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Abstract 

 
Minimally Invasive Surgery or MIS is a branch of surgery focused on reducing the invasiveness of surgical 
procedures, accomplished by minimizing the size and number of incisions. The approach inevitable leads to 
confinement of the operational space and restricts the movement of the used instrumentation. In this 
thesis, a MIS procedure called Endonasal Skull Base Surgery (ESBS) is presented to illustrate the need for 
maneuverable instruments.  

The maneuverability of an instrument can be enhanced by adding one or multiple cable-actuated 
steerable elements to the tip of the instrument. Currently the cables in these (multi-)steerable instruments 
are placed parallel to the longitudinal axis of the steerable element. This thesis proposes the use of helix 
cables as means of multi-steerable actuating, wherein the cables are rotated along the longitudinal axis of 
the steerable element.   

A force driven two dimensional simulation model was developed and validated in order to analyze the 
actuation behavior of helix cables in a steerable element. The results enabled the creation of a mechanical 
control method, which is integrated in a demonstrational prototype. The prototype reveals three additional 
functionalities to a steerable element: 1) The expansion of the shape domain of a steerable element, 
resulting a higher diversity of possible direction and position combinations of the tip. 2) The incorporation 
of a local positional stiffness of the tip. 3) The incorporation of a sampling behavior between the control 
handle and tip, meaning that only the lowest frequencies of the shape in the handle is passed on to the tip.  
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1 Introduction 

1.1 Background 
Minimally Invasive Surgery or MIS, is a quickly 
evolving branch of medical interventions. It attempts 
to minimize the invasiveness of open surgery 
procedures by reducing the volume of incisions to 
the bare minimum. 

Natural Orifice Translumenal Endoscopic Surgery 
(NOTES) is a specific branch of MIS that uses the 
natural orifices of the patient as an entrance point, 
completely eliminating the need for skin incisions. 
An example of a NOTES procedure is Endonasal Skull 
Base Surgery, (ESBS). The goal of ESBS is to reach a 
tumor growing on or next to the pituitary gland by 
entering through one or both nostrils of the patient 
(Figure 1).  

During ESBS, the path to reach the tumor can 
become rather complex including multiple bends, 
since it is initially bound by the patients uniquely 
curved anatomy of the nasal cavity. At the back of 
the nasal cavity, the surgeon needs to drill through 
the bony walls of the sphenoid sinus, which is an 
empty cavity in front of the pituitary gland, as 
illustrated in Figure 1. The resulting holes restrict the 
range of motion of the instrumentation. The 
surgeon, however, would like to have the ability of 
altering the position and direction of the tools after 
passing the sphenoid sinus cavity. 

ESBS therefore imposes a certain level of 
adaptability of the instrumentation. A potential 
solution can be found in the development of 
steerable equipment, as is illustrated in Figure 1. 

1.2 Instrumentation 
MIS-instrumentation must fit through small incisions 
and allow the surgeon to manipulate tissue with 
sufficient force. Current MIS-instrumentation is 
therefore slender and rigid. Figure 2 depicts a typical 

example of such an instrument consisting of a 
handle, shaft and tip onto which a tool is installed. 
Insertion of such instruments through an incision in 
the skin or natural orifice (as in ESBS) reduces the 
freedom of movement of the instrument to the four 
degrees of freedom (DOF) illustrated in Figure 2. 

The surgeon’s ability of positioning and directing 
the instrument is thereby drastically reduced. 
Additionally, DOF 1 and 2 of Figure 2 include a 
coupling between the position and the direction of 
the instrument. This makes it impossible to 
reposition the tool sideways without changing the 
direction of the tool as well.  

Steerable instrumentation enhances the freedom 
of movement by adding a steerable element at the 
tip. A steerable element contains additional DOF 
that enable the decoupling between the tools 
position and direction.  

 T. Nai [1] presents multiple manners in which 

 
Figure 1: Endonasal Skull Base Surgery. In order to reach 
the pituitary gland while entering through a nostril of 
the patient, one must first drill through the walls of the 
sinus cavity. Figure is copied from [11]. 

 

  
Figure 2: Left: The four remaining DOF of an inserted instrument [7]. Right: A typical MIS slender and rigid instrument, 
consisting of a handle, shaft and tip onto which a tool is installed. 
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steerable elements can be actuated: e.g. gears, rods, 
heat actuation etc. Cable actuation is however the 
most used type of actuation [1] & [2], due to its 
flexible nature it allows for simple and easy to 
miniaturization of structures. Furthermore it reduces 
operational risks due to failure, by the exclusion of 
high pressures, high temperatures or electric energy 
inside the body of the patient.  

All known cable-actuated instruments work by 
the same principle [2]. A pulling force is exerted on a 
cable thereby creating a moment around a single 
joint or multiple joints. The result is a deflection of 
the steerable element. A single-jointed segment with 
two steerable DOF is fully actuated and therefore 
stiff. A multi-jointed segment with two steerable 
DOF is, however, under actuated and subsequently 
less stiff [2]. 

A popular example of a single-jointed cable 
actuated instrument is the Endowrist of Intuitive 
Surgical, as shown in Figure 3 [3]. The instrument 
has a diameter of 5 mm and allows the surgeon to 
redirect the tip of the instrument with an additional 
2 DOF [4]. Its construction does, however, include 
pulleys which impose rather small bending radii on 
the cables, resulting in cable fatigue and eventual 
failure. The purchasing and maintenance of the 
Endowrist is therefore quite expensive [5].  

The Endowrist shows that the minimal bending 
radii of the cables pose a serious minimization 
problem. A solution is found in the enlargement of 
the length of a steerable element by creating a 
multi-jointed structure. The cable ring forceps 
construction of Figure 3 incorporates this idea. Just 
like the Endo Wrist the segment is steerable in 2 
DOF, but now the cables are enclosed by a spring 

and multiple ring shaped joints. The addition of 
these extra joints does, however, make the 
instrument under actuated and therefore less stiff. 

The instrument presented in Figure 4 includes a 
solution to the stiffness problem by enclosing the 
cables by a braided structure [6]. A braided structure 
is a woven structure of clockwise and counter-
clockwise spiraling wires, which will be referred to as 
helix wires. After one full spiral the helix wires are 
fixated on both ends of the cylinder, thereby 
conserving their lengths. The result is a torsion stiff 
structure that can only bend to a shape with a 
constant radius.  

Incorporating this structure into a steerable 
element will enhance its stiffness, since it resists 
deformation to non-constant radius shapes due to 
external forces. This behavior can be explained by 
studying the change in length of a helix wire during a 
bending motion of the structure.  

The right part of Figure 4 illustrates a deformed 
steerable element with a constant bending radius. 
One can see that the path lengths of the parallel 
blue wires with the minimal and maximal bending 
radii are respectively shortened and elongated. The 
path length of the central placed parallel wire does, 
however, not change. The figure also shows that 
while the bending radius of a parallel wire is 
constant, the bending radius of a helix wire 
continually changes along the cylinder. If the 
cylinder is deformed with a constant bending radius, 
the average bending radius of a helix wire will be 
equal to the central bending radius. Therefore the 
path length of the helix wire will not change. If 
however the cylinder should bend with a non-
constant bending radius, the path lengths of the 

 
 

Figure 3: Left& middle: The Endowrist of Intuitive Surgical, used in the Da Vinci surgical system, a single-jointed steerable 
element constructed with pulleys [4]. Right: The cable ring forceps structure by P. Breedveld et al. [7], a multi-jointed 
steerable element constructed out of a ring of cables enclosed by a spring and rings. 
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helix wires will be shortened or elongated, 
depending on the position of the cable.  
In a braided structure the helix wires are woven into 
each other and their lengths are conserved by the 
fixation on both ends. Through these conditions, the 
structure cannot bend with a non-constant bending 
radius, thus making the steerable element of Figure 
4 stiff. 

By the same principle, the braided structure is 
also torsion stiff. A clockwise rotation along the 
longitudinal axis would namely induce a reduction of 
the path lengths of the clockwise wires, while 
increasing the path lengths of the counter-clockwise 
wires.  

The so far presented steerable instruments are 
all equipped with a single steerable element at the 
tip, restricting the shape domain of the instrument 
to a single bend with a constant radius. 
Instrumentation suitable for ESBS must however be 
capable of complex shapes consisting of multiple 
bends and therefore a non-constant bending radius. 
The Multiflex presented in Figure 5 is capable of 
creating these complex shapes [7]. It consists of five 
steerable elements placed in series. Each segment is 
actuated by its own set of actuation cables, making it 
possible to steer each segment independently and 
thereby creating more complex shapes. The addition 
of steerable elements and extra actuation cables 
does, however, limit the possibility of minimizing the 
diameter of the instrument.  

This limitation creates the need for a steerable 
element that is not only able to create a constant 
radius bend, but also capable of forming complex 
shapes with a non-constant bending radius. This 

thesis proposes the idea of using the helix wires of a 
braided structure as actuation cables, expecting 
them to be able to induce a non-constant bending 
radius of a steerable element while preserving the 
stiffness qualities of a braided structure. 

1.3 Problem definition 
Cable actuated steerable elements used in current 
(multi-)steerable instrumentation are limited to 
constant bending radii, have low stiffness and/or 
suffer from cable fatigue. 

1.4 Goal 
 To investigate the behavior of a steerable 

element actuated by helix cables, while 
focusing on the creation of complex shapes 
and stiffness of the steerable element. 

 
Figure 5: A drawing of the Multiflex created by P. 
Breedveld et al. [11]. A single-jointed multi-steerable 
instrument consisting of five serial placed steerable 
elements, capable of creating complex shapes. 

 

 

 
Figure 4: Left: The braided structure used in a steerable element by D. Stefanchik et al. [6]. It ensures that the steerable 
element can only bend with a constant bending radius. Right: The parallel wires (blue) of the braided structure have a 
constant bending radius while the bending radii of the helix wires (red and green) continually change. When the lengths 
of the helix wires are conserved by fixating both ends, the structure is only able to bend with a constant radius. 
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 Creating and validating a simulation model 
based on the mechanical analysis of a cable 
actuated segment. 

 Creating a steering mechanism, able to 
create complex non-constant radius shapes.  

