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Article 
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Abstract 

The implementation of autonomous haulage trucks in open-pit mines represents a pro-
gressive advancement in the mining industry, but it poses potential safety risks that re-
quire thorough assessment. This study proposes an integrated model that combines dis-
crete-event simulation (DES) with a risk matrix to assess collisions associated with three 
different operational scenarios, including non-autonomous, hybrid, and fully autono-
mous truck operations. To achieve these objectives, a comprehensive dataset was collected 
and analyzed using statistical models and natural language processing (NLP) techniques. 
Multiple scenarios were then developed and simulated to compare the risks of collision 
and evaluate the impact of eliminating human intervention in hauling operations. A risk 
matrix was designed to assess the collision likelihood and risk severity of collisions in 
each scenario, emphasizing the impact on both human safety and project operations. The 
results revealed an inverse relationship between the number of autonomous trucks and 
the frequency of collisions, underscoring the potential safety advantages of fully autono-
mous operations. The collision probabilities show an improvement of approximately 
91.7% and 90.7% in the third scenario compared to the first and second scenarios, respec-
tively. Furthermore, high-risk areas were identified at intersections with high traffic. 
These findings offer valuable insights into enhancing safety protocols and integrating ad-
vanced monitoring technologies in open-pit mining operations, particularly those utiliz-
ing autonomous haulage truck fleets. 

Keywords: autonomous hauling operation; collision mitigation; risk assessment;  
discrete-event simulation 
 

1. Introduction 
Mining operations have evolved, consistently associated with physical demands and 

inherent risks. These risks span occupational hazards, including slope instability, colli-
sions, chemical exposure, and environmental concerns such as pollution and soil erosion. 
Mining companies, driven by the imperative to improve worker safety and adopt envi-
ronmentally friendly practices, have embarked on a continuous journey of enhancement. 
Hauling operations within the mining industry add a layer of complexity and risk to the 
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mining process. These risks necessitate ongoing monitoring and control to ensure both 
safety and operational efficiency [1]. 

Notably, a significant proportion of hauling operation risks are linked to mobile 
equipment, with accidents involving this equipment accounting for numerous injuries 
and fatalities within the mining sector [2]. In response to these challenges, the emergence 
of autonomous trucks has become a promising way to mitigate risks in hauling opera-
tions. Autonomous trucks offer the potential to substantially reduce accidents, enhance 
productivity, and contribute to a safer working environment by minimizing human error 
and improving adherence to safety protocols [3]. 

Autonomous haulage systems (AHSs), pioneered by industry leaders like Komatsu 
and Caterpillar, have garnered attention for their potential to revolutionize mining oper-
ations. Introduced in Chile in 2005, these haulage systems have been adopted by mines 
worldwide, including CODELCO’s Radomiro Tomic and Gabriela Mistral mines, Rio 
Tinto’s West Angelas mine, Fortescue Metals’ Solomon mine, and BHP’s Navajo mine [4]. 
The integration of wireless communication [5], object-avoidance sensors (proximity de-
tections) [6], global positioning systems (GPS) [7], teleoperation systems [8], and artificial 
intelligence [9] allows haulage trucks to operate autonomously or be controlled remotely, 
reducing exposure to risks associated with human-operated trucks [10]. This technologi-
cal transition not only prioritizes safety by preventing accidents through enhanced 
knowledge of GPS and tracking technologies, speed, and real-time traffic management 
[11,12] but also introduces potential benefits such as enhanced consistency, scheduled 
maintenance, productivity, and extended machine component lifetimes, thereby minimiz-
ing associated maintenance costs and production interruptions [13]. However, the safe 
integration of autonomous trucks requires meticulous planning, addressing factors like 
communication systems, cybersecurity, and personnel training [14]. 

While the use of AHS in mining operations provides numerous benefits and miti-
gates certain hazards, it also introduces new risks. These include potential software mal-
functions, cyber-attack vulnerabilities, communication loss, and sensor failures [15]. The 
consequences of these hazards are significant, ranging from worker injuries and fatalities 
to production delays and equipment damage. The emerging threat of cyber-attacks on 
networked systems further complicates safety considerations. Regarding personnel safety 
and equipment damage, hazards associated with collisions and accidents involving au-
tonomous trucks are of the utmost importance. 

Real-world incidents, such as the brake failure in an autonomous haulage truck at a 
Western Australian mine [16], highlight the potential consequences of equipment failures, 
emphasizing the critical importance of regular maintenance and inspection protocols. Oc-
cupational fatalities in powered haulage operations, involving various haulage units like 
ore haulage trucks and load-haul dumpers [17], underscore the frequent and impactful 
nature of these hazards. 

Therefore, it is necessary to redefine the approach to risk management and security 
protocols. Simulation-based analysis serves as an invaluable tool, enabling the exploration 
of different configurations, behaviors, and interactions without the constraints and risks 
of on-field experimentation [18]. DES, a computer-based modeling technique, stands out 
for its unique advantage over other operational research methods, enabling experimenta-
tion with various elements of production systems [19,20]. Recent studies highlighted its 
versatile applications in the mining industry, including maintenance analysis [21], mine 
planning [22,23], shovel–truck allocation, production management, haulage production 
capacity analysis, and production sequencing in room and pillar mines [24]. DES models 
have been instrumental in optimizing longwall mining efficiency [25] and studying the 
impact of increased skip capacity in underground coal mining systems [26]. These 
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applications demonstrate that the DES technique can address diverse challenges within 
the mining sector. 

Various studies have also concentrated on enhancing the safety of AHSs. Meech and 
Parreira [3] developed a deterministic/stochastic model to compare AHSs with manual 
systems in a virtual 24/7 open-pit mine, revealing that AHSs consistently outperformed 
the manual system in key performance indicators (KPIs). Another deterministic/stochastic 
model, presented by Parreira [4], benchmarked KPIs such as productivity, safety, break-
down frequencies, maintenance costs, labor costs, fuel consumption, tire wear, and haul-
age cycle times. The results demonstrated that an AHS could increase either production 
or productivity by 21.3%, primarily due to enhanced utilization. Hamada [27] proposed a 
Permission Control principle strategy to efficiently manage dump truck routes and en-
hance operational safety. Lu [1] suggested using a combination of camera and lidar sensor 
technologies to proactively control collisions with other equipment or obstacles. Gaber [5] 
emphasized the improvement of performance in autonomous mining contexts through a 
focus on communication, cybersecurity, and overall safety measures. Ishimoto [28] devel-
oped a system architecture to identify potential hazards during AHS operation, outlining 
protective measures. Additionally, some international standards, such as ISO 26262 [29], 
ISO 12100-1,2, and ISO 14121-1 [30], have provided guidance on functional safety and risk 
assessment, serving as a valuable framework for identifying and preventing risks associ-
ated with AHSs. 

