumarate and malate) showed significant 
changes following the pH step up control experiment (Figure 6.6b). The concentrations of 
succinate, fumarate and malate were observed to rapidly increase (up to 40 – 60%, within less than 
50 s) and then, within 100 s, sharply decreased to about 50 - 60% of the initial steady state 
concentrations, which were retained until the end of the observation window (∼ 600 s). One 
possible explanation for these profiles is the extraction of these weak acids from the intracellular to 
the extracellular compartment at higher pH. The dissociation constants (pK values) of these weak 
acids are 4.21 and 5.64 for succinate, 3.90 and 4.60 for fumarate and 3.40 and 5.11 for malate 
(Alberty, 2003), from these values 5 to 15 fold decreases in the fractions of the undissociated acids 
upon change of the extracellular pH from 4.50 to 5.25 can be calculated. The decreases in the 
extracellular undissociated acid concentrations increase the driving force for a possible passive 
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diffusion of these weak acids out of the cell and, accordingly, a larger fraction of the weak acids 
will be located in the extracellular compartment in the new steady state condition. By assuming that 
the total intracellular and extracellular amounts of acid (XTtot = XTin + XTex) are constant during 
the transient, decreases of 14 – 22% in the intracellular weak acid concentrations can be calculated 
(Appendix III), which is much less than measured. An alternative explanation of the lower TCA 
cycle acid concentrations is a decrease in the TCA cycle flux related to the small decrease in the 
observed specific oxygen consumption after the pH step up (Figure 6.4a). 

 

General metabolome responses to the perturbation of the benzoic acid flux 
In order to monitor the dynamics in the metabolome during the ATP flux perturbations, sets of 18 
samples for intracellular metabolite analyses were taken within the first 600 s of the transients. 
Considering the estimated intracellular total benzoate turnover time constant of about 22.9 s (see 
Appendix II), the chosen time window should be sufficient to capture the perturbation effects.  

The transient metabolite responses of the glycolysis and phosphorylated metabolites, TCA cycle 
weak acids and nucleotides to the pH step up and pH step down experiments are shown in Figures 
6.7 – 6.9. The metabolite responses to both perturbations are clearly different and for a number of 
metabolites even opposite. Moreover, consistent with the larger impact of the pH step up on the 
energy system (see Table 6.3), more prominent changes in the metabolome were observed after this 
perturbation. 

The mass action ratio of the commonly assumed pseudo equilibrium reactions such as glucose-6-
phosphate isomerase, phosphoglucomutase, manose-6-phosphate isomerase, fumarase and 
adenylate kinase (myokinase), were calculated to be constant or maximally changed by 20% during 
the transient (Figure 6.10). 

Overall, a new (pseudo) steady state condition was achieved within 300 s after the pH step changes. 
The metabolome distributions in the two new pseudo steady state conditions as well as the initial 
steady state condition at pH 4.50 are summarized in Table 6.4. 

 

Fast transient metabolite responses to the pH step up 
Figure 6.7 shows that about 10 seconds following the pH step up there was a rapid increase of the 
upper glycolytic intermediates G6P and F6P as well as the intermediates G1P and M6P that are 
derived thereof. A prolonged as well as higher relative increment was observed for the lower 
glycolytic intermediates, the 2PG+3PG pool and PEP as well as the pentose phosphate 
intermediates 6PG and S7P. The glycolytic intermediate F1,6P2 remained constant for the first 75 
seconds before it showed a small peak at 180 s and then decreased again. T6P, which is an 
intermediate in the biosynthesis of the storage carbohydrate trehalose, showed a continuously 
increasing profile. This is consistent with our above hypothesis that following the pH step up an 
increase buildup of storage carbohydrates takes place. 

Except for T6P, all phosphorylated metabolites had more or less returned to their initial steady state 
by the end of transient observation period of 600 seconds. The level of F2,6P2, which was reported 
to play an important role in benzoic acid response (Pearce et al., 2001; Francois et al., 1986), 
remains very low (< 2 nmol.gDW-1) throughout the transient (result not shown). 
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Figure 6.7 Transient glycolytic intermediate and phosphorylated metabolite concentration profiles 
following the pH step up experiment (left graphs) and following the pH step down experiment (right 

graphs) 

 

For the weak acid intermediates of the TCA cycle (Figure 6.8), the pH step up led to a shoot up 
followed by a significant drop in the concentration of pyruvate and of the intermediates of the 
reductive part of the TCA cycle (malate, fumarate, succinate). In case of malate, fumarate and 
succinate, their final concentrations decreased to about 30 – 40% of their initial steady state 
concentrations. Although the pH step up and the corresponding control experiments show similar 
transient metabolite patterns we noted that the absolute changes in the malate, fumarate and 
succinate concentrations following the pH step up in the presence of benzoic acid were much larger 
than the concentration changes in the control experiment. We also observed a transient, longer 
sustained shoot up of the concentrations of citrate and α-ketoglutarate. Afterwards, these 
concentrations decreased to about 80% of their initial steady state concentrations. 

Regarding the adenosine nucleotides, we observed that following the pH step up the ATP 
concentration slightly decreased, and consistently the ADP and AMP concentrations significantly 
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increased (Figure 6.9). In the longer term, we also observed that the total adenine nucleotide pool 
slightly decreased. Moreover, the energy charge and ATP/ADP ratio, both of which are measures of 
the energy level of the cell, were also observed to decrease by 5% and 40%, respectively.  

 

Table 6.4 Comparison of metabolite concentrations at (pseudo) steady state of various undissociated 
benzoic acid concentrations 

pH 4.50 5.25 3.75 
CBex [mM] 639 ± 36 769 ± 10 456 ± 26 

CHBex [mM] 210 ± 12 62 ± 1 335 ± 19 

qO2 [mmol.gDW-1.h-1] 3.39 2.07 4.16 
qCO2 [mmol.gDW-1.h-1] 3.58 2.05 4.44 
Intracellular metabolite concentrations [µmol/gDW]1,2,3

ATP 6.61 ± 0.23 5.84 ± 0.42 7.05 ± 0.25 

ADP 1.35 ± 0.03 1.52 ± 0.12 1.23 ± 0.14 
AMP 0.37 ± 0.02 0.57 ± 0.03 0.42 ± 0.09 
Energy charge4 0.87 ± 0.00 0.83 ± 0.07 0.88 ± 0.01 

G6P 1.59 ± 0.08 1.38 ± 0.01 1.40 ± 0.13 

F6P 0.25 ± 0.02 0.22 ± 0.01 0.23 ± 0.03 
G1P 0.34 ± 0.02 0.29 ± 0.00 0.29 ± 0.02 
M6P 0.71 ± 0.05 0.62 ± 0.01 0.60 ± 0.08 

T6P 0.19 ± 0.00 0.34 ± 0.01 0.16 ± 0.01 

6PG 0.29 ± 0.02 0.33 ± 0.01 0.15 ± 0.02 
FBP 0.31 ± 0.01 0.31 ± 0.01 0.35 ± 0.01 
G3P 0.05 ± 0.00 0.05 ± 0.00 0.04 ± 0.00 

2PG/3PG 0.61 ± 0.03 0.78 ± 0.02 0.31 ± 0.04 

PEP 0.43 ± 0.03 0.67 ± 0.01 0.18 ± 0.03 
Pyruvate 0.24 ± 0.01 0.20 ± 0.01 0.21 ± 0.01 
Citrate 7.26 ± 0.36 5.88 ± 0.17 6.78 ± 0.95 

Alfa-KG 0.25 ± 0.01 0.19 ± 0.01 0.23 ± 0.03 

Succinate 0.34 ± 0.02 0.11 ± 0.00 0.40 ± 0.08 
Fumarate 0.39 ± 0.02 0.10 ± 0.00 0.24 ± 0.05 
Malate 2.02 ± 0.10 0.64 ± 0.01 1.25 ± 0.17 

Glyoxylate 0.04 ± 0.00 0.04 ± 0.00 0.04 ± 0.00 
1. The presented metabolite concentrations for the pseudo steady state at pH 4.5 are the average value of 6 

independent samples, each of which were measured in duplo 
2. The presented metabolite concentration for the pseudo steady state at pH 5.25 are the average of the duplicate 

measurements of 1 independent sample, which was taken at 450 s following the pH step up 
3. The presented metabolite concentration for the pseudo steady state at pH 3.75 are the average value of 2 

independent samples, which were taken at 450 s and 600 s following the pH step down, each sample was measured 
in duplo 

4. energy charge (dimensionless) is defined as 0.5ATP ADP
ATP ADP AMP

+ ⋅
+ +
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Figure 6.8 Transient TCA cycle weak acid concentration profiles following the pH step up experiment 
(left graphs) and following the pH step down experiment (right graphs) 

 

 

Figure 6.9 Transient nucleotides concentrations: ATP, ADP, AMP, AXP pool, energy charge and 
ATP/ADP ratio following the pH step up experiment (left graphs) and following the pH step down 

experiment (right graphs) 
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Figure 6.10 Mass action ratio of glucose-6-phosphate isomerase, phosphoglucomutase, manose-6-
phosphate isomerase, fumarase and adenylate kinase (myokinase) during the transient following the  

pH step up experiment (left graphs) and the  pH step down experiment (right graphs) 

 

Fast transient metabolite responses to the pH step down 
For the phosphorylated metabolites (Figure 6.7), the only response to the pH step down that was 
observed was an immediate decrease in the 2PG + 3PG pool, PEP, 6PG and S7P, whose 
concentrations decreased by 40% - 60% of their initial steady state values. These are similar 
transient profiles but more pronounced than the observed responses for these metabolites following 
the pH step down control experiment which confirms that the observed effects are not only due to 
unspecific responses to a changed pH. For the TCA cycle intermediates malate and fumarate 
(Figure 6.8), we only observed a slow decrease to about 50% of their initial values.  
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Contrary to what we observed following the pH step up, we observed a transient increase in the 
ATP concentration and correspondingly decrease in the concentrations of ADP and AMP following 
the pH step down (Figure 6.9). Accordingly, these transient profiles led to increases in the energy 
charge and the ATP/ADP ratio. 

 

 

Discussion 

The flux distribution analysis reveals that the implemented perturbations directly (within about 20s) 
change the total ATP consumption rate by -44% and 17%, respectively in the pH step up and in the 
pH step down experiments. However, contrary to the expectation that the perturbations would cause 
observable transient profiles of the ATP concentration, we observed only small changes the 
directions of which even were contrary to the expectation. 

 

Fast transient metabolite responses to the pH step up 
The decrease in ATP need for benzoate export at lower benzoic acid influx following the pH step 
up, as confirmed by the observed reduced oxygen uptake rate (Table 6.4), was expected to 
transiently increase the ATP concentration which would inhibit the activity of the two main control 
points of the glycolysis: phosphofructokinase and pyruvate kinase (Teusink et al., 2000; 
Chassagnole et al., 2000). This would lower the glycolytic and TCA cycle fluxes, thereby 
decreasing the production of ATP and thus restoring the ATP balance.  

This expected change of flux pattern (Figure 6.5) is in qualitative agreement with the observed 
transient glycolytic intermediate profiles following the pH step up experiment (Figure 6.7). For the 
upper glycolytic pathway, we observed a fast transient increase in the concentrations of G6P and 
F6P, whereas the concentration of F1,6P2 remained constant for at least the first 75 seconds 
transient following the pH step up experiment. In a controlled glucose limited chemostat culture, 
these transient metabolite profiles suggest a decrease in the rate of the phosphofructokinase 
reaction. Within the same time window, for the lower glycolysis pathway we observed transient 
accumulations of the 2PG + 3PG pool and PEP, which suggest a decrease of the pyruvate kinase 
activity. Consistently, a high PEP level is reported to inhibit phosphofructokinase activity (Kotlarz 
et al., 1975). Later, coherent with the restoring of the G6P and F6P concentration after about 75 s 
we observed that the level of F1,6P2 started increasing, which activated the pyruvate kinase 
(Chassagnole et al., 2002) and thus led to the decrease in the 2PG + 3PG pool and PEP 
concentration.  

Along the same line, the transient profiles of the concentrations of the weak acid intermediates of 
the TCA cycle corresponded to a decrease in TCA cycle flux. The transient concentration profiles 
of particularly for succinate, malate and fumarate concentrations showed a fast shoot up followed 
by significant decrease (Figure 6.8). Although the drop may have been caused by the higher passive 
diffusion of these acids at alkaline condition (Appendix III), this mechanism can not explain the 
strong decrease of 60-70% in the concentrations of these weak acids. Furthermore the mass action 
ratio of the fumarase (Figure 6.10), converting fumarate to malate, which was reported to be closed 
to equilibrium (Nelson and Cox, 2000), showed an increasing profile which suggests the slowing 
down of this reaction. 
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The main inconsistency in the observed metabolite patterns is that in this experiment neither a 
significant increase in the concentration of ATP nor an increase in the energy charge were observed. 
Apparently, ATP is not the sensor of the high energy level in this transient condition. 