1.5 Contents 
The thesis consists of two main parts i.e. the 
simulation model and the demonstration prototype, 
each described in a separate chapter.  
 Chapter 2 is dedicated to the simulation model. 
In Section 2.1 the basic configuration and the 
corresponding assumptions and simplifications of 
the simulation model are presented. Section 2.2 is 
dedicated to the actual workings of the model and 
its implementation into the used software package 
Matlab. The results of the simulation model are 
presented and analyzed in Section 2.3. These results 
suggest a possible inversion of the model which is 
briefly presented in Section 2.4. The results of the 
simulation model are validated based on a physical 
model. Section 2.5 discusses the validation process 
and the design of the physical model. Section 2.6 
reveals the results of the validation process. The 
final section of Chapter 2, Section 2.7, discusses the 
simulation model itself, its validation and introduces 
possible enhancements. 
 Chapter 3 is dedicated to the demonstration 
prototype, starting in Section 3.1 with an 
introduction of its use and functionality. Section 3.2 
discusses currently used methods of control and 
defines the control problem that is addressed by the 
prototype. A solution to this control problem is 
presented in Section 3.3. Next, Section 3.4 describes 
the incorporation of this newly found solution into a 
working prototype. The finished prototype is then 
presented and its behavior is analyzed in Section 3.5. 
Finally in Section 3.6 the demonstration prototype is 
discussed base on its behavior, implications and 
possible improvements.  
 The last chapter of this thesis presents the overall 
conclusions based on the previous determined goals.  
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2 Simulation model 

2.1 Mechanics 
The developed simulation model is a computer tool 
for investigating the behavior of a steerable element 
actuated by helix cables. The choice to make a 
computer model rather than a physical model is 
based on the following reasons.  

First of all, in contrast to a physical model, the 
dimensions and characteristics of a steerable 
element in a computer model can easily be altered. 
This allows for a more thorough investigation of the 
structure. Furthermore a computer model allows the 
investigation of extreme positions which would 
otherwise cause permanent damage to a physical 
model.  

The computer model is based on a segmented 
approach similar to the finite element method for 
structural analysis. Matlab is used to perform a static 
analysis of the segments. The choice for Matlab is 
due to the transparent and highly adaptable nature 
of this software package.  

2.1.1 Configuration 
To reduce the complexity of this first simulation 
model of a helix system, it was chosen to begin the 
study with a two dimensional representation of a 
single steerable element. This segment should be 
capable of forming complex shapes and therefore 
must contain multiple joints.  

These joints are created by dividing a flexible 
core into n segments with the use of ribs. This 
approach is similar to the cable ring forceps 
construction of Figure 3, where the flexible core is a 
spring and the structure is segmented with the use 
of rings. The construction of the model is illustrated 
in Figure 6.   

The actuation cables are fixated at the top rib 
and pass through fixed holes in the remaining ribs 
through which they can slide. A cable can lie parallel 
to the flexible axis or skewed, thereby forming a 
helix cable. A helix cable has a direction change 
when the end of a rib is reached. The bottom rib of 
the model is fixed to the ground.  

2.1.2 Assumptions & Simplifications 
In a (multi-)steerable instrument, the length change 
of a steerable element due to longitudinal forces can 
generally be neglected. The flexible axis of the model 
is therefore considered incompressible.  
 Each segment must represent the characteristics 

of a single bending 1-DOF joint, which can only 
deform with a constant radius. 
 The function of the ribs is to fixate the position 
between a cable and the flexible axis. To ensure no 
unwanted alterations in this position, the ribs are 
modeled as being infinitively stiff. 
 All elements in the model are modeled with just 
one dimension, which is their length. Their thickness 
is neglected. 

A simulation model will always be a simplification 
of reality and in this model a number of 
simplifications have been made to reduce the 
mathematical complexity. Next to the two-
dimensional simplification, the model is also a 
kinematic static representation. This means that the 
model can be used to find the static equilibrium of 
an actuated segment while no dynamic effects are 
included. Other simplifications are; the neglection of 
friction, mass and the bending stiffness of  cables.  

Friction and the bending stiffness of cables 
probably do play a major role when a steerable 
element is minimized but are neglected for the 
purpose of this very first model of a helix system. In 
the miniature construction of surgical instruments, 
the actuation forces are much higher than the forces 
associated with the inertia. Hence dynamic effects 
and mass are neglected. 

 
Figure 6: The model is built up out of a flexible central 
axis which is divided by ribs into n segments. The 
actuation cables are fixated at the top rib and pass 
through holes in the other ribs. 
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2.2 Mechanical model 
The working principle of the simulation model is 
similar to the conjugate beam method for calculating 
the deformation of a loaded beam [8]. In this 
method the beam is divided into segments of length 

l and the deformation angle dθ of a segment can be 
calculated by: 

 

   
   

   
 Eq. 2-1 

 
where M is the total moment, E the modulus of 
elasticity and I the moment of inertia. By combining 
all segment deformations through integration, the 
elastic curve function θ(x) describing the 
deformation of the beam is realized. 
 The simulation model calculates the deformation 
of a segment in an equal manner. There is however 
one major difference in that the conjugate beam 
method works only for small deformations. 
Therefore it can neglect the direction change of the 
shear force in a deformed segment. Furthermore it 
also neglects the contribution of the normal force to 
the moment balance of that segment. The 
simulation model works with large deformations and 
these effects can therefore not be neglected.                                                                                                                                  

2.2.1 Variables 
The stiffness of the flexible axis denoted by c with 

unit [Nmm/rad] is based on Eq. 2-1: 
   

  
   

 
  Eq. 2-2 

 
The dimension notations of the model of which the 
bottom three are illustrated in Figure 7 are: 
 

n segment number  
m cable number 
r radius of the steerable element  [mm] 

l length of a segment     [mm] 
β angle of a cable       [rad] 
 

A parallel cable lies (as the name implies) parallel to 
the flexible axis and has a ∠β-value of ½ π. A helix 
cable has a positive direction to the right for ∠β-
value above ½ π and conversely a ∠β-value below ½ 
π will give the helix cable a negative direction to the 
left.  

2.2.2 Construction 
The segments of the model are distinguished by two 
different types, namely segment 1 and segments 2 
to n. Segment 1 has the cables fixated to the rib, 
while in segment 2 to n the cables pass through the 
ribs.  

The calculation process starts by singling out 
segment 1 and grounding its bottom rib, thereby 
creating its own local coordination system. A 
deformation is induced by the actuation of one or 
multiple cables. After the deformation of the 
segment is derived, segment 1 is released. This 
derivation process is repeated for each segment in 
sequence until from top to bottom all segment 
deflections have been derived. 

The following description of the model focuses 
on a single helix cable, starting at the right side of 
the top rib. Forces directed up and to the right are 
considered positive. Sine, cosine and tangent terms 
are written as s(…), c(…) and t(…). Equations marked 
with * are derived in more detail in Appendix A.1.  
 

Segment 1 
The model is fitted with a single helix cable fixated at 
point C1 and passing through point C2, as illustrated 
in Figure 8. The distances of these points compared 
to the flexible axis are noted by rC1 and rC2. These 
variables have positive values when located at the 
right side of the flexible axis and negative values 
when located at the left.  

The pulling force FC1 creates a moment around 
point A2, thereby deforming the flexible axis with a 
constant bending radius |A1O1|. The deformation is 
described by ∠α1, which is the variable of interest. 
Its value can be derived by solving the moment 
balance around point A2. From Figure 8 can be 
derived that the moment balance is equal to: 

 

 
 

Figure 7: Segment 1 with dimensions. 
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Figure 8: Deformed segment 1. The segment bends with a constant radius |A1O1| and is value by angle ∠α1. 

 
 ∑                                 Eq. 2-3 

 
In this notation a counter-clockwise moment is 
considered positive. A positive FC1x thereby creates a 
negative moment, while a positive FC1y results in a 
positive moment. In Figure 8 both components of Fc1 
are negative. Now each component of the moment 
balance must be expressed as functions of ∠α1, 
which will now be described separately.  

 
Mr1 

The value of the reaction moment Mr1 is equal to the 
bending moment of the flexible axis and can be 
described by:  
 

         Eq. 2-4 

 

FC1 

The positive force FC1 is decomposed into FC1x and 
FC1y by: 

 
           (  ) 

           (  ) 
Eq. 2-5 

 
∠δ1 is equal to the arctangent of |C2D2| divided by 

|C1D2|. These distances are written into functions of 

∠α1 and ∠δ1 can thereby be expressed by: 
 

∠     ( (
  
 
)  

  

(
 
  
    )   (  )

) *Eq.2-6 

 

where dr is equal to the difference between rn-1 and 

rn, (Figure 10) which is constant since in initial 
position a cable is straight. The value of dr is 
determined by: 
 

      (
 

 
  ) Eq. 2-7 

 
For a parallel cable dr is zero since ∠β will be equal 
to half π. 
 

dC1x & dC1y 

The moment arms dC1x and dC1y are equal to 
respectively |A2D2| and |C1D2| and can be stated as: 
 

      
 

  
 (

 

  
    )   (  ) 

     (
 

  
    )   (  ) 

*Eq. 2-8 

 

The fully symbolically constructed moment balance 

 
Figure 9: Decomposition of Fr1 and Fc1 and visualization 
of their moment arms for deriving the moment balance 
of Eq. 2-3. 
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of Eq. 2-3 is presented in Appendix A.1. 
The addition of multiple cables would result in the 
addition of force and moment arm couples while the 
Mr1 term remains unchanged. The bare moment 
balance would therefore be equal to: 

 

∑                              

                       
Eq. 2-9 

 
For a single cable, the moment balance can be 
solved symbolically with the use of Maple. However, 
when more cables are added the moment balance 
becomes symbolically unsolvable and the solution 
for ∠α1 is derived numerically.  

When the value of ∠α1 is determined, the 
reaction forces Fr1x and Fr1y, needed for calculations 
on segment 2, can be derived from the force 
balances: 

 

∑             

∑             

Eq. 2-10 

 
Now the deformation of segment 1 is determined, 
the calculation process continiues to segment 2. 
 

Segments 2 to n 
Figure 10 illustrates the deformed state of the 
second segment. The bottom rib of the segment is 
grounded again, creating the local coordination 
system of segment 2. There are two forces and one 
moment working on the segment, namely the action 
force Fa1 which is equal but opposite from force Fr1, 
cable force FC2 and action moment Ma1 which is 
equal but opposite from reaction moment Mr1.  

