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Abstract

Cancer poses a significant clinical, social, and eco-
nomic burden, necessitating the development of ef-
fective treatments. Understanding how drugs inter-
act with cancer cells and their downstream effects
is critical for creating new therapies and overcom-
ing drug resistance. This paper compares the pre-
dictive performance of the Geneformer model with
traditional machine learning methods in predicting
the response of cancer cells to perturbation combi-
nations using the sciplex2 dataset.
The research involves preprocessing the sciplex2
dataset, training the models, and evaluating their
performance in binary classification of cells as ei-
ther treated or untreated, and the prediction of gene
perturbation impacts. While traditional ML mod-
els demonstrated higher accuracy in binary classifi-
cation tasks, Geneformer excelled in predicting the
impact of gene perturbations due to its advanced ar-
chitecture and extensive pre-training on single-cell
transcriptomes.
Key findings reveal that highly expression-
correlated gene pairs cause the largest shifts in
cell classification, underscoring the importance of
gene correlations in biological predictions. Gene-
former showed a deeper understanding of gene net-
work dynamics, achieving higher maximum Co-
sine Shifts compared to PCA embeddings and plac-
ing less emphasis on highly differentially expressed
(HDE) Single Genes. Instead, it focused on HDE
Gene Pairs, indicating its potential ability to cap-
ture complex downstream effects of gene perturba-
tions.
This study highlights the potential of integrating
advanced deep learning models like Geneformer
into drug discovery, offering a pathway for more
effective and targeted therapeutic interventions.

1 Introduction
Cancer poses the highest clinical, social, and economic bur-
den in terms of cause-specific Disability-Adjusted Life Years
(DALYs) among all human diseases [1]. Developing effective
treatments is crucial to alleviate this burden. Understanding
how drugs interact with cancer cells and their downstream
effects is vital for creating new treatments and overcoming
resistance to existing therapies.

The transcriptome is the set of all RNA transcripts, includ-
ing coding and non-coding, in an individual or a population
of cells [2]. It provides a comprehensive view of gene expres-
sion, revealing how genes are regulated and how their expres-
sion changes in response to different conditions.

Perturbations of such transcriptomes involve systemati-
cally altering the expression of specific genes to observe
the resulting changes in cellular behavior. These perturba-
tions help in understanding gene function and the interactions
within gene networks [3]. In-silico analyses of these pertur-

bations can identify potential therapeutic targets and under-
stand disease mechanisms more effectively [4].

Examining gene perturbation combinations of cell tran-
scriptomes is especially crucial for drug discovery. Unlike
single-gene perturbations, combination analyses reveal syner-
gistic effects and resistance mechanisms, aiding in the iden-
tification of effective drug combinations [5]. This approach
helps to uncover intricate biological pathways and interac-
tions that single-gene studies might miss. This research fo-
cuses purely on gene pair perturbations, providing a foun-
dation for further studies into various perturbation combina-
tions.

Machine learning (ML) models have been extensively ap-
plied to efficiently explore drug combinations from a vast ar-
ray of approved and investigational chemical compounds [6].
However, the introduction of deep learning and transfer learn-
ing techniques presents a significant advancement in this do-
main.

The field of machine learning has recently experienced ad-
vancements in models that can be pretrained on large, gener-
alized datasets and subsequently fine-tuned on smaller, task-
specific data to enhance their predictive accuracy [7]. Gene-
former is an application of the mentioned techniques in the
flied of network biology. Pretrained on approximately 30 mil-
lion single-cell transcriptomes, Geneformer has demonstrated
refined predictive abilities in data-limited scenarios [7]. The
model’s capacity to identify candidate therapeutic targets
through its attention-based, context-aware architecture signi-
fies a potential leap forward in the area of drug efficacy pre-
diction. Nevertheless, questions persist about how the Gene-
former model compares against traditional machine learning
methods when applied to complex, high-dimensional, and
sparse datasets like sciplex2 [8].

This research paper aims to address the question of ”How
does the predictive performance of the Geneformer model
compare to traditional machine learning methods, specifi-
cally Random Forest, Support Vector Machines, and Gradient
Boosting Machines, in predicting the response of cancer cells
to perturbation combinations using the sciplex2 dataset?” by
evaluating the predictive performance of Geneformer in com-
parison to established ML techniques for predicting cancer
cell responses to perturbation combinations. The evaluation
is conducted in two parts. First, the models’ abilities to clas-
sify cells as either treated or untreated are compared using
metrics such as accuracy, precision, recall, F1 score, and
AUC-ROC. Second, the models are assessed based on their
ability to identify the relevance of perturbation combinations.
This is achieved by examining changes in the models’ em-
beddings, the types of identified perturbations, and shifts in
classifying cells as treated instead of untreated.

The presented research contributes to the field of drug dis-
covery by providing a detailed comparison of the predic-
tive performance of both ML and Geneformer models, offer-
ing insights into their capabilities to handle complex, high-
dimensional biological data. The evaluation of the models is
based on their ability to predict responses to drug perturba-
tions, thereby enhancing the understanding of drug effects on
cancer cells using the sciplex2 dataset.
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2 Methodology

This section provides a detailed description of the methods
used to preprocess the sciplex2 dataset, train a selection of
machine learning models, and evaluate their performance in
predicting the response of cancer cells to different perturba-
tion combinations.

2.1 Dataset Analysis

The sciplex2 dataset, which contains single-cell RNA se-
quencing (scRNA-seq) data, was utilized for this study. This
dataset includes gene expression profiles for various cell lines
affected by drugs at different doses. It is comprised of 35,653
genes and 20,964 A549 cancer cells.

Gene expression varies significantly across these cells,
with a mean expression of 0.17, a median of 0.00, and a max-
imum of 5636.00. Detailed statistical properties of gene ex-
pression are provided in Appendix A (Table A1).

For our analysis, we focused on the subset of the dataset
involving the drug ”Dex” (Dexamethasone), known for in-
ducing the expression of both CDK inhibitors (p21Cip1,
p27Kip1) and cyclin-dependent kinases (CDK4, CDK6) [9],
presenting a complex perturbation effect suitable for our re-
search objectives. Statistical details and effects of ”Dex” in
the dataset are elaborated in Appendix A (Table A2).

We selected the dosage of 125.00 from the available
dosages in µM (0.00, 0.25, 1.25, 2.50, 12.50, 25.00, 125.00,
250.00), as it represents the second highest dosage for ”Dex”.
This dosage induces significant gene expression changes
while being within a plausible range for clinical relevance,
where doses up to 40.80µM are used to treat tumors [10]. The
choice is justified by the balance between the sample size and
the strength of gene expression shifts, as higher doses of Dex-
amethasone cause larger changes in gene expressions [11].
Different cell counts per dosage are visualized in Figure 1,
while PCA and t-SNE were used to examine the high similar-
ity of low dosages to untreted cells in Appendix A (Figures
A4 and A5).

