
7

D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Privacy Preserving
Train Scheduling
Using homomorphic encryption to create train
schedules

Masters Thesis
Prakhar Jain

Privacy Preserving
Train Scheduling

Using homomorphic encryption to create train
schedules

by

Prakhar Jain
Student Number 5800277

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Tuesday July 2, 2024 at 1:00 PM.

Supervisor: Dr. Zekeriya Erkin
Committee Member: Dr. Annibale Panichella
Advisor: Tianyu Li
Project Duration: 18th September, 2023 - 2nd July, 2024

Cover image is from UK Travel Guide 1

1https://happytowander.com/uk-train-travel-guide/

Preface

I got inspiration to work on this problem through my work with my supervisor Dr. Z Erkin.
He saw my excitement working with the city of Amsterdam on a similar problem, trying to
divide passengers between trains and trams to avoid overcrowding. I thought that this problem
is down to sub-optimal schedules between various operators and services. I changed my
approach to the problem atleast once every two weeks and Zeki pushed me to work hard
understanding the real world implications of creating a good solution to the problem.

Through the nine and a half months of working on this thesis, I learnt a lot about myself. I
learnt my research techniques, my strengths in communication and weaknesses in precision,
something I believe I have improved on, with a good framework to go forth. Overall, this was
not the easiest journey and would not have been possible without the absolute support of the
entire research group. From my advisor Tianyu continuously helping me see where my logic
falls short and having faith in my output from the beginning to Jelle Vos being an absolute
expert in the field solving doubts I was carrying for weeks trying to look at every source in a
single conversation. The combined meetings within the research group helped me streamline
my thinking right from the get go, and helped me focus on what is important. Chelsea Guan,
Davis Sterns, Vojta Crha and Juno Jense consistently helped me formalize my ideas. They
were the first ones I discussed any novel idea with and their insights helped me improve upon
them and understand my hunches better.

Next, I would like to thank my friends Nathan, Dylan, Niklas, Susanne, Nevena and Frank for
making my degree in Delft, the most enjoyable time of my life. My friends Anvi, Karan and
Aryan though not present in Delft, have always helped me push myself to the limit.

Lastly, my parents in India have been an absolute pillar. They helped and encouraged me to
take risks, move to a new country to realize my potential. Knowing that they are always there
for me and will support me through thick and thin has been the biggest reason I have been
able to keep myself calm more often than not.

Prakhar Jain
Delft, June 2024

i

Abstract

A substantial number of passengers in Europe rely on trains for transportation, facilitated by
a network of high-speed international trains. However, the coordination of train schedules
across multiple networks often poses challenges due to incompatible timings. The scheduling
of multiple train networks shares similarities with multi-processor task scheduling and airline
scheduling but is distinguished by its cooperative nature rather than a competitive one. Coop-
erative scheduling necessitates the sharing of private information. This information, ‘demand’,
is commercial sensitive information, since it can reveal demographic information like incomes
and tax returns. Privacy-preserving protocols can enable the computation of statistics with-
out revealing this demands (in railway systems) to unauthorized parties. Despite the critical
role of privacy in multi-party scheduling, research in this domain remains limited due to do-
main specific constraints. A model supporting such privacy considerations could significantly
help Europe achieve its carbon-neutral goals while improving cross-border services. In this
research, we propose a system designed to facilitate joint service scheduling, ensuring con-
fidentiality, integrity, and authenticity. We use partial and fully homomorphic encryption tech-
niques that mimic the outcomes achievable with a trusted third party. We conduct a compar-
ative analysis of online and offline approaches, emphasizing how they achieve confidentiality,
collusion-resistance, traceability and non-repudiation. Theoretical and experimental evalua-
tions demonstrate the feasibility of the system for real-world applications by creating sched-
ules for upto four parties. Our solution for scheduling seven slots takes ≈ 3 hours, which is a
feasible duration to solve a problem of this size.

ii

Contents

Preface i

Abstract ii

1 Introduction 1
1.1 Train Scheduling . 2
1.2 Problems . 3

1.2.1 Distributed Railway Scheduling . 4
1.2.2 Privacy in Scheduling . 4

1.3 Research Question . 5
1.4 Contributions . 5
1.5 Outline . 6

2 Preliminaries 7
2.1 Periodic Event Scheduling . 7

2.1.1 Branch and Bound Algorithms . 8
2.1.2 Greedy Algorithms . 8
2.1.3 Reinforcement Learning . 8
2.1.4 Constraint Optimization . 8
2.1.5 Linear Programming . 8
2.1.6 Slot Allocation . 9

2.2 Adversarial Behaviour . 9
2.3 Cryptography building blocks . 10
2.4 Secure Multiparty Computation . 11

2.4.1 Secret Sharing . 11
2.4.2 Garbled Circuits . 12

2.5 Partial Homomorphic Encryption . 13
2.5.1 Paillier Encryption . 13
2.5.2 DGK Encryption . 14
2.5.3 Secure Comparison Protocol . 14
2.5.4 Exponential Elliptic-curve-ElGamal . 15

2.6 Fully Homomorphic Encryption . 15
2.6.1 BGV/BFV . 15
2.6.2 CKKS . 17
2.6.3 TFHE Encryption . 17

3 Related Work 19
3.1 Railway Scheduling . 19

3.1.1 Historical Approaches . 19
3.1.2 Constraint Optimization Approach . 20
3.1.3 Mixed Integer Linear Programming . 20
3.1.4 Merging Timetables . 21
3.1.5 Reinforcement Learning . 22
3.1.6 Slot Allocation . 22

iii

Contents iv

3.2 Privacy Preserving Approaches . 23
3.2.1 Linear Programming . 24
3.2.2 Constraint Optimization . 25
3.2.3 Slot Allocation . 26

4 Privacy Preserving Railway Scheduling 27
4.1 Roles . 27
4.2 Design . 28

4.2.1 Demand Forecasting . 29
4.2.2 Sharing Encrypted Demand . 30
4.2.3 Creating Schedules . 31
4.2.4 Computing the best schedule . 33
4.2.5 Publishing the Schedule . 34

4.3 Interactions and Assumptions . 34

5 Evaluation 36
5.1 Theoretical Analysis . 36

5.1.1 Confidentiality . 37
5.1.2 Collusion-Resistance . 38
5.1.3 Traceability . 38
5.1.4 Non-Repudiation . 39

5.2 Complexity Analysis . 39
5.3 Experimental Analysis . 41

5.3.1 Throughput . 41
5.3.2 Runtime . 43

5.4 Conclusion . 44

6 Discussion and Future Work 48
6.1 Discussion . 48
6.2 Limitations . 49
6.3 Future Work . 50
6.4 Concluding Remarks . 51

1
Introduction

In our interconnected and intricate society, everything, from the utilization of time to energy
consumption, operates within the framework of schedules. Among this complexity, the pursuit
of simplicity is realized through the creation of schedules, whether in the personal realm for
effective time management or within a university setting for structuring lectures and exams. In
this perpetual struggle with time, schedules emerge as our singular weapon to manage time.
Strategic management of resources and tasks assumes a pivotal role, serving as a linchpin in
optimizing efficiency and achieving desired results. Scheduling, as a foundational concept, re-
volves around the systematic arrangement of tasks or activities over time, considering diverse
constraints and objectives.

As our world embraces increasing complexity, our schedules are intricately interwoven with
the schedules of others. The evolution of scheduling into a distributed problem, triggered by
the advent of multi-core processors necessitating task distribution across various resources,
introduces new challenges [47]. Depending on the nature of multi-party schedules, concerns
regarding the privacy of data owned by various stakeholders within the schedule surface. This
thesis focuses on the exploration of privacy within scheduling algorithms, specifically in the con-
text of railway timetabling. The objective is to formulate privacy definitions for the scheduling
problem and propose solutions facilitating distributed railway scheduling while safeguarding
the sensitive data of involved parties.

A schedule serves as a plan delineating a sequence of activities, events, or tasks, along with
their corresponding start times, durations, and end times. Scheduling involves the methodi-
cal arrangement and allocation of resources to accomplish specific objectives within a defined
timeframe. Schedules find application in diverse contexts, spanning project management, pro-
duction planning, transportation, events, and daily routines [23]. The field of scheduling has
witnessed increased research activities, particularly with advancements in cloud computing
and resource sharing. The Journal of Scheduling, now in its 20th year of publication, under-
scores the significance of the field and the notable developments it has undergone 1.

Schedules can vary in length, spanning milliseconds for scheduling tasks on a processor to
yearly schedules for a stadium. Following this timeframe, a schedule is categorized as either
a ‘Periodic Schedule’ [74], a ‘Cyclic Schedule’ [4], or a ‘Non-Periodic Schedule’, where the pre-
vious iteration provides no information aiding the formation of the subsequent schedule. The
complexity of forming schedules varies depending on the number and intricacy of individual

1https://link.springer.com/journal/10951

1

1.1. Train Scheduling 2

Figure 1.1: Research Gap [8]

constraints and the amount of resources. The intricacies of different scheduling algorithms
are explored in Section 2.1.

1.1. Train Scheduling
Trains, recognized for their speed and eco-friendliness, serve as a prominent mode of trans-
portation across Europe, accommodating journeys of various durations. The railway land-
scape in Europe spans from trams transporting 50 individuals at an average speed of 20 km/h
to high-speed trains with capacities of 1000 passengers, reaching speeds of 300 km/h.

The train schedule plays an important role in the operation of a railway line. Scheduling or
Timetabling is the process of providing a definite departure and arrival time for a set of trains
in a railway network. It reports absolute values of arrival-departure times of all trains and at
all stations and also arrival-departure orders of all trains at each station. Broadly, there are
two types of schedule intended for passenger traffic—One is cyclic/periodic and the other is
a non-cyclic/aperiodic schedule [80]. Cyclic schedule caters mainly to suburban traffic, where
the travel times of trains are uniform e.g., train from Delft to Eindhoven is every 30 minutes.
Noncyclic timetables are developed for long-distance passenger trains to achieve certain per-
formance objectives, e.g., the train to Paris from Rotterdam is 1700 to accommodate the rush
hour traffic. A periodic schedule is simple to create. A single period can be scheduled, and
thereafter, the same period can be copied across a day to create the daily schedule. In recent
years, periodic train schedules with a single operation period, such as a metro system, have
been popular. Given its convenience, it is used in countries where rail transport acts as a
backbone. The regularity of the schedule helps passengers get into a schedule themselves
[83]. It is worth noting that aperiodic schedules apply to fewer connections, these are usually
long-distance overnight journeys.

Given the ubiquity and frequency of periodic schedules, this thesis will mainly focus towards
a method ideal for periodic scheduling but we will discuss extensions that can accommo-
date aperiodic schedules. High-quality schedules can accurately meet the travel demands
of passengers, avoid a waste of resources, and achieve sustainable development. The field
of scheduling is an active field of research [80]. With prevalence of interchanges for reaching
regions beyond local areas having increased, especially with the introduction of metros, the
concept of changing railway lines to access new destinations is. Due to the substantial upfront
cost of track laying and shared infrastructure, multiple railway lines often use the same set of
tracks. Consequently, synchronizing the train schedules becomes imperative to optimize the
utilization of this limited and shared resource.

1.2. Problems 3

Figure 1.2: Amsterdam to Geneva as a tourist

The train scheduling problem encompasses three sub-problems:

1. Determining optimal departure timings along a train’s route.
2. Locomotive assignment.
3. Locomotive team assignment.

Although these problems are interrelated, the core lies in solving the train scheduling problem,
upon which constraints related to locomotives and teams are subsequently applied [63]. With
a history of around 70 years in research [22], train scheduling stands as a complex constraint
optimization problem. We refer to the works of Bussieck et al. [8] to gauge where we can
improve the scheduling process. The authors present the entire scheduling system and guide
us to where the research gap is. This is presented in Figure 1.1. The research gap lies in
Train timetabling and line planning. In this work, we will focus on Train timetabling and briefly
discuss how the work can be extended to Line planning.

Recent research, influenced by urban transit methods, plays a crucial role in adapting sched-
ules to dynamic conditions, such as unexpected disruptions or changes in demand [58]. Time
table scheduling incorporates various methods, including Machine Learning, which provides
adaptive solutions by learning from historical data and adapting to evolving operational envi-
ronments [39]. This is in addition to standard optimization algorithms in Linear Programming
and Constraint Optimization [83, 78].

The privatization of rail services in many European countries introduces multiple options for
travelers, from state-owned to private entities. The availability of various options theoretically
simplifies travel, as passenger demand influences the frequency of scheduled railway services.
As illustrated in Figure 1.2, tourists planning a week-long visit to Europe may rely on platforms
like Trainline2 for travel planning. However, discerning travelers can optimize their journeys,
focusing on high-speed rail lines to reduce travel times significantly without incurring additional
costs, as depicted in Figure 1.3.

1.2. Problems
Since trains are not scheduled to ensure easy transfers between operators, it is up to the pas-
senger to create an optimal schedule for best travel experience. International train stations,
by definition, serve trains to multiple countries, which requires the scheduling of independent

2https://www.trainline.com

1.2. Problems 4

Figure 1.3: Option for a local

rail operators. Knowing transfer options is crucial for planning long-distance journeys, as il-
lustrated in Figure 1.3, where the 12:15 train from Amsterdam connects seamlessly with the
16:18 train from Paris, allowing for a transfer time of under 15 minutes. However, given the
common occurrence of delays, a 15-minute buffer renders this option impractical. Despite
having five trains departing from Paris, only one aligns with the schedule for travelers origi-
nating from Amsterdam. The short connection time poses a risk and missing the connection
would require a day-long stay in the city. This issue stems from independent scheduling prac-
tices, with SNCF (The French Railway) and NS (The Dutch Railways) optimizing their routes
based on constraints tailored to their specific use cases. Eurostar, as a coordinating entity,
collaborates with national rails to formulate its schedule.

1.2.1. Distributed Railway Scheduling
When NS and SNCF share the same infrastructure at certain points, they inevitably influence
each other’s passenger flow, forming part of the same network with weakly linked constraints.
An ideal system would involve all railway systems sharing any infrastructure being scheduled
collaboratively. The need for a distributed railway scheduling system arises, drawing inspira-
tion from parallel problems such as distributed task scheduling [47].

1.2.2. Privacy in Scheduling
Privacy-preserving scheduling algorithms delicately balance the optimization of resource allo-
cation while protecting sensitive information. This is particularly crucial in railway scheduling,
where constraints could potentially expose private information. Therefore, it is essential to
protect the data required for constraints or objective functions from external exposure.

The concept of privacy-preserving scheduling is relatively new and its system properties can
be compared with similar fields. For instance, the system of multiparty scheduling, which is an
abstraction of slot allotment, can be paralleled with the field of auctioning. Privacy-preserving
auctions have been extensively researched in [32], [34], and [52]. Consequently, the following
properties can be adapted to multiparty privacy-preserving train timetable scheduling:

• Unforgeability: Each participant’s demands are securely tied to their own identity, pre-
venting any attempt to falsely attribute demands to another participant.

• Anonymity: The demands submitted by an operator are detached from their personal
identity, ensuring that there is no identifiable link between the two.

• Pseudonymity: Operators are represented by pseudonyms, safeguarding their real
identities while still allowing for identification within the system.

• Collusion-Resistance: The scheduling process is designed to withstand collusion at-

1.3. Research Question 5

tempts amongst operators even when there is a dishonest majority.
• Public Verifiability: Anyone can independently verify the final schedule, enhancing
transparency and accountability in the scheduling process.

• Non-Repudiation: Once operators submit their demands, they cannot later deny their
participation, adding credibility and trust to the scheduling system.

• Traceability: Operators who act maliciously by creating wrong schedules or those who
have won any slots must be identifiable and traceable.

• Confidentiality: While the schedule discloses the allocated slots and their respective
operators, it conceals information about other operators, ensuring confidentiality and
privacy for all participants except those involved in the specific slot.

The privacy-preserving properties a system provides depend on the underlying protocols. To
enable information sharing without compromising privacy, these algorithms employ crypto-
graphic techniques, secure multiparty computation [11], homomorphic encryption [35], differ-
ential privacy mechanisms [26], or a combination of these. This ensures the confidentiality of
personal or proprietary information throughout the scheduling process.

1.3. Research Question
The primary objective of this thesis is to formulate a protocol for generating a timetable collab-
oratively among multiple railway providers while upholding the privacy of each party’s confi-
dential information. The key stakeholders in this collaborative effort are the railway operators,
the train station and the scheduling party (ProRail) and a notable aspect of this approach is
the absence of a third-party mediator to ensure the system’s functionality among any number
of participating operators.

This research operates within the malicious model, acknowledging the potential for a bounded
subset of users to engage in malicious behavior and collusion with other operators. The ma-
licious intent is directed towards uncovering the demands of the operator, which is private to
them, to disrupt the integrity and authenticity of the final timetable. In essence, the goal is to
prevent any participating party from gaining access to the demand of others or manipulating
the submitted data once it is in the system. This thesis tackles the following research question.
How to design a privacy-preserving schedule for a train timetable at International Sta-
tions?
How to achieve similar privacy guarantees utilizing a constant number of communica-
tion steps between the participating parties?

1.4. Contributions
In this thesis, we propose a data privacy-preserving protocol to schedule trains from multiple
operators at an international station, utilizing a set of privately held values in a manner that
ensures privacy preservation. More specifically, given a set of operators, each holding private
integer values for their passenger demands as private variables, the protocol computes the
schedule of all trains in such a way that no party can learn the private values of another user.
Only the final schedule is revealed in the end. This final schedule maximizes the overall de-
mand served by combinatorially making all possible schedules. To create the schedules, we
use homomorphic encryption techniques. Since we only require additive homomorphism, we
create a partially homomorphic encryption-based protocol. We propose an alternative proto-
col that uses fully homomorphic encryption. This protocol utilizes fewer communication steps,
down from exponential to constant while achieving the same schedule. To our knowledge,

1.5. Outline 6

our protocol is the first to ensure confidentiality of private values even in presence of < 50%
malicious operators. Additionally, our protocol ensures non-repudiation, traceability and collu-
sion resistance with other parties being semi-honest. Note that data poisoning attacks from the
users are outside of the scope of this thesis. We supplement our protocol with an improvement.
The improvement is to make the system be light and use less bandwidth. We are able to offer
all the security properties mentioned in a malicious majority setting and hide the ordering of
various demands in this implementation, such that even domain knowledge cannot reveal any
information about the privately held values. Finally, we provide theoretical evaluations of the
security and performance of our protocols as well as a practical analysis of their performance
with a proof-of-concept implementation. Our runtime analysis shows the feasibility of such a
protocol for real world scheduling problems in reasonable time ≈ 3hours for four independent
operators scheduling a total of seven trains to fill in one period of schedule.

1.5. Outline
In Chapter 2, we discuss the essential mathematical and cryptographic concepts required to
understand our protocols. We explain basic algorithmics concepts, required to understand the
algorithms currently used for train scheduling. Then we describe these algorithms, their salient
features and give a motivation for their use. Then we describe all the cryptographic concepts
used in similar protocols to ours and give motivation for different homomorphic encryption tech-
niques to develop multiple privacy preserving scheduling protocols for different use-cases. In
Chapter 3, we lay out an overview of some related works, these works inspire our research
and act as the framework for our approach. In Chapter 4, we describe our assumptions, de-
fine the roles and ownership of various parties and variables, and describe our protocol. We
present two protocols, one that requires a linear number of communication steps and one that
achieves the same train schedule with a constant number of communication steps. In Chap-
ter 5, we provide security analyses of the protocol. We present a theoretical and a practical
analysis comparing the runtimes, communication costs, and throughputs of the two designs.
In Chapter 6 we discuss the research questions and how our protocol helps answering these.
We also discuss future work and limitations of the presented design.

