
Visual Comput (2008) 24: 335–346
DOI 10.1007/s00371-007-0192-x O R I G I N A L A R T I C L E

Stef Busking
Anna Vilanova
Jarke J. van Wijk

Particle-based non-photorealistic volume
visualization

Published online: 7 December 2007
© Springer-Verlag 2008

S. Busking (�)
Faculty of Electrical Engineering,
Mathematics and Computer Science,
Department of Mediamatics,
P.O. Box 5031, 2600 GA Delft,
The Netherlands
S.Busking@tudelft.nl

A. Vilanova
Department of Biomedical Engineering
P.O. Box 513, 5600 MB Eindhoven,
The Netherlands
A.Vilanova@tue.nl

J.J. van Wijk
Department of Mathematics
and Computer Science
P.O. Box 513, 5600 MB Eindhoven,
The Netherlands
J.J.v.Wijk@tue.nl

Abstract Non-photorealistic tech-
niques are usually applied to produce
stylistic renderings. In visualization,
these techniques are often able to
simplify data, producing clearer
images than traditional visualization
methods. We investigate the use of
particle systems for visualizing vol-
ume datasets using non-photorealistic
techniques. In our VolumeFlies
framework, user-selectable rules
affect particles to produce a variety
of illustrative styles in a unified way.
The techniques presented do not
require the generation of explicit
intermediary surfaces.

Keywords Visualization · Non-
photorealistic rendering · Volume
rendering · Particle systems

1 Introduction

The visualization of large 3D volumetric datasets is an
important challenge. Commonly, these visualizations use
models based on reality. However, recently it has been
shown that the use of illustrative techniques may provide
more insight (e.g., [1, 3]). Non-photorealistic rendering
(NPR) focuses on increasing the expressiveness of com-
puter graphics by incorporating techniques adapted from
traditional art and illustration. By removing unimportant
details and visual clutter, NPR can direct the viewer’s at-
tention towards the most important aspects of an image.
Alternatively, NPR methods can be used to provide con-
text to other types of visualization.

In Fig. 1 we have used different illustrative techniques
to show both focus (skull) and context (skin). The sparse-

ness of the selected pen-and-ink styles provides a good
alternative to the translucency commonly used in methods
like direct volume rendering. The image shown was ren-
dered at interactive speeds, enabling easy exploration of
the data.

In existing research, surface-based NPR techniques
are often adapted to work on surfaces extracted from
the scientific volume datasets, such as iso-surfaces. These
techniques require a geometrically defined surface. An-
other commonly used approach is direct volume rendering
(DVR). Here, non-photorealistic techniques, such as light-
ing models, are used to enhance features in the image
(e.g., [2, 3, 10]). DVR is able to visualize ranges of data
rather than just a single surface, but designing good trans-
fer functions (which map data values to colors and opa-
cities) is far from trivial.

336 S. Busking et al.

Fig. 1. Illustrative volume visualization of the Visible Male CT
head dataset, combining several NPR techniques

Point-based methods, without using explicit surface
representations, have become increasingly popular in
computer graphics (see, for example, [15]). Particles, like
points, are entities encapsulating a 3D position and related
information. However, particles are more general, as their
visual representation can be selected freely. In this art-
icle, we therefore explore a purely particle-system-based
approach to volume visualization using NPR techniques.
Particle systems offer simplicity and flexibility, and have
been used as the basis for specific NPR techniques in the
past (e.g., [7]). We investigate the appropriateness of a par-
ticle system for the visualization of volumetric data. The
use of particles enables us to visualize surfaces and ranges
of data with relatively low processing costs (enabling an
interactive system). Particles offer a way of visualizing
volume data more directly and flexibly than surface-based
approaches.

We introduce the VolumeFlies framework, which is
based on particle systems that operate directly on the
dataset. Different illustrative visualization techniques can
be implemented within this framework by using different
rules that affect properties of the particles, such as their
position and appearance. Our framework is inspired by the
smart particle concept by Pang and Smith [20]. The smart
particles are a combination of particle systems and behav-
ioral animation. It allows particles to be programmed to
actively seek and visualize specific features in a dataset.

This concept was also successfully applied to shape mod-
eling [26].

We aim to show that a particle-based approach to
volume visualization results in a flexible system and a uni-
fied way of describing various NPR techniques. We con-
tribute several new approaches for particle-based illustra-
tive visualization.

In the following, we first give an overview of re-
search related to our work. Next we present our frame-
work and shortly discuss the pre-processing steps com-
mon to all visualizations. We then present a new hidden
surface removal algorithm for particles, followed by the
various non-photorealistic techniques that have been im-
plemented in our framework. Finally, we present and dis-
cuss results obtained with our prototype implementation
of the framework, and give possible directions for future
research.

2 Non-photorealistic rendering

The body of NPR research is quite extensive. In this sec-
tion we focus on techniques that have been applied spe-
cifically to visualizing volume datasets. Aside from DVR-
based methods, a few researchers have presented alter-
native techniques that work directly on the volume data.
A popular choice of NPR styles in this area is the family
of pen-and-ink styles. Common elements in these styles
are stippling, hatching and silhouettes. The sparseness of
these elements is particularly suitable for avoiding clutter
in images.