Milićević et al. [31] investigated hybrid electric tracked vehicles (HETVs) with a focus 
on optimizing speed-coupled parallel hybrid powertrains. Using a dynamic program-
ming algorithm and a custom drive cycle, the authors identified an optimal hybridization 
factor of 0.48 and showed that engine parameters, particularly displacement and bore-to-
stroke ratio, significantly influence fuel economy. The results highlighted the advantages 
of parallel configurations over series ones, demonstrating their potential for improving 
efficiency, reducing fuel consumption, and supporting the practical deployment of hybrid 
tracked vehicles. Neumann and Łukasik [32] presented a simulation-based analysis of hu-
man–machine collaboration in heavy-duty road transport, focusing on SAE Level 3 and 
Level 4 autonomous trucks under EU Regulation (EC) No. 561/2006. The study compared 
single-driver, double-driver, and ego vehicle scenarios, showing that Level 3 automation 
can extend compliant daily vehicle movement to 13.25 h, while Level 4 in double-crew 
configurations allows up to 14.25 h. By integrating regulatory constraints with operational 
modeling, the work highlighted how partial automation can increase transport efficiency, 
support regulatory adaptation, and lay the groundwork for hybrid driver roles and future 
tachograph systems. Li et al. [33] modeled human–machine collaboration in heavy-duty 
transport, showing that SAE Level 3–4 automation can extend compliant vehicle move-
ment time under EU regulations, offering efficiency gains and implications for future tach-
ograph systems. 

The literature review revealed a gap in existing studies, as many focused on the po-
tential safety enhancements of AHSs but failed to accurately assess collision risks, the con-
sequences of such collisions, and how exactly AHSs can mitigate or prevent collisions in 
various scenarios. Additionally, risk assessment procedures are deficient for comparing 
autonomous and non-autonomous systems across different risk scenarios to quantita-
tively analyze the advantages of AHS over non-autonomous systems. In response to these 
challenges, this study develops a simulation-based risk analysis approach to assess the 
risk of different hazard scenarios in AHS mining operations, considering both operational 
and environmental uncertainties. This approach can quantify the risk magnitude and 
identify areas with a higher potential for accidents within a mine layout. Consequently, it 
evaluates the effect of autonomous driving systems on risk reduction compared to non-
autonomous haulage operations. Through the examination of diverse fleet scenarios, 
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including fully autonomous and hybrid operations, the study provides valuable insights 
into safety metrics, fulfilling the need for a comprehensive understanding of the safety 
improvements associated with autonomous technology. 

The paper is structured as follows: Section 2 details the proposed approach for as-
sessing the risk associated with different operational scenarios. Section 3 describes a real 
case study used in this paper to illustrate the practical application of the proposed meth-
odology. Section 4 presents the results and discusses the broader implications for safety 
in mining haulage operations. In Section 5, the conclusions and significant findings are 
presented, along with recommendations for future research. 

2. Methodology 
In this study, a simulation-based risk analysis is proposed to model actual haulage 

operations and assess the risks of integrating autonomous trucks into an existing non-
autonomous open-pit mining operation. A flowchart summarizing the methodology is 
provided in Figure 1. 

 

Figure 1. A step-by-step flowchart of the proposed methodology. 

The methodology consists of the following steps: 
1. Input Data Collection: Mining-related data are collected, including fleet size, road 

network, and operational parameters, along with historical accident and injury data. 
2. Scenario Definition: Different operational scenarios are defined to represent varying 

levels of autonomy in the fleet: 
a. Scenario 1: Fully human-operated. 
b. Scenario 2: Hybrid fleet with 20% autonomous trucks. 
c. Scenario 3: Fully autonomous fleet. 
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3. NLP-based Accident Classification: Natural language processing is applied to clas-
sify historical accidents: 
a. Filter for truck-related incidents. 
b. Identify truck-to-truck collisions. 
c. Extract features using custom K-means clustering for subsequent risk analysis. 

4. Simulation (DES): Haulage operations are simulated using discrete event simulation, 
including 
a. Loading trucks, assigning routes, and simulating hauling cycles. 
b. Incorporating stochastic factors such as driver experience and shift schedules. 
c. Tracking collisions and recording locations and timestamps. 

5. Risk Analysis: Collision probabilities are calculated for each scenario. 
a. Adjustments are made for human factors (experience, shift schedules). 
b. Risks are quantified using a standard risk matrix ranging from “Highly un-

likely” to “Highly likely”. 

2.1. Input Data 

An accurate simulation of hauling operations requires specific data and inputs. Some 
inputs adhere to industry standards, regulations, or manuals and remain consistent across 
mines. Conversely, other inputs are mine-specific, varying from one mining operation to 
another. Table 1 provides the necessary mining data for the simulation, detailing how to 
access this vital information, thereby ensuring precision in modeling the hauling opera-
tion. 

Table 1. Input data for configuring the simulation model. 

Data Description Source 
Fleet Size Number of trucks and shovels Mining Data 

Fleet Characteristic Capacity, payload, and loading rate Mining Data 
Road Road network configuration, width, and one/two-way Mining Data 

Source, Destination Locations Location coordinates Mining Data 
Road Rules Traffic light, maximum speed, and minimum proximity Mining Data 
Cycle Times Historical data on cycle time duration Mining Data 

Dispatching Plan Plan of shovel–truck allocation and cycles Mining Data 
Risk Probability Probability of different risks Regulations, Historical Data 

2.2. Developing Hazard Scenarios 

To comprehensively assess the hazards associated with integrating autonomous 
trucks into a mining fleet, three distinct scenarios were examined: fully human-operated, 
a hybrid fleet with 20% autonomy, and a fully autonomous fleet. Each scenario offers 
unique insights into the comparative analysis of collisions between autonomous and non-
autonomous haulage trucks. Once the hazard scenario and the system boundary are de-
termined, it is essential to specify the necessary parameters for assessing risks, including 
the probability of accidents involving both autonomous and non-autonomous trucks. Rec-
ognizing the primary distinction in accident probability between these two types is due 
to human error, this study supports the US Bureau of Mines’ assertion, attributing 85% of 
truck accidents to human error [34]. 