2
Preliminaries

In this chapter, we provide an overview of the concepts of scheduling, and cryptographic tech-
niques required to understand the protocols presented in this thesis, as well as to understand
the related literature.

2.1. Periodic Event Scheduling
Since our primary focus is on periodic schedules due to their ubiquity and ease of understand-
ing, we are dealing with the subset of scheduling algorithms which have been categorized as
Periodic Event Scheduling. Periodic event scheduling is a method used to organize events
that occur at regular intervals. This type of scheduling is commonly used in contexts where
regularity and repetition are key. For instance, public transportation systems like buses and
trains rely on periodic event scheduling to create timetables that passengers can rely on.

The main reason for using periodic event scheduling is to establish a predictable and efficient
routine that optimizes resources and time. It helps in reducing conflicts and overlaps in sched-
ules, ensuring smooth operations, and providing a clear structure for both service providers
and users to follow. By having a periodic schedule, organizations can improve service relia-
bility, enhance customer satisfaction, and manage resources more effectively. It’s a crucial
aspect of operational planning that contributes to the overall stability and predictability of ser-
vices offered.

The algorithms found in the literature solve different parts of the overall scheduling problems.
The complexity of scheduling problems can vary widely and can fall into different complexity
classes, including P and NP. The complexity of the algorithms depends on the number and
size of the constraints. Even though railway scheduling is a satisfaction problem, depending
on the usecase, we can achieve optimality. The feasibility of achieving optimality depends on
the complexity of the problem. The following are the complexities the related papers tackle:

• P (Polynomial Time): Scheduling problems that belong to the P class are those for
which a solution can be found in polynomial time.

• NP (Non-deterministic Polynomial Time): Scheduling problems that belong to the NP
class are those for which a proposed solution can be verified in polynomial time, even
though finding a solution grows exponentially with increase in input size.

7

2.1. Periodic Event Scheduling 8

Algorithms Used
Based on the size of the subproblem in terms of the number of constraints and the domain
of these constraints, various techniques can be used for scheduling. Here we provide the
background on these techniques to better understand why researchers use these techniques
and understand the change in techniques with increasing problem size and complexity.

2.1.1. Branch and Bound Algorithms
A branch and bound algorithm tries to break down a problem into smaller pieces by using a
bounding function [15]. It then tries to eliminate these sub-problems which cannot contain the
optimal solution. This paradigm can be used for mathematical optimization. This approach is
methodical and explainable.

2.1.2. Greedy Algorithms
Greedy algorithms are a class of algorithms that make the best possible decision at each step,
aiming for a locally optimal solution in the hope that these local optima will lead to a globally
optimal solution [17]. These algorithms can be used for optimization problems, as long as one
solution does not break the rest of the solutions. Greedy algorithms are easy to implement
and fast to execute, making them great for purposes of rescheduling in case of disruptions in
a train network.

2.1.3. Reinforcement Learning
Reinforcement Learning (RL) is a machine learning paradigm that enables an agent to learn
optimal actions by interacting with an environment [55]. In RL, an agent takes actions to
maximize cumulative rewards over time, guided by trial and error. RL creates its own solutions
and iteratively gets better based on the response it gets from the problem upon implementing
its solution. An RL definition consists of the state set, the action set, and the corresponding
rewards at each time step needed. These states and rewards are then optimized to achieve
domain-specific objectives. A policy corresponds to the probability of adopting a particular
action from the action set to improve the current state. Improvement is measured by the
reward function.

2.1.4. Constraint Optimization
Constraint optimization is a technique used to find the best solution from a set of possible
solutions that satisfy a number of constraints [41, 69]. The core idea is to maximize or minimize
a certain objective function, such as profit and distance, while adhering to the constraints
present in the real world. One special advantage of this class of algorithms is the ease of
improvement. An extra constraint doesn’t rewrite the entire algorithm and improvements and
extra constraints can thus be easily added to a pre-existing solution. A constraint optimization
algorithm guarantees a solution, the quality of which can depend on the time the algorithm was
allowed to run. This means that the system can produce good results in a time-constrained
environment.

2.1.5. Linear Programming
Linear programming (LP) is a mathematical optimization technique used to find the best out-
come in a given mathematical model, subject to certain linear constraints. It involves maxi-
mizing or minimizing a linear objective function, usually representing costs or demands, while
satisfying a set of linear inequality or equality constraints. A typical LP problem takes the

2.2. Adversarial Behaviour 9

following shape:

minimize
m∑
j=1

wjxj

subject to
∑

j:ei∈Sj

xj ≥ 1, i = 1, . . . , n

xj ∈ {0, 1}, j = 1, . . . ,m

Where x represents the various constraints and w the respective weights.

LP algorithms tend to converge relatively quickly, especially for small- to medium-sized prob-
lems, making them efficient for finding optimal solutions in a timely manner. By formulating the
scheduling problem as a linear programming model and solving it using LP techniques, railway
operators can make informed decisions to improve the overall performance and reliability of
their systems. Moreover, advances in computer and chip technologies have been driven to
accelerate LP on a hardware level [44].

2.1.6. Slot Allocation
Slot allocation algorithms are used to assign resources or time slots to various entities or activ-
ities. Slot allocation is used in distributed computing for parallel jobs in distributed computing
with non-dedicated resources [73]. Research in the field is to have the least down time to
utilize the resources optimally.

In transportation slot allocation is a type of traffic planning, of which the key characteristic is
that infrastructure users have to reserve a ‘slot’ on the network before departure. The total
number of users admitted to each bottleneck per period is limited, depending on its capacity.

Introduction to Airport Coordination by IATA 1 creates a tier list for airport and sets guide-
lines for airport slot allocation. For tier 3 airports where slot allocation is aggressively used
to schedule airlines, the primary duty of the airport is to get the airport into a higher category
through maintenance or expansion. The guidelines have been refreshed and reworked over
two editions over 15 years, highlighting the importance of the technique for busy airports.

The main objective of slot allocation is to solve capacity conflicts beforehand in planning, and
not on the network where congestion would be the result [5]. Slot allocation can be used as
an instrument to serve these objectives, for instance, to stimulate competition in the transport
market by giving priority to entrants in the traffic market or to reduce externalities of traffic by
giving priority to environmentally friendly traffic.

2.2. Adversarial Behaviour
The adversarial behaviour can be described by what an adversary can do within the paradigm
described by the protocol. We consider the adversaries commonly used in the literature; semi-
honest, malicious and covert.

Semi-Honest
Also known as honest-but-curious, this form of adversarial behaviour doesn’t disrupt the pro-
tocol since the adversary is ‘honest’. However, they are also ‘curious’ to gain as much insight
into the protocol as possible. This can come by keeping a mapping of all input, intermediate
and output messages. Along with this, they might also keep a track of all the calculations
across several runs of a protocol to gain insights into the inner workings of the protocol.

1https://www.iata.org/contentassets/4ede2aabfcc14a55919e468054d714fe/wasg-edition-3-english-
version.pdf

2.3. Cryptography building blocks 10

Malicious
This is a stronger form of adversarial behavior. The adversary might deviate from the protocol.
This can cause the protocol to malfunction and produce unexpected or incorrect results. To
prevent this behaviour, protocols can install overheads to ensure validity of messages, calcu-
lations and results for every actor.

Covert
A covert adversary adversary lies somewhere in between a malicious and a semi-honest ad-
versaries. Aumann et al. [3] argue how this is a more realistic type of adversary. Here, the
adversary may act maliciously if they can benefit from this malicious act. It is essentially a
trade-off between getting caught with some probability and what monetary/social advantages
they can achieve with this malicious behavior, e.g., cheating in an online game can have ex-
ceeding benefits with low change of getting caught.

Capabilities
The capability of an adversary can be described by analyzing the computing power they have
to try and break the protocol. These can be broadly divided into bounded and unbounded.

Bounded Adversary
A Bounded adversary possesses only a finite amount of computational power to compromise a
cryptographic system. This means that the adversary can compromise a system with absolute
certainty. This usually means being able to decode an encrypted message. A computationally
secure protocol is resilient against such adversaries. Given no domain knowledge or informa-
tion about the message, the effort required to crack a cryptographic system can be quantified
as 280 based on current computation speeds.

Unbounded Adversary
An unbounded adversary boasts infinite computational resources, necessitating a more strin-
gent criterion for cryptographic security. A system that can withstand attacks from such adver-
saries is labeled unconditionally secure or information-theoretically secure. An uncondi-
tionally secure system ensures no information leakage, achieving what is known as perfect
secrecy. The One Time Pad is an exemplary cryptographic system that achieves perfect
secrecy [50]. A one time pad as the name suggests provides perfect secrecy by encrypting
every single bit with a different one time use key. This key is generated randomly and changes
with every run of a protocol using a one-time pad.

2.3. Cryptography building blocks
The system presented in this thesis and related work use public key cryptography, also known
as asymmetric cryptography. This is because the system requires a pair of keys, one for
locking and one for unlocking. Public and private keys are used to, respectively, encrypt and
decrypt data. As a simple example, each user i generates their own key pair pki and ski. If
Alice (A) now wants to send a message m to Bob (B), they require Bob’s public key pkB. Alice
can then encrypts her message m under the encryption function E with input pkB, resulting in
the ciphertext c.

The intriguing aspect of public key cryptography lies in the dynamic between public and secret
keys. This relationship operates as a one-way street, symbolized by the trapdoor function,
where establishing the link in one direction is effortless, yet challenging in reverse. While the
secret key generates the public key, the latter remains cryptic about its counterpart. This asym-
metry, wherein deriving any insight into the secret key from the public key proves daunting,

2.4. Secure Multiparty Computation 11

forms the bedrock of public key cryptography’s security. Prime examples of such cryptographic
challenges include factoring and the discrete logarithm problem.

The discrete logarithm problem solves a lot of concerns due to the underlying math: given
a generator g of a group G with prime order q, determining x such that gx = y (mod q) for a
specified y is difficult, despite the straightforward nature of the inverse operation through re-
peated multiplication. Based on the discrete logarithm, the decisional Diffie-Hellman assump-
tion (DDH) is defined as the following: Given ga, gb for some random a, b ∈ Zq and suitable
generator g in Group G with prime order q, one cannot distinguish between gab and gc for
random c ∈ Zq.

Computationally Secure Pseudo-Random Number Generator
Cryptographically Secure Pseudo-Random Number Generators (CSPRNGs) are a class of
Pseudo-Random Number Generators (PRNGs) that are suitable for use in cryptography due
to their enhanced security properties [72]. They are designed to be secure against serious
attacks, even when part of their initial or running state becomes available to an attacker [72].
CSPRNGs are essential in various cryptographic applications, such as generating nonces,
initialization vectors, or cryptographic keying materials [72].

In the Rust programming language, the ‘rand’ crate provides several CSPRNGs [24]. For in-
stance, ‘StdRng’ is a CSPRNG chosen for good performance and trust of security [24]. It uses
the HC-128 algorithm, which is one of the recommendations by ECRYPT’s eSTREAM project
[24]. All RNGs in Rust implement the ‘RngCore’ trait, and secure RNGs may additionally im-
plement the ‘CryptoRng’ trait [24].

In a multi-party setting, CSPRNGs can be used to create a shared symmetric key. Each party
can generate a random number using a CSPRNG, and these numbers can be combined (for
example, by XORing them together) to create a shared key that is known only to the parties
involved. This key can then be used for secure communication between the parties [21].

2.4. Secure Multiparty Computation
Secure multiparty computation (MPC) is a cryptographic technique where two or more parties
perform a joint computation that results in a meaningful output without disclosing the input
provided by either party [75], [14]. In 1982, Yao [81] proposed the millionaire problem, which
officially launched the study of secure multi-party computation, in which several participants
with secret inputs work together to compute a function and get their own output, but none of
the participants get any information about the inputs.

These techniques are being used more readily in various domains owing to the increase in
value of data [1]. MPC enables computation on encrypted data since all parties only receive
the output of a function while keeping the input data private [67], [14]. MPC is particularly
useful in a distributed computing scenario where multiple parties(organizations or individuals)
would like to cooperate by computing a function together and obtaining more valuable infor-
mation without leaking their confidential data [82]. MPC can be applied to real-life problems
using secret sharing, garbled circuits, and homomorphic encryption [64]. This thesis uses ho-
momorphic encryption, but we will shortly outline all techniques to highlight the advantages of
homomorphic encryption and why this technique is used.

2.4.1. Secret Sharing
Secret sharing hinges on dividing information into small fragments and giving ownership of
these fragments to different parties. The combination of these fragments finally unlocks the

2.4. Secure Multiparty Computation 12

Figure 2.1: Circuit for Rock Paper Scissors

secret. Secret-sharing techniques are often denoted by (t, n), where n refers to the number of
shares created and t refers to the minimum number of shares needed to recover the original
secret. The idea is to divide the secret up so corruption of one party is not detrimental to
privacy of others. To learn f(x1, ..., xi), each party applies the function f on the received
shares. Combining the shares yields the function applied to the inputs.

2.4.2. Garbled Circuits
Garbled circuit is a technique useful for a two party systemwhere two parties want to compute
a function over their private inputs without leaking information about their inputs [51]. Of the
two parties, one has the circuit which represents the function they want to compute with the
other party. We call these parties ‘obfuscator’ and ‘evaluator’. This circuit is a set of OR, AND
and XOR gates. Now this circuit is garbled, which in simple terms means encrypted such that
it only reveals the correct results when decrypted using the correct key. Any mathematical
function can be built into a garbled circuit. The only downside is that this process requires
communication and works in a two party setting. The core idea of using bits and gates for
complex functions is also utilized in the TFHE fully homomorphic encryption technique which
we introduce later in this section is a core technique used in this thesis.

It is clear that the input can also not be in plaintext since inputs themselves are private. There-
fore, the inputs are sent via Oblivious Transfer (OT). Let’s take a game of rock/paper/scissors
to understand this succinctly. There are exactly two inputs, which can take three values here.
This is represented in a circuit as shown in Figure 2.1 2.

Homomorphic Encryption
Homomorphic Encryption enables the execution of basicmathematical operations on encrypted
values. The types of operations depends on the underlying math of a protocol. The use of
this technique allows for computation over private data, and is thus majorly seen in industries
that deal with private data such as medicine [54], big data [40] and biometrics [16]. We can
further divide homomorphic encryption into two subtypes; Partially Homomorphic Encryption
and Fully Homomorphic Encryption. Each type defines operations that can be applied to the
ciphertext. As we go from Partially to Fully Homomorphic Encryption, these operations get
stronger in terms of mathematical properties they offer, allowing for an array of problem solu-
tions. The caveat is that as we go up with the type of operations allowed, the computational
overhead increases. This can sometimes make the system infesible. This feasibility depends

2https://circuitverse.org/users/20039/projects/rock-paper-scissors-18ba61f1-e805-472d-97f9-10071b4bfe8a

2.5. Partial Homomorphic Encryption 13

on the computation power and the type of solution for which homomorphic encryption is uti-
lized. One benefit of fully homomorphic encryption is the fewer messages sent between the
parties [36], this helps with systems that usually have long computation times and otherwise
will not require communication like federated learning [43]. This means that a similar security
guarantee can be achieved for a protocol using both techniques, while differing in terms of
computation and communication complexity.

2.5. Partial Homomorphic Encryption
Partial Homomorphic Encryption (PHE) schemes only support one homomorphic operation,
such as addition or multiplication. Partial homomorphic schemes are thus additive or multi-
plicative homomorphic, based on their supported homomorphic operation.

Additive Homomorphism
Additive Homomorphic Encryption as the name suggests, only facilitates addition and subtrac-
tion of plaintexts by executing preset operations on two or more encrypted values [33].

Multiplication of two ciphertexts results in the addition of the underlying texts given that they
are generated using the same public key

Dsk(Epk(m1) ∗ Epk(m2)) = m1 +m2. (2.1)

.

Similarly, the multiplicative inverse of the second message, results in the subtraction of the
two messages

Dsk(Epk(m1) ∗ Epk(m2)
−1) = m1 −m2. (2.2)

.

Say m1 = m2, it becomes clear that we can treat this in ciphertext space as multiplying m1

twice, which means this is twice the message in plaintext. If we extend this further, it becomes
clear that any ciphertext raised to the power of k results in the encryption of k ·m

Dsk(Epk(m)k) = k ·m. (2.3)

2.5.1. Paillier Encryption
Paillier encryption [62] is a commonly used additively homomorphic encryption scheme in
multi-party computation (MPC) algorithms [28, 61]. The security of the Paillier cryptosystem
is based on the hardness of the composite decision residuosity problem, which is assumed to
be hard [62]. Formally, it is algorithmically hard (NP) to decide if there exists a y, such that for
a composite n and integer z:

z = yn(modn2) (2.1)

Suppose that we want to encrypt a message m. Define n = pq to be the product of two large
prime numbers p and q of equal length k

2 which gives k−bit security. The public key is defined
as (n, g) where g ← n+ 1. This public key can be used to encrypt m to produce a ciphertext.
The encryption function is defined as:

Eg : Zn x Z∗
n → Z∗

n2 (2.2)

Here the message space is Z∗ = {z | z ∈ Z, 0 < z < N, gcd(z,N) = 1}, marking the
hardness of breaking the cryptographic system without having knowledge of p or q. Give

2.5. Partial Homomorphic Encryption 14

c = gmrn mod n2 where r is a random factor uniformly selected from (0, n). To ensure that
every encryption of the same message is different, a different r is sampled for each encryption.
For decryption, we create the secret key using parameters µ and λ where λ← (p− 1)(q − 1)
while µ ← λ−1(modn). It is clear that this requires knowledge of p and q which is a hard
problem from the knowledge of just n which is what is available publicly. We thus get:

sk = (λ, µ) for pk = (n, g) (2.3)

For the decryption process, we define function L as:

L(x)← x− 1

n
;x ∈ (0, n2) (2.4)

From this definition, we can find m [62, 76]:

m =
L(cλ mod n2)

L(gλ mod n2)
mod n (2.5)

2.5.2. DGK Encryption
We use the DGK cryptosystem [20, 19] to provide a secure comparison protocol for the Par-
tially Homomorphic approach. For generating the public and the private keys, there are three
parameters: k, t, and l, where l < t < k. The process of key generation is as follows.

1. Choose two distinct t-bit prime numbers vp, vq.
2. Construct two distinct prime numbers p and q, such that n = pq is a k-bit RSA modulus.
3. Choose u, the smallest possible prime number but greater than ℓ+ 2.
4. Choose a random r that is a 2.5t-bit integer [19].
5. Choose g and h such that ord(g) = uvpvq and ord(h) = vpvq.

From this, we obtain public key (pk)= (n, g, h, u) and secret key (sk) = (p, q, vp, vq)

c = Epk(m, r) = gm · hr mod n∀m ∈ Zu. (2.1)

A lookup table can be used for decryption, so knowledge of domain is helpful.