Again the deformation ∠α2 is the variable of interest 
and can be derived from the moment balance 
around point A3. Figure 11 illustrates moment, the 
decomposed forces and related moment arms used 
to configure the moment balance around point A3.  

 

∑                             

                     
         

Eq. 2-11 

 
The moments, forces and moment arms of this 
moment balance will now be discussed separately. 

 
Mr2 & Ma1 

Just as in the first segment, the reaction moment 
Mr2 is equal to the bending moment of the flexible 
axis. Moment Ma1 results from releasing the bottom 
rib of segment 1, meaning that the reaction moment 
Mr1 must be compensated for. Ma1 is therefore equal 
but opposite to Mr1. 
 

         

          
Eq. 2-12 

 
Fa1 

Force Fa1 results from releasing segment 1 and its 
magnitude is therefore equal to Fr1. However, due to 
the change in local coordination systems and the 
deformation of segment 2, the direction of force Fr1 
is altered. The decomposition of Fa1 must therefore 
be expressed as:  
 

            (  )        (  ) 

            (  )        (  ) 
*Eq. 2-13 

FC2 

 
Figure 10: Deformed segment 2. 
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Cable force FC2 is the result of the tension in the 
cable caused by force FC1 and the direction change of 
the cable at point C2. This situation is illustrated by 
Figure 11. If the tension forces FC1 are decomposed, 
the longitudinal components will cancel each other 
out, while the components directed more 
perpendicular to the cable form FC2. The magnitude 
of FC2 can therefore be calculated by: 

 

           (  ) Eq. 2-14 

 
∠γ2 Needs to be written as a function of ∠α2. Since 
FC2 is directed at the middle of the direction change 
of the cable one can state:  
 

∠   ∠     ∠     
 ∠     ∠     

 
∠     ∠     ∠     ∠    

 
 

*Eq. 2-15 

 
A description of ∠δ2 is needed for the decomposition 
of FC2. From Figure 11 can be deducted that ∠δ2 is 
equal to: 
 
 

∠   ∠   ∠     *Eq. 2-16 

 
Force FC2  can now be decomposed into: 
 

          (∠  ) 

           (∠  ) 
*Eq. 2-17 

 
Moment arms 

Moment arms dC2x and dC2y around point A3, as 
illustrated in Figure 11 can be derived in the same 

manner as the moment arms of segment 1. The 
descriptions of dC2x and dC2y are therefore alterations 
of the moment arms dC1x and dC1y and can be 
expressed as: 
 

     
 

  
 (

 

  
    )   (  ) 

     (
 

  
    )   (  ) 

Eq. 2-18 

 
Since Fa1 and FC2 are positioned on the same rib, the 
moment arms da1x and da1y can be derived in the 
same manner with an alteration of the multiplied 
length. They can therefore be written as: 
 

     
 

  
 
 

  
  (  ) 

     
 

  
  (  ) 

Eq. 2-19 

 
The moment balance has become rather complex 
and its complexity grows with the addition of 
multiple cables. A symbolic solution can thereby not 
be contained and the value of ∠α2 is numerically 
calculated with the use of Matlab.  

 
Fr2 

When the value of α2 is determined, the reaction 
force Fr2 can be derived from the force balances of 
segment 2. 
 

∑                       

∑                       
Eq. 2-20 

 
Now the calculation of segment 2 is finished, the 
model continues to segments 3 to n, each of which 

  
 

Figure 11: Left: Moment and decomposed forces. Middle: Moment arms. Right: Composition of cable force FC2 
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can be calculated with the same equations as 
segment 2. 
 All equations of segment 1 and 2 are suitable for 
negative values of ∠α and all possible cable 
combinations. This is explained in Appendix A.1. 

2.2.3 Implementation 
The basic build-up of the Matlab code is also divided 
into a section for segment 1 and a section for 
segments 2 to n. First the deformation of segment 1 
is calculated. Since no symbolic solution for the 
moment balance can be found that includes multiple 
cables, the value of αn is derived numerically. This is 
done by the Matlab function fzero, which searches 
for a local zero-point of the moment balance based 
on its direction of absolute decrease.  
 The algorithm uses a combination of the 
bisection, secant and inverse quadratic interpolation 
methods in order to find this direction [9]. These 
methods do not use derivative information from the 
function itself, but acquire this information from 
interval calculations. 

The fzero function can be used because the 
moment balance within a preset domain of α is a 
convex function and therefore crosses the zero-line 
only once. A function is called convex if and only if 
the derivative of the function is either completely 
positive and/or zero or negative and/or zero. The 
derivatives of the moment balances (Eq. 2-3 & Eq. 
2-11) are mainly influenced by the bending moment 
of the flexible axis, which derivative is equal to 
bending stiffness c. The derivatives of the moments 
created by the components of Fa and FC are much 
smaller then c. Therefore the overall derivative of 
the moment balance will be constant and thus the 
moment balance is convex. A more detailed 
explanation is presented in Appendix A.4. 

A symbolic solution is found for a single cable and 
matches the results of the numerical solution.  

The full Matlab code is presented in Appendix 
B.1. 

2.3 Simulation results 
Before continuing with the explanation of the 
simulation model’s result, a cable notation is 
proposed to identify the position of a cable more 
clearly. Figure 12 illustrates the manner of the 
notation. A cable notation starts with a capital letter 
L, M or R to identify the starting position of the 
cable. An extra lower-case notation for helix cables is 
added or subtracted, identifying the horizontal 

distance and direction in which the cable travels till 
it reaches segment n. A helix cable that starts at the 
left side and finishes at the right will therefore be 
notated by L+2r (Figure 12). 

As one can expect, the model is symmetrical, 
meaning that mirrored cables like L+2r and R-2r will 
produce equal but opposite results. First the results 
of individual cables will be discussed, after which the 
results of combination of multiple cables are given.  

 
Individual cable 
Figure 13 illustrates the deformed shapes, α-graphs, 
forces and moments of five different cable positions. 
The α-graphs start at segment 1, which represents 
the top segment of the steerable element. From the 
moment balances of section 2.2.2 one knows that Mr 
represents the bending moment of the flexible axis 
and is equal to the product of stiffness c and ∠α. 
Line Mr is therefore uniform to the α-graph.  
Mr is altered by moments MFa.x, MFa.y, MFc.x and MFc.y 
resulting from the components of Fa and FC. These 
moments will be referred to as force moments. In 
the moment-graphs the force moments are striped 
lines and represent the negative summation of the 
moment along the segments. This representation 
supplies a more intuitive view on their contribution 
to Mr, which is passed on from segment to segment. 
Do note that in this notation a moment in a segment 
will skew the moment line and for a horizontal 
moment line the responsible moment will be zero at 
those segments.  

 
Figure 12: The notation of cables: A capital L, M or R 
stands for the staring position. A lowercase addition or 
subtraction indicates a helix cable, its direction and the 
horizontal distance it travels from segment 1 to n. 
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This page is not in use in order to present the 
following figure and description of the validation 
together. 
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Cable Deformed segment α-graph Forces Moments 

R 

    

R-r 

    

R-2r 

    

R-4r 

    

M-2r 

    
Figure 13: The deformed shape, α-graph, forces and moments of five cable positions 
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The first cable of Figure 13 is a parallel placed cable. 
One can see that the steerable element deforms 
with a constant radius, resulting in a horizontal line 
for ∠α. This result is identical to the behavior of 
parallel cable actuated instrumentation discussed in 
the introduction. The moment-graph shows that Mr 
is initially caused by MFc.y of segment 1. Notice that 
its moment line is almost constant, meaning that the 
MFc.y in segments 2 to n is close to zero. MFa.x is 
represented by a decreasing moment line due to the 
addition of the moment created by Fax in each 
segment. It is however compensated for by the 
other force moments. 

The second cable is R-r and one can immediately 
see the difference with the parallel cable. Now the 
bending radius is no longer constant but increases 
constantly along the steerable element, resulting in 
a constantly decreasing α-value. This phenomenon is 
explained when realizing that contrary to the parallel 
cable, the helix cable includes the force FC1x in 
segment 1. This force increases Fa1x and now MFa.x is 
no longer fully compensated by the other force 
moments. The increase of Fa1x is directed to the left 
and can be interpreted as gradually pushing the 
steerable element straight.  
 The third cable is R-2r and one can see that the 
deformed shape resembles a symmetrical S-curve. 
The top half of the deformed shape is identical to 
the deformed shape of R-r, which could be expected 
since there they have a similar cable position. From 
the α-graph it is also clear to see that the shape is 
symmetrical, since it’s a straight line which passes 
the zero line at half the segment domain.  Fax is again 
greater resulting in a higher value for MFa.x. Fax can 
be interpreted as pushing the deformed shape even 
further to the left. 
The fourth cable position is R-4r and it includes a 
direction change of the cable halfway the steerable 
element. In the force-graph one can see that this 

direction change induces a positive peak of force FCx, 
which results in a direction change of Fax, and 
therefore MFa.x. This peak is explained by the 
increase of the cable bend angle at its direction 
change. The peak force can be interpreted as 
pushing the structure to the right again. The α-graph 
has a pyramid shape, indicating the change of 
direction.  

The fifth cable is M-2r, which starts at the middle 
where the moment arm dCx is zero and therefore 
MFc.y at segment 1 is zero. The α-graph therefore 
also starts at zero and the deformation in the 
following segments is mainly caused by MFa.x. The α-
graph again has a pyramid shape due to the 
direction change of the cable. 

By reviewing these results one can conclude on 
the following. The deformed shape of a segment is 
mainly caused by Fc1y and Fc1x. Fc1y is mainly 
responsible for Mr1 that passes through the whole 
steerable element and induces a constant radius 
bend. Fc1x is highest for helix cables and introduces 
Fa1x that passes through every segment and deforms 
the steerable element with a non-constant bending 
radius.  