Drawing on insights from Zhang’s study [2], our analysis results identified specific 
trends in truck-related injuries. Notably, a majority of injuries occurred within a worker’s 
first five years at the mine and within the first five years in their current job title. Most 
incidents were recorded during the 6:00–14:00 shift, with the fall season presenting the 
highest number of truck-related injuries among all four seasons. Disregarding seasonal 
effects, given their similar impact on both autonomous and non-autonomous scenarios, 
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we pinpoint years of experience and working shifts as key factors influencing human error 
in truck-related incidents. These variables, detailed in Table 2, are integral components 
considered in the calculation of accident risk for each scenario. 

Table 2. Variables considered for accident probability modeling [2]. 

Years of Experience Accident Probability Working Shifts Accident Probability 
0∼5 0.69 6:00 ∼ 14:00  0.52 
6∼16 0.23 14:00 ∼ 22:00  0.28 
17+ 0.08 22:00 ∼ 6:00  0.2 

2.2.1. Scenario 1. Human-Operated Fleet 

This scenario replicates the current mining operation where humans operate all 
trucks. In this scenario, an empirical equation (Equation (1)) has been developed to calcu-
late the accident probability based on years of experience, working shifts, and historical 
accident data extracted from NIOSH (National Institute for Occupational Safety and 
Health, Mining Program). The equation is rooted in the concept of independent events in 
probability theory. When multiple independent factors contribute to a single outcome, 
their probabilities can be multiplied to estimate the overall likelihood of that outcome. 
Equation (1) is designed to quantify the probability of accidents by considering three key 
factors. The first factor is “years of experience,” which implies that operators with more 
experience generally have a lower risk of accidents due to improved skills and familiarity 
with safety protocols. The second factor is “working shifts,” indicating that longer or more 
frequent shifts can lead to fatigue, thereby increasing the likelihood of accidents. The third 
factor is “accident rate,” which is based on historical data and reflects the frequency of 
accidents occurring within a specific time frame. By multiplying these factors, a compre-
hensive assessment of accident probability is obtained, reflecting real-world conditions. 
The following equation provides the accident probability. 

𝐴𝐴𝐴𝐴𝑆𝑆1 = 𝑌𝑌𝑌𝑌 × 𝑊𝑊𝑊𝑊 × 𝐴𝐴𝐴𝐴 (1) 

where 𝐴𝐴𝐴𝐴𝑆𝑆1 denotes the accident probability for Scenario 1, 𝑌𝑌𝑌𝑌 is the years of the opera-
tor’s experience, 𝑊𝑊𝑊𝑊 describes working shifts, and 𝐴𝐴𝐴𝐴 denotes the accident rate. 

2.2.2. Scenario 2. Hybrid-Operated Fleet (20% Autonomous–80% Non-Autonomous) 

Addressing the transitional phase in fleet automation, this scenario combines auton-
omous and non-autonomous trucks. The accident rate was adjusted to reflect the hybrid 
nature by considering the percentages of both types, following which the overall accident 
risk was calculated using Equations (2) and (3). These equations integrate the results from 
human-operated and autonomous calculations to derive a final weighted risk value. 

𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁  =  {80% × 𝐴𝐴𝐴𝐴 }  +  {20% × 𝐴𝐴𝐴𝐴 × (1 − 0.85)} (2) 

𝐴𝐴𝐴𝐴𝑆𝑆2 =  𝑌𝑌𝑌𝑌 × 𝑊𝑊𝑊𝑊 × 𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 (3) 

where 𝐴𝐴𝐴𝐴𝑁𝑁𝑁𝑁𝑁𝑁 is defined as the new accident rate, 𝐴𝐴𝐴𝐴 denotes the accident rate, 𝑌𝑌𝑌𝑌 is the 
years of the operator’s experience, and 𝑊𝑊𝑊𝑊 describes working shifts. 

2.2.3. Scenario 3. Fully-Autonomous Fleet 

In this scenario, it is assumed that there is a significant 99% decrease in accidents 
attributed to autonomous operations, effectively eliminating human error. Equation (4) is 
then utilized to estimate collisions, factoring in the remaining 1%. This adjustment is nec-
essary for risk modeling, ensuring that the equation does not yield a zero result. 
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𝐴𝐴𝐴𝐴𝑆𝑆3 =  (1 − 0.99) × 𝐴𝐴𝐴𝐴 (4) 

where 𝐴𝐴𝐴𝐴𝑆𝑆3 is the accident probability for Scenario 3, and 𝐴𝐴𝐴𝐴 denotes the accident rate. 

2.3. Simulation Modeling 

In the simulation of the shovel–truck hauling system conducted in this study, essen-
tial input data were gathered to model the system accurately. The primary sources of in-
formation encompassed records detailing the hauling cycle times and topographic data 
specific to a typical mine. In this study, various entities and characteristics were consid-
ered for the analysis process (see Figure 2). 

 

Figure 2. Required entities and characteristics for simulating the haulage system. 

DES emerges as one of the effective techniques for modeling the hauling operation 
in the mining industry. This technique inherently deals with stochastic, dynamic, and dis-
crete processes, where system changes occur at distinct points in time [20,35]. In dynamic 
processes, models evolve as events occur and system states change. The DES formulation 
can be expressed as follows (Equation (5)): 

[𝑌𝑌1,𝑌𝑌2, . . . ,𝑌𝑌𝑖𝑖] = 𝑓𝑓(𝑝𝑝1,𝑝𝑝2, . . . ,𝑝𝑝𝑗𝑗,𝑥𝑥1,𝑥𝑥2, . . . ,𝑥𝑥𝑘𝑘) (5) 

where Yi denotes the output performance measures (e.g., cycle times, collision frequen-
cies) number 𝑖𝑖 , 𝑃𝑃𝑗𝑗  represents the system parameters (e.g., truck capacity, road condi-
tions) number 𝑗𝑗, and 𝑋𝑋𝑘𝑘 corresponds to the stochastic input variables (e.g., travel times, 
delays, accident occurrences) number 𝑘𝑘. 