2.5.3. Secure Comparison Protocol
Secure Multiparty Computation (SMC) allows a number of mutually distrustful parties to carry
out a joint computation of a function of their inputs while preserving the privacy of the inputs by
keeping them hidden from others. An important building block of SMC protocols is comparison.
Although any function can be securely computed using generic circuit-based protocols, these
protocols require communication steps for a setup procedure. Even though the computation
steps in these protocols are faster than other approaches, the communication overheads can
potentially slow them down and make them inefficient for a majority of real-world use cases.
With the importance of comparison for many protocols, research has begun to accelerate
comparison protocols. There exist many variants of this problem, depending on whether the
comparison result is public or not, and whether nA, nB are known to particular players, or
unknown to everyone [20]. However, protocols can be modified with minimal changes to be
applied to any variant in terms of privacy.

We employ optimizations presented in [59] and [53] over the Secure Comparison Protocol
devised in 2007 by Damgard et al. [20]. The sub-protocol uses the DGK cryptosystem for

2.6. Fully Homomorphic Encryption 15

efficiency reasons in the original version, however improvements suggest use of ECEG to be
better in [53]. For simplicity, we assume Alice to be the user with the values a and b, while
Bob is the server owning the secret key used to run the protocol. The protocol proceeds as
follows to return 1 if a>b and 0 otherwise.

2.5.4. Exponential Elliptic-curve-ElGamal
The use of Exponential Elliptic-curve-ElGamal (ECEG) is motivated by the research of Za-
hedani et al. [52]. The authors show how a comparison protocol utilizing ECEG speeds up
the process of secure comparison. The messages are encoded in the exponent rather like
the standard ElGamal [27]. The key generation, encryption, decryption, and zero-check oper-
ations make use of mathematical operations involving point addition and scalar multiplication
on the elliptic curve. This makes exponentiation faster due to smaller key sizes for a similar
level of security. However, a message must be encoded using a generator. The security of
the scheme relies on the Elliptic Curve Discrete Logarithm Problem (ECDLP), which is the
assumption that given a point P and a scalar multiple kP , it is computationally infeasible to de-
termine k. Without this, breaking the discrete logarithm problem is the only option. Decoding
the message is thus a hard problem without domain knowledge to narrow down the search
area.

2.6. Fully Homomorphic Encryption
The first FUlly Homomorphic Encryption (FHE) scheme in 2009 [37], proved that FHE is achiev-
able in polynomial time. FHE schemes are able to evaluate arbitrary circuits of unbounded
depth and can therefore be used for running any program by an untrusted party. Unlike PHE
techniques, FHE protocols allow for an unbounded number of mathematical operations on the
ciphertext and allow for allow multiplication and addition over the same encryption scheme.
This is achieved by Fully Homomorphic Encryption by the process of bootstrapping.

Development being recent in Fully Homomorphic Encryption, there isn’t a set golden standard
for the scheme to apply in all cases. For example, to perform non-linear operations using FHE,
arithmetic circuits are used, which work on a bitwise level. The operations are thus carried out
in terms of logic gates. The process from here is straightforward, just convert the input into
binary values and convert all operations into a series of logic gates as discussed in Section 2.4.
This leads to an overhead while performing non-linear operations, which are taken care of by
different schemes in different ways. We will now briefly discuss bootstrapping, various FHE
schemes, and their strengths and weaknesses.

Bootstrapping
All common FHE schemes are based on noisy encryptions (the noise guarantees the security
of fresh encryption). Evaluating homomorphic operations increases the noise magnitude and
lowers the quality. Bootstrapping converts an exhausted ciphertext into an “equivalent” fresh
ciphertext. A bootstrapable HE can homomorphically evaluate its own decryption procedure
in addition to at least one additional operation. An example of how bootstrapping works is
given in Figure 2.2 3

2.6.1. BGV/BFV
For protocols requiring Single Instruction Multiple Data (SIMD) operations [71], use of earlier
protocols such as BFV [29] and BGV [7] may be sufficient. SIMD is a parallel computing tech-
nique that enables a single instruction to be applied to multiple data elements simultaneously.

3https://dualitytech.com/blog/bootstrapping-in-fully-homomorphic-encryption-fhe/

2.6. Fully Homomorphic Encryption 16

Train station ts ProRail pr
[a], [b] sk

L = Length binary representation

r ←$ Zκ+L

[d]← [2L + a− b+ r] = [2L] · [a] · [b]−1 · [r]

[d]

d′ ← d (mod 2L), d̂← d/2L

[d′], [d̂]

r′ ← r (mod 2L), r̂ ← r/2L

[[ti]]← [[d′i +ΣL−1
j=i+1d

′
j · 2j]]

[[t]] ≡ [[t0, ..., tL−1]]

s←$ {−1, 1}
[[vi]]← [[s− r′i − ΣL−1

j=i+1r
′
j · 2j]]

[[ci]]← [[vi]] · [[ti]]
hi ←$ Z∗

u

[[ei]]← [[ci · hi]] = [[ci]]
hi

Scramble order of [[ei]] [[ei]]

Zero-Check all [[ei]]
If none are zero, δ′ ← 0

else, δ′ ← 1

[δ′]

[δ]← [δ′] if s = 1

[δ]← [1] · [δ′]−1 if s = −1

[zl]← [d̂− r̂ − δ] = [d̂] · [r̂]−1 · [δ]−1

[zl]

Decrypt [zl] and release result

Protocol 2.1: Secure comparison protocol by Zahedani et al. [52]. Determines whether a < b

2.6. Fully Homomorphic Encryption 17

Figure 2.2: Bootstrapping

In FHE, SIMD operations allow for the efficient processing of multiple encrypted messages
within a single ciphertext, leading to significant performance improvements in homomorphic
computations. Packages multiple messages into a single ciphertext, enabling numerous op-
erations to be performed in a single instruction. These protocols show good performance for
the following usecases:

• Private information retrieval (PIR)
• Private set intersection (PSI)
• Integer computations

2.6.2. CKKS
CKKS is based on Approximate arithmetic on fixed-point numbers. It can thus support complex
or real numbers, while allowing one to pack more bits into a ciphertext. CKKS, by definition is
an approximate scheme and therefore cannot be used in applications which require high pre-
cision and is slower than alternatives. Based on these qualities, CKKS has good performance
for the following usecases:

• Logistic regression training
• Statistical analysis

2.6.3. TFHE Encryption
TFHE [13] is an FHE scheme that performs binary operations. This speeds up its performance
on non-linear operations with no such performance gain for addition or multiplication opera-
tions. The main selling point of TFHE is the bootstrapping operation, which allow for any bit
to bit mapping operation while the bootstrapping operation continues, allowing for an overall
larger throughput. TFHE supporting programmable bootstrapping is what makes it attractive

2.6. Fully Homomorphic Encryption 18

for many different types of protocols that may involve inherently slower addition/multiplication
steps as well.

The security of TFHE is affected by the underlying Learning With Error [68] problem which is
hard to solve. This makes TFHE resistant against attacks from quantum computers. The letter
‘T’ in TFHE [68] refers to the real torus T = R/Z. Basically, T is the set [0, 1) of real numbers
modulo 1. Torus T is not a ring. If T were a ring, one would have (a + b) ∗ c = a ∗ c + b ∗ c
and a ∗ (b + c) = a ∗ b + a ∗ c, where + and ∗ are defined over the torus (i.e., where + and ∗
respectively stand for the addition and the multiplication over the real numbers modulo 1).

Encryption in TFHE required covering the plaintext data into an encoded unsigned integer.
This process adds noise to the terms wherein the most significant bits represent the encoded
value of an unsigned integer with noise added to the least significant bits for security. Like every
Homomorphic Encryption technique, only a certain number of operations can be performed
on TFHE ciphertext due to the noise introduced while encoding. The noise grows with every
additive and multiplicative step. This error can potentially corrupt the underlying message, this
is prevented by padding between the messages.

TFHE has a specific advantage of having programmable bootstrapping [12]. This process does
not make the scheme faster, but allows a univariate function to be applied during the process
of bootstrapping. Programmable bootstrapping allows for non-interactive secure comparison
between integers [42]. We use this specific property for one of our improvements.

TFHE is a private-key encryption scheme. A private-key encryption scheme is symmetric: the
same key is used for both encryption and decryption. This can be a bottleneck for multiparty
computation protocols. However, any additively homomorphic private-key encryption scheme
can be converted into a public-key encryption scheme. The public-key variant of private-key
TGLWE encryption is obtained analogously. The TFHE library as developed in rust comes with
primitives to extract a public key from the secret key; however, this impacts the performance
of the protocol. Encryption becomes exponentially slower compared to using the private key.
The use of a compact public key is able to speed up the process, however, the speeds at 1

10 of
using the client key (secret key), which, given the number of encryption steps and performance
expectations, can become a bottleneck.

3
Related Work

In this chapter we discuss prior works in railway scheduling and demand forecasting. We
further discuss various cryptographic techniques developed for homomorhphic addition and
secure comparison protocol.

3.1. Railway Scheduling
Railway scheduling is a well-studied problem. With increasing network complexity and in-
creasing infrastructure constraints, it is also an evolving problem [80]. There has been a great
deal of systemization of knowledge papers written in the domain. Narayanaswami et al. [58]
conducted one such analysis in 2011 where they analyzed paper scheduling techniques to
schedule and reschedule railway timetables. Analyzing most of the techniques, the authors
conclude that schedules take care of two possibly competing goals; Improving public utility
and profits [58]. Strategic operations are handled by railway policy makers, including energy
efficiency, capacity planning, pricing, type and size of service requirements, layout, and route
planning. Scheduling is directed towards achieving specific objectives while maintaining the
feasibility of safety and preferential constraints set by policy makers. Note some authors use
timetabling for what we define as scheduling. These terms are used interchangeably in this
section to abide by the terminologies the authors use in their respective work. The research
started with methods like branch and bound and greedy algorithms, but, with the explosion in
the number of constraints and the increase in the size of the problems, these techniques were
quickly rendered insufficient. With increase in compute power and better understanding of the
problem, many problems like line-solving, timetabling and crew assignment were combined
into one for a more holistic approach. This leads to the use of contemporary methods like
constraint optimization, linear programming, machine learning, and slot allocation.

3.1.1. Historical Approaches
Some earlier approaches to generate schedules were branch and bound algorithm [18] and
greedy algorithm [9]. These techniques were used mainly for real-time conflict resolution prob-
lem, to find a conflict-free schedule compatible with the real-time status of the network. These
approaches were used to design schedules so that secondary delays could be avoided. The
authors do this by creating zones that can be occupied by one vehicle, including but not limited
to platforms and signalled areas. Currently, a similar constraint is still in place when scheduling
trains.

Cai et el. [9] aimed to solve the problem of trains sharing the same track while having the nec-

19

3.1. Railway Scheduling 20

essary overtaking to be achieved at certain points on parallel tracks. The authors try to solve
this problem by making some simplification assumptions. This includes trains going at the
same speed and most importantly trains going in only one direction, which means overtaking
can be performed at any moment a parallel rail section is available. The authors acknowl-
edged these assumptions and claim the problem being in NP means that their solutions will
not be globally optimum.

Branch-and-bound and greedy methods were viable approaches due to the smaller size of the
networks and fewer conflicts. In the greedy method, the idea was to minimize or maximize the
time of current vehicle by allowing it to overtake everyone in their way and follow the same
process for every subsequent vehicle or stop the train that is causing conflicts and let the rest
of the network flow unstopped. The global solution can be a middle ground here, but finding
that would be a hard problem as can be understood from its complexity Section 2.1.

3.1.2. Constraint Optimization Approach
Constraint optimization problems depend on the solution of multiple constraints to maximize
or minimize an objective function or a set of objective functions. The best schedule serves
the maximum number of passengers. Wang et al. [78] propose a travel demand space-
decomposition algorithm to break these routes down into smaller sectors. The minimum
amount of train service is described by:

Sk =
Qk

C(1− Lk)

whereQk is the number of passengers served by the station k in one day, and C is the capacity
of a train. Lk is the average capacity utilization of the trains arriving at the station k. The total
initial capacity being served by the trains is more than the total demand. Note that a train
serves more than its capacity since some people de-board and are replaced by others during
the journey.

After breaking down the problem into multiple parallel smaller problems, the authors aim to
optimize the sub-timetables byminimizing the total travel time. It takes into account factors
such as train frequency, passenger demand, and operational efficiency.

To combine all sub-problems, the overall passenger demand is maximized. The constraint is
the chosen subroutes and their compatibility with other subroutes.

Cservice :

m∑
i=1

pi · ti → min, where pi is passenger demand and ti is travel time

• m: The total number of passenger groups or demand points.
• pi: The passenger demand for group i.
• ti: The travel time for passenger group i.

3.1.3. Mixed Integer Linear Programming
Mixed Integer Linear Programming (MILP) is a common train timetable scheduling technique.
Given the nature of the problem, the reduction of constraints or improved solving methods
is where current research in MILP is. Zhou et al. [83] use a MILP model with the aim of
minimizing the total travel time of the trains on the network. The authors use multi-periodic
train timetabling and combine it with routing or line planning. This is justified since distance
can play an important role in the period of a train. The system can only be made periodic by

3.1. Railway Scheduling 21

taking a common multiple of these period, which may not be compatible with the demand that
is expected from all the locations served by the schedule. They assume some predetermined
trains of each period type on a high-speed railway network to simulate a train station that
serves high-speed trains for different long distance destinations, e.g., Amsterdam Centraal.

The authors minimize the travel time of all trains by considering 22 constraints. These con-
straints can broadly be divided into subcategories of line planning and timetabling.

Timetabling Constraints
Definition 3.1.1 (Platform Availability) Ensures that there is a platform available when a
train arrives at the station.

PlatformAvailable(tr, ti) = 1; (3.1)

The 1 denotes that the platform is available for train tr at time ti

Definition 3.1.2 (Platform Conflict) Prevents two trains from using the same platform at the
same time.

PlatformConflict(tr1, tr2, ti) = 0 (3.2)

Platform conflict takes value 1 when for any pair of trains; tr1 and tr2, the time at the platform
coincides. This should not be the case for any train pairs.

Definition 3.1.3 (Minimum Dwell Time) Ensures that trains have enough time at a station
for passengers to board and alight.

DepartureTime(tr)− ArrivalTime(tr) ≥ MinimumDwellTime (3.3)

Definition 3.1.4 (Headway Constraint) Maintains a minimum time gap between consecutive
trains to ensure safety.

DepartureTime(tri+1)− DepartureTime(tri) ≥ MinimumHeadway (3.4)

Definition 3.1.5 (Connection constraint) Allows sufficient time for passengers to transfer
between trains.

DepartureTime(connecting_tr)− ArrivalTime(tr) ≥ TransferTime (3.5)

Definition 3.1.6 (Capacity constraint) Ensures that the number of trains scheduled does not
exceed the station’s capacity.

∑
all trains

TrainAtStation(tr, ti) ≤ StationCapacity (3.6)

3.1.4. Merging Timetables
Lindner et al. [46] develop two MILP based strategies to merge two valid timetables into an
overall better timetable. They do so under the realm of PERPlib, which is a popular library
used to develop solutions to periodic event scheduling problems (PESPs). The authors study
the heuristics of a created timetable to understand how to run a merging procedure without
destroying the guarantees offered by either timetable. The two methods are the following.

• Utilization of Instance Structure: The authors look for patterns or regularities within the
timetables that can be combined without violating the periodicity and connectivity require-
ments of the system.

3.1. Railway Scheduling 22

• Minimum Weight Cycle Bases: This concept uses graph theory. A cycle base is a set
of cycles from which any other cycle in the graph can be formed. The minimum weight
cycle base is the one where the sum of the weights of its cycles is minimized. In PESP,
this translates to finding a set of constraints that, when satisfied, ensure the feasibility of
the timetable.

Both techniques rely on the underlying schedules to satisfy certain basic requirements, these
underlying schedules can be created in anyway, but a MILP based technique is preferable
since it gives guarantees of safety constraints being satisfied. The authors state some dis-
advantages of the technique being a very high computation cost. It is exponential and this
makes it infeasible for real world implementations. If the underlying timetables are close to
a local optima, the merged timetable is also likely to be stuck in a local optimum. The silver
lining is that the merged timetable cannot be worse than the underlying timetables, hence by
providing equal or strictly better results than before.

3.1.5. Reinforcement Learning
Another technique that is recently being applied to railway scheduling is Machine Learning,
more specifically Reinforcement Learning. Yiwei Guo, in his paper using Reinforcement Learn-
ing to schedule railway timetables [39], considers factors that can be classified into 6 sub
categories:

• Passenger demand related factors: train origin destination (OD) pair; the commencing
and terminating times of a given train

• Rolling stock related factors: rolling stock circulation; rolling stock maintenance; etc.
• In-station tasks related factors: train routing and platforming; waste suction and water
supply; crew changeovers; etc.

• Safety related factors: minimum running time; minimum headway; running time supple-
ment; etc.

• Capacity related factors: efficient capacity allocation within busy hub area; etc.
• Other factors: reliability; punctuality; robustness; etc.

The paper defines a state as a possible time-space distribution of all the trains considered,
which can be conceived of as an unfinished train path diagram. There are three categories of
actions taken into account: parallel move, stop time adjustment, and swap.

The paper uses these action state pairs to try and solve feasibility (i.e. conflict-free) and even-
ness (i.e. an evenly-distributed train path diagram) in the train network. The reward function
developed, simultaneously considers these two objectives functions.

Based on this, the RL formulates a route towards a better state and simulates a better route
that improves the train schedule.

3.1.6. Slot Allocation
Slot allocation has been used for rail scheduling and for other transportation bottlenecks [45,
6]. The usecase of Airways is a direct parallel with the increase in the number of private
railway services. Given the EU objective of equal access to infrastructure networks and the
increasing scarcity of infrastructure capacity, the propagation of fairness and efficiency of slot
allocation in the rail and aviation sectors has become a major issue. The allocation of airport
slots as described in Section 2.1.6 is being criticized for discriminating against entrants and
for not stimulating efficient use of airport slots. It gives priority to existing flight operators and

3.2. Privacy Preserving Approaches 23

routes, and hence hampers the introduction of new flights by new competitors. The author in
[45] describe the role of all the actors in a railway scheduling system.

• Operators: The operator has the role of transport service provider and transport service
producer, whichmeans that operators are also responsible for balancing transport supply
with traffic demand, they try to maximize the demand served. An allocation body is
responsible for slot allocation, i.e. it has the role of traffic service provider in situations
that slot allocation is applied.

• ProRail: A traffic controller has both the roles of traffic manager and infrastructure oper-
ator, implying that traffic controllers can directly implement the consequences of traffic
management measures. In the Netherlands ProRail/Railned is responsible for slot allo-
cation, they perform traffic management and operate the infrastructure.

The authors in [6] take an approach of slot allocation via auctions. Unlike the current process
capacities are allocated to the most valuable uses, and not by inherited ‘rights’ or by simple
priority rules. The authors criticize auctioning of slots independently of the rest of the network.
They claim that allocating a slot of impacts on other slots as well, so just allocating a slot to an
operator with maximum demand is not the ideal approach since this can harm locations that
are already poorly served. They introduce the concept of combinatorial auction that allocates
a multitude of interdependent slots simultaneously. For this, the authors propose how only
a partial portion of the network should be auctioned at once. This is because optimization
is a hard problem, and the problem size exponentially increases the complexity. With partial
optimization, not only the problem becomes solvable, but incrementally making the schedule
better over time would improve it throughout. The authors solve this using a graph which
denotes all the arcs in the network and their capacities that denote the number of trains that
can occupy an arc simultaneously.