Figure 1: Counts of A549 cancer cells per different dosages [µM] of
Dexamethasone in sciplex2 dataset.

2.2 Dataset Preparation and Preprocessing
The sciplex2 dataset underwent the following preprocessing
steps to ensure readiness for model training and evaluation:

• Normalization and Log-Transformation: Gene ex-
pression values for each cell were normalized such that
the total expression value across all genes in each cell
summed to a target value (10,000). This normaliza-
tion step helps to account for differences in sequenc-
ing depth across cells. Following normalization, a log-
transformation was applied to stabilize variance and
make the data more normally distributed, which is a
common preprocessing step in single-cell RNA-seq data
analysis [12].

• Label Creation: Binary labels were created to distin-
guish treated cells (cells treated with 125.00µM dose of
”Dex”) from untreated cells (cells treated with 0.00µM
dose of any drug). Treated cells were labeled as 1, and
untreated cells were labeled as 0.

• Class Balancing: Initially, there was a significant im-
balance in the dataset, with 3,581 untreated cells and
1,030 treated cells. To address this, we downsampled
the majority class (untreated cells) to match the num-
ber of treated cells. Specifically, we randomly selected
1,030 untreated cells from the original 3,581 to ensure
both classes had an equal representation.

• Dimensionality Reduction: Principal Component
Analysis (PCA) [13] was employed to reduce the di-
mensionality of the dataset. The high-dimensional gene
expression data was projected onto 256 principal com-
ponents. This reduction helps in capturing the most sig-
nificant variation in the data while reducing the compu-
tational complexity for subsequent modeling steps. The
number 256 was chosen to match the number of com-
ponents used by the Geneformer model. Dimensionality
reduction using PCA can have high impact on the clas-
sification performance [14], we examine the effects of
PCA on the performance of ML methods in Appendix
E.

• Data Splitting: The dataset was split into training
(70%), validation (15%), and test (15%) sets. Stratified
splitting was used to maintain the class balance in each
subset.

Further details on the preprocessing steps are provided in
Appendix A.

2.3 Selected Traditional ML Methods
Predicting the response of cancer cells to perturbation com-
binations necessitates ML techniques capable of handling
high-dimensional, sparse data and capturing complex interac-
tions. Based on a comprehensive comparison of state-of-the-
art classification algorithms conducted by Zhang et al. (2017)
[15], we selected Support Vector Machine (SVM), Gradient
Boosting Machine (GBM), and Random Forest (RF).

Random Forests
Random Forests are ensemble learning methods that build
multiple decision trees at training time and output the mode
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of the classes (classification) or the mean prediction (regres-
sion) of the individual trees [4]. RFs are versatile and robust
against overfitting, particularly effective with datasets con-
taining many input variables, such as gene expression levels.
They handle missing data well and provide strong baseline
performance due to their ability to model complex nonlinear
relationships with minimal parameter tuning [16].

Support Vector Machines
Support Vector Machines are powerful classifiers that find
the hyperplane best separating different classes in a high-
dimensional space [17]. SVMs manage high-dimensional
data spaces effectively, crucial for gene expression data. Var-
ious kernels (linear, polynomial, radial basis function) can
capture complex data relationships, making them ideal for
modeling gene interactions and perturbation combinations
[18].

Gradient Boosting Machines
Gradient Boosting Machines build models from individual
weak learners in a sequential manner, each time focusing on
the errors of the previous models to improve accuracy [19].
GBMs excel in handling different types of data, including cat-
egorical and continuous inputs, and are known for high pre-
dictive accuracy. They effectively manage overfitting through
parameters like learning rate and number of trees. Their abil-
ity to model complex interaction effects between variables
makes them suitable for biological data involving intricate
gene expression relationships. XGBoost, a specific imple-
mentation of GBM, is particularly noted for its efficiency and
performance [20].

Table 1 summarizes the expected training time and perfor-
mance of the selected models [15]:

Table 1: Expected Model Performance

Model Expected Train Time Expected Performance
RF Fast Good

SVM Moderate Good
GBM Slow Best

2.4 Hyperparameter Optimization
Hyperparameter optimization is essential for enhancing the
predictive performance of machine learning models by fine-
tuning their configurations [21]. In this study, we used Grid-
SearchCV for hyperparameter tuning of all ML models. Grid-
SearchCV performs an exhaustive search over specified pa-
rameter grids and evaluates the performance using cross-
validation [22]. For the Geneformer model, we used the pro-
vided hyperparameter optimization method as described in
the original paper. Detailed information about the specific
values tested and their rationale can be found in Appendix B.

2.5 Model Classification Performance Evaluation
To evaluate the classification performance of the Geneformer
model and the selected ML methods in predicting the label
of cancer cells, we employed several key metrics: accuracy
[23], precision [24], recall [24], F1 Score [25], and AUC-
ROC [26]. Additionally, we utilized the confusion matrix

[27] to visualize the model performance. Appendix C con-
tains for more information about the metrics.

The predictive performance was assessed on the test set,
comparing the ability of each model to classify untreated ver-
sus treated cells.

2.6 Perturbation Algorithm
Geneformer employs an in-silico method for perturbing tran-
scriptomes, allowing for the perturbation of one, two, or three
genes simultaneously. These perturbations involve altering
the rank value encoding of genes in a cell. Geneformer sup-
ports several types of perturbations: deletion (removing a
gene from the rank value encoding), overexpression (mov-
ing a gene to the front), inhibition (shifting a gene to a lower
quartile), and activation (shifting a gene to a higher quartile);
all of which are described in detail in the original paper.

Our own perturbation algorithm was developed to allow for
comparison of the selected ML methods to Geneformer. The
algorithm is designed to perform the same types of in-silico
perturbations as Geneformer, which ensures a fair compari-
son of the models’ ability to predict the outcomes of pertur-
bation combinations. We concentrated only on deletion and
overexpression of genes, as these two perturbations are pre-
sumed to have the most notable effect on the cells [28].

The perturbation algorithm takes a list of genes and an ac-
tion to be performed as input. The algorithm either deletes or
overexpresses all genes in the list. When the action specified
is ’delete’, the algorithm sets the expression value of the gene
to zero, effectively simulating the removal of the gene from
the cell’s transcriptome. This mimics a knockout experiment
where the gene is completely inactive. When the action spec-
ified is ’overexpress’, the algorithm sets the expression value
of the gene to the maximum expression level observed in the
dataset for that gene. This simulates overexpression, where
the gene is expressed at abnormally high levels. This action
is implemented by finding the maximum expression value for
the gene across all samples and setting the gene’s expression
in the perturbed sample to this maximum value. Both actions
are visualized in the Figure 2.