The simulation model thereby show great 
similarities with the results of the conjugate beam 
method for a fixed beam loaded with a pure bending 
moment or a perpendicular force as illustrated in 
Figure 14. The moment diagrams of M and F are 
uniform to those of MFc.y and MFa.x of cable R-2r in 
Figure 14. This seems peculiar since the simulation 
model also includes extra cable forces throughout 
segments 2 till n, while the conjugate beam method 
only includes the shear force which does not change 
direction.  
An explanation can be found if one looks at the force 
graph and the moment graph of cable R in Figure 13. 
Fax is initiated by Fc1x in segment 1 and influenced 
throughout the remaining segments by Fcx and 

 
Figure 14: The deformation of a fixed beam due to a pure bending moment M or a perpendicular placed force F. 
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indirectly by Fay and FCy through the direction 
changes of local coordination systems (*Eq. 2-13). 
Fax creates the moment MFa.x which would distort 
the constant behavior of Mr1, but is however 
compensated for by the moments created by the 
same forces that influence Fax, namely Fcx1, Fcy1 and 
Fay. It therefore seems that the cable in the model 
acts as a compensation mechanism to keep the 
initial moments and forces set in segment 1 intact.   

The same influence of the force moments MFa.y, 
MFc.x and MFc1.y on MFa.x can be seen for helix cables, 
for example cable R-r of Figure 13. In this 
configuration MFa.x dictates the behavior of Mr, 
which is a straight line from the initial value of MFc.y1 
in segment 1 to zero at segment 50. MFa.x does, 
however, deviate from a perfectly straight line and is 
slightly more skewed than Mr. This is however again 
compensated for by the MFay, MFc.x and MFc.y. 
 
 
 

Combined actuation 
The situation wherein multiple cables are actuated 
simultaneously will be referred to as combined 
actuation. An interesting phenomenon reveals itself 
during combined actuation. The deformation can 
namely be approximated by summarizing the 
deformation of the individual cables. This effect is 
analyzed for the combined actuation of cables R-4r, 
R-2r and R, illustrated in Figure 15.  

The α-graph of Figure 15 includes five lines. The 
red line represents the output of combined 
actuation. The three blue lines are the outputs when 
each cable is actuated individually. The dotted green 
line represents the summarized outputs of the 
individual cables.  One can see that the green dotted 
line and red line almost perfectly match each other.  

This indicates that in each segment, each 
individual cable contributes the same overall 
moment during combined actuation as it does when 
the cable is actuated individually. This seems odd, 
because the forces generated by a cable will differ 

Deformed Shape α-graph 

  
Cable 1: R-4r [3.3 N] Cable 1: R-2r [6.15 N] Cable 1: R [2.95 N] 

   

   
Figure 15: Combined actuation of R-4r, R-2r and R. Top left: The deformed shape. Top right: The α-graph showing the 
combined output, the output of the individual cables and the summarized outputs of the individual cables. Bottom: The 
forces and moment graphs of the individual cables. The full lines represent the forces and moments in combined 
actuation, the stripped lines represent the resulting forces and moments when the cables are actuating the steerable 
element individually. 
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due to the shape change of the steerable element. 
These differences are illustrated by the force graphs 
of Figure 15, in where equal colored full and dotted 
lines represent a force during combined and 
individual actuation respectively.  The force 
moments will inevitably change as well, as is 
illustrated by the deviation between the full and 
dotted lines of the force moment graphs of Figure 
15.  

The summation of the force moments into Mr 
however result in an almost equal value for 
combined and individual actuation, as is illustrated 
in the moment graphs. It inevitably means that the 
changes of the force moments compensate each 
other. This compensation behavior was already 
discovered in the analysis of the individual cables 
and is apparently also applicable if the shape of the 
steerable element is changed.  

The Mr lines do however deviate at the first 
segments. This can be explained by the fact that MFcx 

and MFcy of segment 1 change due to the direction 
change of Fc1 caused by the α-change1. The deviation 
is however compensated for by the force moments 
of the sequential segments. 

The preservation of Mr reveals that one can 
approximate the outcome of combined actuation by 
summurizing the outputs of the individual cables.  

2.4 Inversion of the model 
The simulation model is based on an actuation-to-
shape approach. The inputs of the model are the 
amount of cables, their positions and the actuation 
forces. The output of the model is the deformed 
shape of the steerable element. The question arises 
if this process can be reversed, enabling one to 
determine the needed cable configuration in order 
to reach a desired shape. 
 Kinematic inversion of the mechanical model is 
not possible. This is due to the fact that the 
mechanical model handles the segments individually 
and the deformation of a segment can be caused by 
numerous cable configurations. The phenomenon 
revealed during the combined actuation can 
however provide a solution. The idea is that a 
desired shape can be approximated by combining 
the outputs of individual cables.  
 The output of the individual cables should 
therefore first be expressed as an equation, referred 
to as the cable equation. From Figure 13 it can be 
seen that the output of individual cable approximate 

linearity. The general cable equation can therefore 
be written as: 
 

   {
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where d is the direction of the cable, ndc represents 
the segment at which a direction change of a cable 
can occur and αndc is the α-value at this direction 
change. If the cable does not include a direction 
change, the value of ndc will be equal to n. C1, C2 and 
C3 are constants and are based on the dimensions 
and characteristics of the instrument. Deriving the 
cable configuration contains the following steps.  

The green dotted line in the α-graph of Figure 15 
serves as the desired deformed shape. First one 
indicates the position of the bend in the α-line. This 
inevitably requires a cable with a direction change in 
the desired direction at that position. Cable R-4r is 
chosen and introduced as cable 1 in the α-graph. A 
helix cable without a direction change is needed to 
skew the output of cable 1. Cable R-2r is chosen and 
introduced as cable 2. The combined output of cable 
1 and 2 is now uniform to, but lies beneath the 
desired α-line. A constant α-line is needed and 
therefore cable R is introduced as the final cable 3. 

Now that the position of the cables is known, one 
can determine and combine the related cable 
equations, whilst keeping the actuation forces 
variable. The resulting equation should be set equal 
to several α-values of the desired shape to form a 
system of equations. This system of equations 
should then be solved for the actuation forces.  

2.5 Validation 
A physical validation model is created in order to 
validate the behavior of the mechanical model. It is 
crucial that the simplifications made for the 
mechanical model are properly represented in the 
validation model. 

2.5.1 Experimental setup 
Before designing the validation model one must 
decide on which cable positions need to be 
evaluated. In Figure 16 two physical phenomena are 
marked with the letters a & b which indicate the 
crossing of the flexible axis and the direction change 
of a cable. Both these phenomena will be studied 
during the validation process and the following four 
cable positions are chosen for evaluation: 
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Figure 16: Left: Cable positions for validation. The letters 
a & b mark the crossing of the flexible axis and a 
direction change of a cable respectively. Right: 
Solidworks model of the validation model. 

 L       : Benchmark parallel cable 
L+r    : Benchmark helix cable  
L+2r  : Crossing the flexible axis 
L+4r  : Direction change of the cable 

 
The validation model should be able to evaluate 
combined actuation. This can however result in 
multiple cables passing though the same cable hole, 
which would lead to undesired friction and 
interference between the cables. To avoid the 
interference of cables, each rib is fitted with an extra 
cable hole at each end of the rib. These holes will 
allow a parallel cable to be placed without 
interfering with other helix cables. 

The next step in the design process is to decide 
how many segments the validation model should 
contain. To enable the L+4r cable position, the 
amount of segment should be an even number. 
More segments will result in a higher accuracy of the 
measurements on the validation model. However 
the addition of extra segments inevitably results in 
higher friction and a heavier model. This tradeoff has 
resulted in the choice of a ten segmented validation 
model. Twenty-one cable holes are needed to 
enable the placement of cable L+r, adding the two 
extra holes to enable combined actuation and each 

rib will therefore be fitted with 23 cables holes. 
The validation model will be actuated with the 

use of five loads. There weights are listed in Table 1. 
These loads are chosen based on the results of the 
simulation model. 

2.5.2 Design 
The design of the validation model is shown in Figure 
16. In order to represent the two dimensional 
characteristic of the mechanical model, the cables 
and their resulting forces and moments should lie in 
the same plane. Since they must be able to cross the 
flexible axis, this axis should lie outside this plane, 
but its moments should work inside the plane. 
Therefore both sides of the plane should be 
symmetrical. This is achieved by fabricating the 
flexible axis out of two leaf springs, see Figure 16. 
The leaf springs are fabricated out of C75 spring 
steel due to the high maximum tensile strength.  

In order to preserve the structural characteristics 
of the leaf springs, the ribs are fixated on the leaf 
springs with a slotted clamping construction, shown 
in Figure 17. At the beginning of the slots there is a 
flexible joint and the slots are slightly arched 
allowing an equal clamping force along the leaf 
spring. The clamping force is created by a screw at 
each end of the rib. The cable holes have a diameter 
of 0.5 mm and the edges are rounded in order to 
reduce friction between the rib and the cable. The 
ribs should mimic infinite rigidity and no mass and 
are therefore fabricated out of the high strength low 

 
Figure 17: Drawing of a rib. The flexible joint and the 
arched slot ensure an evenly distributed clamping force 
on the leaf springs. 

 

Table 1: The weights of the loads used for actuation. 

Load 1 2 3 4 5 

Weight [gr] 100 200 298 396 493 
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weight material aluminum. 
The bending stiffness of the cables should be as 

low as possible. However, since a certain roughness 
and sharp edges around the cable holes are 
inevitable, Nylon or Dyneema cable are too 
vulnerable. Therefore woven steel cables have been 
chosen with a small diameter of 0.15 mm to reduce 
the bending stiffness. 

The dimensions of the validation model are 
presented in Appendix D.1 

2.5.3 Validation procedure 
The comparison between the mechanical model and 
the validation model is based on their segment 
angles αn. The simulation model is therefore also 
fitted with ten segments. In order to retrieve αn of 
the validation model, the ribs are marked with red 
and green markers. With the use of an image 
processing algorithm created in Matlab and 
described in Appendix B.2, the positions of the ribs 
can now be retrieved as illustrated in Figure 18. 
 
Unloaded position 
During the validation process, the validation model 
without cables was regularly photographed in its 
unloaded position. The results of these unloaded 
positions are plotted together in Figure 19. 

The blue lines indicate 23 unloaded positions and 
the red line is the average unloaded position. The 
deviation from this average unloaded position is 
plotted in a distribution plot. The shape of the 
distribution resembles a normal distribution around 
zero with a standard deviation equal to 0.35. This 
means that one can expect an initial error of 0.35 
degrees. 