 

Fast transient metabolite responses to the pH step down 
In the more acidic condition (pHex = 3.75) the higher extracellular undissociated benzoic acid 
concentration led to a higher energy requirement for exporting benzoate as was reflected by the 
higher specific oxygen consumption (Table 6.4). As indicated earlier, the extra requirement for 
electron donor is assumed to be covered by the mobilization of storage carbohydrate, which led to 
higher fluxes in the glycolytic and TCA cycle (Figure 6.5).  

The transient decreases in the concentrations of the glycolytic intermediates 2PG + 3PG and PEP 
and the pentose phosphate pathway intermediate 6PG following the pH step down (Figure 6.7) are 
consistent with metabolic profiles that our research group measured previously for a situation of 
high glycolytic flux in the same yeast strain, induced by a glucose pulse to a glucose-limited 
chemostat cultivation (Wu et al., 2006a; Kresnowati et al., 2007a).  

Moreover, in this perturbation where the energy requirement for exporting benzoate was increased 
neither the expected decrease in ATP concentration nor the anticipated decrease in the energy 
charge were observed. In fact, the opposite was observed (Figure 6.9). 

 

Explanations for the unexpected ATP responses 
One possible explanation for the unexpected adenosine nucleotide profiles is metabolite 
compartmentation. Indeed, metabolites are not distributed homogenously in S. cerevisiae, but are 
partitioned between the cytosol and the mitochondria. However for lack of data we cannot prove 
nor disprove that this hypothesis could explain our observations. 

Besides compartmentation, the metabolites may either occur in a free form or be bound to enzymes 
or other proteins. Some of the ATP may actually bind to the benzoate and proton exporters (Pdr12 
and H+-ATPase). Assuming that each of these proteins compose about 35% of the total plasma 
membrane protein (Piper et al., 2001; Holyoak et al., 1996 and van der Rest et al., 1995) and that 
the total amount of the plasma membrane protein composes 5% of the total protein lead to an 
abundance of each of the Pdr12 and H+-ATPase of about 1.75% of the total protein content. As 
comparisons the glyceraldehydephosphate dehydrogenase composes 3.5% of the total protein 
content and alcohol dehydrogenase composes 1.8% of the total protein content (van Hoek, 2000). 
Moreover, by assuming that protein composes 38.5% of cellular dry weight (Lange and Heijnen, 
2001) and a protein molecular weight of 105, the concentration of each of these proteins is 
calculated to be 6.74 x 10-2 µmol.gDW-1. Supposing that both these proteins bind 1 ATP molecule, 
in total only 0.13 µmol.gDW-1 ATP is bound and hence the dynamics in this compartment is 
negligible to the total ATP concentration of 6.61 µmol.gDW-1 (Table 6.4). 

In evaluating the response of the adenosine nucleotides, it is also relevant to consider the time 
constants of the ATP generation process and the benzoate transport. If the time constant of the 
benzoate export is smaller than the time constant of the ATP generation process than a decrease in 
ATP concentration should be observed following an increase in benzoate export and vice versa. 
Reversely, if the time constant of the benzoate export is larger than the time constant of the ATP 
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generation process, the decrease or increase in the benzoate export may not be visible: every 
additional ATP consumed for benzoate export will be instantaneously replenished. 

The time constant of ATP generation can be calculated from the steady state intracellular ATP 
concentration (Table 6.4) and the total ATP production rate (Table 6.3): τATP = CATP/ΣvATP,production. 
Given an ATP concentration value of 6.61 µmol.gDW-1 and total ATP production rate of 14.24 
mmol.gDW-1.h-1 (Table 6.3), τATP is calculated to be 1.7 s. The time constant of benzoate export and 
benzoic acid passive diffusion (intracellular benzoate turn over time) was calculated in Appendix II 
to be 22.9 s. Therefore the time constant of benzoate processes is 13 fold larger than the time 
constant for ATP generation. The difference in these time constants indicates that the depletion in 
ATP concentration due to the increase in ATP need for benzoate and proton export (pH step down) 
will be rapidly compensated by ATP regeneration. As a consequence, in retrospect one could not 
expect to see changes in the ATP concentrations in response to the externally manipulated benzoate 
flux into the cell. However, rather than unchanged ATP levels, changes in the ATP levels were 
seen, but in directions opposite to the expectation. 

Interestingly, in the previously reported transient metabolic responses to glucose pulses (Somsen et 
al., 2000; Theobald et al., 1997; Wu et al., 2006a; Kresnowati et al., 2007a) the level of ATP also 
changed oppositely to the initially expected direction. For example Wu et al. (2006a) observed an 
immediate (< 50 s) significant decrease in ATP concentration (> 50%) following a glucose 
perturbation. Within the same time frame the specific glucose uptake and OUR increased 
maximally by 17 and 2 fold and after about 50 s these changes have returned to 3 and 1 fold. Using 
the rate value at 50 s we calculate that in this perturbation experiment the ATP production rate 
increased by 25%, from 5.2 mmol.gDW-1.h-1 to 6.5 mmol.gDW-1.h-1 (calculated via black box 
approach qATP = 2 qS + 2.P/O.qO2 from transient metabolite concentrations following a glucose pulse 
published by Wu et al. (2006a)). Hence, in this glucose perturbation ATP production transiently 
increases but the ATP concentration transiently decreases.  

Based on similar findings plus the response of yeast to a combined glucose plus acetaldehyde pulse 
where the intracellular NADH/NAD+ ratio was differently perturbed, Mashego et al. (2006b) have 
proposed that the level of ATP may be governed by the set of equilibrium reactions between F1,6P2 
and 2/3PG. If this is also the case in the current experiment, the manipulated consumption rate of 
ATP may not be the main drive of the metabolic changes after all. Furthermore, it cannot be 
excluded that the altered intracellular level of benzoate may lead to an altered flux pattern due to the 
direct interactions of benzoate with glycolytic enzymes such as stimulation of fructose-2,6-
biphosphatase and inhibition of phospho-2-fructokinase as proposed by Pearce et al. (2001). The 
observed altered levels of ATP may then be a result rather than a cause of the metabolic changes. 

 

 

Conclusion 

This study describes a successful implementation of a targeted perturbation of the ATP fluxes using 
a shift of the extracellular pH in an aerobic-glucose limited chemostat culture of S. cerevisiae 
growing in medium containing benzoic acid. The performed pH changes led to a direct (within 
about 20 s) perturbation in the ATP fluxes and resulted in a 44% decrease (pH step up) and a 17% 
increase (pH step down) in ATP flux. The decrease in ATP consumption at a constant specific 
glucose consumption rate led to an increase in the storage carbohydrate pool and a strong (40%) 
decrease in the glycolytic and TCA cycle fluxes. Oppositely, the increase in ATP consumption 
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required the mobilization of storage carbohydrate and a strong increase (25%) in the glycolytic and 
TCA cycle fluxes.  

The expected nucleotide changes, namely an increase in the ATP concentration when its 
consumption rate decreases and vice versa were not observed. In fact, the opposite patterns were 
found. It is speculated that the observed changed levels of ATP are not the cause but rather the 
result of the metabolic changes. Importantly, this does by no means lead to the conclusion that the 
designed perturbation failed to achieve its goal. On the contrary, we now have obtained two 
independent sets of dynamic metabolite data in which the changes in metabolite concentration have 
different magnitudes and directions than in previously obtained datasets e.g. following glucose 
pulses. The explanation of the observed data is beyond the scope of this study. This will be done in 
a future development of a kinetic model of yeast metabolism, for which these data are of great 
value. 

In the development of such a model, accurate data on intracellular metabolite concentrations and 
fluxes are equally important. Therefore, future experimental work is also needed to confirm our 
hypothesis that depletion or accumulation of storage carbohydrates rather than altered growth allow 
changes in glycolytic and TCA cycle fluxes under conditions with a constant substrate uptake rate. 
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Appendix I List of reactions composing the network for the metabolic 
flux analysis 

Reactions 
Amino acid synthesis 

alanine transaminase  cALA N-trans 1 GLM,c + 1 PYR,c <=> 1 ALA,c + 1 OGL,c 
arginine synthesis  cARG syn 1 ASP,c + 1 ATP,c + 1 CARP,c + 1 ORN,c <=> 1 AMP,c + 1 ARG,c + 1 FUM,c 

+ 3 H,c + 1 Pi,c + 1 PPi,c 
asparagine synthesis  cASN syn 1 ASP,c + 1 ATP,c + 1 GLN,c + 1 H2O,c <=> 1 ADP,c + 1 ASN,c + 1 GLM,c + 

1 H,c + 1 Pi,c 
asparatate aminotransferase  cASP N-trans 1 GLM,c + 1 OXACT,c <=> 1 ASP,c + 1 OGL,c 
aspartate kinase  cASP kin 1 ASP,c + 1 ATP,c + 2 H,c + 2 NADPH,c <=> 1 ADP,c + 1 HSER,c + 2 NADP,c 

+ 1 Pi,c 
branched chain amino acid 
transferase (isoleucine) mit 

 mILE N-trans 1 GLM,m + 1 H,m + 1 NADPH,m + 1 OBU,m + 1 PYR,m <=> 1 CO2,m +  
1 H2O,m + 1 ILE,m + 1 NADP,m + 1 OGL,m 

branched chain amino acid 
transferase (leucine) 

 cLEU N-trans 1 GLM,c + 1 IPM,c + 1 NAD,c <=> 1 CO2,c + 1 LEU,c + 1 NADH,c + 1 OGL,c 

branched chain amino acid 
transferase (valine) cyt 

 cVAL N-trans 1 GLM,c + 1 OIV,c => 1 OGL,c + 1 VAL,c 

branched chain amino acid 
transferase (valine) mit 

 mVAL N-trans 1 GLM,m + 1 OIV,m <=> 1 OGL,m + 1 VAL,m 

carbamoyl phoshate synthase  cCARP syn 2 ATP,c + 1 CO2,c + 1 GLN,c + 2 H2O,c <=> 2 ADP,c + 1 CARP,c + 1 GLM,c 
+ 3 H,c + 1 Pi,c 

cysteine synthese  cCYS syn 2 H,c + 1 HCYS,c + 1 SER,c <=> 1 CYS,c + 1 NH4,c + 1 OBU,c 
glutamate ammonia ligase  cGLM N-lig 1 ATP,c + 1 GLM,c + 1 NH4,c <=> 1 ADP,c + 1 GLN,c + 1 H,c + 1 Pi,c 
glutamate dehydrogenase  cGLM deh 1 H,c + 1 NADPH,c + 1 NH4,c + 1 OGL,c <=> 1 GLM,c + 1 H2O,c + 1 NADP,c 
glycine hydroxymethyl 
transferase 

 cGLY transf 1 SER,c + 1 THF,c <=> 1 GLY,c + 1 H2O,c + 1 METHF,c 

histidine synthesis  cHIS syn 1 ATP,c + 1 GLN,c + 3 H2O,c + 2 NAD,c + 1 PRPP,c <=> 1 AICAR,c + 6 H,c + 
1 HIS,c + 2 NADH,c + 1 OGL,c + 1 Pi,c + 2 PPi,c 

homocitrate synthesis  cHCIT syn 1 ACCoA,c + 1 H2O,c + 1 OGL,c <=> 1 CoA,c + 1 H,c + 1 HCIT,c 
homocysteine synthesis  cHCYS syn 1 ACCoA,c + 1 H2S,c + 1 HSER,c <=> 1 ACT,c + 1 CoA,c + 2 H,c + 1 HCYS,c 
isopropylmalate synthase cyt  cIPM syn 1 ACCoA,c + 1 H2O,c + 1 OIV,c => 1 CoA,c + 1 H,c + 1 IPM,c 
methionine synthase  cMET syn 1 H,c + 1 HCYS,c + 1 MYTHF,c <=> 1 MET,c + 1 THF,c 
ornithine synthesis  mORN syn 1 ATP,m + 2 GLM,m + 1 H,m + 1 NADPH,m => 1 ADP,m + 1 NADP,m +  

1 OGL,m + 1 ORN,m + 1 Pi,m 
oxoadipate synthesis  mOAD syn 1 HCIT,m + 1 NAD,m <=> 1 CO2,m + 1 NADH,m + 1 OAD,m 
oxoisovalerate synthesis mit  mOIV syn 2 H,m + 1 NADPH,m + 2 PYR,m <=> 1 CO2,m + 1 H2O,m + 1 NADP,m +  

1 OIV,m 
phenylalanine synthesis  cPHE syn 1 CHO,c + 1 GLM,c + 1 H,c <=> 1 CO2,c + 1 H2O,c + 1 OGL,c + 1 PHE,c 
proline dehydrogenase  cPRO deh 1 ATP,c + 1 GLM,c + 2 H,c + 2 NADPH,c <=> 1 ADP,c + 1 H2O,c + 2 NADP,c 

