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Day-to-day dynamics in two-sided ridesourcing markets
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ABSTRACT
To understand why ridesourcing markets may be prone to evolve towards
potentially socially undesirable equilibrium states, we conceptualize the
network effects present in ridesourcing provision. In addition, we propose
an agent-based model that allows simulating the effect of market condi-
tions and platform strategies on system performance, accounting for such
network effects. This day-to-day model captures sequential decentralized
processes characterizing both sides of the two-sided ridesourcing mar-
ket, i.e. information diffusion, platform registration, platform participation,
and learning based on experience. We apply the model on a case repre-
senting Amsterdam, the Netherlands. Our simulation results suggest that
a profit-maximizing ridesourcing platform may trade-off market transac-
tion volume for higher earnings on successful transactions, a strategy that
is harmful to the interests of travellers and drivers, and possibly of (very)
limited benefit to the platform. Moreover, we find that ridesourcing opera-
tionsmay be viable even when potential supply and demand in an area are
limited.
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1. Introduction

In many cities around the world, ride-hailing constitutes an alternative to using a private car or line-
based public transport. The uptake of services like Uber and DiDi can be attributed to combining the
benefits associatedwith private transport – i.e. door-to-doormobility – aswell aswith public transport
– i.e. being exempted from the burden associated with private vehicle ownership. While ride-hailing
may be used in isolation from other modes, it may also be used as an access or egress mode for more
affordable and efficient public transport services (Stiglic et al. 2018; Young, Allen, and Farber 2020).

The effect of the introduction of ride-hailing services is not limited to the transportation sector per
se. Most ride-hailing companies are exemplars of the gig economy, which means that they are essen-
tially operators of a two-sidedmarketplace between travellers and self-employed drivers. This practice
is referred to as ridesourcing. Ridesourcing drivers enjoy freedom in selecting their working hours and
days (Ashkrof et al. 2020; Chen, Rossi et al. 2019; Hall and Krueger 2018) while losing access to social
securities provided by traditional labour contracts. Their financial reward is typically based on satisfied
demand rather than the time spent working.

Outsourcing supply to freelancers may allow service providers to respond more adequately to
changing circumstances, e.g. to declining demand as a result of a pandemic. Whereas traditional
transportation service providers are restricted by long-term labour contracts, ridesourcing market
operators benefit from a day-to-day balancing mechanism for supply and demand that is inherent
in two-sided markets. This mechanism consists of two feedback loops (Parker, Van Alstyne, and Paul
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Choudary 2016). First, market participants compete with each other for the service offered by par-
ticipants on the other side of the market. Hence, market participation is less attractive when there
are many participants on this side of the market. At the same time, competition on one side is
advantageous for participants on the other side, as it gives themmore options to choose from.

While feedback loops between supply and demand may be an advantageous property of two-
sided markets, there is no guarantee that the achieved market equilibrium approaches the social
optimum. For instance, considering that two-sided markets generate value by exploiting cross-group
network effects, they may require a minimum level of supply and demand to be viable (Evans and
Schmalensee 2016). As a result, an insufficient user base on either side may result in a downward spi-
ral that leads to the termination of the service. Particular market conditions may inhibit the attraction
of travellers and drivers to themarket. A platformmay for example struggle to attract drivers when job
seekers have plenty of alternative labour opportunities in the market, or when social security is highly
valued by workers.

Clearly, there is uncertainty surrounding the market share that will be captured by ridesourcing
services, in relation to the earnings of drivers participating in these markets, and the level of service
offered to travellers. Considering that the social optimum in a two-sided market can be different than
in a one-sided market (Rochet and Tirole 2003), it is interesting to find out under which conditions
ridesourcing services will yield the utmost societal value, taking into account the perspectives of trav-
ellers, drivers and the intermediateplatform, i.e. themobility serviceprovider. This requires accounting
for network effects – including potential asymmetries – in the two-sided ridesourcing market.

Several scientific works study ridesourcing systems with endogenous supply and demand. These
studies have revolved around the optimization of a platform’s matching procedure (Ausseil, Pazour,
and Ulmer 2022; Chen, Zheng et al. 2020; Wang, Wang et al. 2023; Wang, Wu et al. 2023; Xie, Liu, and
Chen 2023) and pricing strategy (Bai et al. 2019; Banerjee, Johari, and Riquelme 2015; Bimpikis, Cando-
gan, and Saban 2019; Chen, Yao et al. 2021; Lei and Ukkusuri 2023; Meskar, Aslani, andModarres 2023;
Nourinejad and Ramezani 2020; Sun et al. 2019; Taylor 2018; Turan, Pedarsani, and Alizadeh 2020; Xu,
Saberi, and Liu 2022; Zha, Yin, and Du 2018a; Zha, Yin, and Xu 2018b), (Ke, Yang, and Zheng 2020; Ke
et al. 2021;QianandUkkusuri 2017; Yuet al. 2020; Zhuet al. 2020), competitionbetweenplatforms (Sun
and Liu 2023; Zha, Yin, and Yang 2016; Zhou et al. 2020), the evaluation ofwider transportation effects,
and the exploration and evaluation of potential regulations (Li, Szeto, and Zou 2022; Li et al. 2019;
Vignon, Yin, and Ke 2023; Yu et al. 2020; Zha, Yin, and Du 2018a; Zha, Yin, and Xu 2018b). A common
property of theseworks is that a static, i.e. an equilibrium-based,model is applied to describe the rides-
ourcingmarket. Such an approach neglects however several key day-to-day processes in ridesourcing
provision.

First, according to the theory of innovationdiffusion (Rogers 1995), both sides of themarket need to
be exposed to information about a platform before they can decide to make use of it. When exposure
to information is slow on at least one of the sides of the market, it may be difficult to generate and
exploit network effects that are key to the success of these platforms. At the same time, the speed
among which awareness spreads may depend on the number of users as well as on the experience of
these users.

Second, a registration decision needs to be made before the platform can be used. While for trav-
ellers there are no financial costs associatedwith the registration decision, driversmay need to acquire
a vehicle, insurance and/or a taxi licence. Although registration barriersmay be lower than for conven-
tional taxis (Hall andKrueger 2018), an increase in vehicle ownership associatedwith the emergence of
ridesourcing (Gong, Greenwood, and Amy Song 2017) demonstrates that not all ridesourcing drivers
may have owned a car before signing up with the platform. On the one hand, registration is a barrier
which may prevent people from driving for the platform. On the other hand, registration may lead
to more frequent participation given that drivers are financially more dependent on the service once
they have contracts or debts that need to be paid off.

Third, the participation decisions of travellers and (potential) drivers are path dependent. For
instance, interested job seekers rely on past earnings as an indicator for the financial reward for a
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day of platform work, in the absence of a guaranteed wage. With limited means of communication
amongst drivers (Robinson 2017), individual experience is likely the most important source of infor-
mation available to drivers when making a participation decision. Drivers may experience different
earnings from the system average due to luck (randomness) in the matching process, which can be
substantial in ridesourcing (Bokányi and Hannák 2020). Other sources of day-to-day fluctuations in
driver earnings are systematic and random changes in the number of fellow job seekers deciding to
work for the platform as well as in the number of travellers deciding to request a ride on the platform.
Similarly, randomness in matching, and systematic and random changes in two-sided participation
volumes may lead to biased expectations of waiting time among travellers. This phenomenon could
be more predominant if travellers are highly sensitive to waiting time or to being denied service.

In consideration of previously mentioned dynamic processes, we establish twomain benefits asso-
ciated with developing a day-to-day model of the ridesourcing market. First, accounting for dynamic
processes related to ridesourcing supply and demand (including their interaction) may yield different
equilibria than suggested by models neglecting these processes. For instance, network effects in the
matching of travellers and drivers could imply that a critical mass exists in ridesourcing provision, i.e.
with too few drivers and users the service is not interesting enough for participants (on both sides of
themarket) to continue using the service. When platform awareness spreads slowly in the population
of potential consumers and suppliers, the critical mass may not be reached as initial market partic-
ipants experience inadequate service and will opt out from participating in the future before other
potential participants are informed. In addition, initial variations in earnings (across drivers) and wait-
ing time (across users) following from randomness in matching may affect participation in the long
run, given that ’unlucky’ drivers (travellers) – having experienced relatively poor earnings (level of ser-
vice) compared to the systemaverageover a certain periodof time – are less likely to continueworking
for (requesting rides on) the platform than ‘lucky’ drivers (travellers), preventing them from learning
that the overall earnings (level of service) are better than what they personally experienced. A day-
to-day model for the ridesourcing market can be useful in exploring the system effect of attributes
associatedwith these dynamic processes, including the diffusion of platform information, registration
and participation.

Second, compared to a single-daymodel, amulti-daymodel can provide several additional insights
about the ridesourcing market. This includes information about (i) system performance in different
stages of evolution, which is also useful in explainingwhy certain equilibria are reached, (ii) day-to-day
variations in system performance following from randomness in participation decisions, (iii) distribu-
tional effects following from matching luck and path dependency in participation, and (iv) the range
of equilibria towards which a ridesourcing market may evolve in order to determine the importance
of random events and path dependency in day-to-day processes in the ridesourcing market.

Third, a multi-day model allows to explore the effect of day-to-day pricing strategies, includ-
ing penetration pricing, as well as investigating how ridesourcing markets respond to changing
circumstances, such as shocks in travel demand.

So far, few studies have represented the day-to-day dynamics of the ridesourcing market, none
of which have captured all previously mentioned dynamic processes. Djavadian and Chow (2017), for
example, account for learning incomeandwaiting time fromexperience, but neglect the stepspreced-
ing platformusage, i.e. information diffusion and registration. In addition, the scalability of theirmodel
is unclear given that it has only been applied to a small case study, consisting of a maximum of 10
drivers and 20 requests. Yu et al. (2020) andCachon, Daniels, and Lobel (2017) propose a semi-dynamic
model with a single registration phase and a subsequent platform utilization phase. Consequently,
their models disregard the feedback loop existing from platform utility to new registrations. Their
models also neglect disaggregate spatio-temporal relations between supply and demand. de Ruijter
et al. (2022) consider information diffusion, registration and daily experience-based utilization deci-
sions for drivers, but not for travellers, with demand for ride-hailing being considered exogenous.
Finally, Mo et al. (2023) introduce a stochastic evolutionary dynamic gamemodel to analyse ridesourc-
ing market evolution, focusing on trust dynamics, complaint mechanisms, and rating systems. Their
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approach overlooks the interplay between market participation (supply and demand) and market
performance (service quality and driver income).

We address the stated research gap by investigating the long-term co-evolution of supply and
demand in the two-sided ridesourcing market by means of representing sequential individual deci-
sions of drivers and travellers. Specifically,wepropose an agent-basedday-to-daymodel for ridesourc-
ing demand and supply, consisting of (i) an information diffusionmodel, (ii) a platform (de)registration
model, (iii) a daily platform utilization model and (iv) a learning model. The proposed model inte-
grates a within-day operational model for ride-hailing (Kucharski and Cats 2022) to account for spatial
path-dependent processes in vehicle-passenger assignment.

We apply the model to a case study representing a realistic urban network. The model allows us to
investigate the range of equilibria towhich themarketmay evolve aswell as day-to-day dynamics and
distributional effects in system performance before and after reaching the equilibrium. Considering
the presence of network effects in ridesourcing provision, we also investigate how the ridesourc-
ing market equilibrium is affected by the size of the potential market. This may determine whether
matches of high-quality are produced, and ultimately, whether the market attains a critical mass. Fur-
thermore, we construct an experiment to find how pricing policies, specifically ride fares and platform
commission, influence the ridesourcing market equilibrium. Together, these two pricing instruments
determine to what extent travellers and drivers are charged for the service offered by the platform, i.e.
for utilizing its marketplace. Because the total transaction volume in a two-sided market is inherently
dependent on the allocation of the service fee over consumers and suppliers (Rochet and Tirole 2006),
we expect pricing to have significant implications for the market equilibrium. With the experiment,
we specifically investigate the implications of a profit-maximizing pricing strategy for travellers and
drivers, which provides indications for the need to regulate pricing in the ridesourcing market.