The slot allocation is based on a bidding system. This bid is based on actual money that an
operator is ready to pay for a slot. A slot request must specify (at least): a monetary base
bid, a train type, a route, and time-value specifications. The monetary base bid is a sum of
Euros the operator is willing to pay for the slot s, aside any additions or reduction. The actual
choice of the selected operator is then made based on their other bids and other operators’
bids. The combinatorial way of choosing the winning bids is based on how it would impact the
rest of the network. This is seen by other trains serving a station and how that would impact
the ridership of the train being scheduled. Similarly the operators can place bids related to
each other, e.g., train from Leiden to Amsterdam, just after a train from Delft to Leiden, so
passengers can make easy transfers to get to their final destinations. These complex bids are
called ‘Tours’ and are treated as either entirely going through or not at all. So, either there is
a train from Delft to Leiden to Amsterdam or neither of the two. This is implemented since the
importance of a route in this case can inextricably linked with the other route as part of the
tour. The problem of line management is solved using Linear Programming in this research.

3.2. Privacy Preserving Approaches
Based on literature review, there are limited protocols that schedule railway schedules for
multiple parties [48, 46]. These approaches take a centralized approach to the problem which
fails to preserve the privacy of sensitive information like ‘demand’.

We describe the approaches present in literature that preserve privacy of sensitive informa-
tion, either in a multi-party setting or a centralized approach. A centralized approach remains
similar irrespective of the underlying algorithm. The idea is to send encrypted data to a central
location. This central location utilizes homomorphic operation to optimize the schedule. Since

3.2. Privacy Preserving Approaches 24

the operations are conducted over encrypted data, the formed schedule is encrypted. The
final schedule can only be revealed upon decryption. This decryption process can then be
carried out in a way that continues hiding the sensitive information while revealing the underly-
ing schedule. This can be done in multiple ways that offer different levels of trade-off between
privacy, computation and communication.

We describe the approaches found in literature that can assist with privacy preserving schedul-
ing. These approaches are generalized and apply to the underlying algorithms like Linear
Programming, Constraint Optimization and Slot Allocation.

3.2.1. Linear Programming
In his paper titled ‘A Privacy-Aware Distributed Approach for Loosely Coupled Mixed Integer
Linear Programming Problems’ [31] author, Mohammad Javad Feizollahi proposes two exact
distributed algorithms to solve MILP problems with multiple agents where data privacy is im-
portant for the agents. Both approaches, rely on the MILP problem being loosely coupled.
This means that the problem can be broken down into subsystems which can be solved inde-
pendently with only a few constraints joining the sub-problems together. This means that not
all constraints need to be solved centrally or by the same party. e.g., consider the following
optimization problem;

max(x+ y) (3.1)

Say there were only 2 constraints to solve this objective function;

x ≤ 10, x ∈ N (3.2)

y ≥ y2 − 10, y ∈ N (3.3)

If x and y were owned by different entities, entity_x could solve 3.2 and entity_y could solve
3.3 independently without revealing the domain of their values. They could just reveal the final
values of x and y to solve for 3.1. This can be an iterative process if the objective function is
unknown or private.

To distribute the MILP into these sub-parts, the author uses the concept of primal cuts to
achieve a loosely coupled MILP. Primal cuts are constraints added to the MILP problem to
exclude certain solutions that are not optimal. By using primal cuts, each agent can solve
a part of the MILP problem without needing to share its private data with others. The other
method proposed by the author is to apply Lagrangian Relaxation which is the process of
associating a penalty cost to simplify constraints. The Lagrangian Relaxation is applied to
constraints that require private information, the idea is to solve easier constraints first in order
to narrow down the domain of sensitive information and be able to replicate the central problem
with these constrained values. Both algorithms are designed to ensure finite convergence for
MILPs that include only binary and continuous variables. This means that they are guaranteed
to find an optimal solution in a finite number of steps. This approach is interactive and requires
the parties to be online and in constant communication to reduce the size of the problem and
realize the objective function jointly.

To apply this technique to the state-of-the-art MILP algorithm as introduced in [83], we need
to find out if the algorithm is loosely coupled and if the constraints can be made continuous
or binary. Based on the constraints defined in Section 3.1.3, other than Equation 3.6, every
other constraint is binary or continuous.∑

all trains
TrainAtStation(tr, ti) ≤ StationCapacity

3.2. Privacy Preserving Approaches 25

Since the aim of the research in [83] is to minimize travel time, we still need to introduce the
concept of demand which we want to maximize. Since demand for all participants is private to
them, the objective function cannot be independently evaluated. The demand of all operators
determine the final schedule, which means that this needs to be done at a centralized location.
Relaxation and primal cuts are expensive operations. Primal cuts can be achieved in the
following ways:

• Creating Cuts: To get rid of these non-optimal solutions, we create additional con-
straints, called primal cuts. These cuts are like precise lines drawn to exclude certain
areas from consideration.

• Iterative Process: We might need to add multiple primal cuts iteratively. Each time we
add a cut, we solve the problem again to see if we can find a better solution.

• Mathematical Operations: The creation of primal cuts involves various mathematical
operations not limited addition or multiplication; it’s about analyzing the problem, under-
standing the geometry of the feasible region, and then strategically excluding parts of
it.

Lagrangian relaxation requires the following steps:

• Penalty Multiplication: In Lagrangian relaxation, penalties (multipliers) are multiplied
with the constraints that are being relaxed to incorporate them into the objective function.

• Addition/Subtraction: The relaxed constraints are added to or subtracted from the ob-
jective function, altering the problem’s landscape.

• Iterative Adjustments: The process often involves iterative methods that adjust the
multipliers and the solution, which can include a range of operations depending on the
specific algorithm used.

3.2.2. Constraint Optimization
The authors in [38] introduce P Sync-BB. Sync-BB is an ascynchronous branch-and-bound
algorithm. Wherein the P in this stands for privacy preserving. When considering a version of
SyncBB that preserves constraint privacy, one must pay special attention to the upper bound.
In SyncBB, the upper bound is the most fundamental piece of information during the problem
solving process, and it is publicly known to all agents. The effectiveness of the algorithm lies in
the continuous comparisons of the costs of partial assignments with the current upper bound,
in order to prune the search space.

The authors introduce the concept of secure comparison protocols to hide the upper bound
and to check the assignment cost against this value in a way that preserves privacy. This is a
major source of trouble from the perspective of constraint privacy. This separation is achieved
by preventing any agent at any stage from knowing both the upper bound and the current
partial assignment (CPA).

The process begins with the first agent, A1, who sets the initial limit, called the upper bound,
to a very high value, which is infinity. This is to ensure that no potential solution is overlooked
from the start. A1 also activates a status indicator, known as ComputedCPA, to signify that it
has calculated the cost of the partial solution it has received. This step is about setting up the
correct status for future stages.

Next, A1 proceeds to the task of assigning values to its part of the problem, which is referred
to as the assign CPA procedure. Given that there’s no need to reconsider previous choices at
this initial stage (a process known as backtracking), A1 selects a value for its variable from the

3.2. Privacy Preserving Approaches 26

available options and updates the partial solution with this value. Then, A1 sends this updated
partial solution, now containing A1’s contribution, to the next agent, A2.

There’s a checkpoint in the algorithm where an agent assesses if the cost associated with
the current partial solution is approaching the best current solution, which would mean that
exploring this path further is unnecessary. However, since A1 does not have a preceding
agent to receive such a cost from, it skips this evaluation. For confidentiality purposes, it
might be decided that the following agents, A2 and A3, should also bypass this step.

3.2.3. Slot Allocation
In the study “Privacy-Preserving Implementation of an Auction Mechanism for ATFM Slot
Swapping” by Feichtenschlager et al. [30], the authors introduce a genetic algorithm-based
method to allocate Air Traffic Flow Management (ATFM) slots to aircraft. This method is de-
signed to address the assignment problem by pairing airplanes with their departure and arrival
slots according to the bids submitted.

The bidding process involves airlines providing encrypted bids that include their preferred de-
parture and arrival times, along with the maximum delay or the earliest they can tolerate. To
determine the value of each slot, airlines also submit an ‘importance value’, which reflects the
flight’s duration and significance. For instance, larger operators often have flights with numer-
ous connecting passengers, and the importance value is adjusted to account for the higher
costs associated with delays for these flights. This value of importance, crucial for competitive
reasons, is kept confidential between competing airlines and scheduling authorities to ensure
the integrity of the system, even in the presence of a potentially malicious authority.

The system’s goal is to minimize the overall cost resulting from deviations from the preferred
slots. This is achieved by establishing a continuous importance value, where costs linearly
increase as the actual schedule diverges from the preferred timing.

To maintain privacy and security, the authors employ a secret-sharing-based system. This
protocol is particularly effective in scenarios where the scheduling authority might be compro-
mised, ensuring that the airlines’ data remains secure. The paper, however, does not provide
explicit details on the workings of the system nor does it offer a comprehensive security and pri-
vacy analysis. The authors refer the reader to a different paper for details of the cryptographic
solution used [48].

The authors here claim to use some form of secret sharing technique but do not explicitly state
how the technique is applied, who has ownership of what information. They claim that the
system leaks ‘some’ [48] information but this is not defined. Overall, the results show that the
method is applicable and can be used for slot allocation in a privacy preserving way, however,
analysis of the code provided on their GitHub 1 provided in the paper does not reveal much
information other than the fact that they use secret sharing which supports secure m−party
computation tolerating a dishonest minority of up to t passively corrupt parties, where m ≥ 1
and 0 ≤ t < m/2.

1https://github.com/lschoe/mpyc

4
Privacy Preserving Railway

Scheduling

In this chapter, we present the design of our protocol for Privacy Preserving Railway Schedul-
ing. The goal of the protocol is to facilitate an ecosystem in which railway demand data can
be shared in a privacy-preserving way to create optimized Railway Schedules at International
Train Stations without leaking the demand to any participant of the protocol. We aim to solve
this problem for International Stations, since they, by definition, have multiple operators serv-
ing the passengers and are not owned by a single operator. It is important to have multiple
independent operators with possibly competing goals to enter the protocol, which is a require-
ment satisfied by international stations which are served by atleast two nationalized or private
rail operators e.g., AmsterdamCentraal. We do not need a trusted party, as long as none of the
participants is malicious. We will describe the stakeholders, assumptions, and sub-protocols
that compose our protocol.

4.1. Roles
The participants in the protocol are entities present in the real world. Since railway scheduling
is not a multiparty problem currently, the entities described in Section 2.1 are lacking. Exis-
tence of just one party apart from the operators means that the system of checks and balances
required in a multi-party approach is missing. Apart from the parties discussed (Operators and
ProRail), we introduce roles for the party ‘Railway Station’, this is done in order to distribute
duties and thereby strengthen the protocol against collusion.

Operators
Operators are stakeholders who want their trains to be scheduled on a track at a train station.
Our scheme assumes that less than half the operators are malicious, a class of adversaries
discussed in Section 2.2. In our design, a malicious operator can record every message they
receive. They can also deviate from the protocol run and incorrectly compute the values they
are responsible for. This scenario with < 50% malicious operators should not give information
to any operator to determine anyone else’s private ‘demands’ or manipulate the protocol to
select certain slots. In some specific cases discussed in Chapter 5, the protocol can leak in-
formation about the ordering of specific slot ‘demands’ between specific operators, however,
this information is not sufficient to infer anything else about another operator’s demands. The
operators are the owners of sensitive data ‘demand’. The ‘demand’ denotes the number of
passengers they predict would want to take a train from the current location to the destination

27

4.2. Design 28

the operator is trying to serve in the current protocol run. The operators should submit the cor-
rect demands as predicted by their estimation models. There is no way to verify if the demands
they submit are correct, since this information is sensitive and only available to the operators
themselves. There is a way to check the plaintext value of their demand by decrypting it using
the secret key, however, it is still not possible to reveal if this decrypted value is correct.

Network Operator
A Network Operator is responsible for scheduling a rail network, this includes arrivals, depar-
tures, and times spent at different segments of the rail network. This party is the owner of the
system and create the keys used during the protocol run. They are the sole owner of the secret
key and publish the public key and server keys (in case of FHE) to the relavent parties. This
task is undertaken by ProRail in the Netherlands. For the purposes of this protocol, we will
refer to this party as ProRail for the protocol description, since this gives an on-ground picture
for the rail system in the Netherlands. We assume the network operator to be semi-honest. In
essence, it does not make much sense for network operator to deviate from the protocol since
it is in their interest to have the best train schedule for their network.

Railway Station
The railway station which hosts the trains to be scheduled is responsible for serving the max-
imum passengers it can within any period of time. The railway stations in the Netherlands
are owned by the NS, however, the trainlines are not, so, it is ideal for a train station to have
maximum passengers visit irrespective of the operator. We aim to solve the problem of multi-
operator scheduling for international train stations in particular, since the arrival and departure
slots here are of higher value to companies and thus warrant expensive operations for accu-
rate scheduling. We assume the railway station to be semi-honest. The railway station can
also abort the protocol if they detect that any operator acted maliciously while creating sched-
ules. The railway station helps the network operator to find the best schedule by entering the
secure comparison protocol.

4.2. Design
The purpose of this protocol is to allow multiple parties to schedule their trains on a shared
infrastructure of the rail platform. The process followed is inspired by various scheduling pro-
tocol discussed in Section 3.1. The novelty of this solution comes from being able to make this
schedule without leaking values private to various parties. Various demand prediction models
are used by the participating parties to find an approximate value which is used for schedul-
ing. The protocol can be divided into the following independent steps. The initial setup phase
requires the operators to predict demands for the route they plan on scheduling. This is an
internal step since the operators have their own private methods to approximate this value.
The rest of the protocol is carried out in a multi-party setting. The description of all the steps in
the protocol are introduced in this section. We mention the TFHE specific improvement where
it differs from the PHE and other FHE based approaches that do not allow non-interactive
secure comparison designs.

1. Demand forecasting
2. Sharing encrypted demand
3. Creating schedules
4. Computing the best schedule
5. Publishing the schedule

4.2. Design 29

4.2.1. Demand Forecasting
Demand forecasting is important for the correct planning of the supply of the service according
to passenger demand. Expert system models are built up of rules for demand forecasting
based on the knowledge of a human expert. It is extremely difficult to transform the knowledge
of an expert to mathematical rules [25]. Nar et al. [57] in their paper hold a two stage plan to
tackle the problem of accurate demand forecasting.

In the first stage of the study, passenger demand forecasting is made with statistical tech-
niques such as regression analysis and simple average. In the second stage of the study,
the forecasting of passenger demand is performed with the artificial neural network and the
machine learning (ML) algorithms technique on the station basis. They finally compare the
results of these techniques by comparing the predicted values to actual passenger demands
and conducting other common statistical tests. The results obtained using machine learning
techniques were found to be more accurate. Specifically, one uses a Decision Tree. The study
forecasts the demand for 2020 using the 2019 travel data for the Yenikap M1-Kirazl M1 line.
ML Techniques are applied over station data from 2019, this includes the number of check-ins
and check-outs at the station. Information provided to the authors as open data.

It is noteworthy that this data is seen based on trains already plying on routes and doesn’t con-
sider any new schedules. Nederlandse Spoorwegen (NS) which is the biggest train operator
in the Netherlands published the way they forecast demand [77]. To estimate these values,
the authors and, by proxy, NS use the following:

• The Exogenous Scenario Module uses external input for demographic, economic and
car-related variables to create a year-by-year dataset on the municipal level.

• A Station Assignment Module uses the municipality data set to create a station-level
dataset of these same variables.

• An Elasticity Module uses growth factors for scenario and timetable developments to
forecast demand volumes at OD-level, separately for each of six travel purposes.

• A final module forecasts demand volumes for newly opened stations: the New Stations
Module

The plaintext data for these datasets is not made available, and is private information avail-
able only to regulated authorities. Another operator, Eurostar, which serves international train
stations such as Rotterdam, Amsterdam and Schiphol Airport in the Netherlands, uses the
Passenger Demand Forecasting Handbook (PDFH) [66] for scheduling purposes. PDFH is a
source of evidence and guidance in rail demand forecasting and is provided to members of the
Rail Delivery Group. This source is not publicly accessible. This handbook summarizes over
20 years of research on rail demand forecasting and provides guidance on various aspects
such as the effects of service quality, fares, and external factors on rail demand. This private
source is used by railway operators to make strategic decisions like:

• Investment appraisal
• Pricing decisions
• Timetabling and operating decisions
• Business planning and budgeting

The forecasted demand is used by operators to estimate the number of trains they need to
schedule on a line and find out the optimum arrival and departure times at train stations. The
number of passengers not only determines the number of trains that should serve a station

4.2. Design 30

but also the duration for which the train should be stationary at a platform for passengers to
deboard and alight the train. This is an important safety concern, since the passengers should
feel safe while waiting to board a train. Schedule creation allows only for the demands values
that satisfy the underlying security requirements.

4.2.2. Sharing Encrypted Demand
The private demands are encrypted but can still only be shared amongst different operators
for creation of schedules. The railway station should not have access to these demands
because this can lead to a leakage in demand orders. e.g., in a two slot setting, if the railway
station through the comparison protocol finds out that [a1 + b2] > [a1 + a2], then the railway
station knows that b2 > a2. This can be prevented by not revealing the encrypted demands
to the railway station since they don’t need these. They are only concerned with the formed
schedules that do not leak the underlying individual demands. The schedules need to be
formed by all operators to ensure an equal distribution of power. This is the first multi-party step
of the protocol. The operators need to enrol into the system by running a sub-protocol where
they can share their encrypted demands with each other. There is a one-time setup process
in which the operators come up with a shared symmetric key. The process is described in
Protocol 4.1. The symbols used in the protocol and used later for the analysis are explained in
Table 4.1. Note that the aggregated demands ζi that are broadcasted by the operators at the
end of the secure exchange sub-protocol, must be identical for all operators. It is possible that
they are not in the same order, but all the values must be the same. Since these schedules are
published, anyone can spot differences. The train station aborts the protocol if all schedules
do not match up. This implies that atleast one operator acted maliciously.