+ 1 Pi,c + 1 PRO,c 
serine synthesis  cSER syn 1 3PG,c + 1 GLM,c + 1 H2O,c + 1 NAD,c <=> 1 H,c + 1 NADH,c + 1 OGL,c + 

1 Pi,c + 1 SER,c 
shikimate pathway  cSHI path 1 ATP,c + 1 E4P,c + 1 NADPH,c + 2 PEP,c <=> 1 ADP,c + 1 CHO,c +  

1 NADP,c + 4 Pi,c 
threonine aldolase  cTHR ald 1 THR,c => 1 ACTAL,c + 1 GLY,c 
threonine dehydratase mit  mTHR deh 1 H,m + 1 THR,m => 1 NH4,m + 1 OBU,m 
threonine synthesis  cTHR syn 1 ATP,c + 1 H2O,c + 1 HSER,c <=> 1 ADP,c + 1 H,c + 1 Pi,c + 1 THR,c 
thryptophan synthesis  cTRP syn 1 CHO,c + 1 GLN,c + 1 PRPP,c + 1 SER,c <=> 1 CO2,c + 1 GAP,c + 1 GLM,c 

+ 1 H,c + 1 H2O,c + 2 Pi,c + 1 PYR,c + 1 TRP,c 
tyrosine synthesis  cTYR syn 1 CHO,c + 1 GLM,c + 1 NADP,c <=> 1 CO2,c + 1 NADPH,c + 1 OGL,c +  

1 TYR,c 
 
Biomass formation  

biomass formation G4  biom-G4 0.398 CARBHYD,c + 0.00362 DNA,c + 0.0561 H2O,c + 0.101 LIPID,c +  
0.018 metal,c + 0.00245 Pi,c + 0.451 PROT,c + 0.047 RNA,c + 0.00094 SO4,c 
=> 1 biom-G4,e 

 
C-1 metabolism 

dihydrofolate reductase  cDHF red 1 DHF,c + 1 H,c + 1 NADPH,c => 1 NADP,c + 1 THF,c 
methylenetetrahydrofolate 
dehydrogenase 

 cMETHF deh 1 FTHF,c + 1 H,c + 1 NADPH,c => 1 H2O,c + 1 METHF,c + 1 NADP,c 
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methylenetetrahydrofolate 
reductase 

 cMETHF red 1 H,c + 1 METHF,c + 1 NADPH,c => 1 MYTHF,c + 1 NADP,c 

 
Catabolism 

sulfate assimilation  cSO4 ass 2 ATP,c + 3 H,c + 4 NADPH,c + 1 SO4,c => 1 ADP,c + 1 AMP,c + 2 H2O,c +  
1 H2S,c + 4 NADP,c + 1 Pi,c + 1 PPi,c 

 
Diffusion 

benzoic acid import  BAin 1 BA,e => 1 BA,c 
CO2 diffusion  eCO2<-cCO2 1 CO2,c <=> 1 CO2,e 
intracellular carbondioxid 
diffusion 

 cCO2<-mCO2 1 CO2,m => 1 CO2,c 

intracellular oxygen diffusion  cO2->mO2 1 O2,c => 1 O2,m 
intracellular water diffusion  cH2O<-mH2O 1 H2O,m => 1 H2O,c 
oxygen diffusion  eO2->cO2 1 O2,e <=> 1 O2,c 
water diffusion  eH2O<-cH2O 1 H2O,c <=> 1 H2O,e 

 
Glycolysis, lower 

enolase  cEnol 1 2PG,c <=> 1 H2O,c + 1 PEP,c 
glyceraldehyde phosphate 
dehydrogenase 

 cGAP deh 1 GAP,c + 1 NAD,c + 1 Pi,c <=> 1 13PG,c + 1 H,c + 1 NADH,c 

phosphoglycerate kinase  c13PG kin 1 13PG,c + 1 ADP,c <=> 1 3PG,c + 1 ATP,c 
phosphoglycerate mutase  c3PG mut 1 3PG,c <=> 1 2PG,c 
pyruvate kinase  cPYR kin 1 ADP,c + 1 H,c + 1 PEP,c => 1 ATP,c + 1 PYR,c 

 
Glycolysis, upper 

fructosebisphosphate aldolase  cF16P ald 1 F16P,c <=> 1 DHAP,c + 1 GAP,c 
glucose 6-phosphate 
isomerase 

 cG6P iso 1 G6P,c <=> 1 F6P,c 

hexokinase  cHX kin 1 ATP,c + 1 GLUC,c => 1 ADP,c + 1 G6P,c + 1 H,c 
phosphofructokinase  cPF kin 1 ATP,c + 1 F6P,c => 1 ADP,c + 1 F16P,c + 1 H,c 
triose phophate isomerase  cTP iso 1 DHAP,c <=> 1 GAP,c 

 
Intracellular transport 

ADP-ATP antiport cyt/mit  ADPc<-
>ATPm 

1 ADP,c + 1 ATP,m => 1 ADP,m + 1 ATP,c 

mit. ammonium carrier 
protein 

 NH4m car 1 H,c + 1 NH4,m => 1 H,m + 1 NH4,c 

mit. homocitrate carrier  HCITm car 4 H,c + 1 HCIT,c => 4 H,m + 1 HCIT,m 
mit. isoleucine carrier  ILEm car 1 H,c + 1 ILE,m => 1 H,m + 1 ILE,c 
mit. ornithine carrier  ORNm car 1 H,c + 1 ORN,m => 1 H,m + 1 ORN,c 
mit. oxaloacetate exporter  OXACTm ex 1 H,m + 1 OXACT,m => 1 H,c + 1 OXACT,c 
mit. oxobutyrate carrier  OBUm car 1 H,c + 1 OBU,c => 1 H,m + 1 OBU,m 
mit. oxogluterate/malate 
carrier 

 ODC1m car 1 MAL,c + 1 OGL,m => 1 MAL,m + 1 OGL,c 

mit. oxogluterate/oxoadipate 
carrier 

 ODC2m car 1 OAD,m + 1 OGL,c => 1 OAD,c + 1 OGL,m 

mit. oxoisovalerate carrier  OIVm car 1 OIV,m => 1 OIV,c 
mit. phosphate carrier mit  Pi_m car 2 H,c + 1 Pi,c => 2 H,m + 1 Pi,m 
mit. pyruvate proton symport  PYRm car 2 H,c + 1 PYR,c => 2 H,m + 1 PYR,m 
mit. threonine carrier  THRm car 1 H,c + 1 THR,c => 1 H,m + 1 THR,m 
mit. valine importer  VALm imp 1 H,c + 1 VAL,c => 1 H,m + 1 VAL,m 

 
Lipid synthesis 

acetyl-CoA carboxylase  cACCoA carb 1 ACCoA,c + 1 ATP,c + 1 CO2,c + 1 H2O,c => 1 ADP,c + 2 H,c + 1 MACoA,c 
+ 1 Pi,c 

adenosly homocysteinase  cSAH hyd 1 H2O,c + 1 SAH,c => 1 A,c + 1 H,c + 1 HCYS,c 
average fatty acid formation  cAvFA form 1.7 OLE-CoA,c + 4.4 PLLM-CoA,c + 1.4 PLM-CoA,c + 1 STE-CoA,c =>  

8.5 avFA-CoA,c 
average phospholipid 
formation 

 cAvPL form 11 PHD-CHO,c + 4 PHD-ETA,c + 3 PHD-SER,c => 18 avPL,c 

FAT formation  cFAT form 1 avFA-CoA,c + 1 H2O,c + 1 PHD,c => 1 CoA,c + 1 FAT,c + 1 Pi,c 
glycerol 3-phosphate 
acyltransferase 

 cGOH3P trans 2 avFA-CoA,c + 1 GOH3P,c => 2 CoA,c + 1 PHD,c 
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glycerol 3-phosphate 
dehydrogenase 

 cGOH3P deh 1 DHAP,c + 1 H,c + 1 NADH,c => 1 GOH3P,c + 1 NAD,c 

methionine adenosyl 
transferase 

 cMET Atrans 1 ATP,c + 2 H2O,c + 1 MET,c => 1 H,c + 3 Pi,c + 1 SAM,c 

palmitate CoA ligase  cPLM lig 1 ATP,c + 1 CoA,c + 1 H2O,c + 1 PLM,c => 1 AMP,c + 1 H,c + 2 Pi,c +  
1 PLM-CoA,c 

palmitate-CoA desaturase  cPLM desat 1 H,c + 1 NADPH,c + 1 O2,c + 1 PLM-CoA,c => 2 H2O,c + 1 NADP,c +  
1 PLLM-CoA,c 

palmitic acid synthesis  cPLM syn 1 ACCoA,c + 20 H,c + 7 MACoA,c + 14 NADPH,c => 7 CO2,c + 8 CoA,c +  
6 H2O,c + 14 NADP,c + 1 PLM,c 

phosphatidate cytidyl 
transferase 

 cPHD-C trans 1 CTP,c + 1 H2O,c + 1 PHD,c => 1 CMP-DGOH,c + 2 Pi,c 

phosphatidyl-ethanolamine 
methyltransferase 

 cPHD-EA 
mtrans 

1 PHD-ETA,c + 3 SAM,c => 3 H,c + 1 PHD-CHO,c + 3 SAH,c 

phosphatidyl-serine 
decarboxylase 

 cPHD-SER 
dcarb 

1 PHD-SER,c => 1 CO2,c + 1 PHD-ETA,c 

phosphatidyl-serine synthase  cPHD-SER syn 1 CMP-DGOH,c + 1 SER,c => 1 CMP,c + 1 PHD-SER,c 
stearate CoA desaturase  cSTE desat 1 H,c + 1 NADPH,c + 1 O2,c + 1 STE-CoA,c => 2 H2O,c + 1 NADP,c +  

1 OLE-CoA,c 
stearate CoA ligase  cSTE ligase 1 ATP,c + 1 CoA,c + 1 H2O,c + 1 STE,c => 1 AMP,c + 1 H,c + 2 Pi,c +  

1 STE-CoA,c 
stearic acid synthesis  cSTE syn 1 ACCoA,c + 23 H,c + 8 MACoA,c + 16 NADPH,c => 8 CO2,c + 9 CoA,c +  

7 H2O,c + 16 NADP,c + 1 STE,c 
 
Macromolecule synthesis 

average amino acid formation  cAvAA form 0.977 ALA,c + 0.386 ARG,c + 0.408 ASN,c + 0.52 ASP,c + 0.0139 CYS,c + 
1.02 GLM,c + 0.526 GLN,c + 0.889 GLY,c + 0.193 HIS,c + 0.589 ILE,c + 
 0.801 LEU,c + 0.657 LYS,c + 0.114 MET,c + 0.0238 ORN,c + 0.376 PHE,c + 
0.422 PRO,c + 

carbohydrate synthesis  cCARBHYD 
syn 

1 ATP,c + 1 G6P,c + 1 H2O,c => 1 ADP,c + 6 CARBHYD,c + 1 H,c + 2 Pi,c 

additional trehalose synthesis cTRE syn 2 G6P,c + 1 ATP,c + 3 H2O: cyt => 1 ADP: cyt + 3 Pi: cyt + 1 TRE: cyt 
additional trehalose 
degradation 

cTRE deg 1 TRE: cyt  => 2 GLU: cyt 

DNA polymerisation  cDNA poly 0.3 ATP,c + 0.2 CTP,c + 0.2 GTP,c + 1 H,c + 0.3 METHF,c + 1 NADPH,c +  
0.3 UTP,c => 0.3 DHF,c + 9.8 DNA,c + 1 H2O,c + 1 NADP,c + 1 PPi,c 

lipid formation  cLipid form 0.45 avPL,c + 0.55 FAT,c => 47.2 LIPID,c 
lysine synthesis  cLYS syn 1 ATP,c + 2 GLM,c + 1 NAD,c + 2 NADPH,c + 1 OAD,c <=> 1 AMP,c +  

1 LYS,c + 1 NADH,c + 2 NADP,c + 2 OGL,c + 1 PPi,c 
protein polymerisation  cPROT poly 3 ATP,c + 1 avAA,c + 2 H2O,c <=> 2 ADP,c + 1 AMP,c + 4 H,c + 2 Pi,c +  

1 PPi,c + 4.81 PROT,c 
RNA polymerisation  cRNA syn 0.3 ATP,c + 0.2 CTP,c + 0.2 GTP,c + 0.3 UTP,c => 1 PPi,c + 9.5 RNA,c 

 
Maintenance 

maintenance  cMaintenance 1 ATP,c + 1 H2O,c => 1 ADP,c + 1 H,c + 1 Pi,c 
 
Nucleotide synthesis 

adenosine kinase  cA kin 1 A,c + 1 ATP,c <=> 1 ADP,c + 1 AMP,c + 1 H,c 
adenylate kinase  cAMP kin 1 AMP,c + 1 ATP,c <=> 2 ADP,c 
AMP synthesis  cAMP syn 1 ASP,c + 1 ATP,c + 1 IMP,c <=> 1 ADP,c + 1 AMP,c + 1 FUM,c + 2 H,c + 1 