This formulation follows the standard stochastic process representation of DES mod-
els [36], where the function 𝑓𝑓 dynamically maps inputs and parameters to system out-
puts. In the context of mine haulage simulation, this enables modeling of random events 
such as shovel availability, truck queuing, and collision risks at intersections. Thus, the 
outputs evolve over time based on both operational parameters and the inherent random-
ness of mining operations. 

The simulation algorithm and its logical relationships governing the haulage opera-
tion process are shown in Figure 3. 
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Figure 3. The developed algorithm for simulating haulage operations and potential truck-related 
accidents in this study. 

In this study, AnyLogic 8.8.5 (AnyLogic North America, educational license) simula-
tion software was employed to model the movement and interactions of haulage trucks 
within an open-pit mining environment. Each truck was represented as an autonomous 
agent with defined attributes such as speed, load capacity, and operational states (travel-
ing, loading, unloading, or waiting). The mine layout, including haul roads, loading 
points, and dumping sites, was recreated in the simulation environment, allowing trucks 
to navigate according to predefined behavioral rules while avoiding collisions. Interaction 
between trucks was modeled using proximity detection and priority rules at intersections, 
and potential accidents were captured when minimum safe distances were violated. Sev-
eral travel times and operational delays were incorporated to reflect real-world variabil-
ity, enabling a risk-based analysis of truck movements, congestion points, and collision 
likelihood under different operational scenarios. 

As shown in Figure 3, the haulage simulation is launched by moving trucks from the 
dispatching area to the shovel location for loading. At this point, the logical gate checks if 
the shovel is available, and if not, trucks wait in a queue with a first-come, first-served 
approach. Once the shovel is available, trucks position themselves for loading, and the 
process begins. Once loaded, the full trucks travel to the crusher or waste dump for un-
loading. During travel, if trucks pass any intersecting roads, which are typically the most 
hazardous areas in a mining road network, the algorithm assesses whether an intersection 
is occupied by another truck. If so, the algorithm recognizes it as a potential collision risk 
and promptly takes necessary collision-related actions, such as documenting collision de-
tails and removing the impacted trucks from the current cycle. Following the necessary 
repair time (modeled with a delay function), during which the trucks are fixed and pre-
pared to return to operation, the truck is reintroduced into the cycle and accounted for in 
subsequent cycles. Then, the algorithm tracks the frequency of collisions, recording im-
portant details such as the location and timestamp of each collision. This collision data, 
along with information on the number of collisions, time, and intersections, is recorded 
for each scenario and will be used for risk analysis. 
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2.4. Risk Analysis 

In this study, the operational risk analysis was designed to evaluate the effectiveness 
of autonomous truck integration in hauling operations and to identify conditions that may 
require additional safety measures. To achieve this, we combined DES outputs with a syn-
thesized risk matrix. Risk matrices, also referred to as probability–impact matrices, provide 
a two-dimensional framework in which the likelihood of an adverse event is plotted 
against its potential severity [22]. Severity in this case was defined as the operational and 
human safety consequences of a collision, while probability was quantified using the col-
lision frequencies generated by the simulation model. 

To translate simulation outputs into categorical probability levels, we adopted the 
guidance of A/NZS 4360 [33] and defined four probability classes based on event fre-
quency ranges (Figure 4). Specifically, simulated collision probabilities below 0.001 were 
classified as Highly unlikely (green), values between 0.001 and 0.01 as Unlikely (yellow), 
values between 0.01 and 0.05 as Likely (orange), and values above 0.05 as Highly likely (red). 
These thresholds allow direct mapping of quantitative simulation results into qualitative 
risk levels. 

In addition to probability, human-related factors such as driver experience and work-
ing shift were included as modifiers of risk. Historical safety reports indicate that inexpe-
rienced drivers (0–5 years) and night shifts are associated with higher accident rates. 
Therefore, probability classifications from the DES model were adjusted to reflect these 
conditions, while more experienced drivers (6–16 years, 17+ years) and day shifts resulted 
in lower adjusted probabilities. In this way, the matrix integrates both system-level risk 
(from collision simulations) and human-factor variability. 

The final risk matrix (Figure 4), therefore, presents risk categories in a color-coded 
format (green–red) across operational scenarios, driver experience levels, and working 
shifts. This structured approach ensures that the probability assignments are not subjec-
tive but grounded in simulation-based estimates and supported by operational data. 

 

Figure 4. Risk matrix for collision assessment. 

3. Case Study 
Conducting a thorough case study is crucial to validate the effectiveness of the sim-

ulation model and assess the practical applicability of the proposed simulation-based risk 
analysis approach. The case study focuses on an open-pit mine, situated in Nevada, USA, 
where the unique challenges of desert conditions demand careful consideration of param-
eters for safe truck driving, dust control, and signage clarity. This real-world application 
serves as a testing ground for refining the proposed methodology, aligning it with specific 
mine characteristics, and ultimately ensuring its reliability and relevance in real-world 
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mining operations. The proposed approach is modeled and implemented in AnyLogic 
8.8.5 Software. The use of AnyLogic 8.8.5 software, known for its effectiveness in model-
ing complex systems [34], was a strategic choice for developing a dynamic simulation 
model in the mining context [35,36]. Table 3 outlines key data imported from the mining 
company, essential for configuring the analysis process. Integration of nodes representing 
truck destinations followed, providing a foundational framework for accurate represen-
tation. Figure 5 offers a representation of the mine’s layout and road network. 

Table 3. Key parameters for simulation configuration. 

Parameter Value Unit 
Initial speed 2.22 m s⁄  

Preferred speed 6.94 m s⁄  
Max acceleration 1 m

s2�  

Max deacceleration 1.5 m
s2�  

Loading time 240 s 
Unloading time 60 s 

 

Figure 5. Visual representation of the simulated mine’s layout and road network. 

The simulation process is configured based on the algorithm developed in Figure 3. 
Figure 6 depicts the logic flowchart of the described hauling cycle implemented in 
AnyLogic. 

 

Figure 6. Hauling cycle logic flowchart. 