Figure 2: Example of perturbation combinations applied to the same
cell for two genes. The left panel illustrates the overexpression per-
turbation. The right panel shows the deletion perturbation.
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2.7 Differential Gene Expression
Differential Gene Expression (DGE) analysis identifies genes
that are either significantly overexpressed or underexpressed
between conditions in specific cell populations [29]. We used
this method to identify the difference in the mean expression
between treated and untreated cells for all individual genes in
the sciplex2 dataset. They are referred to as highly differen-
tially expressed (HDE) genes.

We utilized the Scanpy toolkit, applying t-test method to
extract the top 500 HDE Single Genes.

Identification of Differentially Expressed Gene Pairs
To identify the most differentially expressed gene pairs, we
generated all possible pairs from the top 200 HDE Single
Genes identified by the t-test method. For each gene pair, we
computed differential expression by calculating the absolute
difference in the sum of expression values between treated
and untreated cells. These pairs were then ranked by their
differential expression values. The top 500 HDE Gene Pairs
were selected for further analysis. The details about this pro-
cedure are examined in Appendix D.

2.8 Model Comparison for Gene Perturbation
Combinations

The goal of this research is to compare the models by evalu-
ating their responses to gene perturbation combinations using
the sciplex2 dataset.

The Geneformer model offers methods to perform gene
perturbations and evaluates their effects by reporting the
”Shift to goal end”, which corresponds to the Cosine Shift in
the embedding. Cosine Shift measures the change in the co-
sine similarity between the mean embeddings of cells before
and after perturbation compared to the treated mean embed-
ding. It is calculated as:

Cosine Shift = cos(θpost)− cos(θpre)

where cos(θpre) is the cosine similarity between the
mean pre-perturbation embedding and the treated mean, and
cos(θpost) is the cosine similarity between the mean post-
perturbation embedding and the treated mean.

The performance of each ML model can be assessed by
calculating the percentage of cells that shifted from an un-
treated to a treated state after each perturbation. This enables
the identification of the most efficient perturbation combina-
tions for each ML model. The Shift Percentage is calculated
using the following steps:

1. Gene Perturbation: Perturb genes based on predefined
indices and actions (overexpression or deletion).

2. Data Transformation: Transform perturbed data using
PCA.

3. Prediction: Use ML models to predict the treated state
of the perturbed data.

4. Shift Calculation: Calculate the percentage shift from
untreated to treated cells:

Shift Percentage =

(∑
(yunperturbed = 0 ∧ yperturbed = 1)∑

(yunperturbed = 0)

)
×100

The performance of Geneformer and ML methods can be
directly compared using several approaches. Firstly, we can
use Cosine Shifts to observe the changes caused by a given
set of perturbations in Geneformer’s embedding space and the
PCA-embedded space used to train the traditional ML meth-
ods. It is important to note that all selected ML models use
the same PCA-embedded data, so the Cosine Shifts will be
the same for each of the models. Secondly, we can compare
Geneformer with each of the ML models using Cosine Shifts
to identify the perturbation pairs that cause the largest change
in embedding space for Geneformer. For each traditional ML
model, the Shift Percentage metric can be used to identify
the perturbation pairs that cause the highest shift of untreated
cells being classified as treated. This allows us to compare
the models directly based on the set of perturbation combi-
nations they considered the most important. Lastly, we can
compare the models based on the importance they place on
the HDE genes. This involves reporting the percentage of
the perturbations each model found to be the most important
that come from either the top 500 HDE Single Genes or HDE
Gene Pairs. Our hypothesis is that more primitive models will
place high emphasis on the HDE genes as it only captures the
difference in expression value between treated and untreated
cells, ignoring the potential downstream effects that changing
the expression of genes might cause. In contrast, the Gene-
former model claims to understand the gene network dynam-
ics and the downstream effects of perturbing genes. There-
fore, we would expect that the Geneformer model will not
have as many HDE genes among the top-ranking perturba-
tions as the selected ML methods.

2.9 Experimental Setup
For our experiments, we utilized the DAIC cluster provided
by TU Delft [30], ensuring sufficient computational resources
for extensive model training and evaluation. We used fixed
random seeds in all experiments to promote consistency and
reproducibility of results, all can be found in Appendix L.

The Python library Scikit-Learn (Sklearn) [31] was em-
ployed for various tasks, including PCA embedding, imple-
menting all machine learning models, and optimizing hyper-
parameters.

3 Results
This section presents the outcomes of our experiments in
training and evaluating the performance of the selected ma-
chine learning models and Geneformer in predicting the re-
sponse of cancer cells to different perturbation combinations.
It encompasses the findings from the classification task, the
analysis of selected perturbation combinations, and the com-
parative evaluation of model performance based on perturba-
tion outcomes.

3.1 Classification Task
The first step in our model comparison involves fine-tuning
the Geneformer model and training traditional ML models for
a binary classification task, aiming to predict treatment labels
of cells in the sciplex2 dataset. Followingly, hyperparame-
ters of each model were optimized using the validation set.
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Subsequently, we evaluated their performance on the test set.
The performance metrics are detailed in Appendix F. Here is
a summary of the results, ranked by Test Accuracy and Test
F1 Score:

• SVM: Accuracy: 0.9126, F1 Score: 0.9143

• GBM: Accuracy: 0.9094, F1 Score: 0.9091

• RF: Accuracy: 0.8706, F1 Score: 0.8726

• Geneformer: Accuracy: 0.8544, F1 Score: 0.8530

3.2 Selected Perturbation Combinations
In the sciplex2 dataset, there are 35,653 different genes, lead-
ing to a vast number of possible perturbation pairs. The total
number of possible gene pairs can be calculated using the for-
mula for combinations:

n · (n− 1)

2

where n is the number of genes. For our dataset, this results
in

35, 653 · 35, 652
2

= 635, 550, 378

gene pairs. Given that we perform two different perturbation
types (overexpression and deletion), there are 1,271,100,756
different perturbations to consider. This number is too large
to exhaustively test all perturbations within the constraints of
our computational resources, necessitating a more selective
approach.

Therefore, this paper focuses on a subset of the possible
perturbations. Since selecting random perturbations might
not yield the most insightful results, the focus was instead
on identifying perturbations based on the correlation of gene
expression values. In human cancer cell lines, expression-
correlated genes often reveal molecular interaction networks,
particularly in epithelial-like cancer cells [32]. Thus, we ex-
amined different types of gene pairs based on the correlation
in their expression values.

We conducted an experiment where different perturbations
were performed on all cells in the dataset, using a RF classi-
fier to calculate the Shift Percentage for the following pertur-
bation categories:

• Random Gene Pair Perturbations: 500 randomly se-
lected gene pair perturbations.

• Pair Perturbations with High Expression-
Correlation: 500 most expression-correlated gene
pairs (correlation > 0.55).