Pi,c 
CTP synthetase  cCTP syn 1 ATP,c + 1 GLN,c + 1 H2O,c + 1 UTP,c <=> 1 ADP,c + 1 CTP,c + 1 GLM,c + 

2 H,c + 1 Pi,c 
cytidylate kinase  cCMP kin 1 ATP,c + 1 CMP,c <=> 1 ADP,c + 1 CDP,c 
GMP synthesis  cGMP syn 1 ATP,c + 1 GLN,c + 2 H2O,c + 1 IMP,c + 1 NAD,c <=> 1 AMP,c + 1 GLM,c + 

1 GMP,c + 4 H,c + 1 NADH,c + 1 PPi,c 
guanylate kinase  cGMP kin 1 ATP,c + 1 GMP,c => 1 ADP,c + 1 GDP,c 
IMP synthesis  cIMP syn 1 AICAR,c + 1 FTHF,c => 1 H2O,c + 1 IMP,c + 1 THF,c 
nucleoside diphosphate kinase 
1 

 cGDP kin 1 ATP,c + 1 GDP,c <=> 1 ADP,c + 1 GTP,c 

nucleoside diphosphate kinase 
2 

 cUDP kin 1 ATP,c + 1 UDP,c => 1 ADP,c + 1 UTP,c 

nucleoside diphosphate kinase 
3 

 cCDP kin 1 ATP,c + 1 CDP,c => 1 ADP,c + 1 CTP,c 

phosphoribosyl 
pyrophosphate synthesis 

 cPRPP syn 1 ATP,c + 1 RIBU5P,c <=> 1 AMP,c + 1 H,c + 1 PRPP,c 

phosphoribosyl-5-amino 4-
imidazole carboxamide 

 cAICAR syn 1 ASP,c + 4 ATP,c + 1 CO2,c + 1 FTHF,c + 2 GLN,c + 1 GLY,c + 2 H2O,c +  
1 PRPP,c <=> 4 ADP,c + 1 AICAR,c + 1 FUM,c + 2 GLM,c + 8 H,c + 4 Pi,c +  
1 PPi,c + 1 THF,c 
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pyrophosphatase  cPPi ase 1 H2O,c + 1 PPi,c => 2 Pi,c 
UMP synthesis  cUMP syn 1 ASP,c + 1 CARP,c + 0.5 O2,c + 1 PRPP,c <=> 1 CO2,c + 2 H2O,c + 1 Pi,c +  

1 PPi,c + 1 UMP,c 
uridylate kinase  cUMP kin 1 ATP,c + 1 UMP,c <=> 1 ADP,c + 1 UDP,c 

 
Oxidative phosphorylation 

F1-F0 ATPase  mATPase 3 ADP,m + 10 H,c + 3 Pi,m <=> 3 ATP,m + 7 H,m + 3 H2O,m 
FADH2 dehydrogenase mit  mFADH2 deh 1 FADH2,m + 6 H,m + 0.5 O2,m => 1 FAD,m + 6 H,c + 1 H2O,m 
NADH dehydrogenase cyt  cNADH deh 6 H,m + 1 NADH,c + 0.5 O2,m => 5 H,c + 1 H2O,m + 1 NAD,c 
NADH dehydrogenase mit  mNADH deh 7 H,m + 1 NADH,m + 0.5 O2,m => 6 H,c + 1 H2O,m + 1 NAD,m 

 
Pentose phosphate pathway 

glucose-6-phosphate 
dehydrogenase (NADP) 

 cG6P deh 1 G6P,c + 1 H2O,c + 2 NADP,c => 1 CO2,c + 2 H,c + 2 NADPH,c +  
1 RIBU5P,c 

ribosephosphate isomerase  cRIBU iso 1 RIBU5P,c <=> 1 RIB5P,c 
ribulosephosphate 3-
epimerase 

 cRIBUP epi 1 RIBU5P,c <=> 1 XYL5P,c 

transaldolase  cTA1 1 GAP,c + 1 SED7P,c <=> 1 E4P,c + 1 F6P,c 
transketolase 1  cTK1 1 RIB5P,c + 1 XYL5P,c <=> 1 GAP,c + 1 SED7P,c 
transketolase 2  cTK2 1 E4P,c + 1 XYL5P,c <=> 1 F6P,c + 1 GAP,c 

 
Pyruvate branchpoint 

acetaldehyde dehydrogenase 
(NADP) 

 cACTAL deh 
(NADP) 

1 ACTAL,c + 1 H2O,c + 1 NADP,c <=> 1 ACT,c + 2 H,c + 1 NADPH,c 

acetyl-CoA synthase  cACCoA syn 1 ACT,c + 1 ATP,c + 1 CoA,c + 1 H2O,c => 1 ACCoA,c + 1 AMP,c + 1 H,c +  
2 Pi,c 

pyruvate carboxylase  cPYR carb 1 ATP,c + 1 CO2,c + 1 H2O,c + 1 PYR,c => 1 ADP,c + 2 H,c + 1 OXACT,c +  
1 Pi,c 

pyruvate decarboxylase  cPYR dec 1 H,c + 1 PYR,c => 1 ACTAL,c + 1 CO2,c 
pyruvate dehydrogenase mit  mPYR deh 1 CoA,m + 1 NAD,m + 1 PYR,m => 1 ACCoA,m + 1 CO2,m + 1 NADH,m 

 
TCA cycle 

aconitase 1 mit  mACON 1 1 CIT,m => 1 ACO,m + 1 H2O,m 
aconitase 2 mit  mACON 2 1 ACO,m + 1 H2O,m => 1 ICIT,m 
citrate synthase mit  mCIT syn 1 ACCoA,m + 1 H2O,m + 1 OXACT,m => 1 CIT,m + 1 CoA,m + 1 H,m 
fumarate hydrase  cFUM hy 1 FUM,c + 1 H2O,c <=> 1 MAL,c 
fumarate hydrase mit  mFUM hy 1 FUM,m + 1 H2O,m <=> 1 MAL,m 
isocitrate dehydrogenase 
(NAD) mit 

 mICIT 
deh_NAD 

1 ICIT,m + 1 NAD,m => 1 CO2,m + 1 NADH,m + 1 OGL,m 

isocitrate dehydrogenase 
(NADP) mit 

 mICIT 
deh_NADP 

1 ICIT,m + 1 NADP,m => 1 CO2,m + 1 NADPH,m + 1 OGL,m 

malate dehydrogenase  cMAL deh 1 MAL,c + 1 NAD,c <=> 1 H,c + 1 NADH,c + 1 OXACT,c 
malate dehydrogenase mit  mMAL deh 1 MAL,m + 1 NAD,m <=> 1 H,m + 1 NADH,m + 1 OXACT,m 
oxogluterate dehydrogenase 
mit 

 mOGL deh 1 CoA,m + 1 NAD,m + 1 OGL,m => 1 CO2,m + 1 NADH,m + 1 SUCCOA,m 

succinate dehydrogenase mit  mSUC deh 1 FAD,m + 1 SUC,m <=> 1 FADH2,m + 1 FUM,m 
succinyl CoA synthetase mit  mSUCCoA syn 1 ADP,m + 1 Pi,m + 1 SUCCOA,m <=> 1 ATP,m + 1 CoA,m + 1 SUC,m 

 
Transport 

ATPase plasmamembrane  eATPase 1 ATP,c + 1 H2O,c => 1 ADP,c + 1 H,e + 1 Pi,c 
benzoic acid export  BAdisstrans 2 ATP,c + 1 BA,c + 2 H2O,c => 2 ADP,c + 1 BAdummy,e + 2 H,c + 2 Pi,c 
glucose uptake  eGLUC fdiff 1 GLUC,e => 1 GLUC,c 
metal import  eMET imp 1 metal,e => 1 metal,c 
NH4 transport  eNH4 trans 1 H,e + 1 NH4,e => 1 H,c + 1 NH4,c 
phosphate transport  ePi trans 2 H,e + 1 Pi,e => 2 H,c + 1 Pi,c 
SO4 transport  eSO4 trans 3 H,e + 1 SO4,e => 3 H,c + 1 SO4,c 
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Components 
13PG 1,3-phosphoglycerate LEU leucine 
2PG 2-phosphoglycerate LIPID LIPID 
3PG 3-phosphoglycerate LYS lysine 
ACTAL acetaldehyde MAL malate 
ACT Acetate MACoA malonyl-CoA 
ACCoA acetyl-CoA metal metal 
A adenosine MET metheonine 
ADP ADP METHF methylene-THF 
ALA Alanine MYTHF methyl-THF 
AMP AMP NAD NAD 
ARG Arginine NADH NADH 
ASN asparagine NADP NADP 
ASP Aspartate NADPH NADPH 
ATP ATP NH4 NH4 
avAA average amino acid OLE-CoA oleoyl-CoA 
avFA-CoA AVERAGE FATTY ACID-CoA ORN ornithine 
avPL average phospholipid OXACT oxaloacetate 
BA- Benzoate OAD oxoadipate 
BA benzoic acid OBU oxobutyrate 
biom-G4 biomass G4 OGL oxoglutarate 
CARP carbamoyl phoshate OIV oxoisovalerate 
CARBHYD CARBOHYDRATES O2 oxygen 
CO2 carbondioxide PLM palmitic acid 

CDP CDP 
PLLM-
CoA palmitoleoyl-CoA 

CHO chorismate PLM-CoA palmityl-CoA 
ACO cis-aconitate PHE phenylalanine 
CIT Citrate Pi phosphate 
CMP-
DGOH citydine diphosphate-diacylglycerol PHD phosphatidate 
CMP CMP PHD-CHO phosphatidyl-choline 
CoA CoA PHD-ETA phosphatidyl-ethanolamine 
CTP CTP PHD-SER phosphatidyl-serine 
CYS Cystein PEP phosphoenol-pyruvate 

DHF dihydrofolate AICAR 
phosphoribosyl-formamido-imidazole-
carboamide 

DHAP dihydroxyacetone-phosphate PRO proline 
DNA DNA PROT PROTEIN 
E4P E4P PRPP PRPP 
FAD FAD PPi pyrophosphate 
FADH2 FADH2 PYR pyruvate 
FAT FAT RIB5P RIB5P 
FTHF formyl-THF RIBU5P RIBU5P 
F16P fructose 1,6-bisphosphate RNA RNA 
F6P fructose 6-phosphate SAH s-adenosyl-homocysteine 
FUM Fumarate SAM s-adenosylmetheonine 
GDP GDP SED7P SED7P 
GLUC Glucose SER serine 
G6P glucose 6-phosphate STE stearate 
GLM glutamate STE-CoA stearoyl-CoA 
GLN glutamine SUC succinate 
GAP glyceraldehyde 3-phosphate SUCCOA succinate-COA 
GOH3P glycerol 3-phosphate H2S sulfide 
GLY Glycine SO4 sulphate 
GMP GMP THF tetrahydrofolate 
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GTP GTP THR threonine 
HIS Histidine TRE trehalose 
HCIT homocitrate TRP tryptophane 
HCYS homocysteine TYR tyrosine 
HSER homoserine UDP UDP 
H hydrogen UMP UMP 
IMP IMP UTP UTP 
ICIT isocitrate VAL valine 
ILE isoleucine H2O Water 
IPM isopropylmalate XYL5P XYL5P 

 

 

 

141 



Chapter 6 

Appendix II Time constant analysis 

 

The benzoate balance over the cell is given in eq. 6.5. For the calculation of the time constant (i.e. 
the time required to reach 60% of the final value) the benzoate export kinetics is simplified to a 
linear approximation function (qB-=kexport

’.CBin.Vx). Now the total intracellular benzoate balance 
becomes: 

( ) export 'in
ex in in

B
cell HB pd cell HB HB B cellB

dC
V r r k A C C k C

dt −⋅ = − = ⋅ ⋅ − − ⋅ ⋅V    (B2-1) 

Here Vcell=Vx.Cx.VL [m3] is the total cytosolic volume, Acell = 6.Vx.Cx.VL/dx [m2] is the total cell 
surface area; rHB [mol.s-1] and rB- [mol.s-1] are the rate of benzoic acid passive diffusion and the rate 
of benzoate export; kpd [m.s-1] is the benzoic acid permeability constant and kexport’ [s-1] is the 
benzoate export kinetic constant for the linear approximative kinetics. The time constant of these 
two consecutive reactions (τBin) can be determined by solving eq. B2-1. 