The red line represents the mean of the non-

actuated positions and will be used as the initial zero 
point reference for all measurements. 

The deviation from the mean initial position can 
be caused by hysteresis characteristic of the leaf 
springs and/or the accuracy of the image processing. 
 
Hysteresis 
The validation model is loaded in two different 
manners: underloading and overloading. In the 
underloading procedure the initial load on the cable 
will be zero after which the cable is gently loaded. 
The overloading procedure load starts with an initial 
overload which is gently released.  

 
Figure 18: Result of the image processing algorithm 
identifying the positions of the ribs. 

 

  
Figure 19: Left: 23 results in unloaded position. Right: Distribution of the deviation from the average unloaded position. 
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The different loading procedures will lead to 
slightly different end positions of the model. This 
effect is called hysteresis and is caused by a 
phenomenon which will be referred to as stick-slip.  

Stick-slip happens when the static friction 
between cable and rib overcomes the dynamic 
friction and the cable comes to a hold prior to the 
static equilibrium without friction. One can reduce 
the magnitude of this stick-slip by sending a 
vibration through the model. This allows the cable to 
come momentarily less pressed against the ribs, 
which reduces the static friction and should allow 
the model to move closer to its friction free static 
equilibrium. Therefore during the validation 
procedure, the base of the model was tapped 
several times.  

Even though the tapping of the model reduces 
the effects of stick-slip, a single measurement will 
not suffice as a proper indicator of a stick-slip-free 
static equilibrium of the validation model. With the 
use of a pilot study discussed in Appendix C it was 
determined that 10 underloading and 10 
overloading procedures should be sufficient for an 
accurate measurement. The resulting measurement 
of one underloaded and one overloaded position of 
the cable position L+2r actuated with load 2 (200 gr) 
are illustrated in Figure 21. 

In the plot one can detect the effect of stick-slip 
by the repeated crossing of the two lines. The 
explanation lays in the fact that the deformation of a 
segment n is effected by Ma.n-1 passed on by the 
previous segment n-1. If the deformation of segment 
n-1 is smaller due to stick-slip, Ma.n-1 will be lower as 
well. This decrease will result in less resistance to 
deformation in segment n. This is the reason why 
the underloaded and overloaded positions cross 

each other.  
The average output of all twenty measurements 

will be used as the values of ∠αvalidation.  

2.6 Validation results 
The results of the measurements will be presented 
by two numbers, namely the mean error (ME) and 
the standard deviation (StD).  
 

    

∑
∑                       
 
 

 

 

 

 
 

    

∑ √∑ (   (                      ))
  

 

 

 

 

 
 

 
where p is the amount of measurements. ME 
represents the error between the simulation model 
and the validation model. StD represents the 
standard deviation of ME.  
 
Symmetry 
The symmetry of the validation model is tested by 
comparing the result of the two mirrored cables L+2r 
and R-2r. The results of these cables are plotted in 
Figure 20, where the measurements of cable R-2r 
are multiplied by -1 in order to match the direction 
of mirrored cable L+2r.  

One can see that the lines match up rather well. 
This is expressed by a low value for the mean error 
between both lines of -0.084 degrees with a 
standard deviation of 0.24 degrees.  

 
Behavior 
The behavior validation of the simulation model is 
based on the cables presented in the graphs of

 
Figure 21: Results of a single underloading and 
overloading procedure for cable L+2r with load 2. 

 

 
Figure 20: The results of the mirrored cables L+2r and R-
2r. The sign of the output of R-2r is turned.  
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This page is not used in order to present the following figure and description next to each other.   
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10 Segments 

L L+r R & R-2r 

Load 2: 200 gr 

 

Load 4: 400 gr 

 

1) Load 3: 200 gr 
2) Load 5: 500 gr 

 

   

L+2r L+4r R & L+4r & R-2r 

Load 1: 100 gr 
Load 2: 200 gr 
Load 3: 300 gr 
Load 4: 400 gr 
Load 5: 500 gr 

 

Load 1: 100 gr 
Load 2: 200 gr 
Load 3: 300 gr 
Load 4: 400 gr 
Load 5: 500 gr 

 

1) Load 3: 200 gr 
2) Load 2: 300 gr 
3) Load 3: 300 gr 

 

   

1000 Segments 

L+2r L+4r R & L+4r & R-2r 

Load 1: 100 gr 
Load 2: 200 gr 
Load 3: 300 gr 
Load 4: 400 gr 
Load 5: 500 gr 

 

Load 1: 100 gr 
Load 2: 200 gr 
Load 3: 300 gr 
Load 4: 400 gr 
Load 5: 500 gr 

 

1) Load 3: 200 gr 
2) Load 2: 300 gr 
3) Load 3: 300 gr 

 

   

 
Figure 22: Top: The deformed shapes and α-graphs of the six validated cable positions based on 10 segments. Bottom: 
The alpha graphs of the three validated cable positions based on 1000 segments.  
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Figure 22. The figure includes α-graphs of the 
validation model and simulation model, which is 
based on 10 segments and on 1000 segments 

The first impression based on the top six α-
graphs of Figure 22 is that the behavior of the 
validation model is similar to the simulation model. 
There are however two phenomena that introduce a 
mismatch between the validation and simulation 
model. The first mismatch is the overall lower α-
value of the simulation model. The second mismatch 
occurs at cables that include a direction change, 
which is best illustrated by the α-graph of cable L+4r. 
While the α-graph of the simulation model forms a 
pointed pyramided, the top of the α-graph of the 
validation model is flattened.  
 Both these phenomena can be explained by 
realizing that at these points a high sideway force Fcx 
is introduced. In the simulation model the 
deformation of the segment due to Fcx is modeled as 
having a constant radius. In the validation model 
however the resulting deformation due to Fcx will 
have a non-constant radius. This effect is equal to 
deflection of a fixed beam loaded with a 
perpendicular force (Figure 14).  

In the simulation model, the moment created by 
FCx1 therefore has a greater value. Because the 
moment is directed opposite from the overall 
moment Mr1, the result is a lower value for Mr1 and 
therefore ∠α1. Since Mr1 is passed on through 
following segments, the simulation model shows an 
overall lower α-graph.  
 The effect of the non-constant bending radius 
due to Fcx in the simulation model can however be 
reduced by increasing the amount of segments. The 
working principle behind this approach is the fact 
that the bending behavior of a smaller slice of the 
flexible axis will approximate a constant bending 
radius with higher accuracy. In order to still match 
the 10 segmented validation model, the outputs of 
each 100 sequential segments are summarized to 
represent one segment. 

In the bottom three α-graphs of Figure 22, the 
validation model is compared to the simulation 
model based on 1000 segments One can 
immediately see that especially for cable L+4r the 
outcomes of the two models match each other with 
higher accuracy.  

For cable L+2r the angle of the α-lines of the 
simulation model due to the increase of segments 
decreases. This phenomenon is illustrated by Figure 

23. It shows the validation markers compared to the 
deformed shape of the simulation model. One can 
see that for a higher amount of segments, the 
overall deformation decreases. This can be explained 
when one realizes that the increase of segments 
influences the path of the cable. For the validation 
model, the path between sequential segments is 
straight. Due to the increase of segments this path is 
however modeled as a curve. This phenomenon 
decreases ∠δ1 and thereby decreases FC1x and 
increases FC1y. The sideway pushing effect of FC1x 
therefore decreases, resulting in an overall decrease 
of the deformation. 

 
Mean Error 
The ME and StD values are presented in Table 2. The 
columns %ME and %StD represent the percentages 
of ME and StD of the maximal α-value of the 
simulation model for that cable. 

The effect on the ME by the division of the 
simulation model into more segments varies for the 
different cables configurations.  

For the parallel cable, one can see no significant 
change between 10 segments for 1000 segments. 
This is to be expected since a single parallel cable 
does not induced high values for Fcx. 

For all helix cables (single or combined) except 

10 segments 20 segments 

  

100 segments 1000 segments 

  
Figure 23: The red and green markers of the validation 
model compared to the simulation model for different 
amount of segments. 
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for cable L+4r, the absolute ME values decrease 
indicating a better overall match between both 
models.  

For cable L+4r however the values for ME stay 
equal for both 10 and 1000 segments. This can be 
explained when one looks at the α-graphs of 10 
segments of cable L+4r. It shows that the mismatch 
between validation and simulation model is for 
certain segments positive while being negative for 
the other segments. These deviations seem to 
compensate each other. The effect can be expressed 
by the mean absolute error (MAE) which for load 4 
decreases from 1.97 to 0.48.  
 
Standard Deviation 
For the parallel cable the amount of segments has 
also no effect on the StD value.  

For all helix cables (single or combined) except 
for cable L+4r, the StD values do not show a 
significant change between 10 or 1000 segments. 
The %StD value however do contain a shift. This can 
be explained by the increase of the maximal α-value 
of the simulation model, due to the fact that the 
moment of FCx1 has less effect on Mr1.  

The StD values for cable L+4r do show a 

fundamental decrease. This illustrates the positive 
effect of the addition of segments. 
 
Force  
The effect of different loads is evaluated for cables 
L+2r and L+4r. One can see in the tables of Figure 22 
that the values of ME and StD go up for higher loads. 
While the values of %ME and %StD stay constant 
and decrease respectively. This shows that the error 
increases with heavier loads, while the variance of 
the error decreases. The measurements from 
validation model therefore seem to gain accuracy for 
higher loads. An explanation might be that the effect 
of stick-slip will be relatively lower. 

2.7 Discussion  

2.7.1 Shape interpretation 
The shapes produced by the individual helix cables 
as presented in Figure 13 can be interpreted as part 
of a sine function. This is explained by the fact that 
their α-lines are linear and therefore the deviation of 
∠α is constant. A sine function represents a line with 
a constant varying angle which in the deformed 
shape is presented by ∠ .  

Table 2: Table of the ME and StD values based on 10 segments and 1000 segments. The %ME and %StD values represent 
the percentage of ME and StD compared to the maximal deformation of the simulation model in the represented 
position. 

