
Delft Center for Systems and Control

TRAJECTORY GENERATION
FOR TRUCKS FOR MERGING
MANOEUVRES ON THE HIGH-
WAY

Yangxiao Ou

M
as

te
ro

fS
cie

nc
e

Th
es

is

TRAJECTORY GENERATION FOR
TRUCKS FOR MERGING

MANOEUVRES ON THE HIGHWAY

Master of Science Thesis

For the degree of Master of Science in Mechanical Engineering at Delft
University of Technology

Yangxiao Ou

May 18, 2016

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of
Technology

Copyright c© Delft Center for Systems and Control (DCSC)
All rights reserved.

Delft University of Technology
Department of

Delft Center for Systems and Control (DCSC)

The undersigned hereby certify that they have read and recommend to the Faculty of
Mechanical, Maritime and Materials Engineering (3mE) for acceptance a thesis

entitled
TRAJECTORY GENERATION FOR TRUCKS FOR MERGING

MANOEUVRES ON THE HIGHWAY
by

Yangxiao Ou
in partial fulfillment of the requirements for the degree of

Master of Science Mechanical Engineering

Dated: May 18, 2016

Supervisor(s):

Prof.dr.ir. Bart De Shutter
Dr.ir. Riender Happee

Dr.ir. Meng Wang

Reader(s):

Prof.dr.ir. Bart De Shutter
Dr.ir. Riender Happee

Dr.ir. Meng Wang
Dr.ir. A.J.J. van den Boom

Abstract

Trucks are largely used in road transportation worldwide in recent decades, and make great
contributions to the GDP [1]. Statistics shows that a large number of truck-involved accidents
occur related to the ramp in merging manoeuvres on the highway [2]. The accidents involved
in trucks can lead to a considerable economic cost [3]. The development of automated vehicles
largely prompts the growth of vehicle active safety. In this thesis, we would like to address
the problem of trajectory generation of trucks in merging manoeuvres.

The trajectory generator is an important autonomous sector of a fully automated vehicle.
A good generator can select the right moment for lane-changing manoeuvres by identifying
a suitable gap in the traffic at the target lane, and define the path and acceleration profile.
The potential algorithm, the optimisation-based algorithm and the sample-based algorithm
are the main approaches to solve the motion planning problem. Due to its obvious draw-
backs, the potential algorithm is not frequently used for the vehicle trajectory generation.
The optimisation-based algorithm can get very accurate solutions; however, its performance
depends on the development of the solver since most of the available solvers cost much when
handling with nonlinear problems. The sample-based algorithm is a flexible method, and can
be modified to fit a large range of situations.

The sample-based algorithms are widely used in motion planning of small car-like robots.
A lot of efforts have been paid on the studies of the sample-based algorithm. One of the most
famous sample-based algorithms is the Rapidly-exploring Random Tree (RRT) algorithm. It
is an algorithm that can cover the entire configuration space, and select a best path from the
start state to the goal state quickly. However, the RRT algorithm is mostly used on small
car-like robots with relatively low speed. Moreover, the results obtained by the RRT algo-
rithm are usually not accurate. To address this problem, some modified RRT algorithms have
been proposed. But most of the modified RRT algorithms have more complex structures, and
achieve an accurate solution at the cost of more computational cost.

The kinodynamic planning problem is to find a motion that goes from a start state to a
goal state while satisfying all constraints of a nonlinear system. Trajectory generation of

Master of Science Thesis Yangxiao Ou

ii

trucks is actually a kinodynamic planning problem. In this thesis, we would like to develop
an RRT algorithm to solve the path planning problem of a large truck for merging manoeuvres
on the highway. The basic RRT algorithm cannot solve the trajectory generation problem
alone, since the basic RRT algorithm only focuses on the propagation of the tree and does
not take the system’s dynamic into consideration. It should be incorporated with other algo-
rithms to solve the path planning problem.

The trajectory generated by the RRT algorithm cannot satisfy all constraints of the vehi-
cle system. To solve this problem, a dynamic model that includes non-linear tyre properties
with limits on longitudinal acceleration and steering angle, and with first order driveline and
steering dynamics is incorporated in the RRT algorithm. Some strategies are incorporated in
the RRT algorithm to improve the performance. The sample bias is introduced to the RRT
algorithm to reduce the number of the waste samples by increasing the sampling probability
of the nodes near to the goal region. The node selection method increases the choices of the
nodes for the tree and reduces the sampling times. This method works by solving the non-
linear system for multiple times before adding the resulted node to the tree. The combination
of criteria strategy uses different criteria to stop the algorithm when the goal is far away and
is close. This method improves the efficiency of the algorithm.

The RRT algorithm is developed for both online and offline implementation. The offline
RRT algorithm is developed and implemented over the open-loop system and the closed-loop
system. The simulation results show that a trajectory planned by the closed-loop RRT al-
gorithm shows less disturbance and is smoother than a trajectory planned by the open-loop
RRT algorithm. The real-time implementation is realised by updating the offline planning
algorithm over closed-loop system. The replanning algorithm with regard to the highway
situation is developed in this work.

Collision avoidance is incorporated with the RRT algorithm by applying the intersection
algorithm on the bounding volumes, since the intersection algorithm is a simple and quick
method to detect the collision. The surrounding traffic is modelled as a set of Axis-aligned
Bounding Boxes, and the truck is modelled as an Oriented Bounding Boxes in the configu-
ration space. The intersection algorithm is applied on these bounding volumes to check the
intersection of them.

This work has developed a real-time RRT algorithm for trajectory generation for trucks
for merging manoeuvres on the highway. We implement the RRT algorithm on both the
open-loop system and the closed-loop system, propose ideas to improve the algorithm, and
discuss the parameters that affect the algorithm in this work. It is a piece of work for the
application of the RRT algorithm on the planning problems for large vehicles.

Yangxiao Ou Master of Science Thesis

Table of Contents

Acknowledgements xi

1 Introduction 1
1-1 Problem Statement . 2
1-2 Thesis Contributions . 3
1-3 Overview of the Thesis . 4

2 Modelling 5
2-1 Coordinate Systems . 5
2-2 Modelling of Vehicle . 7

2-2-1 The Merging Manoeuvre . 7
2-2-2 The Truck Model . 8
2-2-3 Parameters of the Truck Model . 11

2-3 Modelling of Surrounding Obstacles . 13
2-4 Summary . 15

3 RRT Algorithm for Trajectory Generation 17
3-1 The Basic RRT Algorithm . 17
3-2 Kinodynamic Motion Planning . 20
3-3 Strategies for the RRT Algorithm . 21

3-3-1 Sampling Strategy . 21
3-3-2 Node Connection Strategy . 23
3-3-3 Algorithm Stop Strategy . 24

3-4 Offline Trajectory Generation . 25
3-4-1 Offline Planning over Open-Loop Dynamics 25
3-4-2 Offline Planning over Closed-Loop Dynamics 27

3-5 Real-Time Trajectory Generation . 29

Master of Science Thesis Yangxiao Ou

iv Table of Contents

3-6 Obstacle Avoidance . 31
3-6-1 Bounding Volumes . 32
3-6-2 Intersection Detection . 33
3-6-3 Collision Avoidance on the Highway . 34

3-7 Summary . 37

4 Controller Design 39
4-1 The Control Architecture . 39
4-2 Speed Controller . 40

4-2-1 PID Controller . 41
4-2-2 PID Controller Design Method . 41
4-2-3 PID Speed Controller Design . 42

4-3 Steering Controller . 45
4-3-1 Pure-Pursuit Control Theory . 45
4-3-2 Modified Pure-Pursuit Steering Controller 48
4-3-3 Steering Controller Design for the Truck 51

4-4 Summary . 55

5 Simulations and Results 57
5-1 Parameterisation of Bias . 59
5-2 Offline Implementation . 64

5-2-1 Offline Implementation over the Open-Loop System 64
5-2-2 Offline Implementation over the Closed-Loop System 65
5-2-3 Discussion . 68

5-3 Real-Time Implementation . 71
5-3-1 Real-Time Implementation in Different Scenarios 72
5-3-2 Discussion . 80

5-4 Summary . 83

6 Conclusions and Recommendations for Future Work 85
6-1 Discussions and Conclusions . 85
6-2 Recommended Future Work . 86

A Appendix 89
A-1 MATLAB Code . 89

A-1-1 Offline RRT Algorithm over Open-Loop System 89
A-1-2 Offline RRT Algorithm over Closed-Loop System 91
A-1-3 Online RRT Algorithm over Closed-Loop System 94
A-1-4 RRT Template . 96
A-1-5 Runga-Kutta Algorithm . 105
A-1-6 Vehicle Model . 105

A-2 SIMULINK Model . 106

Glossary 111
List of Acronyms . 111
List of Symbols . 111

Yangxiao Ou Master of Science Thesis

List of Figures

2-1 The body-fixed coordinates and forces affecting a vehicle. This figure is from [4] 6
2-2 The configuration of the highway entrance. This picture is adopted from Janson

(1998). 7
2-3 The geometric description of the merging manoeuvres. The yellow blocks are the

putative follower (PF) vehicle and the putative leader (PL) vehicle, respectively.
The blue block is the truck intended to merge into the highway. 8

2-4 The configuration of a truck. CoG of the centre of the gravity. L is the length of
the wheelbase, Lf is the distance front axle to CoG, Lr is the distance rear axle
to CoG, Fz1 is the front axle load, and Fz2 is the rear axle load. 8

2-5 The vehicle model with Ackerman steering. 9
2-6 The cornering stiffness and vertical load. This figure is adopted from [4] 11
2-7 Space-time representation of large truck preparing to merge into a lane. 13
2-8 The geometric description of a dynamic obstacle in the highway. The yellow block

is a dynamic obstacle, the blue block is the truck intended to merge into the
highway, and the grey blocks are the other dynamic obstacles on the highway. . 14

2-9 The geometric description of Staggered car-following behaviour on the highway.
The yellow block is the putative follower vehicle, the blue block is the truck intend-
ing to merge into the highway, and the orange block is the putative leader vehicle
in the target lane. 15

3-1 Construction of an RRT for X = [0, 100]× [0, 100], 4x = 1, and xinit = [50, 50],
from http://msl.cs.uiuc.edu/rrt/about.html 19

3-2 An example of building a roadmap between the start state and a given goal state.
The roadmap extends by sampling existing nodes and sampling the input vector u 20

3-3 An example of a finding trajectory. After the goal state is reached, the algorithm
will backtrack the roadmap to find the best trajectory 21

3-4 The Gaussian distribution. The values less than one standard deviation away from
the mean account for 68.27% of the set of the entire points in the configuration
space; while two standard deviations from the mean account for 95.45%; and three
standard deviations account for 99.73% . 22

Master of Science Thesis Yangxiao Ou

http://msl.cs.uiuc.edu/rrt/about.html

vi List of Figures

3-5 An example of the node selection in real-time planning. The yellow nodes are the
potential nodes to insert into the tree. The dotted line is the potential path. . . 23

3-6 The configuration of the planner with open-loop prediction system. Given a se-
quence of inputs signals u, and then collect the output x to the tree when x is in
the feasible space. 26

3-7 The configuration of the planner with a closed-loop system. Given a reference
command r, the controller will generate commands u to system. 28

3-8 The flow chart of the implementation of the real-time RRT algorithm 30
3-9 Different types of bounding boxes. 32
3-10 Modelling the truck as a sphere in a configuration space when checking the collision. 35
3-11 Modeling the truck as an OBB in a configuration space when checking the collision. 35
3-12 Modeling the truck as an AABB in a configuration space when checking the collision. 35
3-13 The tail space attached on the the rear of the vehicles, the black blocks are the

tail spaces. 36
3-14 The posture of the truck in the configuration space. The (Xc, Yc) is the coordinate

of the CoG in the inertial coordinate system, the θc is the heading angle when the
truck’s CoG located in (Xc, Yc). 37

4-1 The overview of the control system of the autonomous vehicle. 40
4-2 The flowchart of a speed controller . 40
4-3 The speed control loop . 43
4-4 The step response of the closed-loop system with parameters Kp = 1, Ki = 0 and

Kd = 0. 43
4-5 The responses comparison of the system with the PI controller and PID controller

with different value of Kd. The data is obtained with Kp = 19.33 and Ki = 72.5,
and Kd = 0.5, 1, 3, 5, 8. 44

4-6 The responses of the system with the PI controller. The values of Vref are 12 m/s,
15 m/s,18 m/s, 20 m/s, 25 m/s. Ki = 72.5, Kp = 19.33. 45

4-7 The steering control loop. 45
4-8 The strategy of the pure-pursuit algorithm. 46
4-9 The response of the controller with look-ahead distances Ld = 20 m, Ld = 30 m,

Ld = 40 m,Ld = 50 m, Ld = 60 m. At first time, the vehicle is not on the path,
and then tries to attain the ref path (the red dotted line). 47

4-10 The response of the controller with look-ahead distances Ld = 20 m, Ld = 30 m,
Ld = 40 m,Ld = 50 m, Ld = 60 m. At first time, the vehicle is on the path, and
then tries to maintain the ref path (the red dotted line). 48

4-11 The geometric expression of the modified pure-pursuit algorithm. All angles and
the lengths in this figure are positive by definition. 49

4-12 The straight reference path along the x-axis. 50
4-13 The performance of the steering controller with different values of Ld. 52
4-14 The performance of the controller with the modified pure-pursuit algorithm. The

look-ahead distances Ld is chosen as Ld = 30 m. The velocity V = 18 m/s. The
blue line is the reference curve, the red line is the tracking curve. 53

4-15 The performance of the controller with the modified pure-pursuit algorithm. The
look-ahead distances Ld is chosen as Ld = 30 m. The velocity V = 13 m/s. The
blue line is the reference curve, the red line is the tracking curve. 54

Yangxiao Ou Master of Science Thesis

List of Figures vii

5-1 The road in the configuration space. The width of each lane is 3.5 m and the total
length of the road is 450 m. The grey area is the infeasible area that the truck
cannot enter into, and the white area is the drivable area. 57

5-2 The merging scenario of a truck. The orange blocks represent the putative leader
vehicle and the putative follower vehicle. The dark blue block represents the truck.
The red stars represent the start point and the goal point. The red dotted block
is the goal region. 59

5-3 The configuration space used in this sections. The gaps between two vehicles are
100 m in the Lane 1, and are 150 m in the lane 2 in this surface. The dark blue
block represents the truck, the light blue blocks present the surrounding traffics. 60

5-4 The distribution of 500 points with different standard deviation σr and σθ, the
means µ of the Gaussian distributions are µ = 0. 62

5-5 The distribution with the parameters listed in Table 5-2. 500 samples have been
plotted in this figure. The goal point is (210, 6.25) 62

5-6 The generated path and its corresponding velocity, steering angle, orientation angle,
steering rate and acceleration. The step-size ∆T = 0.03 s. 65

5-7 The generated path and its corresponding velocity, steering angle, orientation angle,
steering rate and acceleration. The step-size ∆T = 0.05 s. 66

5-8 The generated trajectory. This trajectory is obtained with Vinit = 16.7m/s (ca.
60km/h). 67

5-9 The reference path (the red line in this figure) and the corresponding generated
path (the blue line in this figure). 67

5-10 The planned trajectory (the orange line) and the reconstructed trajectory (the
yellow line). 68

5-11 The generated trajectory. This trajectory is obtained with combined stop criteria. 69
5-12 The reference path (the red line), and the planned trajectory (the blue line). This

trajectory is obtained with combined stop criteria. 69
5-13 The merging scenario of a truck from the ramp to the highway in the real-time

implementation. The initial speed of the truck is 16.7 m/s (ca.60 km/h). The
speed of the vehicles in the target lane is 18.3 m/s. 71

5-14 The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s
(ca.66 km/h), ∆t = 0.05 s, gap = 100 m, a = 0 m/s2, and truck initial speed is
V = 16.7 m/s (ca. 60 km/h). 72

5-15 The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s
(ca.66 km/h), ∆t = 0.05 s, gap = 100 m, a = 0 m/s2, and truck initial speed is
V = 16.7 m/s (ca.60 km/h). 74

5-16 The planned path, reference paths and reconstructed path. This figure is obtained
by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), ∆t = 0.05 s, gap = 100
m, a = 0 m/s2, and truck initial speed is V = 16.7 m/s (ca.60 km/h). 74

5-17 The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle, respectively. This figure is
obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0 m/s2,
∆t = 0.05 s, gap = 100 m, and truck initial speed V = 16.7 m/s (ca.60 km/h). 75

5-18 The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s
(ca.66 km/h), ∆t = 0.05 s, gap = 50 m, a = 0, and truck initial speed is
V = 16.7 m/s (ca.60 km/h). 75

Master of Science Thesis Yangxiao Ou

viii List of Figures

5-19 The planned path, reconstructed path and the reference path. This figure is ob-
tained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0, ∆t = 0.05
s, gap = 50 m, and truck initial speed V = 16.7 m/s (ca.60 km/h). 76

5-20 The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle, respectively. This figure
is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0,
∆t = 0.05 s, gap = 50 m, and truck initial speed V = 16.7 m/s (ca.60 km/h). . 76

5-21 The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s
(ca.66 km/h), ∆t = 0.05 s, gap = 50 m, aPF = 0.5 m/s2, and truck initial speed
is V = 16.7 m/s (ca.60 km/h). 77

5-22 The planned path, reconstructed path and the reference path. This figure is ob-
tained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), aPF = 0.5 m/s2,
∆t = 0.05 s, gap = 50 m, and truck initial speed V = 16.7 m/s (ca.60 km/h). . 78

5-23 The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle, respectively. This figure
is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), aPF = 0.5
m/s2, ∆t = 0.05 s, gap = 50 m, and truck initial speed V = 16.7 m/s (ca.60
km/h). 78

5-24 The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s
(ca.66 km/h), ∆t = 0.05 s, gap = 50 m, aPL = −0.5 m/s2, and truck initial
speed is V = 16.7 m/s (ca.60 km/h). 79

5-25 The planned path, reconstructed path and the reference path. This figure is ob-
tained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), aPL = −0.5
m/s2, ∆t = 0.05 s, gap = 50 m, and truck initial speed V = 16.7 m/s (ca.60
km/h). 79

5-26 The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle, respectively. This figure is
obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), aPL = −0.5
m/s2, ∆t = 0.05 s, gap = 50 m, and truck initial speed V = 16.7 m/s (ca.60
km/h). 80

5-27 The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s
(ca.66 km/h), ∆t = 0.05 s, gap = 40 m, a = 0 m/s2, and truck initial speed is
V = 16.7 m/s (ca.60 km/h). 81

5-28 The planned path, reconstructed path and the reference path. This figure is ob-
tained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0 m/s2,
∆t = 0.05 s, gap = 40 m, and truck initial speed V = 16.7 m/s (ca.60 km/h). . 81

5-29 The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle in x-axis and y-axis, respec-
tively. This figure is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66
km/h), a = 0 m/s2, ∆t = 0.05 s, gap = 40 m, and truck initial speed V = 16.7
m/s (ca.60 km/h). 82

A-1 SIMULINK Model. 106

Yangxiao Ou Master of Science Thesis

List of Tables

2-1 The parameters of the truck. These values are adopted from [4]. 12

3-1 Timing of overlap testes for different bounding volumes. The AABB represents the
axis-aligned bounding box, and the OBB represents oriented bounding box. These
data are from [5]. 36

4-1 Ziegler-Nichols Method. 42
4-2 The effects of increasing one parameter Ki, Kp or Kd independently. This table

is adopted from [7] . 42
4-3 The minimum value of the look-ahead distance Ld with different velocities. . . . 52

5-1 Comparison the costs of the algorithm with bias and without bias. The costs are
described by the needed time to achieve the goal, and the nodes in the tree. The
tests are implemented with the same conditions. The planned paths for these five
scenarios consist of nearly the same number of nodes. 60

5-2 Parameters for the bias to the distributions used in comparison between the algo-
rithm with bias and without bias. 60

5-3 The comparison results of the costs with different value of r0. σθ = π
12 , σr = 3,

µr = 0 and µθ = 0. 61
5-4 The comparison results of the costs with different value of σθ and σr. The µr = 0

and µθ = 0. The symbol ’–’ means no nodes is generated. 63
5-5 Parameters for the bias to the distributions of merging maneuvers on the highway. 63
5-6 The computation time of the algorithm to find a feasible path with different time

step sizes. The generated nodes means the nodes in the tree, and the nodes of
path means the number of the nodes constructing the planned path. 65

5-7 Different scenarios used in the real-time implementation. 71
5-8 Results of different scenarios in this section. The state includes the coordinates of

the trucks CoG and the orientation angle in this table. 82

Master of Science Thesis Yangxiao Ou

x List of Tables

Yangxiao Ou Master of Science Thesis

Acknowledgements

First and foremost, I would like to thank my chair supervisor Prof. Dr. Ir. Bart De Schutter,
and my advisor Dr. Ir. Riender Happee, for the chance of this challenging project and their
suggestions on many professional problems, process management and academic writing.

Then I want to thank my daily supervisor Dr. Ir. Meng Wang for his assistance during
this thesis work. I received his guidance and support in regular meetings and discussions.
Thanks for his patience and encouragement. I have learned a lot from the meetings, the
discussions and the feedback.

In addition, I would also like to thank Jun Zhang for his help on implementation problems,
Barys Shyrokau for his valuable suggestions on vehicle modelling, Mukunda Bharatheesha
for his professional advices on the sample-based path planning problem, and my friends who
gave me direct or indirect input.

Finally, I am grateful to my parents for their selfless love and unconditional support through-
out all my studies here, and to my fiancé for his understanding and confidence in me.

Yangxiao Ou
Delft, Febuary 2016

Master of Science Thesis Yangxiao Ou

xii Acknowledgements

Yangxiao Ou Master of Science Thesis

‘If A is a success in life, then A equals X plus Y plus Z. Work is X; Y is play; and
Z is keeping your mouth shut.’
— Albert Einstein

Chapter 1

Introduction

Trucks are largely used in road transportation worldwide in recent decades, and make great
contributions to the GDP [1]. In addition, trucks have the potential to decrease the trans-
portation cost, to decrease traffic jams and to reduce the emissions (more freight per truck
and driver). Hence, they are widely used on highways [8]. However, in recent years the num-
ber of accidents involving trucks has increased [9]. The accidents involving trucks can lead
to a considerable economic cost [3]. Statistics show that a large number of truck-involved
accidents are related to the on-ramp merging manoeuvres on highways [2]. Besides, they also
show that on-ramp accidents occupy larger percentage than off-ramp accidents, and among
all the on-ramp accidents the merge accidents share the largest percentage. It is meaningful
to improve the safety of trucks on the ramps of highways in merging manoeuvres.

Nowadays automated vehicles have become the new power and hot spot of the growth of
the automobile industry. The development of automated vehicles largely prompts the growth
of vehicle active safety. A trajectory generator is one of the most important automated sectors
of the automated vehicle. The task of the trajectory generator is to plan a trajectory for the
vehicle. A good generator can select the right moment for the lane-changing manoeuvres by
identifying a suitable gap in the traffic at the target lane, and define the path and acceleration
profile.

There are three main approaches to solve the trajectory generation problem: the potential
method, the optimisation-based method and the sample-based method. Due to its limitation
of implementation in dynamic environment, the potential method is seldomly used for solving
the trajectory generation problem now. In recent years, the optimisation-based method and
sample-based method have received a lot of attention. The optimisation-based method can
solve the trajectory generation problem accurately, but it is too sensitive to modelling, and
brings much computational complexity in real-time implementation.

The sample-based method is based on a family of sample-based algorithms. The most in-
fluential sample-based algorithms for trajectory generation include Probabilistic Road Map
(PRM) and Rapidly-exploring Random Tree (RRT) [10]. These two algorithms have the same

Master of Science Thesis Yangxiao Ou

2 Introduction

idea of connecting nodes sampled randomly from the configuration space; however, they differ
in the method of constructing a graph to connect these nodes. The PRM algorithm [11] is a
multiple-query method that constructs a roadmap with a rich set of collision-free trajectories
first, and then connects the initial state with a final state in this roadmap by computing a
cost-efficient path. It is valuable in highly structured environments, but it does not work
well in most real-time planning problems due to computational challenges. For the online
motion planning problems, the RRT algorithm has obvious advantages [12], for instance, it
does not need to set the number of iterations in advance, and returns a solution as soon as
the desired trajectory is found, which enables real-time implementation. Furthermore, the
RRT algorithm does not require connecting two nodes exactly and can more easily deal with
differential constraints. Since it is a single-query method, which represents that every node
in the tree has only one parent node, the computational efforts of RRT are relatively low.
Hence the RRT algorithm are widely used in the motion planning for robotic vehicles.

In the past, most research has been focused on using sampled-based algorithms to plan tra-
jectories for small-sized robotic cars with low speed. In this work, we would like to develop
the RRT algorithm for trajectory generation for trucks for merging manoeuvres at ramps on
the highway.

1-1 Problem Statement

Truck-involved accidents lead to a large economic cost. Statistics shows that a large number
of truck-involved accidents are related to the ramp in merging manoeuvres on the highway,
and among all the ramp-related accidents the merge accidents share the largest percentage.
To prevent the accidents involving trucks for merging manoeuvres, we would like to develop
an algorithm to generate a feasible and collision-free trajectory for trucks to complete merging
manoeuvres on the highway.