CHBex and CHBin can be calculated from the total benzoate concentration using eq. 6.2. The total 
extracellular benzoate concentration is calculated from the total benzoate balance: 

0in exB B
cell sup

dC dC
V V

dt dt
⋅ + ⋅ =          (B2-2) 

which gives: 

0 .
ex in

cell
B BB

sup

VC C C
V

= −          (B2-3) 

The supernatant volume [Vsup] is defined as (1- Vx.Cx).VL. Hence, eq.B2-1 can be rewritten as a 
function of one variable only, CBin:  
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The integration of eq.B2-4 gives 
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  (B2-5) 

Subsequently the time constant of intracellular total benzoate pool can be calculated from the 
exponent of eq.B2-5: 
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1 1 1 '
1 10 1 10ex in

in

cell cell
pd exportpH pK pH pK

B cell sup

A Vk k
V Vτ − −

⎛ ⎞
= ⋅ ⋅ ⋅ + +⎜⎜ + +⎝ ⎠

⎟⎟     (B2-6) 

Using eq.B2-6 τBin can be calculated from the values of the kinetic parameters kpd and kexport’. The 
value of kexport’ can be estimated by fitting (linear regression) the additional oxygen consumption to 
the intracellular total benzoate pool in the pseudo steady state condition (Figure 6.4b), which gives 
(qO2-qBO2

0)/CBTin =1.22 x 10-1 [m3.kgDW-1.h-1]. Combining the former relation with eq. 6.6 and the 
approximation function qB- = kexport

’.CBin.Vx gives: 

11.22 10 ' x
export

Vk
P O

−⋅ = ⋅          (B2-7) 

from which kexport’ is calculated to be 2.5 x 10-2 s-1  

The value of kpd can be estimated by fitting (linear regression) the additional oxygen consumption 
to the driving force for benzoic acid passive diffusion in the pseudo steady state condition (Figure 
6.4c), which gives (qO2-qO2

0)/(CHBex-CHBin)= 12.7 [m3.kgDW-1.h-1]. Thus, kpd.Ax = 12.7 [m3.kgDW-

1.h-1], which yields for Ax = 6.Vx/dx = 3.0 m2/gDW a value for kpd of 1.2 x 10-6 m.s-1. 

For the given parameters: pHex = 4.50, pHin = 6.50, pK = 4.19, Vx = 2 x 10-3 m3.kgDW-1, dx= 4 
x 10-6 m, Cx = 8.5 kgDW.m-3, the estimated kpd of 1.2 x 10-6 m.s-1 and kexport‘ of  2.5 x 10-2 s-
1, eq.B-6 yield a value for τBin of 22.9 s. 
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Appendix III TCA cycle weak acid extraction at higher extracellular 
pH 

 

Weak acids in solution attain a pH dependent equilibrium. For a doubly charged weak acid, such as 
succinate, fumarate and malate, the equilibrium relations can be expressed as 

2

2

.
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H X H HX K

C
+ −+ −+ =       (B3-1) 

22
2
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C
+ −

−
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Accordingly, the undissociated fraction (H2X) is 
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         (B3-3) 

Under steady state conditions the intracellular and extracellular concentrations of undissociated 
weak acid should be equal (CH2Xin = CH2Xex) and thus ratio of the total acid concentration (CXT) in 
the two compartments can be expressed as 
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         (B3-4) 

Assuming that the total amount of acid in both the intracellular and extracellular compartment is 
constant, 

( )1
tot in exXT XT X X XT X XC C V C C V C= ⋅ ⋅ + ⋅ − ⋅        (B3-5) 

The intracellular total acid concentration can be calculated from the total amount of acid using eqs. 
B3-4 and B3-5. 

  

Table B3-1 TCA cycle weak acid pH equilibrium data 

fH2X CXTin/CXtex pK1 pK2
pH 3.75 pH 4.5 pH 5.25 pH 6.5 pH 3.75 pH 4.5 pH 5.25 

Succinate 4.21 5.64 0.74 0.32 0.06 0.001 1190 520 98 

Fumarate 3.90 4.60 0.55 0.12 0.008 0.000 17712 3932 260 

Malate 3.40 5.11 0.30 0.06 0.006 0.000 9640 1928 190 
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Table B3-2 Calculated intracellular TCA cycle weak acid concentrations 

 
Measured CXTin

at pH 4.5 
[µmol.gDW-1] 

Expected CXTex 
at pH 4.5 
[µmol.L-1] 

Expected CXTtot
at pH 4.5 
[µmol.L-1] 

Expected CXTin
at pH 5.25 

[µmol.gDW-1] 

Expected CXTin
at pH 3.75 

[µmol.gDW-1] 

Succinate 0.043 0.041 0.65 0.034 0.045 

Fumarate 0.040 0.005 0.57 0.035 0.040 

Malate 0.207 0.054 2.99 0.179 0.211 
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Chapter 7 

Determination of elasticities, concentration 
and flux control coefficients from transient 
metabolite data using linlog kinetics 
 

 

Summary 

This paper presents a practical approach to estimate the kinetic parameters of a metabolic network 
from in-vivo kinetics experiments. This method is based on the linlog kinetics format (Visser and 
Heijnen, 2003; Wu et al., 2004), of which the kinetic parameters, called elasticities, are estimated 
by an iterative linear optimization followed by non-linear optimization, from transient metabolite 
concentration data which are directly obtainable from rapid pulse experiments. In this way, not only 
the parameters are estimated but also a full kinetic model, based on linlog kinetics, is developed. 
The obtained elasticities also allow immediate calculation of all control coefficients. As an in-silico 
case study, the estimation of elasticities of a linear pathway is presented. The method is shown to be 
able to estimate the elasticities quite accurately and to be robust toward errors in the metabolite data 
originating from sampling and measurement inaccuracy. The method allows experimental redesign 
to get more accurate estimated parameters and accommodates various types of experimentally 
applied disturbances in the pathway: changes in independent metabolites, dependent metabolites or 
enzyme levels/activities. 
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Determination of elasticities, concentration and flux control coefficients from transient metabolite data using 
linlog kinetics 
M.T.A. P. Kresnowati, W. A. van Winden, J. J. Heijnen 
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Chapter 7 

Introduction 

One of the important goals of Metabolic Engineering is to elucidate the kinetic structure of 
metabolic reaction networks responsible for the flux and metabolite levels (Stephanopoulos et al., 
1998). In 1973, Kascer and Burns (1973) and, independently at about the same time, Heinrich and 
Rapoport (1974) introduced the framework of metabolic control analysis (MCA) as a quantitative 
framework to assess the control of metabolism. The metabolic control analysis is a systematic 
approach to assess the relative effect of changes in the level of different enzymes on fluxes and 
metabolites when they operate simultaneously. The framework has attracted much interest and has 
been widely studied (Crabtree and Newsholme, 1987; Ehlde and Zacchi, 1997; Fell and Sauro, 
1985; Fell, 1992, 1997; Giersch, 1995; Kascer and Burns, 1979; Kascer and Porteous, 1987; Reder, 
1988; Westerhoff and Kell, 1987). In general this concept shows that the control of metabolism is 
shared among all enzymes in the network/pathway rather than that the control is exerted by a single-
rate limiting-enzyme. 

Important parameters for the MCA theory are the flux control coefficient (CJ) and concentration 
control coefficient (CX), which are defined as the changes in fluxes and in the dependent metabolite 
concentrations in response to infinitesimal changes in enzyme level, given a selected reference 
condition (indicated by ‘0’).  
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Both parameters represent the global properties of the networks/pathways. By simple algebraic 
relations CJ and CX can be obtained from εx (Heinrich and Schuster, 1996; Reder, 1998), the 
elasticity coefficient (εx), which is defined as the change in reaction rate in response to infinitesimal 
changes in effectors, inhibitor, substrates or products of the reaction, normalized to a reference 
condition. The elasticity coefficient represents a local kinetic property of each enzyme. 
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          (7.3) 

The major obstacles in applying MCA in practice are difficulties in the estimation of the elasticities 
and control parameters (Fell, 1997) from experiments, such as how to introduce an infinitesimal 
changes in enzyme activities and to accurately measure resulting infinitesimal changes in fluxes and 
metabolite levels and whether in-vitro determined kinetic parameters can be applied for in-vivo 
conditions (Teusink et al., 2000). 

In order to solve the mentioned problem in determining control parameters, Delgado and Liao (Liao 
and Delgado, 1992; Delgado and Liao, 1992a, 1992b) introduced a method to directly estimate 
control parameters from transient data obtained from perturbations of metabolic networks. The 
feasibility of its implementation is supported by the development of experimental protocols that 
enable sampling and analysis of intracellular and extracellular metabolites (Theobald et al., 1997; 
Lange et al., 2001; Mashego et al., 2003) in transient condition. However the method proposed by 
Delgado and Liao was also shown to be sensitive to error in the data (Ehlde and Zacchi, 1996), 
which is very likely in practice. Moreover, it is relies on the assumption of linear enzyme kinetics 
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which has limited use in approximating the real, non-linear, enzyme kinetics. Furthermore, this 
method only yields the CJ and CX and not the elasticities of each reaction. Hence a full kinetic 
model of the metabolic network is not obtained. 

Transient data are very rich in information. It is possible to exploit these data to build a full kinetic 
model, e.g. Rizzi et al. (1996) developed a traditional kinetic model of glycolysis and TCA cycle of 
S. cerevisiae containing complex non-linear-enzyme-kinetics equations and estimated the numerous 
parameters from transient intracellular and extracellular metabolite data obtained following a 
glucose pulse. Such a kinetic model can be used in-silico to explore the behavior of the system. It 
can also be used to calculate the values of elasticities and control coefficients for a given reference 
steady state. However parameter estimation of such a kinetic model is complicated due to both the 
large number of parameters and the highly non-linear nature of the kinetic functions. 

Recently, a new approximative ‘linear logarithmic’ (linlog) kinetic format was introduced (Visser 
and Heijnen, 2003; Wu et al., 2004) and shown to have a good approximation quality, standardized 
format and few parameters. By introducing the logarithm of concentrations instead of the linear 
concentration dependence (Hatzimanikatis and Bailey, 1997), the equation can be applied to large 
perturbations while still maintaining a good accuracy as shown by Visser and Heijnen (2003). An 
inherent limitation of the linlog approximation is that the rate is undefined at zero metabolite 
concentrations (x = 0 or c = 0). However, considering the homeostatic condition of the cell, zero 
metabolite concentrations are unlikely to occur. Meanwhile, the linear characteristic allows the use 
of linear system tools (Bailey, 1998). For example, analytical solutions for steady state metabolite 
levels and fluxes as function of large changes in enzyme levels are easily obtained as shown in the 
metabolic design equation (Visser and Heijnen, 2003). Also the elasticity coefficients can be 
estimated using linear regression (Wu et al., 2004) from sets of metabolites, fluxes and enzyme 
activities data obtained in steady state large perturbations. However, the experimental efforts to 
obtain information on metabolites, fluxes and enzyme activities are tremendous.  

This paper proposes a method to directly estimate elasticities from only transient metabolite data 
using linlog kinetics. These elasticities provide a full kinetic model and allow direct calculation of 
the control coefficients of the pathway. This work is an extension of the work by Visser and 
Heijnen (2003), who developed a theoretical approach to calculate elasticity coefficients in a highly 
idealized condition where reaction rate and concentration data were assumed to be available. In 
practice only concentration measurements in transient are directly obtainable from the perturbation 
experiments whereas the rates need to be calculated from the measured concentrations in 
combination with mass balances. In this work the elasticities are derived from a limited number of 
intracellular and extracellular metabolite concentration data only, that are directly obtainable from 
the in-vivo kinetic experiments. The proposed approach is tested for different types of experimental 
perturbations and for its ability to accommodate errors in the data originating from sampling and 
measurements inaccuracy. As an illustrative in-silico case study, the approach is applied here to the 
linear pathway that was studied by Delgado and Liao (1992b). A method for experimental redesign 
is also presented, aiming at optimizing experiments to obtain even more accurate elasticity 
coefficients. 
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Theory 

Linlog kinetics 
The linlog kinetic approach uses approximative functions to describe the rate of enzymatic reactions 
in metabolic networks in a simple, non-linear, standard manner. The rate is proportional to the 
enzyme concentration (e), linear in the logarithm of the dependent (x) and independent (c) 
metabolite concentrations (hence non-linear in metabolite concentration) and linear in the kinetic 
parameters (pi and qi) (Visser and Heijnen, 2003; Wu  et al., 2004)  

( ln lni i jv e a p x q c= × + × + ×∑ ∑ )j        (7.4) 

An independent metabolite is a metabolite which can be independently manipulated, i.e. 
extracellular metabolites, whereas a dependent metabolite is determined by the network properties, 
i.e. intracellular metabolites. In each reaction only one parameter is assigned for each metabolite 
affecting the reaction, which limits the number of kinetic parameters to be estimated.  