10 Segments 1000 Segments 

Cable Load ME % ME StD % StD 

L 2 0,86 15,03 0,66 11,52 

L+r 4 1,17 13,02 0,39 4,33 

L+2r 1 0,18 7,06 0,34 13,55 

 
2 0,35 6,92 0,56 10,99 

 3 0,51 6,75 0,72 9,48 

 4 0,81 8,00 0,83 8,26 

 5 0,94 7,47 0,86 6,80 

L+4r 1 0,13 5,32 0,64 26,95 

 2 0,20 4,19 1,10 23,16 

 3 0,26 3,66 1,58 22,42 

 4 0,31 3,29 2,05 21,85 

 5 0,31 2,64 2,55 21,82 

R 
R-2r 

3 
5 

-1,87 -10,70 0,46 2,65 

R 
L+4r 
R-2r 

3 
2 
3 

-1,34 -10,17 1,24 9,41 

 

Cable Load ME % ME Std % Std 

L 2 0,85 14,89 0,66 11,50 

L+r 4 0,63 6,54 0,37 3,88 

L+2r 1 -0,08 -3,32 0,34 15,12 

 
2 -0,16 -3,63 0,56 12,37 

 3 -0,27 -4,00 0,73 10,79 

 4 -0,25 -2,76 0,84 9,39 

 5 -0,39 -3,54 0,87 7,85 

L+4r 1 0,13 6,69 0,37 19,79 

 2 0,20 5,32 0,44 11,83 

 3 0,26 4,68 0,54 9,78 

 4 0,31 4,25 0,62 8,46 

 5 0,31 3,44 0,65 7,23 

R 
R-2r 

3 
5 

-0,50 -2,61 0,42 2,17 

R 
L+4r 
R-2r 

3 
2 
3 

-0,55 -4,28 0,56 4,35 
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The shape of cable R-2r is equal to half a period of 
sine, while cable R-4r results is a full period of sine. 
Therefore one can state that the frequency of the 
sine-shape is represented by ∠ , its amplitude is 
based on FC1 and the starting position rc1 determines 
the phase change.  

2.7.2 Simplifying the model 
The ideal design of the simulation model would be 
based on a symbolic solution for both moment 
balances of segment 1 and segments 2 to n. The 
addition of multiple cables does, however, result in a 
rapidly expansion of the symbolic notation of the 
moment balances. A symbolic solution can therefore 
not be obtained. The question is whether it is 
possible to simplify the description of the model 
without losing accuracy. 

The mathematical description of the model could 
be simplified by approximating the sins, cosine and 
arctangent terms of the moment balances. This will 
however still not lead to a symbolic solution of the 
moment balances thus the solution would still be 
determined numerically. In the current process there 
is no need for simplification of the sine, cosine and 
arctangent terms. 

A simplification of the simulation model based on 
the dismissal of the small moments of forces would 
distort the compensation behavior of the model and 
is therefore not advised. 

Simplification by neglecting the change of the 
moment arms could however prove fruitful. The idea 
is that for small segments, the effect of ∠α on the 
moment arms can be neglected. The forces would 
however still be based on ∠α. The resulting model 
would be a step closer to the conjugate beam 
method, with the direction change of forces as the 
only difference.  

The high amount of segments does, however, not 
simulate the structure of the cable ring forceps 
correctly. A solution could be found by letting rcn of a 
helix cables change per x amount of segments to 
simulate a more crudely segmented structure. 

2.7.3 From 2D to 3D 
Expanding the simulation model to the third 
dimensional realm will expand the range of motion 
of a segment with two additional DOF. One will be 
an additional bending DOF directed perpendicular to 
the current bending plane. The other DOF will 
describe a torsional deformation of the segment.  

The description of the model should therefore be 

expanded with one additional bending plane and 
one torsion plane. This invokes the need for two 
additional moment balances. The two moment 
balances that describe a bending motion will be 
coupled together by the moment balance of the 
torsion motion. This can be explained by imagining a 
segment bend in only one bending plane. An 
additional torsion will redirect this bend, which 
would now partially lie in the second bending plane 
as well. 

A manner in which the three dimensional 
deformation of a segment could be derived starts by 
solving the torsional moment balance. Then a 
temporal bending plane and moment balance is 
introduced which direction is determined by the 
torsional deformation of the segment. The 
calculated bending motion in this plane can finally 
be projected on the two permanent bending planes. 

The inclusion of torsional motion could however 
result in undesired alterations to the shape of the 
steerable element and the rotational direction of the 
tip itself. By replacing the flexible axis by a torsion 
stiff deformable structure, the torsion motion can be 
largely excluded. This makes the torsional moment 
balance redundant. It would also mean that the 
coupled behavior between the bending moment 
balances disappears.  

Implementation of a torsion stiff axis into a 
miniaturized instrument can however prove difficult. 
A possible solution is presented by the braided 
structure of section 1.2 of which the torsion stiffness 
was high due to the inclusion of fixated counter-
clockwise and clockwise rotating helix cables. This 
implies that the torsion stiffness of a steerable 
element can be improved by including clockwise and 
counter clockwise cables and fixating their lengths 
after a desirable shape is reached.        

2.7.4 Friction 
Friction is totally neglected in the simulation model 
and sufficiently reduced in the validation model. 
Suppose one wants to incorporate helix cables into a 
construction like the cable ring forceps of Figure 3. 
The cables would be fully enclosed and the resulting 
friction could no longer be neglected. 

For this reason one can state that for accurate 
modeling of minimized instruments, the neglection 
of friction will no longer suffice.  

Friction can be incorporated into the model by 
including Ffr positioned at the cable points Cn. Ffr is 
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the product of Fcn times a friction coefficient and its 
direction will be normal to Fcn and opposite to the 
motion of the cable. The moment caused by Ffr could 
be incorporated into the moment balance of 
segments 2 to n by using the same moment arms as 
Fcn. The moment balance of segment 1 would not 
contain a friction component, since the cables are 
fixated at the top rib. 

The two dimensional configuration of the model 
includes high cable forces during a direction change 
of a cable. This inevitable will induces high friction 
forces as well. One should however keep in mind 
that in a three dimensional configuration, the 
direction of a helix cable is gradually altered at every 
segment. The friction of helix cables in a three 
dimensional configuration will therefore not be 
focused in a specific point. Due to this gradual 
friction behavior, one can expect that in comparison 
with a parallel cable, the friction forces of a helix 
cable will generally be higher. 

2.7.5 Mass 
The model is not capable of coping with the 
gravitational pull of mass. This is due to the changes 
of local coordination systems and the fact that the 
model starts calculating the deformation from the 
top. If one would incorporate a gravitational force in 
segment 1, its direction would change due to the 
deformation of segment 2. The calculated 
deformation of segment 1 would therefore not be 
correct.  
 Unlike friction, the effects of mass will reduce 
during the minimization of the steerable element.  

2.7.6 Combination of multiple cables 
The compensation behavior a cable described in 
section 2.3 can best be viewed by comparing the 
path of the cable during individual actuation and 
combined actuation. The path of cable 1 during 
individual actuation can be viewed as the path of 
least resistance. The addition of cables during 
combined actuation will deform the original path of 
cable 1. If the bending radius of the path is 
increased, cable 1 reacts by increasing the 
appropriate cable forces. If the bending radius is 
decreased, cable 1 reacts by decreasing the 
appropriate cable forces. 

2.7.7 Shape domain 
The fact that the combined actuation output can be 
approximated by the summarized individual outputs 

gives insight into the possible shape domain of the 
steerable element. This domain can best be viewed 
as all the possible α-graphs one is able to produce 
through the combination of the linearized equations 
describing the outputs of individual actuation.  

Because these equations are linear, one can 
conclude that the α-change is always constant. Its 
direction can however be changed by a direction 
change of a cable. This direction change can be seen 
as the beginning of a new section with its own linear 
behavior of ∠α. The starting point of this section is 
determined by the last α-value of its predecessor. 
The shape domain consists of numerous 
combinations of these types of sections.  

The linearly deviating behavior of α and the 
preset starting point of a new section form the two 
main limitations of the shape domain. Another 
limitation is the minimum bending radius of a 
segment, which is equal to r. If the bending radius 
becomes smaller, the ribs of the segment will hit and 
thereby restrict each other. 

A final limitation of the shape domain restricts 
the amount of cables and especially the amount of 
direction changes in the two dimension realm. It is 
not a hard limit, but one should keep in mind that 
the addition of cables and direction changes will 
increase the total friction in the structure. In 
combined actuation, the alteration of one cable will 
invoke a shape change that affects all cables. 
Therefore all frictional forces must be overcome, 
even the ones not directly connected to the altered 
cable.  

2.7.8 Extension to extreme positions 
It is interesting to see to which length the simulation 
model would produce plausible results. A cable R-2r 
is therefore actuated with a rather large force. The 
resulting deformed shape and alpha graph is shown 
in Figure 24.  
 One can see that for 15 N the middle of the axis 
has become horizontal. The corresponding α-line is 
close to linear, which is a good indication of the 
plausibility of the deformation.  

For 30 N the α-graph is no longer linear and 
seems to form a sine. It is checked if the bending 
radii of the deformed shape become less that the 
radius of the steerable element, which would result 
in a collision between ribs. This is not the case. The 
symmetric shape is however an indication that at 
least the calculation procedure is correct. The 
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plausibility of the shape is however disputable.  

2.7.9 Validation 
The error between the validation model and the 
mechanical model is induced by multiple factors. The 
first and most important reason can be described to 
the mechanical model’s inability to cope with the 
non-constant bending behavior due to sideway 
forces combined with large segments. 

A second reason of error can be indicated by the 
hysteresis of the validation model due to stick-slip. 
This is addressed by the under and overloading of 
the model and the overlap between the two is a 
good indicator for the reduction of the hysteresis 
error. 

A third reason of error will lay in the neglection 
of friction in the simulation model. Friction on a 
cable in the validation model will lead to tension loss 
in the cable, thereby reducing the actuation force 
the cable is able to exert on the model. This error is 
not addressed by the hysteresis of the model. 

A fourth reason for error can be pinpointed to 
the neglection of mass in the mechanical model. The 
validation model obviously has mass. In un-
deformed position the weight will only affect Fay due 
to the symmetry of the model. If the validation 
model is deformed, the direction of the weight in 

contrast to the deformed flexible axis will change. 
This means that the weight will now also affect Fax. 
The effect of mass is however minimized by 
minimizing the mass of the validation model and the 
use of much heavier loads. The working principle is 
that the mass of the validation model itself has less 
effect if the actuation forces are higher. 