Table 4.1: Table of symbols and explanations

Symbol Explanation

Sl No. of slots
Pa No. of parties (Operators)
pk, sk Public & Secret key pair for the protocol run
Ti No. of trains for operator i
k Total No. of slots
seedi PRNG seed of operator i
Di Demand vector of operator i
disl Demand of operator i for slot sl
[disl] Paillier encryption of disl
ζi Schedule vector created by operator i

f maps the schedule to the underlying encrypted demand The operators have their private
demands that they encrypt to protect privacy. The operators enter a setup phase. During
this phase, the operators acquire a public key from ProRail. The operators also enter a key
generation protocol amongst themselves. This step is used to create a shared key for the oper-
ators to enter subsequent protocol run to schedule trains on their other routes. The operators
choose a computationally secure Pseudorandom Number Generator (PRNG) like the ‘rand’
crate in Rust. We use this crate in our implementation for all randomness. Every operator
independently comes up with a seed seedi for every operator i and share this seed with every
other operator. All the operators now form a shared symmetric key. In a two operator setting;
pakey = seeda⊕seedb. Only the operators have access to this shared symmetric key. When an

4.2. Design 31

Operator paa PRNG function Operator pab
(TA, seeda) (TB , seedb)

(pk) TA + TB ≥ k (pk)

DA = {da1 , ..., dak
},where di ∈ N DB = {db1 , ..., dbk},where di ∈ N

(Epk(da1), ..., Epk(dak
)) = (Epk(db1), ..., Epk(dbk)) =

[da1], [da2], ..., [dak
] [db1], [db2], ..., [dbk]

TA, seeda

TB , seedb

αkey ← PRNG(seeda)⊕ PRNG(seedb) αkey ← PRNG(seeda)⊕ PRNG(seedb)

Broadcast(DA ⊕ αkey) Broadcast(DB ⊕ αkey)

ζa ← {(x1 + . . .+ xk) | xi ∈ {dai
, dbi} ζb ← {(x1 + . . .+ xk) | xi ∈ {dai

, dbi},
xi ̸= xj for i ̸= j, xi ̸= xj for i ̸= j,

s.t.|{xi : xi ∈ DA}| ≤ Ta, s.t.|{xi : xi ∈ DA}| ≤ Ta,

|{xi : xi ∈ DA}| ≤ Tb} |{xi : xi ∈ DA}| ≤ Tb}
=⇒ |ζa| ≤ 2k =⇒ |ζb| ≤ 2k

f : {(x1, . . . , xk) | xi ∈ {ai, bi}, xi ̸= xj f : {(x1, . . . , xk) | xi ∈ {ai, bi}, xi ̸= xj

for i ̸= j} → ζa for i ̸= j} → ζb

Broadcast ζa Broadcast ζb

Protocol 4.1: Secure exchange of Demand in a two operator setting

operator XORs their demand with this key, the demand is encrypted and can only by accessed
by other operators. These double encrypted demands are broadcasted. The operators gain
access to the public key encrypted demand of every other operator. This combined with the
information on the number of trains each operator has, all possible schedules are created by
every operator. These schedules are broadcasted for the train station to verify their validity
and enter a secure comparison protocol with ProRail.

4.2.3. Creating Schedules
The schedule can be created using any of the methods discussed in Section 3.1, however,
for our usecase, some approaches are simply more robust than others. The train schedule
must follow some safety guidelines that can be neatly written as constraints. The constrains
we use for this inspired from [83]. Based on the literature review of all major algorithms that
are used to schedule railway timetables, discussed in Section 3.1, we can create a list of pros
and cons that come with every technique. Research in multi operator scheduling is limited,
however, majority agree on the existence of multiple operators with competing interests. The
methods that can take advantage of existence of multiple operators are limited. Options like
constraint optimization and linear programming are state of the art to creates schedules and
routes that can service a route optimally. However, these are centralized approaches; this
explains why they are able to deal with demand which is considered sensitive information by
the operators. Slot allocation is one of the well researched methods that model the existence
of multiple operators and scheduling as a problem for authorities separate from the operators.
This can be seen in the duty distribution put forth by [45].

Given the importance of the formed schedule, the algorithm should be able to explain it. The

4.2. Design 32

decisions made in terms of scheduling should be transparent and agreeable among all parties.
A system using Machine Learning might produce a schedule that is able to achieve the opti-
mum schedule, but, this might not be transparent enough. The Q-value function obfuscates
a lot of the decision making process, henceforth making it non-ideal for a process which has
parties with competing interests. Linear programming is an easy-to-explain approach and the
constraints used here are straightforward for any party experienced with scheduling. In a simi-
lar vein, constraint optimization is a useful approach and it has the added benefit of being easy
to solve if a new constraint is added. The issue with both algorithms comes with ownership.
Since the scheduling process needs to be multiparty, any participating party should be able to
run the protocol without revealing information they deem sensitive. This can be achieved by
formulating a privacy preserving version of the algorithms.

Another approach that can be used for multiple operator scheduling is Slot Allocation. Unlike
MILP and Constraint Optimization, Slot Allocation is an inherently multiparty approach. The
approach is explainable and the process of reaching the result of a bid is transparent for all the
parties to observe. Unlike other approaches, this method is scalable and easy to adapt to the
use-case. Moreover, unlike Linear programming and constraint optimization, slot bidding is
an active algorithm which requires the parties to be online for atleast some part of the process.
Privacy of sensitive data still need to be preserved since, the bids might reveal information that
the operators deem sensitive. We analyse the algorithms based on the core requirements of
our protocol presented in Table 4.3. The variables and symbols used in Table 4.3 are explained
in Table 4.2.

Table 4.2: Table of symbols and explanations

Symbol Explanation

N No. of trains
K No. of loops
St No. of states for 3 actions at every state; St > N
Pe No. of distinct Periods
Pa Np. of operators
Sl No. of slots
 The algorithm guarantees this specific property
G# The algorithm does not guarantee this specific property however, some of

the properties can be achieved
The algorithm does not guarantee this specific property

Table 4.3: Scheduling algorithms present in the literature and their analysis; * = Complexity calculated by us, not
stated in the papers.

Technique Explanability Mult. Party Optimality Partial Sol. Complexity
Greedy [9] # # G# O(NK)
Branch-Bound [18] G# G# o(NlogN)

RL [39] # # # O(3St)*
Constraint Opt [78] # -
MILP [83] G# # # O(NP)*

Schedule Merging [46] G# G# G# Exponential
Slot Allocation [6, 5, 45] G# # O(N.SlPa)*

4.2. Design 33

Based on the literature analysis, we divide the train scheduling problem into two steps. In
the first step, a partial schedule is created, this schedule is based on safety requirements of
railway lines; based on headways, platform infrastructure, and station capacity. Calculation for
these are independent of operators and can be globally calculated. We refer to the timetable
constraints introduced in Equation 3.4 to Equation 3.6. Based on these, we can calculate the
average throughput on a platform. This can then be used to estimate the number of a trains
that can serve a station in a period which can then be extended throughout the schedule. In
the Netherlands, the NS has the maximum throughput of 15 trains an hour, but this is based
on both directions. This leads to a throughput of ≈ 7 trains an hour.

We use a Slot Allocation algorithm to finally create the schedules. The operators have a
maximum number of trains they can schedule for a particular route which has varying demands
across time. Based on this maximum number of trainsets and demands for every slot, we
create all possible schedules. A schedule is denoted by the demand it serves, which is done
by adding the demands of all the slots. Since not every operator has an infinite supply of trains,
this is not a simple process of comparing demands served at a single time slot and scheduling
the train that serves the maximum demand. The operators use combinatorics to create all
possible schedules. The schedules consist of all slots filled by exactly one operator and every
operator can schedule a maximum of the number of train available to them.

This is an exponential step owing to the implementation of TFHE on Rust creating large sized
ciphertexts owing to slower runs when using dynamic programming for schedule creation. The
exponential way of creating the schedule is simply filling each slot in all possible way. Given
pa participants and sl trains for each participant, each slot can be filled in pa ways. In our
implementation, we are able to schedule four operators simultaneously. This is an upperlimit
we have kept for a 7 slot setting. This is in line with the maximum number of operators serving
any railway station in the Netherlands. Amsterdam Centraal serves connections with NS,
Eurostar, ICE, and SNCB.

4.2.4. Computing the best schedule
The best schedule is the one that serves the maximum demand. This step essentially finds
out the maximum demand from all available schedules. We present two protocols for this step.
We present an online protocol based on partial homomorphic encryption. We also present an
offline TFHE based fully homomorphic encryption protocol.

Partially Homomorphic Encryption
The train station has the aggregated demand of possible schedules. They enter a secure com-
parison protocol with ProRail to determine the maximum aggregated demand. The protocol
presented in Protocol 2.1 is iteratively used to find out the maximum value and its index in the
array. The train station keeps track of the current maximum demand and, when it reaches the
end of the array, knows the maximum aggregated demand.

TFHE
FHE (specifically TFHE) allows one to find the maximum value in an array of encrypted values
without the use of a secret key. Using non-deterministic encryption, the maximum value re-
vealed is re-encrypted. A secret key is required to reveal the plaintext value of the maximum.
Since aggregated demand is created by the operators, finding the maximum is not sufficient.
We need to know the index of this maximum value. There is no direct method to find the index
of any value in TFHE, so we create a function based on the provided operations which can
find out the encrypted index of the maximum value in an array.

This function is based on the homomorphic multiplication between plaintext and ciphertext.

4.3. Interactions and Assumptions 34

Comparing two encrypted values to return the maximum can be done using the ‘if_then_else’
comparison operation in TFHE. This operation outputs an encrypted ‘0’ if the first value is
greater than the second value and ‘1’ otherwise. By initializing the maximum index as 1,
we check if any index value is greater than the current best value. If this is the case, the
comparison operation output is an encrypted ‘1’. We homomorphically multiply this with the
index of the current comparison value. The homomorphic multiplication leads to the encrypted
index value. This value however is encrypted, which means the train station can find out the
best schedule but is unable to know the plaintext value without the help of the secret key.

This is an overhead required to run the TFHE implementation to find out the index without
requiring any communication with the owner of the secret key. Since the TFHE implementation
can be run without interaction with the owner of the secret key, this protocol allows for an offline
approach to finding the best schedule.

4.2.5. Publishing the Schedule
At the end of the comparison protocols, an index is revealed to the train station in plaintext. This
index corresponds to the schedule that serves the maximum number of passengers. The train
station broadcasts the encrypted value that corresponds to this index. The operators know the
underlying encrypted demands for the revealed schedule and the overall demand that will be
served is not revealed, since this is not necessary for the final schedule. All operators must
reveal the same final schedule at the end of this step. The train station reveals the final slot
winners as revealed by the operators on the basis of the plaintext index the train station reveals.

TFHE Specific Improvement
The ring-based TFHE deisng allows allows for non-interactive secure comparison. This allows
the train station to create the schedules instead of the operators. The train station gets access
to the encrypted index of the best schedule, this means that it cannot get any partial orderings
among schedules. Since the train station cannot get partial orderings, it can be allowed to
create the schedules. In an interactive approach, the schedule orderings can reveal ‘slot de-
mand’ ordering, this process was entrusted with the operators, however, this is not necessary
due to non-interactive secure comparison. This means that the train station can create all the
possible schedules on their own.

The train station is sent encrypted ‘demands’. It then uses the same technique as the operators
to create all possible schedules. Since the train station is assumed to be semi-honest, the
schedules formed are all accurate. This improvement reduces the number of communication
and computation steps thereby affecting the overall throughput.

4.3. Interactions and Assumptions
We assume that all communication will happen through authenticated secure channels [56].
We assume each entity to have the public key that corresponds to the secret key created
by the network operator (ProRail) for a run of the protocol. The operators do not interact
directly with the network operator. For the theoretical protocol run, we expect all operators to
submit their real forecasted demands. Overall it is possible for the train station to determine
if the forecasted demands are close to the real demand seen at the train station, this system
of checks and balances should prevent even malicious operators from submitting incorrect
forecasted demands. The railway station acts as an intermediary and assumes the role of a
second server for the partial homomorphic approach. For the fully homomorphic approach,
the train station does not act as a server since the protocol is created for offline use and thus
works with one server.

4.3. Interactions and Assumptions 35

Input Size
Based on publicly available information on train sets used in the Netherlands [60], we assume
that demand for a slot cannot exceed the maximum capacity of a train. Unless there is no
prior slot for a route, it would mean that demand outweighs supply. Since we are dealing with
periodic scheduling, this should not be the case. This would imply that every subsequent slot
will have a demand that exceeds the supply. This is unrealistic and means that the only train
to this one destination should be scheduled at all times.

Assuming that the number of passengers a train can serve is twice the seating capacity. The
longest train can be up to 700 m [79]. With every train car being 25 m on average and having
a maximum capacity of 200 in the Netherlands, one train can at maximum serve 5600 passen-
gers. Based on our assumptions, this is a safe upper bound for the maximum demand per slot.
Since the overall demand is made up of all the slots scheduled for up to 10 slots in an hour, we
can safely set the upper bound of encrypted demand to be 56000 which can be represented
by 16 bits. We thus optimize the protocol for up to 16 bits of data to perform homomorphic
operations. We also assume that the total number of trains available for scheduling is at least
equal to the number of time slots available. This assumption is based on the busy nature of
an international train station, thus not allowing for any empty slot.

5
Evaluation

We divide this chapter into two sections. In the first section, we conduct a theoretical analyses
of the protocol, we conduct a security and privacy analysis of the design. Later we evaluate
the protocols’ complexity and runtime. Overall the aim of this chapter is to provide concrete
proof of the security and privacy of the protocols and discuss their specific real life use-cases.

5.1. Theoretical Analysis
Cryptographic assumption
Hardness of Learning with Errors (LWE): The hardness assumption of the LWE assumes that
solving the LWE problem is computationally hard for a sufficiently large n and q, and an ap-
propriately chosen noise distribution, even if given a polynomial number of samples. This
assumption is supported by reductions from worst-case lattice problems, which are believed
to be hard to solve. This connection to worst-case hardness is what gives the LWE problem its
cryptographic strength and makes it a candidate for post-quantum cryptography. The robust-
ness of the LWE assumption is also significant because it implies security even if the secret is
taken from an arbitrary distribution with sufficient entropy, and even in the presence of hard-
to-invert auxiliary inputs. We use this assumption for the security of our fully homomorphic
encryption protocol in particular.

We assume the secure of our PRNG ‘rand’ crate in Rust. We assume that it operates over a
wide enough unknown n-bit key making its output computationally indistinguishable from uni-
formly random bits. Further, we assume the hardness of the factoring problem, the decisional
composite residuosity problem, discrete logarithm problem, and the Diffie-Hellman decisional
problem. We act in the random oracle model, assuming the existence of cryptographic hash
functions to act as random oracles.

We first provide sketches on how the properties mentioned in Section 1.2.2 are met. We
identify the most important privacy properties [65] from this list and design the protocol to
satisfy the following properties:

1. Confidentiality
2. Collusion-Resistance
3. Traceability
4. Non-Repudiation

36

5.1. Theoretical Analysis 37

We will now describe how the protocol achieves the mentioned properties.

5.1.1. Confidentiality
The demands of all operators should remain private throughout the execution of the proto-
col. The protocol should not reveal any ordering between the submitted demands. Operators
predict their expected demands and encrypt these using the public key created by ProRail. Ad-
ditionally, the operators form a shared symmetric key to transfer demands to other operators
for schedule creation. Demands are first encrypted with the public key and then re-encrypted
using the shared symmetric key. Under the assumption of the composite residuosity prob-
lem, operators cannot determine the plaintext values of the demands. The schedules created
by the operators are sent to the train station, which then enters a comparison protocol with
ProRail.

Similar to the operators, the train station does not possess any information about the secret key.
This means that the confidentiality properties that apply to the operators also apply to the train
station, thereby keeping the demands secret. For the secure comparison step, the definition
of the secure comparison protocol (see Section 2.5.3) ensures that the network operator does
not learn the values of the schedules or their ordering. This is done by hiding the difference
between a and b by using randomness only known to the train station. This randomness
prevents ProRail from learning anything besides whether a > b. The secure comparison
protocol ensures that ProRail does not learn the underlying values of a and b. If an operator
wins all but one ‘slot’ without having all their trains scheduled, they infer that the winning
operator’s demand exceeds their own; otherwise, they would have won the slot.

Although we assume a semi-honest train station during the protocol run, we argue that the
protocol preserves confidentiality even if the train station is malicious. Since the train station
does not have access to encrypted slot demands, it cannot decompose a schedule into indi-
vidual slot demands. A malicious train station may attempt to use secure comparisons to leak
information by presenting an arbitrary value a to learn more about the schedule. By varying a
until the comparison result changes, the train station can deduce the exact value of a schedule.
However, ProRail limits the number of comparisons to pasl, where pa is the number of opera-
tors and sl is the number of slots. This is the number required to deterministically determine
the best schedule. Hence, while the train station can learn comparison results and present
arbitrary values, this can only be done for a limited number of schedules.

Using domain knowledge, the train station might guess the approximate region of the correct
schedule based on previous results, reducing the number of required comparisons. Since the
underlying demands for these schedules are unknown to the train station, knowing the sum
of random demands does not leak information about the individual demands. For example,
knowing that the overall schedule demand is 3000 for 6 slots only reveals the average demand
of 500. It does not disclose the demand of any particular slot, nor does the train station know
whose demands are part of the schedule.

TFHE Specific Improvement
Since TFHE allows for non-interactive secure comparison, the train station can create the
schedules. Malicious operators no longer have the ability to create incorrect schedules and
since they are no longer sharing encrypted demands with each other, they do not get to see any
other operator’s demands thereby ensuring confidentiality. We assume a semi-honest train
station, which means that they always create valid schedules from the encrypted demands
received from the operators. The only interaction they have with the secret key owner is
to decrypt the index of the best schedule. The train station knows the exact owners of the

5.1. Theoretical Analysis 38

demands of this schedule, but not the underlying plaintext demands, ensuring confidentiality.
ProRail only gets access to the encrypted index and not the encrypted schedule. Since ProRail
never sees any demand, confidentiality of demands is maintained.

5.1.2. Collusion-Resistance
Collusion between operators involves sharing plaintext or ciphertext data privately. A collusion-
resistant protocol ensures that operators who share data cannot gain insights into the private
demands of non-colluding operators. Assuming fewer than 50% of operators are malicious as
described in Section 4.1, all colluding operators know the ‘slots’ demands submitted by other
colluders.

• A colluding operator can deduce the value of any schedule that does not involve non-
colluding operators. Since operators have to create and send seeds to other operators,
this is a potential step where operators can act maliciously. By strategically sending in-
correct seeds to non-colluding operators, colluders prevent valid schedules. The train
station, unaware of malicious operators, may mistakenly consider honest operators as
malicious. Stopping the protocol prevents leakage of honest operators’ demands to mali-
cious parties. Since the seeds are sent between the operators through an authenticated
secure channel, it is possible to determine that some operators sent different seeds to
different operators, thus proving their malicious behavior. This problem does not arise
in the TFHE based improvement since operators do not need to form any seeds and
directly send their demands to the train station.

• Another point of disruption occurs during the revelation of winners. When the train sta-
tion reveals the encrypted schedule corresponding to winning bids, operators must all
reveal the winners. Colluding operators can now reveal the same incorrect schedule.
Since the number of malicious operators is less than half, the train station can select the
slot results revealed by the majority of operators. This ensures that the protocol result
remains undisturbed, and no information about non-colluding operators’ demand leaks.
This problem does not arise in the TFHE based improvement since the train station being
semi-honest will reveal the correct winning schedule and the right slot winners.

5.1.3. Traceability
The scheme relies on traceability to identify the real identity of malicious operators and the op-
erators who win any slots during the protocol run, along with the slots they have won. Malicious
behavior can manifest in two ways:

Incorrect Seed Usage
An operator might use an incorrect seed to encrypt their created schedules. Alternatively,
they could use the correct seed but intentionally create incorrect schedules by adding ran-
dom encrypted demands instead of legitimate demands from other operators. To address
this, the train station enters the secure comparison protocol only if all schedules created by
the operators match. Detection via Authenticated Channels: Communication flows through
authenticated secure channels. By verifying whether an operator sends the same seed to
other operators, the train station can detect discrepancies. If an operator uses the correct
seed but produces incorrect schedules, their created schedule will not match those of other
operators. Since fewer than half the operators are malicious, a majority of operators will reveal
the same schedule. Similar to collusion-resistance, there is no seed used in the TFHE based
improvement, thereby making this behavior impossible.