• Pair Perturbations with Low Expression-
Correlation: 500 least expression-correlated gene
pairs (correlation < 0.000016).

• Random Single Gene Perturbations: 500 random sin-
gle gene perturbations.

• HDE Gene Pairs: 500 genes pairs with the highest
DGE.

• HDE Single Genes: 500 single genes with the highest
DGE.

The results of these perturbations are illustrated in a box
plot (Figure 3), which shows that the largest Shift Percentages
occur for highly expression-correlated gene pairs.

Figure 3: Shift Percentage by Gene Perturbation Types. The box-
plot compares the Shift Percentages caused by different categories
of gene perturbations.

To validate the hypothesis regarding the importance of high
correlation in gene expression for gene perturbations, another
experiment was performed using RF, where 100 random gene
pairs from various correlation ranges were sampled and the
resulting Shift Percentages were analyzed. The results in-
dicated a clear trend: higher expression-correlation between
gene pairs led to greater Shift Percentages in classification.
This trend is visualized in Figures 4, which depict a steep in-
crease in the shift for highly expression-correlated gene pairs,
underscoring the strong relationship between the expression-
correlation of gene pairs and the impact of the perturbation.

Figure 4: Shift Percentage for 100 randomly selected gene pairs for
different correlation ranges between 0 and 0.9.

3.3 Model Comparison Based on Perturbation
Combinations

An experiment was conducted to compare the performance
of three selected ML methods and Geneformer in identify-
ing perturbation combinations. The 2500 most expression-
correlated gene pairs were selected, forming 5000 perturba-
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tions (each gene pair creating one ’delete’ and one ’overex-
press’ perturbation). Additionally, the top 250 Highly Differ-
entially Expressed (HDE) Single Genes and the top 250 HDE
Gene Pairs were included, forming 500 perturbations from
each category. In total, 6000 unique perturbations were eval-
uated. Geneformer’s built-in perturbation method was used to
rank perturbations by the Cosine Shifts they caused in Gene-
former’s embedding space. Similarly, perturbations were or-
dered by the Cosine Shifts in the PCA embedding used for
the sciplex2 data. The Shift Percentage of each perturbation
was measured for each traditional ML model.

Cosine Shifts in PCA and Geneformer Embeddings

The comparison of Cosine Shifts caused by perturbations in
the PCA and Geneformer embeddings is summarized in Table
2.

Statistic Geneformer PCA
Mean Shift 0.0012 0.0022
Median Shift 0.0005 0.0020
Max Shift 0.0824 0.0645

Table 2: Comparison of Cosine Shifts in Geneformer and PCA Em-
beddings.

The data reveals that the majority of Cosine Shifts for
Geneformer were relatively small, as shown in Figure 5.

Figure 5: Distribution of Cosine Shifts for Geneformer and PCA
Embeddings

In contrast, the PCA embedding resulted in a wider distri-
bution of shifts, with larger median and mean shifts. How-
ever, Geneformer achieved a higher maximum Cosine Shift
compared to PCA. Additionaly, PCA placed more impor-
tance on HDE gene perturbations. Among the top 100 Co-
sine Shifts, 84 originated from the most expression-correlated
gene pairs for Geneformer, while PCA showed an almost
equal split between highly expression-correlated gene and
HDE perturbations, as illustrated in Figure 6.

Figure 6: Top 100 Geneformer and PCA Perturbation Types

Perturbation Combinations in ML Models

Traditional ML methods were evaluated by their ability to
identify perturbation combinations using Shift Percentage
metric. The most significant shifts were found by GMB, fol-
lowed by RF, and lastly SVM. GMB had the highest mean
shift (8.0688) and maximum shift (9.8576), indicating its su-
perior ability to identify significant perturbation combina-
tions. RF showed a slightly lower mean shift (7.8155) and
a maximum shift of 8.9361, while SVM had the lowest mean
shift (6.7763) and maximum shift of 8.4613. More informa-
tion can be found in Appendix I.

Figure 7: Distribution of Shift Percentages for traditional ML Mod-
els.

Perturbation Combinations in Geneformer and ML
Models

Lastly, Geneformer was compared with the three selected ML
models based on the top 100 perturbation combinations they
considered most important. The models showed diverging be-
havior in assigning importance to the HDE genes. While all
models found expression-correlated genes to be the most im-
portant, Geneformer placed little-to-no importance on HDE
Single Genes, whereas traditional ML methods placed very
little importance on HDE Gene Pairs as can be seen in Table
3.
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Geneformer RF GBM SVM
HDE Pairs 0.15 0.00 0.01 0.01
HDE Single 0.01 0.12 0.15 0.13
High Correlation 0.84 0.88 0.84 0.86

Table 3: Importance of Perturbation Types for Geneformer and ML
Models

The most significant difference between the models can be
observed in the importance placed on the perturbation action
type. Geneformer identified the vast majority of important
perturbations as ’overexpress,’ while traditional ML models
predominantly highlighted ’delete’ perturbations as seen in
Figure 8.

Figure 8: Counts of ’delete’ and ’overexpress’ perturbation types in
the top 100 perturbations for each model.

Most Important Genes for Each Model
The top perturbations in Geneformer were dominated by high
expression-correlated gene pairs. The most recurrent genes in
these top pairs were:

• KRT18 (Keratin 18)
• KRT7 (Keratin 7)
• SLC9A3R1
• RHOB (Ras Homolog Family Member B)
• GLIS3 (GLIS Family Zinc Finger 3)
The most frequently appearing genes for traditional ML

models were:
• MT-ND4 (NADH-ubiquinone oxidoreductase chain 4)
• MT-RNR2 (Mitochondrially encoded 12S RNA)
• MT-CO1
• MT-ATP6
• MT-ND5 (NADH-ubiquinone oxidoreductase chain 5)
Top 10 most important genes per model are reported in Ap-

pendix J.

4 Discussion
The results of our experiments provide valuable insights into
the comparative performance of Geneformer and traditional

machine learning models (GBM, SVM, and RF) on the sci-
plex2 dataset. Traditional ML methods outperformed Gene-
former in the binary classification task of identifying the
treated cell labels. This outcome was anticipated, given the
efficacy of traditional ML models in well-defined classifica-
tion tasks and the fact that Geneformer, pre-trained on a larger
corpus of data, might introduce noise in such specific tasks.
Among the models, SVM achieved the highest classification
accuracy, followed by GBM, RF, and Geneformer, as detailed
in our results section.

Our experiments revealed that highly expression-correlated
gene pairs caused the largest shifts in classification across
all models. This suggests that perturbations involving highly
expression-correlated genes have a significant effect on cel-
lular states, underlining their importance in predicting drug
response. This finding is particularly valuable for further re-
search on datasets where an exhaustive search for perturba-
tions is not feasible. Identifying the most promising perturba-
tion combinations based on gene correlation could optimize
the search process, making it more efficient and effective.