In order to understand emergent equilibria in ridesourcing provision, we need to comprehend
which specific network effects govern the interaction between ridesourcing supply and demand, and
how they relate to each other. We therefore propose in the following subsection a conceptual frame-
work encompassing the main interactions between potential (double-sided) ridesourcing market
participants. From this framework, we derive the key network effects in the market.

2. Conceptual framework

Demand for ridesourcing follows from travellers choosing ridesourcing over other modes of trans-
portation for a given trip. Potential demand thus equals the number of trips in an area in which a
ridesourcing provider is active in a given time period. Here, we assume that there is only one rides-
ourcing provider. Ceteris paribus, greater overall demand for travel will lead to more demand for the
ridesourcing service (relation 1 in Figure 1). Suppliers in the market are individuals looking to earn
money by driving for the platform. Hence, we can define potential supply in the market as the num-
ber of individuals open to a job opportunity. It needs to be considered that a vehicle, insurance and
potentially a license is required before an individual can drive for the platform. Hence, job seekers
decide whether they would like to gain access to the market by considering the costs associated with
registration in addition to the financial reward for supplied labour. Ceteris paribus, more job seekers
results in more individuals with access to the market (2), which yields more market participation (3). It
should be noted that registration costs on the demand side are limited, and therefore not included in
the analysis.

In reality, neither the probabilities that travellers opt for ridesourcing nor the probabilities that job
seekers register andparticipate are static. There are several attributes influencing theoutcomeof these
decisions, several of whichmay directly depend on the state of themarket. For travellers, this pertains
towaiting time, which is perceived negatively in theirmode choice decisionmaking process (4). Rides-
ourcing riders experience waiting when the platform is looking for amatch (5) and when the assigned
driver is driving to the request pick-up location (6). Considering that travellers with pending ridesourc-
ing requests compete for the same limited pool of resources, i.e. drivers, the average time needed by
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Figure 1. Conceptual representation of the ridesourcing market.

the platform tomatch a request to a driver increases with the number of ride requests, all other factors
held constant (7). Conversely, when more drivers participate in the system, the average assignment
time of a request will decrease (8).

The average request pick-up time (after assignment) is also dependent on the number of rides-
ourcing requests and the number of drivers in the market. Pick-ups at any given moment in time are
short either when there are many idle drivers or when there are many unassigned requests. Imagine
for instance a market with a (large) pool of idle drivers but no pending requests. Under these circum-
stances, a new travel request will increase the average pick-up time of following requests, as a driver is
removed from the pool of drivers to serve this request, which leaves subsequent requests with fewer
idle drivers. An additional driver on the other hand will decrease the pick-up time of the next request
as the platform can assign more drivers to this request. Contrarily, when there are pending requests
but no idle drivers, an additional driver will increase the average pick-up distance as the next driver
that becomes available (after dropping off a passenger) can be assigned to fewer travellers. In such a
market additional travellers on the other handwill yield a lower average pick-up time. Hence, the rela-
tion between the number of requests and the average pick-up distance (9), and the relation between
the number of participating drivers and the average pick-up distance (10), can be negative or positive,
depending on the ratio of supply to demand.

The financial reward for labour supplied to the ridesourcing market is a key attribute in job seek-
ers’ decisions to register with the platform, to participate in the market, and howmany hours to work
when they choose to participate. In this study we neglect the latter, i.e. we focus on labour supply
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at the extensive margin. There are two theories for how the amount of labour supplied to a market
depends on earnings. The neoclassical theory of labour supply assumes a positive wage elasticity
of labour supply. It represents the notion that labour becomes more attractive when earnings are
high, which has been supported by several empirical studies on ridesourcing supply (Chen and Shel-
don 2016; Sun, Wang, and Wan. 2019; Xu et al. 2020). A second theory considers labour decisions as
reference-dependent, implying that suppliers have a target income, which results in a negative wage
elasticity of labour supply. Although evidence has been found for a negative wage elasticity in taxi
markets (Camerer et al. 1997; Chou 2002), this has been dismissed as an econometric artefact in a
later work (Farber 2015). We follow the neoclassical theory of labour supply in conceptualizing the
participation decision (11). Similarly, we expect a positive relationship between participation reward
and registration probability (12). Like waiting time for travellers, the participation reward is directly
affected by the volume of supply and demand in the market. Participation earnings depend not only
on the number of rides that can be served on a given day, but also on the net earnings per ride (13).
As ridesourcing drivers bear operational costs, deadheading reduces ride earnings (14), which means
that drivers, like travellers, benefit when pick-up times are short. Idle time is another important vari-
able explaining participation earnings. No income is generatedwhen drivers are idle (15). Considering
competition for passengers, an increase in the number of ride requests results in less idle time (16),
and an increase in the number of participating drivers in more idle time (17).

Finally, we consider how a platform’s pricing strategy affects the co-evolution of supply and
demand in the ridesourcing market. A higher commission directly reduces driver’s earnings per sat-
isfied request (18). Ride fares on the other hand increase driver’s earnings per request, all other factors
being equal (19). As travel costs are perceived negatively inmode choice, higher fares reduce demand
for ridesourcing (20). In this study, we assume a constant commission rate and fare structure, i.e. there
is no surge pricing and there are no day-to-day adjustments of the pricing strategy based on the state
of the market, i.e. the platform’s pricing strategy is assumed constant. We believe that the key net-
work effects in ridesourcing provision (described in Section 2) can be captured without consideration
of such complex pricing dynamics. Hence, commission and ride fares are exogenous variables in the
conceptual framework presented in Figure 1.

2.1. Network effects

From the conceptual framework we can identify several network effects in the ridesourcing market.
First, we highlight the network effects associated with an increase in ridesourcing demand:

(A) Increasing request assignment time (arrows 7-5-4 in Figure 1). Negative, same-side network
effect. There is competition amongst travellers with ridesourcing requests, increasing the
average time needed by the platform to find a driver that can serve the request.

(B) Change in pick-up time (9-6-4). Positive or negative, same-side network effect. Depending on
market conditions, better or worsematches are foundwhen there aremore requests, resulting
in a lower or higher average time between being matched to a driver and being picked up.

(C) Change in deadheading (9-14-13-11, 9-14-13-12-3). Positive or negative, cross-side network
effect. Change in pick-up time also affects drivers, decreasing or increasing operational costs
associated with serving a request.

(D) Decreasing driver idle time (16-15-11, 16-15-12-3). Positive, cross-side network effect. More
requests means that drivers spend less time waiting to be matched.

There are four corresponding network effects associated with the volume of participating drivers.

(E) Increasing driver idle time (17-15-11, 17-15-12-3). Negative, same-side network effect. There
is competition amongst participating drivers for pick-ups, increasing the time drivers spend
waiting for assignment.
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(F) Change in deadheading (10-14-13-11, 10-14-13-12-3). Positive or negative, same-side network
effect. Depending on market conditions, better or worse matches are found when there are
more participating drivers, resulting in a decrease or increase in operational costs associated
with deadheading to the pick-up location.

(G) Change in pick-up time (10-6-4). Positive or negative, cross-side network effect. Change in pick-
up time directly affects travellers that opt for ridesourcing.

(H) Decreasing request assignment time (8-5-4). Positive, long-term, cross-side. More participating
drivers makes it easier for the platform to find a driver that can serve a pending request.

2.2. Keymarket variables

Based on the previous analysis, three within-day variables govern all network effects in the rides-
ourcing market: (i) the average time drivers are idle before being assigned to a request, (ii) the
average time before a request is matched to a driver, and (iii) the average time a driver needs
to pick-up a traveller after assignment. The first two variables are essentially the matching time
for drivers and travellers, respectively. When assignment happens immediately when there is at
least one idle driver and one unassigned request independent of the proximity between requests
and drivers, matching time is directly – yet not merely – related to the ratio between supply and
demand. For instance, when there are many drivers relative to travellers with a ridesourcing request,
drivers will spend a relatively large share of their shift in an idle state, while requests will be quickly
answered. Conversely, when there are many requests relative to the number of drivers, it will take
long before requests are answered, while drivers will be able to serve many requests in a given time
frame.

The thirdmentioned variable that governs network effects in the ridesourcingmarket – the average
request pick-up distance – relates to the quality ofmatches rather thanmatching speed. As we have
previously explained, whether additional requests and participating drivers increase or decrease the
average match quality depends on the ratio of idle drivers to pending requests. Next to the supply-
demand ratio, match quality depends on the scale of the (two-sided) market. The matching algorithm
yields more efficient matches when there is a lot of supply and demand.

We have established that the ratio between supply and demand affects both match time (request
match time and driver idle time) and match quality (average pick-up distance). In Table 1 we summa-
rize howmatch time and quality depend on the supply-demand ratio. Below, we provide an argument
for why ridesourcing markets may evolve towards equilibria in which supply and demand are not
well adjusted, i.e. one in which one side has many unassigned participants. Per definition unbalanced
markets yield matches with a limited pick-up distance between traveller and driver, as a platform
is guaranteed to have options in its assignment of drivers to requests. A low pick-up time bene-
fits both travellers and drivers. In such an asymmetrical market, one side experiences a very high
level of service, benefiting both from limited matching time and limited pick-up time. Participants
on the other side are faced with a long average matching time, but this is at least partially compen-
sated for by quick pick-ups. In a well-balanced market, in contrast, the average pick-up time is not
necessarily low, although it may be depending on the number of drivers and unassigned requests
and the adopted matching algorithm. In such a market, participants on both sides may be faced
with matching time depending on whether at that particular moment in time there are more idle
drivers or more unassigned requests. Such a market equilibrium could be sub optimal for travellers
and drivers alike. We therefore propose that ridesourcingmarkets could evolve towards asymmetrical
equilibria in which one side ’pays’ with matching time for the high match quality that benefits both
travellers and drivers. Which of the sides would be on the wrong end of this two-sided market phe-
nomenon depends on how sensitive theirmarket participation decisions are tomatch time andmatch
quality.
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Table 1. Matching quality and speed depending on the ratio between supply and demand.

Market state Driver idle time Request match time Pick-up time

Many idle drivers Long Short Short
Many pending requests Short Long Short
Balanced supply and demand Medium Medium Medium

3. Methodology

We develop a model representing the day-to-day and within-day behaviour of potential consumers
and suppliers in the two-sided ridesourcingmarket. Potential consumers in themarket are formalized
as travellerswith adaily (repetitive) trip request, forwhich they reconsider theirmodeof transportation
everyday. Potential suppliers are represented as job seekers deciding whether they want to register
with and work for the ridesourcing platform based on anticipated earnings. A single platform agent
matches ridesourcing requests to available drivers, charging a commission on each transaction. An
operational representation of the model is presented in Figure 2 and explained below.

In the ensuing, we describe the main modelling elements and pinpoint similarities and differences
in the processes on the two sides of the market. First, both sides include a macroscopic model to
represent the diffusion of exposure to information about the platform, which is a prerequisite for indi-
vidual agents to participate in the market. This process is captured in modules S1 and D1, for supply
and demand respectively. Second, job seekers, unlike travellers, are confronted with an additional
(de)registration decision, capturing the trade-off between anticipated earnings and long-term invest-
ment costs (module S2). Third, both registered drivers and informed travellers are faced with a daily
platformutilization decision. Drivers decidewhether they expect the participation reward to outweigh
opportunity costs for a day of work (module S3), whereas travellers decide whether they expect rides-
ourcing to offer them most utility, compared to a private car, bike and public transport alternative.
The expectations are updated by means of a learning process. In modules S4 and D3, respectively,
we capture how drivers and travellers trade-off previous experiences. These modules also include
how unregistered agents learn about income and waiting time. The model is integrated in an agent-
basedmodel (moduleO1) forwithin-day ride-hailingoperations (Kucharski andCats 2022). Thismodule
accounts for variations in experience across participating drivers as well as across passengers, which
may follow frommicroscopic spatio-temporal relations between supply and demand. Throughout the
multi-day simulation, the platform’s matching rules and pricing policies are fixed. The assumption
here is that the service operations remain unchanged during the analysis period. The simulation is
terminated once income and waiting time hardly evolve anymore from one day to the other.