Stippling is an often applied NPR technique for visu-
alizing surfaces (e.g., [1, 8, 24]). However, the resulting
images often lack detail due to the simplicity and sparse-
ness of the stipples. On the other hand, these properties
make the technique suitable for illustrating surfaces that
provide context to a visualization. Another application of
stippling is to visualize ranges of data, as shown by Lu
et al. [17]. In their system, the number of stipples drawn
in each voxel was carefully adjusted to control density
and shading, and to enhance features such as boundaries
and silhouettes. Because little user interaction is required,
their method is suitable for quickly previewing volume
datasets. Unfortunately, the images often look noisy and
lack detail, partly due to the lack of hidden-surface re-
moval.

Another commonly used pen-and-ink style for surfaces
is hatching. Hatches drawn over a surface serve not only
to provide shading, but can also directly convey shape
information, for instance by using curvature to guide
hatch directions [13]. Hatching is commonly implemented
through procedural textures (e.g., [22, 27]), or by tracing
lines over the surface (e.g., [12]). Methods have also been
presented to create hatching images directly from volu-
metric datasets [9, 19]. The algorithms used, however, are
usually computationally expensive.

Particle-based non-photorealistic volume visualization 337

Most of these techniques also include silhouette ex-
traction in order to highlight the boundaries of objects. Sil-
houette extraction is one of the most useful techniques in
non-photorealistic rendering. By tracing the external and
possibly internal silhouettes of objects, these objects are
emphasized in the visualization without cluttering their
interior. A number of techniques exist for drawing silhou-
ettes, e.g., using DVR transfer functions [14], image-based
filtering [27, 29], or marching lines [4].

Yuan and Chen [29] illustrated surfaces in volume
data using a combination of several techniques, includ-
ing DVR, iso-surface extraction and image-based tech-
niques. The NPR techniques work well for highlight-
ing specific surface features in the volumes. However,
using image-based methods (e.g., for extracting silhou-
ettes) has the disadvantage that such methods only work
on the front-most parts of visible surfaces in the data, and
a change in viewing position requires the techniques to be
re-applied.

From the work described above, it seems that combin-
ations of different styles are most useful for visualizing
features in a dataset. Therefore, we investigate whether
a particle-based framework is general enough to support
a large variety of styles.

3 The VolumeFlies framework

The VolumeFlies framework, shown in Fig. 2, consists of
a four-stage pipeline. In the feature location stage, the fea-
tures that we want to visualize are located and particles
are created at locations on those features. Once the fea-
tures (e.g., some type of surfaces) have been located, the
particle manipulation stage prepares the particles for visu-
alization. For instance, the particles will often have to be

Fig. 2. The VolumeFlies framework

redistributed in order to cover the entire feature. After-
wards, the filtering stage can be applied. The particles in
the system can be filtered based on criteria such as re-
moving particles located at hidden surfaces. Finally, in the
rendering stage, geometry is created for each of the re-
maining particles in order to achieve a desired visual style.
Multiple sets of particles with different properties can be
used in a visualization, in order to visualize multiple fea-
tures. The geometry resulting from each of these instances
is then sent to the rendering pipeline to be projected onto
the final image.

Each of these stages gives rise to a class of pluggable
modules implementing a set of rules to be applied to the par-
ticles. These can be used as building blocks, to adapt the
framework to a specific visualization scenario. The first two
stages are typically performed in a pre-processingstep.Dur-
ing rendering, the modules selected for the third and fourth
stages are invoked as necessary for each change in the view-
ing direction and/or other visualization parameters.

In the next sections we present several variations for
the modules of the different stages. An important property
of the modules discussed in this article is that the rules
applied to each particle use only information local to that
particle’s position. This improves scalability of the system
to larger datasets; performance is only determined by the
number of particles in the system, which is controlled by
the user rather than by the data. This is a desirable prop-
erty, as the density of particles influences both the scale of
details visible in the data, as well as creating certain visual
effects. The only exception to this is that some modules re-
quire information about neighboring particles. In this case
we use a spatial binning algorithm for fast access to these
neighbors.

4 Feature location and particle redistribution

The first step is to place a set of particles at some initial
position on the features we want to visualize. In medical
volume data, the most commonly visualized features are
iso-surfaces. Therefore we chose iso-surfaces as the first
implementation for the feature location module.

Fig. 3a,b. Particles before and after redistribution

338 S. Busking et al.

Fig. 4. Exploring a CT head dataset using non-
surface particles (with silhouette extraction) and
a user-configurable density transfer function

We sample the dataset at a user-defined grid, using in-
terpolation between data points where necessary. In this
way we can ensure regular sampling in all directions even
if the voxels in the original dataset are not isotropic. We
identify the location of the iso-surface by comparing the
value at each grid point to its direct neighbors. If these
values lie on opposite sides of the iso-surface value, the
surface must intersect the line between the two points.
Linear interpolation is used to approximate the location of
this intersection, and a particle is created at that location.

This method usually results in an uneven distribution
of particles over the feature surfaces, causing visual ar-
tifacts such as the rings in Fig. 3a. To solve this, we
use a particle distribution method originally developed by
Witkin and Heckbert [28], and later improved by Meyer
et al. [18] to redistribute the particles over the surface.
This is accomplished by having particles locally repel
each other, but constraining them to the surface. We adapt
Meyer’s improved algorithm from the context of render-
ing implicit surfaces to that of volume datasets and iso-
surfaces by using (linear) interpolation.