Geneformer indicated a deeper understanding of gene net-
work dynamics compared to traditional ML methods. It
placed much less emphasis on HDE genes than PCA and
achieved higher maximum Cosine Shifts. Unlike traditional
ML methods, Geneformer focused more on HDE Gene Pairs
rather than HDE Single Genes. This approach might re-
flect Geneformer’s superior ability to understand the com-
plex downstream effects of gene perturbation combinations,
as supported by the findings of Theodoris et al. (2021) [7],
which highlight the advantages of using complex, pre-trained
models like Geneformer for biological predictions.

The most important genes identified by Geneformer and
traditional ML methods differed significantly. Geneformer
frequently identified genes involved in epithelial cell struc-
ture and function, such as Keratin 18 (KRT18) and Keratin
7 (KRT7), as well as genes involved in cellular signaling
and regulation, such as RHOB and GLIS3. These genes are
crucial in maintaining cellular integrity and signaling path-
ways, indicating Geneformer’s capability to capture essential
aspects of cellular dynamics.

In contrast, traditional ML methods highlighted mitochon-
drial genes as the most important, including MT-ND4, MT-
RNR2, MT-CO1, MT-ATP6, and MT-ND5. These genes
are involved in mitochondrial function and energy produc-
tion, which are critical for cellular metabolism and survival.
The focus on mitochondrial genes by traditional ML models
might be due to their significant role in cellular energy bal-
ance, making them easily detectable in perturbation impact
studies.

The observed trends align with the Geneformer paper, con-
firming the benefits of model complexity and pre-training in
capturing intricate biological interactions. The higher shifts
for highly expression-correlated gene pairs are consistent
with the understanding that gene networks are interdependent
and that perturbing one gene can have downstream effects on
others.

7



5 Conclusions and Future Work
The primary research question addressed in this study was:
”How does the predictive performance of the Geneformer
model compare to traditional machine learning methods,
specifically Random Forest, Support Vector Machines, and
Gradient Boosting Machines, in predicting the response of
cancer cells to perturbation combinations using the sciplex2
dataset?”

While Geneformer did not outperform the traditional mod-
els in classification accuracy, it demonstrated significant po-
tential for understanding complex gene network dynamics.
Our experiments showed that highly expression-correlated
gene pairs caused the largest Percentage and Cosine Shifts
across all models, indicating that perturbations involving
these genes significantly influence cellular states. Gene-
former’s advanced architecture and extensive pre-training on
single-cell transcriptomes allowed it to achieve higher maxi-
mum Cosine Shifts compared to PCA embeddings and placed
less emphasis on highly differentially expressed (HDE) Sin-
gle Genes, focusing instead on HDE Gene Pairs. This sug-
gests that Geneformer has a superior capability in capturing
the complex downstream effects of gene perturbations.

These findings are especially relevant for drug discovery
and development. Accurate predictions of gene perturbation
impacts are essential for identifying effective drug targets and
combinations. Advanced models like Geneformer, which can
better understand gene network dynamics, show potential for
improving the accuracy of such predictions compared to tra-
ditional ML models.

Despite these promising results, our study had several lim-
itations. Due to time and resource constraints, we did not per-
form an exhaustive search of all possible perturbation pairs.
Instead, we selected and evaluated the 6000 most promising
gene perturbations, which represent less than 0.001% of the
possible 1,271,100,756 perturbations in the sciplex2 dataset.
An exhaustive analysis would be necessary to draw conclu-
sive results about Geneformer’s ability to understand gene
network dynamics and identify the most valuable perturba-
tions. Additionally, our analysis was restricted to gene pairs.
Evaluating all possible combinations of perturbations would
provide a more comprehensive understanding of each model’s
ability to detect the downstream effects of different perturba-
tions. However, this comprehensive analysis requires sub-
stantial computational resources, as the number of combina-
tions increases exponentially with the number of genes. Fur-
thermore, a bug in the Geneformer code related to in-silico
perturbations caused a minor slow down in our research (see
Appendix K for details).

To address these limitations, future work could explore
several directions. Research could extend to perturbations
involving three or more gene combinations, employing sys-
tematic approaches such as genetic algorithms to efficiently
explore the solution space. Utilizing larger and more diverse
datasets would validate the findings and improve the gener-
alizability of the models. Applying the models to real-world
drug discovery projects would evaluate their practical utility
and potential for clinical applications.

In conclusion, this study demonstrates that while tradi-

tional ML models perform well in classification tasks, ad-
vanced models like Geneformer have a promising capabil-
ity in predicting the impact of gene perturbations due to
their ability to capture complex gene network dynamics.
These findings underscore the potential for integrating ad-
vanced deep learning models in drug discovery and preci-
sion medicine, providing a pathway for more effective and
targeted therapeutic interventions.

6 Responsible Research
Responsible research ensures integrity and applicability of
scientific findings in the field of computational biology. This
research adheres to ethical guidelines and reproducibility
standards established by TU Delft.

6.1 Ethical Considerations
The research utilized publicly available dataset and did not
involve any direct interactions with human subjects or use of
personal data, mitigating the potential ethical concerns over
privacy and consent. However, given the high risk topic of
predicting cancer cell responses to perturbations, the findings
could be applied in clinical settings and eventually influence
treatment recommendations and clinical trials. The potential
to inform drug development and treatment strategies carries
significant ethical importance, highlighting the need for Re-
producibility in this study, ensuring that this research con-
tributes positively and ethically to patient care.

6.2 Reproducibility of Methods
To ensure the reproducibility of results, following measures
were taken:

• Transparent Methodology: All experimental proce-
dures, from data preprocessing and model training to
evaluation metrics, are explicitly described in this pa-
per. This includes detailing the hyperparameters used
for each machine learning model and the criteria for data
splitting and feature selection.

• Open Source Tools and Frameworks: All software
and libraries used in the study are widely-recognized,
open-source software tools, allowing for research repli-
cation. The specific versions and configurations used are
provided in the Appendices.

• Data Accessibility: The sciplex2 dataset is publicly ac-
cessible, allowing other researchers to verify the findings
and use the data for further research. Detailed descrip-
tions of how the dataset was queried and manipulated
are provided, ensuring that our work can be accurately
reproduced.