The goal of trajectory generation for vehicles is to find a feasible path with corresponding
velocity from the initial state to a final state with consideration of a set of linear/non-linear
constraints. A trajectory differs from a path. The path represents a sequence of positions
defined in a configuration space, whereas a trajectory equals a path plus the velocity along
it. Arguably, the motion planning problem for a vehicle is equal to solve the optimisation
problem:

min
u

∫ tf

0
Φ(x(t), u(t))dt

subject to non-linear system:

ẋ = f(x(t), u(t)), x(0) = x0, x(tf) = xtf

where x(t) ∈ R is the state, x0 ∈ R is the initial state at time t = 0, and u(t) ∈ U is the input
vector, subject to constraints:

u(t) ∈ U, x(t) ∈ Xfree(t), t ∈ [t0, tf]

Yangxiao Ou Master of Science Thesis

1-2 Thesis Contributions 3

where tf is limited in the range [0,∞), and Xfree represents the collision-free space. For
offline planning, it is time-independent, whereas for online planning, Xfree changes with time.

The research goal of this thesis is to develop a real-time algorithm for trajectory genera-
tion for trucks in merging manoeuvres on the highway. Previous work has shown promising
results for path planning for car-like robots using RRT algorithm in the low speed condition.
In this work, we would like to develop the RRT algorithm for the path planning in high speed
scenarios. The RRT algorithm cannot solve the trajectory generation problem individually.
It needs to combine with other methods to plan a satisfactory trajectory. The RRT algorithm
has its own drawbacks that may lead the algorithm failing to work or performing badly. In
this thesis, we would like to improve the performance of the RRT algorithm in the trajectory
generation as well.

The main research problems are: modelling the truck, road and surrounding traffic; develop
offline and online algorithms for generating trajectories of the truck; develop a collision de-
tection algorithm incorporated in the trajectory generation algorithm; and develop a control
method for the truck.

1-2 Thesis Contributions

The Rapidly-exploring Random Tree algorithm (RRT) is mainly applied on small car-like
robots in the low speed situation. The work in this thesis implements an existing state-of-art
RRT algorithm to a large size car-like robot like the truck in the highway situation. A trajec-
tory generator is shown to be able to generate collision-free trajectory for a controlled model
of the truck in merging manoeuvres on the ramps of the highways.

The discussion of the parameters that influence the results of the RRT algorithm provides
good guidances of the future development and implementation of RRT algorithm in trajec-
tory generation. Moreover, the strategies for the application of the RRT algorithm and the
development of the combined stop criteria for the RRT algorithm give directions to improve
the algorithm’s performance in trajectory generation in typical manoeuvres.

The intersection algorithm has been incorporated in the RRT algorithm in this work for
collision avoidance is incorporated by employing the bounding volumes. The proposal of the
extra tail for vehicles when detecting the collision provides a way to reduce the potential
accidents caused by the inertia of vehicles.

The offline implementation shows different performances of the RRT algorithm over open-
loop system and closed-loop system in trajectory generation for merging manoeuvres, and
provides an evidence that the closed-loop RRT algorithm has advantages over the open-loop
RRT algorithm in trajectory generation. The real-time implementation enables future related
research on the same type in MATLAB/SIMULINK environment, and presents the replan-
ning algorithm for merging manoeuvres in the highway situation.

Master of Science Thesis Yangxiao Ou

4 Introduction

This work presents a proof-of-concept for the application for the closed-loop RRT algorithm
of merging manoeuvres for trucks on the highways.

1-3 Overview of the Thesis

In Chapter 2 modelling of the vehicle, road and surrounding traffic is introduced. The merg-
ing manoeuvres are illustrated at the beginning of this chapter. In the middle, a dynamic
model including non-linear tyre properties with limits on longitudinal acceleration and steer-
ing angle, and with first order driveline and steering dynamics is presented. The parameters
of a truck are determined. At last, the surrounding traffic is modelled.

Chapter 3 focuses on the solution of the trajectory generation problem. It is the main contain
of the thesis. It gives a simple view of the basic RRT algorithm, and proposes some useful
strategies for the application of the RRT algorithm in path planning. It presents the offline
RRT algorithm over the open-loop system and over the closed-loop system. After this, the
online replanning algorithm for merging manoeuvres is developed. The collision avoidance
method is also introduced in this chapter.

The topics of Chapter 4 are the controllers that are used in the motion planning problem.
Two control algorithms are introduced. In this chapter, a PID controller is designed to control
the speed, and a pure-pursuit controller is designed to control the steering of the vehicle.

Chapter 5 focuses on the results of the offline and online RRT algorithm implementations
in merging manoeuvres. Both the open-loop system and closed-loop system are used in the
offline trajectory generation, and a comparison of the results is made. The real-time trajec-
tory generation is applied in different scenarios, and the results obtained by two different stop
criteria are compared.

Finally, in Chapter 6 the conclusions and contributions of the thesis are summarised, and
recommendations for future work are listed.

Yangxiao Ou Master of Science Thesis

Chapter 2

Modelling

In classical mechanics, the parameters that define the configuration of a system are the gen-
eralised coordinates, and the vector space defined by these coordinates is the configuration
space of the physical system [13]. The RRT algorithm works in a configuration space; there-
fore, all the information in the real world needs to be modelled into the configuration space.

In this chapter, we would like to model the information of the vehicle and surrounding ob-
stacles into the configuration space. Before introducing the modelling of the vehicle and the
obstacles, we would like to introduce the coordinate system first. The knowledge of the co-
ordinate system can help us to analyse the problem well. Then a vehicle model is illustrated
in this chapter. At the end of this chapter, the surrounding obstacles are modelled in the
configuration space.

2-1 Coordinate Systems

In trajectory generation problems of a ground vehicle, the inertial coordinate system and
the body-fixed coordinate system are intensively used in planning and analysis. The inertial
coordinate system is used to describe the location of vehicles in a plane. The axes X, Y and
Z are considered to be neither accelerating nor rotating, and thus there is an inertial frame
in which Newton’s laws are easily written. The location of a vehicle can be presented in an
inertial system by the coordinate (X,Y, Z) of its mass centre point.

It seems reasonable to use an inertial coordinate system to describe the dynamics of a vehicle,
but in fact, a moving coordinate system attached to the vehicle itself is more preferred by
analysers. The body-fixed coordinate system and the major forces affecting a vehicle are
shown in Figure 2-1. In this body-fixed coordinate system, the forward motion of a vehicle is
described in the positive x− axis, the lateral motion is represented in the positive y − axis,
and the vertical motion is described by z − axis whose direction is determined by the right-
handed rule. In addition, the rotation of a vehicle is also considered in this coordinate system.

Master of Science Thesis Yangxiao Ou

6 Modelling

The yaw rotation is around the z − axis, the pitch rotation is around the y − axis, and the
roll rotation is around the x− axis.

Figure 2-1: The body-fixed coordinates and forces affecting a vehicle. This figure is from [4]

The body-fixed coordinate system of a vehicle can be transferred into the inertial coordinate
system by using the rotation matrix. When the vehicle only rotates in the body-fixed coor-
dinate system SB, with a yaw angle ψ, around the z − axis of the inertial coordinate system
SI , the rotation matrix RI,z is:

RI,z =

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 (2-1)

In addition, when the vehicle body rotates with an angle in the body-fixed coordinate system
SB, with a roll angle γ, around the x−axis of the inertial coordinate system SI , the rotation
matrix RI,x is:

RI,x =

1 0 0
0 cos(γ) −sin(γ)
0 sin(γ) cos(γ)

 (2-2)

Finally, when the vehicle body rotates with an angle in the body-fixed coordinate system SB,
with a pitch angle ζ, around the y − axis of the inertial coordinate system SI , the rotation
matrix RI,y is:

RI,y =

 cos(ζ) 0 sin(ζ)
0 1 0

−sin(ζ) 0 cos(ζ)

 (2-3)

In this section, we are focused on the coordinate systems. There are two different coordinate
systems used in vehicle path planning analysis: the inertial coordinate system, and the body-
fixed coordinate system. The body-fixed coordinate system can be transferred to the inertial

Yangxiao Ou Master of Science Thesis

2-2 Modelling of Vehicle 7

coordinate system by using the rotation matrix. In this project, we define the configuration
space in the X−Y plane of the inertial coordinate system. In the next section, we would like
to model the truck in the inertial coordinate system.

2-2 Modelling of Vehicle

The previous section has introduced the information about the coordinate systems. In this
section, we would like to address the modelling problem of the truck in the coordinate systems.
Before introducing the model used in the planner, we describe the merging manoeuvres firstly.
In the middle, a truck model for solving the dynamics of the truck is depicted. At the end of
this section, the parameters of the truck model are listed.

2-2-1 The Merging Manoeuvre

Before modelling the vehicle in the configuration space, we would like to present the merging
manoeuvres of the truck first.

The configuration of a double-lane highway entrance is represented in Figure 2-2. It con-
tains three sections: the area of the upstream, the ramp connection area, and the area of the
downstream. The length of the area of the upstream is about 0.25 miles (c.a. 402 m). The
length of the ramp connection area is about 0.219 miles (c.a. 352 m) in average. The length
of the area of the downstream is about 0.15 miles (c.a. 240 m). The width of each lane is 3.5
m. We assume that the sensors can detect the road information in a range of 180 m. This is,
the truck can detect all the traffic information in the ramp connection area.

Figure 2-2: The configuration of the highway entrance. This picture is adopted from Janson
(1998).

The merging manoeuvres can be described as follows (see Figure 2-3). The truck intends to
enter the highway from the ramp through the acceleration lane to the target lane (Lane 1 in
the Figure 2-2). It finds an acceptable gap at first, and then steers to merge into this gap. In
order to avoid the unexpected collisions and to complete the lane-changing manoeuvres, the
truck needs to accelerate to achieve a similar velocity with the putative leader (PL) vehicle
and/or the putative follower (PF) vehicle at the same time. After entering the highway, the
truck will follow the leader vehicle in the same lane.

Master of Science Thesis Yangxiao Ou

8 Modelling

Figure 2-3: The geometric description of the merging manoeuvres. The yellow blocks are the
putative follower (PF) vehicle and the putative leader (PL) vehicle, respectively. The blue block
is the truck intended to merge into the highway.

2-2-2 The Truck Model

After introducing the merging manoeuvres, we represent the truck model that will be used
in the motion planner. The truck, as the Figure 2-4 show, is a motor vehicle designed to
transport the cargo. Trucks vary greatly in size, power, and configuration, with the smallest
being mechanically similar to an automobile. Medium trucks are usually defined as weighting
between 6000 kg and 15000 kg. Due to their large size and inertia, they show slow behaviour
when merging into the highway.

Figure 2-4: The configuration of a truck. CoG of the centre of the gravity. L is the length of
the wheelbase, Lf is the distance front axle to CoG, Lr is the distance rear axle to CoG, Fz1 is
the front axle load, and Fz2 is the rear axle load.

To simplify the problem, we assume that the truck moves in a 2-dimensional plane, and the
influence of the roll and pitch can be ignored. That is, we only consider the movement of
the truck in the X − Y plane. Hence, the truck configuration space can be described by the
global position and orientation variables, denoted as (X,Y, θ). Besides, we regard the truck
as a rigid body, as well as the tires. Based on these assumptions, the popular Ackerman (or
bicycle) model depicted in Figure 2-5 can be employed to approximate the vehicle motion.
The Ackerman model assumes that the two front wheels turn slightly differentially. Thus, the

Yangxiao Ou Master of Science Thesis

2-2 Modelling of Vehicle 9

instantaneous rotation centre can be purely computed by kinematic means.

Figure 2-5: The vehicle model with Ackerman steering.

Let κ denote the instantaneous curvature of the trajectory, and we can obtain Equation 2-4:

κ = 1
R

= 2tan(δ)
L

= dθ

ds
(2-4)

where R is the radius of curvature, L the wheelbase, δ is the steering angle, s is the path
length, and θ is the vehicle orientation in an inertia frame. The dynamics of θ can be obtained
by Equation 2-5:

θ̇ = dθ

dt
= dθ

ds

ds

dt
= κV = 2V

L
tan(δ) (2-5)

where V is the velocity of the vehicle’s CoG. The dynamics of X and Y are depicted in
Equation 2-6 and Equation 2-7:

Ẋ = dX

dt
= V cos(θ) (2-6)

Ẏ = dY

dt
= V sin(θ) (2-7)

Taking the dynamics of the velocity V and the steering angle δ into consideration, we can get
the kinematic model as depicted in Equation 2-8:

Ẋ = V cos(θ)
Ẏ = V sin(θ)

θ̇ = 2V
L
tan(δ)

V̇ = a

δ̇ = r

(2-8)

Master of Science Thesis Yangxiao Ou

10 Modelling

where a is the acceleration and r is the yaw rate.

The kinematic model is frequently used in solving path-planning problems. It is easy to
understand, and is able to capture the location information of the vehicle in a configuration
space. In addition, solving this kind of model needs low computational costs due to its sim-
plification. In the real-time planning problem, a lower computational burden means more
efforts to optimise the planned path, hence a better trajectory can be found.

However, this kinematic model does not take the skid of the vehicle into consideration. It is
restrictive and does not allow considering neither skidding when turning at high speed nor the
slip angle. Hence, when use this kind of model in a planner, it means lots of approximations.
A path planned with this kind of model needs corrections to guarantee the safety. In order to
capture the effect of the side slip, we can introduce a term Gss described in the Equation 2-9
into the yaw rate θ̇ in Equation 2-8 [14]:

Gss = 1
1 + (V

Vchar
)

(2-9)

The term Gss is a static gain of the yaw rate θ̇, and is determined by the characteristic ve-
locity Vchar [15]. The characteristic velocity can be calculated by Equation 2-10:

Vchar =

√
57.3Lg

K
(2-10)

where L is the length of wheelbase, g is the gravity acceleration, and K is the understeer
gradient.

The understeer gradient is a measure of how the steering needed for a steady turn changes as a
function of lateral acceleration. It is one of the main measures for characterising steady-state
cornering behaviour. The value of K is related to the cornering stiffness and the load of each
tire. The value of the K can be calculated by Equation 2-11:

K =
Fzf
Cαf

− Fzr
Cαr

(2-11)

where Fz is the load on the tire and Cαf is the cornering stiffness.

There exists a response delay for the actuators, and this delay cannot be ignored, especially
for a truck. The model in Equation 2-8 does not take the time delay into consideration. In
this work, we choose a first-order lag term 1

Ts+1 with time constant T in Laplace domain to
model the delay of the actuators. We denote the input of the actuator as uc and the output
of the actuator as u. The dynamics of the actuator can be described by Equation 2-12 in
Laplace domain and by Equation 2-13 in time domain. The parameters of the truck model
will be addressed in the next subsection.

u = 1
Ts+ 1uc (2-12)

u̇ = 1
T

(uc − u) (2-13)

Yangxiao Ou Master of Science Thesis

2-2 Modelling of Vehicle 11

2-2-3 Parameters of the Truck Model

A fully loaded truck has longitudinal acceleration capabilities that are in the range of [−g, 0.1g].
Considering that active rollover mitigation systems kick in at about 0.4g, the bound is sug-
gested conservatively in the region of [2.5 m/s2, 3 m/s2]. Considering safety and comfort, in
this case we choose a tight bound, [-2.5 m/s2,1.5 m/s2], for the acceleration. The steering
actuation bound applies to the wheel angle δ and the wheel angular rate dδ

dt . Steering com-
pliance limits the angle to approximately 1 rad; on highway driving situation these values
are typically much lower. In high-speed scenarios, the maximum steering angles would cause
rollover, or understeer in case of a low friction road surface. Therefore, the road wheel angle
is limited to 0.3 rad. The angular rate of the steering wheel angle, that is limited by the
steering wheel actuator, is limited to 0.1 rad/s (c.a. 2.22 m/s2 with regard to common speed
of 80 km/h). As for a truck, we can choose Ts = 1.5 s and Ta = 1.2 s as the delay of the
steering actuator and acceleration actuator, respectively [16].

In order to compute the characteristic velocity, we need the parameters of the truck. The
parameters of the truck used in this thesis are listed in Table 2-1. According to Equation 2-
11, we can obtain the value of the understeer gradient based on Table 2-1. The understeer
gradient is related to the cornering stiffness. Figure 2-6 shows the cornering stiffness with
respect to different loads. Based on Figure 2-6, we can determine the values of Cαf and Cαr
with Cαf = 79.1 N/rad and Cαr = 66.0 N/rad. Then we can compute understeer gradient
K, and get the value of K is equal to K = 5.4. We choose g = 9.8 m/s2, and then we can
calculate the characteristic velocity Vchar based on Equation 2-10. The value of the charac-
teristic velocity is Vchar = 22.8 m/s.

Figure 2-6: The cornering stiffness and vertical load. This figure is adopted from [4]

To summarise, the resulting vehicle model is represented in Equation 2-14, where (X,Y) is
the coordinates in the inertia frame, θ is the orientation angle of the vehicle, V is the velocity

Master of Science Thesis Yangxiao Ou

12 Modelling

Symbol Description Unit Value
L length of wheelbase m 5
Fz1 front axle load N 51659
Fz2 rear axle load N 22524
Lf distance front axle m 2.5
Lr distance rear axle m 2.5
W width m 2.5

Table 2-1: The parameters of the truck. These values are adopted from [4].

of the vehicle, L is the length of the wheelbase, a is the acceleration generated by the actuator
to the motor, ac is the acceleration sent to the actuator, δ is the steering angle generated
by the steering actuator to the wheel, δc is the steering angle sent to the steering actuator.
Actually, ac and δc are the acceleration and steering angle generated by sampling the in-
put space when the algorithm is implemented over the open-loop vehicle system. Moreover,
the controllers generate them when the algorithm is applied on the closed-loop vehicle system.

Ẋ = V cos(θ)
Ẏ = V sin(θ)

θ̇ = 2V
L
tan(δ)Gss

V̇ = a

δ̇ = 1
Ts

(δc − δ)

ȧ = 1
Ta

(ac − a)

Gss = 1
(1 + V

Vchar
)

Ta = 1.2 s
Ts = 1.5 s

Vchar = 22.8 m/s
−2.5 m/s2 ≤ a ≤ 1.5 m/s2

−0.3 rad ≤ δ ≤ 0.3 rad
−0.1 rad/s ≤ δ̇ ≤ 0.1 rad/s

(2-14)

The truck model depicted in Equation 2-14 will be used in the motion planner. During the
merging manoeuvres, we need to consider both the truck and the vehicles around the truck
on the highway. We have already modelled the truck in this section. In the next section, we
would like to address the modelling problem of the surrounding vehicles.

Yangxiao Ou Master of Science Thesis

2-3 Modelling of Surrounding Obstacles 13

2-3 Modelling of Surrounding Obstacles

The truck moves on the highway surrounded by some other vehicles. In order to implement
a collision-free trajectory generation algorithm to the large truck with surrounding traffic,
obstacles need to be modelled in the configuration space firstly. A clear distinction is made
between a static obstacle and a dynamic obstacle, but a dynamic obstacle can be regarded as
a special static obstacle in space-time. This is illustrated in Figure 2-7.

Figure 2-7: Space-time representation of large truck preparing to merge into a lane.

In merging manoeuvres, the static obstacles are road lines and road boundaries, whereas the
dynamic obstacles are the surrounding vehicles. Each obstacle has three states:

1. Position on the geometric road map: Pi(t)

2. Velocity with regard to this geometric road map: Ṗi(t),

3. Information of the lane in which the vehicle is located: Lanei

The states of static obstacles do not change with time. They will be marked as unfeasible
area in the configuration space. The size of each static obstacle in the configuration space
is decided by the largest contour area of the obstacle in the X − Y plane. The states of the
dynamic obstacles change with time. The dynamic obstacles in the merging manoeuvres are
mainly the surrounding traffic. The behaviour of the surrounding vehicles can be parame-
terised by available human car-following models, lane-changing models and decision-making
models. In this project, to simplify the problems, these models are not used to make predic-
tions.

The dynamic obstacles on the highways are the moving vehicles in the lanes. The behaviour
of obstacles moving on the highway is not as complex as behaviour of obstacles moving in the
urban conditions. The main challenge is the speeds of these obstacles moving on the highway
are much faster than the speeds of the obstacles moving in the urban conditions.

The onboard sensors collect the information of the dynamic obstacles. The sensor system
generates a real-time map according to the information given by these sensors. We are given

Master of Science Thesis Yangxiao Ou

14 Modelling

a list of dynamic obstacles by the real-time map, where each obstacle has a shape, a path
and a velocity in the configuration space. Based on the location information of the moving
obstacles in the configuration space at a specific time step, we can plan a feasible trajectory
for the truck during this time step. In a configuration space, the states of the moving obsta-
cles can be described by:

xob = [X,Y, θ, V,Ga, Gf , N]T

where (X,Y, θ) is the coordinates and the orientation angle in the inertial frame, V is the
speed, Ga is the distance to the ahead obstacle, Gf is the distance to the follower obstacle,
and the N is the information of the lane where the obstacle is located in.

Figure 2-8: The geometric description of a dynamic obstacle in the highway. The yellow block
is a dynamic obstacle, the blue block is the truck intended to merge into the highway, and the
grey blocks are the other dynamic obstacles on the highway.

In a dynamic environment, the states of the moving obstacles are updated at every time step
∆t. The states of these moving obstacles at time (t+ ∆t) can be represented by the states of
them at time t in Equation 2-15, where f is dynamic function that is related to the speeds
of the obstacles. In this work, the function f is the motion equations of the obstacles in the
configuration space.

xob(t+ ∆t) = xob(t) + f(V (t),∆t) (2-15)

To simplify the modelling problem of the moving obstacles, we assume that when the truck
starts to merge into the highway, no other vehicle intends to merge into the chosen gap. That
means that we do not need to consider the effects of Y , θ, and N , since no lane-changing
manoeuvre occurs between the putative leader vehicle (PL) and putative follower vehicle (PF)
when the truck changes the lane. After the gap is chosen, the PL vehicle and PF vehicle are
determined. Then we consider the relative distance between the PL vehicle and PF vehicle
instead of Ga and Gf . The states of the obstacles can be described by Equation 2-16 in the
configuration space at time t+∆t. We do not denote the distance between the PL vehicle and
PF vehicle here, because when the dynamics of the PL vehicle and PF vehicle are determined,
the relative distance between them are also determined.

Yangxiao Ou Master of Science Thesis

2-4 Summary 15


X(t+ ∆t)
Y (t+ ∆t)
θ(t+ ∆t)
V (t+ ∆t)

 =


X(t)
Y (t)
θ(t)
V (t)

 +


1
2a∆t2 + V (t)∆t

0
0
a∆t

 (2-16)

Figure 2-9: The geometric description of Staggered car-following behaviour on the highway. The
yellow block is the putative follower vehicle, the blue block is the truck intending to merge into
the highway, and the orange block is the putative leader vehicle in the target lane.

2-4 Summary

This chapter is mainly focused on the modelling problem in this project. We mainly discuss
the modelling of the truck and the modelling of the obstacles in the traffic. In the first part,
we represent the modelling of the truck. In the second part, we show the modelling of the
obstacles.

The modelling of the truck plays a significant role of the motion-planning problem. In this
project, we use a dynamic model including non-linear tyre properties with limits on longitu-
dinal acceleration and steering angle, and with first order driveline and steering dynamics.
Most of the kinematic models do not take the skid of the vehicle into consideration. They
are restrictive and do not allow considering neither skidding when turning at high speed nor
slip angle. Compared with kinematic models, the dynamic model has more complexity, and
is hard to solve. To reduce the effects of the skid, we introduce a term Gss [14]. The term
Gss is a static gain of the yaw rate θ̇, and is determined by the characteristic velocity Vchar
[15]. This term can reduce the influence caused by the skid and slip. Besides, we introduce a
first-order lag term to model the delay caused by the actuators.

The obstacles in the highway can be classified into the static obstacles and dynamic ob-
stacles. The states of the static obstacles do not change with time. We model the static
obstacles in the configuration space by using the largest projected area of them in the X −Y
plane. In contrast to the static obstacles, the states of the dynamic obstacles change with
time. To simplify the problem, we assume that no other lane-changing manoeuvres occur
when the PL vehicle and PF vehicle are chosen. The dynamics of PL vehicle and PF vehicle
can be described by their accelerations and speeds.

Master of Science Thesis Yangxiao Ou

16 Modelling

The truck model is used in the algorithm to ensure that the planned trajectory satisfies
all the constraints of the truck. The obstacles model is mainly used in the obstacle avoidance
algorithm. In the next chapter, we would like to introduce the main algorithms to solve the
trajectory generation problem of the truck for merging manoeuvres on the highway.

Yangxiao Ou Master of Science Thesis

Chapter 3

RRT Algorithm for Trajectory
Generation

The previous chapter has shown that the truck model is a highly non-linear system with a
set of linear and nonlinear constraints. The trajectory generated by the basic RRT algorithm
cannot satisfy all the constraints of the truck. Actually, the trajectory generation problem of
the truck belongs to the type of kinodynamic motion-planning problems whose general goal is
to find a motion that goes from a start state to a goal state while satisfying all constraints of
a nonlinear system. The RRT algorithm is one of the methods for the kinodynamic motion-
planning problem. However, it cannot work well for this problem without corporation with
other algorithms. In this chapter, we extend the RRT algorithm to cope with the trajectory
generation problem of the truck.

3-1 The Basic RRT Algorithm

The Rapidly-exploring Random Tree (RRT) algorithm is an algorithm designed to efficiently
search non-convex, high-dimensional spaces by randomly building a space-filling tree [17].
The tree is constructed incrementally from samples drawn randomly from the search space
and is inherently biased to grow towards large unsearched areas of the problem. Steven M.
LaValle and James J. Kuffner Jr developed the RRT algorithm. The RRT algorithm handles
problems easily with obstacles and differential constraints, and has been widely used in au-
tonomous robotic path planning [17].