5.2. Complexity Analysis 39

Revealing Incorrect Winners
After the secure comparison protocol reveals the selected schedule, operators may reveal
incorrect winners of slots. However, sincemore than half the operators are honest, the winners
for every slot can be chosen by majority consensus. Anyone revealing a different winner than
the majority is acting maliciously. Similar to collusion resistance, the winners are revealed by
the train station, making this behaviour impossible.

5.1.4. Non-Repudiation
Operators should not be able to deny participation after submitting bids. Here’s how non-
repudiation is ensured:

• Operators join the protocol run by encrypting their demands using the public key pro-
vided by ProRail. They then share a seed with other operators along with the number
of trains they have. At this stage, a symmetric key is formed using the seeds of all the
operators. Operators broadcast their encrypted demand by re-encrypting it using the
formed symmetric key.

• The authenticated secure communication channel used for all communication Section 4.3
prevents denial of participation. Once a message is sent through such a channel, it can
be assumed that it was indeed sent by the operator. The authentication process ensures
the identities of the sender and receiver. Since all operators have used this channel to
share the number of trains, their seeds, and double-encrypted demands, no operator
can deny being part of the protocol run.

5.2. Complexity Analysis
We provide a computational and communicational complexity analysis of the protocols intro-
duced. We also provide a throughput analysis wherein we also compare the two protocols
to the TFHE specific improvement utilizing design specific primitives that preserve privacy of
demands even when the train station has direct access to encrypted demand.

To define the complexity of our protocol, we will define the parameters over which the com-
plexity depends. First, the computation complexity is discussed; expressed in the number of
operators participating in the protocol, pa and the number of slots available for scheduling, sl.

Table 5.1: The communication and computation complexity analysis of the two approaches.
pa → No. of operators

sl → No. of slots.

Complexity→ Computation Communication
Protocol Step ↓ PHE FHE PHE FHE
Demand Forecasting Internal 0
Encrypting Demand O(sl) 0
Sharing Encrypted Demand O(sl) O(pa)
Creating Schedules O(pasl) O(1)
Computing best schedules O(pasl) O(pasl) 0
Publishing the schedule O(1) O(1)

Demand forecasting
The complexity of this step is operator dependent. The process can be as complex as the
operator desires.

5.2. Complexity Analysis 40

Encrypting demand
For encrypting demands, all operators obtain the same public key that corresponds to the
secret key (client key in TFHE) of the network operator. The encryption step converts plaintext
into ciphertext. This is a constant time step that goes over every plaintext and encrypts it.
This step is performed by all operators. Since the number of forecast demand values for each
operator is sl, the complexity of this step is O(sl).

PHE specific computation
Even though the computational complexity under the two encryption techniques remains the
same, the PHE protocol primitives dissociate the public key from the ciphertext. This entails
an extra association step which reassociates the ciphertext with the public key. This is an
important step, since disassociated ciphertext cannot be used in homomorphic encryption
operations necessitating the reassociation step.

Sharing encrypted demand
The encrypted demand is operator specific. In order to make schedules, an operator requires
the demand of every other operator. All operators enter a symmetric key establishing protocol.
For this, every operator independently comes up with a seed. A combination of every seed is
used to create a symmetric key. This operation uses a PRNG function. An operator shares
their seed with every other operator. Upon receiving all the seeds, the symmetric key is es-
tablished. This is used to encrypt the already encrypted slot demands. This double encrypted
value is broadcasted and only the operators can recover the encrypted demands using the
symmetric shared key. The computational complexity for encryption is O(sl).

Creating schedules
The schedules are created by making all possible combinations of demands for each slot sub-
mitted by all the operators. The operators make all the schedules by combining the demands
of every operator. Since the encrypted demand was encrypted by another symmetric key, only
the operators have access to encrypted demand and can make the schedule.

It is the responsibility of the train station to ensure that all created schedules are identical. The
creation of schedules itself does not require any communication; however, the schedule must
be shared with the train station. This is a constant operation since the schedules are parallely
broadcasted by all operators. In terms of computation, every slot can have as many as the
number of ‘operators’ options, and these can be individually scheduled across ‘slots’ number
of slots, leading to the overall complexity of O(pasl). The total number of schedules created is
thus an upper bound of this value. The realistic case will not have as many schedules, as the
number of trains available to operators will decrease the number of possible schedules. The
final created schedules can only have as many slots allocated to an operator as the number
of trains this operator has.

Computing best schedules
Algorithmically, both protocols compare the schedules pairwise while keeping a track of the
best schedule. This makes the computational complexity equal to the size of the array of
schedules. This value is in the upper bound by (pasl). The difference in the communication
complexities is an important property in fully homomorphic encryption. FHE allows for the train
station to independently calculate the best schedule from an array of schedules. This does
not reveal any information about the chosen schedule, any other schedule, or any ordering.
The DGK-based secure comparison protocol, on the other hand, requires six communication
steps to compare two ciphertexts. The upper bound on the number of communication steps
is thus 6 · (pasl).

5.3. Experimental Analysis 41

Publishing the schedule
After computing the best schedule, the train station knows the index of the best schedule but
not the underlying encrypted demands. These encrypted demands dictate the winner of a slot.
The train station contacts the operators who can reveal the owner of the encrypted demands,
in this way the owner of every slot of revealed by the operators. Since all the operators created
the same schedules, they all reveal the underling slot winners. All of these should be the same.
If not all the revealed slot owners match, the train station can call off the protocol on account
of an operator behaving maliciously. This is a constant communication step, the train station
enquires the slot owners pertaining to a specific slot and the operators respond with the list of
slot owners.

TFHE specific improvement
In the TFHE specific improvement, the train station does not need to contact the operators to
reveal the best schedule or to reveal the slot winners. The sharing encrypted demand step is
also simplified. The encrpyted demand is now shared directly with the train station, this means
that a PRNG does not need to be decided and no seeds need to be shared amongst operators.
Instead of the double encrypted demand being broadcasted, it needs to be sent over a secure
channel to the train station. This is so ProRail cannot access these values since they can now
decrypt them using their secret key. Since the train station created the schedules based on
submitted encrypted demands, it can reveal the winning schedule and the slot winners without
any communication.

5.3. Experimental Analysis
We implemented our protocols in Rust and in this section we analyse their throughputs and
runtimes.

5.3.1. Throughput
The two protocols introduced in this thesis are largely identical. The only difference between
these protocols is the comparison protocol. PHE protocol relies on communication to securely
compute the best schedule. This is not the case with the FHE protocol, wherein the train
station can compute the best schedule without consulting the network operator. We analyse
the throughputs of the two protocols in a 3 operator 7 slot setting, with every operator having
7 trains each. We compare this to the TFHE specific improvement under the same setting.
We note that a lower throughput is preferable, since the protocols achieve the same solutions
with different throughputs. A lower throughput means that the protocol is able to achieve this
while utilizing less bandwidth on the netwoek, making other tasks quicker. The sizes of some
common primitives like keys and ciphertexts differ amongst the two approaches. Sizes of these
primitives are given in Table 5.2. We also use primitives defined in the secure comparison
protocol presented in Protocol 2.1. The size of these are [d], [d′], [d̂], [zl], [δ

′] equal to 140 Bytes
and [[t]], [[ei]] equal to 4104 Bytes. These primitives are used for the throughput analysis
presented in Table 5.3.

ProRail creates the public key corresponding to their secret key (client key in TFHE). This pub-
lic key is compressed and then sent to the operators and the train station (server key in TFHE).
The operators share their seed for the PRNG and the number of trains with other operators.
We take a 256 bits seed to ensure security. The operators encrypt their values with the public
key and then again with the symmetric key. The process of seed sharing costs bandwidth
equal to the size of the seed. This is represented in the sharing of encrypted demand step.
In TFHE, the compressed ciphertext is used for quick transfer. These ciphertexts are then
broadcast for use by other operators.

5.3. Experimental Analysis 42

Table 5.2: Size of primitives used in Bytes

Primitive Size (in Bytes)
Public Key PHE 216
Public Key FHE 2151679656
Compact & Compressed Public Key (FHE) 16568
Ciphertext PHE 150
Ciphertext FHE 131692
Compressed Ciphertext (FHE) 748
Seed 32

Table 5.3: The throughput analysis of the two approaches and the TFHE specific improvement. In this analysis,
we consider three operators with seven trains each, scheduling for seven slots

Throughput (in Bytes) PHE FHE TFHE
Public Key Exchange 216 16568 16568
Sharing Encrypted Demand 1082 5240 5240
Sharing Schedules 2296350 288010404 -
Computing best schedules 19473048 131692 131692
Finding the slot winners 150 131692 131692
Publishing the schedule 2 2 2

Total 21770848 288295598 285194

The operators create all possible schedules after acquiring every operator’s encrypted de-
mands. This is a homomorphic addition step. In TFHE, the operators have to decompress
the ciphertext, since compressed ciphertexts do not allow for homomorphic operations. The
operators share their created schedules with the train station. This is where the FHE protocol
utilizes a lot of storage. These ciphertexts cannot be compressed since compression is only
possible during the encryption stage making this a one time expensive step.

The train station now enters the comparison protocol with ProRail to find which schedule serves
the maximum demand. In the PHE protocol, the train station computes and sends [d], [[ei]], [zl]
to ProRail, while ProRail computes and sends [d′], [d̂], [[t]], [δ′] to the train station per compari-
son. In the FHE design, the train station can compute the best schedule over encrypted data.
The train station sends a ciphertext to ProRail. This ciphertext represents the encrypted index
of the best schedule. ProRail decrypts this to sends the plaintext index of the best schedule.

The train station sends the corresponding ciphertext to the operators. Based on this ciphertext,
the operators reveal the underlying encrypted demands and the corresponding slot winners.
These are then sent to the train station, which finally publishes the schedule. The overall
throughput of this example run is ≈ 22MB for PHE and ≈ 285MB for FHE.

TFHE specific improvement
Since the TFHE design allows for the train station to create the schedules, a system con-
strained by throughput bandwidth can utilize the TFHE specific design. This design guaran-
tees the same privacy-preserving properties. The major reduction in throughput is seen at
the step of sharing schedules. This protocol does not require transfer of ciphertexts after ho-
momorphic operations. Transfers are limited to compressed ciphertexts and keys, ensuring
optimal use of limited infrastructure. This optimization allows for a much fewer bytes being
transferred on the network, leading to ≈ 285KB

5.3. Experimental Analysis 43

5.3.2. Runtime
Understanding the computation complexity, we can already begin seeing where the protocols
can be improved. The total runtime of both approaches for the largest problem size of three
operators upto ten slots is presented in Table 5.4. It is important to note that the runtime of
the TFHE specific improvement is identical to the FHE based approach. This is because we
assume 0 latency, thereby ensuring that communication steps do not change runtimes which
essentially is the improvement we get over the FHE design. The PHE protocol is a lot quicker

Table 5.4: Total running time in a three operator setting. TLE = Time Limit Exceeded

No. of slots PHE FHE
Time in Seconds

2 1.0 19.1
3 4.6 46.0
4 15.3 134.0
5 43.8 426.2
6 124.1 1365.5
7 379.4 4414.2
8 1196.7 14384.6
9 3651.4 46428.7
10 11162.6 TLE

than the FHE counterpart, making it the de-facto default protocol. PHE achieves the best
schedule (serving the maximum demand) in ≈ 3hours while the FHE approach exceeds the
24 hour time limit we set.

This result, gives an incomplete picture, to get a clearer idea of where improvements can be
made, we divide the protocol into three broad steps. Note that these are not the same steps as
the complexity analysis. This is because the steps in the complexity analysis can be combined
since we do not consider latency. Communication steps do not cost us runtime.

1. Encryption
2. Creation of Schedules
3. Schedule Maximization (Comparison Protocol)

We show the encryption times in a two operator setting since this stays the same irrespective
of the number of operators. The creation of schedules and schedule maximization times are
given in a four operator setting to get an idea of the real world scenario. The time for encryption
with the two protocols is given in Table 5.5. The time taken to create the schedules is given in
Table 5.6. The time taken to find the best schedule is given in Table 5.7.

According to Table 5.6 and Table 5.7, it is clear that the comparison step takes the longest time.
In the implementation of PHE, this is an area for improvement. The FHE approach goes over
every schedule exactly once and has no communication overhead, which means improving
upon this step within the bounds of the cryptographic assumptions (of LWE Section 5.1) is
not feasible. As the problem size grows larger, the time to encryption becomes negligible
(Table 5.5), this is owing to the increase in the number of encryption steps being linear in
the number of slots while the number of homomorphic addition steps required for creating
schedules grow exponentially.

In Figure 5.1, we can see that the creation of combinations is an exponential step for FHE.
This can be improved using dynamic programming, however, due to the size of the keys that

5.4. Conclusion 44

Table 5.5: Encryption time in a two operator setting

No. of slots PHE FHE
Time in Seconds

2 0 4.1
3 0 6.0
4 0 8.3
5 0 11.2
6 0 13.5
7 0 16.3
8 0 18.6
9 0 21.4
10 0 24.1

Table 5.6: Time taken to create the schedules in a four operator setting

No. of slots PHE FHE
Time in Seconds

2 0 2.9
3 0 21.4
4 0 131.5
5 0.002 697.8
6 0.009 3349.7
7 0.048 13801.1

reside with encrypted values, this step does not work as expected. The overhead of sharing
these values in memory defeats the speedups we get by doing fewer operations. The experi-
ments showed that the dynamic programming way to make combinations was actually slower
than using the naive approach here. The PHE protocol takes negligible time to create these
combinations.

Finding the best schedule is an exponential step as visualized in Figure 5.2 and Figure 5.3. The
time taken by both the protocols increases exponentially in the number of slots and operators.
The increase in the number of operators changes the base. The increase in the number of
slots changes the power. Either of these lead to an exponential increase in runtime. This is in
line with our complexity analysis shown in Table 5.1, thereby validating our complexity claims
and verifying our runtimes.

According to Figure 5.4, there is a factor of 10 between the speeds of the PHE and FHE
protocols. This makes the PHE protocol a better approach for finding the schedules in the
quickest time possible.

5.4. Conclusion
The experimental results highlight the differences between the two homomorphic encryption
approaches. With both approaches providing the same privacy properties, the differences are
practical. In terms of complexity, both the protocols have similar computational complexities
which should ideally lead to similar runtimes since we do not consider latency in our runs. This
however is not the case since the design of the homomorphic encryption techniques is funda-
mentally different. Similar steps like encryption and homomorphic addition take significantly
different times. e.g., encryption with a PHE public key is instant, while using FHE public key,

5.4. Conclusion 45

Figure 5.1: Time (in seconds) taken by FHE to create schedules

Figure 5.2: Time (in seconds) taken by FHE to find the best schedule

Figure 5.3: Time (in seconds) taken by PHE to find the best schedule

5.4. Conclusion 46

Table 5.7: Time taken to find the best schedule in a four operator setting

No. of slots PHE FHE
Time in Seconds

2 0.4 14.4
3 1.9 61.3
4 6.8 252.1
5 26.9 1016.9
6 109.0 4108.3
7 447.7 15899.3

Figure 5.4: Time to find the best schedule PHE (Secure Comparison) vs FHE

the step takes 4 seconds owing to the nature of the public key. Adding two encrypted 16
bit values takes 0.0019ms in the PHE design, while in the FHE design, the same step takes
189ms. Homomorphic addition is a frequent process in our protocol design which can be seen
when analysing the two protocols wherein PHE is 10x faster than FHE while having the same
algorithmic complexity at every step.

While comparing the communication complexities, we can see that the FHE protocol requires
a linear number of communication steps equal to the number of operators to share seeds
and schedules with while the PHE protocol requires an exponential number of steps with the
number of slots also having an impact on the total number of communication steps. Upon using
the TFHE specific approach, the number of communication steps can be made constant for
the FHE approach since the demands only need to be shared with the train station and this is
a one step process. Overall, if communication is a bottleneck for creating schedules, which
can be the case when dealing with a high number of operators, FHE is a better approach since
the limited number of communication steps ensures fewer fault points in the protocol run.

The throughput analysis is an extension to the communication complexities. Even though the
size of primitives used by FHE is exponentially larger, the constant number of communication
steps means that the amount of data being transferred is less. Especially with the TFHE
specific improvement, we see the FHE approach taking significantly less bandwidth on the
network.

Overall, both approaches have their own advantages, PHE always produces quicker results

5.4. Conclusion 47

even though it might put more strain on the infrastructure. If time is the only constraint, ac-
cording to our experiments; for upto four operators scheduling upto seven slots, PHE is the
way to go. However, as seen from overall times, it might be infeasible for ProRail and the train
station to be in constant communication for upto 3 hours to jointly compute the best schedule
as seen in Table 5.4. Even though the FHE protocol will take around 24 hours to solve the
same schedules, the network operator is only involved for a few seconds. This solution can
useful, especially when a network operator is dealing with a large network of a lot of indepen-
dent train stations. Bandwidth can thus be bottleneck for large network utilizing PHE protocols
simultaneously on multiple sections.

6
Discussion and Future Work

Privacy as a topic of discussion has gained recent popularity. This discussion, however has
not lead to any real world improvements in the way we create new technologies. Privacy
is still seen as an add-on feature, not a part of the core design. This is because privacy is
considered to be difficult to do right and it is often believed that privacy makes systems slow
[2]. With a justified yet surprising increase towards sustainability goals in travel, especially
due to the improvements in air quality seen during early COVID times [70], the development
in train transportation has been rampant in Europe [49].

This thesis proposes a privacy-preserving train scheduling protocol that tackles a novel prob-
lem of cooperatively scheduling multiple operator trains at train stations without leaking sensi-
tive information such as forecast demand. We present two solutions which can be applied to
every instance of the problem but have their salient features and shortcomings. In this chapter,
we reevaluate our research questions and critically look at the presented solutions. This leads
us to realize where the protocol can be further improved as future research directions.

6.1. Discussion
The primary research question this thesis tackles is:

How to design a privacy-preserving schedule for a train timetable at International
Stations?

We tackle the problem of multi-operator train scheduling. We focus on international stations.
We define international stations as train stations where operators are not related and are re-
luctant to share sensitive information with other parties. We design a train scheduling scheme
that preserves the confidentiality of the forecasted demand using homomorphic encryption.
We introduced the role of the train station in this process, as they are a stakeholder of the
formed schedule profiting from the passengers using the services.

We divided the train scheduling problem into demand estimation and multiparty slot allocation
via auctions that allocate slots at the train station to operators by maximizing the overall de-
mand served through all slots. We present a novel multi-party computation solution to train
scheduling. For this, we redefine the roles and interactions between the various stakeholders.

We utilize the properties of homomorphic encryption to maximize demands. We show that
our protocol works in-case of < 50% malicious operators and semi-honest train stations and
network operators. We experimented with upto four operators and seven slots. This was done

48

6.2. Limitations 49

in line with the Dutch raillines, where the maximum number of operators serving a train station
is four and the maximum number of trains that serve one track in a direction per hour is seven.
Based on the results, we found the runtimes to be acceptable where the largest problem can
be solved within 3 hours.

How to achieve similar privacy guarantees utilizing a constant number of
communication steps between the participating parties?