6.3 Discussion on Reproducibility Challenges
Despite the best efforts to make this research reproducible,
certain aspects still present challenges. Firstly, the stochas-
tic nature of many machine learning algorithms can lead to
variations in results when repeating the experiments. To ad-
dress this, the research uses fixed seeds for random number
generators and shares them in the Appendix L.
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Appendix A: sciplex2 Information

Table A1: Gene Expression Statistics in the sciplex2 Dataset

Value Statistic
Mean Expression 0.166518
Median Expression 0.000000
Standard Deviation 2.422994
Max Expression 5636.000000
Min Expression 0.000000
Total Genes 35653.000000
Total Cells 20964.000000
Genes Zero in All Cells 0.000000
Genes Non-Zero in All Cells 1.000000

Table A2: Summary Statistics of Observational Metadata for Dex Drug in the sciplex2 Dataset

Statistic i n.umi Size Factor count genes expressed ratio mt2non mt
Count 7370.000000 7370.000000 7370.000000 7370.000000 7370.000000
Mean 11958.050882 5134.065672 1.271285 2428.673813 0.101970
Std 6929.145505 3613.007530 0.894645 1081.592091 0.055274
Min 1.000000 1000.000000 0.247618 508.000000 0.011734
25% 6167.250000 2820.000000 0.698282 1670.250000 0.065426
50% 11849.500000 4170.000000 1.032566 2230.000000 0.091272
75% 17574.750000 6299.750000 1.559929 2983.000000 0.125224
Max 24259.000000 65003.000000 16.095892 9360.000000 1.028486
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Figure A1: Gene expressions for three randomly sampled cells from
the dataset (Example 1).

Figure A2: Gene expressions for three randomly sampled cells from
the dataset (Example 2).

Figure A3: Gene expressions for three randomly sampled cells from
the dataset (Example 3).

Figure A4: PCA plot showing the similarity of different Dex dosages
based on gene expression data.

Figure A5: t-SNE plot illustrating the similarity of different Dex
dosages based on gene expression data.
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Appendix B: Hyperparameter Optimization
Random Forest
For the Random Forest model, the following hyper-
parameters were optimized: n estimators, max depth,
min samples split, and min samples leaf.

• n estimators: Tested values: [100, 200, 300].
• max depth: Tested values: [None, 10, 20, 30].
• min samples split: Tested values: [2, 5, 10].
• min samples leaf: Tested values: [1, 2, 4].

Support Vector Machine
For the Support Vector Machine model, the following hyper-
parameters were optimized: C, gamma, and kernel.

Gradient Boosting Machine
• C: Tested values: [0.1, 1, 10, 100].
• gamma: Tested values: [1, 0.1, 0.01, 0.001].
• kernel: Tested values: [‘linear’, ‘rbf’].

For the Gradient Boosting Machine model, the fol-
lowing hyperparameters were optimized: n estimators,
learning rate, max depth, min samples split, and
min samples leaf.

• n estimators: Tested values: [100, 200, 300].
• learning rate: Tested values: [0.01, 0.1, 0.2].
• max depth: Tested values: [3, 4, 5].
• min samples split: Tested values: [2, 5, 10].
• min samples leaf: Tested values: [1, 2, 4].

Performance Analysis
The performance of the RF model with and without hyperpa-
rameter optimization is compared in Table A3.

Metric No Optimization Optimized
Test Accuracy 0.8706 0.8738
Test Precision 0.8562 0.8616
Test Recall 0.8896 0.8896
Test F1 Score 0.8726 0.8754
Test AUC-ROC 0.9273 0.9383

Table A3: Performance metrics for Random Forest model with and
without hyperparameter optimization.

Appendix C: Classification Evaluation Metrics
Confusion Matrix: A Confusion Matrix is a table used to
evaluate the performance of a classification model by dis-
playing the actual versus predicted classifications. It com-
prises four components: true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN). The ma-
trix allows for the calculation of various performance metrics
and provides insight into the types of classification errors the
model is making.

Accuracy: Accuracy is a metric that measures the ratio
of correctly predicted instances to the total instances in the
dataset. It is calculated as the number of true positives and
true negatives divided by the total number of instances.

Accuracy =
TP + TN

TP + TN + FP + FN

Accuracy provides a straightforward measure of how often
the classifier is correct.

Precision: Precision, also known as Positive Predictive
Value, reflects the ratio of true positive predictions to the sum
of true positive and false positive predictions. It is a measure
of the accuracy of the positive predictions made by the model.

Precision =
TP

TP + FP

High precision indicates that the classifier has a low false pos-
itive rate.

Recall: Recall [24], also known as Sensitivity or True Pos-
itive Rate, indicates the ratio of true positive predictions to
the sum of true positive and false negative predictions. It
measures the ability of the classifier to identify all relevant
instances.

Recall =
TP

TP + FN

High recall indicates that the classifier has a low false nega-
tive rate.

F1 Score: The F1 Score is the harmonic mean of preci-
sion and recall, providing a single metric that balances both
concerns. It is especially useful when the class distribution is
imbalanced.

F1 Score = 2 · Precision · Recall
Precision + Recall

This score ranges from 0 to 1, where a score of 1 indicates
perfect precision and recall.

AUC-ROC: The Area Under the Receiver Operating Char-
acteristic Curve (AUC-ROC) represents the ability of the
classifier to distinguish between classes. The ROC curve is a
plot of the true positive rate (recall) against the false positive
rate (1-specificity) at various threshold settings. The AUC is
the area under this curve, with values ranging from 0.5 (no
discrimination) to 1 (perfect discrimination). A higher AUC
indicates better model performance.
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Appendix D: HDE Gene Pairs Validation
To validate our approach for selecting HDE Gene Pairs, we
compared the Shift Percentage caused by perturbing the top
differentially expressed single genes and gene pairs. HDE
Single Genes caused shifts proportional to their differential
expression, while HDE Gene Pairs induced more nuanced
shifts, highlighting possibly more complex gene interactions
as can be seen in Figures A6 and A7.

Figure A6: Each point represents the Shift Percentage caused by
perturbing a specific single gene (blue) or gene pair (orange).

Figure A7: The boxplot displays the distribution of Shift Percent-
ages for single gene and gene pair perturbations. Black dots repre-
sent perturbations.

Appendix E: Effects of PCA
To evaluate the impact of dimensionality reduction on ML
methods, we compared the performance of Random Forest
models trained on both original high-dimensional data with
35,653 features and data reduced to 256 dimensions using
PCA. While the RF model trained on non-embedded data
achieved marginally better classification performance, the
PCA-embedded model significantly reduced training and hy-
perparameter optimization times.

Metric No-Embedding PCA
Test Accuracy 0.89 0.87
Test Precision 0.85 0.86
Test Recall 0.94 0.89
Test F1 Score 0.90 0.88
Test AUC-ROC 0.95 0.94
Embedding Time (s) 0 8
Training Time (s) 3 1
Hyperpar. time (s) 213 57

Table A4: Performance metrics for Random Forest models on non-
embedded and PCA-embedded data.

In terms of permutation importance, the non-embedded
model showed many genes with similar importance scores,
whereas the PCA-embedded model highlighted a few genes
with significantly higher importance, indicating enhanced in-
terpretability. Figures A8 and A9 illustrate the permutation
importance for both models.