In the following subsections, we describe each model component in more detail. For a list of used
notations, we refer the reader to Appendix 1.

3.1. Information diffusion

Slow diffusion of ridesourcing market awareness among travellers and job seekers can hinder the
build-up towards a critical mass and ultimately result in the failure of the service. In general, there is
limited empirical evidence for how potential users become aware about innovations, and particularly,
how travellers and job seekers become aware about the ridesourcing market. The diffusion of plat-
form awareness likely depends on highly complex, context-specific information processes, including
peer-to-peer interactions, mass media communication and platforms’ marketing strategies. In con-
sideration of the lack of empirical underpinning for awareness diffusion in the ridesourcing market,
particularly when it comes to the effect of global communication sources, we opt for a simple model
based on peer-to-peer communication between informed and uninformed agents. The model satis-
fies two features that we consider likely to be important in the process: (i) platform diffusion is likely
slow in early phases of adoption, when few travellers and job seekers are already aware about the
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Figure 2. Operational framework for the ridesourcing market.

existence of the platform, before speeding up, and (ii) ultimately all agents are informed about the
existence of the ridesourcing market, in line with the wide-spread familiarity with ridesourcing plat-
forms nowadays, for instance in the Netherlands (Geržinič et al. 2023). Specifically, we model the
diffusion of platform awareness with an epidemic compartment model with ’infected’ (informed)
and ’susceptible’ (uninformed) agents. As information diffusion in social networks has been found to
resemble virus spreading (Zhanget al. 2016), epidemicmodels are a commonmethod for representing
information diffusion processes. Past applications include word-of-mouth communication in market-
ing (Goldenberg, Libai, and Muller 2001), information diffusion through blogs (Gruhl et al. 2004; Su,
Huang, and Zhao 2015) and the diffusion of rumours over social networks (Trpevski, Tang, and Kocarev
2010).
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Considering the lack of empirical underpinning for the adopted platform awareness model, we
analyse the sensitivity of our results to the awareness diffusion process in Subsection 5.4.

3.1.1. Supply-side (S1)
Assume apool S = {s1, . . . , sN}ofN job seekers, which at the start of a given day t are divided into three
subpools: those that are uninformed about the platform Sut , those that are informed yet not registered
with the platform Sit , and those that are registered with the platform Srt , so that:

S = Sut ∪ Sit ∪ Srt (1)

Information about the existence of the platform is transmitted from informed job seekers to unin-
formed job seekers at a rateψsup, i.e.ψsup represents themultiplication of the average daily number of
contacts of agents by the probability that information is transmitted in a contact between an informed
an uninformed job seeker. The probability that a random uninformed job seeker s ∈ Sut is informed
about the ridesourcing platform’s existence on day t then equals:

pinformst = ψsup · |Sit ∪ Srt|
N

(2)

3.1.2. Demand-side (D1)
Consider a pool of K travellers C = {c1, . . . , cK}. At the start of day t, the pool is subdivided into a group
of travellers previously informed about the ridesourcing service Cit and those that have not yet been
informed Cut . In other words:

C = Cit ∪ Cut (3)

Information diffusion rateψdem represents themultiplication of the average daily number of contacts
of agents by the probability that information is transmitted in a contact between an informed an unin-
formed traveller. We define the probability that an uninformed traveller c ∈ Cut receives information
on day t as:

pinformct = ψdem · |Cit|
K

(4)

3.2. Registration

3.2.1. Supply-side (S2)
Before job seekers can participate as drivers in the ridesourcing market, they need to register them-
selves with a ridesourcing platform. There may be substantial costs associated with being registered,
i.e. with the ability to work in the market as opposed to operational costs when driving. For instance,
participation in the ridesourcing market requires access to a vehicle, which may be subject to several
requirements imposed by the platform and/or regulators. For instance, inmany contexts ridesourcing
platforms are regulated as taxi services, which implies that registering with a ridesourcing platform
may comewith acquiring a taxi license, an on-board computer, an appropriate number plate and suit-
able insurance coverage. As self-employed agents, ridesourcing drivers may be confronted with other
business expenses such as social security contracts (pension, disability insurance, etc.) and financial
administration costs.

To account for previously described (possibly medium- to long-term) expenses associated with
being registered (i.e. able to drive) with a ridesourcing platform, we assume that job seekers are con-
fronted with a daily cost b when they are registered with the ridesourcing service. We assume that
there are no investment costs in registering, i.e. ridesourcing drivers opt to lease required assets. Given
the unlikelihood of daily reconsideration of one’s registration status, job seekers have a probability γ
of considering (de)registration at the end of day t.
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The registration decision is modelled as a trade-off between registration costs and anticipated
ridesourcing earnings. Because the registration horizon is unknown, we consider the registration
decision as a trade-off between registration costs b and anticipated earnings for the coming day
îst, the latter being determined by previous experiences (further explained in Subsection 3.4.1). The
underlying assumption is that agents expect no fundamental changes (while allowing for day-to-day
variations) in system performance until the next time registration is (re)considered. In establishing
anticipated earnings, we need to account for the possibility of part-time driving, i.e. that registered
drivers do not necessarily receive a participation reward everyday. The probability pparticipatest that a
registered driver s ∈ Srt participates on a given day t is defined in Subsection 3.3.1. The anticipated
earnings for a day of work in the ridesourcing market equal îst and its opportunity costs rs. In labour
theory, the opportunity cost associated with a job is referred to as the reservation wage for the job,
representing the minimum earnings for which a job seekers is willing to do a certain job. It integrates
alternative income opportunities as well as job-related preferences. We assume that the reservation
wage required for driving in the ridesourcing market is independent of time and day. For each job
seekers, it is drawn from a normal distribution once with mean μrw, and standard deviation such that
the expected Gini-coefficient of the reservation wage distribution equals grw.

The utility Uregistered
st of being registered on a day t follows from having the opportunity to work

on that day, i.e. the opportunity to earn more than the labour opportunity costs. We formalize the
registration decision with a binary random utility model with parameter βreg and error term εreg to
account for other variables in the registration decision. Hence:

Uregistered
st = βreg · pparticipatest · (îst − rs)+ εreg (5)

The utility of not being registered on a day follows from saving money associated with being regis-
tered:

Uunregistered
st = βreg · b + εreg (6)

The probability that an informed, yet unregistered job seeker s ∈ Sit registers with the platform at the
end of day t is then formulated as follows:

pregist
s∈Sit ,t

=
γ · exp

(
Uregistered
s∈Sit ,t+1

)
exp

(
Uregistered
s∈Sit ,t+1

)
+ exp

(
Uunregistered
s∈Sit ,t+1

) (7)

Accounting for day-to-day variations in earnings, registered job seekers will remain registered for at
least λdays, evenwhen earnings in this period are less than expected. The probability that a job seeker
s ∈ Srt that has been registered for nst days on day t cancels its registration equals:

pderegists∈Srt ,t =
η · γ · exp

(
Uunregistered
s∈Srt ,t+1

)
exp

(
Uregistered
s∈Srt ,t+1

)
+ exp

(
Uunregistered
s∈Srt ,t+1

) (8)

with:

η =
{
1 nst ≥ λ

0 otherwise
(9)

3.2.2. Demand-side
For travellers, registration does not yield significant cost, safe for downloading an app and a fewminor
administrative tasks. We ignore these and assume all informed travellers have direct access to the
platform.
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3.3. Platform participation

3.3.1. Supply-side (S3)
Registered job seekers are facedwith adaily platformparticipationdecision.We follow theneoclassical
theory of labour supply (Chen and Sheldon 2016; Sun, Wang, and Wan. 2019; Xu et al. 2020), i.e. reg-
istered job seekers supply labour to a ridesourcing platform when the anticipated income îst exceeds
the opportunity costs of working time rs. Similar to the registration decision, we apply a randomutility
model to account for additional variables in the participation decision, such as day-to-day variations in
job seekers’ reservation wage as a result of varying activity schedules. The error term is defined as εptp
and the choice model parameter as βptp. The utility of participating, the utility of choosing an alter-
native activity, and the resultant probability of participating in the ridesourcing market on day t for
registered job seeker s ∈ Srt are respectively formulated as:

Uparticipate
st = βptp · îst + εptp (10)

Ualt
st = βptp · rs + εptp (11)

pparticipatest = exp(Uparticipate
st )

exp(Uparticipate
st )+ exp(Ualt

st )
(12)

3.3.2. Demand-side (D2)
Each informed traveller agent c ∈ Cit makes a daily trip. Next to ridesourcing, their mode choice set
M consists of a bike, private car and public transport alternative. Travellers consider time and cost
attributes in choosing their travel mode, as well as alternative-specific preferences. The value of time
varies bymodeand traveller. In-vehicle time,waiting time, andvehicle access timeareperceiveddiffer-
ently, i.e. there are separate time parameters β ivtcm, β

wait
cm , and βaccesscm . The travel cost associatedwith the

choice formodem is defined asρcm (constant fromday to day), which has aweight ofβcost in the utility
function. Alternative-specific preferences may also vary across travellers in the population, hence we
specifyASCcm as traveller c’s alternative-specific constant formodem.We assume thatmode attributes
are valued equally by different travellers. Each transfer induces a penalty βtransfer, which applies to the
public transport alternative alone. The attributes – and hence utilities – of all modes except ridesourc-
ing are constant. For ridesourcing, the anticipated waiting time is an endogenous variable, all other
variables are constant. A random utility model with error term εmode is applied to account for other
variables in mode choice (such as weather conditions). With vctm as the time in or on a vehicle, actm as
the access time to reach a pick-up location, ŵctm as the anticipated waiting time at a pick-up location,
and qctm as the number of transfers, we can formulate the utility of different modes inM for traveller c
on day t, and the probability that those modes are chosen, as:

Umode
ctm = β ivtcm · vctm + βaccesscm · actm + βwaitcm · ŵctm + βtransfer · qctm

+ βcost · ρcm + ASCcm + εmode (13)

pmode
ctm = exp(Umode

ctm )∑
m∈M exp(Umode

ctm )
(14)

It should be noted that only the decision whether ridesourcing is chosen is a relevant output of the
choice model in the broader context of our day-to-day ridesourcing model.

3.4. Learning

Travellers and job seekers are facedwith imperfect information in decisions related to the ridesourcing
market. In this subsection, we describe how travellers learn about waiting time and job seekers about
income.We assume that those agents that can participate in themarket, i.e. informed travellers Cit and
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registered job seekers Srt , will rely solely on own experience. Those agents that cannot participate, i.e.
uninformed travellers Cit and unregistered job seekers Sut ∪ Sit , lack personal experience and instead
rely on information from other agents.

Considering memory decay (Ebbinghaus 2013), it is unlikely that agents weigh all experiences or
received information equally when anticipating utility of platform utilization for the coming day. Lack-
ingempirical evidence for the specificationof the learning function in a ridesourcing setting,we rely on
findings from learning in route choice behaviour (Bogers, Bierlaire, and Hoogendoorn 2007). Hence,
we describe learning using a Markov process formulation, in which κ ∈ (0, 1) represents the weight
that agents attribute to the most recent piece of information as opposed to previously gathered
information.

3.4.1. Supply-side (S4)
We assume that at the end of day t unregistered, informed job seekers Sit receive a daily private signal
about the earningsof participatingdrivers. There is no systematic error in the communicationbetween
unregistered and registered drivers, which means that signal xst received by job seeker s ∈ Sit at the
end of day t is drawn from a normal distribution with mean equal to the average experienced income
of registered drivers on this day it . We assume that the standard deviation of this distribution equals
ω times the standard deviation σ i

t of experienced income on day t. Registered job seekers instead
learn from personal experience. No learning takes place when those registered job seekers did not
participate on this day.