The PHE based solution requires the train station and the network operator (ProRail) to be in
constant communication. Real-world constraints such as latency and network errors can slow
down or even disrupt the protocol. The PHE version overall takes less bandwidth compared
to the identical FHE solution. Our security analysis shows that the PHE and FHE designs offer
the same privacy guarantees. Realizing the potential of FHE, specifically the TFHE implemen-
tation, we presented an alternative FHE design to reduce the number of communication steps
and to reduce the role of the prospective malicious parties. This solution requires exponen-
tially less bandwidth which can be attributed to the reduction in communication steps. Since
the core comparison protocol remains the same, the timetable generated is the same as the
other designs.

6.2. Limitations
We note that this work has a few limitations. One major limitation is the inability to check
whether the operators submitted valid demands. If the actual forecasted demand is x but an
operator submits a bid for say 2 ·x, they might win the slot they would not have otherwise won.
The only way to inspect the winning slots and the demands they actually serve is to find pas-
senger data after the train schedule is created. This limitation requires procedure to overcome.
The operators are required to agree that the train station can conduct an investigation if they
find that the actual passengers traffic is ‘sufficiently’ below the predicted demands. The train
station then has the right to acquire the demands from the operators. Since operators have all
the demands andmajority of them are honest, getting encrypted demand even without the help
of malicious operators is possible. Then the train station has the right to decrypt these values
with the help of ProRail to determined who submitted incorrect demands. We believe that this
system of checks and balances will ensure operators submit correctly formed demands. The
advantages the system brings in form of induced demand [10] should encourage operators to
submit demands even if they believe they will not win a slot.

Another limitation is the inability to schedule multiple routes for the same operator. Even
though it is possible to schedule multiple routes for an operator, this will entail an operator
having multiple demands for the same slot. Since an operator has a specific number of train
sets available for multiple routes. If a train is scheduled on Route A, the number of trains
available for Route B is reduced by 1. The number of trains submitted is only used to create
possible schedules and it is not until the end of the protocol run that it is revealed how many
trains of an operator are scheduled on a route. This means that the operator cannot know the
number of trains they have available for Route B, until the end of the protocol run for Route
A. This significantly increases the complexity of the schedule creation algorithm. This is a
runtime based limitation and a possible solution would be to separate routes based on tracks
at a train station.

Since we assume that the number of colluding operators is less than < 50%, we run into a
problem if the number of operators is 2. It becomes hard to know which operator is malicious in
case the created schedules do not match. The system of checks and balances that allows the
train station to conduct investigations in case of demand discrepancies can be applied here.

6.3. Future Work 50

In case of discrepancies, the train station will just break the protocol run, but finding out who
the corrupt operator is can be tricky. This problem, however disappears in our TFHE specific
improvement. The operators now just submit their demands with the train station creating the
schedule, thereby the schedule will be optimum.

We safeguard the demands of all the operators using the public key corresponding to the
secret key created by the network operator. The protocol design entails potentially malicious
operators creating all possible schedules utilizing every operator’s encrypted demands. If
any of the operators collude with the network operator, they can leak all the private ‘demand’
values. Even though this is remedied in the TFHE specific implementation, the problem still
persists since now the train station has all the demands and they can still collude with the
network operator. The assumption that the network operator is incorruptible is important for
the security of the protocol. At the core of the problem is the assumption that the network
operator is semi-honest. One way to tackle this would be to use a secret sharing (introduced
in Section 2.4) technique where one corrupt party cannot not leak information. We do not use
this approach to keep the system similar to the real world train scheduling design. We argue
that since the network operator is a government body, assuming them to be semi-honest is
sufficient.

The train station cannot be malicious in our schemes. The train station being malicious in the
PHE scheme would entail the train station revealing the wrong index as the optimum schedule.

6.3. Future Work
During the duration of this research, a new version of the TFHE library, v0.6, has been released,
which includes new features which can speed up the computation of our protocol. As an
experiment, this new version was run for a smaller problem size. The encryption times using
compact public keys improve significantly here, from 4 seconds to 0.5 seconds. Although the
authors claim faster operations across the board, further research is necessary to determine
the impact on our work.

Line Planning
We introduce the concept of train scheduling in Chapter 1 and look at the research scope in the
field based on Figure 1.1. We focus on the train timetabling problem here. The next obvious
step for applying multi-party privacy preserving techniques to scheduling would be to tackle
the problem of line planning. This is a harder problem since it deals with more constraints
which makes this a more expensive step. In Section 3.1 we discuss the use of MILP for train
scheduling. Here we briefly mention the line planning approach used by the authors for a
holistic timetable which goes beyond allotting slots at the train station. Work on this problem
would make our solution more complete in producing end to end timetables for trains.

Parallel Implementation
The current implementation requires the least number of comparisons to determine the max-
imum schedule. We utilize an array structure to implement this. Parallelization can be imple-
mented by maintaining multiple (say 4) maximum index terms. This can be done by dividing
the array into sub-arrays and finding out the maximum index in each. The overall maximum
can be found by comparing the results of the sub-arrays. Since knowing some orderings
between overall schedules does not leak any information about the underlying demands, a
parallel approach should be viable, however, more research needs to go into understanding
at what point partial orderings can leak private information about the specific demands. The
FHE specific implementation is based on the train station creating the schedules. However,

6.4. Concluding Remarks 51

there is no communication involved, which means the train station can use as many threads
as it has to complete the comparison process quicker. The FHE implementation overall has
more parallelization potential for computing the best schedule since the process is centralized.

6.4. Concluding Remarks
In conclusion, our work shows that it is possible for multiple operators to schedule their trains
at an international station without the need of a trusted third party. This can be done in a pri-
vacy preserving way, wherein their forecasted demands which is sensitive information remains
confidential. Our work shows that confidentiality can be maintained even if some (< 50%) op-
erators are malicious and colluding. We utilize homomorphic encryption to create candidate
schedules. We implement our scheduling scheme in Rust and evaluate the performance of
the individual steps. Our results show that the scheme is viable in runtime on real life prob-
lem sizes. We proposed two protocol based on different levels of homomorphism to create
schedules. These protocols both run in acceptable duration. Our TFHE specific improvement
is able to make the entire process bandwidth friendly by utilizing space in Kilobytes, making
the entire system light. Since we create a design using Fully Homomorphic Encryption, it is
possible to make the schedule making process more complicated if required for a particular
usecase e.g., Amsterdam Centraal might value NS trains more than Eurostar trains. Unfortu-
nately, with the current speeds seen with FHE, a larger problem size seems infeasible, which
means that larger problems still require communication, and these are the problems which
have more communication steps.

Bibliography

[1] Wirawan Agahari. “Multi-Party Computation as a Privacy-Enhancing Technology: Im-
plications for Data Sharing by Businesses and Consumers”. English. Dissertation (TU
Delft). Delft University of Technology, 2023. isbn: 978-94-6384-480-2. doi: 10.4233/
uuid:83e0a9bc-f429-479a-ac2b-8a42e6da63f1.

[2] Anonymous. “Privacy is Hard and Seven Other Myths: Achieving Privacy Through Care-
ful Design”. In: Blog (2021). url: https://blog.xot.nl/2021/10/12/privacy-is-
hard- and- seven- other- myths- achieving- privacy- through- careful- design/
index.html.

[3] Yonatan Aumann and Yehuda Lindell. “Security Against Covert Adversaries: Efficient
Protocols for Realistic Adversaries”. In: Theory of Cryptography. Ed. by Salil P. Vad-
han. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 137–156. isbn: 978-3-
540-70936-7.

[4] Grzegorz Bocewicz et al. “A cyclic scheduling approach to maintaining production flow
robustness”. In:Advances inMechanical Engineering 10.1 (2018), p. 1687814017746245.
doi: 10.1177/1687814017746245. eprint: https://doi.org/10.1177/16878140177462
45. url: https://doi.org/10.1177/1687814017746245.

[5] Ralf Borndörfer, Thomas Schlechte, and Elmar Swarat. “Railway Track Allocation - Sim-
ulation, Aggregation, and Optimization”. In: Proceedings of the 1st International Work-
shop on High-Speed and Intercity Railways. Ed. by Yi-Qing Ni and Xiao-Wei Ye. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 53–69. isbn: 978-3-642-27963-8.

[6] Ralf Borndörfer et al. “An Auctioning Approach to Railway Slot Allocation”. MA thesis.
Delft University of Technology, Oct. 2005. url: https://www.zib.de/members/borndoe
rfer.

[7] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) fully homomor-
phic encryption without bootstrapping”. In: ACM Transactions on Computation Theory
(TOCT) 6.3 (2014), pp. 1–36.

[8] Michael R. Bussieck, Thomas Winter, and Uwe T. Zimmermann. “Discrete optimization
in public rail transport”. In: Math. Program. 79 (1997), pp. 415–444. doi: 10.1007/BF02
614327. url: https://doi.org/10.1007/BF02614327.

[9] Xiaoqiang Cai and C.J. Goh. “A fast heuristic for the train scheduling problem”. In: Com-
puters Operations Research 21.5 (1994), pp. 499–510. issn: 0305-0548. doi: https:
//doi.org/10.1016/0305-0548(94)90099-X. url: https://www.sciencedirect.com/
science/article/pii/030505489490099X.

[10] Ennio Cascetta and Pierluigi Coppola. “High Speed Rail (HSR) Induced Demand Mod-
els”. In: Procedia - Social and Behavioral Sciences 111 (2014). Transportation: Can we
do more with less resources? – 16th Meeting of the Euro Working Group on Transporta-
tion – Porto 2013, pp. 147–156. issn: 1877-0428. doi: https://doi.org/10.1016/j.
sbspro.2014.01.047. url: https://www.sciencedirect.com/science/article/pii/
S1877042814000482.

[11] David Chaum, Claude Crépeau, and Ivan Damgard. “Multiparty unconditionally secure
protocols”. In: Proceedings of the twentieth annual ACM symposium on Theory of com-
puting - STOC ’88 (1988). doi: 10.1145/62212.62214.

52

https://doi.org/10.4233/uuid:83e0a9bc-f429-479a-ac2b-8a42e6da63f1
https://doi.org/10.4233/uuid:83e0a9bc-f429-479a-ac2b-8a42e6da63f1
https://blog.xot.nl/2021/10/12/privacy-is-hard-and-seven-other-myths-achieving-privacy-through-careful-design/index.html
https://blog.xot.nl/2021/10/12/privacy-is-hard-and-seven-other-myths-achieving-privacy-through-careful-design/index.html
https://blog.xot.nl/2021/10/12/privacy-is-hard-and-seven-other-myths-achieving-privacy-through-careful-design/index.html
https://doi.org/10.1177/1687814017746245
https://doi.org/10.1177/1687814017746245
https://doi.org/10.1177/1687814017746245
https://doi.org/10.1177/1687814017746245
https://www.zib.de/members/borndoerfer
https://www.zib.de/members/borndoerfer
https://doi.org/10.1007/BF02614327
https://doi.org/10.1007/BF02614327
https://doi.org/10.1007/BF02614327
https://doi.org/https://doi.org/10.1016/0305-0548(94)90099-X
https://doi.org/https://doi.org/10.1016/0305-0548(94)90099-X
https://www.sciencedirect.com/science/article/pii/030505489490099X
https://www.sciencedirect.com/science/article/pii/030505489490099X
https://doi.org/https://doi.org/10.1016/j.sbspro.2014.01.047
https://doi.org/https://doi.org/10.1016/j.sbspro.2014.01.047
https://www.sciencedirect.com/science/article/pii/S1877042814000482
https://www.sciencedirect.com/science/article/pii/S1877042814000482
https://doi.org/10.1145/62212.62214

Bibliography 53

[12] Ilaria Chillotti, Marc Joye, and Pascal Paillier. “Programmable Bootstrapping Enables
Efficient Homomorphic Inference of Deep Neural Networks”. In: Cyber Security Cryptog-
raphy and Machine Learning: 5th International Symposium, CSCML 2021, Be’er Sheva,
Israel, July 8–9, 2021, Proceedings. Vol. 5. Springer. 2021, pp. 1–19.

[13] Ilaria Chillotti et al. “TFHE: Fast Fully Homomorphic Encryption Over the Torus”. In: Jour-
nal of Cryptology 33 (2019), pp. 34–91. url: https : / / api . semanticscholar . org /
CorpusID:44099955.

[14] Joseph Choi and Kevin Butler. “Secure Multiparty Computation and Trusted Hardware:
Examining Adoption Challenges and Opportunities”. In: Security and Communication
Networks 2019 (Apr. 2019), pp. 1–28. doi: 10.1155/2019/1368905.

[15] Jens Clausen. Branch and Bound Algorithms - Principles and Examples. Springer, 1999.
[16] Georgiana Crihan, Marian Crăciun, and Lumini�a Dumitriu. “A Comparative Assess-

ment of Homomorphic Encryption Algorithms Applied to Biometric Information”. In: In-
ventions 8.4 (2023). issn: 2411-5134. doi: 10.3390/inventions8040102. url: https:
//www.mdpi.com/2411-5134/8/4/102.

[17] Sharon Curtis. “The classification of greedy algorithms”. In: Science of Computer Pro-
gramming 49.1 (2003), pp. 125–157. issn: 0167-6423. doi: https://doi.org/10.1016/
j.scico.2003.09.001. url: https://www.sciencedirect.com/science/article/pii/
S0167642303000340.

[18] Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo. “A branch and bound algorithm
for scheduling trains in a railway network”. en. In: European Journal of Operational Re-
search 183.2 (Dec. 2007), pp. 643–657. issn: 03772217. doi: 10.1016/j.ejor.2006.
10.034.

[19] Ivan Damgard, Morten Geisler, andMikkel Kroigard. “A correction to ’efficient and secure
comparison for on-line auctions’”. In: International Journal of Applied Cryptography 1.4
(2009), pp. 323–324.

[20] Ivan Damgård, Morten Geisler, and Mikkel Krøigaard. “Efficient and secure comparison
for on-line auctions”. In: Australasian Conference on Information Security and Privacy
(ACISP). Vol. 4586. Lecture Notes in Computer Science. Springer. 2007, pp. 416–430.

[21] Ivan Damgård and Jesper Buus Nielsen. Secure Multi-party Computation. 2010. url:
https://www.cambridge.org/core/books/secure-multiparty-computation-and-
secret-sharing/1D5C8A3B3A2A76EE8C49C27EA307881E.

[22] George Dantzig. “Linear Programming under Uncertainty”. In:Management Science 1.3-
4 (1955), pp. 197–206.

[23] D. de Werra. “An introduction to timetabling”. In: European Journal of Operational Re-
search 19.2 (1985), pp. 151–162. issn: 0377-2217. doi: https://doi.org/10.1016/
0377-2217(85)90167-5. url: https://www.sciencedirect.com/science/article/
pii/0377221785901675.

[24] The Rust Project Developers. rand 0.8.4 Documentation. 2021. url: https://docs.rs/
rand/0.8.4/rand/.

[25] Bersam Bolat Dilay Celebi and Demet Bayraktar. “Light rail passenger demand fore-
casting by artificial neural networks”. In: 2009 International Conference on Computers
& Industrial Engineering. Troyes, France: IEEE, 2009, pp. 239–243.

[26] Cynthia Dwork. “Differential Privacy”. In: Automata, Languages and Programming. Ed.
by Michele Bugliesi et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 1–12.
isbn: 978-3-540-35908-1.

[27] Taher ElGamal. “A Public Key Cryptosystem and a Signature SchemeBased onDiscrete
Logarithms”. In: Advances in Cryptology. Ed. by George R. Blakley and David Chaum.
Springer Berlin Heidelberg, 1985, pp. 10–18. isbn: 978-3-540-39568-3.

https://api.semanticscholar.org/CorpusID:44099955
https://api.semanticscholar.org/CorpusID:44099955
https://doi.org/10.1155/2019/1368905
https://doi.org/10.3390/inventions8040102
https://www.mdpi.com/2411-5134/8/4/102
https://www.mdpi.com/2411-5134/8/4/102
https://doi.org/https://doi.org/10.1016/j.scico.2003.09.001
https://doi.org/https://doi.org/10.1016/j.scico.2003.09.001
https://www.sciencedirect.com/science/article/pii/S0167642303000340
https://www.sciencedirect.com/science/article/pii/S0167642303000340
https://doi.org/10.1016/j.ejor.2006.10.034
https://doi.org/10.1016/j.ejor.2006.10.034
https://www.cambridge.org/core/books/secure-multiparty-computation-and-secret-sharing/1D5C8A3B3A2A76EE8C49C27EA307881E
https://www.cambridge.org/core/books/secure-multiparty-computation-and-secret-sharing/1D5C8A3B3A2A76EE8C49C27EA307881E
https://doi.org/https://doi.org/10.1016/0377-2217(85)90167-5
https://doi.org/https://doi.org/10.1016/0377-2217(85)90167-5
https://www.sciencedirect.com/science/article/pii/0377221785901675
https://www.sciencedirect.com/science/article/pii/0377221785901675
https://docs.rs/rand/0.8.4/rand/
https://docs.rs/rand/0.8.4/rand/

Bibliography 54

[28] Zekeriya Erkin et al. “Privacy-preserving face recognition”. In: Privacy Enhancing Tech-
nologies. Ed. by Ian Goldberg and Mikhail J. Atallah. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 235–253.

[29] Junfeng Fan and Frederik Vercauteren. “Somewhat practical fully homomorphic encryp-
tion”. In: Cryptology ePrint Archive (2012).

[30] Paul Feichtenschlager et al. “Privacy-Preserving Implementation of an Auction Mech-
anism for ATFM Slot Swapping”. In: 2023 Integrated Communication, Navigation and
Surveillance Conference (ICNS). 2023, pp. 1–12. doi: 10 . 1109 / ICNS58246 . 2023 .
10124262.

[31] Mohammad Javad Feizollahi. “A Privacy-Aware Distributed Approach for Loosely Cou-
pledMixed Integer Linear Programming Problems”. en. In: arXiv:2205.00356 (Apr. 2022).
arXiv:2205.00356 [math]. url: http://arxiv.org/abs/2205.00356.

[32] M.K. Franklin and M.K. Reiter. “The design and implementation of a secure auction
service”. In: IEEE Transactions on Software Engineering 22.5 (1996), pp. 302–312. doi:
10.1109/32.502223.

[33] Keith B Frikken. “Privacy-Preserving Set Union”. In: Applied Cryptography and Network
Security, 5th International Conference, ACNS 2007, Zhuhai, China, June 5-8, 2007, Pro-
ceedings. Springer. 2007, pp. 237–252.

[34] Hisham S. Galal and Amr M. Youssef. “Succinctly Verifiable Sealed-Bid Auction Smart
Contract”. In: Data Privacy Management, Cryptocurrencies and Blockchain Technology.
Ed. by Joaquin Garcia-Alfaro et al. Cham: Springer International Publishing, 2018, pp. 3–
19. isbn: 978-3-030-00305-0.

[35] Craig Gentry. “Fully Homomorphic Encryption Using Ideal Lattices”. In: Proceedings of
the Forty-First Annual ACM Symposium on Theory of Computing. STOC ’09. Bethesda,
MD, USA: Association for ComputingMachinery, 2009, pp. 169–178. isbn: 9781605585062.
doi: 10.1145/1536414.1536440. url: https://doi.org/10.1145/1536414.1536440.

[36] Craig Gentry. “Fully homomorphic encryption using ideal lattices”. In: Proceedings of the
Forty-First Annual ACM Symposium on Theory of Computing. STOC ’09. Bethesda, MD,
USA: Association for Computing Machinery, 2009, pp. 169–178. isbn: 9781605585062.
doi: 10.1145/1536414.1536440. url: https://doi.org/10.1145/1536414.1536440.