A fifth reason of error lays in the difference in rib 
thickness between the mechanical and validation 
model. While in the mechanical model, the ribs do 
not possess thickness, the ribs in the validation 
model obviously do. Since these ribs are clamped on 
the leaf springs, they restrict the leaf springs from 
bending at those areas and thereby reducing the 
effective bending length of the flexible axis of the 
validation model.  

It has become apparent that the validation model 
is not the perfect tool for the validation of the 
simulation model. The simulation model’s ability to 
explain the change of behavior due to the increase 
of segments does, however, improve its validity. One 
could therefore confidently state that the validation 
process has succeeded in validating the fundamental 
behavior of the model.  

  

15 N 30 N 

  

α-graph 

 
Figure 24: Extreme positions for cable R-2r. 
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3 Demonstration prototype 

3.1 Background 
From the mechanical model it has become apparent 
that by combining parallel and helix cable actuation 
an instrument is able to create complex non-
constant radius shapes. The following question 
however remains: How can such an steerable 
element be controlled? 

Previous work from T. Nai [1] and P. Henselmans 
[2] reveals that there are two prominent actuation 
strategies for cable actuated instruments, i.e. 
electrical and mechanical actuation. Which of these 
two strategies is the most suitable for the helix 
actuated instrument? 

The basic principle of electric control relies on 
electric motors to actuate each cable individually. 
This type of control is therefore suitable for all types 
of cable actuated steering. The Endowrist, 
introduced in section 1.2, uses this type of control in 
the da Vinci robotic system. The result is a rather 
bulky, complex and expensive master-slave system, 
as seen in Figure 25 [5]. Note that the Endowrist has 
one steerable element based on parallel placed 
cables, this solution seems a bit complicated.  

A more elegant solution is used by the Multiflex 
introduced in Section 1.2 and illustrated in Figure 26. 
It is based on a clever mechanical control strategy 
where the tip mimics the shape of the handle. Even 
though the Multiflex is fitted with five steerable 
elements, the control system can be fitted in a 
handheld model.  

This thesis aims to explore the possibility of using 
a mechanical control strategy and constructing a 
fully functioning prototype of a single multi-
steerable element. 

The purpose of the demonstration prototype is to 
reveal the basic working principle of a mechanically 
actuated system with both parallel and helix cables. 
For a first demonstration model using helix cables, a 
simple combination of four cables - two parallel and 
helical - should be sufficient. From the mechanical 
model is learned that the combination of L and L+2r 
cables can lead to interesting and useful complex 
shapes. The demonstration model will therefore be 
based on these two cable positions and their 
mirrored cable positions R and R-2r.  

3.2 Control 
The validation model has proven to be a suitable 
structure for creating complex shapes and its 
dimensions are deemed reasonable for use in a 
demonstration prototype. The design of the 
demonstration model will therefore incorporate the 
validation model as presented in section 2.5.2.  
 
Parallel Steering 
For parallel-based cable-actuated instruments one 
can use the linear change in cable lengths of 
mirrored cables. The linearity can be explained when 
one studies two parallel mirrored cables in a 
segment, as is illustrated in Figure 27. The triangles 

 
Figure 27: Segment 1 with parallel cables. Triangles 
∆C1.1O2C1.2 and ∆C2.1O2C2.2 are isomorphic and length 
|A1A2| is fixed. Therefore the absolute length changes 
of |C1.1C1.2| and |C2.1C2.2| are equal.  

 

 
Figure 25: The da Vinci robotic system, a master-slave 
control system that is capable of controlling multiple 
operation arms installed with the Endowrist. Figure is 
obtained from [12]. 

 
 

 
Figure 26: The Multiflex using mechanical control in 
where the tip mimics the shape of the handle [7]. 
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∆C1.1O2C1.2 and ∆C2.1O2C2.2 are isomorphic, meaning 
that the length of cable 1 is linearly related to the 
length of cable 2.     

Distance |A1A2| forms the neutral line, meaning 
that a cable positioned to the left will elongate and a 
cable at the right will shorten. Since cables 1 and 2 
are mirrored copies, their absolute positions to 
neutral line |A1A2|are equal. One can therefore 
state that the absolute length changes of the cables 
are equal.   

This linearity can be used in a control system 
constructed out of a handle that is identical to the 
design of the tip. The schematic drawing of Figure 28 
illustrates this construction. Notice the mirrored 
behavior between the handle and the tip: if the 
handle moves up the tip moves down. This is due to 
the fact that if a cable elongates in the handle it will 
shorten in the tip.   

The motion of the tip is in the same plane and 
mirrored direction to the motion in the handle. In 
Chuman F. et al. [10] this manner of control is called 
direct mirrored control. While the handle is directly 
linked to the tip, this actuation method is referred to 
as linked cable actuation.  

For the creation of more complex shapes, one 
could place multiple segments in series and actuate 
each segment with its own set of cables. In [10] this 
type of control is called direct serial single-segment 

control and is used in the Mutliflex of Figure 26. A 
schematic drawing of its cable configuration is 
illustrated in Figure 30.  

One can now ask the following question; can 
direct opposite control be used for helix actuated 
instruments? The answer (unfortunately) is no, and 
the reason can be found in the fact that the change 
in cable length of mirrored helix cables is non-linear.   

This non-linearity is explained by studying two 
helix cables in a segment, illustrated in Figure 29. 
The triangles |C1.1O2C1.2| and |C2.1O2C2.2| are now 
not isomorphic and therefore the relation between 
the change in cable lengths of cables 1 and 2 is not 
linear.  

However, a solution to this non-linear behavior 
can be obtained and will be explained in the 
following section.    

3.3 From validation model to prototype 

3.3.1 Working principle 
The non-linear behavior between mirrored helix 
cables excludes the use of directly linked cable 
actuation. The length behavior of identical cables in 
the handle and tip do however show a linear 
relation, since they are placed in identical positions 
in an identical deforming shape. An elongation of a 
cable in the handle should therefore be mimicked by 
an equal elongation of its identical cable in the tip. 
This leads to the conclusion that the cables in the tip 
should be coupled to the identical cables in the 
handle.  

Cable pairs should now either elongate or both 
shorten, which excludes the use of a direct cable 
connection. Furthermore, the pulling forces 
generated in the handle can no longer be directly 
connected to the actuation forces needed in the tip. 
This is explained when one realizes that a pulling 
force on a cable in the handle is generated by 

 
Figure 28: A schematic drawing or direct mirrored 
control by linked cable actuation. The motion of the tip 
is in the same plane and mirrored to that of the handle. 
The handle and tip are directly linked to each other. 

 

Figure 30: Schematic drawing of the cable configuration 
of the Multiflex which uses direct mirrored serial single-
segment opposite control by linked cable actuation. 

 
 

 
Figure 29: Segment 1 with helix cables. Figure 29: 
Segment 1 with parallel cables. In contrast to parallel 
cables, triangles ∆C1.1O2C1.2 and ∆C2.1O2C2.2 are no longer 
isomorphic, thus the absolute length changes of 
|C1.1C1.2| and |C2.1C2.2| are not equal. 
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resisting the elongation of that cable. The identical 
cable in the tip should however not resist this 
movement, but instead should be released to allow 
an equal deformation of the tip. Therefore an 
indirect coupling method between identical cables is 
proposed, as illustrated in Figure 31.  

 In this configuration, identical cables are 
indirectly connected by fixating them to the same 
mass. This mass has one DOF, only allowing an up or 
down translation. The function of this mass is to 
generate an equal initial load on identical cables. 
With initial is meant that the cables are tensioned 
even if the steerable element is in its non-actuated 
straight position. Notice that the shapes of the 
handle and tip are no longer mirrored. 

While the handle is now indirectly linked to the 
tip with the intervention of a load, this manner of 
control will therefore be referred to as direct control 
by unlinked pre-loaded cable actuation. 

The need for this initial load is explained by 
studying the behavior of cable pairs 1 and 2 of Figure 
31. The cables in the handle and tip will be 
respectively referred to as H1, H2, T1 and T2. When 
H1 is elongated, it will lift up mass 1 thereby 
decreasing the initially set load on T1. H2 is 
shortened, thereby dropping mass 2 and increasing 
the load on T2. The difference between the decrease 
and increase of loads on T1 and T2 will result in a 
deformation of the tip. 

If the shape of the handle belongs to the shape 
domain of the cable configuration, one can conclude 

that the deformation of the handle and tip will be 
identical. This statement is based on the following 
reasoning.  

From the simulation model is learned that a 
shape is directly related to the dictated actuation 
profile. During validation this actuation profile was 
created by masses. The movements of these masses 
dictate the lengths of the cables. So equal to the 
shape, the lengthening of the cables are also directly 
related to the dictated actuation profile. The lengths 
of the cables are thereby directly related to the 
shape. Since the masses of Figure 31 can only move 
up and down, the lengths of T1 and T2 are equal to 
H1 and H2 respectively. The shape of the tip must 
therefore be equal to the shape of the handle, 
provided that the shape fits in the shape domain of 
the cable configuration. 

It should be noted that the initial load on the 
cables should be higher than the decrease of cable 
load during actuation. Otherwise, one or more 
cables will not be loaded anymore and their lengths 
are no longer related to the actuation profile. 

Next to proving the described working principle, 
the demonstration prototype should intuitively show 
that the principle can be incorporated into a 
steerable instrument. Therefore one wants the 
handle and tip to be place inline and opposite to 
each other. Furthermore one wants to exclude the 
use of masses because it restricts the movability of 
the system. The mechanical solutions to these 
problems will now be discussed. 

3.3.2 Mechanical solutions 
First the working principle is simplified by realizing 
cables 3 and 4 are mirrored parallel cables. These 
cables can therefore be controlled using the direct 
mirrored control by linked cable actuation method 
of Figure 28. This means that H3 and H4 will be 
directly connected to T4 and T3 respectively. Masses 
3 and 4 have now become redundant and can be 
excluded.  