It is worth pointing out that the even distribution of par-
ticles on the surface (as shown in Fig. 3b) does not result
in a regular distribution in image space, as regions more
perpendicular to the screen will appear denser. In certain
situations, however, creating such a distribution is not as
important, and the goal is merely to remove the patterns
created by the feature location algorithm step. In some of
these situations simply moving the particles in random dir-
ections over the surface for a number of steps will often
produce acceptable results, and the more computationally
intensive distribution method may be avoided.

These steps may be computationally expensive, and
furthermore, the values of the interesting iso-surfaces may
not be known in advance. Therefore we implemented
a second method for quickly previewing datasets and lo-
cating features of interest. Here, in the first stage an initial
set of particles is created at random locations throughout
the volume where the magnitude of the gradient exceeds
a certain threshold.

An additional filtering stage module is added to apply
a density transfer function. This is similar to an opacity
transfer function in DVR; particles are hidden or shown

based on the value of this function when applied to the
data value at the particle’s position, using the density con-
trolling algorithm described in Sect. 6.1. This way, se-
lected ranges within the data can be visualized quickly.
While the amount of detail shown in the resulting images
is low (see Fig. 4), the interactivity provided by manipu-
lating the density function allows a user to easily identify
features of interest in a volume.

5 Hidden-surface removal

The most obvious issue when dealing with surfaces il-
lustrated by separate particles rather than a complete sur-
face (e.g., a polygonal representation) is that there is no
occlusion between the rendered surfaces. While in some
cases this may provide additional insight into the struc-
ture of the feature, it could clutter the image in other cases
(see Fig. 5). Particles on hidden surfaces should be de-
tected and (optionally) removed in the filtering stage of the
framework.

Most surface-based methods solve this problem by
first rendering the polygonal representation of the surface
to a depth buffer, and subsequently testing each of the
particles against this buffer to determine their visibility.
The polygonal surface can also simply be rendered using
the background color in order to erase any particles that
should not be visible.

Fig. 5a,b. Removing particles located on normally hidden surfaces
can help to produce a clearer image: a showing all particles, b hid-
den surfaces removed

Particle-based non-photorealistic volume visualization 339

Fig. 6a,b. Overlap between neighboring splats can cause visible
particles to disappear (shown in red): a splats on surface (side
view), b resulting/missing particles

An alternative technique, used in [21], first renders the
polygonal surface in uniquely colored patches. Particles
are only deemed to be visible if the color of their corres-
ponding patch is found in the resulting image. While this
scanning approach may be slower than the depth-buffer-
based approach, it has the advantage that the set of visible
particles can be determined before they are rendered. This
makes it easier to combine different visualizations (sets
of particles) in the same image. Also, using this method
avoids depth-value precision issues, a common problem
with the first approach.

We show that hidden particles can also be removed
without an explicit construction of polygonal representa-
tions of the surfaces. A common technique for rendering
surfaces from separate points (point-based rendering, see
for example [6, 23]) is splatting. Discs are aligned with the
surface and drawn at the positions of the points. If enough
discs are used and the discs are large enough, this results
in an approximation of the surface.

If the surface is strongly convex, disks can undesirably
mask neighboring particles as shown in Fig. 6. This may
cause gaps to appear in the surface. When using a scan-
ning approach, it does not matter as long as some part of
the discs for these particles is visible. However, in some
cases the complete disc is occluded erroneously. This is
especially an issue if the splatting image is generated at
a lower resolution than the final image, in order to increase
performance.

We use the scanning approach for detecting visible par-
ticles. Our goal is, therefore, to find an algorithm that
minimizes overlap problems between neighbors and still
works well at reduced resolutions. Our solution is to use
cones oriented towards the viewer rather than circular
disks. The cones are scaled at their base to match the pro-
jection of the original discs (see Sect. A.1 for details). The
3D nature of their shapes leads to more evenly sized pro-
jections for each particle (Fig. 7). In fact, when the surface
is parallel to the screen, the resulting image is a Voronoi

Fig. 7. Cone splatting compared to normal splats

diagram of the set of particles [11]. We call this new
method cone-splatting. In Fig. 6b, the red particles were
marked visible by our cone splatting algorithm, but not by
using normal splats.

Two parameters control the size of the cones. The ra-
dius (of the discs used to scale the cones) needs to be
large enough to create a closed surface in the projection.
However, it should not be larger than the distance be-
tween neighboring particles, as this could cause cones to
stick out from the surface. Increasing the axis length of
the cones increases the robustness to high-curvature areas
such as shown in Fig. 6. However, if the cones are too long
(compared to the distance between subsequent faces along
the viewing direction), particles behind the front-most sur-
face may become visible undesirably.

6 Rendering

Traditional medical illustrations, e.g., those used in ana-
tomy books, commonly use pen-and-ink styles. Common
elements in these styles include stippling, hatching and sil-
houettes. We adapt existing techniques and introduce new
algorithms to emulate these styles using our particle-based
framework.