[37] Daniel Gibert, Carles Mateu, and Jordi Planes. “The rise of machine learning for detec-
tion and classification of malware: Research developments, trends and challenges”. In:
Journal of Network and Computer Applications 153 (2020), p. 102526. issn: 10958592.
doi: 10.1016/j.jnca.2019.102526.

[38] Tal Grinshpoun and Tamir Tassa. “A Privacy-Preserving Algorithm for Distributed Con-
straint Optimization”. en. In: ().

[39] Yiwei Guo. “A Reinforcement Learning Approach to Train Timetabling for Inter-City High
Speed Railway Lines”. In: Journal of Railway Research (2021).

[40] Rafik Hamza et al. “Towards Secure Big Data Analysis via Fully Homomorphic Encryp-
tion Algorithms”. In: Entropy (Basel) 24.4 (2022), p. 519. doi: 10.3390/e24040519. url:
https://www.mdpi.com/1099-4300/24/4/519.

[41] F. S. Hillier and G. J. Lieberman. Introduction to Operations Research. 10th ed. McGraw-
Hill, 2014.

[42] Yu Ishimaki and Hayato Yamana. “Non-interactive and fully output expressive private
comparison”. English. In: Progress in Cryptology – INDOCRYPT 2018 - 19th Interna-
tional Conference on Cryptology in India, Proceedings. Ed. by Debrup Chakraborty and
Tetsu Iwata. Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Publisher Copyright: © 2018,
Springer Nature Switzerland AG.; 19th International Conference on Cryptology in India,

https://doi.org/10.1109/ICNS58246.2023.10124262
https://doi.org/10.1109/ICNS58246.2023.10124262
http://arxiv.org/abs/2205.00356
https://doi.org/10.1109/32.502223
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1145/1536414.1536440
https://doi.org/10.1016/j.jnca.2019.102526
https://doi.org/10.3390/e24040519
https://www.mdpi.com/1099-4300/24/4/519

Bibliography 55

INDOCRYPT 2018 ; Conference date: 09-12-2018 Through 12-12-2018. Springer Ver-
lag, 2018, pp. 355–374. isbn: 9783030053772. doi: 10.1007/978-3-030-05378-9_19.

[43] Weizhao Jin et al. FedML-HE: An Efficient Homomorphic-Encryption-Based Privacy-
Preserving Federated Learning System. 2023. arXiv: 2303.10837 [cs.LG].

[44] Thorsten Koch et al. “Progress inmathematical programming solvers from 2001 to 2020”.
In: EURO Journal on Computational Optimization 10 (2022), p. 100031. issn: 2192-4406.
doi: https://doi.org/10.1016/j.ejco.2022.100031. url: https://www.sciencedire
ct.com/science/article/pii/S2192440622000077.

[45] Kaspar Koolstra. “Transport Infrastructure Slot Allocation”. MA thesis. Delft University
of Technology, June 2005. url: https://repository.tudelft.nl/islandora/object/
uuid%3Acd8cd3b6-358c-4c6f-a26a-829ce3800f05.

[46] Niels Lindner andChristian Liebchen. “Timetablemerging for the Periodic Event Schedul-
ing Problem”. en. In:EUROJournal on Transportation and Logistics 11 (2022), p. 100081.
issn: 21924376. doi: 10.1016/j.ejtl.2022.100081.

[47] Marin Litoiu, Traian C. Ionescu, and Jesus Labarta. “Dynamic task scheduling in dis-
tributed real time systems using fuzzy rules”. en. In:Microprocessors and Microsystems
21.5 (Feb. 1998), pp. 299–311. issn: 01419331. doi: 10.1016/S0141-9331(97)00049-5.

[48] Thomas Lorünser, Florian Wohner, and Stephan Krenn. “A Verifiable Multiparty Compu-
tation Solver for the Assignment Problem and Applications to Air Traffic Management”.
In: Journal of Air Traffic Management (2017).

[49] Alessio D Marra, Linghang Sun, and Francesco Corman. “The impact of COVID-19 pan-
demic on public transport usage and route choice: Evidences from a long-term tracking
study in urban area”. In: Transport Policy 116 (2022), pp. 258–268. doi: 10.1016/j.
tranpol.2021.12.009.

[50] Christian Matt and Ueli Maurer. “The one-time pad revisited”. In: 2013 IEEE International
Symposium on Information Theory. IEEE. 2013, pp. 2706–2710.

[51] L Meier. Explaining yao’s garbled circuits. url: https://cronokirby.com/posts/2022/
05/explaining-yaos-garbled-circuits/.

[52] Armin Memar Zahedani, Jelle Vos, and Zekeriya Erkin. “Practical Verifiable & Privacy-
Preserving Double Auctions”. In: Proceedings of the 18th International Conference on
Availability, Reliability and Security. New York, NY, USA: Association for Computing
Machinery, 2023. isbn: 9798400707728. doi: 10.1145/3600160.3600190. url: https:
//doi.org/10.1145/3600160.3600190.

[53] Armin Memar Zahedani, Jelle Vos, and Zekeriya Erkin. “Practical Verifiable Privacy-
Preserving Double Auctions”. English. In: ARES 2023 - 18th International Conference
on Availability, Reliability and Security, Proceedings. ACM International Conference Pro-
ceeding Series. United States: Association for Computing Machinery (ACM), 2023. doi:
10.1145/3600160.3600190.

[54] Kundan Munjal and Rekha Bhatia. “A systematic review of homomorphic encryption and
its contributions in healthcare industry”. In: Complex Intell. Syst. 9 (2023), pp. 3759–
3786. doi: 10.1007/s40747-022-00756-z. url: https://doi.org/10.1007/s40747-
022-00756-z.

[55] Walter Murray et al. “Recent developments in constrained optimization”. In: Journal of
Computational and Applied Mathematics 22.2 (1988), pp. 257–270. issn: 0377-0427.
doi: https://doi.org/10.1016/0377-0427(88)90405-0. url: https://www.scienced
irect.com/science/article/pii/0377042788904050.

[56] Chanathip Namprempre. “Secure Channels Based on Authenticated Encryption Schemes:
A Simple Characterization”. In: Advances in Cryptology — ASIACRYPT 2002. Ed. by

https://doi.org/10.1007/978-3-030-05378-9_19
https://arxiv.org/abs/2303.10837
https://doi.org/https://doi.org/10.1016/j.ejco.2022.100031
https://www.sciencedirect.com/science/article/pii/S2192440622000077
https://www.sciencedirect.com/science/article/pii/S2192440622000077
https://repository.tudelft.nl/islandora/object/uuid%3Acd8cd3b6-358c-4c6f-a26a-829ce3800f05
https://repository.tudelft.nl/islandora/object/uuid%3Acd8cd3b6-358c-4c6f-a26a-829ce3800f05
https://doi.org/10.1016/j.ejtl.2022.100081
https://doi.org/10.1016/S0141-9331(97)00049-5
https://doi.org/10.1016/j.tranpol.2021.12.009
https://doi.org/10.1016/j.tranpol.2021.12.009
https://cronokirby.com/posts/2022/05/explaining-yaos-garbled-circuits/
https://cronokirby.com/posts/2022/05/explaining-yaos-garbled-circuits/
https://doi.org/10.1145/3600160.3600190
https://doi.org/10.1145/3600160.3600190
https://doi.org/10.1145/3600160.3600190
https://doi.org/10.1145/3600160.3600190
https://doi.org/10.1007/s40747-022-00756-z
https://doi.org/10.1007/s40747-022-00756-z
https://doi.org/10.1007/s40747-022-00756-z
https://doi.org/https://doi.org/10.1016/0377-0427(88)90405-0
https://www.sciencedirect.com/science/article/pii/0377042788904050
https://www.sciencedirect.com/science/article/pii/0377042788904050

Bibliography 56

Yuliang Zheng. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 515–532. isbn:
978-3-540-36178-7.

[57] Melek Nar and Seher Arslankaya. “Passenger demand forecasting for railway systems”.
In: Chemistry International (2022). Accessed: 2024-05-10. doi: 10.1515/chem-2022-
0124.

[58] Sundaravalli Narayanaswami and Narayan Rangaraj. “Scheduling and Rescheduling of
Railway Operations: A Review and Expository Analysis”. en. In: Technology Operation
Management 2.2 (Dec. 2011), pp. 102–122. issn: 0974-8091, 2249-2364. doi: 10.1007/
s13727-012-0006-x.

[59] Majid Nateghizad, Zekeriya Erkin, andReginald L Lagendijk. “An efficient privacy-preserving
comparison protocol in smart metering systems”. In: Journal of Ambient Intelligence and
Humanized Computing 8.5 (2017), pp. 699–708.

[60] NS. Our trains - NS Annual Report 2022. Accessed: 2024-05-15. 2022. url: https://
2022.nsannualreport.nl/annual-report-2021/about-ns/the-profile-of-ns/
our-trains.

[61] Rafail Ostrovsky and William E. Skeith. “Private searching on streaming data”. In: Ad-
vances in Cryptology – CRYPTO 2005. Ed. by Victor Shoup. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2005, pp. 223–240.

[62] Pascal Paillier. “Public-key cryptosystems based on composite degree residuosity classes”.
In: Proceedings of the 17th International Conference on Theory and Application of Cryp-
tographic Techniques, EUROCRYPT’99. Berlin, Heidelberg: Springer-Verlag, 1999, pp. 223–
238.

[63] F.F. Pashchenko et al. “Implementation of Train Scheduling System in Rail Transport
using Assignment Problem Solution”. en. In: Procedia Computer Science 63 (2015),
pp. 154–158. issn: 18770509. doi: 10.1016/j.procs.2015.08.326.

[64] Kinjal Patel. “Secure multiparty computation using secret sharing”. In: 2016 Interna-
tional Conference on Signal Processing, Communication, Power and Embedded Sys-
tem (SCOPES). 2016, pp. 863–866. doi: 10.1109/SCOPES.2016.7955564.

[65] Kun Peng et al. “Robust, Privacy Protecting and Publicly Verifiable Sealed-Bid Auction”.
In: Information and Communications Security. Ed. by R. Deng et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2002, pp. 147–159. isbn: 978-3-540-36159-6. doi: 10.1007/
3-540-36159-6_13.

[66] Rail Delivery Group. About the Passenger Demand Forecasting Handbook. https://
www.raildeliverygroup.com/pdfc/about-the-pdfh.html. Accessed: 2024-05-10.

[67] Anjana Rajan et al. “Callisto: A Cryptographic Approach to Detecting Serial Perpetrators
of Sexual Misconduct”. In: June 2018, pp. 1–4. doi: 10.1145/3209811.3212699.

[68] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptography”.
In: Journal of the ACM (JACM) 56.6 (2009), pp. 1–40.

[69] Francesca. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming.
Elsevier Science, 2006.

[70] Ana Catarina T Silva, Pedro T. B. S. Branco, and Sofia I. V. Sousa. “Impact of COVID-19
Pandemic on Air Quality: A Systematic Review”. In: International Journal of Environmen-
tal Research and Public Health 19.4 (2022), p. 1950. doi: 10.3390/ijerph19041950.

[71] Nigel P Smart and Frederik Vercauteren. “Fully homomorphic SIMD operations”. In: De-
signs, codes and cryptography 71 (2014), pp. 57–81.

[72] National Institute of Standards and Technology. Recommendation for Random Number
Generation Using Deterministic Random Bit Generators. 2012. url: https://nvlpubs.
nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf.

https://doi.org/10.1515/chem-2022-0124
https://doi.org/10.1515/chem-2022-0124
https://doi.org/10.1007/s13727-012-0006-x
https://doi.org/10.1007/s13727-012-0006-x
https://2022.nsannualreport.nl/annual-report-2021/about-ns/the-profile-of-ns/our-trains
https://2022.nsannualreport.nl/annual-report-2021/about-ns/the-profile-of-ns/our-trains
https://2022.nsannualreport.nl/annual-report-2021/about-ns/the-profile-of-ns/our-trains
https://doi.org/10.1016/j.procs.2015.08.326
https://doi.org/10.1109/SCOPES.2016.7955564
https://doi.org/10.1007/3-540-36159-6_13
https://doi.org/10.1007/3-540-36159-6_13
https://www.raildeliverygroup.com/pdfc/about-the-pdfh.html
https://www.raildeliverygroup.com/pdfc/about-the-pdfh.html
https://doi.org/10.1145/3209811.3212699
https://doi.org/10.3390/ijerph19041950
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf

Bibliography 57

[73] Victor Toporkov, Dmitry Yemelyanov, and Alexey Tselishchev. “Effective Slot Selection
and Co-allocation Algorithms for Economic Scheduling in Distributed Computing”. In:
Procedia Computer Science 18 (2013). 2013 International Conference on Computa-
tional Science, pp. 2424–2427. issn: 1877-0509. doi: https://doi.org/10.1016/
j.procs.2013.05.415. url: https://www.sciencedirect.com/science/article/pii/
S1877050913005589.

[74] A. Vince. “Scheduling periodic events”. In: Discrete Applied Mathematics 25.3 (1989),
pp. 299–310. issn: 0166-218X. doi: https://doi.org/10.1016/0166-218X(89)90008-
5. url: https://www.sciencedirect.com/science/article/pii/0166218X89900085.

[75] Nikolaj Volgushev et al. “Conclave: secure multi-party computation on big data”. In:
Proceedings of the Fourteenth EuroSys Conference 2019. EuroSys ’19. Dresden, Ger-
many: Association for ComputingMachinery, 2019. isbn: 9781450362818. doi: 10.1145/
3302424.3303982. url: https://doi.org/10.1145/3302424.3303982.

[76] T. Volkhausen. The Paillier Cryptosystem: A Mathematical Introduction. 2006. url: http:
//www2.cs.uni-paderborn.de/cs/ag-bloemer/lehre/proseminar_WS2005/materia
l/Volkhausen_Ausarbeitung.pdf.

[77] Bert de Vries and Jasper Willigers. “On the State-of-the-Art Demand Forecasting Model
Developed by Netherlands Railways”. In: European Transport Conference. Paper pre-
sented on 10-12. Glasgow, Scotland, UK, Oct. 2011.

[78] ZeyuWang et al. “An Efficient Hybrid Approach for Scheduling the Train Timetable for the
Longer Distance High-Speed Railway”. en. In: Sustainability 13.5 (Feb. 2021), p. 2538.
issn: 2071-1050. doi: 10.3390/su13052538.

[79] Wikipedia. Sittard railway station - Wikipedia. Accessed: 2024-05-15. 2024. url: https:
//en.wikipedia.org/wiki/Sittard_railway_station.

[80] Fei Yan andRobM.P. Goverde. “Combined line planning and train timetabling for strongly
heterogeneous railway lines with direct connections”. In: Transportation Research Part
B: Methodological 127 (2019), pp. 20–46. issn: 0191-2615. doi: https://doi.org/10.
1016/j.trb.2019.06.010. url: https://www.sciencedirect.com/science/article/
pii/S0191261517311797.

[81] Andrew Chi-Chih Yao. “Protocols for Secure Computations”. In: Proceedings of the 23rd
Annual Symposium on Foundations of Computer Science (SFCS ’82) (1982), pp. 160–
164.

[82] Chuan Zhao et al. “Secure Multi-Party Computation: Theory, practice and applications”.
In: Information Sciences 476 (2019), pp. 357–372. issn: 0020-0255. doi: https://doi.
org/10.1016/j.ins.2018.10.024. url: https://www.sciencedirect.com/science/
article/pii/S0020025518308338.

[83] Wenliang Zhou, Xiaorong You, and Wenzhuang Fan. “A Mixed Integer Linear Program-
ming Method for Simultaneous Multi-Periodic Train Timetabling and Routing on a High-
Speed Rail Network”. en. In: Sustainability 12.3 (Feb. 2020), p. 1131. issn: 2071-1050.
doi: 10.3390/su12031131.

https://doi.org/https://doi.org/10.1016/j.procs.2013.05.415
https://doi.org/https://doi.org/10.1016/j.procs.2013.05.415
https://www.sciencedirect.com/science/article/pii/S1877050913005589
https://www.sciencedirect.com/science/article/pii/S1877050913005589
https://doi.org/https://doi.org/10.1016/0166-218X(89)90008-5
https://doi.org/https://doi.org/10.1016/0166-218X(89)90008-5
https://www.sciencedirect.com/science/article/pii/0166218X89900085
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1145/3302424.3303982
https://doi.org/10.1145/3302424.3303982
http://www2.cs.uni-paderborn.de/cs/ag-bloemer/lehre/proseminar_WS2005/material/Volkhausen_Ausarbeitung.pdf
http://www2.cs.uni-paderborn.de/cs/ag-bloemer/lehre/proseminar_WS2005/material/Volkhausen_Ausarbeitung.pdf
http://www2.cs.uni-paderborn.de/cs/ag-bloemer/lehre/proseminar_WS2005/material/Volkhausen_Ausarbeitung.pdf
https://doi.org/10.3390/su13052538
https://en.wikipedia.org/wiki/Sittard_railway_station
https://en.wikipedia.org/wiki/Sittard_railway_station
https://doi.org/https://doi.org/10.1016/j.trb.2019.06.010
https://doi.org/https://doi.org/10.1016/j.trb.2019.06.010
https://www.sciencedirect.com/science/article/pii/S0191261517311797
https://www.sciencedirect.com/science/article/pii/S0191261517311797
https://doi.org/https://doi.org/10.1016/j.ins.2018.10.024
https://doi.org/https://doi.org/10.1016/j.ins.2018.10.024
https://www.sciencedirect.com/science/article/pii/S0020025518308338
https://www.sciencedirect.com/science/article/pii/S0020025518308338
https://doi.org/10.3390/su12031131

	Preface
	Abstract
	Introduction
	Train Scheduling
	Problems
	Distributed Railway Scheduling
	Privacy in Scheduling

	Research Question
	Contributions
	Outline

	Preliminaries
	Periodic Event Scheduling
	Branch and Bound Algorithms
	Greedy Algorithms
	Reinforcement Learning
	Constraint Optimization
	Linear Programming
	Slot Allocation

	Adversarial Behaviour
	Cryptography building blocks
	Secure Multiparty Computation
	Secret Sharing
	Garbled Circuits

	Partial Homomorphic Encryption
	Paillier Encryption
	DGK Encryption
	Secure Comparison Protocol
	Exponential Elliptic-curve-ElGamal

	Fully Homomorphic Encryption
	BGV/BFV
	CKKS
	TFHE Encryption

	Related Work
	Railway Scheduling
	Historical Approaches
	Constraint Optimization Approach
	Mixed Integer Linear Programming
	Merging Timetables
	Reinforcement Learning
	Slot Allocation

	Privacy Preserving Approaches
	Linear Programming
	Constraint Optimization
	Slot Allocation

	Privacy Preserving Railway Scheduling
	Roles
	Design
	Demand Forecasting
	Sharing Encrypted Demand
	Creating Schedules
	Computing the best schedule
	Publishing the Schedule

	Interactions and Assumptions

	Evaluation
	Theoretical Analysis
	Confidentiality
	Collusion-Resistance
	Traceability
	Non-Repudiation

	Complexity Analysis
	Experimental Analysis
	Throughput
	Runtime

	Conclusion

	Discussion and Future Work
	Discussion
	Limitations
	Future Work
	Concluding Remarks