Consider a group of participating drivers Spt ⊆ Srt on day t. The ridesourcing income of participating
driver s ∈ Spt equals ist on this day. Information yst collected by job seeker s about the income on this
day depends on whether they were registered and whether they participated:

yst =

⎧⎪⎨
⎪⎩
xst s ∈ Sit
ist s ∈ Spt
îst otherwise

(15)

xst ∼N (it ,ω · σ i
t ) (16)

The earnings expected by driver s for day t is now formulated as:

îst = (1 − κ) · îs,t−1 + κ · ys,t−1 (17)

When a job seeker is first informed about ridesourcing income, they fully rely on the first income signal,
hence îst = xst .

3.4.2. Demand-side (D4)
When travellers are first informed about the ridesourcing service, they receive a waiting time signal
xct. There is no systematic error in the communication between agents. Signal xct is drawn from a log-
normal distributionwithmean equal to the average experiencedwaiting timeof ridesourcing users on
this daywt . The resulting standard deviation of the distribution equalsω times the standard deviation
σw
t of the experienced waiting time on day t, i.e. xct ∼ N (wt ,ω · σw

t ). Themaximumwaiting time that
can be communicated to a traveller is one hour. Once informed, travellers rely on personal experience
for learning waiting time.

Assume on day t a group of travellers Cpt ⊆ Cit opts for the ridesourcing service. Ridesourcing user
c ∈ Cpt experiences awaiting time for pick-upwct . For day t, travellers anticipate waiting time ŵct . With
κ as theweight attributed by travellers to themost recent piece of information as opposed to previous
information received, the anticipated waiting time for day t is defined as:

ŵct = (1 − κ) · ŵc,t−1 + κ · wc,t−1 (18)
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3.5. Within-day operations (O1)

A discrete-event within-day model for ride-hailing operations Kucharski and Cats (2022) allows us to
establish the earnings of drivers (following from collected trip fares, platform commission and operat-
ing costs associated with serving passengers and deadheading, all captured in the within-day model)
and thewaiting time of travellers opting for ridesourcing, including variations across agents, based on
the supply and demand on a given day. In the adopted within-day model, market participants accept
all match offers by the platform. Drivers follow shortest paths to pick-up and drop-off locations, and
when unassigned stay idle at their last drop-off location until assigned to a new request. We assume
that passengers do not need time to embark and disembark the vehicle. In this subsection, we intro-
duce the matching procedure and how earnings and waiting time are determined. We refer to the
study of de Ruijter et al. (2022) for more details.

3.5.1. Matching
At any moment during day t, there is a (virtual and possibly empty) queue of idle drivers Qdriver ⊆
Spt waiting to be assigned to a traveller, and a (virtual and possibly empty) queue of travellers with
unsatisfied requests on the platformQreq ⊆ Cpt . We define τsc as the travel time from the location of an
idle driver s ∈ Qdriver to thepick-up location of anunassigned traveller c ∈ Qreq. Thematching function
to find the traveller-driver pair (c∗, s∗)with the least intermediate travel time, given that both queues
are non-empty, is formulated as follows:

(c∗, s∗) = argminc∈Qreq,s∈Qdriver
τsc (19)

3.5.2. Income
Drivers directly collect the fares paid by passengers they serve. Ride fares comprise of a base rate fbase
and a per-kilometre rate fkm. The platform withholds a fixed portion π – the commission rate – on
each transaction between a traveller and a driver. Let us denote the direct distance from a the request
location of traveller c ∈ Cpt to their destination as dc. The revenue of a driver for serving this traveller
is then defined as:

Rc = (fbase + fkm · dc) · (1 − π) (20)

The total revenue Rst of driver s ∈ Spt on a specific day t is the sum of the payouts Rc from requests
served by this specific driver on this day. Defining ξsct as a binary assignment variable indicating
whether driver s picks up passenger c on day t, their daily revenue is formulated as follows:

Rst =
∑
c∈Cpt

Rc · ξsct (21)

The net experienced income of a participating job seeker ist can now be formulated as:

ist = Rst − Ost (22)

where, in consideration of deadheading distance Dst (distance for picking up assigned travellers) and
per-kilometre operational costs δ, the total operational costs of driver s on day t are:

Ost =
⎛
⎝∑

c∈Cpt
dc · ξsct + Dst

⎞
⎠ · δ (23)

3.5.3. Waiting time
The experienced waiting time wct of a traveller with a ridesourcing request c ∈ Cpt comprises of the
time between requesting a ride and getting assigned, i.e. the matching time, and the time it takes for
the driver assigned to the traveller to reach thepick-up location, i.e. the pick-up time.We lack empirical
evidence for how travellers perceive denied service. In this paper, we simply assume a (constant) high
cost P in case waiting time exceeds a patience threshold θ .
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3.6. Implementation

Our day-to-day ridesourcingmodel is implemented in Python and integrated into MaaSSim, a simula-
tion environment for two-sided mobility platforms. The public transport alternative available to each
traveller is determined based on a query in OpenTripPlanner (OTP). Only the public transport itinerary
with the earliest arrival time is considered by a traveller.

3.6.1. Convergence
Themulti-day simulation can be terminated once the system reaches a steady state. We establish two
criteria for convergence, corresponding to the two sides of the market. First, for five days in a row, the
average expected earnings It of registered job seekers should not change more than a convergence
parameter ϕ. This indicates (i) that ridesourcing earnings are fairly constant and (ii) that job seekers
have learned about it. The first criterion is formalized as:

|It−z − It−z−1|
It−z−1

≤ ϕ ∀ z ∈ {0, . . . , 4} (24)

with:

It = 1
|Srt|

·
∑
s∈Srt

îst (25)

Second, the average expected waiting time Wt of informed travellers should not change more than
the previously defined convergence parameter ϕ, again for five days in a row:

|Wt−z − Wt−z−1|
Wt−z−1

≤ ϕ ∀ z ∈ {0, . . . , 4} (26)

with:

Wt = 1

|Cit|
·
∑
C∈Cit

ŵct (27)

3.6.2. Replications
The simulation model includes stochastic components in information diffusion, platform registration
and participation. We determine the number of required replications Z(ninit) based on a number of
initial replications m, using a formula commonly used in stochastic traffic simulations (Ahmed 1999;
Burghout 2004). We apply their formula to both sides of themarket, i.e. both equilibriumwaiting time
and income need to be statistically significant.

Let us denote the average anticipated ridesourcing incomeby registered job seekers in equilibrium
in a single iteration as I∗, and the the corresponding average anticipatedwaiting timeof informed trav-
ellers asW∗. Then I∗(ninit) andW∗(ninit), and si(ninit) and sw(ninit) are, respectively, the estimatedmean
and standard deviation of I∗ and W∗ from a sample of ninit runs. When we define the allowable per-
centage error of estimate I∗(ninit) andW∗(ninit) of the actualmean as εrepl, and the level of significance
as α, the minimum number of replications is:

Z(ninit) = max

⎛
⎝(

si(ninit) · tninit−1, 1−α2
I∗(m) · εrepl

)2

,

(
sw(ninit) · tm−1, 1−α2
W∗(ninit) · εrepl

)2⎞⎠ (28)

3.6.3. Traveller subpopulation
Considering that mode-specific constants are heterogeneous in the pool of travellers, some travellers
aremore likely to choose ridesourcing for their trip thanothers. To reduce the computational complex-
ity of the simulation, we filter travellers based on their probability to choose ridesourcing when there
is no waiting time, i.e. when ŵct = 0. If in such an ‘ideal’ scenario traveller agents have a probability
below parameter χ , they will be removed from the original pool of travellers.

https://github.com/RafalKucharskiPK/MaaSSim
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4. Experimental design

4.1. Set-up

We apply our simulation framework to a case study devised based on the City of Amsterdam, in
terms of the potential ridesourcingmarket, the underlying road network, ridesourcing operations and
characteristics of alternative modes.

Our case study represents roughly a 10% sample of travel demand in Amsterdam over a period of
eight hours, as well as an estimated 10% sample of all job seekers. A sample size of 10% is compara-
ble to the samples taken in other works studying transportation problems with agent-based models
(Bischoff and Maciejewski 2016; Kaddoura 2015). Tests with larger sample sizes confirm that a 10%
sample is sufficiently indicative for system performance under the full population of travellers and job
seekers. In absolute terms, the sampling yields K equal to 75,000 travellers and N to 2500 job seek-
ers. Travellers with a below 5% probability to opt for ridesourcing even in the event of an immediate
pick-up are assumed to never consider ridesourcing for their trip, i.e. χ is set to 0.05.

Travel demand is drawnonce fromadatabase of trips generatedbasedon the activity-basedmodel
of Albatross for the Netherlands (Arentze and Timmermans 2000), in which only trips longer than 2 km
are considered. The average value of in-vehicle time in the population of travellers is set to e10 per
hour, based on the most recent estimation of the value of in-vehicle time for car commuters in the
Netherlands (Kouwenhoven et al. 2014). The standard deviation of the value of in-vehicle time distri-
bution is set so that the resulting Gini-index for inequality in value-of-time equals 0.35, similar to the
observed inequality in gross income in the Netherlands (Arts et al. 2019). Travellers perceive walking
time to a stop/pick-up location 2 times more negatively than in-vehicle time, i.e. βaccesscm = 2β ivtcm, and
time waiting for a vehicle 2.5 times more negatively, i.e. βwaitcm = 2.5β ivtcm, based on Wardman (2004).
Biking time is perceived twice as negative as in-vehicle time to represent the strenuous and ’unpro-
ductive’ nature of cycling (Börjesson and Eliasson 2012). The penalty for transfers in public transport is
set to 5min of in-vehicle time (Yap, Cats, and van Arem. 2020). Mode-specific constants are based on
preferences observed in urban areas in the Netherlands (Geržinič et al. 2023). Travellers with a rides-
ourcing request are assumed tobewilling towait up to10min for amatch (θ = 10min) and toperceive
a rejected request as equivalent to 30min of waiting time (P = 30min).

Similar to travellers’ perception of in-vehicle time, job seekers’ reservation wage is drawn from a
log-normal distribution with a standard deviation that results in a Gini-index grw of 0.35. The mean
reservation wage μrw equals e25 per hour, based on the average gross hourly income in the Nether-
lands (voor de Statistiek 2022). Informed job seekers are expected to (re)consider registration every
10 days, i.e. γ is set to 0.1. Job seekers that participate start their working day at a random location in
the network.

We assume a road network with a (static) universal link travel speed of 36 km/h for cars and
14.4 km/h for bikes. The public transport alternative for each traveller is based on service operations
on November 1st, 2021, both in terms of its timetable and fares (i.e.e0.99 base fare and an additional
e0.174 per km). Private cars are assignedwith a parking time of 10min, as well as parking costs ofe15
in the city centre and e7.5 elsewhere. The total per-kilometre operating costs of cars are set to e0.5,
based on an estimation of the operating costs of a medium-sized car in the Netherlands (Nibud 2022).
We assume that ridesourcing drivers have lower operating costs, i.e. e0.25 per kilometre, represent-
ing more intensive usage of their cars compared to other car owners. Ridesourcing pricing is based
on Uber’s pricing strategy in Amsterdam, surge pricing is not considered in this study. It implies that
commission π , base fare fbase and per-kilometre fare fkm are set to 25%, e1.5 and e1.5/km in the ref-
erence scenario. The daily costs b associated with being registered with the ridesourcing platform (for
job seekers) are set to e20.

At the start of the simulation, registered job seekers expect earnings equal to their reservation
wage, while (informed) travellers expect no waiting time upon initialization. 10% of all agents (job
seekers and travellers) are initially informed.Of the originally informed job seekers, 20% is immediately
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Table 2. Specification of other model parameters, with references to sensitivity analyses.