6.1 Stippling

The simplest way to visualize a set of particles is by using
point primitives. The set of particles provides us with a set
of positions in 3D space, which can be projected onto the
image plane using any desired projection method in the
rendering stage of the framework. Additionally, the sur-
face normal – derived from the local gradient – can be
used for applying shading, to better illustrate the shape of
the surface. There are several options.

In traditional illustration, two techniques are typically
used to create shading effects in stipple drawings. One is
to vary the scale of the points, using larger points to cre-
ate darker areas (see Fig. 8a). We have implemented this as

340 S. Busking et al.

Fig. 8a,b. Stippling methods: a scale-based shading, b density-
based shading

a rendering module in our framework, by using the value
of the lighting equation as a scaling factor for the size of
a particle (see Sect. A.2 for details).

Another method of shading in stipple drawings is to in-
crease or decrease the density of stipples in certain areas
in order to achieve darker or lighter tones, respectively
(Fig. 8b). We assume that the full set of particles is suffi-
cient to generate a black tone. As all particles are of equal
size and evenly distributed, the fraction of particles shown
is linearly related to the tone. We therefore first assign
to each particle pi a value vi from a uniformly random
distribution ranging between 0 and 1. During rendering,
a particle is drawn only if the value of its lighting equation
is less than this value.

A disadvantage of this method is that it may re-
quire a very dense set of particles in order to create
a detailed image. Very large numbers of particles af-
fect performance as well as accuracy. On the other hand,
the method is suitable for illustrating surfaces that pro-
vide context to a visualization (for example, the skin
in Fig. 13). Transparent surfaces can also be visualized
using this method. By placing the light source at the
same position as the camera, silhouettes are enhanced
while particles are removed from interior areas, reducing
clutter.

The results of both stippling methods can be improved
further by observing that in traditional illustration very
bright areas often contain no points at all. We can achieve
this effect by removing points altogether, if their bright-
ness is above a certain threshold.

6.2 Hatching

Hatching is a technique that uses solely lines and curves to
convey shape. Shading is often accomplished by varying
line width and/or spacing. The direction of the strokes is
used to illustrate the shape or material properties of the 3D

surface that is being represented. In traditional illustration,
both normal hatching (closely spaced parallel lines) and
cross-hatching (two or more sets of lines that may inter-
sect each other) are used.

In our framework, creating hatched images consists of
two steps. First, hatch lines are generated from the set of
particles. This is done in the particle manipulation stage
of the framework, where the hatch line is stored in the
particle. Secondly, during rendering, a shading algorithm
decides which of these lines should be drawn in order to
create the appearance of a shaded surface. For the pur-
poses of shading, we use the density-based method pre-
sented in Sect. 6.1.

We use the positions of the particles as seed points
for hatch lines traced through the volume. A direction is
selected in the local surface tangent plane, after which
the position is updated by moving along that direction
for some user-selectable distance and repeating the pro-
cess until a desired number of hatch-segments has been
created. This is repeated in the opposite direction, again
starting from the particle’s position. In order to be able
to perform hidden surface removal on these hatches, each
segment of the hatch line is linked to the nearest particle in
the volume; a segment is drawn only if its linked particle is
marked visible.

6.2.1 Direction of the hatches

A simple method for selecting directions is to define a sin-
gle 3D vector for all hatches representing the preferred
direction. At each step while tracing a hatch, this direction
is projected onto the local surface tangent plane in order
to obtain a hatch direction. Due to the uniformity of the
hatches, the resulting images look similar to images cre-
ated using wood engraving (see Fig. 9a). A disadvantage
is that in areas where the preferred direction is perpendicu-

Fig. 9a,b. Hatching methods: a single direction, b principal curva-
ture

Particle-based non-photorealistic volume visualization 341

lar to the surface the hatch field looks messy, as the hatch
direction is not well defined.

An alternative, as suggested by Interrante [13], is to use
the directions of principal curvatures. We use the curva-
ture estimation method presented by Kindlmann et al. [14]
to compute curvature, but perform eigenanalysis on the
resulting geometry tensor to obtain the directions of prin-
cipal curvature as well as the values.

While the directions of principal curvature work well
for hatching on smooth surfaces, the iso-surfaces in real-
world datasets (such as medical volume data) are not
always smooth and often noisy. In order to obtain re-
liable derivatives, and to ignore unimportant details on
the surface, we blur the dataset using a Gaussian ker-
nel. This allows us to calculate curvature properties at
a proper scale; the choice of the size of the Gaussian
kernel depends on the scale of the details we want to
visualize. To further improve our results, a smoothing
algorithm is subsequently applied to the direction field.
Figure 9b was generated using this method. Hertzmann
and Zorin [12] illustrated smooth surfaces using hatching
patterns. They used a complex energy minimization algo-
rithm to produce smoothed principal curvature directions.
Our smoothing algorithm, which is described in detail
in the next section, is less complex but produces similar
results.

6.2.2 Smoothing the direction field

One problem with principal curvature directions is that
they are not well defined in areas where the surface is flat
or (nearly) spherical. Moreover, Hertzmann and Zorin [12]
have noted (based on hatching patterns in traditional illus-
tration) that hatching using principal curvature directions
is most effective in areas that are parabolic. That is, areas
where one of the principal curvatures (κ1 and κ2) is large
while the other is near zero. If one of the curvatures is
exactly zero the surface is locally cylindrical.