It is preferred to write the kinetics in a normalized format toward a reference, such that the rate is 
defined by the reference elasticities (ε0) and the reference parameters: fluxes (j0), enzyme 
concentration (e0) and metabolite concentrations (x0, c0). For in-vivo kinetic experiments, an 
obvious choice of these reference parameters is the values of the fluxes and metabolite 
concentrations in the steady state condition before the perturbation is applied. The matrix format of 
the linlog rate equation is given by (Visser and Heijnen, 2003; Wu  et al., 2004): 

⎡ ⎤ ⎛ ⎞= × + × + ×⎜⎢ ⎥⎣ ⎦ ⎝ ⎠
0 0
x c0 0 0 0

v e x ci E ln E ln ⎟j e x c
       (7.5) 

in which Ex
0 and Ec

0 are matrices containing the elasticity coefficients for dependent and 
independent metabolites respectively, i is a vector of ones,  x/x0 is a vector of relative dependent 
metabolite concentrations,  c/c0 is a vector of relative independent metabolite concentrations and 
[e/e0] is a square diagonal matrix containing relative enzyme levels e/e0.  

 

Linlog kinetic parameter estimation 
Elasticities can be obtained from transient metabolite data in a two-step procedure. First, because 
the kinetic function is linear in the elasticities, it is possible to obtain an initial estimate of the 
elasticity parameters using linear regression. Subsequently non-linear optimization using this initial 
estimate is performed to further improve the estimates. A good initial estimate is required to reduce 
the risk of arriving at local-sub optimal solutions, which was found to increase when a random 
initial guess was used.  

 The proposed method is based on the mass balances of metabolites and on the assumption of 
constant enzyme level within the timeframe during which the transient metabolite data are taken. 
This assumption is generally accepted for a timeframe of 0 – 100 s (Stephanopoulos, 1998). To 
obtain the elasticity coefficients, the metabolite concentration data are fitted to the integrated 
metabolite mass balances in which the reaction rates are modeled using the linlog kinetics given in 
eq. 7.5. The method is summarized in eq. 7.6 – 7.15. 

With constant enzyme level (e/e0 =1), eq 7.5 reduces to 
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= + × + ×0 0
x c0 0

v xi E ln E ln 0
c

j x c
        (7.6) 

The metabolite mass balances are given as (Heinrich  and Schuster, 1996) 

d
dt

= ×
x S v            (7.7) 

with S as stoichiometry matrix. Introducing the relative concentrations (x/x0) and rates (v/j0) in the 
mass balance gives: 
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For a network consisting of nx dependent metabolites, nc independent metabolites and nr reactions, 
v/j0 is an nr vector, Ex

0 is an nr x nx matrix, Ec
0 is an nr x nc matrix, x/x0is an nx vector, c/c0 is an nc 

vector and S is the nx x nr full-rank stoichiometry matrix. [X0]-1 is an nx x nx diagonal matrix 
containing the inverted reference metabolite concentrations whereas J0 is an nr x nr diagonal matrix 
of the reference fluxes. If the stoichiometry matrix has a lower rank than its size, which means that 
the mass balances are not independent due to the presence of conserved moiety or pseudo 
equilibrium reactions, these dependencies should be first removed by the metabolite link matrix 
(Lx) (Ehlde and Zachhi, 1997; Reder, 1998; Visser and Heijnen, 2002). Substituting the rate term 
(v/j0) in the mass balance equation (eq. 7.8) by the linlog kinetic equation (eq. 7.6) and taking into 
account that by definition S x J0 x i =0, gives:  
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Subsequently eq. 7.9 is integrated for every metabolite over every time interval between 
measurements, from ti-1 to ti, for i = 2 to nt, (nt being the number of time points at which the 
metabolite concentrations are measured), leading to  (nt –1) x nx equations  
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      (7.10) 

These equations are linear in the unknown elasticities and contain the normalized difference of 
metabolite concentration (xti-xti-1)/x0 and the integrated logarithm of the normalized metabolite 
concentrations (ln(x/x0), ln(c/c0)). These integrals are obtained from the measured transient 
concentration data and (linear) interpolation between each measurement pair. It should be noted that 
normalization of the metabolite levels with the measured steady state reference concentration (x0, 
c0) is an implicit weighing procedure. 

Eq. 7.10 is rearranged into eq. 7.11 such that we can perform a linear regression to obtain the 
elasticity coefficients (for details on the rearrangement procedure see Appendix I). 
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= ⋅a Y b            (7.11) 

in which a is an (nt-1) nx vector of (xti – xti-1)/x0 and Y is an (nt –1) nx x ne matrix containing the 
integrals of the logarithm of the normalized metabolite concentration. b is an ne vector containing 
the unknown elasticity coefficients, which is estimated by linear regression.   

1−
⎡ ⎤= × × ×⎣ ⎦

Tb Y Y Y a

J

i

         (7.12) 

To improve the quality of the integration process, which is done numerically, the following iterative 
procedure was applied: 

a. Calculate vector a from the metabolite data obtained in the perturbation experiment and the 
metabolite levels of the steady state before the perturbation. 

b. For each of the time interval, which is between two measurement points, numerically integrate 
the normalized logarithms of concentrations: ln (x/x0) and ln (c/c0), to calculate the matrix Y. In 
the first calculation of the integral, linear interpolation is used between the pair of measurements 
in each time interval (trapezoidal method).  

c. Use eq. 7.12 to estimate the elasticities. 

d. Simulate the metabolic model (eq. 7.8) with the previously estimated elasticities of step c and 
use the (fixed) first data point to generate metabolite data for the whole transient experiment, 
which is further used to calculate the integral term in matrix Y (Appendix I).   

e. Go back to step c and repeat the procedures until the elasticities converge to stable values. 

The elasticity coefficients estimated from this iterative linear regression are subsequently used as 
the initial guess for non-linear parameter estimation. This is expected to further improve the 
estimated parameters, as initial linear regression assumes that errors are only present in the 
dependent variables (a in eq. 7.11), whereas errors in the measured metabolite transients in fact also 
affect the independent variables (matrix Y in eq. 7.11). The non-linear optimization also allows the 
inclusion of additional degrees of freedom for the correction of error in the metabolite levels at the 
first data point (t0) used for the model simulation (eq. 7.8). The non-linear optimization is 
performed using the Sequential Quadratic Programming (SQP) method (Fletcher (1980), Gill 
(1981)) implemented in Matlab (The MathWorks Inc., Natick, MA, USA), which fits the linlog 
model to the data by minimizing the objective function (the sum of squared differences between 
measured and simulated metabolite concentrations).  

Finally, the control coefficients are calculated from the estimated elasticity coefficients according to 
the following equations (Heinrich and Schuster, 1996): 
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Data analysis: Information richness of the data 
Following the method development for parameter estimation, it is important to check the practical 
identifiability of the parameters. It addresses the question whether the available data can be used for 
determining accurate values of parameters which depends both on the quality of data and on their 
information content. The identifiability of the elasticities is studied by analyzing the Fisher 
Information Matrix, shortly FIM, (see Appendix II) of the elasticity coefficients estimation equation 
(eq. 7.11). Applying the identity matrix as the weight matrix, the FIM will be: 

= ⋅TFIM Y Y            (7.15) 

Eq. 7.15 shows that the FIM is independent from the estimated parameters due to the structure of 
the linlog kinetics which is linear in the elasticities. Consequently, the information content of the 
measured data can be determined directly from the data without the need to assume parameter 
values so that the practical identifiability of the parameters can be performed prior to the estimation 
process. Theoretically, the maximum number of significant singular values of FIM equals the 
minimal number of elasticity coefficients needed in a given metabolic network (Appendix III).   

 

Case study 

31 2
1 1 2

vv v
C X X⎯⎯→ ⎯⎯→ ⎯⎯→←⎯⎯ ←⎯⎯ ←⎯⎯ 2C  

Figure 7.1 Linear pathway used in case study 

 

The pathway considered in this case study was taken from Delgado and Liao (1992b) and is 
presented in Figure 7.1. The pathway consists of 3 reactions, 2 independent metabolites (c1 and c2) 
and 2 dependent metabolites (x1 and x2). The complete non-linear kinetic equations are presented in 
eqs. 7.16 – 7.18.  
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Steady state flux and concentrations (Table 7.1) were obtained by solving the mass balance 
equations for the steady state condition. Similarly to Delgado and Liao (1992a, 1992b), the transient 
data (Figure 7.2) were obtained by shifting the dependent metabolite concentrations away from their 
steady states (Table 7.1). Metabolite concentrations were sampled at 11 time points for the 
parameter estimation.  
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Table 7.1 Flux and metabolite 
concentrations at the steady state 
and the initial condition of 
perturbation (in arbitrary units) 

 

 

Steady 
state 

condition 

Initial 
condition of 
perturbation 

c1 2.000 2.000 

x1 0.411 1.000 

x2 0.154 1.000 

c2 0.000 0.000 

J 0.142  Figure 7.2 Transient data from the model simulation 
  

Estimation of elasticities 
The transient metabolite data were used to estimate the elasticity coefficients. Since the rank of the 
stoichiometry matrix is 3, only c1, x1 and x2 were fitted to avoid dependency of the data.  

Considering the network, there are 2 dependent metabolites, 3 reactions and thus 6 possible 
elasticity coefficients can be defined (maximum connectivity assumption (Giersch, 1995), case 1): 
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21 22
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ε ε

ε ε
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A priori biological information about the reaction kinetics can be incorporated into the estimation 
process. Often a priori information about allosteric interaction of metabolites with enzymes is 
available and can be used to assign nonzero elasticity coefficients. Considering the kinetics in eqs. 
7.16 – 7.18, it is obvious that ε12

0 is 0 which leads to case 2. 

Additionally, a priori kinetic information about reaction mechanism can be used to provide 
theoretical estimates for the boundaries of the elasticities. Based on the definition of the elasticity 
(eq. 7.3), the elasticities of simple hyperbolic kinetics, such as eq. 7.16 and eq. 7.18, should be in 
the range of (-1<ε<0) or (0<ε<1). Similarly, the elasticities of an enzymatic reaction subject to an 
allosteric mechanism, such as eq. 7.18, will not exceed the Hill coefficient (h) of the reaction: (-
h<ε<h). Hence, we can define boundaries for the elasticities of case 2, such as -1<ε11

0<0 or 
0<ε11

0<1, -4<ε21
0<0 or 0<ε21

0<4, -4<ε22
0<0 or 0<ε22

0<4, -1<ε31
0<0 or 0<ε31

0<1 and -1<ε33
0<0 or 

0<ε33
0<1, which defines case 3.  

The elasticities of case 1 – 3 were estimated and the results are presented in Table 7.2. To get an 
idea of the estimation quality, the theoretical value of elasticity coefficients which were calculated 
based on eq. (7.3) are presented in the same table. The results show that there are only marginal 
differences between the elasticities of case 1 and case 2. Remarkably, case 1 correctly predicted that 
ε12

0≈ 0 which indicates that the method can identify the absence of allosteric interaction (ε12
0= 0). 

The other estimated values are close to the theoretical ones, except for the elasticities related to 
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reaction 3: ε31
0and ε32

0. The estimation quality improves with the incorporation of the boundaries 
for elasticities into the estimation process (case 3), so that much better estimates for the elasticities 
related to reaction 3 are obtained (Table 7.2, case 3).  

 

Table 7.2 Comparison of estimated elasticity coefficients 

 Theoretical Case 1 Case 2 Case 3 
0
11ε  -0.291 -0.334 -0.332 -0.341 
0
12ε  - 0.002  - -  
0
21ε  1.976 1.924 1.929 2.000 
0
22ε  -1.918 -1.753 -1.757 -1.863 
0
31ε  -0.010 -0.834 -0.842 0.535 
0
32ε  0.929 2.233 2.240 1.000 

 
 

 

Figure 7.3 Comparison between data and the simulation of linlog kinetic model with estimated 
elasticity coefficients (square = data, dashed and dotted line = case 1, dotted line = case 2, solid line = 

case 3) 

 

To analyze the quality of the proposed method, the ability of the model to reproduce the data is 
evaluated by simulating the model with the estimated elasticities. The ‘measured’ and simulated 
concentrations are shown in Figure 7.3. No significant difference was found between the data and 
the fitted values.  
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The estimated elasticity coefficients were then used to calculate the flux and concentration control 
coefficients (eqs. 7.13 – 7.14). For comparison, the transient data were also used to estimate the 
control coefficients following the direct method proposed by Delgado and Liao (Liao and Delgado, 
1992; Delgado and Liao, 1992a, 1992b), which is based on the linear kinetic assumption.  We call 
this the direct method as it estimates control coefficients directly from the transient data (contrary to 
our indirect method in which the transient data are used to estimate first the elasticities which are 
then used to calculate control coefficients). 

The flux control coefficients calculated from the elasticities in case 1, case 2 and the one estimated 
using the direct method seem to agree with each other (Figure 7.4), but differ from the theoretical 
values.  The flux control coefficients calculated from the elasticities in case 3 agree better with the 
theoretical values. 