The basic RRT algorithm does not take the dynamics of the mechanical system into con-
sideration. It spreads with a tree structure originating from initial state to a goal state in a
configuration space X. The basic RRT algorithm first samples a node from the configuration
space, and then the basic RRT algorithm finds a nearest node from the new sampled node in
the tree; after this, the nearest node is driven to the new sampled node within a maximum

Master of Science Thesis Yangxiao Ou

18 RRT Algorithm for Trajectory Generation

step length; at last, the collision-test function checks for any collisions between the new node
and the infeasible space. If the new node lies in the collision-free space, it will be inserted
into the tree. Every node in the tree has only one parent node. After reaching the maximum
iteration number, it tracks back from a goal state to the initial state by calculating the lowest
cost. The basic RRT algorithm includes five primitive procedures [10]:

Sampling: The samples are considered to be drawn from a uniform distribution, even though
results extend naturally to any absolutely continuous distribution with density bounded away
from zero on the configuration space X.

Nearest Neighbor: The graph Tree = (V,E) is known and V ⊂ X. Given a point x ∈ X,
the function Nearest : (Tree, x) 7→ v ∈ V returns the vertex in V which is closest to the point
x according to a given distance function. The Euclidean distance is a frequently used method
for determining the distance function.

Near Vertices: Assume a positive number r ∈ R > 0, the function Near:(Tree, x, r) 7→
V ′ ⊆ V returns the vertices in V which are contained in a ball of radius centered at point x.

Steering: Assume two points x1, x2 ∈ X, the function Steer : (x1, x2) 7→ z a point z ∈ X
such that z is closer to x2 than x1.

Collision Test: Assume two points x1, x2 ∈ X, the collision-detection function returns
True if the line segment between x1 and x2 lies in the feasible space and False otherwise.

Considering a square configuration space, the frames in Figure 3-1 show the spreading of
a RRT algorithm. The Basic RRT algorithm is represented by Algorithm 1. It takes the ini-
tial state as the root node of the spreading tree. Then randomly sample a node xrand in the
configuration space. The Nearest(Tree, xrand) function tries to find the node xnearest that
is closest to the random node xrand in the tree. The Steer(xnearest, xrand) function connects
the the xnearest and xrand directly and marks xrand as xnew, if the distance between these two
nodes is smaller than a given distance rd. Otherwise, a new state at the maximum distance
from the tree along the line to the random sample is used instead of the random sample itself.
The Insert(xnew) function inserts the new node xnew into the tree if xnew is a collision-free
node. The algorithm stops if the maximum number of iterations is reached.

The RRT algorithm is a flexible method to solve the trajectory generation problem. The
incremental nature of the algorithms lends itself easily to real-time, online implementation,
while retaining probabilistic completeness guarantees [18]. The probabilistic completeness
[19] is a weaker notion of completeness. A system is probabilistic completeness if the proba-
bility of returning a correct answer goes to 1 while the running time grows. Besides, the RRT
algorithm is applicable to very general dynamical models. Additionally, the RRT algorithm
does not require the explicit enumeration of constraints, but allow trajectory-wise checking
of possibly very complex constraints.

However, there are some drawbacks for the RRT algorithm for the autonomous road ve-
hicle motion-planning problems. The literature survey has pointed out the drawbacks: 1.
RRT algorithm can easily get trapped when the tree spreads incorrectly. 2. One of the

Yangxiao Ou Master of Science Thesis

3-1 The Basic RRT Algorithm 19

Figure 3-1: Construction of an RRT for X = [0, 100] × [0, 100], 4x = 1, and xinit = [50, 50],
from http://msl.cs.uiuc.edu/rrt/about.html

Algorithm 1 <Basic RRT >
Input: Initial configuration state xinit, maximum number of iterations n, sampling space
ω
Output: RRT graph T
T.init(xinit)
for i=1,...,n do
xrand ← Samplei(ω)
xnearest ← Nearest(T, xrand)
xnew ← Steer(xnearest, xrand)
if Collisiontest(xnearest, xnew) = TRUE then
T (xi)← Insert(xnew)

end if
end for
return T

Master of Science Thesis Yangxiao Ou

http://msl.cs.uiuc.edu/rrt/about.html

20 RRT Algorithm for Trajectory Generation

stop conditions of such algorithms is often that the tree enters a certain goal region. There
will be a risk, if the vehicle cannot reach the desired goal state. 3. The efficiency of RRT
algorithm depends mainly on whether the sampling domain well adapts to the problem or not.

3-2 Kinodynamic Motion Planning

The general kinodynamic planning problem is to find a motion that goes from a start state to
a goal state while satisfying all constraints of a nonlinear system. The kinodynamic planning
problem usually combines a motion subject to simultaneous kinematic constraints, such as
dynamics constraints, avoiding obstacles, and bounds on velocity, acceleration and force. Its
solution is a mapping from time to generalised forces or accelerations. The resulting motion
is governed by a dynamics equation [17].

The main procedures to build the roadmap (tree) with regard to kinodynamic path plan-
ning problem are:

1. Randomly choose an existing node

2. Randomly select the input vector u to the prediction system

3. Select integration time interval 4T ∈ [0, tmax]

4. Integrate equations of motion from an existing node with respect to u for time t

5. Check collision

(a) If no collision occurs, store the control input with the new edge and add the new
node to the roadmap

(b) If collision occurs, ignore this node and repeat the former procedures

Figure 3-2: An example of building a roadmap between the start state and a given goal state.
The roadmap extends by sampling existing nodes and sampling the input vector u

Yangxiao Ou Master of Science Thesis

3-3 Strategies for the RRT Algorithm 21

Figure 3-3: An example of a finding trajectory. After the goal state is reached, the algorithm
will backtrack the roadmap to find the best trajectory

The basic RRT algorithm can find a path quickly; however, it may fail to work for kinodynamic
motion planning that is a set of problems for which velocity, acceleration, and force/torque
bounds must be satisfied, together with kinematic constraints such as avoiding obstacles [20].
Most of the systems with nonholonomic or holonomic constraints cannot follow the trajec-
tory generated by the basic RRT algorithm. For solving this problem, a kinodynamic RRT
algorithm is proposed to plan a trajectory for nonlinear systems with constraints.

The kinodynamic RRT algorithm differs from the basic RRT algorithm in several ways. The
largest difference between the basic RRT algorithm and the kinodynamic RRT algorithm is
whether the algorithm takes the system dynamics into consideration. The kinodynamic RRT
algorithm considers the system dynamics when planning the motion, whereas the basic RRT
algorithm only focuses on the spread of the tree.

3-3 Strategies for the RRT Algorithm

The RRT algorithm is a flexible and fast method for solving the trajectory generation prob-
lem. However, it has some disadvantages that impose negative effects on solving the motion-
planning problem. The previous section has shown that the RRT algorithm has some draw-
backs to solve the trajectory generation. In this section, we propose some useful strategies to
improve the performance of the RRT algorithm.

3-3-1 Sampling Strategy

The RRT algorithm does not work efficiency for all the situations. When the configuration
space contains a large quantity of points, the algorithm spends a lot of effort for the algorithm
to achieve the goal. As the literature study mentioned, the RRT algorithm has the advantages
of searching all the points of the configuration space in the same probability, and back track-
ing the nodes in the tree from a goal state to the start state quickly. However, in a structured

Master of Science Thesis Yangxiao Ou

22 RRT Algorithm for Trajectory Generation

environment, a large number of samples are wasted due to the numerous constraints. To im-
prove the efficiency, a bias can be added when sampling new points in the configuration space.

In the path-planning problem, we always want the tree to converge to the goal region as
soon as possible. To address this, we can improve the sample probability of the nodes around
the goal point by using the Gaussian distribution. In probability theory, the Gaussian distri-
bution is a very common continuous probability distribution. The probability density of the
Gaussian distribution is illustrated in Equation 3-1, where µ is the mean or expectation of
the distribution, and the σ is its standard deviation with its variance σ2.

f(x|µ, σ2) = 1
σ

√
(2π)

e−
(x−µ)2

2σ2 (3-1)

The Gaussian distribution is a version of the standard normal distribution whose domain has
been stretched by a factor σ (the standard deviation) and then translated by µ (the mean
value). Based on the 3 − σ rule, about 68% of values drawn from a normal distribution are
within one standard deviation σ away from the mean; about 95% of the values lie within
two standard deviations; and about 99.7 % are within three standard deviations. The goal
point has the highest probability with probability density 1

σ
√

(2π)
at x = µ. We can find the

distribution by adjusting the value of the mean µ and the deviation σ (see Figure 3-4).

Figure 3-4: The Gaussian distribution. The values less than one standard deviation away from
the mean account for 68.27% of the set of the entire points in the configuration space; while two
standard deviations from the mean account for 95.45%; and three standard deviations account
for 99.73%

To improve the sample probability of the points near the goal point, we can use the Gaussian
distribution to narrow the sampling space of the RRT algorithm. The position of a vehicle
can be described by points (X,Y, θ) in the inertia coordinate. Each sample (Xs, Ys, θs) in the
configuration space is generated with respect to a reference position and heading (X0, Y0, θ0).

Yangxiao Ou Master of Science Thesis

3-3 Strategies for the RRT Algorithm 23

Moreover, the sample point can be mathematically described by Equation 3-2. Xs

Ys
θs

 =

 X0
Y0
θ0

− r
 cos(θ)
sin(θ)
σθnσ

 (3-2)

where r = σr|nr|+ r0, nr and nσ are random variables with standard Gaussian distributions,
σr and σθ are the standard deviation in the radial direction and circumferential direction,
(X0, Y0) is the reference position, in this problem, it is the position of the goal, and r0 is an
offset with respect to the reference position. r0 is used to prevent the value of r being equal
to zero when the random number nr is zero.

3-3-2 Node Connection Strategy

After sampling a new node in the configuration space, the next stage is to choose node to be
added to the tree. If the nodes cannot be connected correctly, the algorithm will be trapped
and fail to find a feasible path. Usually, the RRT algorithm attempts to connect the sample
to the closest node in the tree, since shorter paths have a lower probability of collision. Thus,
the RRT algorithm can quickly cover the free space without wasting many samples. There
are several ways to evaluate the closeness. The simplest one is to use the two-norm distance
to find the closest node in the tree.

The kinodynamic path-planning algorithm samples both the configuration space and the
input space. Usually, a new node is inserted into the tree immediately if it is feasible, and
only one trial is made from every closest node. If the trial returns an infeasible node, a
new sample from the configuration space will be generated by the sample function. Here,
we propose to make several trials with one sample from the configuration space, and several
new nodes are generated at the same time with different samples from the input space, as
Figure 3-5 shows. Too many trials slow down the algorithm, whereas too few trials make no
sense. In this work, we make five trials with each sample. In order to make the algorithm
converge to the goal quickly, the new node that is closest to the goal point will be selected to
insert into the tree.

Figure 3-5: An example of the node selection in real-time planning. The yellow nodes are the
potential nodes to insert into the tree. The dotted line is the potential path.

Master of Science Thesis Yangxiao Ou

24 RRT Algorithm for Trajectory Generation

This strategy enlarges the number of samples in the tree, and reduces the sampling times of
the algorithm. Usually, one sample from the configuration space generates no more than one
feasible node to the tree. But with this strategy, more than one feasible node can be inserted
into the tree with one sample from configuration space. More nodes in the tree means more
nodes that can be chosen to construct the trajectory, and a better trajectory can be obtained.

Before inserted the node into the tree, we only check the collision as usual. But for a system
with constraints, the two criteria are not enough. Since the vehicle has its own limitations,
the collision-free nodes are not all feasible for the vehicle dynamics. That is, the inputs that
drive the vehicle moving from the parent node to the child node in the tree are beyond the
limitations of vehicle. It is impossible for the vehicle to complete this action. To generate
a collision-free and vehicle-feasible trajectory, the collision-free nodes that do not satisfy the
vehicle dynamic limitations should be ignored as well.

3-3-3 Algorithm Stop Strategy

The propagation algorithm will stop if some criteria are satisfied. The most frequently used
criterion is the criterion of the goal region in the configuration space. Once a feasible node is
found inside the goal region, the RRT algorithm stops.

The goal region imposes obvious impacts on the efficiency of the algorithm. If the region
is too narrow, the algorithm may find no feasible trajectory. If it is too large, the algorithm
may stop too early. When a node appears near the goal state in a definite region, the RRT
algorithm will stop. The region of the goal is important for the RRT algorithm to find a
feasible path, especially for real-time planning. Usually, we use a sphere region centred by
the goal with a radius R, but in the highway this method may lead to an inaccurate result if
the radius R is too large. In addition, we do not want the truck to deviate from the lane too
much when merging into the highway. Therefore, a polygon region can be used here.

The goal point centres the polygon goal region. Actually, the polygon goal region is a rect-
angle with small width Wrec and large length Lrec. Since the width of a truck is W = 2.5 m
and the road is only W = 3.5 m in width, the width of the polygon cannot exceed Wrec = 0.5
m for ensuring the safety. As for the length of the rectangle, we can choose a relative large
value for it, since the value of the gap’s length is much larger than the value of the road’s width.

In a configuration space, we use not only the coordinates pair (X,Y) of the anchor point
to describe the location of the vehicle, but also use the orientation angle θ to describe the
posture of the vehicle. Usually, the goal region of the basic RRT algorithm is a stop criterion
only considering the coordinates pair (X,Y), not including the orientation angle θ for the
purpose of speeding the algorithm. However, for the merging manoeuvres, the orientation
angle θ of the truck also makes sense for the trajectory. If the value of the orientation angle
θ does not satisfy a certain criterion, a collision will also occur in the reality even if the crite-
rion of the coordinate location is fulfilled. Therefore, an extra stop criterion with respect to
θ is needed. The stop criterion for the orientation θ depends on the scenario and the final state.

Yangxiao Ou Master of Science Thesis

3-4 Offline Trajectory Generation 25

More criteria mean more efforts to achieve the goal. However, it could obtain accurate
results. If we use many criteria for all the propagation process, the time to achieve the goal
may become huge. Therefore, we propose the combined stop criteria here. The combined
stop criteria use different stop criteria when the goal point is close and when the goal point
is far away. The combined stop criteria are actually the balance of the accurate solution and
small computational cost.

For the merging manoeuvres of the truck, we would like the truck enter into the target
lane with small orientation deviation first; then adjust its orientation angle to an acceptable
value. To balance the accuracy and the cost, the criteria with wide range value of XY co-
ordinates and θ are used before the truck enters into the target lane, and the criteria with
narrow range value of then are used after the truck enters into the lane.

3-4 Offline Trajectory Generation

The offline trajectory generator is to generate a trajectory when the environment information
is not updated by time. It is the basis for realising the real-time implementation. There are
two different ways for solving the off-line trajectory generation problem: the open-loop RRT
algorithm, and the closed-loop RRT algorithm. In this section, we would like to introduce
the offline RRT algorithm over open-loop dynamics and over closed-loop dynamics.

3-4-1 Offline Planning over Open-Loop Dynamics

The so-called open loop refers to the dynamic system that does not take the controller into
consideration. Every new node inserted into the tree is obtained by solving the dynamic
equations. The configuration of the planner with open-loop prediction system is illustrated
in Figure 3-6.

The RRT algorithm samples the control input signals that can drive the vehicle moves towards
the goal region. The input signals can be acceleration, steering rate, gas, velocity, steering
angle, and so on. The algorithm samples a sequence of input signals u at every time step.
This sequence of input signals u drives the vehicle moves from the nearest node to a new
node during this time step. Then the new node is recorded at the end of this time step if this
new node is collision-free. Algorithm 2 is the pseudo code of the open-loop RRT trajectory
planning algorithm.

Master of Science Thesis Yangxiao Ou

26 RRT Algorithm for Trajectory Generation

Figure 3-6: The configuration of the planner with open-loop prediction system. Given a sequence
of inputs signals u, and then collect the output x to the tree when x is in the feasible space.

Algorithm 2 <Open-loop RRT Algorithm>
Input: Tree Im, Goal region f, Timestep ∆t, i=0, Initial state xinit, x0 = xinit
while xi /∈ f do
i+ 1← i
xsample ← RAND_CONF ()
xnearest ← NEAREST_NODE(xsample, Im)
usample ← RAND_INPUT ()
xnew ← SIMULATION_SY STEM(xnearest, usample,∆t)
if COLLISION(xnew) = FALSE then
Im← INSERT_NODE(xnew)
xi ← xnew

end if
end while

Algorithm 2 samples both the configuration space and the input space. TheRAND_CONF ()
function samples a node xsample in the configuration space. The NEAREST_NODE()
function finds out the nearest node xnearest to the xsample in the tree. Then the function
RAND_INPUT () samples a set of input signals usample to forward the vehicle from xnearest.
The new node xnew is obtained by function SIMULATION_SY STEM(). After this, the
function COLLISION() checks the feasibility of the new node xnew. If it is feasible, the
function INSERT_NODE() adds the new node xnew into the tree. Otherwise, the new
node is ignored. The algorithm stops when there is a node in the tree appearing in the goal
region.

A frequently used method to solve the system’s motion equations in path planning problems
is the 4th-order Runge-Kutta integration method [21]. The 4th-order Runge-Kutta method
is based on a fourth order Taylor’s approximation. It predicts the next value by the present

Yangxiao Ou Master of Science Thesis

3-4 Offline Trajectory Generation 27

value plus the weighted average of four increments, where each increment is the product of
the size of the interval, and an estimated slope specified by function on the right-hand side of
the differential equation. Assumed the nonlinear system can be described by Equation 3-3,
where y is an unknown function of time t that we need to approximate, u is the input of this
function, and at t = t0, we already have y = y0.

ẏ = f(y, u, t), y(t0) = y0 (3-3)

We denote yn+1 = y(u, t + ∆t) and yn = y(u, t). By choosing a suitable positive time step-
size ∆t, we can make an approximation to yn+1 by using yn and weighted increments. The
approximation algorithm is represented in Equation 3-4.

yn+1 ≈ yn + ∆t
6 (k1 + 2k2 + 2k3 + k4)

tn+1 = tn + ∆t
(3-4)

where

k1 = f(yn, un, tn),

k2 = f(yn + k1
2 , un, tn + ∆t

2),

k3 = (yn + k2
2 , un, tn + ∆t

2),

k4 = (yn + k3, un, tn + ∆t)

(3-5)

We sample the points in the configuration space C to extend the tree, and sample the input
vector u ∈ U to the generated new node of the trajectory. It is possible to consider the
sampling strategy with these two sampling processes at the same time. It is also possible
to add a bias only to one of the sampling process. For the kinematic model described by
Equation 2-8, we have the elements in the configuration space C and input space U :

[X,Y, θ]T ∈ C
[a, r]T ∈ U

3-4-2 Offline Planning over Closed-Loop Dynamics

In the previous section, we solve the nonlinear system with a mathematic method. The model
in the planner is without controllers. In this subsection, we use the closed-loop RRT algo-
rithm to plan a trajectory for the truck.

There are obvious advantages of the closed-loop RRT algorithm compared with the open-
loop RRT algorithm. The benefits are extremely obvious when the vehicle model is not
stable, and the model has noise and system uncertainty. The use of a stabilising controller
provides a smaller prediction error because it reduces the effect of any modelling errors in the
vehicle dynamics on the prediction accuracy, and also rejects disturbances that act on the
actual vehicle [14].

The closed-loop RRT algorithm differs from the open-loop RRT algorithm. The open-loop

Master of Science Thesis Yangxiao Ou

28 RRT Algorithm for Trajectory Generation

RRT algorithm samples the points in the configuration space as well as the inputs signal
in the input space. The planner with open-loop RRT algorithm samples inputs u from the
input space U ; and then send the sampled input signals to the system to obtain the new node
added to the tree. The closed-loop RRT algorithm samples the configuration space only.
Actually, the closed-loop RRT algorithm samples the signals to the controller. The planner
with closed-loop RRT algorithm samples the reference segments r; and then send r to the
closed-loop system. The Figure 3-7 illustrates the configuration of the planner with a closed
prediction loop inside. Algorithm 3 shows the pseudo code of the closed-loop RRT algorithm.

Figure 3-7: The configuration of the planner with a closed-loop system. Given a reference
command r, the controller will generate commands u to system.

Algorithm 3 <Closed-loop RRT Algorithm>
Input: Tree Im, Goal region f, Timestep ∆t, Initial xinit, xinit = x0, i=0
while xi /∈ f do
i+ 1← i
xsample ← RAND_CONF ()
xnearest ← NEAREST_NODE(xsample, Im)
xnew ← STEER(xsample)
xnew ← SOLV E_SY STEM(xnearest, xnew,∆t)
if COLLISION(xnew) = FALSE&&CONSTRAINT_CHECK(xnew) = SATISFY
then
Im← INSERT_NODE(xnew)
xi ← xnew

end if
end while

Algorithm 3 is similar to Algorithm 2. The key difference is that Algorithm 3 does not sample
the nodes in the system inputs space. As a planner, each node in the closed-loop RRT algo-

Yangxiao Ou Master of Science Thesis

3-5 Real-Time Trajectory Generation 29

rithm stores the state of vehicle x and the controller input r. The input given to the controller
is a series of straight lines called the reference path. The planner generates this reference path
by connecting a sample to the controller input at a node in the tree. For each sample, a node
is selected from the tree by using NEAREST_NODE(xsample, Im) in Algorithm 3. Then
connecting the sample node and the selected node generates the reference path. By using
this straight line as an input, the SOLV E_SY STEM() in Algorithm 3 drives the state to a
new state from the selected node. In Algorithm 3, the function CONSTRAINT_CHECK
is used to select the nodes that do not satisfy the vehicle dynamic limitations. The algorithm
is stopped when the tree contains a node in the goal region.

3-5 Real-Time Trajectory Generation

In the previous section, we introduce the RRT algorithm for a static environment. That is,
the surrounding traffic is assumed not to move when the algorithm plans a trajectory. In this
chapter, we will focus on the RRT algorithm works in a dynamic environment.

The dynamic environment means that there exist moving obstacles in the environment. In
the highway, the road boundaries and the lanes never change with time; hence they are static,
and not considered in the dynamic environment. Each dynamic obstacle has its own dynamics
states in a configuration space.

Real-time trajectory generation generates a trajectory for the mechanics system in a dy-
namic environment. The RRT algorithm plans a trajectory for the system from the state x(t)
to the state x(t + ∆t). The dynamic environment will be updated every time step ∆t; and
then a replanning algorithm is executed to forward the plan. Figure 3-8 shows the flow chart
of the real-time implementation.

In a dynamic and uncertain environment, the algorithm needs to be aware of the changes of
the surrounding traffics in order to generate a safe trajectory. The real-time execution re-
quires reusing the necessary information from the previous states. Algorithm 4 is the pseudo
code of the real-time loop of the RRT algorithm.

Master of Science Thesis Yangxiao Ou

30 RRT Algorithm for Trajectory Generation

Figure 3-8: The flow chart of the implementation of the real-time RRT algorithm .

Algorithm 4 <Real-time RRT Algorithm>
Input: Tree Im, Goal region f, Time step ∆t, Initial xinit, Initial environment state χ(t)
while No node in the Goal region do
Update the current vehicle states and the dynamic obstacles’ states
while No best node sequence can be found do
Extend the tree until ∆t is reached
Choose the best safe node sequence pathi in the tree

end while
Send the chosen node sequence pathi to the system
Empty the tree

end while

Algorithm 4 outlines the replanning procedure with the RRT algorithm while the lower level
controller executes the plan. The planner sends the input to the lower level system at a fixed
rate of every ∆t seconds. The tree expansion continues until ∆t is reached. The best trajec-
tory is selected and the input is sent to the lower level system for execution. The expansion
of the tree is resumed after updating the vehicle states and the environment.

Unlike in the urban driving situation, it is not safe to command an emergency braking ma-
noeuvre for the highway driving situation, especially when the traffic flow is high. In order
to avoid the emergency braking manoeuvre on the highway, the time step size ∆t cannot be
large. A larger ∆t can predict a longer trajectory, however, it also increases the collision
probabilities.

One way to implement the RRT-based planner is to build a new tree at every planning

Yangxiao Ou Master of Science Thesis

3-6 Obstacle Avoidance 31

cycle and discard the old tree. In this way, a path is selected for executing the lower level
system without considering the current path being executed. Every planning cycle after a
path is selected and sent to the lower level system, the planner will restart to plan a new
motion from the original state. This means almost identical computations would have to be
repeated. In a real-time application, this way to implement the planner is not efficient, and
will waste a lot of computational resources. Additionally, if discarding all the information in
the old tree, the trajectory generated by a new cycle may be independent on the trajectory
generated by the old tree. This means the planner could switch between two different trajec-
tories at every planning cycle, which may lead to planning a wavy trajectory for the merging
manoeuvre in the dynamic environment.

The second way to implement the RRT-based planner is to build a new tree at every planning
cycle based on the old tree. This way is also not an efficient way to implement the RRT-based
planner in the real-time. One reason is that the tree will grow larger and larger, and requires
a lot of space to store the nodes of the tree. Another reason is that it needs more effort to find
the best nodes sequence when the tree contains too many nodes. Additionally, implementing
the planner in this way is easy to plan a stack trajectory.

Another way to implement the RRT-based planner is to build a new tree based on the end
node information of the trajectory generated by the old tree. In this way, after every planning
cycle, the end of the generated trajectory is stored and used as the root of the new tree in the
next planning cycle. But all the other children branches from the old tree are then deleted
because these branches will never be executed. The new tree then grows in its planning cycle
until ∆t is reached. After the new trajectory is found, its end node will also be stored as the
root of the tree in the following planning cycle, and other branches of the new tree will be
deleted. Therefore, the trajectory executed by the lower level system is always continuous.

Both Algorithm 2 and Algorithm 3 can be used to extend the tree during the time step
size ∆t. If the open-loop RRT algorithm is used to extend the tree in a real-time implementa-
tion, the inputs to the vehicle are sent to the lower level system to execute the plan, whereas
if the closed-loop RRT algorithm is chosen to extend the tree, the reference paths are sent to
the controller of the lower level system to execute the plan.