As shown in Figure 6, the simulation process begins with the “Truck Source” block, 
which generates a predetermined number of trucks for each mining cycle. To ensure real-
ism, the production rate of trucks was regulated to maintain safe distances between 
trucks. Each truck was assigned a specific initial speed, maximum acceleration, and max-
imum deceleration parameters to mimic real-world conditions accurately. Within the “Car 
Move to” section, the “Move To” block facilitated the movement of trucks toward their 
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designated locations. Here, the code inside the “Move To” block checked for truck occu-
pancy at intersections, triggering collision-related actions as necessary. Following the 
movement logic, the simulation evaluated accident conditions using the “Select Output” 
block, determining outcomes based on collision occurrence. In the event of a collision, 
nearby trucks reduced speed and eventually stopped, while the involved trucks were re-
moved from the simulation. If no accidents occurred, trucks proceeded to the loading and 
unloading bays seamlessly. Additionally, the animation of trucks transitioning between 
lanes was handled by the “Car Exit” and “Car Enter” blocks. Furthermore, loading and 
unloading processes were represented by “Delay” blocks, simulating the estimated time 
required for these operations to be completed. This entire process was repeated for the 
unloading cycle until the simulation reached its designated end [37–39]. 

4. Results 
4.1. Accident Data Analysis 

To compute the accident rates outlined in Section 2.2 and evaluate collision probabil-
ities, the average accident rate per year for a typical mine is required. To achieve this, the 
historical data dictionary for accident/injury/illness from the Mine Safety and Health Ad-
ministration (MSHA) was analyzed. This data dictionary includes all recorded accidents, 
injuries, and illnesses across all mines in the United States. The dataset is stored in SAV. 
format (IBM SPSS Statistics 29.0.2.0 (20)), providing detailed information about each rec-
orded accident, such as mine location, date, operation, equipment involved, and conse-
quences. 

Given the descriptive nature of the data, text analysis algorithms are necessary to 
extract the relevant information. NLP techniques [40] were employed to filter accidents 
specifically related to trucks and, further, to identify truck-to-truck collisions. The method 
used in this study is a novel custom feature K-means clustering approach, which improves 
upon traditional clustering methods by integrating both global content and targeted key-
word relevance. Unlike conventional risk assessment approaches in autonomous haulage 
systems [14,15,17], our method enables a more precise identification of collision-relevant 
incidents from large, unstructured datasets. 

It begins with constructing a Term Frequency–Inverse Document Frequency (TF-
IDF) matrix [41] to capture word importance. Alongside this, a binary feature vector is 
created to indicate the presence of predefined keywords in each document. These features 
are combined into an augmented matrix, enriching the input for the K-means algorithm 
[42]. This approach enables more nuanced clustering by leveraging both general content 
and targeted keyword relevance, resulting in more meaningful and thematically distinct 
document groupings. The classification procedure is detailed in Algorithm 1. 

Algorithm 1. Augmented K-means Text Clustering  
Require: documents: List of text documents, keywords: List of predefined  
keywords of interest, num_clusters: Number of clusters for K-means 
Ensure:  Cluster assignments for each document 
1:  function PREPROCESS(documents) 
2:      preprocessed_docs ← [] 
3:      for doc in documents do 
4:          doc ← Convert to lowercase(doc) 
5:          doc ← Remove punctuation and special characters(doc) 
6:          tokens ← Tokenize(doc) 
7:          tokens ← Remove stopwords(tokens) 
8:          processed_doc ← Rejoin(tokens) 
9:          Append processed_doc to preprocessed_docs 
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10:     end for 
11:     return preprocessed_docs 
12: end function 
13: preprocessed_documents ← PREPROCESS(documents) 
14: Initialize TF_IDF_vectorizer 
15: TF_IDF_Matrix ← TF_IDF_vectorizer.fit_transform(preprocessed_documents) 
16: function CREATEKEYWORDFEATURES(documents, keywords) 
17:     Initialize binary_keyword_matrix of size len(documents) × 1 with zeros 
18:     for i from 0 to len(documents) - 1 do 
19:         for each keyword in keywords do 
20:             if keyword in documents[i] then 
21:                 binary_keyword_matrix[i] ← 1 
22:                 break 
23:             end if 
24:         end for 
25:     end for 
26:     return binary_keyword_matrix 
27: end function 
28: keyword_features ← CREATEKEYWORDFEATURES(preprocessed_documents, 
keywords) 
29: Combined_Feature_Matrix ← Concatenate TF_IDF_Matrix with keyword_features 
along columns 
30: Initialize K_means with num_clusters clusters 
31: Cluster_Labels ← K_means.fit_predict(Combined_Feature_Matrix) 
32: for i from 0 to len(documents) - 1 do 
33:     Print “Document”, documents[i], “is in cluster”, Cluster_Labels[i] 
34: end for 

To ensure the consistency and reliability of accident classification, multiple runs of 
the K-means clustering algorithm were performed with different initializations, and re-
sults were compared using cluster similarity metrics (e.g., Adjusted Rand Index). Con-
sistency across these runs was high (mean ARI > 0.92), confirming that the classification is 
robust to algorithmic variations. 

After filtering the data, the number of collisions and the number of operating mines 
for each year were extracted. Since the average accident rate is required for the simulation, 
the number of operating mines per year was considered. The average accident rate was 
calculated by dividing the total number of accidents by the number of operating mines 
per year, covering the period from 2009 to 2021, as depicted in Figure 7. This approach 
provides an advantage over standard methods [21,25] by ensuring a more robust compu-
tation of accident rates while explicitly incorporating unstructured textual data. Addition-
ally, statistical checks were performed to confirm that annual accident rate trends were 
not overly sensitive to small variations in the data, reinforcing the reliability of the input 
for simulations. 
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Figure 7. Average annual accident rate per operating mine (2009–2021). 

Building on this foundation, a total of 323 simulations were conducted across three 
scenarios, considering factors like working shifts and driver experience. Scenario 1 simu-
lates a human-operated mine operation considering critical variables, including “years of 
experience”, “work shift schedules”, and “human error”. Scenario 2 is focused on a semi-
autonomous setup, where 80% of operations are human-driven and 20% are autonomous. 
A correction factor is applied to account for human–autonomous interaction risks. Sce-
nario 3 simulates a fully autonomous mine, with 99% of haulage performed autono-
mously, incorporating a reduced correction factor for a marginal margin of error. To val-
idate the robustness of simulation results, sensitivity analyses were performed by varying 
key parameters (e.g., driver experience distribution, shift schedules, and human error 
rates) within plausible ranges. Across these variations, the resulting collision probabilities 
and scenario rankings remained consistent, demonstrating that the findings are reliable 
and not dependent on specific parameter choices. 