For the metabolite control coefficients, Figure 7.5 shows that the direct method does not lead to 
correct values. Also the sum of the obtained concentration control coefficients is not zero, which 
may be an indication that the linear model is not capable in approximating the non-linear system 
(Delgado and Liao, 1992b). Our approach, especially case 3, estimates concentration control 
coefficients which are close to the theoretical values and satisfies the summation property for 
concentration control coefficients. 

 

 

Figure 7.4 Flux control coefficients of the linear pathway 

 

 
 

Figure 7.5 Concentration control coefficients of the linear pathway 
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Identifiability analysis and confidence intervals of elasticities  
Following the estimation process, the sensitivity of the estimated parameters was investigated. The 
condition numbers of the FIM for case 2/3, case 1 and the direct method were checked and although 
all the estimation processes were utilizing the same transient data, the condition number of the FIM 
varied significantly: 2.89 x103, 3.91 x104 and 9.1 x103, respectively. Case 2 and 3 lead to identical 
FIM because imposing boundaries for the elasticities in the estimation process does not change the 
initial Y matrix (Appendix I) and therefore does not change the FIM (eq. 7.15). Clearly, case 2/3 
lead to the best identifiability, however the large condition number shows that the confidence 
interval of the estimated parameters is elongated, which explains the deviation of the estimated 
values from the theoretical values. Finally the analysis of the singular values of the FIM also shows 
that there are maximally 3 identifiable parameters, whereas there are 4 elasticities which are 
significantly different from zero (ε12

0 = 0 and ε31
0 ≈ 0). It means that the data do not contain enough 

information to accurately identify all the elasticity coefficients independently.  

In order to estimate the errors in the estimated elasticity parameters, Monte Carlo simulations were 
performed in which random relative errors of 2.5% and 5% were added to the transient metabolite 
concentration data before the estimation process. In this way 30 sets of transient concentration data 
were generated, from each of which a set of elasticity coefficients was obtained and further a set of 
control coefficients was calculated. The mean values and the standard deviation of the resulted 
elasticities and control coefficients are shown in Table 7.3.  

The mean values of the estimated elasticity coefficients agree quite well with the theoretical values 
although the standard deviations are considerable. The standard deviation of the elasticities 
estimated according to case 2 and 3 are much smaller than case 1. These results agree with the 
condition number of FIM. This shows that the incorporation of a priori kinetic information 
considerably improves the accuracy of the estimated elasticity parameters.   

Keeping in mind that the linlog kinetics is an approximative description of enzyme kinetics, the 
values of the calculated flux control coefficients are in reasonable agreement with the expected 
theoretical values (Table 7.3). Moreover, they are estimated with only small standard deviations and 
although an increase in the measurement error obviously increases the standard deviations, it does 
not cause aberrant estimates. It shows that the presently proposed estimation method for the flux 
control coefficients is robust. The values of concentration control coefficients are also highly 
comparable to the expected theoretical values, with respect to both the sign and the magnitudes. 
Only the concentration control coefficients related to enzyme 3 do show some deviation. Again, 
larger measurement error in the metabolite concentration data leads to higher standard deviations, 
but not significantly changes the average values. The results clearly show that the use of a priori 
kinetic information strongly reduces the error in the calculated flux and concentration control 
coefficients and leads to a more robust parameter estimation.  

 

Experimental redesign for improving the accuracy of the estimated elasticities 
The large condition number of the FIM indicates the limited information richness of the transient 
metabolite data set used in the estimation process. This calls for an improved experimental design, 
of which the objective was defined as to minimize the condition number of the FIM. In order to do 
so we redesigned the experiment in-silico by varying 4 experimental degrees of freedom: (1) type of 
disturbance (i.e. displacement of the metabolite concentrations or variation of enzyme levels), (2) 
size of disturbance, (3) measurement time frame and (4) number of samples. The various designs 
were simulated by the linlog kinetic model using the estimated elasticity coefficients (Table 7.2, 
case 3) to generate in-silico data upon which FIM analysis was applied (eq. 7.15). The experiment  
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Table 7.3 Elasticity and control coefficients estimated by linlog iterative regression method from data 
with added relative random error of 2.5% and 5% 

Relative error of 2.5% added Relative error of 5% added 
 Theoretical 

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 

Elasticity coefficients 

0
11ε  -0.291 -0.338 ± 

0.338 
-0.348 ± 
0.053 

-0.326 ± 
0.052 

-0.194 ± 
0.706 

-0.366 ± 
0.117 

-0.301 ± 
0.122 

0
12ε  0.000 -0.011 ± 

0.330 - - -0.157 ± 
0.680 - - 

0
21ε  1.976 1.941 ± 

0.214 
1.944 ± 
0.099 

1.988 ± 
0.129 

2.024  ± 
0.488 

1.939 ± 
0.193 

2.015  ± 
0.258 

0
22ε  -1.918 -1.792 ± 

0.199 
-1.794 ± 
0.078 

-1.887 ± 
0.093 

-1.874 ± 
0.444 

-1.787 ± 
0.135 

-1.907 ± 
0.186 

0
31ε  -0.010 -0.805 ± 

0.085 
-0.808 ± 
0.046 

0.551 ± 
0.005 

-0.763 ± 
0.158 

-0.793 ± 
0.105 

0.553 ± 
0.010 

0
32ε  0.929 2.209 ± 

0.067 
2.212 ± 
0.037 

1.000 ± 
0.000 

2.177 ± 
0.126 

2.200 ± 
0.083 

1.000 ± 
0.000 

Flux control coefficients 

0
1
JC  0.690 0.677 ± 

0.097 
0.672 ± 
0.042 

0.764 ± 
0.034 

0.722 ± 
0.220 

0.679 ± 
0.097 

0.782 ± 
0.081 

0
2
JC  0.100 0.175 ± 

0.119 
0.181 ± 
0.026 

0.082 ± 
0.014 

0.116 ± 
0.264 

0.179 ± 
0.056 

0.077 ± 
0.031 

0
3
JC  0.210 0.149 ± 

0.033 
0.146 ± 
0.017 

0.154 ± 
0.020 

0.163 ± 
0.074 

0.143 ± 
0.042 

0.142 ± 
0.051 

Concentration control coefficients 

0
11
xC  1.080 0.948 ± 

0.061 
0.945 ± 
0.029 

0.729 ± 
0.016 

0.973 ± 
0.133 

0.947 ± 
0.058 

0.741 ± 
0.044 

0
12
xC  -0.350 -0.528 ± 

0.083 
-0.522 ± 
0.020 

-0.253 ± 
0.008 

-0.564 ± 
0.175 

-0.523 ± 
0.037 

-0.256 ± 
0.019 

0
13
xC  -0.720 -0.421 ± 

0.031 
-0.423 ± 
0.017 

-0.476 ± 
0.015 

-0.409 ± 
0.064 

-0.424 ± 
0.036 

-0.485 ± 
0.037 

0
21
xC  0.750 0.651 ± 

0.052 
0.649 ± 
0.027 

0.362 ± 
0.026 

0.670 ± 
0.123 

0.650 ± 
0.066 

0.372 ± 
0.059 

0
22
xC  0.110 -0.112 ± 

0.069 
-0.109 ± 
0.016 

0.221 ± 
0.015 

-0.141 ± 
0.157 

-0.107 ± 
0.039 

0.218 ± 
0.032 

0
23
xC  -0.860 -0.539 ± 

0.026 
-0.540 ± 
0.013 

-0.584 ± 
0.012 

-0.529 ± 
0.056 

-0.542 ± 
0.031 

-0.590 ± 
0.030 

 

with the lowest condition number will be used to estimate the elasticity parameters. In practice this 
procedure would need a first experiment with an arbitrarily chosen perturbation, from which a first 
set of elasticity parameters is estimated. This set is used to redesign the perturbation experiment in 
order to obtain more accurate parameters.   

Theoretically, the disturbance can be introduced by displacing any metabolite concentrations (either 
one or two of the dependent metabolites) from the steady state. Various disturbances were 
simulated, however, the condition numbers obtained remains large, ranging from 1.17x103 – 
1.41x104.  
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The size of metabolite disturbance was varied by changing the concentration of both dependent 
metabolites inversely. The plot of condition number of the FIM versus the size of disturbance shows 
a minimal value of the condition number at x1’ = 0.9 x1

0 (and x2’ = 1.1 x2
0) (Figure 7.6). This is a 

theoretical optimum that does not take into account practical difficulties such as measurement 
accuracy, if such a small disturbance is introduced. 

 

 

Figure 7.6 The effect of the size of disturbance of metabolite x1 on the condition number of the FIM 
(metabolite x2 is inversely disturbed) 

 

The enzyme level can also be varied so that the maximum rate of the enzymatic reaction is changed. 
The changes are assumed to be instantaneous, whereas these new enzyme levels are assumed to be 
constant in the period during which transient metabolic concentration data are taken. In the 
elasticity estimation process, eq. (7.10) has to be adapted to include the diagonal matrix of relative 
enzyme level (e/e0) 
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     (7.19) 

In practice this type of disturbance can be applied by adding a specific inhibitor or activator of such 
an enzyme activity to the system. It should be noted that this type of disturbance could not be 
applied in the direct method. Various types of disturbance to the enzyme level such as disturbance 
to one enzyme, to two of them or to all of them were simulated. The obtained condition numbers of 
the FIM are 5.06 x103 – 1.8 x106. The combination of the variation of enzyme level and 
displacement of metabolite concentration from steady state did not to reduce the condition numbers 
of the FIM.  

It should be noted that the outcome of this experimental redesign is dependent on the properties of 
the network. As can be seen from eqs. 7.16 – 7.18 the network presented here is unaffected by the 
independent metabolite (c1 and c2). In practice, external concentrations often do have an effect on 
the kinetics which allows also different changes in ci/ci

0 as an additional way to increase the 
information richness of the data. 
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Based on the obtained best perturbation, the time frame within which transient data were taken was 
varied whereas the number of time points applied in the estimation process was kept constant. The 
calculated condition numbers of the FIM do not significantly differ. Neither do the condition 
numbers of the FIM vary significantly with variation in the number of data points used in the 
estimation process. Apparently it is important to have a minimal number of data, above which the 
information content of the data does not improve anymore. Both these results suggest that it is 
relevant to capture the dynamics in the data.  

When the optimal design from the previous experiments was applied (x1’ = 0.9 x1
0 and x2’ = 1.1 x2

0, 
with 11 data taken during 2.5 time unit) for parameter estimation, it produced better estimates of the 
elasticity and the control coefficients (Table 7.4). Still, it was found that no experiment is able to 
give sufficient information for determining all the parameters accurately. The condition number of 
FIM remains in the order of 1x103 and there are only 2-3 significant singular values, instead of the 
required 5. The theoretical elasticity coefficients show that one elasticity coefficient, 0

32ε , was so 
small (-0.010) that it is difficult to estimate accurately. When this elasticity is set to be zero, the 
condition number of the FIM considerably decreases and the number of significant singular values 
increases to 3-4 (result not shown), which matches the 4 remaining elasticity coefficients 
significantly different from zero. 

 

Table 7.4 Elasticities and control coefficients estimated from optimal experimental redesign  

 Theoretical value Base Case* 
Optimal 

experimental 
redesign 

Elasticity coefficients 
0
11ε  -0.291 -0.341 -0.254 
0
21ε  1.976 2.000 1.829 
0
22ε  -1.918 -1.863 -1.645 
0
31ε  -0.010 0.535 0.028 
0
32ε  0.929 1.000 0.952 

Flux control coefficients 
0

1
JC  0.690 0.754 0.730 

0
2
JC  0.100 0.086 0.099 

0
3
JC  0.210 0.160 0.171 

Concentration control coefficients 
0

11
xC  1.080 0.721 1.062 

0
12
xC  -0.350 -0.252 -0.389 

0
13
xC  -0.720 -0.469 -0.673 

0
21
xC  0.750 0.369 0.737 

0
22
xC  0.110 0.221 0.115 

0
23
xC  -0.860 -0.589 -0.852 

*Base Case = Case 3 in Table 7.2 

 

160 



Parameters Estimation from Transient Data 

Method comparison 

The proposed method and the direct method both use transient metabolite concentrations. The main 
difference between both methods is that the direct method estimates the control coefficients directly 
from the experimental data while the newly proposed method estimates first elasticity coefficients, 
which are the kinetic parameters of the linlog model, from the experimental data and then uses them 
to calculate the control coefficients (indirect). Hereby, it offers the advantage of using the 
developed kinetics for other interests beyond obtaining control coefficients. For example, the linlog 
kinetics provides a full dynamic model for the metabolic network simulation (Figure 7.3). The 
newly proposed method also offers the possibility to impose constraints derived from a priori 
biological information (either based on the allosteric interaction between enzyme and metabolites or 
based on the enzyme mechanism) on the estimated elasticities, which was shown to considerably 
improve the estimated results. The use of kinetic model, combined with a priori biological 
information (especially case 3), in the estimation process leads to much more robust control 
coefficients compared to the direct method (Ehlde and Zachhi, 1996). The comparison of the two 
methods is summarized in Table 7.5. 