3-6 Obstacle Avoidance

The RRT algorithm finds a path in the configuration space. The path must be checked before
it is accepted as valid. There exist a lot of collision detection algorithms handling obstacles
with different complexibilities. The obstacles with complex geometry need advanced detec-
tion algorithm, whereas advanced detection algorithms mean more computational costs. In
this work, we consider the obstacles with regular shapes in two-dimensional space; hence, the
simple intersections detection method is proposed.

Intersection detection is the problem of detecting whether two objects intersect or overlap
in space [22]. Performing intersection tests carries out intersection detection. It is a problem
that occurs in computer graphics in many forms, including: clipping, view-volume culling,

Master of Science Thesis Yangxiao Ou

32 RRT Algorithm for Trajectory Generation

ray-tracing, picking and collision detection. Intersection detection is the heart of collision
detection, and collision detection is the intersection detection with regard to a set of moving
objects.

3-6-1 Bounding Volumes

Bounding volumes (BVs) are the basic and efficient technique to solve the intersection detec-
tion problem [23]. It is often useful to have a bounding volume enclosing a finite geometric
object. Bounding volumes can significantly speed up software for ray tracing, collision avoid-
ance, hidden object detection, etc. Before invoking the computationally expensive intersec-
tion or containment algorithms for a complicated object, a simple test with an uncomplicated
bounding volumes can often exclude the possibility of intersection or containment, and no
further wasteful computation is needed.

In order to use a bounding volume as a part of a collision detection algorithm, we must
firstly fit a bounding volume to any given collection of primitives that capture the main
shape information of the obstacles, and then determine whether two given bounding volumes
overlap. In this projects, we regard the largest size of a vehicle as the primitives. There
are many types of bounding volumes: sphere, oriented bounding box, axis-aligned bounding
box, convex hull, ellipsoid, prism, cub, and many more. The most frequently used bounding
volumes are sphere, axis-aligned bounding box and oriented bounding box [5].

There exist several types of bounding boxes as shown in Figure 3-9: the sphere [24], the
axis-aligned bounding box (AABB) [25], the oriented bounding box (OBB) [26], the 6-DOP
[27], and the convex hull [28]. Different types of bounding boxes have different complexities,
costs and tightnesses of fit. A more complex bounding box means a better tightness of fit,
but it costs more to test the overlap and to update. As the vehicle can be regarded as a regu-
lar shape and the efficiency is important in real-time implementation, too complex bounding
boxes are not considered in this project.

Figure 3-9: Different types of bounding boxes.

The axis-aligned bounding box (see in Figure ??) is a box that defines a rectangular region
whose edges are parallel to the coordinate axes, and is thus defined by its maximum and

Yangxiao Ou Master of Science Thesis

3-6 Obstacle Avoidance 33

minimum extending for all axes. In two-dimensional space, the bounding box is given by
(x, y) coordinates that satisfy Equation 3-6, and specified by the extreme points (xmin, ymin)
and (xmax, ymax), which are its bottom-left and top-right corners. Alternatively, it can be
specified as a corner point (cx, cy) and edge lengths lx, and ly, as in Figure 3-7.

D = {(x, y)|xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax} (3-6)

D = {(x, y)|cx ≤ x ≤ cx + lx, cy ≤ y ≤ cy + ly} (3-7)

An oriented bounding box is a rectangular shape. It is similar to an axis-aligned bounding
box except that it has arbitrary orientation. An oriented bounding box can be described by
a centre point c, edge half-lengths r1 and r2, and two orientation unit vectors ~v1 and ~v2. The
oriented bounding box is illustrated in Equation 3-8.

D = {c+ ar1 ~v1 + br2 ~v2|a, b ∈ [−1, 1]} (3-8)

In addition to the axis-aligned bounding box and the oriented bounding box, the bounding
sphere, represented in Equation 3-9, is another type of method to model a geometric object.
It is the smallest circle or sphere containing the object. It is also called the "minimal spanning
sphere" of the object. The bounding ball of a geometric object is unique, and is specified by
a centre point C = (cx, cy) and a radius r. It is easy to detect whether a point is inside a
bounding sphere by checking that it is within distance r of the centre point C. Besides, it
is also easy to detect whether two bounding spheres are disjoint by checking the distance of
two centre points.

D = {(x, y)|(x− cx)2 + (y − cy)2 < r2} (3-9)

3-6-2 Intersection Detection

The intersection detection may report merely a complete description of the set intersection
of the objects, possibly reporting whether two objects in a given pose are touching. If two
objects are disjoint, the intersection detection algorithm will return false, otherwise, it will
return true. We determine the intersection of two objects by checking whether there exists a
joint point belonging to both of these objects. If so, the collision occurs, otherwise no collision
occurs.

The frequently used test algorithms in geometric methods are sphere-sphere test algorithm,
sphere-AABB test algorithm, sphere-OBB test algorithm, the OBB-OBB test algorithm,
AABB-AABB test algorithm and OBB-AABB test algorithm [5]. These algorithms are used
to detect the overlap of two objects. The objects can be modelled as one of these bounding
volumes in the configuration space. If the test algorithm returns true, there exists overlap
between these two objects. If not, the two objects are disjoint.

All of these collision test algorithms are based on a point-line detection method, a point-
point detection method and a line-line detection method. These methods use the distance
between these two elements to determine whether there exists an intersection. There are
several varieties of distance measure. These are measures which yield a single real number

Master of Science Thesis Yangxiao Ou

34 RRT Algorithm for Trajectory Generation

that describes the distance between two sets A and B. The simplest separation distance is
used here. The separation distance is the length of the shortest line joining the sets. The
form of this distance is illustrated in Equation 3-10.

dist(A,B) = min
a∈A

min
b∈B
|a− b| (3-10)

The geometric elements are described in the inertial coordinate system. The equations to
calculate the distance of two points, point-line and line-line in a coordinate system are Equa-
tion 3-11, Equation 3-12 and Equation 3-13,respectively.

dist(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2 (3-11)

where P1 and P2 are two points with coordinates (x1, y1) and (x2, y2).

dist(Lab, P0) = |(yb − ya)x0 − (xb − xa)y0 + xbya − ybxa|√
(yb − ya)2 + (xb − xa)2 (3-12)

where Pa = (xa, ya) and Pb = (xb, yb) are the two points in the line Lab, and P0 = (x0, y0).

dist(L1, L2) = |(c− a)[(b− a)× (d− c)]|
|(b− a)× (d− c)| (3-13)

where L1 = a+ (b− a)s and L2 = c+ (c− d)t.

3-6-3 Collision Avoidance on the Highway

There exist static obstacles and dynamic obstacles on the highway when considering the
collision avoidance problem. The dynamic obstacles are static at specific time steps in the
simulation. Therefore, in a specific time step, the states of a dynamic obstacle do not change.
We can check the intersection of the bounding volume of the vehicle and the bounding volume
of the surrounding obstacles at a small time step to determine the collision.

Before applying the intersection detection algorithm to check the collision, bounding volumes
are chosen for the vehicle and the surrounding obstacles. There are three types of bounding
volumes fitting for truck since the shape of the truck can be looked as an oblong shape in 2D
configuration space. The three bounding volumes are sphere as shown in Figure 3-10, OBB
as shows in Figure 3-11 and AABB as shows in Figure 3-12.

As for a truck, a too loose bounding volume is not suitable due to its large length. The length
between the front wheel axle and rear wheel axle is l = 5 m, and the width of the truck is
w = 2.5 m. Actually, the length of the truck is larger than the length of the wheelbase, so
when modelling the truck in a configuration space with bounding volumes, the length of the
truck will be chosen as L = 7 m. If the sphere is used to model the truck, the smallest radius
of the sphere will as large as r = 3.5 m. A lot of safe nodes will be ignored because the width
of the road is only wr = 3.5 m. As a consequence, no feasible trajectory may be found by the
algorithm.

In this work, we choose an OBB for the truck, since OBBs have better tightness of fit than

Yangxiao Ou Master of Science Thesis

3-6 Obstacle Avoidance 35

Figure 3-10: Modelling the truck as a sphere in a configuration space when checking the collision.

Figure 3-11: Modeling the truck as an OBB in a configuration space when checking the collision.

Figure 3-12: Modeling the truck as an AABB in a configuration space when checking the
collision.

Master of Science Thesis Yangxiao Ou

36 RRT Algorithm for Trajectory Generation

AABBs. After determining the bounding volume for the truck, the bounding volumes for
the surrounding obstacles can be chosen. Different types of bounding volumes have different
efficiency in overlap test with OBB. The [5] has made experiments on the time of overlap
testes for different bounding volumes with OBBs. The results are listed in Table 3-1. The [5]
pointed out that the sphere-OBB overlap test needs the lowest time, whereas the OBB-OBB
overlap test costs more time than the other two types in overlap test.

Method used Disjoint (µs) Intersection (µs)
Sphere 0.97 0.92
AABB 1.36 1.38
OBB 5.09 7.44

Table 3-1: Timing of overlap testes for different bounding volumes. The AABB represents the
axis-aligned bounding box, and the OBB represents oriented bounding box. These data are from
[5].

There exist static obstacles and dynamic obstacles in the traffic. Although they are all re-
garded as static at a specific time step, we still consider these two types of obstacles separately
here. The static obstacles are the road boundaries that are modelled as polygons based on its
size in the configuration space. The algorithm will ignore every point of the truck located in
this polygon. Although the sphere-OBB test shows highest efficiency, the AABB is a better
choice for the surrounding vehicles, since we can use an uniform obstacle detection method for
both static and dynamic obstacles. To conclude, AABB is chosen for the bounding volume of
surrounding vehicles, and the road boundaries are modelled as polygons in the configuration
space.

To improve the safety, tail spaces can be attached on the rear of vehicles in the traffic.
This tail space, as shown in Figure 3-13, can be regarded as a buffer for avoiding the collision
caused by the inertia forces and the response latencies of the vehicles. In this project, the
bounding volume of the truck are 3 m in width and 7 m in length. The tail space of the
truck is chosen for 2 m in length which is the stand-off safety distance of vehicles, and 3 m
in width.

Figure 3-13: The tail space attached on the the rear of the vehicles, the black blocks are the
tail spaces.

Yangxiao Ou Master of Science Thesis

3-7 Summary 37

As we have already chosen the bounding volumes for all the objects of the highway in the
configuration space, the shape of the bounding volumes can determine a suitable collision
detection method. All the chosen bounding volumes are convex and regular. The simplest
method to detect the collision of two convex bounding volumes is the line-line intersection
method. If the lines constructed by connecting any two of the close vertexes of each bounding
volume have no intersection with other bounding volumes, then no collision occurs.

The vertexes of the truck can be represented by the coordinates of its centre of gravity
(CoG) in the configuration space. We have used OBB for the truck, therefore, there are four
vertexes of the trucks as illustrated in Figure 3-14. Assumed the position of CoG is described
by C=(Xc, Yc) and the orientation angle is denoted as θc in the configuration space, we can
determine the coordinates of these vertexes by Equation 3-14.

{(X,Y)|(Xc + aLrcos(θc)− b
W

2 sin(θc), Yc + aLrsin(θc) + b
W

2 cos(θc))|a, b ∈ [−1, 1]} (3-14)

Figure 3-14: The posture of the truck in the configuration space. The (Xc, Yc) is the coordinate
of the CoG in the inertial coordinate system, the θc is the heading angle when the truck’s CoG
located in (Xc, Yc).

When checking whether the new node that is obtained by solving the vehicle dynamic equa-
tions is feasible or not, we can repeat the line-line intersection detection algorithm with the
line segments constructed by these four vertexes and the obstacles.

3-7 Summary

In this chapter, we address the main solution for the trajectory generation problem. At the
first part, we introduce the RRT algorithm. Then we depict the RRT algorithm used for
solving the kinodynamic path-planning problem. After this, some strategies for improving
the performance of the algorithm are proposed. In the middle of this chapter, we present the

Master of Science Thesis Yangxiao Ou

38 RRT Algorithm for Trajectory Generation

solutions for the off-line trajectory generation and for the on-line trajectory generation. At
the end of this chapter, the solution for the obstacle avoidance is illustrated.

The RRT algorithm has five primitive procedures: Sampling, Nearest Neighbour, Near Ver-
tices, Steering, and Collision Test. The basic RRT algorithm does not take the dynamics
of the system into consideration. The path planned by the basic RRT algorithm is usually
impossible for a real vehicle to follow, since the vehicle has its own dynamic limitations. The
main difference between the basic RRT algorithm and kinodynamic RRT algorithm is whether
the node that will be chosen to insert into the tree is obtained by solving the dynamic equa-
tions. The kinodynamic RRT algorithm is the basic solution for the trajectory generation
problem. In order to improve the performance of the algorithm, some strategies are proposed
then.

We discuss about the strategies used with the algorithm to improve the efficiency. The
sampling strategy is to add a bias to the algorithm so that the nodes near to the goal region
have larger probabilities to be sampled. The node connection strategy is to add more choices
when selecting a node inserting to the tree. The stop strategy is to combine different criteria
to make a trade-off between the computational cost and the accuracy of the results.

The main part of this chapter is the off-line algorithm and the online replanning algorithm
for trajectory generation. There exists two approaches for the off-line planning problem.
One approach is the off-line path planning over the open-loop dynamics, and the other is
the off-line path planning over the closed-loop dynamics. The main difference between these
two approaches is the dynamic system used for predication. With regard to the replanning
algorithm, we introduce three different ways to extend the tree in real-time implementation.
The way uses the last information of the former planning cycle, which can avoid to do the
repeated work and to construct a huge tree, is a good choice for extending the tree in the
real-time implementation.

The collision detection is an essential part with regard to the trajectory generation. To
be compatible with the RRT algorithm, we use bounding volumes to model the truck, as
well as obstacles, in the configuration space. In this work, we choose the OBB for modelling
the shape of the truck in merging maneuvers, while the AABBs are chosen for modelling the
vehicles surrounded the truck. No matter which kind of bounding volumes are chosen for
the objects on the highway, the basic collision detection method is to check the intersection
between points and lines. As we do not choose the sphere as bounding volume, only the
line-line intersection detection algorithm is introduced to detect the collision.

This chapter contains the main solution of the trajectory generation problem for the truck.
To use the closed-loop algorithm, we need firstly design controllers for the truck to track the
reference paths. In the next chapter, we would like to develop tracking controllers for the
truck model.

Yangxiao Ou Master of Science Thesis

Chapter 4

Controller Design

The controller takes the motion plan and generates control commands that track the desired
motion plan. The motion plan contains the same information as the controller inputs used in
the planner prediction, and consists of a set of (X,Y, Vref) points that define the piece-wise
affine reference path for the steering controller and the desired speed.

The motion planner contains two controllers, a pure-pursuit steering controller and a PID
speed controller. According to the available research, the path-tracking problem of the au-
tonomous vehicle is usually split into the speed control problem and steering control problem
[29]. We choose a pure-pursuit steering controller because it shows great tracking performance
for robotics, and is widely used for ground and aerial vehicles for many years [30]. The PID
controller is used to track the desired speed. These two controllers are not only used in the
motion planner, but also used in the execution controller.

4-1 The Control Architecture

The control system of an autonomous vehicle can be represented as in Figure 4-1. It contains
a sensing system, a mission planner, a trajectory planner, a vehicle controller, a feedback
compensator and the autonomous vehicle. The sensing system consists of a set of sensors.
It can capture the environment information and generate a local map. The mission planner
tracks the mission state and develops a high-level plan to accomplish the mission. The output
of the mission planner is an ordered list of waypoints that are provided to the trajectory
planner. The trajectory planner generates a kino-dynamically feasible vehicle trajectory that
moves towards the waypoint selected by the mission planner and the information from the
local map. The vehicle controller uses the inputs from the feedback compensator and the
trajectory planner to execute the low-level control to track the desired paths. The feedback
compensator is a component estimating the vehicle states and filtering the noises.

Master of Science Thesis Yangxiao Ou

40 Controller Design

Figure 4-1: The overview of the control system of the autonomous vehicle.

4-2 Speed Controller

The speed controller is designed to adjust the velocity of the vehicle. It works as Figure 4-2
shows. The controller generates the acceleration signal to the actuator when the command
velocity is larger than the estimated velocity. It gives braking signal to the executor when
the command velocity is lower than the estimated velocity. In this section, the attention will
be focused on the speed controller.

Figure 4-2: The flowchart of a speed controller

Yangxiao Ou Master of Science Thesis

4-2 Speed Controller 41

4-2-1 PID Controller

A simple proportional-integral-derivative (PID) type controller is the most common form of
feedback, and more than 95% of the control loops are of PID type in process control today
[31]. The popularity of the PID controller can be attributed to its different characteristic
features: it provides feedback; it has the ability to eliminate steady-state offsets through in-
tegral action; it can anticipate the future through derivative action; it is easy to use; and it
is elegant to understand [29].

The PID controller can be considered as a controller that considers the past, the present,
and the expected error. The control signal is thus a sum of three terms: the P-term, the
I-term and the D-term. The P-term is proportional to the error and depends on the present
error. The I-term is proportional to the integral of the past error. The D-term is proportional
to the derivative of the error, and it predicts the future error.

The algorithm of the PID controller is described by Equation 4-1, where u is the control
signal, and e(t) is the control error.

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ +Kd

de(t)
dt

(4-1)

Transforming Equation 4-1 into the Laplace domain, we can obtain a transfer function of a
PID controller. This transfer function of the controller Gc is shown in Equation 4-2.

Gc = U(s)
E(s) = Kp + Ki

s
+Kds (4-2)

In Equation 4-1 and Equation 4-2, the parameter Kp is the proportional gain, Ki is the inte-
gral gain, and Kd is the derivative gain. We can adjust the performance of the PID by tuning
these three parameters.

4-2-2 PID Controller Design Method

There are several methods for tuning a PID loop. The most effective methods generally in-
volve the development of some form of process model, then choosing Kp, Ki, and Kd based
on the dynamic model parameters. Among these methods, the Ziegler-Nichols design method
is the most popular method used in process control to determine the parameters of a PID
controller [32]. Besides, this method is a proven method.

The 1st Ziegler-Nichols method is available for the S-shaped reaction curve that characterised
by two constants, delay time and time constant, which are determined by drawing a tangent
line at the inflection point of the curve and finding the intersections of the tangent line with
the time axis and the steady-state level line. However, the open-loop system does not show
a S-shaped reaction curve in this project. Hence, we use the 2nd Ziegler-Nichols method to
tune the PID loop here.

Master of Science Thesis Yangxiao Ou

42 Controller Design

The 2nd Ziegler-Nichols tuning method is a heuristic method for tuning a PID controller.
John G. Ziegler and Nichols proposed it in the 1940’s. It is performed by first setting the
I-term and D-term gains to zero. The Kp is then increased (from zero) until it reaches the ul-
timate gain Ku, at which the output of the control loop oscillates with a constant amplitude.
Ku and the oscillation period Tu are used to set the Kp, Ki, and Kd gains depending on the
type of controller used. The 2nd Ziegler-Nichols tuning principles with regard to different
controllers are shown in Table 4-1 [32].

Control Type Kp Ki Kd

P 0.5Ku - -
PI 0.45Ku 1.2KpTu -
PID 0.6Ku 2KpTu

KpTu
8

Table 4-1: Ziegler-Nichols Method.

With 2nd Ziegler-Nichols PID tuning formula, the resulting system may exhibit several unac-
ceptable performances, such as a large settling time, slow response speed, and so on. In such
a case, we need a series of parameter-selecting until an acceptable result is obtained. The
individual effect of Kp, Ki and Kd is listed in Table 4-2 that can be very useful in parameter-
selecting of PID controller [7]. Starting with the values of Ki, Kp and Kd obtained from
2nd Ziegler-Nichols method, tuning Kp, Ki and Kd based on Table 4-2 until an acceptable
performance is observed.

Parameter Rise time Overshooting Settling time Steady-state error Stability
Ki Decrease Increase Increase Decrease Degrade
Kp Decrease Increase Small change Decrease Degrade
Kd Small change Decrease Decrease No Improve with small Kd

Table 4-2: The effects of increasing one parameter Ki, Kp or Kd independently. This table is
adopted from [7]

4-2-3 PID Speed Controller Design

The speed controller is designed to make the vehicle tracking the command velocity. A speed
control loop is shown in Figure 4-3. The controller sends the accelerating or braking signals
to the executor, and then the executor makes corresponding actions to the motor. The motor
adjusts its own speed based on the signal from the executor.

According to the previous chapter, the outputs of the executor and the motor can be described
as Equation 4-3 and Equation 4-4, respectively.

ȧ(t) = 1
Ta

(ac(t)− a(t)) (4-3)

Yangxiao Ou Master of Science Thesis

4-2 Speed Controller 43

Figure 4-3: The speed control loop

V̇ (t) = a(t) (4-4)

Writing Equation 4-3 and Equation 4-4 in the Laplace domain, and then combining these two
Laplace equations, we can obtain the speed transfer function Gv of the vehicle as show in
Equation 4-5, where Ta is the delay of the executor and the value of the delay is Ta = 1.2 s.

Gv = V

ac
= 1

(Tas+ 1)s (4-5)

Firstly, we use the Ziegler-Nichols method to tune the closed-loop in Figure 4-3. By setting
the I-term and D-term as zeros, we can obtain the closed-loop transfer function Gcl of the
vehicle in Equation 4-6.

Gcl = 1
Tas2 + s+Kp

(4-6)

According to the Routh-Hurwitz Criterion stability theory, with regard to the second order
system, the system is stable if the coefficients of the characteristic polynomial are all positive.
Since the Kp is positive, hence the closed-loop system is stable when Ki = 0 and Kd = 0.
That is, the ultimate gain Ku is positive infinite. The step response of the system with
Kp > 0, Ki = 0 and Kd = 0 is shown in Figure 4-4.

Figure 4-4: The step response of the closed-loop system with parameters Kp = 1, Ki = 0 and
Kd = 0.

Master of Science Thesis Yangxiao Ou

44 Controller Design

The overshoot is nearly 20%, the rise time is about 3.5 s, and the settling time is approxi-
mately 14 s. In this project, we would like the speed controller could make quick response,
and has zero steady-state error. The settling time should be less than 1 s. In order to achieve
these goals, a parameter-selecting method is used.

The parameter-selecting method is based on the rules listed in Table 4-2 to tune the PID
achieving an acceptable performance. To reduce the rise time, we can increase the value of
Kp at first, and then increase the values of Ki and Kd to make the controller perform well.
The PID controller offers no significant advantage over the PI controller because the vehicle
has some inherent speed damping and the acceleration signal required for PID control is noisy
[30]. Figure 4-5 shows that the D-term affects the response of the system slightly. Hence, the
PI controller is used here to control the speed.

Figure 4-5: The responses comparison of the system with the PI controller and PID controller
with different value of Kd. The data is obtained with Kp = 19.33 and Ki = 72.5, and Kd =
0.5, 1, 3, 5, 8.

We have the PI controller with the form of Equation 4-7, where e(t) = Vref − V is the speed
difference. The parameters of the PI controller are Ki = 72.5 and Kp = 19.33. The responses
of the PI controller with different values for Vref are illustrated in Figure 4-6.

u(t) = Kp(Vref − V) +Ki

∫ t

0
(Vref − V)dτ (4-7)

In Figure 4-6, the overshoots with regard to speed V = 12 m/s, V = 15 m/s, V = 18 m/s,
V = 20 m/s and V = 25 m/s are all within 20%, the rise times are all around 0.2 s, and the
settling times are all within 0.8 s. The designed PI controller can works well in this situation.

Yangxiao Ou Master of Science Thesis

4-3 Steering Controller 45

Figure 4-6: The responses of the system with the PI controller. The values of Vref are 12 m/s,
15 m/s,18 m/s, 20 m/s, 25 m/s. Ki = 72.5, Kp = 19.33.

4-3 Steering Controller

In the previous section, we have designed a PID controller for the velocity control. In this
section, we design a steering controller for the truck. A steering control loop is illustrated in
Figure 4-7. The steering controller uses the information of the actual path and the reference
path to generate the steering command to the steer wheel, then the steer wheel transfers the
steering command to the wheels through the executor between them. In this work, we use
the pure-pursuit algorithm to design a steering controller for the truck.

Figure 4-7: The steering control loop.

4-3-1 Pure-Pursuit Control Theory

The pure-pursuit algorithm is a well-known strategy for the mobile robotics community [33].
The steering controller is based on the pure-pursuit control algorithm. The pure pursuit
controller is a nonlinear path follower. It is an intuitive control law that is simple and has
a clear geometric meaning. The word pure-pursuit implies imagining a vehicle following or
chasing a point on given path some distance ahead of it. The principle of the pure pursuit
is to calculate the instantaneous curvature of the path that the vehicle intends to generate

Master of Science Thesis Yangxiao Ou

46 Controller Design

with the current speed and heading angle. Figure 4-8 illustrates the detail of pure-pursuit
algorithm.

Figure 4-8: The strategy of the pure-pursuit algorithm.

Based on the original description in [34], the implementation of the pure-pursuit algorithm
can be summarised as follows:

1. Find the current location of the vehicle in the global frame

2. Find the closest point to the vehicle on the path

3. Find the goal point by choosing a suitable look-ahead distance

4. Transform the goal point in the global frame to the vehicle frame

5. Calculate the curvature and the requested steering angle of the vehicle

6. Update the vehicle’s position

Before implementing the algorithm, we present firstly the mathematic description of this al-
gorithm. According to Figure 4-8, we can derive the mathematical equations:

R = d+ ∆x
R2 = d2 + ∆y2

L2
d = ∆x2 + ∆y2

(4-8)

where R is the turning radius, Ld is the look -ahead distance, ∆x and ∆y are the coordinates
differences between the centre of the vehicle body and the reference points. Eliminating d, and
we can obtain the Equation 4-9. Rewriting the Equation 4-9 into the form of Equation 4-10,

Yangxiao Ou Master of Science Thesis

4-3 Steering Controller 47

and then we can obtain the curvature, as shows in Equation 4-11, which the vehicle should
follow.