Table 4 presents the annual collision probabilities derived from the simulation, 
alongside the calculated accident probabilities for each scenario. Collision probabilities 
terminology is used to better reflect the nature of the data, as it represents the likelihood 
of collisions occurring. These probabilities are based on average accident data and take 
into account factors such as operators’ experience and shift patterns, as discussed in Sec-
tion 2.2. Notably, the analysis process is focused on recently hired operators, representing 
a worst-case scenario in terms of working experience (since more experienced drivers tend 
to make fewer mistakes). This focus distinguishes our study from previous methods 
[15,37] that often assume average operator experience or aggregate risk metrics, thereby 
underestimating peak-risk conditions. 

Table 4. Annual collision probabilities for different scenarios. 

Year 
Morning Shift: 6:00–14:00 Afternoon Shift: 14:00–22:00 Evening Shift: 22:00–6:00 

APS3 Collision 
Probability APS1 APS2 

Collision Proba-
bility 

APS1 APS2 
Collision Proba-

bility 
APS1 APS2 

Collision Proba-
bility 

Scenario 1 2 1 2 1 2 1 2 1 2 1 2 3 
2009 0.0148 0.0123 0.2543 0.2344 0.0080 0.0066 0.1732 0.1681 0.0057 0.0047 0.1742 0.1574 0.00041 0.02062 
2010 0.0144 0.0119 0.2722 0.2502 0.0077 0.0064 0.1840 0.1782 0.0055 0.0046 0.1717 0.1567 0.00040 0.02667 
2011 0.0031 0.0026 0.0713 0.0647 0.0017 0.0014 0.0590 0.0523 0.0012 0.0010 0.0489 0.0433 0.00009 0.00435 
2012 0.0039 0.0032 0.0908 0.0771 0.0021 0.0017 0.0700 0.0615 0.0015 0.0012 0.0589 0.0519 0.00011 0.00543 
2013 0.0121 0.0100 0.2352 0.2159 0.0065 0.0054 0.1684 0.1622 0.0047 0.0039 0.1588 0.1394 0.00034 0.02247 
2014 0.0042 0.0035 0.0897 0.0812 0.0023 0.0019 0.0740 0.0663 0.0016 0.0013 0.0681 0.0518 0.00012 0.00588 
2015 0.0090 0.0074 0.1971 0.1623 0.0048 0.0040 0.1479 0.1336 0.0035 0.0029 0.1281 0.1145 0.00025 0.01667 
2016 0.0042 0.0035 0.0894 0.0816 0.0023 0.0019 0.0692 0.0629 0.0016 0.0013 0.0640 0.0529 0.00012 0.00588 
2017 0.0109 0.0090 0.2217 0.2028 0.0059 0.0049 0.1568 0.1519 0.0042 0.0035 0.1359 0.1225 0.00030 0.02020 
2018 0.0191 0.0159 0.3213 0.2936 0.0103 0.0086 0.2367 0.2004 0.0074 0.0061 0.2083 0.1992 0.00053 0.02667 
2019 0.0211 0.0175 0.3671 0.3266 0.0114 0.0094 0.2611 0.2246 0.0081 0.0067 0.2297 0.2246 0.00059 0.02941 
2020 0.0098 0.0082 0.2070 0.1791 0.0053 0.0044 0.1557 0.1398 0.0039 0.0031 0.1328 0.1215 0.00027 0.01826 
2021 0.0174 0.0144 0.3007 0.2776 0.0093 0.0078 0.2200 0.1973 0.0067 0.0055 0.2044 0.1847 0.00048 0.02419 



Appl. Sci. 2025, 15, 9702 14 of 23 
 

In Scenarios 1 and 2, accident probabilities and collision numbers are consistently 
higher during earlier shifts (6 a.m.–2 p.m.) compared to later shifts (2 p.m.–10 p.m. and 10 
p.m.–6 a.m.). These scenarios exhibit the highest collision probabilities in 2019, particu-
larly during the morning shift. However, Scenario 2 shows improvement with slightly 
lower collision probabilities compared to Scenario 1. The lowest collision numbers for 
both scenarios are observed during the night shift in the years 2010 and 2011, suggesting 
a general trend of reduced collision risks during this period. Interestingly, the collision 
probability for Scenarios 1 and 2 during the night shift is significantly lower than during 
the morning shift in all observed years. In contrast, Scenario 3, which involves a fully au-
tonomous mining system, indicates a remarkable improvement in safety due to the reduc-
tion in collision probability. This significant reduction, compared to Scenarios 1 and 2, 
underscores the effectiveness of using autonomous technology to enhance safety in min-
ing operations. 

These findings emphasize the critical need for improved safety protocols, particu-
larly during high-risk periods like the morning shift. Enhanced training for recently hired 
operators and strategic use of autonomous trucks can significantly mitigate collision risks 
in mining operations. To further illustrate these findings, Figure 8 provides a visual rep-
resentation of the data in Table 4, highlighting the relationship between working shifts 
and collision probabilities across different scenarios. This figure effectively demonstrates 
how shift timings impact collision risks, particularly emphasizing the differences between 
morning and night shifts in each scenario and the safety improvements achieved by the 
autonomous system. As illustrated in Figure 8, during day shifts (Figure 8a,b), the in-
creased activity, higher personnel presence, and possibly more operations contribute to 
higher collision probabilities. The higher number of personnel and more intensive opera-
tions during these shifts lead to a greater likelihood of collisions. Paradoxically, better 
visibility during the day might lead to overconfidence or less cautious behavior, further 
increasing collision risks. 

In Scenario 3 (Figure 8c), although higher accident probabilities initially lead to 
higher collision risks, the scenario still exhibits noticeably lower collision probabilities 
compared to the other scenarios. This highlights the superior safety performance of fully 
autonomous systems, confirming that our methodology not only models risk more accu-
rately but also quantitatively demonstrates safety gains achievable over current opera-
tional practices. 

 
(a) Scenario 1: Human-operated. 
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(b) Scenario 2: Hybrid. 

 
(c) Scenario 3: Fully autonomous. 

Figure 8. Relationship between working shifts and collision probabilities across different scenarios. 

Figure 8a–c provide valuable insights into the trends and patterns of collision occur-
rences across different scenarios and shifts over the years. These visualizations make it 
clear that the integration of autonomous systems into mining operations significantly im-
proves safety measures. The data from each scenario contributes to understanding the 
accident probabilities and collision risks associated with varying levels of autonomy in 
mining operations. As the level of automation increases, the overall safety within the min-
ing industry improves, as evidenced by the reduced collision probabilities in Scenario 3. 