Indicator Parameter Value Unit Sensitivity test

Information transmission speed ψsup,ψdem 0.1 – Section 5.4.1
Learning weight κ 0.2a – Appendix A.5
Income sensitivity in registration βreg 0.2 util/e Appendix A.6
Income sensitivity in participation βptp 0.1 util/e Appendix A.6
Minimum registration time λ 5 days Appendix A.7
Rel. variation in wait time and inc. signalsa ω 0.5 – Appendix A.9
Convergence condition ϕ 0.01 – –
Allowable percentage error of estimate of mean εrepl 0.1 – –
Level of significance α 0.05 – –
aSelected after learning of travel time in route choice (Bogers, Bierlaire, and Hoogendoorn 2007).

registered with the ridesourcing platform. The model’s sensitivity to these starting conditions is
evaluated in Appendix 2.

The specification of the remaining model parameters is provided in Table 2.

4.2. Scenario design

To investigate how the size of the potential ridesourcingmarket affects system performance, we sam-
ple from the pool of travellers and job seekers specified in Section 4.1. We assume a fixed ratio of
50 travellers per job seeker, i.e. the (relative) sample size is similar for supply and demand. We test
the following relative sample sizes: {0.05, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0}, corresponding to potential demand
ranging between 3750 and 75,000 travellers, and potential supply ranging between 125 and 2500 job
seekers.

We also evaluate the platform’s pricing strategy, comprising of a (time-independent) per-kilometre
fare fkm and commission rateπ .We test per-kilometre fares rangingbetween0.5 and2.5e/km, in steps
of e0.5/km, in combination with commission rates ranging from 5% to 55%, in steps of 5%.

4.3. Performance indicators

We formulate four surplus-related performance indicators, one for drivers, travellers and platform
each, and one the sum of the previous three.

First, registered job seekers obtain a positive value from the ridesourcing platformwhen participa-
tion earnings in the long run outweigh experienced labour opportunity costs and registration costs.
Hence, we formulate the total driver surplus on day t as the summed difference between experienced
earnings ist and reservation wage rs for all participating drivers, minus the total costs associated with
registration:

Vdrivers
t =

∑
s∈Spt

(ist − rs)− |Srt| · b (29)

Travellers experience a welfare gain as a result of having an additional travel alternative. The wel-
fare gain can be measured by computing the difference in Logsums (De Jong et al. 2007) with and
without a ridesourcing alternative. In this study, we only consider the welfare gain of those opting for
ridesourcing (i.e. Cpt ⊆ Cit). The Logsums are formulated as:

LSoldt =
∑
c∈Cpt

ln

⎡
⎣ ∑
m∈(M−{RS})

(exp(Umode
ctm )− εmode)

⎤
⎦ (30)

LSnewt =
∑
c∈Cpt

ln

[∑
m∈M

(exp(Umode
ctm )− εmode)

]
(31)
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The total traveller surplus is converted to a monetary unit by dividing the difference in Logsums by
the marginal utility of income:

Vtravellers
t = LSnewt − LSoldt

βcost
(32)

Assuming that the service provider has no operational costs, the value for the service provider equals
the total commission collected off satisfied ridesourcing requests:

Vplatform
t = π ·

∑
c∈Cpt

⎛
⎝(fbase + fkm · dc) ·

∑
s∈Spt

ξsct

⎞
⎠ (33)

In this study,wedonot analyse the contributionof ridesourcing to total vehiclemileage, i.e.we assume
that the contribution is negligible.Wedefine thevaluederived fromthe ridesourcingmarketby society
on day t as the (unweighted) sum of the driver surplus, traveller surplus and platform profit:

Vsociety
t = Vdrivers

t + Vtravellers
t + Vplatform

t (34)

5. Results

Here, we present the results of our experiments. In Section 5.1, we specifically explore the evolution of
the ridesourcingmarket, the effect of stochasticity in starting conditions and agent decisions, and their
effect on within-day outcomes, and distributional effects in the reference scenario. In Sections 5.2 and
5.3, we demonstrate how the ridesourcing market equilibrium is affected by the size of the potential
market and by platform pricing strategies, respectively. In Section 5.4, we evaluate the effect of two
attributes related to dynamic processes in the market: the two-sided information diffusion rate and
(supply-side) costs associated with registration.

5.1. Dynamics, randomness and heterogeneity

In Figure 3, we present the evolution of the main system performance indicators – the average of
different instances of the experiment – in the reference scenario.

The majority of travellers and job seekers is initially unaware about ridesourcing platform exis-
tence. Those that are informed are optimistic about earnings and waiting time, i.e. informed travellers
expect nowaiting time and informed drivers expect earnings equal to their reservationwage.We then
observe four phases in the evolution of the market:

(1) Double-sided market correction after unrealistic expectations (days 0–5). With informed
travellers and job seekers initially optimistic about the service, a relatively large share of them
tries the platform.On the first day for instance, around 50%of registered job seekers and nearly
3% of informed travellers – which appears to be the upper bound for the ridesourcing mar-
ket share – participate in the market (Figure 3A). Job seekers quickly learn that anticipated
earnings cannot not be realized (Figure 3B), while travellers observe that there is waiting asso-
ciated with choosing ridesourcing for their trip (Figure 3E). Therefore, registered job seekers
become increasingly less likely to participate and informed travellers increasingly less likely
to choose ridesourcing in this early phase. Since the decrease in participation probability is
larger for job seekers than for travellers, the number of satisfied requests per driver increases
in this phase. This results in increased daily earnings (Figure 3B) even though the earnings per
satisfied request decreases (Figure 3C) due to higher deadheading costs. At the same time,
travellers’ matching time increases (Figure 3E). Figure 3B demonstrates that the average reser-
vation wage of registered job seekers drops, i.e. job seekers with an above average reservation
wage are relatively likely to deregister and relatively unlikely to register with the platform.
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Figure 3. Evolution of the ridesourcing market in the reference scenario. (A) Job seeker states and activities. (B) Earnings and
reservation wage. (C) Earnings per satisfied request. (D) Travellar states and activities. (E) Waiting time.

(2) Bounce-back in supply (days 5–25). The average reservation wage of registered job seekers
drops further (Figure 3B) as job seekers with a high reservation wage continue to deregister,
while those that register have a below average reservation wage. As a result, the probability
that a registered job seeker participates increases significantly, from just over 20% to more
than 60%. An increase in supply results in a higher likelihood that requests can be assigned to
a driver (Figure 3D and E). It also leads to a decrease in the average pick-up time (Figure 3E). In
this market evolution phase, however, the average probability that ridesourcing is chosen for
a trip still decreases, given that the average expected waiting time is still increasing.

(3) Double-sidedgrowth (days25–50). In this phase, there is a net growth in the share of informed
agents that are registered. The average reservation wage of registered drivers is relatively sta-
ble. Considering that the number of informed job seekers increases while earnings are fairly
constant (a relatively minor increase in driver idle time is approximately compensated for by
a decrease in deadheading costs per request, (Figure 3C), supply-side market participation
increases aswell. On the demand side of themarket,more travellers have become aware about
the service. Those informed are increasingly likely to use ridesourcing as the average pick-up
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time drops. The latter is caused by more favourable matches with a growing number of users
on both sides of the market.

(4) Market equilibrium (days 50+). In this phase, the key system performance indicators only
change marginally (satisfying the convergence criteria defined in Section 3.6.1). Nearly all
agents are now aware about the existence of the service, and the probability that they use
the platform is approximately constant.

We observe a discrepancy in the pace in which job seekers and travellers learn. Figure 3 shows
that at the end of the second transition phase, there is no fundamental difference in what job seekers
expect to earn and what they actually earn. On the demand side, however, the average time that a
traveller expects to wait when choosing ridesourcing is higher than the average experienced waiting
time of users (Figure 3E). A reason why demand-side learningmay be slow in the ridesourcing market
is that its market share is relatively low, i.e. in equilibrium around 2.2% of all travel demand. In other
words, the average informed traveller has a low probability of receiving private information about the
waiting time. This applies especially to travellers who have been relatively unlucky in their experiences
with the platform (Figure 4C), i.e. those who on average experienced a highwaiting timewhen opting
for ridesourcing compared to travellers with similar trip requests. With a high expected waiting time,
theybecome less likely touse the service in the future. In otherwords, thewaiting timeof travellers that
have been relatively unlucky in the matching process will regress to the mean more slowly than the
waiting time of travellers who have been relatively lucky. As shown by Figure 3E, travellers requesting
a ride with the platform expect a waiting time that is close to the actual experienced waiting time.
It may take a very long time for the other travellers to learn about the average experienced waiting
time.

The observation that job seekers learn muchmore quickly than travellers in the reference scenario
may not solely be explained by a discrepancy in themarket participation probabilities between poten-
tial suppliers and consumers in the market. Another possible explanation follows from our modelling
assumption that job seekers – due to market asymmetry in costs required for registration – exchange
more information with peers than travellers do with fellow travellers.

Whenwe further examinedistributional effects in systemperformance (in equilibrium),we find that
job seekers can expect relatively large day-to-day variations in income. The experienced earnings of
participating drivers resembles a normal distribution with a relatively large standard deviation com-
pared to the mean (Figure 4A). It implies that on an average day under steady-state conditions some
drivers earn very little and some earn a lot. We find that random effects play a non-negligible role also
in travellers’ experiences. The majority of travellers have to wait less than two minutes to be picked-
up, while some others are faced with a waiting time exceeding 10min (Figure 4C). The waiting time
distribution resembles an exponential distribution.

We observe that, at least in the reference scenario, spatial properties have a limited effect on
experienced system performance. There is no significant relationship between drivers’ starting loca-
tion and their income (Figure 4B) and between travellers’ request location and their waiting time
(Figure 4D).

Finally, we investigate the effect of random variations in agents’ preferences and stochastic pro-
cesses in the simulation, i.e. in information diffusion, registration choice and participation choice. We
observe minor differences in the performance indicators in the market equilibrium when comparing
different instances of the simulation. We find the variability in market participation across instances
– based on 20 instances – to be larger on the supply side of the market. Based on the 20-day mov-
ing average, the market converges to a supply-side participation volume between 110 and 122 job
seekers (Figure 5A), depending on randomness in initial conditions and evolutionary processes. The
(relative) variation inmarket participation across instances is more limited on the demand side (Figure
5C), with the the 20-day moving average ridesourcing demand in equilibrium ranging from 1580 to
1700 requests.
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Figure 4. Distributional effects in earnings andwaiting time in the ridesourcingmarket equilibrium (single instanceof the reference
scenario). (A) Earningsdistribution. (B) Experiencedearningsbasedon starting loc. (C)waiting timedistribution. (D) Experiencedwait
time based on request loc.

The relative difference in the range ofmarket participation volumes towhich themarket converges
between both sides can at least partially be explained by the absolute volume of market participa-
tion on both sides, i.e. there are substantially more travellers than drivers, implying that the decisions
and attributes of individual travellers have a more limited effect than the decisions and attributes of
individual drivers. Another explanation could be that travellers are less sensitive to waiting time than
job seekers are to income. The relative variation between instances in the 20-day moving average
of average experienced driver earnings (Figure 5B) and experienced user waiting time (Figure 5D) is
comparable.