R2 = (R−∆x)2 + ∆y2 (4-9)

R = ∆x2 + ∆y2

2∆x (4-10)

ζ = 1
R

= 2∆x
∆x2 + ∆y2 = 2∆x

L2
d

(4-11)

Using the rotation matrix Equation 2-1, we can transfer the ∆x and ∆y into the global frame,
as Equation 4-12 shows. Now Equation 4-11 can be defined in the global frame as Equation 4-
13 illustrates. [

∆x
∆y

]
= R−1

I

[
∆X
∆Y

]
=

[
cos(θ) sin(θ)
−sin(θ) cos(θ)

] [
∆X
∆Y

]
(4-12)

ζg = 2(cos(θ)∆X + sin(θ)∆Y)
L2
d

(4-13)

The look-ahead distance Ld plays significant role in the performance of the controller. The
look-ahead distance indicates how far along the path the robot should look from the current
location to compute the angular velocity commands. It has a significant influence on the
performance of the steering control.

Before considering the effects of changing the look-ahead distance, we must distinguish these
two conditions: regaining a path (as shows in Figure 4-9) and maintaining the path (as shows
in Figure 4-10). When the vehicle is far from the path, it must try to attain on the path.
This is the process of the regaining a path. When the vehicle is on the path, it must be try
to remain the path. This is the so-called maintaining the path.

Figure 4-9: The response of the controller with look-ahead distances Ld = 20 m, Ld = 30 m,
Ld = 40 m,Ld = 50 m, Ld = 60 m. At first time, the vehicle is not on the path, and then tries
to attain the ref path (the red dotted line).

Master of Science Thesis Yangxiao Ou

48 Controller Design

Figure 4-10: The response of the controller with look-ahead distances Ld = 20 m, Ld = 30 m,
Ld = 40 m,Ld = 50 m, Ld = 60 m. At first time, the vehicle is on the path, and then tries to
maintain the ref path (the red dotted line).

In Figure 4-9 and Figure 4-10, the algorithm tries to fit the angular approaching the reference
path. Pure-pursuit is to calculate the instantaneous curvature of the path that the vehicle
intends to generate with the current speed and heading angle. The whole point of the algo-
rithm is to choose a goal position that is some distance ahead of the vehicle on the path. We
tend to regard the vehicle as following a point on the path some distance ahead of it. That is,
we consider the vehicle is pursuing that moving point. It is easy to understand that when the
driver can observe long distance ahead of the vehicle at each instantaneous, a small steering
angular is needed to drive the vehicle to chase this moving point at this instantaneous. When
the driver can observe short ahead of the vehicle at each instantaneous, a large steering an-
gular is needed to drive the vehicle at this instantaneous.

The look-ahead distance Ld is the only parameter of the pure-pursuit algorithm and af-
fects the performance of the steering controller a lot. A long look-ahead distance leads to a
smooth converge to the path and less oscillation. A small look-ahead distance tends to quick
converge to the path, but with more oscillation. A trade-off between the fast converge and
less oscillation must be made when using this algorithm.

4-3-2 Modified Pure-Pursuit Steering Controller

The Massachusetts Institute of Technology (MIT) has developed a modified pure-pursuit con-
trol law and analysis the stability of the system with this control law [30]. Instead of using the
information of the orientation angle θ, the modified pure-pursuit control law uses the heading
angle η and Lr to generate the requested steering angle. Figure 4-11 gives the information
about the modified pure-pursuit control law, where Lr is the distance of the forward anchor
point from the rear axle, Ld is the forward drive look-ahead distance, L is the length of the
wheelbase, η is the the heading of the look-ahead point from the forward anchor point with

Yangxiao Ou Master of Science Thesis

4-3 Steering Controller 49

respect to the vehicle heading, R is the radius of the curvature, and the reference path is a
piecewise affine reference path given by the planner.

Figure 4-11: The geometric expression of the modified pure-pursuit algorithm. All angles and
the lengths in this figure are positive by definition.

The instantaneous steering angle that is requested to put the anchor point on a collision
course with the look-ahead points is given by:

δ = −arctan(Lsin(η)
Ld
2 + Lrcos(η)

) (4-14)

Compared with the conventional pure-pursuit algorithm, the modified one shows a larger
relative stability since it introduces the parameter Lr.

Consider the case shows in Figure 4-12. The reference path is a straight line parallel to
the X − axis in this case. Based on the geometry, we can get the relation as show in Equa-
tion 4-15.

η = arcsin(y + Lrsin(θ)
Ld

) + θ (4-15)

The vehicle system has a constant maximum slew rate, −0.1 ≤ δ̇ ≤ 0.1. This constraint can
be approximated by modelling the actuator dynamics as a first order system (see in Equa-
tion 4-16), where δc is the steer command, and τ is the actuator time constant [30].

δ̇ = 1
τ

(−δ + δc) (4-16)

Then the steering control law then can be given by:

δc = −arctan(Lsin(η)
Ld
2 + Lrcos(η)

) (4-17)

Master of Science Thesis Yangxiao Ou

50 Controller Design

Figure 4-12: The straight reference path along the x-axis.

In order to analyse the stability of the steering closed-loop, we must define a new state
z = [y, θ, δ]T , and the new state can be expressed in Equation 4-18. By setting ż = 0, we can
obtain the equilibrium of the system described in Equation 4-3-2. It is easy to see that the
equilibrium is ẑ = [0, 0, 0]T .

ż =

 ẏ

θ̇

δ̇

 =

 V sin(θ)
V
L tan(δ)

1
τ (−δ + δc)

 (4-18)

Linearising the closed-loop system for z, and we can have the linear system as the Equation 4-
19 described, where the ∂δc

∂η ,
∂η
∂y and ∂η

∂θ can be found in Equation 4-20, Equation 4-21 and
Equation 4-22, respectively.

ż = Az =

 0 V cos(θ) 0
0 0 V

L sec
2(δ)

1
τ
∂δc
∂η

∂η
∂y

1
τ
∂δc
∂η

∂η
∂θ − 1

τ

 z (4-19)

∂δc
∂η

= −
LLdcos(η)

2 + LLr

L2sin2(η) + (Ld2 + Lrcos(η))2
(4-20)

∂η

∂y
= 1√

L2
d − (y + Lrsin(θ))2

(4-21)

∂η

∂θ
= Lrcos(θ)√

L2
d − (y + Lrsin(θ))2

+ 1 (4-22)

At the equilibrium ẑ = [0, 0, 0]T , the linearised system in Equation 4-20 can be rewritten
as Equation 4-23. The characteristic equation of the matrix A in the Equation 4-23 can be
written in the Equation 4-24.

ż = Az =

 0 V 0
0 0 V

L

− 2L
τLd(Ld+2Lr) − 2L(Ld+Lr)

τLd(Ld+2Lr) − 1
τ

 z (4-23)

det(sI −A) = s3 + 1
τ
s2 + 2V (Ld + Lr)

τLd(Ld + 2Lr)
s+ 2V 2

τLd(Ld + 2Lr)
= 0 (4-24)

Yangxiao Ou Master of Science Thesis

4-3 Steering Controller 51

We use the Routh-Hurwitz Criteria to check the stability. For the third-order polynomial in
Equation 4-24, the Routh array is illustrated in Equation 4-25.

s3 1 1
τ

2V (Ld+Lr)
τLd(Ld+2Lr)

s2 1
τ

2V 2

τLd(Ld+2Lr)
s 2V (Ld+Lr)

τLd(Ld+2Lr) −
2V 2

Ld(Ld+2Lr)
s0 2V 2

τLd(Ld+2Lr)

(4-25)

According to the Routh-Hurwitz Criteria [35], the system is stable if and only if:

1
τ
> 0

2V (Ld + Lr)
τLd(Ld + 2Lr)

− 2V 2

Ld(Ld + 2Lr)
> 0

2V 2

τLd(Ld + 2Lr)
> 0

(4-26)

In the merge maneuvers, V > 0 and τ > 0. As they are geometric parameters of the truck,
Ld > 0 and Lr > 0. Hence the stability criteria is illustrated in Equation 4-27.

Ld > V τ − Lr (4-27)

According to Equation 4-27, the look-ahead distance depends on the speed, actuator time
constant τ and the distance from the rear axle to the anchor point. Since both τ and Lr are
constant with respect to the same vehicle, the look-ahead distance is mainly determined by
the vehicle speed.

4-3-3 Steering Controller Design for the Truck

The modified pure-pursuit steering controller uses the CoG of the vehicle as the anchor point,
and we also use the CoG of the truck to define the location of the truck in this work. In this
subsection, we design a steering controller for the truck based on the modified pure-pursuit
control method.

[30] proposed a scheduled Ld, as Equation 4-28 shown, based on the command velocity.
However, the Equation 4-28 is not suitable for the truck since the actuator time constant τ
of the truck is larger, and the speed of the truck in the highway is higher than the speed of
the vehicle in the urban situation.

Ld(Vref) =


3 Vref < 1.34m/s

2.24Vref 1.43m/s ≤ Vref < 5.36m/s
12 otherwise

(4-28)

Although the Equation 4-28 does not work for the truck in highway, it gives us good guidance.
Since this work is focused on merging manoeuvres of the truck on the highways, we only con-
sider the velocity in these manoeuvres. The [36] has pointed out that the average speed of
the truck in a four-lane divided highway is around 18.3 m/s (ca. 66 km/h). Hence, we can

Master of Science Thesis Yangxiao Ou

52 Controller Design

assume that the velocity of the truck does not exceed 18.3 m/s during merging manoeuvres.
According to Equation 4-28, Ld could be chosen as 12 m. To ensure the stability, Equation 4-
27 must be satisfied. The actuator time constant of truck is τ = 1.5 s, the minimum value of
Ld with respect to different speeds are listed in Table 4-3

Vref 11.1 m/s (ca. 40 km/h) 18.3 m/s (ca.66 km/h) 27.8 m/s (ca.100 km/h)
Ld,min 14.2 m 25 m 39.2 m

Table 4-3: The minimum value of the look-ahead distance Ld with different velocities.

In order to keep the stability of the controller during merging manoeuvres, the minimum
value of the look-ahead distance Ld cannot smaller than 25 m. We have already known that
a larger Ld means smoother converge to the reference path. Figure 4-13 shows the tracking
performance of the steering controller with different values of the look-ahead distance Ld. In
Figure 4-13, the controller with Ld = 30 m tracks the reference paths best and shows least
tracking error. Hence, we can choose the Ld = 30 m in this work.

Figure 4-13: The performance of the steering controller with different values of Ld.

To test the designed steering controller, we regard the velocity as a constant. Figure 4-14
shows the tracking performance of the steering controller with V = 18 m/s. Figure 4-15
shows the tracking performance of the steering controller with V = 13 m/s From Figure 4-14
and Figure 4-15, it can be seen that the steering controller can track the reference curve with
different curvatures. There exist tracking errors, but the tracking errors are small.

Yangxiao Ou Master of Science Thesis

4-3 Steering Controller 53

Figure 4-14: The performance of the controller with the modified pure-pursuit algorithm. The
look-ahead distances Ld is chosen as Ld = 30 m. The velocity V = 18 m/s. The blue line is the
reference curve, the red line is the tracking curve.

Master of Science Thesis Yangxiao Ou

54 Controller Design

Figure 4-15: The performance of the controller with the modified pure-pursuit algorithm. The
look-ahead distances Ld is chosen as Ld = 30 m. The velocity V = 13 m/s. The blue line is the
reference curve, the red line is the tracking curve.

Yangxiao Ou Master of Science Thesis

4-4 Summary 55

4-4 Summary

The controller is designed to make the vehicle following the reference path. In this chapter,
we focus on the controller designed for controlling the speed and the steer angle.

A PID controller is designed here to control the speed of the truck. When the truck merges
from the ramp to the highway, it should have a similar velocity to the vehicles in the target
lane. The designed PID controller can make quick response and zero steady-state errors.
Moreover, it can keep the speed of the truck in a range from 12m/s to 25m/s, which satisfies
the requirements of merging manoeuvres.

A pure-pursuit controller is designed to control the steering of the truck. A pure-pursuit
controller is a simple control law with a clear geometric meaning. It works by calculating
the instantaneous curvature of the path that the vehicle intends to generate with the current
state. The look-ahead distance imposes a significant effect on the performance of this kind of
algorithm. A large look-ahead distance brings fewer disturbances to the system, but it also
needs more time to converge to the reference path. The MIT proposed a modified pure-pursuit
control law. This control law uses the anchor point instead of the rear point to calculate the
instantaneous steering angle, which provides a large stable range for the controller. The min-
imum value of the look-ahead distance are pointed out in Table 4-3. In this case, we choose
Ld = 30 m to design the steering controller. The result shows that the designed modified
pure-pursuit controller can track the reference curve with a small tracking error.

These two controllers are designed for the truck model in the trajectory generator. Usu-
ally, the truck uses the same controllers to track the outputs of the generator. There exists
a mismatch between the truck model and the actual truck, therefore, the parameters of the
designed controllers may need to be adjusted when the controllers are used in the actual truck.

Master of Science Thesis Yangxiao Ou

56 Controller Design

Yangxiao Ou Master of Science Thesis

Chapter 5

Simulations and Results

The previous chapter has introduced the solutions of the trajectory generation problem. In
this chapter, we focus on the implementations of the algorithms described in previous chapter.

The RRT algorithm works in the configuration space. Before implementing the algorithm,
we should model the road and the traffics information into the configuration space. In this
work, the road is represented in the configuration space by using the coordinate frame like
Figure 5-1. The locations of vehicles are described in the configuration space by using the
coordinates of their CoGs.

Figure 5-1: The road in the configuration space. The width of each lane is 3.5 m and the total
length of the road is 450 m. The grey area is the infeasible area that the truck cannot enter into,
and the white area is the drivable area.

The main ingredients of the planner are the start state, goal state and the deviations for the
goal state. The start state is the current state of the vehicle when the merging command is

Master of Science Thesis Yangxiao Ou

58 Simulations and Results

given. The goal state is the ideal state we want to achieve. Usually, it is time-consuming to
achieve an ideal state. To speed up the algorithm, we define an acceptable deviation for the
goal state. This is the so-called goal region that is an area centred by the goal point. It is
determined when goal point and the deviations are given. The algorithm begins to work after
the merging command is given, and stops when the goal region is reached. As the previous
chapter discussed, with regard to the merging manoeuvres, the centre deviation of the truck
and the lane cannot exceed 0.5 m in Y-axis for the purpose of safety. Compared with the
deviation of the goal point in the Y-axis, the deviation in X-axis could be larger since we
do not require the truck arriving at a specific point in the X-axis. Before we implement the
algorithm in different scenarios, these ingredients must be determined.

The algorithm is implemented in MATLAB/SIMULINK environment in this work. There are
two key time steps: the path update time-step ∆t and the integration time-step ∆T . For the
offline implementation over open-loop system, the truck model is solved by the Runga-Kutta
method with time step size ∆T = 0.03 s and ∆T = 0.05 s, respectively. For the implemen-
tations over closed-loop system, the truck motion is analysed in SIMULINK. There are two
types of solvers in SIMULINK: the variable-step solvers and the fixed-step solvers. Fixed-step
solvers solve the model at step sizes from the beginning to the end of the simulation, whereas
variable-step solvers vary the step size during the simulation. The choice between these types
depends on how to deploy the model and the model dynamics. If planning to generate code
from your model and run the code on a real-time computer system, a fixed-step solver is cho-
sen to simulate the model, since it is impossible to map the variable-step size to the real-time
clock. If we want to solve the truck motion in short time, a variable-step solve is recommended.

In order to implement the algorithm in real-time condition, we use a fix-step solver to solve
the model in real-time implementation. The step size of the solve affects the efficiency a lot.
The integration time-step is set as ∆T = 0.001 s in this work, since we want a good accuracy
of the results. In the highway scenarios, the velocities of the surrounding traffics are high.
To guarantee the safety, the update time-step cannot be large. In this case, we set it as
∆t = 0.05 s. The algorithm extends until the environment information is updated, then the
tree is cleared and a new tree is built based on the new information of the environment.

The algorithm is mainly implemented in the merging scenarios with different parameters.
Considering a basic merging scenario, as Figure 5-2 shows, the truck moves from the accel-
eration lane to the target lane, and plans to merge into the putative leader (PL) vehicle and
the putative follower (PF) vehicle on the highway. The task of the generator is to plan a
trajectory for the truck merging into the gap between putative leader (PL) vehicle and the
putative follower (PF) vehicle. The red dotted block in Figure 5-2 is the goal region. Its size
is determined by the tolerance of the final state, and its location is determined by the goal
point. The scenarios are based on this simple scenario in this chapter.

This chapter contains four sections. The first section shows the results of the bias for the
sampling strategy. The second section shows the results of the offline implementation over
open-loop system and closed-loop system, and the discussion is made under the results. The
third section illustrates the results of the on-line implementation with different gaps and ve-
locities in the merging scenario, and the discussion is also made under these results. The last
section summaries the main work of this chapter.

Yangxiao Ou Master of Science Thesis

5-1 Parameterisation of Bias 59

Figure 5-2: The merging scenario of a truck. The orange blocks represent the putative leader
vehicle and the putative follower vehicle. The dark blue block represents the truck. The red stars
represent the start point and the goal point. The red dotted block is the goal region.

5-1 Parameterisation of Bias

The bias that is used to change the sampling probabilities of the points in the configuration
space is the key of the sampling strategy. In this section, the bias is determined by testing the
algorithm with different biases in the merging scenario. As the previous chapter described,
the standard Gaussian distributions is used in this work. The parameters of the bias that
needs to be defined in Equation 3-2 are the offset of the goal region r0, the standard devia-
tion σr in the radial direction and σθ in the circumferential direction. The Bias is determined
over the closed-loop system offline. The scenarios used in this section are described as follows.

Considering the configuration space as Figure 5-3 shows, the gaps between two vehicles are
100 m in the Lane 1, and are 150 m in the lane 2 in this configuration space. The state of the
truck can be described by (X,Y, θ, V) at time t, where (X,Y) is the coordinates of the CoG
of the truck, θ is the orientation angle and the V is the speed of the truck. To simplify the
problem, we first assume that the truck moves with constant velocity. Varying speeds will be
addressed in next paragraph. Hence, the state of the truck is (X,Y, θ) in this section. Since
we always expect the truck can arrive at the centre of the lanes in the Y-axis, we use 2.75
m, 6.25 m, and 9.75 m as the coordinate of Y-axis for the vehicles located in the acceleration
lane, Lane 1 and Lane 2 in Figure 5-3, respectively. As the aim is to determine the parameters
of the bias and to prove the advantage of the sampling strategy, we set the tolerance of the
goal [∆X,∆Y,∆θ] as [30 m, 0.25 m, 0.1 rad] in the configuration space.

To prove the advantage of the sampling strategy, a comparison has been made between the
algorithm with the sampling strategy and without this strategy in five different scenarios. In
the first two scenarios, the truck merges from the acceleration lane to Lane 1. In the scenario
3 and scenario 4, the truck changes its lane from the Lane 1 to the Lane 2. In the last sce-
nario, the truck follows the leader vehicle in the Lane 1. In order to make comparison more
easily, we assume the truck moves with constant speed 16.7 m/s (ca.60 km/h) in these five

Master of Science Thesis Yangxiao Ou

60 Simulations and Results

Figure 5-3: The configuration space used in this sections. The gaps between two vehicles are
100 m in the Lane 1, and are 150 m in the lane 2 in this surface. The dark blue block represents
the truck, the light blue blocks present the surrounding traffics.

scenarios. The time duration are listed in Table 5-1. The parameters used in this comparison
are listed in Table 5-2.

Scenario 1 2 3 4 5
Start state (X,Y, θ) (100, 2.75, 0) (150, 2.75, 0) (160, 6.25, 0) (170, 6.25, 0) (350, 6.25, 0)
Goal state (X,Y, θ) (160, 6.25, 0) (210, 6.25, 0) (220, 9.75, 0) (230, 9.75, 0) (410, 6.25, 0)
Time with bias 13.617 s 14.749 s 14.760 s 15.796 s 16.076 s

Time without bias 14.513 s 20.093 s 19.486 s 19.599 s 55.767 s
Generated nodes with bias 80 83 108 114 115

Generated nodes without bias 100 132 147 148 442

Table 5-1: Comparison the costs of the algorithm with bias and without bias. The costs are
described by the needed time to achieve the goal, and the nodes in the tree. The tests are
implemented with the same conditions. The planned paths for these five scenarios consist of
nearly the same number of nodes.

σθ (rad) σr (m) r0(m) θ0(rad) µθ (rad) µr (m)
π
12 3 1 0 0 0

Table 5-2: Parameters for the bias to the distributions used in comparison between the algorithm
with bias and without bias.

From Table 5-1, we can see that the RRT algorithm with bias spends less time to achieve
the goal than the algorithm without bias. The nodes needed to plan the path are less for the
algorithm with bias than for the algorithm without bias. More useless nodes are generated
by the algorithm without bias. The planned paths for these five scenarios consist of almost
the same number of nodes.

Yangxiao Ou Master of Science Thesis

5-1 Parameterisation of Bias 61

Adding a bias to the algorithm can improve the efficiency of the algorithm, but different
biases impose different effects on the result. The parameters of Equation 3-2 are determined
by the vehicle location, road condition and the traffic rules. For the merging manoeuvres on
the highway, the vehicle can only move forward in a lane. So the nodes located in the moving
forward direction need to be sampled with high probability. In order to make the distribution
easy to understand, we set µr = 0 and µθ = 0. Since the bias is determined for merging
manoeuvres, we can define θ0 = 0 at initial state.

Firstly, we determine the value of the offset of the goal point r0. We keep the values of
σr and σθ as constant and change the value of r0, then compare the performance of the
algorithm. Table 5-3 depicts the results of the time, the planned path and the number of
generated nodes with different values of r0. From Table 5-3, we can see the value of r0 imposes
small influences on the results when the value of r0 is not large. In this project, we determine
r0 = 1 m.

σr (m) σθ (rad) r0 (m) Time (s) Nodes of path Generated nodes
π
12 3 0.01 19.98 55 56
π
12 3 0.1 19.96 55 56
π
12 3 0.5 18.95 55 56
π
12 3 1 19.01 55 56
π
12 3 3 19.13 55 57
π
12 3 5 20.12 55 57
π
12 3 10 60.65 60 132
π
8 3 0.01 21.24 60 61
π
8 3 0.1 21.27 60 62
π
8 3 0.5 22.74 63 65
π
8 3 1 22.23 62 63
π
8 3 3 22.91 63 65
π
8 3 5 24.58 65 70
π
8 3 10 181.75 60 214

Table 5-3: The comparison results of the costs with different value of r0. σθ = π
12 , σr = 3,

µr = 0 and µθ = 0.

Figure 5-4 illustrates the distribution of the points with different parameters. From Figure 5-
4, it can be concluded that a longer distribution can be obtained by increasing the σr, and a
wider distribution can be obtained by increasing the σθ.

The values of σr and σθ affect the efficiency of the sampling. With respect to merging ma-
noeuvres on the highway, the speed varies from 11.1 m/s (ca.40 km/h) to 27.8 m/s (ca.100
km/h) for the truck, and more than 70% drivers begin to merge into the main lane at the
first two third part of the acceleration lane [37]. Hence, we choose the points (150, 2.75) and
(210, 6.25) as the start point and the goal point, respectively, to test the costs of the algorithm
with respect to different values of σθ and σr. The initial and final speed of the truck can set as
Vinit = 16.7 m/s (ca.60 km/h) and Vfinal = 18.3 m/s (ca.66 km/h), respectively. Table 5-4
lists the results of these tests.

Master of Science Thesis Yangxiao Ou

62 Simulations and Results

Figure 5-4: The distribution of 500 points with different standard deviation σr and σθ, the means
µ of the Gaussian distributions are µ = 0.

According to Table 5-4, we can see that the algorithm with the bias σr = 3 m and σθ = π
12

rad, σr = 3 m and σθ = π
8 rad, σr = 1 m and σθ = π

8 rad, σr = 0.1 m and σθ = π
4 rad and

σr = 0.01 m and σθ = π
4 rad use similar time to achieve the goal. The time to reach the goal

is around 20 s. Among them, the algorithm with σr = 1 m and σθ = π
8 rad use least time,

but the algorithm with σr = 3 and σθ = π
8 generates longest path. A longer path means the

algorithm can look ahead farther. Hence, we choose σr = 3 and σθ = π
8 rad as the parameters

of the bias for merging manoeuvres in this work. Table 5-5 gives all the information of the
bias used in this work. Figure 5-5 shows the distribution with the parameters in Table 5-5.
In addition, from Table 5-4 we can find that the algorithm can achieve the goal with σr = 11

Figure 5-5: The distribution with the parameters listed in Table 5-2. 500 samples have been
plotted in this figure. The goal point is (210, 6.25)

m when σθ = π
12 rad; the algorithm can achieve the goal with σr = 1 m when σθ = π

8 rad;

Yangxiao Ou Master of Science Thesis

5-1 Parameterisation of Bias 63

σr (m) σθ (rad) Time (s) Nodes of path Generated nodes
11 π

12 49.41 45 116
11 π

8 727.27 70 1896
11 π

4 760.84 70 2034
9 π

12 33.66 47 95
9 π

8 69.47 61 173
9 π

4 616.68 70 1569
7 π

12 38.63 63 110
7 π

8 59.10 63 140
7 π

4 454.34 70 1087
5 π

12 22.21 55 68
5 π

8 30.37 62 91
5 π

4 464.33 67 1159
3 π

12 20.13 55 56
3 π

8 20.92 63 64
3 π

4 59.24 70 71
1 π

12 110.71 55 56
1 π

8 19.24 57 58
1 π

4 25.38 64 66
0.5 π

12 >2000 – –
0.5 π

8 49.32 57 57
0.5 π

4 22.09 63 64
0.1 π

12 >2000 – –
0.1 π

8 >2000 – –
0.1 π

4 20.38 60 62
0.01 π

12 >2000 – –
0.01 π

8 >2000 – –
0.01 π

4 19.41 60 65

Table 5-4: The comparison results of the costs with different value of σθ and σr. The µr = 0
and µθ = 0. The symbol ’–’ means no nodes is generated.