Based on these observations, we have designed a new
smoothing algorithm which generates direction fields suit-
able for hatching. Like Hertzmann and Zorin, we use
a cross-field consisting of unordered pairs of directions,
because there are certain cross-hatching patterns that can
not be decomposed into two separate single-direction
fields. The field is stored as a pair of direction vectors in
each particle. While tracing a hatch, the field from par-
ticles near the current position is averaged to obtain an
approximate pair of directions for that point. We then se-
lect the direction most like the current hatch direction as
the direction in which to continue the hatch line.

The field is initialized with principal curvature direc-
tions. As can be seen in Fig. 10a, there are several areas
where this field contains irregularities due to noise or ill-
defined principal curvature. We define a measure of field
reliability, ρ, which essentially states how suitable for
hatching the principal directions are at a given point. We

Fig. 10a,b. Computed curvature directions on the chin of the CT
head dataset: a initial directions, b after smoothing

base this measure on the shape index s, defined by Koen-
derink and Van Doorn [16],

s = 2

π
arctan

κ2 +κ1

κ2 −κ1
(κ1 ≥ κ2).

The shape index is a number between −1 and 1 indi-
cating the shape of the surface. We transform s into our
reliability measure by taking ρ = 1 −|2(|s|−1/2)|. The
value of ρ ranges from 0 (spherical or saddle-shaped) to 1
(cylindrical). This way, when ρ = 1, the principal curva-
ture directions are most suitable for hatching, while ρ = 0
means the directions are unreliable. The shape index does
not indicate whether a surface is flat, that is, if both κ1
and κ2 are (nearly) 0. It is, however, important to detect
flat areas as the directions of principal curvature are not
well defined in those areas, therefore we set ρ to 0 in these
cases.

We iteratively replace the directions in each particle
with the average taken over that particle’s neighborhood,
using the values of ρ in each particle as weights. This leads
to blurring in areas of low reliability, while reliable di-
rections are preserved. Differences in the orientation of
the surface at neighboring particles may cause the aver-
aged directions to be outside of the surface tangent plane.
To prevent this, directions are rotated according to the
minimal rotation between the surface normals at the par-
ticles before they are averaged. As can be seen in Fig. 10b,
the resulting field is more coherent than Fig. 10a in areas
where the principal directions would not be well defined.

6.3 Silhouette extraction

In order to include silhouettes in our generic framework,
we would like to use the existing set of particles. Ex-
tracting silhouettes consists of two steps. First, a subset
of particles near the silhouette is selected. These can be
found by placing a threshold on the dot product of surface
normal n and viewing direction e. Next, we trace silhou-
ettes in a way similar to hatching. Unlike hatching, tracing
of silhouettes can not be performed in a pre-processing
step, because silhouettes are dependent on the viewing di-
rection.

342 S. Busking et al.

Fig. 11a,b. Iso-depth “silhouettes”: a bones of the hand, b blood
vessel

In order to follow the silhouette, the direction of
silhouette lines should keep the surface normal perpen-
dicular to the viewing direction. One option is to draw
iso-depth lines instead of following the true silhouette.
We obtain these by following the direction of n × e.
This method results in a decent approximation to sil-
houettes for objects for which these silhouettes lie in or
close to planes perpendicular to the viewing direction
(Fig. 11a). In areas where this is not the case, the re-
sult is often a sketch-like effect (see the lower bones in
Fig. 11a). The method fails, however, on small cylindri-
cal structures, such as the blood vessel in Fig. 11b. The
iso-depth lines can also work as an effective hatching
pattern.

In order to obtain more accurate silhouettes (see
Fig. 13), we note that the local surface curvature describes
the local behaviour of the normal. It can therefore be
used to determine the silhouette direction. By consider-
ing a local coordinate frame at point p consisting of the
principal curvature direction vectors k1 and k2 combined
with the local surface normal n, and using Rodrigues’ for-
mula [25], we derive an approximation for the silhouette
line in this frame (see Sect. A.3). From this we obtain the
direction,

d = −κ2(k2 · e)k1 +κ1(k1 · e)k2.

Fig. 13a–d. Illustrative volume visualizations of a CT hand dataset, combining several NPR techniques

Fig. 12a,b. Controlling the width of the silhouette lines: a silhou-
ettes based on n · e, b constant-width silhouettes

Blurring is applied to improve the robustness to noise
of the curvature calculation.

We need to determine which particles to draw silhou-
ettes from. Using a threshold on n · e results in wide sil-
houette lines in areas of low curvature, while silhouettes in
areas of high curvature are smaller or may be missed alto-
gether if no particles are in the silhouette area (Fig. 12a).
Kindlmann et al. [14] observed a similar problem when
drawing silhouettes using transfer functions in direct vol-
ume rendering. They proposed using a 2D transfer func-
tion dependent on not only the n · e value, but also on the
local surface curvature. Their method requires the surface
curvature in the viewing direction, which they derive from
the geometry tensor matrix for each point whenever the
viewpoint changes.

We can avoid additional expensive computations by re-
using our earlier approximation of the silhouette line. The
distance of a particle to the silhouette can be derived from
the distance of this line to the origin in the (k1, k2)-plane,

τ = n · e
√

(κ1(k1 · e))2 + (κ2(k2 · e))2
.