Another characteristic of the ridesourcing market provided by the dynamic model are day-to-
day variations in system performance, which can occur even in the market equilibrium. Figure 5
demonstrates that even when the market has converged, there are non-negligible variations in daily
ridesourcing supply (Figure 5E) and demand (Figure 5G), which result in substantial day-to-day vari-
ations in the average experienced driver earnings (Figure 5F) and user waiting time (Figure 5H). For
instance, in a particular instance of the experiment, the average daily earnings in the market equi-
librium are found to be as low as e70 on some days, and as high as e85 on other days, whereas the
averagewaiting time is found to vary between 2 and 3.5min fromday to day.We observe that random
variations in registration and participation decisions are not the sole explanation for these day-to-day
variations in system performance, i.e. initial random variations affect the likelihood that agents partic-
ipate in the future. We take as example one of the instances of the experiment highlighted in Figure 5.
Aperiodof a fewdays aroundday 125with slightly lower participation compared to the average – pos-
sibly intensified by random spikes in ridesourcing demand – leads to temporarily higher ridesourcing
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Figure 5. 20-DayMoving Average (MA20) and daily values of ridesourcingmarket participation and systemperformance indicators
for different instances (replications) of the reference scenario. System performance for one of the instances is highlighted. (A) Partic-
ipating job seekers. (B) Mean experienced income (e). (C) Ridesourcing demand. (D) Mean exp. waiting time (min). (E) Participating
job seekers. (F) Mean experienced income (e). (G) Ridesourcing demand. (H) Mean exp. waiting time (min).

earnings. This yields a spike in supply-side participation (up to 125 drivers on a day). Due to increased
competition, the ridesourcing earnings drop substantially, which is followed by a drop in supply-side
participation levels (down to just over 100 drivers per day). In the end, market participation and earn-
ings converge back to the average in equilibrium. It demonstrates that in ridesourcing provision not
just day-to-day variations but alsomore structural fluctuations (in this case for approximately 25 days)
in system performance can occur, following from path dependency in market participation decisions.

5.2. Potential market size

Figure 6 shows how ridesourcing system performance is affected by the (double-sided) size of the
potential market. We find for instance that when there are only 3750 travellers and 125 individu-
als open to a job opportunity, the market will evolve towards an equilibrium in which hardly any
trip requests are satisfied (Figure 6D). Under these conditions, critical mass cannot be achieved as
ridesourcing supply and demand are too thin resulting with large temporal variations in supply and
demand. Consequently, drivers are occasionally idle (when there are no unassigned trip requests),
while at other times there are unassigned requests without any driver available. Supply shortage is
then likely tobe sustaineddue to the longaveragepick-up time (longdeadheading) following fromthe
inefficiency of the matching algorithm when supply and demand are scarce (Figure 6E). As drivers on
an average day serve few requests (Figure 6G), participating in the market is unattractive. This further
reduces the probability that a request can be assigned to a driver.

Already with 7500 travellers and 250 job seekers in the market we observe sustained supply and
demand for ridesourcing. This corresponds to just 1% of the estimated potential market size of rides-
ourcing inAmsterdam. In this scenario, only 3.5%of all job seekers are registered in equilibrium (Figure
6A), of which on an average day less than 30% participate (Figure 6B). Although limited supply results
in a matching failure for 24% of trip requests (Figure 6D) and in relatively long waiting for the other
requests (Figure 6E), each day still a small portion (0.5%) of travellers is willing to request a ride with
the platform (Figure 6C).
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Figure 6. Equilibrium systemperformance indicators dependingon the size of the potentialmarket (inwhich there are 30 travellers
for each job seeker). (A) Job seekers registered. (B) Participation probability. (C) Modal share. (D) Service rate. (E) User waiting time
(min). (F) Driver time. (G) Satisfied req. per driver. (H) Earning per passenger (e).

We observe that system performance improves considerably with the size of the potential market.
This resonates with the existence of positive network effects (specifically B, C, G and H in Section 2.1)
in the ridesourcing market, i.e. users facilitating the matching algorithm by enabling better matches.
We find for instance that the average pick-up time decreases from fiveminutes when there are 15,000
travellers and 500 job seekers to around two minutes when there are 75,000 travellers and 2500 job
seekers (Figure 6F). As a result, the modal share of ridesourcing more than doubles (Figure 6C). Lower
deadheading costs (associated with driving to the request pick-up location) yields higher per-request
earnings for drivers (Figure 6H). We establish that network effects marginally diminish as the potential
market grows larger. In other words, with each additional traveller and job seeker in the market, the
marginal increase in ridesourcingmarket share decreases (Figure 6C). This is an inherent feature of the
ridesourcing market, given that there is a theoretical minimum pick-up time of 0min, corresponding
to a situation with unlimited supply. Hence, as the potential market grows, the market share will con-
verge to the market share that is attained when travellers expect no waiting time. We find that in a
potential market with 75,000 travellers and 500 job seekers, the pick-up time is already limited to just
over two minutes (Figure 6F). More dense potential supply and demand at this point will yield only
minor benefits.

5.3. Double-sided pricing strategy

In this subsection, we analyse the effect of a platform’s pricing settings, i.e. the per-kilometre fare and
platform commission, on themarket equilibrium. Themain system performance indicators are shown
in Figures 7 and 8.

In our experiment, a profit-maximizing service provider will opt for a per-kilometre fare ofe1 and a
commission of 30% (Figure 8C). With this strategy, approximately 3.9% of all travellers opt to request
a ride using the ridesourcing platform (Figure 7C), of which 99.5% is successfully matched to a driver
(Figure 7D). There are however two near-optimal pricing strategies, which result in more than 99%
of the maximum profit. These alternative strategies comprise of charging a higher fare, i.e. e1.25 per
kilometre, as well as a higher commission, i.e. either 35% or 40% (Figure 8C). As a result, the platform
profit per request is respectively 45.8% and 66.7% higher than when a platform opts for the profit-
maximizing strategy with a fare of e1.0 per kilometre and a 30% commission. It shows that pricing
decisions for the service provider represent a trade-off between the number of transactions in the
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Figure 7. Equilibrium system performance indicators depending on the pricing strategy adopted by the platform. (A) Job seekers
registered. (B) Avg. participation frequency. (C) Modal share. (D) Service rate. (E) Averagematching time (s). (F) Average pick-up time
(s). (G) Avg. driver idle time. (H) Avg. request per driver. (I) Avg. (net) ride earnings (e).

Figure 8. Societal value in equilibrium depending on the pricing strategy. (A) Driver surplus (×e1000). (B) Consumer surplus
(×e1000). (C) Plateform profit (×e1000). (D) Total societal (×e1000).

market and the earnings per transaction. In the experiment, the profit-maximizing strategy prioritizes
the former, the two near-optimal strategies the latter. Compared to the profit-maximizing strategy,
the alternative near-optimal strategies for instance result in a significantly lower ridesourcing market
share, i.e. a reduction of 27.4% when π = 35% and a reduction of 36.3% when π = 40% (Figure 7C).
As a result, fewer job seekers participate in themarket (Figure 7A and B). We can conclude that several
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(near-)optimal pricing strategies may result in a vastly different value derived by job seekers (Figure
8A) as well as by travellers (Figure 8B), depending on whether the transaction volume or earnings per
transaction is prioritized. From a wide societal value, the latter may be undesired.

Wealsonote that only two fares –e0.75ore1.0 per kilometre – are Pareto efficient in the ridesourc-
ingmarket. This demonstrates the significance of network effects in the ridesourcingmarket. Without
network effects, travellers would prefer a minimal fare as they benefit directly from lower travel costs,
while job seekers prefer a maximum fare as they would earn more. In our experiment, however, the
per-kilometre fare in the optimal pricing strategies for travellers and job seekers, respectively, is rela-
tively close, i.e.e0.75 for travellers (Figure 8B) ande1.0 for job seekers (Figure 8A). To understandwhy
the interests of travellers and job seekers are relatively well aligned, we analyse ridesourcing system
performance under very low and very high fares.

First, a very low per-kilometre fare, corresponding toe0.5 in the experiment, comes at the expense
of the level of service offered to travellers. With this strategy, fares are so low that ride earnings barely
cover for drivers’ operating costs, which include costs associated with deadheading (Figure 7I). As a
result, job seekers are relatively unlikely to register (Figure 7A) andparticipate (Figure 7B) in themarket.
With few other drivers, those that still participate will not face any idle time (Figure 7G) and may be
able to serve over 40 passengers a day (Figure 7H). Yet, the net earnings per ride are so low, down to
e1, that a lack of competitionwill not incentivemore job seekers to participate in themarket.With low
supply, the platform has difficulties assigning drivers to ride requests. The probability that no driver
is found before a traveller loses patience (Figure 7D) is high, and so is the average matching time for
requests forwhich adriver is foundbefore the request is cancelled (Figure 7E).With low level of service,
travellers become significantly less likely to opt for ridesourcing (Figure 7C).

With travel cost as one of the main determinants of mode choice, high per-kilometre fares also
significantly reduce the probability that ridesourcing is chosen by travellers (Figure 7C). While high
fares lead to high earnings per ride (Figure 7I), a low ridesourcingmarket share of ridesourcing implies
that drivers serve only few requests on any given day (Figure 7H) and earn less than in a scenario
with a lower per-kilometre fare. Drivers spend over 80% of their time in an idle state (Figure 7G)
when the per-kilometre fare equals e2.5, even though there are relatively few other job seekers par-
ticipating in the market (Figure 7B). We can conclude that under high ridesourcing fares the loss of
ridesourcing demand outweighs the increase in earnings per request and the reduction in the number
of participating colleagues.

Travellers and job seekers also have similar interests when it comes to the commission rate applied
by the platform. As it directly reduces the money that a driver receives for serving a passenger (Figure
7I), a high commissionmakes participating in themarket less attractive (Figure 7B). With relatively few
participating drivers relative to ridesourcing demand, drivers spend less time waiting to be assigned
(Figure 7G),while travellersmay start to experience longermatching times (Figure 7E). Onboth sides of
themarket there will be fewer participants, which implies that thematching algorithm yieldsmatches
with a lower quality, i.e. with a higher average pick-up time/more deadheading (Figure 7F). In other
words, due to the presence of network effects in the ridesourcingmarket, the costs that a commission
induces for drivers is partially redistributed to travellers. A profit-maximizing platform (Figure 8C) will
raise the commission up to the point that the loss of satisfied ridesourcing demand – either because
travellers do not opt for ridesourcing or because their request cannot be fulfilled – outweighs the
higher profit per satisfied request.

5.4. Information diffusion & registration

5.4.1. Information diffusion rate
We explore the effect of the platform awareness diffusion rate to test the hypothesis that ridesourcing
markets may fail to reach a critical mass when information diffusion is slow. The results presented in
Figure 9 do not provide evidence for this hypothesis. For different (two-sided) diffusion speeds, the
market converges to approximately the same equilibrium, with approximately 115 daily drivers and
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Figure 9. 20-Day moving average of key ridesourcing market performance indicators for different two-sided information diffu-
sion speeds. (A) Participating job seekers. (B) Experienced income. (C) Expected income. (D) Ridesourcing demand. (E) Experienced
waiting time. (F) Expected waiting time.

1600 daily travel requests. Logically, the equilibrium is achieved faster when (double-sided) informa-
tion diffusion is fast. We find that the demand-side diffusion speed is substantially more decisive for
the time to reach an equilibrium than the information diffusion rate among job seekers. The reason
is that more demand – when more travellers are informed about the service – results in substantially
higher driver earnings (Figure 9B), attracting more suppliers to the market (Figure 9A), even though
fewer job seekers are informed about the platform. Themore limited sensitivity of travellers towaiting
time implies that fast diffusion of platform awareness among job seekers in early stages of adoption
only yields a minor increase in the ridesourcing market share.