σθ (rad) σr (m) r0(m) θ0(rad) µθ (rad) µr (m)
π
8 3 1 0 0 0

Table 5-5: Parameters for the bias to the distributions of merging maneuvers on the highway.

Master of Science Thesis Yangxiao Ou

64 Simulations and Results

and the algorithm can achieve the goal with σr = 0.5 m when σθ = π
4 rad. Although the

listed data are limited, they can still show a tendency that the algorithm works efficiently
with a large σr and a small σθ.

5-2 Offline Implementation

The off-line RRT algorithm is implemented when the information of the environment is not
updated. We apply this algorithm on both the open-loop system and the closed-loop system
in this section.

In this scenario, the vehicle try to merge into two vehicles in the lane, as Figure 5-2 shows,
and the gap between these two vehicles is 100 m. The tolerance of the goal [∆X,∆Y,∆θ] is
set as [30 m, 0.2 m, 0.15 rad] for the implementation over the open-loop system. With regard
to the closed-loop system, both the tolerances of [40 m, 0.2 m, 0.15 rad] and [20 m, 0.1 m, 0.05
rad] are used.

The first part of this section discusses the algorithm implementation in the open-loop system.
The middle of this section discusses the algorithm implementation in the closed-loop system.
At the end of this section, the results are discussed.

5-2-1 Offline Implementation over the Open-Loop System

The open-loop vehicle system is described in Equation 2-8. The configuration space C and
the inputs space U to the open-loop system are:

[X,Y, θ, V, δ, V̇ , δ̇]T ∈ C
[a, r]T ∈ U

Here, we only use the sampling strategy for the sampling of configuration space in order to
make clear comparison with the implementation over closed-loop system. As Equation 3-4
illustrates, the step-size ∆T affects the results of the Runge-Kutta method. A suitable inte-
gration step-size ∆T affects the smoothness of the trajectory and the computation time. If
the time step-size is too large, each step length will be too long. A long trajectory means
high collision probability and low smoothness. However, if the time step size is too small, the
computation time increases. Table 5-6 has listed the computation time of the algorithm to
find a feasible path with different time step sizes, the generated nodes and the nodes of the
planned path.

In Table 5-6, the computation time of the algorithm with step-size ∆T = 0.03 s to find the
path is as 8 times as the time of the algorithm with step-size ∆T = 0.05 s. However, they
generate paths with same length. The total number of generated nodes for the algorithm
with step-size ∆T = 0.03 s is as about 2.3 times as the total number of generated nodes for
the algorithm with step-size ∆T = 0.05 s. The planned the paths and their corresponding

Yangxiao Ou Master of Science Thesis

5-2 Offline Implementation 65

∆T Time(s) Generated Nodes Nodes of path
0.05 10.9 3896 31
0.03 89.7 8976 31

Table 5-6: The computation time of the algorithm to find a feasible path with different time
step sizes. The generated nodes means the nodes in the tree, and the nodes of path means the
number of the nodes constructing the planned path.

parameters are presented in Figure 5-7 and Figure 5-6.

Figure 5-6: The generated path and its corresponding velocity, steering angle, orientation angle,
steering rate and acceleration. The step-size ∆T = 0.03 s.

In Figure 5-6 and Figure 5-7, we can see that the accelerations and steering rates have obvious
disturbances. The main reason for the disturbances is that the acceleration and the steering
rate are randomly sampled from the inputs space U . The disturbances may be reduced by
sampling the derivatives of the acceleration and steering rate, instead of sampling the ac-
celeration an steering rate directly. The two paths also show some disturbances. The path
planned with step size ∆T = 0.03 s is much smoother than the path planned with step size
∆T = 0.05 s.

5-2-2 Offline Implementation over the Closed-Loop System

The vehicle model of the closed-loop system is described in Equation 2-14. The configuration
space C and the inputs space U to the closed-loop system are:

Master of Science Thesis Yangxiao Ou

66 Simulations and Results

Figure 5-7: The generated path and its corresponding velocity, steering angle, orientation angle,
steering rate and acceleration. The step-size ∆T = 0.05 s.

[X,Y, θ, V, δ, V̇ , δ̇]T ∈ C
[Xref , Yref]T ∈ U

Using the closed-loop RRT algorithm illustrated in Algorithm 3, we can plan a trajectory
for the truck in the scenario described in Figure 5-3. The path generated by the closed-loop
planner is shown in Figure 5-8. The lateral deviation is 0.15 m and the final orientation angle
is 0.09 rad. The reference paths and the generated path are illustrated in Figure 5-9.

The closed-loop RRT algorithm samples the input to the controller, and we use the same
controllers to control the lower level system. Hence, it can validate the planned trajectory
by reconstructing a trajectory with the reference path in a closed-loop system. Figure 5-10
compares the reconstructed trajectory, the planned trajectory and the reference paths used to
reconstructed trajectory. From Figure 5-10, we can see that there exists a small error between
the reconstructed trajectory and the planned trajectory. This is because the RRT algorithm
is a discrete method to plan the trajectory. The planned path consists of a series of short line
segments, whereas the reconstructed path is a continuous path. An optimisation algorithm
may reduce the error, but it cannot eliminate the error.

The length of the step size ∆r in the function STEER() in Algorithm 2 imposes an effect
on the closed-loop RRT algorithm. Increasing the ∆r means increasing the length of the
reference path. The longer reference path means a larger step size which will lead to a large
quantity of waste samples. When we set ∆r = 1 m, the trajectories in Figure 5-8 can be ob-
tained, however, when we enlarge ∆r to ∆r = 3 m, no trajectory can be found. Nevertheless,
it does not mean that a smaller ∆r results in higher efficiency. When we set ∆r = 0.5 m, a
trajectory is planned with thousands seconds computation time.

Yangxiao Ou Master of Science Thesis

5-2 Offline Implementation 67

Figure 5-8: The generated trajectory. This trajectory is obtained with Vinit = 16.7m/s (ca.
60km/h).

Figure 5-9: The reference path (the red line in this figure) and the corresponding generated path
(the blue line in this figure).

Master of Science Thesis Yangxiao Ou

68 Simulations and Results

Figure 5-10: The planned trajectory (the orange line) and the reconstructed trajectory (the
yellow line).

The stop criterion also affects the algorithm efficiency. In Figure 5-8, the orientation an-
gle θ is 0.06 rad when the goal region is achieved. The stop criterion with respect to the θ is
set to -0.1 rad ≤ θ ≤ 0.1 rad in this case. We can also use a tighter criterion for θ. However,
a tighter criterion means much efforts to achieve the goal. In this case, if we narrow the range
to 0.05 rad ≤ θ ≤ 0.05 rad, then no path can be found. The number of nodes needs to find
the best safe path is more than 50000, and the time to generate 50000 nodes is larger than
one thousand second.

To balance the computation time and the accuracy of the result, we propose to combine
the criteria. That is, when the tree is far from the goal point, only two criteria are used to
stop the algorithm. After the tree is close to the goal point, one or more criteria are added to
stop the algorithm. The results are shown in Figure 5-11 and Figure 5-12. From Figure 5-11,
it can be seen that the final orientation angle of the truck is less than 0.05 rad, and the lateral
deviation is 0.02 m.

5-2-3 Discussion

In this section, we implement the RRT algorithm off-line. Two different vehicle systems are
used in this section: the open-loop system and the closed-loop system. The open-loop system
is the vehicle model without controller. The inputs for this system are the acceleration and
the steering rate. The closed-loop system is the vehicle model with controller. The inputs for
the closed-loop system are a set of reference segments.

Some parameters may affect the results of the algorithms. For the algorithm over the open-
loop system, the integration step-size ∆T plays a significant role. A too small step-size leads
to a huge computation time, whereas a too large step-size results in large deviations. For
the algorithm over the closed-loop system, the stop criterion and the length of the step-size

Yangxiao Ou Master of Science Thesis

5-2 Offline Implementation 69

Figure 5-11: The generated trajectory. This trajectory is obtained with combined stop criteria.

Figure 5-12: The reference path (the red line), and the planned trajectory (the blue line). This
trajectory is obtained with combined stop criteria.

Master of Science Thesis Yangxiao Ou

70 Simulations and Results

∆r impose obvious influence on the results. The length of the step-size ∆r should chosen
properly. A too large ∆r may lead the algorithm failing to work, whereas a too small ∆r
will waste a lot of computation time. Based on the tuning experience, the value of ∆r can
be chosen as ∆r = 1 m in this case.

As for the stop criterion, when we use too many criteria, the computation time is long.
However, when we choose few criteria, the results are not good. To balance the computation
time and the accuracy of the results, the combined criteria are proposed there. Comparing
Figure 5-11 and Figure 5-8, we can see that the trajectories generated by combined stop
criteria and single stop criterion show small difference on smoothness. But the trajectory
with the combined stop criteria shows more accurate results. The final lateral deviation and
the final orientation angle of the trajectory with the combined stop criteria are smaller than
them of the trajectory with single stop criterion. Additionally, the computation time with
the combined stop criteria is much lower than with the single stop criterion.

We have seen that there exist disturbances in the simulation results of open-loop system.
In Figure 5-7 and Figure 5-6, large disturbances occur in the acceleration a and the steering
rate r. This is because that the value of the acceleration a and the steering rate r that drive
the vehicle from the current position to the next position are randomly sampled from the
inputs space in the open-loop conditions. This disturbance can be reduced by sampling the
rate of the acceleration ȧ and the rate of the steering rate ṙ, instead of sampling acceleration
a and steering rate r. This method has the potential to smooth the curves of the acceleration
and steering rate, but it also increases the computation cost.

The disturbances appear in the simulation results of the closed-loop system as well. In
Figure 5-10 and Figure 5-12, the reference path shows disturbance when it is near to the goal.
This is because that the sampling probability is higher and the sampling range is narrower
near the goal range than far from the goal range. It does not affect the performance of the
closed-loop RRT algorithm, because the step size of the RRT algorithm is small and the ref-
erence path is only to provide the prorogation tendency of the algorithm. This phenomenon
can be improved by reducing the maximum step size of the algorithm. In Figure 5-8 and
Figure 5-11, the curves of the steering angle, orientation angle and the steering rate show
different disturbance. In the closed-loop system, the steering angle is calculated by using the
coordinates of the sampled nodes. Since the nodes are sampled randomly, the curve of the
steering angle is not as smooth as of the velocity. Additionally, the values of the steering angle
are small. The capacity of the computer itself is also contributed to the small disturbance.
The disturbance of the steering rate seems to be large. This is because the steering rate is
obtained by deviating the steering angle.

Besides, from Figure 5-6, Figure 5-7 and Figure 5-8, we can see that the trajectory planned
by the closed-loop RRT algorithm shows less disturbance and is smoother than the trajectory
planned by the open-loop RRT algorithm. Moreover, it is much difficult to limit the speed of
the open-loop system by using RRT algorithm, because the inputs of the system are randomly
sampled from the input space. The algorithm over the closed-loop dynamics gives a better
performance than the algorithm over the open-loop dynamics. In the next section, we apply
the closed-loop RRT algorithm to generate the trajectory in the real-time situation.

Yangxiao Ou Master of Science Thesis

5-3 Real-Time Implementation 71

5-3 Real-Time Implementation

In this section, we apply the closed-loop RRT algorithm online. The closed-loop RRT algo-
rithm uses a closed-loop model embedded with controllers to make the prediction. Actually,
it is a method to generate control signals to the controller, and the lower-level system must
use the same controller as the planner. Hence, we can validate the trajectory planned by the
closed-loop RRT algorithm by sending the reference path sequences to the same controller,
and check whether the planned path matches the reconstructed path by the same controller.
The real-time implementation is based on the offline planning method.

The merging scenario of a truck from the ramp to the highway is described in Figure 5-
13. We use the distance of CoGs of the PF vehicle and the PL vehicle to represent the length
of the gap in the configuration space. Actually, the actual gap for the truck merging into is 5
m smaller than the gap since we consider the lengths of the surrounding vehicles are 5 m in
the configuration space. The dynamics of the PF vehicle and the PL vehicle can be described
by Equation 2-16. In different scenarios, the values of the accelerations and gap are different.
The scenarios are described in Table 5-7.

Figure 5-13: The merging scenario of a truck from the ramp to the highway in the real-time
implementation. The initial speed of the truck is 16.7 m/s (ca.60 km/h). The speed of the
vehicles in the target lane is 18.3 m/s.

Scenario Gap PL acceleration PF acceleration Start point Goal point
6 100 m 0 0 [130,2.75,0] [210,6.25,0]
7 50 m 0 0 [120,2.75,0] [210,6.25,0]
8 50 m 0 0.5 (m/s2) [145,2.75,0] [200,6.25,0]
9 50 m -0.5 (m/s2) 0. [165,2.75,0] [220,6.25,0]
10 40 m 0 0 [155,2.75,0] [210,6.25,0]

Table 5-7: Different scenarios used in the real-time implementation.

Master of Science Thesis Yangxiao Ou

72 Simulations and Results

5-3-1 Real-Time Implementation in Different Scenarios

Firstly, we consider a large gap to execute the merging manoeuvre. Consider the scenario
6 that a truck is moving on the ramp of the highway, and intends to merge into the target
lane. The vehicles move in the target lane with the speed V = 18.3 m/s (ca. 66 km/h) and
acceleration a = 0 m/s2. The gap between the putative leader vehicle (PL) and putative
follower vehicle (PF) is 100 m. We update the environment every ∆t = 0.05 s. The tolerance
of the goal is [50 m, 0.2 m].

Figure 5-14 shows the generated trajectory as well as its corresponding heading angle, ve-
locity, acceleration, steering angle and steering rate. In Figure 5-14, the coordinates is [198
m,6.05 m], the orientation angle is θ = 0.058 rad and the steering angle is δ = 0.001 rad at
the final state. Although the deviation of the orientation angle and the steering angle are
small, the deviation in Y-axis is not so small.

Figure 5-14: The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h),
∆t = 0.05 s, gap = 100 m, a = 0 m/s2, and truck initial speed is V = 16.7 m/s (ca. 60 km/h).

In Figure 5-14,the steering angle and the steering rate show slight disturbances near the goal
point. This is caused by the chaotic behaviour of the reference path near the goal region. The
sampling probability increases near the goal region, but the sampling time at each planning
cycle is limited. If we can prolong the sampling duration, this means we can have more choices
for the best safe node sequence, and then a better trajectory can be generated. However, it is
not a good method to prolong the sampling duration, since it will largely increase the com-
putation burden. According to our own experience, at most times, even though we increase

Yangxiao Ou Master of Science Thesis

5-3 Real-Time Implementation 73

the sampling duration, the disturbances cannot be eliminated.

To obtain better trajectory, we apply the combined stop algorithm on the online imple-
mentation. The criteria used when the tree is near to the goal point are more than used
when the tree is far from the goal point. In the previous chapter, we have discussed that if
we use too many criteria to stop the algorithm at the very beginning, the algorithm may fail
to work because of the huge computational burden. However, when the truck is located near
the goal point, adding more criteria to stop the algorithm really helps to find better result
with relative lower computational cost.

Taking scenario 6 as example, after the truck approaches near to the goal point, the cri-
teria would be set over both the goal region and the orientation angle. The algorithm will
stop if and only if all the criteria are satisfied. In the scenario 6, we set the deviation in the
lateral direction as not more than 0.2 m when the truck is far from the goal point. However,
the lateral limitation would be set as less than 0.1 m when the truck is close to the goal point.
Additionally, the criterion over the orientation angle θ is introduced as -0.02 rad < θ < 0.02
rad here. Now, the tolerance of the goal becomes [20 m, 0.1 m, 0.02 rad].

The Figure 5-15 presents the results with the combined criteria. The Figure 5-17 shows
the central distance of the truck and the putative leader vehicle, and the central distance of
the truck and the putative follower vehicle, respectively. The coordinates is [210 m,6.28 m],
the orientation angle is θ = −0.016 rad and the steering angle is δ = −0.008 rad at the final
state inn this case.

In the scenario 7, we choose a small gap with respect to scenario 6. Consider the truck is
moving on the ramp of the highway, and intends to merge into the target lane. The vehicles
move in the target lane with the speed 18.3 m/s (ca.V = 66 km/h) and a = 0. The gap
between the putative leader vehicle (PL) and putative follower vehicle (PF) is 50 m. The
actual gap is 45 m. We update the environment every ∆t = 0.05 s. The tolerances of the
goal are [40 m, 0.2 m] and [20 m, 0.1 m, 0.02 rad].

Figure 5-18 shows the generated trajectory. Figure 5-19 compares the reference path, re-
constructed path and the planned path. Figure 5-20 shows the central distance of the truck
and the putative leader vehicle, and the central distance of the truck and the putative follower
vehicle, respectively, in this scenario. The coordinates is [210 m,6.27 m], the orientation angle
is θ = −0.019 rad and the steering angle is δ = −0.007 rad at the final state.

Then, we give acceleration to the PF vehicle in the target lane. Consider the scenario 8 that
a truck is moving on the ramp of the highway, and intends to merge into the target lane. The
vehicles move in the target lane with the speed V = 18.3 m/s (ca.66 km/h). At this time,
the PF vehicle intends to accelerate with aPF = 0.5 m/s2. The gap between the putative
leader vehicle (PL) and putative follower vehicle (PF) is 50 m. We update the environment
every ∆t = 0.05 s. The tolerances of the goal are [40 m, 0.2 m] and [20 m, 0.1 m, 0.02 rad].

Figure 5-21 shows the generated trajectory. Figure 5-22 compares the reference path, re-
constructed path and the planned path. Figure 5-23 shows the central distance of the truck
and the putative leader vehicle, and the central distance of the truck and the putative follower

Master of Science Thesis Yangxiao Ou

74 Simulations and Results

Figure 5-15: The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h),
∆t = 0.05 s, gap = 100 m, a = 0 m/s2, and truck initial speed is V = 16.7 m/s (ca.60 km/h).

Figure 5-16: The planned path, reference paths and reconstructed path. This figure is obtained
by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), ∆t = 0.05 s, gap = 100 m, a = 0
m/s2, and truck initial speed is V = 16.7 m/s (ca.60 km/h).

Yangxiao Ou Master of Science Thesis

5-3 Real-Time Implementation 75

Figure 5-17: The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle, respectively. This figure is obtained by
setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0 m/s2, ∆t = 0.05 s, gap = 100 m,
and truck initial speed V = 16.7 m/s (ca.60 km/h).

Figure 5-18: The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h),
∆t = 0.05 s, gap = 50 m, a = 0, and truck initial speed is V = 16.7 m/s (ca.60 km/h).

Master of Science Thesis Yangxiao Ou

76 Simulations and Results

Figure 5-19: The planned path, reconstructed path and the reference path. This figure is
obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0, ∆t = 0.05 s, gap = 50
m, and truck initial speed V = 16.7 m/s (ca.60 km/h).

Figure 5-20: The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle, respectively. This figure is obtained by
setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0, ∆t = 0.05 s, gap = 50 m, and
truck initial speed V = 16.7 m/s (ca.60 km/h).

Yangxiao Ou Master of Science Thesis

5-3 Real-Time Implementation 77

Figure 5-21: The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h),
∆t = 0.05 s, gap = 50 m, aPF = 0.5 m/s2, and truck initial speed is V = 16.7 m/s (ca.60
km/h).

vehicle in x-axis and y-axis, respectively, in this scenario. The coordinates is [192 m,6.28 m],
the orientation angle is θ = −0.002 rad and the steering angle is δ = −0.012 rad at the final
state.

Besides, we can give deceleration to the PL vehicle in the target lane. Consider the scenario
9 that a truck is moving on the ramp of the highway, and intends to merge into the target
lane. The vehicles move in the target lane with the speed 18.3 m/s (ca.V = 66km/h). At
this time, the PL vehicle intends to decelerate with aPL = −0.5 m/s2. The gap between
the putative leader vehicle (PL) and putative follower vehicle (PF) is 50 m. We update the
environment every ∆t = 0.05 s. The tolerances of the goal are [40 m, 0.2 m] and [20 m, 0.1
m, 0.02 rad].

Figure 5-24 shows the generated trajectory. Figure 5-25 compares the reference path, re-
constructed path and the planned path. Figure 5-26 shows the central distance of the truck
and the putative leader vehicle, and the central distance of the truck and the putative follower
vehicle in x-axis and y-axis, respectively, in this scenario. The coordinates is [218 m,6.23 m],
the orientation angle is θ = −0.019 rad and the steering angle is δ = −0.012 rad at the final
state.

Lastly, we try to reduce the gap more and set limitations to the actual gaps among the PF
vehicle, the truck and the PL vehicle. Consider the scenario 10 that a truck is moving on the

Master of Science Thesis Yangxiao Ou

78 Simulations and Results

Figure 5-22: The planned path, reconstructed path and the reference path. This figure is
obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), aPF = 0.5 m/s2, ∆t = 0.05
s, gap = 50 m, and truck initial speed V = 16.7 m/s (ca.60 km/h).

Figure 5-23: The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle, respectively. This figure is obtained by
setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), aPF = 0.5 m/s2, ∆t = 0.05 s, gap = 50
m, and truck initial speed V = 16.7 m/s (ca.60 km/h).

Yangxiao Ou Master of Science Thesis

5-3 Real-Time Implementation 79

Figure 5-24: The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h),
∆t = 0.05 s, gap = 50 m, aPL = −0.5 m/s2, and truck initial speed is V = 16.7 m/s (ca.60
km/h).

Figure 5-25: The planned path, reconstructed path and the reference path. This figure is
obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), aPL = −0.5 m/s2, ∆t = 0.05
s, gap = 50 m, and truck initial speed V = 16.7 m/s (ca.60 km/h).

Master of Science Thesis Yangxiao Ou

80 Simulations and Results

Figure 5-26: The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle, respectively. This figure is obtained by
setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), aPL = −0.5 m/s2, ∆t = 0.05 s, gap = 50
m, and truck initial speed V = 16.7 m/s (ca.60 km/h).

ramp of the highway, and intends to merge into the target lane. The vehicles move in the
target lane with the speed 18.3 m/s (ca.V = 66km/h) and a = 0 m/s2. The gap between
the putative leader vehicle (PL) and putative follower vehicle (PF) is reduced to 40m. We
update the environment every ∆t = 0.05 s. The tolerances of the goal are [40 m, 0.2 m] and
[20 m, 0.1 m, 0.02 rad]. In order to guarantee the safety after the truck merges into the target
lane, we set a limitation to the gaps between two vehicles at the final state. We assume the
acceptable gap as 1 s, then the distances between the PF vehicle and the truck, and between
the truck and the PL vehicle must be larger than 9.15 m, since the velocities of the PF and
PL vehicle are 18.3 m/s.

Figure 5-27 shows the generated trajectory. Figure 5-28 compares the reference path, re-
constructed path and the planned path. Figure 5-29 shows the central distance of the truck
and the putative leader vehicle, and the central distance of the truck and the putative follower
vehicle, respectively, in the scenario 11. The coordinates is [202 m,6.27 m], the orientation
angle is θ = 0.03 rad and the steering angle is δ = −0.006 rad at the final state. The actual
gap between the PF vehicle and truck is 16.4 m, and between the truck and PF vehicle is 9.6
m.

5-3-2 Discussion

In this section, we implement the real-time algorithm in different scenarios and show the
trajectories generated by the online algorithm in these scenarios. The results are concluded
in Table 5-8.

In the scenario 6, the gap between the PF vehicle and the PL vehicle is 100 m and it keeps
constant during all the manoeuvres. We give the same acceleration and initial speed to the
PF vehicle and the PL vehicle, which does not affect the length of the gap, but it affects the
velocities of PF vehicle and PL vehicle. Based on the results, we can see that the algorithm
can find a smooth trajectory for the truck. Although there are some disturbances of the angles

Yangxiao Ou Master of Science Thesis

5-3 Real-Time Implementation 81

Figure 5-27: The planned path, orientation angle, velocity, steering angle, acceleration and
steering rate. This figure is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h),
∆t = 0.05 s, gap = 40 m, a = 0 m/s2, and truck initial speed is V = 16.7 m/s (ca.60 km/h).

Figure 5-28: The planned path, reconstructed path and the reference path. This figure is
obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0 m/s2, ∆t = 0.05 s,
gap = 40 m, and truck initial speed V = 16.7 m/s (ca.60 km/h).

Master of Science Thesis Yangxiao Ou

82 Simulations and Results

Figure 5-29: The central distance of the truck and the putative leader vehicle, and the central
distance of the truck and the putative follower vehicle in x-axis and y-axis, respectively. This figure
is obtained by setting obstacle speed Vob = 18.3 m/s (ca.66 km/h), a = 0 m/s2, ∆t = 0.05 s,
gap = 40 m, and truck initial speed V = 16.7 m/s (ca.60 km/h).