 

Table 7.5 Pro and cons of the direct and the presented estimation methods 

 Direct method Presented estimation method based on 
linlog kinetic model 

Potential 
applications 

Qualitative analysis of 
pathway: control coefficients 
estimation 

Quantitative analysis of pathway: 
Kinetic model development, gives full 
kinetic model which allows investigation 
of the network behaviour under dynamic 
condition and experimental redesign 
Elasticity coefficients estimation 
Control coefficients estimation 

Requirements Information about the pathway: 
stoichiometry  
 

Besides the information about 
stoichiometry, a priori knowledge about 
reaction kinetics (allosteric interaction or 
enzyme mechanism) could be incorporated 

Estimation 
process 

Different treatment is 
necessary for any pathway (not 
standard method) 

Standard method for any kind of pathway 
Information content of the data can be 
evaluated directly; no values of parameters 
are required 

Robustness Very sensitive towards the 
presence of errors in 
concentration data 

Robust towards measurement errors 

Perturbation 
method 

Only metabolite perturbation 
experiments 

Various perturbation experiments (either 
changing the metabolite levels, changing 
the enzyme activities/levels or both) 
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Conclusion 

A method to determine kinetic parameters (elasticities) from only transient metabolite data, based 
on linlog kinetic model, is proposed. This method can be easily applied for estimating the elasticity 
and the derived control coefficients in realistic situations considering that it is robust towards error 
in the data and it can accommodate various types of disturbances, either changes in metabolite 
levels or enzyme activities. The linear property of linlog kinetics allows a simple way for the 
evaluation of the information content of the data with respect to the estimated parameters, and also 
allows experimental redesign to improve the accuracy of the estimated elasticity parameters.  
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Appendix I Building matrix Y 

 

Matrix Y in eqs. 7.11 – 7.12 is obtained from the factorization of eq. 7.10. At first the elasticity 
matrices Ex

0 and Ec
0 in Eq. 7.10 are defined as: 
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In order to arrive at eq. 7.11, eq. 7.10 has to be converted as such that all the elasticities can be 
written in one vector b, 
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substituting these matrix in eq. 7.10 for time interval ti-1 to ti  gives: 
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which can be processed into 
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grouping the elasticities in eq. C1-5 as a vector (b) we get 
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and therefore the matrix in eq. C1-6 is the Y(i=1) matrix. By repeating the procedure in eqs. C1-4 – 
C1-6 for each time interval (i = 1: nt-1) and concatenating the resulting matrices (Y1 to Ynt-1) we 
will get the Y matrix 
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Appendix II Fisher information matrix (FIM) 

 

The FIM represents the information content of the data. It is defined as: 

( ) (T
θ= ∇ ∇FIM Z Q Z)θ          (C2-1) 

in which Z is the vector function to be fitted, θ is the vector of parameters to be estimated, θ∇ Z is 
the derivative of Z with respect to θ and Q is a weight matrix. The analysis of the eigenvalues and 
eigenvectors of the FIM indicates the accuracy of the parameters which are estimated with the 
available experimental data (Dochain et al., 2001). The condition number, which is the ratio of the 
highest and the smallest eigenvalue of the FIM, is a measure of the shape of the confidence interval. 
It gives an idea on distribution of the accuracy of the estimated parameters. For low condition 
numbers, the confidence interval is spherical. The ideal condition is shown by an identity matrix 
that has condition number of 1. For high condition numbers the shape of the confidence interval is 
more elongated (cigar/needle shaped), which means that a linear combination of parameters can be 
estimated accurately whereas some others are estimated badly. Practically, a high condition number 
means a lower practical identifiability of some parameters (Dochain et al., 2001; Atkinson et al., 
1992).  

For the presented method the FIM can be easily calculated from the vector function Z, which equals 
eq. 7.11.  The parameter vector to be estimated is b, thus the derivative of the function towards the 
estimated parameters is the Y matrix. If we apply the identity matrix as the weight matrix, the FIM 
will be: 

= ⋅TFIM Y Y            (C2-2) 

 

 

Appendix III Singular value decomposition 

 

The singular value decomposition (Lay, 2003) factorizes a matrix (in this case the FIM) as: 

= × × TFIM U S V           (C3-1) 

The singular values of the S matrix (σ) show the number of linearly independent parameters 
necessary to explain the variation in the data. When σ1 is calculated to be 0.90, it means that 90% of 
the variation in the data can be sufficiently explained by one parameter only (Lay, 2003). When 
there are 5 parameters to be estimated whereas there are only 3 significant singular values obtained 
from S, only 3 linearly independent parameters can be estimated accurately while the others are 
correlated. 
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Future directions 
 

 

The research presented in this thesis was focused on the application of Stimulus Response 
Methodology for quantitative analysis and modeling of central carbon metabolism in S. cerevisiae, 
as the model system, with particular emphasis on answering the question how to better exploit the 
transient condition to obtain as much information as possible about the studied biological system. In 
relation with that goal, some important results that provide new insight for the modeling of 
biological system have been achieved.  

Despite of all the intensive efforts that have been made to develop a model of the (micro)biological 
system, including the work presented in this thesis, no such complete biological model exists as yet, 
not even for simple unicellular microorganisms such as S. cerevisiae or E. coli. For example, many 
kinetic models have been proposed for the glycolysis pathway (e.g. Helfert et al., 2001; Galazzo et 
al.., 1990; Hoefnagel et al., 2002a, 2002b;  Hynne et al., 2001; Lambeth et al., 2002; Rizzi et al., 
1997; Teusink et al., 2000), yet no complete kinetic model on central carbon metabolism exists 
which combines the glycolysis, the pentose phosphate pathway and the TCA cycle as well as the 
oxidative phosphorylation process (for aerobic conditions), which predicts what will happen 
following the rapid changes in ATP fluxes that are caused by the manipulation of benzoate transport 
(Chapter 6) or which guides us in improving cells, e.g. to make S. cerevisiae produces ethanol at a 
higher rate. This illustrates the amount of work that still needs to be performed to achieve the 
ultimate goal of developing a complete model on the central carbon metabolism of a biological 
system. Some of the related issues are described below. 

This thesis has shown that within about 120 seconds following a glucose pulse the transcription 
machinery of S. cerevisae can be considered frozen. However, to safely assume that within this time 
frame the observed transient metabolites profiles only result from the interaction of the metabolites 
and enzymes, the measurement of transient enzyme activities needs to be performed. On this 
subject, the measurement of the transient concentrations of the enzymes of the central carbon 
metabolism following a simultaneous glucose pulse and shift of aerobic to anaerobic perturbation 
has been performed (van de Brink, unpublished results). The results show that enzyme induction 
takes place in about 30 minutes. The next challenge will be to measure transient in vivo enzyme 
activities due to changes in enzyme modification, e.g. the phosphorylation/dephosphorylation of 
phosphofructokinase (the phosphoproteome). 

Another commonly made assumption used in some calculations which are presented in this thesis is 
a constant biomass dry weight specific cell volume (Vx [m3.kgDW-1]) of S. cerevisiae during the 
transient following a perturbation. The significance of this assumption is evident if one realizes that 
the concentrations of all intracellular components, which are usually determined as concentrations 
on a dry weight basis, depend on this single parameter. The assumption of a constant volume does 
not necessarily hold true when there are changes either in the environmental condition, e.g. changes 
in the osmotic pressure, or in the intracellular condition, e.g. changes in the concentration of total 
protein or total metabolite. However, except for the transient response to osmotic stress (Vindelov 
and Arneborg, 2002), hardly any information is available on the dynamic cell volume and Vx. The 
transient measurement of Vx will require accurate methods to measure cell volume distribution, e.g. 
by a Coulter counters, and cell mass distribution. 
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Several methods to measure intracellular pH are available, e.g. the weak acid method (Krebs et al., 
1983; Ramos et al., 1989 and the benzoic acid tracer method presented in Chapter 3), 
microelectrodes, fluorometry with pH sensitive fluorescent dyes (Cimprich et al., 1995; Franck et 
al., 1996), or with pH sensitive fluorescent green protein (Miesenbock et al., 1998) and 31P-NMR 
spectroscopy which infers intracellular pH from the NMR-shift of inorganic phosphate (Pi) (den 
Hollander et al., 1981; Gonzalez et al., 2000; Neves et al., 1999; Nicolay et al., 1982; van Urk et 
al., 1989). Yet it seems that there is no (quantitative) agreement in the intracellular pH measured 
with different methods, which is partly due to different physiological conditions that are partly 
dictated by the employed measurement technique. No single sample was measured with more than 
one method for verification. Recently, a recombinant yeast containing the pH sensitive fluorescent 
green genes has been developed and used to measure the intracellular pH in response to the 
presence of sorbic acid in the medium (Orij, unpublished results). In this case, it will be interesting 
to do a glucose pulse perturbation to a chemostat culture of this strain and compare the dynamic 
intracellular pH measured with the fluorometry and benzoic acid tracer. 

This thesis shows that none of the suggested hypothesis, namely i.e. an accumulation of 
intracellular phosphorylated metabolites, an accumulation of carbon dioxide and secretion of acetic 
acid, could satisfactorily explain the observed decrease in the intracellular pH following a glucose 
and an ethanol pulse perturbation. Remaining hypothesis to be tested is the dynamics in membrane 
processes, e.g. the dynamics in the transport of ions, which could be performed with accurate 
measurements of the dynamics in pH and ion concentration.  

Counter-intuitive dynamic adenine nucleotide profiles are observed following the glucose pulse 
perturbations (Chapter 2; Wu et al., 2006a; Theobald et al., 1997). Instead of a higher energy level 
which is expected following the release of substrate limitation by a glucose pulse, a decrease in the 
energy level is observed. In addition, the total adenine nucleotide pool, which is normally assumed 
to be constant (conserved moiety assumption), is also observed to decrease by 50%. Although some 
evidence indicates that this loss may be related with the growth acceleration, a clear explanation of 
this phenomenon has not been attained yet. It is suggested that the adenosine nucleotides are 
degraded, via the AMP deaminase activation, leading to accumulation of IMP, inosine and 
adenosine (Loret et al., 2006; Yoshino and Murakami, 1982). In order to verify this hypothesis the 
development of quantitative nucleotides measurement methods as well as a thorough study on the 
regulation of nucleotide biosynthesis and the energy system, are necessary. This could for example 
be done by performing a purine perturbation experiment, via a step change in purine concentration 
in the medium, and monitoring the metabolic responses particularly the dynamic in the purine 
nucleotide and purine biosynthesis intermediates. 

This thesis also presents a novel perturbation strategy that specifically targets the ATP consumption 
rate of the cell (Chapter 6). Besides revealing the primary metabolic responses to the changes in 
ATP consumption rate, transient data sets obtained from this perturbation can serve as an 
independent data set for kinetic model development. In view of the large number of kinetic 
parameters in a complete kinetic model of primary metabolism it will prove mandatory to design 
more independent perturbations which target other particular parts of metabolism, such as redox 
cofactors (e.g. by a glucose and acetaldehyde pulse (Mashego et al., 2006b)), energy cofactors, 
product pathways or specific compartments and to set a proper time scale of observation to monitor 
the dynamics of metabolites or other components of interest.   

Above it was discussed that the state-of-the-art kinetic models of metabolism are still limited to 
subsets of metabolic pathways. A yet more daunting task is to extend the kinetic models to 
multiomics levels. The transient multiomics data presented in Chapter 2 are a first step in generating 
the data for the development of such kinetic models on a multiomic level. By measuring the 
transient level of mRNAs, transcription factors (TF) and metabolites over the time window of 
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Future Direction 

several minutes, for example, kinetic models for the transcript synthesis or degradation can be 
developed. 

This thesis discusses the method for estimating kinetic parameters from transient data (Chapter 7), 
which highlights the importance of including a priori kinetic information, such as which metabolites 
affect a particular reaction, in the estimation process. When modeling larger parts of metabolism 
where such information is not always available, there will be an urgent need for an advanced 
method to infer in-vivo kinetic interactions. This kind of so-called data driven model, will 
complement the approach that has been used thus far. Such methods have been developed to infer 
the in-vivo gene-gene interactions (van Someren, 2002; Kao et al., 2003 and Liao et al., 2004). 

Related to the model development, the refining of model development by the inclusion of proper 
compartmentalization and the important state variable intracellular pH should be pursued. The 
development of compartmented models requires novel methods for the extraction of metabolites of 
separate compartments or a method for inferring metabolite concentration in each compartment. 
Such compartmentation is particularly relevant for the adenine nucleotides (ATP, ADP and AMP), 
the redox cofactors (NAD/NADH and NADP/NADPH) and the coenzyme (CoA), since they occur 
in most compartments and participate in – and thus influence the rate of- many reactions. 
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