5.4.2. Registration barriers
Figure 10 demonstrates how costs associated with supply-side registration affect the adoption of
ridesourcing platforms. We observe that when registration costs are limited to 5 euro per day, there
is a substantial increase in the number of job seekers that register in the first 25 days of the simu-
lation, whereas there is a net decrease in registration for the scenarios with daily registration costs
of 20 or 35 euro (Figure 10A). As initially equal earnings are anticipated in the different scenarios,
more registered job seekers also implies more supply-side participation when registration costs are
limited (Figure 10B). Although this results in lower waiting time for travellers (Figure 10E and F), the
associated increase in ridesourcing market share is limited (Figure 10D). Hence, the average num-
ber of drivers per ride request increases and the average earnings of drivers drop (Figure 10C). While
those that are registered will participate less frequently compared to scenarios with higher registra-
tion costs due to their lower expectations of income, the difference in registration volume is large
enough to compensate for the decrease in participation likelihood, i.e. those registered still partic-
ipate in the market sporadically, which in reality may happen for instance when they are in need
of money and/or when they have limited alternative activities on that day. In other words, we find
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Figure 10. 10-Day moving average of key ridesourcing market performance indicators for different daily costs b associated with
registration for job seekers. (A) Registered job seekers. (B) Participating job seekers. (C) Experienced income. (D) Ridesourcing
demand. (E) Experienced waiting time. (F) Expected waiting time.

that in a scenario with limited registration costs more job seekers participate in the market equilib-
rium, resulting in a better level of service for travellers yet substantially lower participation earnings
for drivers. The latter implies that drivers may not benefit from lower costs associated with platform
registration.

6. Conclusions

6.1. Study significance

This study pioneers inmapping the network effects that shape the co-evolution of supply anddemand
in the two-sided ridesourcingmarket. The novel conceptual representation of the ridesourcingmarket
allows us to better understandwhy the ridesourcingmarketmay be prone to evolving towards partic-
ular – not necessarily socially optimal – market equilibria. Furthermore,we alsomimic the co-evolution
of demandand supply in ridesourcingwith a simulationmodel that accounts for subsequent disaggre-
gate processes on both sides of the market. These processes include word-of-mouth communication
about the service (both sides), long-term registration decisions (supply), daily platformutilization deci-
sions (both sides) and learning from individual experience (both sides). By integrating ourmodel into a
within-daymodel for ride-hailingoperations,weallow for the emergenceof non-uniformearnings and
waiting times across market participants. We apply the model to a case study that mimics the City of
Amsterdam, studying day-to-day processes in the adoption of ridesourcing, the relation between the
size of the potential ridesourcing market and system performance, as well as the societal implications
of platforms’ double-sided pricing strategies.
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6.2. Takeaways

We now formulate the key takeaways from our analysis of the two-sided ridesourcing market.

6.2.1. Conceptual framework
The ridesourcingmarket is characterized by the presence of numerous (same-side and cross-side) net-
work effects. Network effects are governed by changes in the total waiting time for travellers and the
non-revenue time of drivers. Both variables are determined by match time – how quickly are users
assigned to users on the other side – and match quality – once assigned, how quickly can a driver
reach a traveller. Whereas there is a conflict in the match time of travellers and drivers, i.e. both prefer
many unassigned users on the other side of the market, travellers and drivers have similar interests
when it comes to match quality. Match quality is optimal when there are many idle users on one side
of the market. This could be a reason why ridesourcing markets may evolve towards an asymmetrical
equilibrium state in which pick-ups are quick, but one side is confronted with a relatively long match-
ing time. This may be a point of attention for authorities in areas in which ridesourcing platforms are
active (or even dominant).

6.2.2. Dynamics and heterogeneity
The ridesourcingmarketmay undergo several transitions before ending up in a steady state condition.
In each transition phase, system performance changes rapidly. Even in the steady state, job seekers
and travellers experience significant day-to-day variations in earnings and waiting time, respectively.
This is not only due to randomness in the matching process, but also due to random components in
individual registration and participation decisions. Initially small (two-sided) day-to-day variations in
participation levels can result in larger day-to-day variations as market participation levels affect the
earnings and waiting time experienced by drivers and travellers, respectively. We find that matching
luck explains variations in experiences across market participants much more than spatial properties
do. The long-term wage gaps that may follow frommatching luck is an issue previously addressed by
Bokányi and Hannák (2020).

Path dependency inmode choice yields a systematic discrepancy betweenmarket experiences and
expectations on the demand side of the ridesourcing market. Due to differences in registration costs
and the probability to participate between (potential) suppliers and consumers, learning is likelymore
successful on the supply side of the market.

The speed at which the market reaches the equilibrium is affected more by platform awareness
diffusion on the demand side than on the supply side. This follows from increased driver earnings
when demand-side platform awareness spreads quickly, as newly informed travellers try the service.
Adequate supply is attracted to the market even when relatively few job seekers are informed about
the platform. We observe that the information diffusion rate on both sides has limited affect on the
eventual equilibrium.

6.2.3. Potential market size
A ridesourcing system may fail to attain a critical mass in markets with limited potential supply and
demand. In our experiment, only around 1% of the estimated density of potential ridesourcing supply
and demand in Amsterdam is needed to realize a critical user mass. We find that there may be sus-
tained supply anddemandeven though the service is unreliable andpick-up times are long. The above
findings suggest that ridesourcing may be viable – although possibly substantially less beneficial for
travellers and drivers – even in (more) rural areas.

6.2.4. Double-sided pricing strategy
In setting commission and ride fares, a service provider weighs the (emergent) market transaction vol-
ume and the profit per transaction. A strategy in which the former is traded off for the latter is per
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definition harmful to passengers and drivers. Consequently, two strategies resulting in an approxi-
mately equal (and potentially near maximum) profit may yield a significantly different value when the
interests of travellers and job seekers are also considered.

We find that the conflicting interests betweenmarket participants andplatformare associatedwith
platform commission more than with fares. Due to the presence of network effects, the interests of
travellers, drivers and platform are relatively well-alignedwhen it comes to fares. A low (per-kilometre)
fare repels drivers, which makes market participation unattractive for travellers, while a high (per-
kilometre) fare repels travellers, making driving unattractive. While commission also reduces market
participation, the crucial difference is that the reduction in market share may be compensated for by
higher earnings on the remaining transactions. In our experiment, a profit-maximizing serviceprovider
opts for a 30% commission at the great expense of travellers and drivers.

Transport authorities may consider to regulate the commission rate to manage the distribution of
benefits amongst stakeholders. As such regulations will lead to an increase the ridesourcing market
share, its effect on platform profit may be limited.

6.2.5. Registration barriers
Based on our analysis, ridesourcing drivers do not necessarily profit from low costs associated with
registration. In such a scenario, many more job seekers register with the platform, leading to strong
competition among drivers, and consequently low driver earnings. Although lower earnings imply
that registered agents are less likely to participate in the market, the total participation volume is still
larger as substantially more job seekers are registered when there are hardly any registration costs.

6.3. Future research

Our conceptual analysis of the ridesourcing market hints at the emergence of asymmetrical market
equilibria as thematch quality – important to passengers and drivers alike – is jeopardized when sup-
ply and demand are well-balanced. World-wide driver protests over income suggest that drivers as
opposed to travellers end up paying for a low pick-up time by means of a relatively long idle time
between rides. We would like to know if an asymmetrical ridesourcing market favouring travellers
is indeed an inherent property of the ridesourcing market. It will require investigating the effect of
market conditions other than those considered in this study.

Such market conditions include the spatial distribution of demand, the characteristics of compet-
ing modes, how many job seekers are available in an area relative to the total demand for travel, and
how socio-economic attributes (incl. vehicle ownership) are distributed in the population.We observe
for instance that the economic attributes of job seekers participating in the ridesourcing market
are non-representative for the full population of job seekers, i.e. they have a below average reser-
vation wage. Socio-economic inequalities may hence explain why the ridesourcing market may be
prone to evolving towards an equilibrium in which drivers incur significant waiting. At the same time,
future research could differentiate betweendriverswith andwithout private vehicles, to establish how
vehicle ownership affects market dynamics.

While this study assumes constant pricing strategies, both our conceptual framework and day-to-
day simulation model of the ridesourcing market can be extended with pricing dynamics. This would
allow inspecting how a ridesourcing service provider can steer its evolution with (day-to-day) pen-
etration pricing – to overcome slow adoption and capture a critical mass – and with (within-day)
surge pricing. The latter requires more insights into the work shift decisions of ridesourcing drivers
– so as to balance supply and demand. Our models can also be extended to feature multiple platform
agents competing for drivers and travel demand. In consideration of scaling effects observed in this
study, it is relevant to explore whether platforms can co-exist and at what societal cost (or benefit).
As ride-poolingmay fundamentally change how supply and demand co-evolve, with users potentially
benefiting from the presence of travellers with similar itineraries, future researchmay also explore the
evolution of ridesourcing services offering pooled rides.
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In the model specification process, we observed a significant knowledge gap regarding how trav-
ellers evaluate attributes related to ridesourcing and, particularly, how job seekers decide whether
they wish to supply labour to a ridesourcing platform. Due to this lack of insights, we opted for
relatively simplified submodels for behaviour in our agent-based simulation, while also testing for
model’s sensitivity to several key parameters. Generally, agent-based simulation models like the one
presented in this study rely heavily on detailed behavioural insights, both as model input and for vali-
dation. Hence,we emphasize the need for empirical studies investigating ridesourcing labour supply –
including registration, working days andwork hours – as well as travellers’ perception of ridesourcing.
This is especially relevant in anticipation of needed research on the societal implications of platform
competition in ridesourcing markets.

Notation

Notation Definition
Sets
S = {s1, . . . , sN} Set of job seekers (potential market suppliers)
C = {c1, . . . , cK} Set of travellers (potential market consumers)
Sut ⊆ S Job seekers uninformed about the platform on day t
Sit ⊆ S Job seekers informed about the platform, yet not registered with it on day t
Srt ⊆ S Job seekers registered with the platform on day t
Spt ⊆ Srt Set of participating drivers on day t
Cut ⊆ C Travellers not (previously) informed about the platform on day t
Cit ⊆ C Travellers (previously) informed about the platform on day t
Cpt ⊆ Cit Set of travellers opting for ridesourcing on day t
Qdriver ⊆ Spt A (virtual and possibly empty) queue of idle drivers at a given moment in time

(within-day)
Qreq ⊆ Cpt A (virtual and possibly empty) queue of travellers with unsatisfied requests on the

platform at a given moment in time (within-day)
Indices
s Job seeker
c Traveller
m Mode
t Day
Parameters
N Number of job seekers in population
K Number of travellers in population
ψsup Platform awareness diffusion rate among job seekers
ψdem Platform awareness diffusion rate among travellers
b Daily cost to be registered as driver with the platform
γ Probability of considering (de)registration on a given day (job seekers)
λ Minimum registration period with the platform (in days)
μrw Mean of the normal reservation wage distribution
grw Gini-coefficient corresponding to the reservation wage distribution
βreg Income sensitivity in job seekers’ registration decisions
βptp Income sensitivity in job seekers’ participation decisions
βcost Cost perception in mode choice
βtransfer Perception of transfers in trips
κ Weight that agents attribute to the most recent piece of information as opposed

to previously gathered information
ω Multiplier of the standard deviation of the experienced income and waiting time

distributions used to generate the distribution of corresponding signals
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fbase Base ridesourcing rate
fkm Per-kilometre rate of ridesourcing
π Platform commission rate
δ Per-kilometre operational costs of ridesourcing drivers
θ Traveller’s maximumwaiting time (patience threshold) for assignment
P Constant cost experienced by traveller with trip request in case waiting time

exceeds patience threshold θ
ϕ Threshold value for relative change in convergence indicator (used to determine

whether indicator has converged)
εrepl Allowable percentage error of the average income and waiting time estimates of

the actual mean (in determining number of replications)
α Level of significance in determining number of replications
χ Threshold value for filtering travellers out of the simulation (based on the proba-

bility of choosing ridesourcing when the waiting time is zero)
Variables
Uregistered
st Utility of being registered on day t for job seeker s

Uunregistered
st The utility of not being registered on day t

Uparticipate
st Utility of participating in the market on day t for registered job seeker s ∈ Srt