Scenario Goal state Orientation deviation Lateral deviation Related Figures
6 [210,6.25,0] 0.016 rad 0.03 m Figure 5-16,Figure 5-15,Figure 5-17
7 [210,6.25,0] 0.019 rad 0.02 m Figure 5-18,Figure 5-19,Figure 5-20
8 [200,6.25,0] 0.002 rad 0.03 m Figure 5-21,Figure 5-22,Figure 5-23
9 [220,6.25,0] 0.019 rad 0.02 m Figure 5-24,Figure 5-25,Figure 5-26
10 [210,6.25,0] 0.020 rad 0.02 m Figure 5-27,Figure 5-28,Figure 5-29

Table 5-8: Results of different scenarios in this section. The state includes the coordinates of
the trucks CoG and the orientation angle in this table.

Yangxiao Ou Master of Science Thesis

5-4 Summary 83

and the steering rate occurring at the end of the trajectory, these disturbances are very small.

In this section, we also compare the results obtained by the single stop criterion and the
combined stop criteria. Based on the simulation results, it can be seen that the results ob-
tained with the combined stop criteria are better than the results obtained with the single
stop criterion. The trajectory generated by combining different stop criteria has smaller lat-
eral deviation with regard to the goal point, and can adjust the orientation angle to a smaller
value when the truck has merged into the gap.

In the scenario 7, we apply the online RTT algorithm with the constant gaps that are smaller
than the constant gap of first scenario. Based on these results, we can see that the algorithm
succeeds to plan the trajectories when the gaps is 50 m. In the 8th and 9th scenario, we
implement the online algorithm on the changing gap. We give small acceleration and decel-
eration to the PF vehicle and PL vehicle, respectively. That makes the gap becoming smaller
and smaller during the merging maneuvers. In these two scenarios, the online algorithm also
succeeds to find the smooth trajectories for the truck. In the scenario 10, we reduce the size
of the gap to 40 m and set a limitation of the distance among the PF vehicle, the truck and
the PL vehicle in order to guarantee the safety after the truck merges into the target lane.
The simulation results indicates that the actual gaps among the PF vehicle, the truck and
the PL vehicle are larger than 9.15 m.

5-4 Summary

In this chapter, we determine the bias for the sampling strategy, and represent the simulation
results of the offline algorithm and online algorithm for merging maneuvers. Firstly, the bias
of the sampling space for merging maneuvers is determined. In the middle of this chapter,
the offline and online implementation results are depicted.

The bias for the sampling strategy is determined offline in the first section of this chap-
ter. The results show that the algorithm with bias σr = 3 m and σθ = π

8 rad is most suitable
for this work. Moreover, the bias helps to improve the efficiency of the algorithm. The bias
parameterised in this section is used for the offline and online implementation in this work.

The offline algorithm is applied on both the open-loop system and the closed-loop system.
In this part, we compare the parameters of the algorithm that affect the results, and the
trajectories planned by single stop criterion and the combined stop criteria. By using the
combined stop criteria, we can obtain more accurate results with less computational cost.
Besides, we also compare the results obtained with the open-loop system and the closed-loop
system.

The online algorithm is a combination of the offline algorithm and the replanning algorithm.
In this chapter, we apply the online algorithm in five different scenarios, and compare the
results obtained by the single stop criterion and the combined stop criterion in the first sce-
nario. The five different scenarios have different sizes of gap and dynamics of the PF and PL
vehicle. The online algorithm can generate smooth trajectories in these scenarios.

Master of Science Thesis Yangxiao Ou

84 Simulations and Results

Yangxiao Ou Master of Science Thesis

Chapter 6

Conclusions and Recommendations for
Future Work

This thesis presents the real-time implementation of the Rapidly-exploring Random Tree
(RRT) algorithm for planning the trajectory for a truck on the highway. Both the open-loop
RRT algorithm and the closed-loop RRT algorithm are applied to plan a trajectory to the
truck in the offline planning. The replanning algorithm is applied on the closed-loop system.
Simulations of the real-time implementations are done with different scenarios.

The main contributions of this thesis are:

• The proposal of the online RRT algorithm for the trajectory generation for trucks in
merging manoeuvres on the highway.

• The proposal of the ideas to improve the efficiency of the method.

• The implementation of the method in MATLAB/SIMULINK and analysis.

Additionally, the implementation of the presented algorithms in MATLAB code will allow for
future research of automated vehicles in the environment of MATLAB/SIMULINK.

6-1 Discussions and Conclusions

In this thesis, we develop the real-time RRT algorithm for a truck in merging manoeuvres on
the highways, and apply the off-line RRT algorithm on both the open-loop system and the
closed-loop system. The RRT algorithm is a flexible algorithm. Every parameter makes a
contribution to the final result. We have discussed the effects of the step size on the open-loop
RRT algorithm.

Master of Science Thesis Yangxiao Ou

86 Conclusions and Recommendations for Future Work

We use several strategies to improve the efficiency of the RRT algorithm in this thesis. The
first one is to change the sampling probability of the points in the configuration space, and
a suitable bias is chosen for a truck in the merging manoeuvres. Additionally, we propose a
rule helps to find the bias. The second strategy is to make more trials for node selection. The
last strategy is to use combined criteria to stop the propagation of the tree.

With regard to the collision detection, the bounding volume is introduced to model the truck
and the obstacles on the highway. We discuss the different bounding volumes for collision
detection, and finally we use the OBB for the truck. To improve the safety, we enlarge the
lateral sizes of the truck and the surrounding vehicles when detecting the collision. Consid-
ering the potential errors caused by the inertia of vehicles and the latency of the system, a
incremental part is attached to the vehicles when checking collisions.

The main conclusions that are made in this thesis work, with regard to the real-time im-
plementation of a sample-based trajectory generator for trucks in merging manoeuvres on
highways, are:

• The results of the offline implementation over the open-loop RRT algorithm and closed-
loop RRT algorithm show that the closed-loop RRT algorithm can plan a smoother
trajectory than the open-loop RRT algorithm.

• The step size of the RRT algorithm makes a contribution to the results. The results
show that a small step size means a smooth trajectory, as well as more computational
effort. A suitable step size can improve the performance of the RRT algorithm.

• The combined stop criteria can improve the efficiency of the algorithm. This strategy
uses different criteria when the vehicle is far from the goal and when it is close to the
goal. When the vehicle is far from the goal, we focus mainly on the changes of the
location and give more tolerance to the orientation angle. However, when the vehicle is
close to the goal, the tolerance of the orientation angle becomes small.

• The sample bias can be inserted into the sampling function. The simulation results
illustrate that the bias indeed improves the efficiency of the RRT algorithm in path
planning.

6-2 Recommended Future Work

1. Collision Detection Method This thesis uses the line-line intersection method to
detect the collision. It is the simplest method to detect the collision, and only works
well with simple regular polygons. Future work can focus on a new efficient collision
detection method.

2. Controllers A PID controller and a pure-pursuit controller are used to control the
speed and the steering, respectively. In this work, we develop the real-time algorithm
over the closed-loop system, and the outputs of the trajectory generator are a set of
segments. Usually, we use the same controllers for the vehicle to track these segments.

Yangxiao Ou Master of Science Thesis

6-2 Recommended Future Work 87

Future work can try to use other different controllers with a more complex vehicle model
to track these segments. Besides, we use 2nd Ziegler-Nichols to tune the system in this
work, but it does not work well. Future works can focus on the other method to tune
the PID controller.

3. Code in C/C++ The code used in the simulation is written with MATLAB. To speed
up the computation time, we can transfer the MATLAB code into C/C++ in the future.

4. Implementation in Other Fields The RRT algorithm is one of the solutions for the
path-planning problems. In this work, we implement it for the truck’s merging manoeu-
vres on the highway. Future works can be focused on applying the RRT algorithm on
the other fields. For example, the RRT algorithm for solving the path-planning prob-
lem of 3D printer and the grasp robot arms that have more complex dynamic models,
for planning the cutting route for the CNC machine, for planning the path for the un-
manned detective helicopter, for planning the path of the rescue robot in dangerous
area.

5. Comparison with other methods This work mainly focus on RRT algorithm apply-
ing on the trajectory generation problem. The future work can focus on the quantitative
comparisons between the RRT algorithm and other trajectory generation methods, such
as the multi-query method, optimisation-based method, spline-based method and so on.

Master of Science Thesis Yangxiao Ou

88 Conclusions and Recommendations for Future Work

Yangxiao Ou Master of Science Thesis

Appendix A

Appendix

A-1 MATLAB Code

A-1-1 Offline RRT Algorithm over Open-Loop System

1 clear all ;
2 clc ;
3
4 max_iter=100000;
5 max_nodes=max_iter ;
6 rand_seed=1;
7 map=struct (’name’ , ’obstacle23.mat’ , ’start_point’ , [1 8 0 , 2 . 7 5 , 0] , ’

goal_point’ , [2 3 0 , 6 . 2 5 , 0]) ;
8 variant=’RRT_timestop_ol’ ;
9

10
11
12 conf = struct ;
13 %conf.delta_goal_point = 1; % Radius of goal point
14 conf . delta_near = 0 . 5 ; % Radius for neighboring nodes
15 conf . max_step = 1 ; % Maximum position change when we add a new node to

the tree
16 conf . W=3; % width/2 of the vehicle
17 conf . L=9; % length/2 of the vehicle
18 conf . U_boundary =[−2 . 5 ; 1 . 5 ; −0 . 1 ; 0 . 1] ; %[a,r]simple input constraints
19 conf . delta_goal_point =[10 , 0 . 1 5] ;
20 dist=0;
21 ind=0;
22 % plot traffic lanes
23 XYline=struct ;
24 XYline . x1=0 :0 . 1 : 4 60 ;
25 XYline . y1=0∗XYline . x1+8;
26 XYline . x2=100 : 0 . 1 : 355 ;

Master of Science Thesis Yangxiao Ou

90 Appendix

27 XYline . y2=0∗XYline . x2+4.5;
28
29
30 % using ’CRRT’
31
32 rrtree= eval ([variant ’(rand_seed , max_nodes , map, conf);’]) ;
33
34
35 %%% Starting a timer
36 tic ;
37
38 %%%%%%%%%
39 %for ind = 1:max_iter
40 while (dist==0)
41 ind=ind+1;
42 rrtree . update_ob (0 , 0)
43 new_node = rrtree . sample_XY () ; %5*1
44
45 [nearest_node , nearest_index] = rrtree . nearest (new_node) ;
46
47 x_compare=zeros (8 , 5) ; %[x;y;theta;v,delta]
48 x_init=nearest_node ;
49
50 for j=1:5
51 input=rrtree . sample_U () ;
52 if x_init (4) >66/3.6
53 input (1) =0;
54 end
55
56 x_end=rungakutta (x_init , input) ; %8*1
57
58 x_compare (: , j)=x_end ;
59
60 end
61
62 new_node=selectnode (x_compare , [2 1 0 ; 6 . 2 5 ; 0]) ;
63
64 new_node=rrtree . steer_off (nearest_index , new_node) ;
65
66
67
68 if (~rrtree . obstacle_collision (new_node))
69 rrtree . insert_node (nearest_index , new_node) ;
70 dist=rrtree . checkgoal_offline (new_node) ;
71 end
72
73 if (mod (ind , 10) == 0)
74 disp ([num2str (rrtree . nodes_added−1) ’ nodes in ’ num2str (toc)]) ;
75 end
76 end
77
78
79

Yangxiao Ou Master of Science Thesis

A-1 MATLAB Code 91

80
81
82 % end timer
83 toc ;
84
85 % plot
86 figure (1)
87 rrtree . findpath () ;
88 rrtree . plotpath () ;
89 hold on
90 p2=rrtree . plotobstacle () ;
91 hold on
92 plot (XYline . x1 , XYline . y1 , ’black --’ , ’LineWidth’ , 2) ;
93 hold on
94 plot (XYline . x2 , XYline . y2 , ’black --’ , ’LineWidth’ , 2) ;
95
96 figure (2)
97 subplot (3 , 2 , 1)
98 plot (rrtree . path (1 , :) , rrtree . path (2 , :)) ;
99 xlabel (’x(m)’)

100 ylabel (’y(m)’)
101 title (’Planned path’)
102 subplot (3 , 2 , 2)
103 plot (rrtree . path (1 , :) , rrtree . path (3 , :)) ;
104 xlabel (’x(m)’)
105 ylabel (’\theta (rad)’)
106 title (’Orientation angle’)
107 subplot (3 , 2 , 3)
108 plot (rrtree . path (1 , :) , rrtree . path (4 , :)) ;
109 xlabel (’x(m)’)
110 ylabel (’v(m/s)’)
111 title (’Velocity’)
112 subplot (3 , 2 , 4)
113 plot (rrtree . path (1 , :) , rrtree . path (5 , :)) ;
114 xlabel (’x(m)’)
115 ylabel (’\delta (rad)’)
116 title (’Steering angle (rad)’)
117 subplot (3 , 2 , 5)
118 plot (rrtree . path (1 , :) , rrtree . path (6 , :)) ;
119 xlabel (’x’)
120 ylabel (’a(m/s2)’)
121 title (’Acceleration(m/s2)’)
122 subplot (3 , 2 , 6)
123 plot (rrtree . path (1 , :) , rrtree . path (7 , :)) ;
124 xlabel (’x(m)’)
125 ylabel (’r(rad/s)’)
126 ylabel (’Steering rate (rad/s)’)

A-1-2 Offline RRT Algorithm over Closed-Loop System

Master of Science Thesis Yangxiao Ou

92 Appendix

1 clear all ;
2 clc ;
3
4 max_iter=50000;
5 max_nodes=max_iter ;
6 rand_seed=1;
7 ind=0;
8 dist=0;
9 map=struct (’name’ , ’obstacle20.mat’ , ’start_point’ , [1 5 0 , 2 . 7 5 , 0] , ’

goal_point’ , [2 0 0 , 6 . 2 5 , 0]) ;
10 variant=’RRT_timestop’ ;
11
12
13 conf = struct ;
14 conf . delta_goal_point = [5 0 , 0 . 4] ; % Radius of goal point
15 conf . delta_near = 2 ; % Radius for neighboring nodes
16 conf . max_step = 1 ; % Maximum position change when we add a new node to

the tree
17 conf . W=3; % width/2 of the vehicle
18 conf . L=7; % length/2 of the vehicle
19 conf . U_boundary =[−2 . 1 7 ; 1 . 5 ; −0 . 1 ; 0 . 1] ;
20
21
22
23
24 % plot traffic lanes
25 XYline=struct ;
26 XYline . x1=0 :0 . 1 : 4 60 ;
27 XYline . y1=0∗XYline . x1+8;
28 XYline . x2=100 : 0 . 1 : 355 ;
29 XYline . y2=0∗XYline . x2+4.5;
30
31 %using class
32 rrtree= eval ([variant ’(rand_seed , max_nodes , map, conf);’]) ;
33
34
35 %%% Starting a timer
36 tic ;
37
38 %%%%%%%%%
39
40 while (dist==0)
41 rrtree . update_ob (0) ;
42 new_node = rrtree . sample_XY () ; %3*1 sample configuration space
43 u=rrtree . sample_U () ; %2*1 sample inputs
44
45 [nearest_node , nearest_index] = rrtree . nearest (new_node) ; %[x,y,theta ,

v] find nearest node in the tree from the sampled node
46
47
48 x_init=nearest_node ;
49 u1=u (1 , 1) ;
50 u2=u (2 , 1) ;

Yangxiao Ou Master of Science Thesis

A-1 MATLAB Code 93

51 simout=sim (’V_model’ ,’AbsTol’ ,’1e-4’) ;
52 new=simout . get (’simout’) ;
53 Anode=new . Data ’ ;
54 node=Anode (: , end) ; % pick up the 10th node[x,y,theta ,v,steeringangle

,acc]
55 new_node=[node ; u] ;
56
57 if (~rrtree . obstacle_collision (new_node))
58 rrtree . insert_node (nearest_index , new_node) ;
59 dist=rrtree . checkgoal_offline (new_node) ;
60 end
61
62
63
64 if (mod (ind , 100) == 0)
65 disp ([num2str (rrtree . nodes_added−1) ’ nodes in ’ num2str (toc)]) ;
66 end
67
68 end
69
70
71
72 % end timer
73 toc ;
74
75 % plot
76 rrtree . findpath () ;
77
78 plot (XYline . x1 , XYline . y1 , ’black --’ , ’LineWidth’ , 2) ;
79 hold on
80 plot (XYline . x2 , XYline . y2 , ’black --’ , ’LineWidth’ , 2) ;
81 rrtree . plotpath () ;
82 hold on
83 p2=rrtree . plotobstacle () ;
84 figure (2)
85 subplot (5 , 1 , 1)
86 plot (rrtree . path (1 , :) , rrtree . path (2 , :)) ;
87 xlabel (’x(m)’)
88 ylabel (’y(m)’)
89 subplot (5 , 1 , 2)
90 plot (rrtree . path (1 , :) , rrtree . path (4 , :)) ;
91 xlabel (’x(m)’)
92 ylabel (’velocity(m/s)’)
93 subplot (5 , 1 , 3)
94 plot (rrtree . path (1 , :) , rrtree . path (5 , :)) ;
95 xlabel (’x’)
96 ylabel (’Steering angle(rad)’)
97 subplot (5 , 1 , 4)
98 plot (rrtree . path (1 , :) , rrtree . path (6 , :)) ;
99 xlabel (’x’)

100 ylabel (’Acceleration(m/s2)’)
101 subplot (5 , 1 , 5)
102 plot (rrtree . path (1 , :) , rrtree . path (7 , :)) ;

Master of Science Thesis Yangxiao Ou

94 Appendix

103 xlabel (’x’)
104 ylabel (’Steering rate (rad/s)’)

A-1-3 Online RRT Algorithm over Closed-Loop System

1 clear all ;
2 clc ;
3 close all ;
4
5 max_iter=20000;
6 max_nodes=max_iter ;
7 rand_seed=1;
8
9 dist=0;

10 b=1;
11 t_p=0;
12 a=0;
13 v=66/3.6;
14 start =[150 , 2 . 7 5 , 0] ;
15 x_init =[150 , 2 . 7 5 , 0 , 6 0/3 . 6 , 0] ;
16 tree_new =[150 , 2 . 7 5 , 0 , 6 0/3 . 6 , 0 , 0 , 0 , 0 , 0] ;
17
18
19 conf = struct ;
20 conf . delta_goal_point = [5 0 , 0 . 1 5] ; % Radius of goal point
21 conf . delta_near =1.5; % Radius for neighboring nodes
22 conf . max_step =1; % Maximum position change when we add a new node to the

tree
23 conf . W=3; % width/2 of the vehicle
24 conf . L=9; % length/2 of the vehicle
25 conf . U_boundary=[−pi /12 ; pi /6 ; − 2 . 1 7 ; 1 . 7 7] ; % input constraints
26 path_array=cell (500 ,2000) ;
27 path_trajectory=cell (1 ,1000) ;
28
29
30
31
32 % plot traffic lanes
33 XYline=struct ;
34 XYline . x1=0 :0 . 1 : 4 60 ;
35 XYline . y1=0∗XYline . x1+8;
36 XYline . x2=100 : 0 . 1 : 355 ;
37 XYline . y2=0∗XYline . x2+4.5;
38
39
40
41 %%% Starting a timer
42 tic ;
43
44 %%%%%%%%%
45
46
47

Yangxiao Ou Master of Science Thesis

A-1 MATLAB Code 95

48 figure (1)
49 p_old=plot (0 , 0) ;
50 hold on
51 plot (XYline . x1 , XYline . y1 , ’black --’ , ’LineWidth’ , 2) ;
52 hold on
53 plot (XYline . x2 , XYline . y2 , ’black --’ , ’LineWidth’ , 2) ;
54 hold on
55
56
57
58 while (dist==0) % when dist~=0, the goal is found
59 t_p=1+t_p ;
60 t=(t_p−1) ∗0 . 0 5 ;
61 clear rrtree %
62 map=struct (’name’ , ’obstacle23.mat’ , ’start_point’ , start , ’goal_point

’ , [2 3 0 , 6 . 2 5 , 0]) ; % load map
63 variant=’RRT_timestop’ ; % load class
64 rrtree= eval ([variant ’(rand_seed , max_nodes , map, conf);’]) ; % use

class
65 rrtree . update_tree (tree_new) ;
66
67 rrtree . update_ob (a , v , t) ; % update obstacle at time (t-1);
68 ist=1;
69
70 while (ist==1)
71 for i=1:1:10 % sim the closed -loop 20 times
72 new_node = rrtree . sample_XY () ; %3*1 sample configuration space
73 %u=rrtree.sample_U(); %2*1 sample inputs
74
75 [nearest_node , nearest_index] = rrtree . nearest (new_node) ; %[x,y,theta ,

v] find nearest node in the tree from the sampled node
76
77
78 % 4*1 %initialize closed -loop
79 ref=rrtree . steer (nearest_index , new_node) ;
80 xref=ref (1) ;
81 yref=ref (2) ;
82 simout=sim (’V_model_CL’ ,’AbsTol’ ,’1e-5’) ;
83 new=simout . get (’simout’) ;
84 Anode=new . Data ’ ;
85 node=Anode (: , end) ; % pick up the end node[x,y,theta ,v,steeringangle ,

acc]
86 new_node=[node ; ref] ;
87
88 if (~rrtree . obstacle_collision (new_node)) %check collision
89 rrtree . insert_node (nearest_index , new_node) ; % insert the collosion

-free nodes to the tree
90 end
91
92
93 end
94
95 disp ([num2str (rrtree . nodes_added−1) ’ nodes in ’ num2str (toc)]) ;

Master of Science Thesis Yangxiao Ou

96 Appendix

96
97 path=rrtree . findpath () ; %find a shortest path
98 [a , b]=size (path) ;
99 ist=b ;

100
101 end
102
103 path_array {1 , t_p}=path ; %store the planned path
104
105 dist=rrtree . checkgoal () ; % check wtheter the goal is achieved
106
107
108 start=path (1 : 3 , 1) ;
109 x_init=path (1 : 5 , 1) ’ ;
110 tree_new=path (: , 1) ’ ;
111
112 rrtree . plotpath () ; % plot the path
113 hold on ;
114 p2=rrtree . plotobstacle () ;
115 hold on
116 delete (p_old) ;
117 p_old=p2 ;
118
119
120
121 end
122
123
124 % end timer
125 toc ;

A-1-4 RRT Template

1 classdef RRT_timestop < handle
2 properties (SetAccess = private)
3 W %width/2
4 L % Length/2
5 tree % Array stores position information of states
6 parent % Array stores relations of nodes
7 children % Number of children of each node
8 free_nodes % Indices of free nodes
9 free_nodes_ind % Last element in free_nodes

10 cost % Cost between 2 connected states
11 cumcost % Cost from the root of the tree to the given

node
12 XY_BOUNDARY % [min_x max_x min_y max_y]
13 goal_point % Goal position
14 start_point % Start position
15 delta_goal_point % Radius of goal position region
16 delta_near % Radius of near neighbor nodes
17 nodes_added % Keeps count of added nodes
18 max_step % The length of the maximum step while adding

the node

Yangxiao Ou Master of Science Thesis

A-1 MATLAB Code 97

19 obstacle % Obstacle information
20 velocity_ob % Dynamic Obstacles Information
21 best_path_node % The index of last node of the best path
22 goal_reached
23 max_nodes
24 U_boundary
25 obstacle_cur
26
27
28
29
30 %%% temporary variables
31 compare_table
32 index
33 list
34 %%%
35 path
36
37 backtrace_index
38
39
40
41 end
42
43 methods
44 %%%%%%%
45
46 function main= RRT_timestop (rand_seed , max_nodes , map , conf) %

class constructor
47 main . W = conf . W ;
48 main . L = conf . L ;
49 max_nodes = int32 (max_nodes) ;
50 main . max_nodes = max_nodes ;
51 rng (rand_seed) ;
52 main . tree = zeros (9 , max_nodes) ;
53 main . parent = zeros (1 , max_nodes) ;
54 main . children = zeros (1 , max_nodes) ;
55 main . free_nodes = zeros (1 , max_nodes) ;
56 main . free_nodes_ind = 1 ;
57 main . cost = zeros (1 , max_nodes) ;
58 main . cumcost = zeros (1 , max_nodes) ;
59 main . XY_BOUNDARY = zeros (4 , 1) ;
60 main . tree (1 : 3 , 1) = map . start_point ;
61 main . tree (4 , 1) = 60/3 . 6 ;
62 main . goal_point = map . goal_point ;
63 main . start_point=map . start_point ;
64 main . delta_goal_point = conf . delta_goal_point ;
65 main . delta_near = conf . delta_near ;
66 main . nodes_added = uint32 (1) ;
67 main . max_step = conf . max_step ;
68 main . best_path_node = −1;
69 main . goal_reached = false ;
70 main . load_map (map . name) ;

Master of Science Thesis Yangxiao Ou

98 Appendix

71 main . U_boundary=conf . U_boundary ;
72 %%% temp var-s initialization
73 main . compare_table = zeros (1 , max_nodes) ;
74 main . index = zeros (1 , max_nodes) ;
75 main . list = 1 : max_nodes ;
76 %%%%
77 main . path=zeros (9 , max_nodes /10) ;
78
79 end
80
81 %%%%%%%
82
83 function position= sample_XY (main) % sample x,y theta
84
85 %position = [main.XY_BOUNDARY(2) - main.XY_BOUNDARY(1); main.

XY_BOUNDARY(4) - main.XY_BOUNDARY(3); pi/3] .* rand(3,1)
...

86 %+ [main.XY_BOUNDARY(1);main.XY_BOUNDARY(3);-pi/6];
87 x0=main . goal_point (1) ;
88 y0=main . goal_point (2) ;
89 theta0=main . goal_point (3) ;
90 sigma_r=3;
91 sigma_t=pi /8 ;
92 nr=random (’Normal’ , 0 , sigma_r , 1 , 1) ;
93 nt=random (’Normal’ , 0 , sigma_t , 1 , 1) ;
94 r=sigma_r∗abs (nr)+1;
95 theta=sigma_t∗abs (nt)+theta0 ;
96 position=[x0−r∗cos (theta) ; y0−r∗sin (theta) ; theta] ; %
97 end
98
99

100 %%%%%%%%%%%%%
101
102 function input=sample_U (main) % sample steering angle , a
103 u1=(main . U_boundary (2)−main . U_boundary (1)) ∗rand (1 , 1)+main .