Figure A8: Permutation importance for Random Forest on non-
embedded data.

Figure A9: Permutation importance for Random Forest on PCA-
embedded data.
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Appendix F: Classification Performance
Gradient Boosting Machine (GBM)

• Test Accuracy: 0.9094
• Test Precision: 0.9091
• Test Recall: 0.9091
• Test F1 Score: 0.9091
• Test AUC-ROC: 0.9617

Precision Recall F1 Score
Untreated 0.91 0.91 0.91
Treated 0.91 0.91 0.91
Accuracy 0.91
Macro avg 0.91 0.91 0.91
Weighted avg 0.91 0.91 0.91

Table A5: Performance metrics for GBM.

Figure A10: Confusion matrix for GBM.

Support Vector Machine (SVM)
• Test Accuracy: 0.9126
• Test Precision: 0.8944
• Test Recall: 0.9351
• Test F1 Score: 0.9143
• Test AUC-ROC: 0.9585

Precision Recall F1 Score
Untreated 0.93 0.89 0.91
Treated 0.89 0.94 0.91
Accuracy 0.91
Macro avg 0.91 0.91 0.91
Weighted avg 0.91 0.91 0.91

Table A6: Performance metrics for SVM.

Figure A11: Confusion matrix for SVM.
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Random Forest (RF)
• Test Accuracy: 0.8706
• Test Precision: 0.8562
• Test Recall: 0.8896
• Test F1 Score: 0.8726
• Test AUC-ROC: 0.9273

Precision Recall F1 Score
Untreated 0.89 0.85 0.87
Treated 0.86 0.89 0.87
Accuracy 0.87
Macro avg 0.87 0.87 0.87
Weighted avg 0.87 0.87 0.87

Table A7: Performance metrics for RF.

Figure A12: Confusion matrix for RF.

Geneformer
• Test Accuracy: 0.8544
• Test Precision: 0.8250
• Test Recall: 0.8307
• Test F1 Score: 0.8530
• Test AUC-ROC: 0.9237

Precision Recall F1 Score
Untreated 0.83 0.83 0.83
Treated 0.83 0.83 0.83
Accuracy 0.83
Macro avg 0.83 0.83 0.83
Weighted avg 0.83 0.83 0.83

Table A8: Performance metrics for Geneformer.

Figure A13: Confusion matrix for Geneformer.
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Appendix G: Selected Perturbations

Figure A14: The plot shows the Shift Percentages caused by differ-
ent gene perturbation types, with highly correlated gene pairs caus-
ing the largest shifts. The red dashed line indicates the median Shift
Percentage for single gene perturbations.

Figure A15: The plot shows the Shift Percentages for gene pairs
with low correlations.

Appendix H: PCA vs Geneformer
Geneformer Cosine Shifts Statistical Data:

• Mean Shift: 0.0011603424179148444
• Median Shift: 0.00054156949039175
• Standard Deviation: 0.0033833955364798857
• Min Shift: -0.0114042460668756
• Max Shift: 0.0823748580189731
PCA Cosine Shifts Statistical Data:
• Mean Shift: 0.0022156844903766125
• Median Shift: 0.0020517334375
• Standard Deviation: 0.013044398082042132
• Min Shift: -0.06628146
• Max Shift: 0.06449759
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Appendix I: ML Models Comparison

Model Type Count Mean Std Min 25% 50% 75% Max
GBM HDE Pairs 500.0 7.923 0.447 6.507 7.651 7.959 8.217 9.383
GBM HDE Single 500.0 8.189 0.515 6.925 7.819 8.056 8.601 9.383
GBM High Correlation 5000.0 8.070 0.368 5.808 7.903 8.015 8.238 9.858
SVM HDE Pairs 500.0 6.580 0.456 5.306 6.248 6.590 6.953 7.763
SVM HDE Single 500.0 6.817 0.441 5.585 6.479 6.716 7.149 7.959
SVM High Correlation 5000.0 6.782 0.338 5.027 6.646 6.758 6.953 8.461
RF HDE Pairs 500.0 7.637 0.326 6.618 7.449 7.651 7.875 8.378
RF HDE Single 500.0 7.886 0.341 6.814 7.624 7.819 8.126 8.936
RF High Correlation 5000.0 7.820 0.261 5.976 7.679 7.791 7.931 8.936

Table A9: Comparison of ML models by their Shift Percentages based on perturbation types.

Model Count Mean Std Min 25% 50% 75% Max
Gradient Boosting Machine 6000 8.0688 0.3790 5.8084 7.9028 8.0145 8.2379 9.8576
Support Vector Machine 6000 6.7763 0.3488 5.0265 6.6183 6.7579 6.9813 8.4613
Random Forest 6000 7.8155 0.2687 5.9760 7.6794 7.7911 7.9307 8.9361

Table A10: Statistical Summary of Shift Percentages for ML Models. GMB showed the highest mean shift, followed by RF and SVM,
indicating its superior ability to identify significant perturbation combinations.

Comparison of Perturbation Types

The following figures present the box plots comparing the percentage shifts for different perturbation types for each of the ML
models. These plots illustrate that highly correlated gene pairs generally caused the largest shifts across all models.

Figure A16: Boxplot of Shift Percentages for Different Perturbation Types - GBM.
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Figure A17: Boxplot of Shift Percentages for Different Perturbation Types - SVM.

Figure A18: Boxplot of Shift Percentages for Different Perturbation Types - RF.
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Appendix J: Best Performing Perturbation Combinations
The following tables list the top 10 perturbation combinations per model, their corresponding Shift Percentages or Cosine
Shifts, and the type of perturbation.

Gene Perturbation Shift Percentage Type
MT-ND4 (Delete) + MT-RNR2 (Delete) 9.8576 High Correlation
MT-CO1 (Delete) + MT-ND4 (Delete) 9.7738 High Correlation
MT-ND4 (Delete) + MT-RNR1 (Delete) 9.7180 High Correlation
MT-ND4 (Delete) + MT-ATP6 (Delete) 9.7180 High Correlation
MT-CO1 (Delete) + MT-RNR2 (Delete) 9.6342 High Correlation
MT-ATP6 (Delete) + MT-RNR2 (Delete) 9.6063 High Correlation
MT-CYB (Delete) + MT-RNR2 (Delete) 9.5783 High Correlation
FTL (Delete) + MT-RNR2 (Delete) 9.5504 High Correlation
MT-CYB (Delete) + MT-ATP6 (Delete) 9.5504 High Correlation
MT-ND5 (Delete) + MT-ND4 (Delete) 9.5504 High Correlation