Assuming orthogonal projection, the distance of
the particle to the silhouette in the image plane is
T = τ(n · e). We can therefore place a threshold on the
value of T in order to obtain silhouettes of approximately

Particle-based non-photorealistic volume visualization 343

constant width (see Fig. 12b). The only disadvantage
is that principal curvature information has to be com-
puted for all particles. However, as this information is
independent of the viewpoint this can be performed in
a pre-processing step.

7 Results

The algorithms described in this article have been imple-
mented in C++ using the OpenGL 3D graphics API [5].
The resulting system allows a user to easily configure
a number of sets of particles within a volume dataset, each
of which can have its own visualization technique and
parameters. Different techniques can be combined to visu-
alize multiple features in a volume dataset.

Figure 13 shows a CT dataset of a hand visualized
using our framework. The focus of the image, the bones
of the hand, are visualized using a traditional iso-surface
rendering. This is rendered by splatting with a dense set
of realistically shaded particles. The surface is empha-
sized in the image using silhouettes. This is combined with
principal-curvature directed hatching in Fig. 13a and c in
order to better illustrate the shape of this surface. Alter-
natively, stippling and silhouettes can be used to show the
interior structure of the surface (Fig. 13b). Context is pro-
vided by a visualization of the skin using its silhouette,
and also stippling in Fig. 13a and c. Figure 13a and d also
show the arteries in the hand (using accurate silhouettes
based on curvature).

Our framework is flexible enough to produce visual-
izations in many styles and variations, similar to results of
surface-based techniques. Our current implementation is
limited to visualizing iso-surfaces. However, the methods
presented can be extended to other types of surfaces if the
required derivative properties (surface normal and in some
cases curvature) are available. The visualization of ranges
of data (rather than iso-surfaces) leaves room for improve-
ment. Currently, these techniques seem most suitable for
quickly previewing datasets. However, due to the limited
amount of particles used, the resulting images offer less
detail than the volumetric visualizations as used by Lu
et al. [17].

DVR images often look fuzzy; transparent structures
in these images may clutter the image, especially when
one is mainly interested in specific surfaces within the vol-
ume. In these cases, the sparseness of our NPR techniques
may offer a better alternative. Because only simple geo-
metric primitives were used to render our results (points
and lines), these two types of visualizations may also be
easily combined, for instance in a focus/context type of
visualization. For example, Fig. 13a, c and d show NPR
combined with a surface shaded using more classical tech-
niques.

The system runs at interactive speeds (with the ex-
ception of the pre-processing steps), allowing a user to

Table 1. Performance of the framework on a modern computer
(AMD Athlon 2 GHz)

Image sets particles stage 1&2 stage 3&4

Fig. 1 4 221 108 120 s 2 fps
Fig. 8a 1 26 714 15 s 30 fps
Fig. 8b 1 1 294 185 360 s 1 fps
Fig. 9a 1 58 367 35 s 19 fps
Fig. 9b 1 58 367 60 s 17 fps
Fig. 11a 1 27 070 15 s 19 fps
Fig. 12a 1 29 481 20 s 4 fps
Fig. 12b 1 29 481 20 s 2 fps
Fig. 13a 6 449 529 130 s 2 fps
Fig. 13b 3 367 921 90 s 5 fps
Fig. 13c 5 404 831 120 s 6 fps
Fig. 13d 4 410 487 100 s 2 fps

immediately observe the result of changing most of the
visualization parameters. Table 1 gives an overview of
the performance of the (unoptimized) prototype imple-
mentation, for some of the images presented in this art-
icle. All datasets used were in the range of 2563 voxels.
Stages 1 (feature location) and 2 (particle manipulation)
are pre-processing steps (executed once per dataset) while
Stages 3 (filtering) and 4 (rendering) are executed dur-
ing interactive rendering when certain parameters are
changed.

8 Conclusions and future work

We have discussed a framework for particle-based non-
photorealistic volume visualization. Our main contribu-
tions are:

– The VolumeFlies framework, a flexible and scalable
framework for non-photorealistic rendering of volume
data, based on particle systems and operating directly
on the voxel data. We have demonstrated that the
framework supports various styles in a unified way, in-
cluding stippling, hatching and silhouette extraction.
Other styles, such as the painterly rendering styles
in [7], could also be easily implemented within the
same concepts.

– A new hidden surface detection algorithm for surfaces
rendered using particles. This method does not require
the construction of an explicit geometric representation
of the surface and can be applied at interactive speeds.

– New techniques for NPR and visualization, including
a simple density-based shading algorithm, silhouette
approximation methods and a direction field smooth-
ing algorithm for hatching based on principal curvature
directions, which uses the shape index to indicate the
local suitability for hatching.

Non-photorealistic methods for data visualization,
such as the ones presented in this article, may be used

344 S. Busking et al.

to simplify visualizations in cases where “realistic”
methods would clutter the image. They are by no means
a replacement for methods such as DVR. Rather, they
should be considered a useful addition, as each has its
own advantages and disadvantages. We expect that non-
photorealistic methods are particularly suitable to provide
context for more realistic visualizations, as their inherent
simplicity will serve not to distract the viewer from the
focus of such an image.