U_boundary (1) ;
104 u2=(main . U_boundary (4)−main . U_boundary (3)) ∗rand (1 , 1)+main .

U_boundary (3) ;
105 input=[u1 ; u2] ;
106 end
107
108 %%%%%%%%
109
110 function [node_nearst , node_index] = nearest (main , new_node) %

find nearest node
111 % find the nearest node to the given node, euclidian distance

is used
112 main . compare_table (1 : (main . nodes_added)) = sum ((main . tree

(1 : 2 , 1 : (main . nodes_added)) − repmat (new_node (1 : 2) ,1 , main .
nodes_added)) . ^2) + sum ((main . tree (3 : main . nodes_added) −
new_node (3)) . ^2) ;

Yangxiao Ou Master of Science Thesis

A-1 MATLAB Code 99

113 [main . compare_table (1 : (main . nodes_added)) , main . index (1 : (main
. nodes_added))] = sort (main . compare_table (1 : (main .
nodes_added))) ;

114 node_index = main . index (1) ;
115 node_nearst=main . tree (1 : 5 , node_index) ;
116
117 return ;
118 end
119
120 %%%%%%%%
121
122 function position = steer (main , nearest_index , new_node_position

)
123
124 if (norm (new_node_position (1 : 2) − main . tree (1 : 2 , nearest_index

)) > main . max_step)
125 theta = atan ((new_node_position (2) − main . tree (2 ,

nearest_index)) /(new_node_position (1) − main . tree (1 ,
nearest_index))) ;

126 position = main . tree (1 : 2 , nearest_index) . . .
127 + [sign ((new_node_position (1) − main . tree (1 ,

nearest_index))) ∗ main . max_step ∗ cos (theta) ; . . .
128 sign ((new_node_position (2) − main . tree (2 ,

nearest_index))) ∗ main . max_step ∗ abs (sin (theta))
] ;

129 else
130 position = new_node_position (1 : 2) ;
131 end
132
133
134 end
135
136 %%%%%%%%
137
138 function position = steer_off (main , nearest_index ,

new_node_position)
139
140 if (norm (new_node_position (1 : 2) − main . tree (1 : 2 , nearest_index

)) > main . max_step)
141 theta = new_node_position (3) ;
142 position = main . tree (1 : 2 , nearest_index) . . .
143 + [sign ((new_node_position (1) − main . tree (1 ,

nearest_index))) ∗ main . max_step ∗ cos (theta) ; . . .
144 sign ((new_node_position (2) − main . tree (2 ,

nearest_index))) ∗ main . max_step ∗ abs (sin (theta))
] ;

145 position=[position ; new_node_position (3 : 7)] ;
146 else
147 position = new_node_position ;
148 end
149
150
151 end

Master of Science Thesis Yangxiao Ou

100 Appendix

152
153
154
155
156
157
158 %%%%%%
159 function load_map (main , map_name) % load map
160 % function loads ’.mat’ file with obstacle information and

the
161 % size of the map
162 map_path = ’maps/’ ;
163 main . obstacle = load ([map_path map_name] , ’num’ , ’output’ , ’

x_constraints’ , ’y_constraints’ ,’num_s’ ,’num_d’ ,’
dynamic_ob’ ,’static_ob’) ;

164 main . obstacle . vert_num = zeros (main . obstacle . num , 1) ;
165 main . obstacle . m = cell (main . obstacle . num , 1) ;
166 main . obstacle . b = cell (main . obstacle . num , 1) ;
167 main . obstacle . r = zeros (main . obstacle . num , 1) ;
168 main . obstacle . r_sqr = zeros (main . obstacle . num , 1) ;
169 main . obstacle . cir_center = cell (main . obstacle . num , 1) ;
170 main . XY_BOUNDARY = [main . obstacle . x_constraints main . obstacle

. y_constraints] ;
171
172 end
173
174 %%%%%%%%
175
176 function collision = obstacle_collision (main , new_node) % check

collision
177
178 collision = false ;
179 theta = new_node (3) ;
180
181 if (mod (theta , pi /2) == 0)
182 theta = theta − 1 ;
183 end
184
185
186 % omit any operations if there is no obstacles
187 if main . obstacle . num == 0
188 return ;
189 end
190
191 for obs_ind = 1 : main . obstacle . num
192
193
194 vertex1 = [new_node (1)−cos (theta) ∗main . L/2−sin (theta) ∗main . W

/2 , new_node (2)−sin (theta) ∗main . L/2+cos (theta) ∗main . W / 2] ;
195 vertex2 = [new_node (1)+cos (theta) ∗main . L/2−sin (theta) ∗main . W

/2 , new_node (2)+sin (theta) ∗main . L/2+cos (theta) ∗main . W / 2] ;
196 vertex3 = [new_node (1)+cos (theta) ∗main . L/2+sin (theta) ∗main . W

/2 , new_node (2)+sin (theta) ∗main . L/2−cos (theta) ∗main . W / 2] ;

Yangxiao Ou Master of Science Thesis

A-1 MATLAB Code 101

197 vertex4 = [new_node (1)−cos (theta) ∗main . L/2+sin (theta) ∗main . W
/2 , new_node (2)−sin (theta) ∗main . L/2−cos (theta) ∗main . W / 2] ;

198
199
200 if isintersect_3dof (main . obstacle_cur{obs_ind } , [vertex1 ;

vertex2]) == 1 . . .
201 | | isintersect_3dof (main . obstacle_cur{obs_ind } , [

vertex2 ; vertex3]) == 1 . . .
202 | | isintersect_3dof (main . obstacle_cur{obs_ind } , [

vertex3 ; vertex4]) == 1 . . .
203 | | isintersect_3dof (main . obstacle_cur{obs_ind } , [

vertex4 ; vertex1]) == 1
204 collision = true ;
205 return ;
206 end
207 end
208
209 end
210
211
212
213 %%%%%%%%
214
215 function new_node_ind = insert_node (main , parent_node_ind ,

new_node) %insert collision -free node
216 % method insert new node in the tree
217 main . nodes_added = main . nodes_added + 1 ;
218 main . tree (: , main . nodes_added) = new_node ; % adding

new node position to the tree
219
220 main . parent (main . nodes_added) = parent_node_ind ; %

adding information about parent -children information
221 main . children (parent_node_ind) = main . children (

parent_node_ind) + 1 ;
222 main . cumcost (main . nodes_added) = main . cumcost (parent_node_ind

) + main . cost (main . nodes_added) ; % cummulative cost
223 new_node_ind = main . nodes_added ;
224 end
225
226 %%%%%%%
227 function dist=checkgoal (main)
228
229 xv=[main . goal_point (1)−main . delta_goal_point (1) ; main .

goal_point (1)−main . delta_goal_point (1) ; main . goal_point (1)+
main . delta_goal_point (1) ; main . goal_point (1)+main .
delta_goal_point (1) ; main . goal_point (1)−main .
delta_goal_point (1)] ;

230 yv=[main . goal_point (2)−main . delta_goal_point (2) ; main .
goal_point (2)+main . delta_goal_point (2) ; main . goal_point (2)+
main . delta_goal_point (2) ; main . goal_point (2)−main .
delta_goal_point (2) ; main . goal_point (2)−main .
delta_goal_point (2)] ;

231 xq=main . path (1 , :) ’ ;

Master of Science Thesis Yangxiao Ou

102 Appendix

232 yq=main . path (2 , :) ’ ;
233 [in , on]=inpolygon (xq , yq , xv , yv) ;
234
235 dist=numel (xq (in))+numel (xq (on)) ;
236
237 end %stop the algorithm
238
239 %%%%%%%
240
241 function dist=checkgoal_offline (main , new_node)
242
243 xv=[main . goal_point (1)−main . delta_goal_point (1) ; main .

goal_point (1)−main . delta_goal_point (1) ; main . goal_point (1)+
main . delta_goal_point (1) ; main . goal_point (1)+main .
delta_goal_point (1) ; main . goal_point (1)−main .
delta_goal_point (1)] ;

244 yv=[main . goal_point (2)−main . delta_goal_point (2) ; main .
goal_point (2)+main . delta_goal_point (2) ; main . goal_point (2)+
main . delta_goal_point (2) ; main . goal_point (2)−main .
delta_goal_point (2) ; main . goal_point (2)−main .
delta_goal_point (2)] ;

245 xq=new_node (1) ;
246 yq=new_node (2) ;
247 theta=new_node (3) ;
248
249 [in , on]=inpolygon (xq , yq , xv , yv) ;
250 dist1=numel (xq (in))+numel (xq (on)) ;
251 if −0.1<=theta<=0.1 && dist1~=0
252 dist=1;
253 else
254 dist=0;
255 end
256
257
258 end %stop the algorithm
259
260
261
262
263 %%%%%%%%%%%
264
265 function path=findpath (main) %%Find the optimal path to the goal

and plot
266 % finding all the point which are in the desired region
267
268 distances = zeros (main . nodes_added , 2) ;
269 distances (: , 1) = sum ((main . tree (1 : 3 , 1 : (main . nodes_added)) −

repmat (main . goal_point (1 : 3) ’ , 1 , main . nodes_added)) . ^2) ;
270 distances (: , 2) = 1 : main . nodes_added ;
271 distances = sortrows (distances , 1) ;
272
273 nearest_node_index = distances (1 , 2) ;
274

Yangxiao Ou Master of Science Thesis

A-1 MATLAB Code 103

275 %backtracing the path
276 current_index = nearest_node_index ;
277 path_iter = 1 ;
278 backtrace_path = zeros (1 , 1) ;
279 while (current_index ~= 1)
280 backtrace_path (path_iter) = current_index ;
281 path_iter = path_iter + 1 ;
282 current_index = main . parent (current_index) ;
283 end
284 backtrace_path (path_iter) = current_index ;
285
286 main . path=main . tree (: , backtrace_path) ;
287
288 path=main . path ;
289
290
291 end
292
293
294 %%%%%%%%%%%
295 function update_ob (main , a , v , t) %update the obstacle
296
297 cur_obstacle=cell (1 , main . obstacle . num) ;
298
299 for j=1:main . obstacle . num_s
300 cur_obstacle{j}=main . obstacle . static_ob{j } ;
301 end
302
303 obstacle_dy=cell (1 , main . obstacle . num_d) ;
304 for i=1:main . obstacle . num_d
305 obstacle_dy{i } (: , 1)=main . obstacle . dynamic_ob{i } (: , 1)+v∗t

+0.5∗a∗t^2;
306 if min (obstacle_dy{i } (: , 1))>=main . XY_BOUNDARY (2)
307 n=floor (max (obstacle_dy{i } (: , 1)) /main . XY_BOUNDARY (2)) ;
308 obstacle_dy{i } (: , 1)=obstacle_dy{i } (: , 1)−n∗main .

XY_BOUNDARY (2) ;
309 else
310 obstacle_dy{i } (: , 1)=obstacle_dy{i } (: , 1) ;
311 end
312
313 obstacle_dy{i } (: , 2)=main . obstacle . dynamic_ob{i } (: , 2) ;
314 cur_obstacle{main . obstacle . num_s+i}=obstacle_dy{i } ;
315 end
316
317
318 main . obstacle_cur=cur_obstacle ;
319
320
321 end
322
323 %%%%%%%%
324 function update_tree (main , new)
325 main . tree (: , 1)=new ;

Master of Science Thesis Yangxiao Ou

104 Appendix

326 end
327
328
329
330 %%%%%%%%%%
331
332
333 function plotpath (main) % plot path
334 [m , n]=size (main . path) ;
335 for i=1:n
336 vertex1 = [main . path (1 , i)−cos (main . path (3 , i)) ∗main . L/2−sin (

main . path (3 , i)) ∗main . W/2 , main . path (2 , i)−sin (main . path (3 , i)
) ∗main . L/2+cos (main . path (3 , i)) ∗main . W / 2] ;

337 vertex2 = [main . path (1 , i)+cos (main . path (3 , i)) ∗main . L/2−sin (
main . path (3 , i)) ∗main . W/2 , main . path (2 , i)+sin (main . path (3 , i)
) ∗main . L/2+cos (main . path (3 , i)) ∗main . W / 2] ;

338 vertex3 = [main . path (1 , i)+cos (main . path (3 , i)) ∗main . L/2+sin (
main . path (3 , i)) ∗main . W/2 , main . path (2 , i)+sin (main . path (3 , i)
) ∗main . L/2−cos (main . path (3 , i)) ∗main . W / 2] ;

339 vertex4 = [main . path (1 , i)−cos (main . path (3 , i)) ∗main . L/2+sin (
main . path (3 , i)) ∗main . W/2 , main . path (2 , i)−sin (main . path (3 , i)
) ∗main . L/2−cos (main . path (3 , i)) ∗main . W / 2] ;

340 plot ([vertex1 (1) , vertex2 (1)] , [vertex1 (2) , vertex2 (2)] , ’y’)
341 hold on
342 plot ([vertex2 (1) , vertex3 (1)] , [vertex2 (2) , vertex3 (2)] , ’y’)
343 hold on
344 plot ([vertex3 (1) , vertex4 (1)] , [vertex3 (2) , vertex4 (2)] , ’y’)
345 hold on
346 plot ([vertex4 (1) , vertex1 (1)] , [vertex4 (2) , vertex1 (2)] , ’y’)
347 hold on
348 end
349
350
351 plot (main . path (1 , :) , main . path (2 , :) ,’*b’ ,’LineWidth’ , 1) ;
352 set (gcf () , ’Renderer’ , ’opengl’) ;
353 end
354
355 %%%%%%%%%
356 function p2=plotobstacle (main)
357 p2=zeros (12 ,1) ;
358 for k = 1 : main . obstacle . num_s
359 p1 = fill (main . obstacle_cur{k } (1 : end , 1) , main .

obstacle_cur{k } (1 : end , 2) , ’black’) ;
360 set (p1 , ’HandleVisibility’ ,’off’ ,’EdgeAlpha’ , 0) ;
361 end
362
363 for i=main . obstacle . num_s+1:main . obstacle . num
364 p2 (i)=fill (main . obstacle_cur{i } (1 : end , 1) , main .

obstacle_cur{i } (1 : end , 2) , ’black’) ;
365 end
366 %
367
368 end

Yangxiao Ou Master of Science Thesis

A-1 MATLAB Code 105

369
370
371 %%%%%%%
372
373
374
375 end
376
377
378
379 methods (Static)
380 function plot_circle (x , y , r)
381 t = 0 : 0 . 0 0 1 : 2 ∗ pi ;
382 cir_x = r∗cos (t) + x ;
383 cir_y = r∗sin (t) + y ;
384 plot (cir_x , cir_y , ’r-’ , ’LineWidth’ , 1 . 5) ;
385 end
386 end
387 end

A-1-5 Runga-Kutta Algorithm

1 function position=rungakutta (x_init , u)
2
3 h=0.02; %step size
4 t (1) = 0 ;
5 w (: , 1) = x_init ; %initial conditions [x;y;theata;v;delta]
6
7
8 for i = 1:5
9

10 k1 = h∗f (t (i) , w (: , i) ,u) ;
11 k2 = h∗f (t (i)+h/2 , w (: , i) +0.5∗k1 , u) ;
12 k3 = h∗f (t (i)+h/2 , w (: , i) +0.5∗k2 , u) ;
13 k4 = h∗f (t (i)+h , w (: , i)+k3 , u) ;
14 w (: , i+1) = w (: , i) + (k1 + 2∗k2 + 2∗k3 + k4) /6 ;
15 t (i+1) = t (1) + i∗h ;
16
17 end
18 position=[w (: , 4) ; u] ; %[x,y,theta ,v,steering angle ,acceleration]
19 end

A-1-6 Vehicle Model

1 function dy = f (t , y , u) % y=[x,y,theta ,v,delta]
2 l=5;
3 dy = [y (4) ∗cos (y (3)) ; %x
4 y (4) ∗sin (y (3)) ; %y
5 2∗y (4) /l∗tan (y (5) /(1+(y (4) /216))) ; %thtea
6 y (6) ; %v
7 (u (2 , 1)−y (5)) / 1 . 5 ; %delta
8 (u (1 , 1)−y (6)) / 1 . 2] ; %a
9 end

Master of Science Thesis Yangxiao Ou

106 Appendix

A-2 SIMULINK Model

Figure A-1: SIMULINK Model.

Yangxiao Ou Master of Science Thesis

Bibliography

[1] “Gross domestic (gdp) attribute to for-hire transportation services,” Bureau of Trans-
portation Statistics, United States Department of Transportation, 2014.

[2] J. R. B. N. Janson, W. Awad and B. P. J. Kononov, “Truck accident at freeway ramps:
Data analysis and high-risk site identification,” Department of Civil Engineering, Uni-
versity of Colorado at Denver, Colorado Department of Transportation, 1998.

[3] B. L. Bowman and H. S. Lum, “Examination of truck accident on urban freeway,” Ite
Journal, 1990.

[4] M. Luijten, Lateral dynamic behaviour of articulated commercial vehicles. PhD thesis,
Master Thesis 2010, Eindhoven University of Technology, 2010.

[5] S. Gottschalk, Collision queries using oriented bounding boxes. PhD thesis, The Univer-
sity of North Carolina at Chapel Hill, 2000.

[6] B. W. Bequette, Process control: modeling, design, and simulation. Prentice Hall Pro-
fessional, 2003.

[7] J. Zhong, “Pid controller tuning: a short tutorial,” 2006.

[8] N. van Duijkeren, Real-time Path Planning and Obstacle Avoidance for a Long Heavy
Vehicle Combination in a Lane-change Maneuver. PhD thesis, 2013.

[9] “Transport safety facts 2012 data,” Department of Transportation, National Highway
Traffic Safety Administration, U.S., 2012.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”
The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[11] L. E. Kavraki, M. N. Kolountzakis, and J.-C. Latombe, “Analysis of probabilistic
roadmaps for path planning,” IEEE Transactions on, Robotics and Automation, vol. 14,
no. 1, pp. 166–171, 1998.

Master of Science Thesis Yangxiao Ou

108 Bibliography

[12] S. M. LaValle and J. J. Kuffner Jr, “Rapidly-exploring random trees: Progress and
prospects,” 2000.

[13] T. Lozano-Perez, “Spatial planning: A configuration space approach,” IEEE Transac-
tions on, Computers, vol. 100, no. 2, pp. 108–120, 1983.

[14] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. P. How, and G. Fiore, “Real-time mo-
tion planning with applications to autonomous urban driving,” IEEE Transactions on,
Control Systems Technology, vol. 17, no. 5, pp. 1105–1118, 2009.

[15] T. D. Gillespie, “Fundamentals of vehicle dynamics,” tech. rep., SAE Technical Paper,
1992.

[16] D. Assanis, Z. Filipi, S. Gravante, D. Grohnke, X. Gui, L. Louca, G. Rideout, J. Stein,
and Y. Wang, “Validation and use of simulink integrated, high fidelity, engine-in-vehicle
simulation of the international class vi truck,” 2000.

[17] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion planning,” Journal
of the ACM (JACM), vol. 40, no. 5, pp. 1048–1066, 1993.

[18] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic motion
planning with moving obstacles,” The International Journal of Robotics Research, vol. 21,
no. 3, pp. 233–255, 2002.

[19] J. Barraquand and J.-C. Latombe, “Robot motion planning: A distributed representation
approach,” The International Journal of Robotics Research, vol. 10, no. 6, pp. 628–649,
1991.

[20] Z. Shiller, “Off-line and on-line trajectory planning,” in Motion and Operation Planning
of Robotic Systems, pp. 29–62, Springer, 2015.

[21] R. Pepy, A. Lambert, and H. Mounier, “Path planning using a dynamic vehicle model,”
in Information and Communication Technologies, 2006. ICTTA’06. 2nd, vol. 1, pp. 781–
786, IEEE.

[22] J. W. Boyse, “Interference detection among solids and surfaces,” Communications of the
ACM, vol. 22, no. 1, pp. 3–9, 1979.

[23] G. T. Toussaint, “Solving geometric problems with the rotating calipers,” in Proc. IEEE
Melecon, vol. 83, p. A10, 1983.

[24] P. M. Hubbard, “Approximating polyhedra with spheres for time-critical collision detec-
tion,” ACM Transactions on Graphics (TOG), vol. 15, no. 3, pp. 179–210, 1996.

[25] L. Zhang, “The research and realization of collision detection in virtual reality,” Journal
of Communication and Computer, vol. 8, no. 8, pp. 693–696, 2011.

[26] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: A hierarchical structure for rapid
interference detection,” in Proceedings of the 23rd annual conference on Computer graph-
ics and interactive techniques, pp. 171–180, ACM, 1996.

[27] J. T. Klosowski, “k-dops as tighter bounding volumes for better occlusion performance
(skapps_0030),”

Yangxiao Ou Master of Science Thesis

109

[28] S. A. Ehmann and M. C. Lin, “Accurate and fast proximity queries between polyhedra
using convex surface decomposition,” in Computer Graphics Forum, vol. 20, pp. 500–511,
Wiley Online Library, 2001.

[29] Q. J, Control Methods Study of the Autonomous Vehicle. PhD thesis, Beijing University
of Technology, 2009.

[30] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. P. How, “Motion planning
in complex environments using closed-loop prediction,” 2008.

[31] K. J. Astrom, Control System Design. 2002.

[32] G. M. Nagrath J, Control System Engineering. New Age International Publications,
2002.

[33] Y. Shan, W. Yang, C. Chen, J. Zhou, L. Zheng, and B. Li, “Cf-pursuit: A pursuit method
with a clothoid fitting and a fuzzy controller for autonomous vehicles,” International
Journal of Advanced Robotic Systems, vol. 12, 2015.

[34] R. C. Coulter, “Implementation of the pure pursuit path tracking algorithm,” tech. rep.,
DTIC Document, 1992.

[35] W. S. Levine, Control System Fundamentals. CRC press, 1999.

[36] A. Mehar, S. Chandra, and S. Velmurugan, “Speed and acceleration characteristics of
different types of vehicles on multi-lane highways,”

[37] C. Kou and R. Machemehl, “Modeling driver behavior during merge maneuvers,” tech.
rep., 1997.

Master of Science Thesis Yangxiao Ou

110 Bibliography

Yangxiao Ou Master of Science Thesis

Glossary

List of Acronyms

BVs: Bounding Volumes

DARPA: Defense Advanced Research Projects Agency

RRT: Rapidly Exploring Random Tree

PRM: Probabilistic Road Maps

AABB: Axis-Aligned Bounding Box

OBB: Oriented Bounding Box

COG: Coordinates of Centre of Gravity

PID: Proportional-Integral-Derivative

PI: Proportional-Integral

PF: Putative Follower

PL: Putative Leader

RK: Runge-Kutta

Master of Science Thesis Yangxiao Ou

112 Glossary

List of Symbols

X: Coordinate in x-axis in inertial frame

Y : Coordinate in y-axis in inertial frame

θ: Orientation angle in inertial frame

V : Velocity

δ: Steering angle

L: Length of wheelbase

Vchar: Characteristic velocity

g: Gravitational acceleration

Cαf : Cornering stiffness of the front wheel

Cαr: Cornering stiffness of the rear wheel

Fz: Load on the tires

K: Understeer gradient

a: Acceleration

r: Steering rate

Lf : Distance from front axle to cog laden

Lr: Distance from rear axle to cog laden

Ld: Look-ahead distance

∆t: Updating time

∆T : Integration time

Yangxiao Ou Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Signatures
	Table of Contents
	List of Figures
	List of Tables
	Acknowledgements

	Main Matter
	Introduction
	Problem Statement
	Thesis Contributions
	Overview of the Thesis

	Modelling
	Coordinate Systems
	Modelling of Vehicle
	The Merging Manoeuvre
	The Truck Model
	Parameters of the Truck Model

	Modelling of Surrounding Obstacles
	Summary

	RRT Algorithm for Trajectory Generation
	The Basic RRT Algorithm
	Kinodynamic Motion Planning
	Strategies for the RRT Algorithm
	Sampling Strategy
	Node Connection Strategy
	Algorithm Stop Strategy

	Offline Trajectory Generation
	Offline Planning over Open-Loop Dynamics
	Offline Planning over Closed-Loop Dynamics

	Real-Time Trajectory Generation
	Obstacle Avoidance
	Bounding Volumes
	Intersection Detection
	Collision Avoidance on the Highway

	Summary

	Controller Design
	The Control Architecture
	Speed Controller
	PID Controller
	PID Controller Design Method
	PID Speed Controller Design

	Steering Controller
	Pure-Pursuit Control Theory
	Modified Pure-Pursuit Steering Controller
	Steering Controller Design for the Truck

	Summary

	Simulations and Results
	Parameterisation of Bias
	Offline Implementation
	Offline Implementation over the Open-Loop System
	Offline Implementation over the Closed-Loop System
	Discussion

	Real-Time Implementation
	Real-Time Implementation in Different Scenarios
	Discussion

	Summary

	Conclusions and Recommendations for Future Work
	Discussions and Conclusions
	Recommended Future Work

	Appendices
	Appendix
	MATLAB Code
	Offline RRT Algorithm over Open-Loop System
	Offline RRT Algorithm over Closed-Loop System
	Online RRT Algorithm over Closed-Loop System
	RRT Template
	Runga-Kutta Algorithm
	Vehicle Model

	SIMULINK Model

	Back Matter
	Glossary
	List of Acronyms
	List of Symbols