Ualt
st Utility of choosing another activity on day t

Umode
ctm Utility of usingmodem for traveller c’s trip on day t for registered job seeker s ∈ Srt

pinformst Probability that a random uninformed job seeker s ∈ Sut is informed about the
ridesourcing platform’s existence on day t

pderegistst Probability that registered job seeker s ∈ Srt cancels its registration on day t
pparticipatest Probability of participating in the market on day t for registered job seeker s ∈ Srt
pinformct Probability that an uninformed traveller c ∈ Cut receives information on day t
pmode
ctm Probability that traveller c chooses modem for their trip on day t

nst Consecutive days that job seeker s has been registered with platform on day t
η Binary indicator forwhether job seeker can deregister fromplatformdepending on

nst
rs Reservation wage of ridesourcing work for job seeker s
εreg Error term in job seeker’s registration decision
εptp Error term in job seekers’ participation decisions
εmode Error term in mode choice
β ivtcm In-vehicle time perception associated with modem for traveller c
βwaitcm Waiting time perception associated with modem for traveller c
βaccesscm Access time perception associated with modem for traveller c
ρcm Travel cost of traveller c’s trip with modem
ASCcm Alternative-specific constant (ASC) of traveller c for modem
îst Anticipated earnings by job seeker s for day t
ist Experienced earnings by job seeker s on day t
yst Processed income by job seeker s for day t (used in learning)
vctm Time in or on a vehicle using modem for traveller c’s trip on day t
actm Time to access a stop using modem for traveller c’s trip on day t
ŵctm Anticipatedwaiting time at a pick-up location usingmodem for traveller c’s trip on

day t
qctm Number of transfers using modem for traveller c’s trip on day t
xst Income signal received by job seeker s on day t
it Average experienced income of registered drivers on day t
σ i
t Standard deviation of the experienced income

wt Average experienced waiting time of ridesourcing users on day t
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σw
t Standard deviation of the experienced waiting time distribution distribution
τsc Travel time from the location of an idle (participating) job seeker s ∈ Qdriver to the

pick-up location of an unassigned traveller c ∈ Qreq (within-day)
(c∗, s∗) Traveller-driver pair with least intermediate travel time at a given moment in time

(within-day)
dc Direct distance from a the request location of passenger c ∈ Cpt to their destination

(within-day)
Rst Total revenue of participating job seeker s ∈ Spt on day t
Rc Payout from satisfying the trip request of passenger c ∈ Cpt
ξsct Binary assignment variable indicating whether (participating) job seeker s picks up

passenger c ∈ Cpt on day t
Ost Total operational costs of participating job seeker s ∈ Spt on day t
Dst Deadheading distance of participating job seeker s ∈ Spt on day t
wct Experienced waiting time of passenger c ∈ Cpt on day t
It Average expected earnings of registered job seekers on day t
Wt Average expected waiting time of informed travellers on day t
Z(ninit) Number of required replications based on a number of initial replications ninit

I∗ Average anticipated ridesourcing income by registered job seekers in equilibrium
(single replication)

W∗ Average anticipated waiting time of informed travellers (single replication)
I∗(ninit) Estimated mean of I∗ from a sample of ninit runs
W∗(ninit) Estimated mean ofW∗ from a sample of ninit runs
si(ninit) Estimated standard deviation of I∗ from a sample of ninit runs
sw(ninit) Estimated standard deviation ofW∗ from a sample of ninit runs
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Table A1. Comparing simulation model outcome (equilibrium attained in the reference scenario)
to estimated ridesourcing properties in Amsterdam.

Indicator Simulation Real-world

Rides per active driver hour 1.74 1.26a

Modal split (%) 2.2 3.4b

Average part-time factor 0.65 0.60c

Average driver revenue (e/h) 15.47 22.85c

Average trip distance (km) 5.4 9.0c

aBased on the total number of ordered taxi rides in Amsterdam (Amsterdam 2020), and the total
number of Uber drivers in Amsterdam and their active hours (Fouarge and Steens 2021). bBased
on the modal split of taxi in Amsterdam (Amsterdam 2019) and the share of taxi rides that were
ordered online (Amsterdam 2020). cReported based on Uber data (Fouarge and Steens 2021).

We intend to explore possible network effects in the ridesourcing market, using Amsterdam as an example, rather than
to quantify such network effects specifically for Amsterdam.

Nevertheless,we can compare the simulationoutcomeswith real-world values as a sanity check forwhether theexper-
iments resemble real ridesourcingoperations inAmsterdam. In TableA1,wepresent howour simulation results (reference
scenario) compare to metrics of Uber in Amsterdam. It is important to note that (i) considering limited available data, the
real-world values are based on rough estimations, requiring combining different data sources for some indicators, and (ii)
that the presented real-world metrics of Uber only provide a snapshot of ridesourcing operations in Amsterdam, which
have been observed to undergo significant variations (Fouarge and Steens 2021).

We find that all considered performance indicators are of the same order of magnitude in our simulation as observed
in the real-world (Table A1). For instance, we find that the average time that a driver works relative to a 40-hour working
week is similar in the simulated ridesourcing market (65%) as for Uber in Amsterdam (60%). Notwithstanding, there are
a few apparent differences. The average Uber driver in Amsterdam earns more in reality than in our simulations. Several
explanations are possible for this difference. First, the accuracy of the income data provided by Uber has been criticized
(Amsterdam 2022; van Bergeijk 2017). Second, Uber’s operations in Amsterdammay not have attained a steady state yet,
a hypothesis supported by data demonstrating significant double-sided growth in the period from2015 to 2019 (Fouarge
and Steens 2021). Third, asmentionedpreviously, ridesourcing operations in our simulation are strictly limited byAmster-
dam’smunicipality boundaries. In reality, Uber’s service coverage extends far beyondAmsterdam, including international
airport Schiphol, nearby cities Alkmaar, Almere and Haarlem, and larger and more distant cities such as Utrecht, Rotter-
damandTheHague. Consequently, theaverage ridedistanceofUber inAmsterdam (9.0 km) is indeedconsiderably longer
than simulated for the reference scenario (5.4 km). As long-distance rides are more profitable than short-distance rides,
spatial coverage is a plausible explanation for the difference between simulated and real-world ridesourcing earnings.
Finally, our simulation model assumes that ride fares are strictly distance-based, while drivers in reality can earn more
under surge pricing. The relatively short average ride distance in the simulated ridesourcingmarketmay also explain why
the number of rides per active driver hour is high relative to Uber’s operations in Amsterdam.

Considering the difference in case study area and possible inaccuracy in the estimation of real-world performance
indicators, we believe that it suffices for the simulation results to be of the same order of magnitude as the estimated
indicators for the real world, which is the case based on Table A1.

Appendix 2. Sensitivity to starting conditions
In this section of the Appendix, we describe how sensitive our simulation outcomes are to starting conditions.

A.1 Informed agents
The share of job seekers and the share of travellers that are initially informed have no effect on the equilibrium, only on
how fast the equilibrium is reached.

A.2 Registered job seekers
The share of informed job seekers that are registered at the start of the simulation has no effect on the equilibrium, only
on system performance before the equilibrium is reached.

A.3 Income
Below, we describe the sensitivity of simulation outcomes to the ridesourcing earnings anticipated by (registered) job
seekers at the start of the simulation. We observe that when registered job seekers expect half of their reservation wage
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Figure A1. Ridesourcing system evolution depending on learning parameter κ .

at the start of the simulation, slightly fewer (i.e. approximately 1–2% fewer) job seekers and travellers end upparticipating
in themarket in equilibrium. Themechanism leading up to this difference is that initially very few job seekers participate,
which leads to large variations in the experiences of travellers, i.e. some experience short waiting while others are denied
service. Thesemixed experiences are communicated to travellers that are newly informed, i.e. those that receive negative
signalsmaynever try the service (and therebynever gain new information). Asmentionedbefore, the effect on themarket
equilibrium is not significant.

A.4 Waiting time
The waiting time anticipated by informed travellers at the start of the simulation has no effect on the equilibrium, only
on system performance before the equilibrium is reached.

Appendix 3. Sensitivity tomodel parameters
In Subsection 5.4, we test the effect of double-sided information diffusion rates and supply-side registration costs on
system outcomes. Below, we present sensitivity analyses for several other model parameters associated with day-to-day
processes in the ridesourcing market.

A.5 Learning
Below, we describe the effect of learning parameter κ , the weight that travellers and job seekers assign to the latest
piece of information as opposed to previously gathered information (own or other agents’ experiences). The results are
presented in Figure A1.

We observe that while agents learn more quickly when the system transitions from one phase to another when they
assignmore value to recent information, the learning parameter overall has very limited influence on the emergingmar-
ket equilibrium, i.e. (most) agents ultimately learn about changes in systemperformance indicators. Oneway inwhich the
learning parameter affects the equilibrium is that when agents assign very little value to recent information (κ = 0.05),
the effect described in Subsection 5.1 that some travellers with above average experiencedwaiting never learn about the
system average waiting time becomes more predominant.
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Figure A2. 20-Day moving average of key system performance indicators depending on job seekers’ sensitivity to income in
registration and particpation decisions.

A.6 Job seekers’ sensitivity to income
In this subsection of the appendix, we evaluate the effect of the relative value assigned by job seekers to income in
registration and participation decisions: βreg and βptp, respectively (Figure A2).

We find that the specification of βreg has a significant effect on the number of job seekers that end up registering
with the platform. However, the effect on market participation is limited. In other words, when job seekers assign more
value to income in the registration decision, fewer job seekers will register, but those that register are more likely to
eventually participate in the market. Ultimately, supply and demand volumes are hardly affected by the adopted beta’s
in the registration and participation models.

A.7 Minimum registration duration
Below, we describe the sensitivity of our results to the number of days λ that job seekers are assumed not to be able to
deregister after registeringwith the ridesourcing platform (Figure A3). We observe that thismay have a significant impact
on the number of job seekers that are registered with the platform in the equilibrium. When registered job seekers are
bound to long-termcommitments after registering, for instance for 50 days in the simulation, dissatisfied job seekers need
to wait long before they can deregister. These dissatisfied job seekers are, however, unlikely to participate in the market,
implying that the total participation volume is affected only minorly by theminimum registration duration. The effect on
travellers is evenmore limited, i.e. themarket attracts hardly any additional travellers when the registration commitment
is long, following from slightly higher supply-side participation.

A.8 Registration decision frequency
Here, we investigate the sensitivity of the simulation outcomes to the probability γ that job seekers consider (de-
)registration on aday (FigureA4).Weobserve that this parameter has a similar, albeitmuch smaller, effect as theminimum
registration duration, i.e. when job seekers are less likely to make a (de-)registration decision, more job seekers will end
up registered in equilibrium, as dissatisfied registered agents are less likely to deregister from the platform. However,
these dissatisfied job seekers are unlikely to participate evenwhen registered, so the effect on actual labour supply to the
platform is limited to a few drivers per day. The effect on the demand-side market share of ridesourcing is even smaller.
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Figure A3. 20-Daymoving averageof systemperformance indicators dependingon theminimumdurationof platform registration
λ.

Figure A4. 20-Day moving average system performance indicators depending on registration decision probability γ .
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Figure A5. 20-Day moving average system performance indicators depending on the multiplier of the standard deviation of the
experienced income and waiting time distributions used to generate the distribution of corresponding signals (ω).

A.9 Variation in income andwaiting time signals
FigureA5 showshowω, themultiplier of the standarddeviation of the experienced incomeandwaiting timedistributions
used to generate the distribution of corresponding signals, affect our simulation results for the reference scenario. We
observe that there is no fundamental difference in system indicators depending onω, except when this parameter is very
high (i.e. 1, corresponding to a scenario inwhich agents each communicatewith just 1 other agent). In such a scenario, the
average traveller anticipates a longer waiting time (approximately 1minute extra) when choosing ridesourcing, resulting
in a slightly lower demand for ridesourcing. The higher expected waiting time when the standard deviation of income
and waiting time distributions in information signals is relatively large is likely a model artifact. The assumed normal
distribution for waiting time signals is restricted to non-negative values given that negative waiting times are impossible.
This can produce a (positive) waiting time bias in communication between agents.
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