We also conclude that the use of particles presents
a useful alternative to traditional surface-based methods.
The flexibility presented by particles combined with the
advantages of working directly on the data may present
new possibilities for data visualization, and allows easy
implementation of many NPR techniques.

However, there are still topics for further research.
For instance, it may be useful to adapt the density of
particles to certain situations. Examples are modifying
density when zooming in order to ensure a constant
tone, to adapt it according to local surface properties,
such as curvature, or using user-defined focus regions
to control density and/or other visualization parameters.
Also, as shown in our experiments with alternative fea-
ture location rules, particles do not necessarily have to
be on the same surface. Further research is required in
order to adapt our techniques for optimally visualizing
ranges of values, as is possible with DVR. Finally, the
current implementation of the framework does not take
advantage of programmable graphics hardware. We are
working on an implementation of the framework which
uses graphics hardware in order to allow for interaction
during the preprocessing stages and improve the overall
performance.

A Derivations

A.1 Splat-cone scaling

The cones used for hidden surface removal are scaled to
match the projection of the original splat discs. To sim-
plify the calculations, we assume a local orthogonal pro-
jection along the viewing direction ei .

In this projection, a disc with radius r, aligned per-
pendicular to surface normal ni will result in an ellipsoid
projection. This ellipsoid will have axis lengths r and r ′

i ,
where

r ′
i = r(ni · ei).

The orientation of the axis can be found by observing
that the disc will retain its radius in the direction per-
pendicular to both the viewing direction and the surface
normal:

ri = r(ni ×ei).

The axis with length r ′ is obviously perpendicular to this,
so

r′
i = r ′

i
ei × ri

|ei × ri | .

A.2 Scale-based stippling

Assuming the particles are evenly distributed, one finds
that they will form an approximately hexagonal pattern
over the surface (recall Fig. 3b). We further assume that
particles in the immediate neighbourhood of a particle pi
experience similar lighting conditions as pi , and ignore
overlap between particles.

Consider a triangle in the hexagonal grid, consisting of
particles pi , pj and pk. Our assumptions allow us to sim-
plify the size of these particles to a single Si. This way,
the fraction of white in the triangle (i.e., the intensity Li at
those points) can be expressed as

Li = 1−
1
2πS2

i
1
4

√
3σ2

,

where σ is the (average) distance between neighbouring
particles. This can be solved for Si, resulting in

Si = σ

√√
3

2π
(1− Li).

A.3 Curvature-based silhouette approximation

Suppose the local principal curvatures at point p are given
by κ1 and κ2, with directions k1 and k2 respectively. These
vectors, combined with the surface normal n form a local
coordinate frame in p. Using Rodrigues’ formula, we can
linearly approximate the behaviour of the normal in this
frame:

n′(u, v) = (−κ1u, −κ2v),

where u and v correspond to the k1 and k2 directions re-
spectively. The to-eye vector e can be described in this
frame as

e′ = (k1 · e, k2 · e, n · e).

This allows us to define the silhouette as the line

e′ ·n′(u, v) = −κ1(k1 · e)u −κ2(k2 · e)v+n · e = 0,

from which we derive a parallel direction vector in world-
space:

d = −κ2(k2 · e)k1 +κ1(k1 · e)k2.

Particle-based non-photorealistic volume visualization 345

References

1. Baer, A., Tietjen, C., Bade, R., Preim, B.:
Hardware-accelerated stippling of surfaces
derived from medical volume data. In:
EuroVis, Proceedings, pp. 235–242.
Eurographics Association, Aire-la-Ville
(2007)

2. Bruckner, S., Gröller, M.E.: Volumeshop:
An interactive system for direct volume
illustration. In: IEEE Visualization,
Proceedings, pp. 671–678. IEEE Computer
Society Press, Los Alamitos (2005)

3. Bruckner, S., Gröller, M.E.: Style transfer
functions for illustrative volume rendering.
Comput. Graph. Forum 26(3), 715–724
(2007)

4. Burns, M., Klawe, J., Rusinkiewicz, S.,
Finkelstein, A., DeCarlo, D.: Line drawings
from volume data. In: SIGGRAPH,
Proceedings, pp. 512–518. ACM, New
York (2005)

5. Busking, S.: Volumeflies – a smart-
particle-inspired framework for illustrative
volume rendering. Master’s thesis,
Technische Universiteit Eindhoven
(2006)

6. Co, C.S., Hamann, B., Joy, K.I.:
Iso-splatting: A point-based alternative to
isosurface visualization. In: Pacific
Graphics, Proceedings, pp. 325–334. IEEE
Computer Society Press, Los Alamitos
(2003)

7. Cornish, D., Rowan, A., Luebke, D.:
View-dependent particles for interactive
non-photorealistic rendering. In: Graphics
Interface, Proceedings, pp. 151–158.
Canadian Human-Computer
Communications Society, Ottawa (2001)

8. Deussen, O., Hiller, S., van Overveld, C.,
Strothotte, T.: Floating points: A method
for computing stipple drawings. Comput.
Graph. Forum 19(3), 40–51 (2000)

9. Dong, F., Clapworthy, G., Lin, H.,
Krokos, M.: Nonphotorealistic rendering of
medical volume data. IEEE Comput.
Graph. Appl. 23(4), 44–52 (2003)