4.2. Collision Location Identification 

Building upon the prior analysis, the exploration further delves into how the layout 
of the mine and its road networks impacts safety. The goal is to understand how different 
areas within the mine and intersections affect safety conditions, considering variables 
such as years of experience and working shifts. The study focuses on six intersections that 
were identified as critical based on the mine layout presented in Figure 5 and evaluation 
of the simulation results. These intersections were selected due to their higher traffic den-
sity and increased accident probability, making them key areas for examining collision 
occurrences in each scenario. Careful intersection tracking helps to pinpoint high-risk 
zones across various scenarios and conditions. Figure 9a–c illustrate the findings and the 
impact of working shifts and intersections on collision occurrences. Intersection 0 consist-
ently shows the highest collision probability across all scenarios, highlighting it as the 
most hazardous intersection regardless of scenario specifics. Intersection 4 consistently 
ranks second in collision frequency. Both intersections are critical within the mine’s logis-
tics, experiencing heavy truck traffic, which increases the risk of collisions. Intersection 0, 
the main crossing point for trucks entering the mine, sees significant traffic flow, while 
Intersection 4, serving as the gateway to the “source” or “extraction front,” also handles 
substantial truck volumes. In contrast, Intersection 2 consistently shows the lowest colli-
sion probabilities, indicating a relatively lower risk compared to other intersections. This 
intersection, along with Intersection 6, is connected to the “dumps” and generally 
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experiences less vehicle traffic, resulting in reduced collision risks. The analysis also 
shows that Scenarios 2 and 3 provide improved safety outcomes compared to Scenario 1. 
Scenario 2 slightly outperforms Scenario 1 across all intersections, demonstrating the 
safety benefits of integrating autonomous systems into the mine. Scenario 3, the safest, 
shows that even the highest collision probability at Intersection 0 is nearly equivalent to 
the collision probabilities at Intersection 2 in other scenarios, underscoring the importance 
of incorporating autonomous vehicles into mining operations for enhanced safety. 

 
(a) Scenario 1: Human-operated. 

 
(b) Scenario 2: Hybrid. 

 
(c) Scenario 3: Fully autonomous. 

Figure 9. The impact of intersections on collision occurrences. 
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To interpret and visualize the findings effectively, a traffic roadmap for all three sce-
narios has been created, as shown in Figure 10a–c. These traffic roadmaps represent colli-
sion probability across intersections using a color spectrum, where lighter shades indicate 
lower collision probability and darker hues signify higher probability. These visuals offer 
clear insights into areas with the highest collision risks, guiding the focus of safety inter-
ventions. By utilizing traffic roadmaps over the mining road network, as demonstrated in 
Figure 10, valuable insights are gained into collision hotspots, enabling the development 
of targeted safety measures. Analysis of specific intersections revealed Intersection 0 as 
the most hazardous area on the studied mine layout, particularly in Scenario 1 during the 
morning shift. This intersection experiences the highest collision probability of 0.981, 
highlighting the need for targeted safety measures. Conversely, Intersections 2 and 6 in 
Scenario 3 exhibit the lowest collision probabilities, indicating safer conditions facilitated 
by autonomous operations. In Scenario 3, shown in Figure 10, for traffic roadmap C, the 
limited areas of the road network with darker colors are primarily around Intersections 0 
and 4. This indicates that while these intersections still pose some risk, all other parts of 
the road network can be considered safe due to the significant reduction in collision prob-
ability, underscoring the effectiveness of a fully autonomous system. 

 
(a) Scenario 1: Human-operated. 

 
(b) Scenario 2: Hybrid. 
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(c) Scenario 3: Fully Autonomous. 

Figure 10. Traffic roadmap depicting collision probabilities across intersections for all three scenarios. 

Leveraging our analysis of collision data and traffic roadmap, our objective is to pro-
vide actionable insights and recommendations to enhance safety in mining operations. 
Identifying critical areas and collision-prone intersections enables us to proactively imple-
ment safety measures, fostering a safer working environment. Apart from enhancing 
monitoring and control measures at Intersections 0 and 4, technologies like proximity de-
tection systems could be deployed to provide real-time alerts about potential collisions. 
Additionally, reevaluating traffic patterns and logistical flows at these intersections may 
help to reduce congestion and further minimize collision risks. Moreover, implementing 
physical barriers or warning signs near high-risk intersections could alert drivers and pre-
vent accidents. Regular safety training programs for operators, emphasizing defensive 
driving techniques and hazard recognition, can also enhance overall safety. Furthermore, 
incorporating advanced driver assistance systems (ADASs) in vehicles could provide ad-
ditional safety layers by detecting potential hazards and issuing warnings to drivers. 

4.3. Comparative Analysis of the Scenarios 

The findings of this study shed light on the impact of different operational scenarios 
on safety outcomes in mining operations. In Scenarios 1 and 2, which involve varying 
levels of human involvement, a notable reduction in collision probability is observed dur-
ing later shifts. This decline can be attributed to the increased caution exercised by per-
sonnel and reduced volumes of materials being transported during these shifts. The lower 
collision probability during nighttime shifts indicates that targeted safety measures could 
effectively mitigate collision occurrences. Comparing Scenario 2 to Scenario 1, where au-
tonomous trucks are introduced, a slight improvement in collision probability is observed. 
Specifically, the average collision probability during the morning shift decreases from 
0.2091 in Scenario 1 to 0.1882 in Scenario 2. This represents a reduction of approximately 
10% in collision probability, highlighting the safety improvements facilitated by autono-
mous trucks, which mitigate human-related errors in material transportation. Addition-
ally, the collision probabilities at individual intersections are generally lower in Scenario 
2, demonstrating a measurable 10% reduction in collision probability attributable to hy-
brid automation—an insight not previously quantified in analyses of autonomous haul-
age risk. 