Table A11: Top Gene Combination Shift Percentages and Types for GBM

Gene Perturbation Shift Percentage Type
MT-ND4 (Delete) + MT-RNR2 (Delete) 8.4613 High Correlation
MT-ND4 (Delete) + MT-ATP6 (Delete) 8.4055 High Correlation
MT-ND5 (Delete) + MT-ND4 (Delete) 8.4055 High Correlation
MT-CO1 (Delete) + MT-ND4 (Delete) 8.3496 High Correlation
MT-ND2 (Delete) + MT-ND4 (Delete) 8.3217 High Correlation
MT-CYB (Delete) + MT-ND4 (Delete) 8.2938 High Correlation
MT-ND5 (Delete) + MT-RNR2 (Delete) 8.1821 High Correlation
MT-ND4 (Delete) + MT-RNR1 (Delete) 8.1541 High Correlation
MT-ND5 (Delete) + MT-CO1 (Delete) 8.1541 High Correlation
MT-ND4 (Delete) + MT-CO3 (Delete) 8.1541 High Correlation

Table A12: Top Gene Combination Shift Percentages and Types for SVM

20



Gene Perturbation Shift Percentage Type
KYNU (Delete) + MT-RNR2 (Delete) 8.9361 High Correlation
MT-ND4 (Delete) + MT-RNR2 (Delete) 8.9361 High Correlation
FKBP5 (Overexpress) 8.9361 HDE Single
MT-CYB (Delete) + MT-RNR2 (Delete) 8.9081 High Correlation
CNTN1 (Delete) + MT-RNR2 (Delete) 8.8802 High Correlation
MT-CO1 (Delete) + MT-RNR2 (Delete) 8.8802 High Correlation
MT-RNR2 (Delete) + MT-RNR1 (Delete) 8.7964 High Correlation
PDE10A (Delete) + KYNU (Delete) 8.7964 High Correlation
MT-ND4 (Delete) + MT-RNR1 (Delete) 8.7964 High Correlation
MT-ND5 (Delete) + MT-ND4 (Delete) 8.7964 High Correlation

Table A13: Top Gene Combination Shift Percentages and Types for RF

Gene Perturbation Cosine Shift Type
KRT18 (overexpress) + KRT8 (overexpress) 0.0824 High Correlation
KRT18 (overexpress) + S100A10 (overexpress) 0.0496 High Correlation
KRT18 (overexpress) + KRT7 (overexpress) 0.0460 High Correlation
SLC9A3R1 (overexpress) + RHOB (overexpress) 0.0433 High Correlation
KRT18 (overexpress) + CTNNA3 (overexpress) 0.0414 High Correlation
ALDOC (overexpress) + RHOB (overexpress) 0.0372 High Correlation
KRT18 (overexpress) + AKR1C2 (overexpress) 0.0342 High Correlation
DHRS2 (overexpress) + SLC9A3R1 (overexpress) 0.0288 High Correlation
SLC9A3R1 (overexpress) + CKB (overexpress) 0.0284 High Correlation
THSD4 (overexpress) + KRT7 (overexpress) 0.0280 HDE Pairs

Table A14: Top Gene Combination Cosine Shifts and Types for Geneformer
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Appendix K: Bug in Geneformer Code
During the process of executing in-silico perturbations using the Geneformer model, we encountered a bug that caused a failure
in the perturbation method. The following section details the identification, cause, and resolution of this bug.

Issue Description
The bug manifested when invoking Geneformer’s in-silico perturbation method with specific parameters for perturbing gene
pairs. The code snippet where the error occurred is shown below:
for idx, row in gene_pairs.iterrows():

gene_1 = row[’gene_1_id’]
perturb_type_1 = row[’perturb_type_1’]
gene_2 = row[’gene_2_id’]
perturb_type_2 = row[’perturb_type_2’]
isp = InSilicoPerturber(

perturb_type=perturb_type_1,
perturb_rank_shift=None,
genes_to_perturb=[gene_1, gene_2],
combos=1,
anchor_gene=None,
model_type="CellClassifier",
num_classes=2,
emb_mode="cell",
cell_emb_style="mean_pool",
cell_states_to_model=cell_states_to_model,
state_embs_dict=state_embs_dict,
emb_layer=0,
forward_batch_size=100,
nproc=1

)

The error produced was:
ValueError: Length of values (2) does not match length of index (1)

Cause of the Bug
The issue was found in the isp stats to goal state function in in silico perturber stats.py. It occurred due to a
mismatch between the values’ length (2) and the index length (1) when creating a DataFrame, causing a ValueError.

Fixing the Bug
The bug was fixed by matching the values’ length to the index length. The loop was restructured to aggregate results into a list
of dictionaries before converting it to a DataFrame, ensuring consistent entry lengths.

Adjusted Geneformer Code
Below is the critical part of the corrected isp stats to goal state function in the in silico perturber stats.py file:
results_list = []
for i in trange(cos_sims_df.shape[0]):

token = cos_sims_df["Gene"][i]
name = cos_sims_df["Gene_name"][i]
ensembl_id = cos_sims_df["Ensembl_ID"][i]
goal_end_cos_sim_megalist = result_dict[cell_states_to_model["goal_state"]]

.get((token, "cell_emb"), [])
mean_goal_end = np.mean(goal_end_cos_sim_megalist)
pval_goal_end = ranksums(goal_end_random_megalist, goal_end_cos_sim_megalist).pvalue
results_dict = {

"Gene": token,
"Gene_name": name,
"Ensembl_ID": ensembl_id,
"Shift_to_goal_end": mean_goal_end,
"Goal_end_vs_random_pval": pval_goal_end

}
results_list.append(results_dict)

cos_sims_full_df = pd.DataFrame(results_list)
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Appendix L: Reproducibility Details
In this section, we provide details about the seeds used for random functions to ensure reproducibility in our research. Consis-
tently, we used seed 42 where possible, following the precedent set by the Geneformer paper authors.

Dataset Pre-processing
Downsampling Untreated Cells
During the dataset pre-processing stage, we downsampled the untreated cells in the data used for training the ML models
and fine-tuning the Geneformer. We used a fixed seed of 42 to ensure the same distribution can be achieved each time when
reproducing the experiments.

Data Splitting
When splitting the data into training (70%), validation (15%), and test (15%) sets, we used ‘random state=42‘ to make the
splits reproducible. This was applied both during the initial split into training and temporary sets, and the subsequent split into
validation and test sets.

ML Methods Code
Model Training
For training each of the ML models, we used the ‘random state‘ parameter to ensure reproducibility of the models’ training.
Specifically, we set ‘random state=42‘.

Permutation Importance
When identifying permutation importance for each model, we used ‘random state=42‘ to ensure the reproducibility of the
permutation importance calculations.

Geneformer
Geneformer Classifier
In the Geneformer code, we used seed 42 when creating the Geneformer classifier. This includes setting the seed in the training
arguments to ensure consistent and reproducible training of the classifier.

Geneformer Training Process
The number of epochs was set to 10 when training Geneformer for the classification task.
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