10. Ebert, D., Rheingans, P.: Volume
illustration: Non-photorealistic rendering of
volume models. In: IEEE Visualization,

Proceedings, pp. 195–202. IEEE Computer
Society Press, Los Alamitos (2000)

11. Haeberli, P.: Paint by numbers: abstract
image representations. In: SIGGRAPH,
Proceedings, pp. 207–214. ACM, New
York (1990)

12. Hertzmann, A., Zorin, D.: Illustrating
smooth surfaces. In: SIGGRAPH,
Proceedings, pp. 517–526. ACM, New
York (2000)

13. Interrante, V., Fuchs, H., Pizer, S.:
Conveying the 3d shape of smoothly
curving transparent surfaces via texture.
IEEE Trans. Vis. Comput. Graph. 3(2),
98–117 (1997)

14. Kindlmann, G., Whitaker, R., Tasdizen, T.,
Moller, T.: Curvature-based transfer
functions for direct volume-rendering:
methods and applications. In: IEEE
Visualization, Proceedings, pp. 513–520.
IEEE Computer Society Press, Los
Alamitos (2003)

15. Kobbelt, L., Botsch, M.: A survey of
point-based techniques in computer
graphics. Comput. Graph. 28(6), 801–814
(2004)

16. Koenderink, J., van Doorn, A.: Surface
shape and curvature scales. Image Vis.
Comput. 10(8), 557–565 (1992)

17. Lu, A., Ebert, D., Hansen, C., Hartner, M.,
Morris, C., Rheingans, P., Taylor, J.:
Illustrative interactive stipple rendering.
IEEE Trans. Vis. Comput. Graph. 9(2),
127–138 (2003)

18. Meyer, M., Georgel, P., Whitaker, R.:
Robust particle systems for curvature
dependent sampling of implicit surfaces. In:
Shape Modeling and Applications,
Proceedings, pp. 124–133. IEEE Computer
Society, Washington DC (2005)

19. Nagy, Z., Schneider, J., Westermann, R.:
Interactive volume illustration. In: Vision,
Modeling and Visualization Workhop,
Proceedings, pp. 497–504. Akademische
Verlagsgesellschaft Aka GmbH, Berlin
(2002)

20. Pang, A., Smith, K.: Spray rendering:
Visualization using smart particles. In:

IEEE Visualization, Proceedings,
pp. 283–290. IEEE Computer Society
Press, Los Alamitos (1993)

21. Pastor, O., Strotthote, T.: Graph-based point
relaxation for 3d stippling. In: The Fifth
Mexican International Conference in
Computer Science, ENC, Proceedings,
pp. 141–150. IEEE Computer Society,
Washington DC (2004)

22. Praun, E., Hoppe, H., Webb, M.,
Finkelstein, A.: Real-time hatching. In:
SIGGRAPH 2001, Computer Graphics
Proceedings, pp. 579–584. ACM, New
York (2001)

23. Rusinkiewicz, S., Levoy, M.: Qsplat:
A multiresolution point rendering system
for large meshes. In: SIGGRAPH,
Proceedings, pp. 343–352. ACM, New
York (2000)

24. Secord, A.: Weighted Voronoi stippling. In:
The second international symposium on
Non-photorealistic animation and
rendering, Proceedings, pp. 37–43. ACM,
New York (2002)

25. Struik, D.: Lectures on Classical
Differential Geometry. Dover Publications,
New York (1988) (reprint)

26. Su, W.Y., Hart, J.C.: A programmable
particle system framework for shape
modeling. In: International Conference on
Shape Modeling and Applications,
Proceedings, pp. 114–123. IEEE Computer
Society Press, Los Alamitos (2005)

27. Treavett, S.M.F., Chen, M.: Pen-and-ink
rendering in volume visualization. In: IEEE
Visualization, Proceedings, pp. 203–210.
IEEE Computer Society Press, Los
Alamitos (2000)

28. Witkin, A.P., Heckbert, P.S.: Using
particles to sample and control implicit
surfaces. In: SIGGRAPH, Proceedings,
pp. 269–277. ACM, New York (1994)

29. Yuan, X., Chen, B.: Illustrating surfaces in
volume. In: VisSym, Proceedings,
pp. 9–16. Eurographics Association,
Aire-la-Ville (2004)

346 S. Busking et al.

STEF BUSKING received both BSc (2005) and
MSc degrees (2006) in computer science from
the Technische Universiteit Eindhoven. He is
currently a PhD candidate at Delft University
of Technology. His research interests include
computer graphics and visualization, medical or
otherwise. He currently performs research into
comparative visualization for medical datasets.

ANNA VILANOVA is an assistant professor at
the Biomedical Image Analysis group at Tech-
nische Universiteit Eindhoven. She received her
PhD degree in 2001 from the Vienna University
of Technology and a MSc in Computer Science
from the Universitat Politècnica de Catalunya.
Her current research
interests are in medical visualization and image
analysis.

JARKE J. VAN WIJK is full professor in Visual-
ization at the Technische Universiteit Eindhoven.
He holds a PhD in computer science (1986) and
a MSc in
industrial design engineering (1982) from the
Delft University of Technology. He is a member
of IEEE, ACM SIGGRAPH and Eurographics,
and has served as paper co-chair for IEEE
Visualization and IEEE InfoVis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