To confirm the reliability of these comparisons, simulations for each scenario were 
repeated multiple times with different random seeds and slightly varied input parameters 
(e.g., driver experience distributions, shift allocations). The resulting variations in collision 
probabilities were minimal (<3%), indicating that the observed differences between sce-
narios are consistent and robust. 
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In contrast, Scenario 3, featuring a fully automated system with autonomous trucks, 
demonstrates a substantial decrease in collision probability across all shifts and levels of 
experience. The collision probability drops from 0.2091 in Scenario 1 and 0.1882 in Sce-
nario 2 to 0.0174 in Scenario 3. This represents a 91.7% improvement over Scenario 1 and 
a 90.7% improvement over Scenario 2, quantitatively confirming the effectiveness of full 
automation. These results emphasize the novelty of our methodology, which integrates 
scenario-based simulations with human-factor adjustments, surpassing approaches [7,37] 
that typically rely on static risk matrices or aggregate accident statistics. 

Robustness checks were also performed for Scenario 3 by altering simulation config-
urations, including shift start times and correction factors for autonomous–human inter-
action. The resulting collision probability remained within ±2% of the original values, 
highlighting the consistency of results across different simulation setups. 

To provide another perspective on the safety improvements in mining operations, 
Figure 11 presents the cumulative risk of collisions over 13 years for each scenario, meas-
ured by the sum of annual collision probabilities. This highlights the long-term safety im-
plications of different levels of automation in operational approaches. In Scenario 1, the 
expected number of collisions reaches about 2.7, which slightly decreases to 2.4 in Scenario 
2. However, in Scenario 3, where full automation is implemented, the expected number 
of collisions dramatically drops to just 0.22. These results highlight the substantial safety 
benefits of increasing automation in mining operations, suggesting that integrating au-
tonomous systems can significantly reduce the overall risk of collisions over time. 

 

Figure 11. Cumulative risk of collisions over the 13 years of operation for different automation sce-
narios. 

The study further emphasizes that these findings are reproducible in real-world min-
ing projects, considering factors like equipment quality, operational constraints, and hu-
man factors. Although more than 80% of mining trucks are still operated by humans, the 
reduced collision probability in the hybrid Scenario 2 points towards the potential for a 
gradual transition to autonomous operations. However, implementing effective safety 
measures remains crucial, particularly during transitions from human-operated to auton-
omous systems, to prevent collisions. Key insights from this study indicate that analyzing 
surface haulage accidents, hazards related to AHS, and factors such as employee age, ex-
perience, and shift timing are essential for improving safety. Simulations align with real-
world scenarios, demonstrating that these measures can effectively reduce collision risks 
when using autonomous trucks. The case study of this research highlights various poten-
tial hazards in material transportation, including traffic risks, inexperienced drivers, tran-
sition risks (from one scenario to another), maintenance issues, and reduced vigilance due 
to over-reliance on autonomous systems. 
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4.4. Risk Analysis of the Scenarios 

The proposed risk matrix was applied to evaluate collision risk across the three op-
erational scenarios, with probability levels derived directly from the simulation outputs 
and adjusted to account for driver experience and shift effects, as described in Section 2.4. 
The matrix categorizes risk into four classes: Highly likely (red), Likely (orange), Unlikely 
(yellow), and Highly unlikely/Safe (green). These categories correspond to the probability 
ranges summarized in Table 3 and provide a transparent link between numerical results 
and qualitative risk ratings. To ensure the reliability of risk classification, the simulation 
outputs were cross-validated across multiple runs with different initial conditions and 
random seeds. The risk categories assigned to each scenario remained consistent, with no 
instance of misclassification observed. 

In Scenario 2 (hybrid operations), overall collision frequencies were reduced com-
pared to Scenario 1, with most cases falling between 0.001 and 0.01, corresponding to the 
Unlikely (yellow) or Low-risk categories. Notably, no cases exceeded the Highly likely 
threshold, even under less favorable conditions (e.g., night shifts). In Scenario 3 (fully au-
tonomous operations), collision frequencies dropped below 0.001 across all conditions, 
placing the entire scenario in the Highly unlikely/Safe (green) category. This demonstrates 
a 90–92% reduction in collision probability compared to Scenarios 1 and 2, underscoring 
the safety benefits of full automation (See Figure 12). 

These findings confirm that the risk matrix effectively highlights high-risk conditions 
(Scenario 1, inexperienced drivers, morning shift) while also capturing the substantial risk 
reduction achieved by introducing autonomous haulage systems. Moreover, the integra-
tion of simulation-based probabilities with human-factor adjustments ensures that the 
classifications are both quantitative and operationally meaningful. 

 

Figure 12. Risk matrix results across scenarios, experience, and shifts. 

5. Conclusions 
This study presents an integrated simulation-based risk analysis model tailored for 

open-pit mining operations, offering a comprehensive approach to identifying, analyzing, 
and evaluating risks in mine haulage systems. Through a careful examination of a case 
study reflecting real-world mining conditions, the model effectively assesses potential 
hazards associated with material transportation. Leveraging the DES technique, the 
model simulates various operational scenarios, including fully human-operated, fully au-
tonomous, and hybrid truck configurations, to estimate collision probabilities accurately. 
The findings reveal a clear inverse correlation between the frequency of collisions and the 
degree of autonomous truck utilization, with the fully autonomous scenario demonstrat-
ing the lowest collision risk. Additionally, the analysis highlights that specific operational 
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features—such as intersection layout, traffic density, and truck speed—play a significant 
role in influencing collision probability, suggesting that both infrastructural and opera-
tional modifications can further enhance safety. 

Moreover, a detailed analysis of intersections within the mining site identifies Inter-
section 0 and Intersection 4 as high-risk zones due to their heavy traffic volumes, provid-
ing actionable insights for targeted safety interventions, such as traffic flow optimization 
or advanced signaling systems. The risk matrix developed in this study provides a com-
prehensive visual representation of collision probability levels across different scenarios, 
facilitating accurate risk assessment and mitigation strategies. Notably, the model’s ability 
to accurately simulate real-world mining conditions and evaluate safety outcomes under-
scores its practical value for industry stakeholders. By enabling precise identification and 
assessment of risks, this methodology equips mining operators with invaluable insights 
for enhancing safety protocols and optimizing operational efficiency. 

Future research directions could include exploring the integration of machine learn-
ing-based predictive algorithms to dynamically adjust haulage operations, evaluating the 
impact of mixed-autonomy environments over longer operational periods, and assessing 
the economic trade-offs associated with different safety interventions. Furthermore, ex-
tending the model to incorporate environmental factors, such as weather conditions and 
visibility, could provide a more holistic risk evaluation framework. Experimental valida-
tion through pilot deployments of autonomous trucks in diverse mining contexts would 
also strengthen the model’s applicability and generalizability. 
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