The handle and tip are placed inline and opposite 
to each other in a mirrored configuration, allowing 
cables 3 and 4 to run parallel to the longitudinal axis 
of the shaft. This configuration is illustrated in Figure 
32. Helix cables 1 and 2 are now indirectly connected 
to each other by pulleys. The initial load on the 
cables is created by fixating masses 1 and 2 to the 
outside of the pulleys. This configuration combines 
the use of linked cable actuation and unlinked pre-

 
Figure 31: The working principle of direct mirrored 
control by unlinked pre-loaded cable actuation, using an 
indirect coupling between identical cable pairs of handle 
and tip.  
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Figure 32: The handle and tip are placed inline, opposite 
and mirrored to each other. Cables 1 and 2 are indirectly 
connected by two pulleys. Cables 3 and 4 are directly 
connected. 

 
 
 

loaded cable actuation into a hibryd cable actuation 
solution.  

The masses now create a constant moment 
around the axis of the pulleys. To create a higher 
similarity to a handheld surgical instrument, it would 
be best to exclude these masses in the prototype. In 
that case one must find another manner for creating 
these constant moments.  

A moment can be created by fixating one end of 
a spring to the outside of the pulley and guiding the 
spring along the pulley’s circumference before 
fixating its other end to a stationary point on the 
shaft. The resulting spring force Fs is then equal to:  

 

   
 

  
 (     ) Eq. 3-1 

 
where k denotes length unspecific spring stiffness, 
and lx and l0 respectively represent the deflected and 
initial spring length. The formula shows that a 
change of Ix will lead to a change in Fs. 

Rotating the pulley will influence Ix, and therefore 
Fs. The force should however preferably be constant, 
because the moment it creates should preferably be 
constant.  A clever way of creating approximating a 
constant spring force is by increasing its deflected 
length lx. This working principle comes clear when 
Eq. 3-1 is rewritten into: 

 

     (
  
  
  ) Eq. 3-2 

 
Thus the effect of changing lx on the change of Fs is 
determined by l0.  A longer spring will therefore 
reduce the change of Fs. When using a spring with 
sufficient length, the generated force can be 
approximated constant for a certain domain of lx. 
The masses can therefore successfully be replaced 

by long springs and the prototype is ready to be 
designed. 

3.4 Prototype design 

3.4.1 Design solutions and materials 
The construction of the prototype consists out of 

two validation models, fixated on an acrylic box that 
contains the pulley-spring mechanism. The complete 
construction, an exploded view and the parts list is 
illustrated in  
Figure 34.  

One can see that the pulleys are guided by 
bronze bearings. Furthermore, the springs are 
curved over the pulleys in order to contain a near 
constant moment arm during rotation and to enable 
the incorporation of long springs. Further discussion 
of the design will focus on three features: the 
fixation of the cables, the construction of the acrylic 
box and the dimensioning of the springs.  

 
Cable Fixation  
The prototype includes four cables in two mirrored 
pairs i.e. cables L & R and cables L+2r & R-2r. These 
cables need to be fixated at the end the handle and 
the tip. The helix cables also need to be fixated at 
the pulleys. The fixation of all the four cables at the 
handle and tip is realized with a single clamp system, 
illustrated by a cross-section view in Figure 33. The 
cables L & R-2r and R & L+2r are both actually one 
cable that runs through the clamping construction. 
In order not to break or damage the cables it is 

 
Figure 33: Cable clamp positioned on the top of the 
validation models. The set screw is screwed outward 
and thereby incorporates three functions: the fixation of 
the cables and the centering and fixation of the clamp 
onto the top rib. 
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crucial that the bending radii of the cables do not 
become too small. The cables are therefore guided 
by arched slots. The clamping of the cables relies on 
one set screw, which pushes against the 1st rib and 
thereby performs three functions. First, it clamps the 
cables by deforming the clamp through the forces 
indicated with the blue arrows. Secondly it fixates 
the clamp and the 1st rib together by the forces 
indicated with the red arrows.         

Thirdly, because the set screw is slightly 
chamfered at the bottom (as viewed in the figure) 
and the center hole of the 1st rib is slightly smaller 
than the set screw, it centers the clamp on the rib. 
The figure also illustrates the rounding of the cable 
holes in the 2nd rib.  

The fixation in the pulley system is illustrated in 

Figure 35 by a side view and a cross-sectional view of 
the pulley. The cables are positioned on the pulley 
by a v-shaped cable slot. The end of each cable runs 
through the milled arc that connects the cable slot 
with a drilled hole through which the cables exit the 
pulley. The cable fixation rod and set screw press the 
cables against the inside of the pulley at the center 
of the pulley. It should be noted that in the left 
picture of Figure 35 the cable fixation rod and set 
screw are positioned outside the pulley, while on the 
right picture they are positioned inside the sectioned 
pulley.  

Figure 35 also shows how the spring runs through 
a slot in the pulley and is fixated to the pulley by a 
small rod.  

 

 
 

Figure 34: Top: Solidworks model of the demonstration prototype. Bottom: Exploded view of the demonstration model 
with a partlist 
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Acrylic Box  
The acrylic box consists of seven plates with slots 
designed to fit into one another. Figure 36 illustrates 
the four steps in which the box is put together. The 
first stage shows all seven plates numbered and in 
an exploded view. In the second stage, plates 2 are 
placed against plate 1. In the third stage the plates 3 
enclose and secure plates 1 & 2. In the fourth and 
final stage plates 4 slides over plates 3 thereby 
enclosing all the plates into a sturdy box.  

 
Springs 
The springs are used to create the initial load on the 
cables. While the initial load delivers the actuation 
force of the helix cables of the tip, the maximum 
deformation of the tip is determined by the 
magnitude of the initial force. If the springs are 
weak, the maximum deformation of the tip will be 
small. A relatively high spring force would increase 
the maximum deformation of the tip, but would also 
increase the overall friction in the prototype.    

During the validation process it was determined 
that the validation model with cable L+2r could 
safely handle 5 N before plastic deformation of the 
leaf springs would occur. A value of 5N was 
therefore set as the initial load. 

The cables and the springs are situated around 
the pulley with different radii. The force generated 
by the spring is therefore transferred to the cables 
through the following ratio: 

 

               
      
       

 

 
Radii rcable and rspring are 14.5 and 22.5 mm 
respectively, resulting in an initial desired spring 

 
Figure 36: 1) Acrylic box consisting of seven plates. 2) 
Plates 2 slide into plate 1. 3) Plates 3 slide over plates 1 
and 2. 3) Plates 4 slide over plates 3 and thereby enclose 
the box. 

 

 
Figure 35: Cable clamping system in the pulleys. The set screw fixates the cables that run through the milled arc and 
leave the pulley through the drilled hole. 
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force of 3.22 N. 
 This spring force must be delivered when the 
prototype is at this maximum deformation. The 
simulation model was used to calculate the change 
of cable length at this maximum deformation, which 
is equal to 10.5 mm. By the ratio of rcable and rspring 
this results in a spring deflection of 14 mm. With Eq. 
3-1 one can therefore state: 
 

       
 

  
 (     ) 

    
 

  
 (           ) 

     
 

  
 (           ) 

Eq. 3-3 

 
Where lx is the length of the spring at maximum 
deformation of the prototype and is equal to 120 
mm. Variable l0 is the initial spring length, k the 
length unspecific stiffness, Fin the force at the initial 
straight position and Fmax maximum deformation in 
the opposite direction. One can see in Figure 37 that 
at an initial length of 50 mm the deviation between 
the forces becomes reasonable small, meaning that 
the created moment around the pulley 
approximates a constant value.  The corresponding 
spring stiffness is 0.053 N/mm. 
 It should be noted that springs used in the actual 
prototype are not based on these calculations, since 
the used leaf springs were not the same as the ones 
in the validation model.  

3.5 Prototype behavior 
The prototype has been successfully built and works 
precisely as described. The finished result can be 
seen in the photos of Figure 40. The behavior of the 
prototype will be described based on its shape 
domain and its reaction to external forces. 

 

Shape domain  
The shape domain of the demonstration model 
defines all the possible shapes that can be passed on 
by the handle to the tip. This domain is based on the 
possible combined actuation outputs of the four 
cables. In the α-graph this basically includes all linear 
α-lines and is only bounded by a maximal value of α.   
This allows for a fluent motion between different 
shapes. Four of those α-lines are illustrated in Figure 
38 and their resulting shapes are shown in Figure 40.    
 
External forces  
The reaction of the prototype to external forces will 
be evaluated based on the fixation of the handle in a 
certain position, as Figure 39. It should be noted that 
by fixating the shape of the handle the lengths of the 
cables in the tip are fixated as well. One can now 
identify three different external forces to which the 
prototype can be exposed as illustrated in Figure 39. 
FE1 and FE2 propose a directional and positional 
change of rib 1 respectively. FE3 proposes a shape 
change of the entire steerable element. Each of 
these external forces reveals an interesting behavior 
of the prototype.  

 
Figure 37: Forces Fmin, Fin and Fmax against l0.  

 

 
Figure 38: Four α-graphs of the demonstration 
prototype’s shape domain. 

 

 
 
Figure 39: External Forces. FE1 is proposes a directional 
change of rib 1. FE2 proposes a positional change rib 1. 
FE3 proposes a shape change of the steerable element.  
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Directional stiffness 
When the prototype is exposed to FE1 of Figure 39, 
the prototype resists to the directional change of rib 
1 proposed by FE1. This resistance is referred to as 
the directional stiffness. 
 The directional stiffness can be explained by 
realizing that FE1 has the same direction as FC1 of the 
bottom parallel cable during actuation. It can 
therefore be seen as actuating the bottom parallel 
cable, which would shorten. The linear cable change 
of mirrored parallel cables as discussed in section 3.2 
dictates that the shortening of one cable is coupled 
to an equal elongation of the other. Since the 
lengths of the cables are fixated as the shape of the 
handle is fixated, this elongation cannot occur and 
thus the steerable element is directionally stiff.  
 
Positional stiffness 
When the prototype is exposed to FE2 of Figure 39, 
the prototype resists to the positional change of rib 
1 proposed by FE1. This resistance is referred to as 
the positional stiffness. 
 The same analogy used to explain the directional 
stiffness can be used to explain the positional 
stiffness. The direction of FE2 is namely equal to the 
direction of FC1x of the red helix cable during 
actuation. The actuation of the red helix cable 
results in a shortening of the cable. Even though the 
relation between the length changes of mirrored 

helix cables is not linear, a shortening of one cable 
still results in an (unequal) elongation of the other. 
The elongation of the green cable can however not 
occur as the shape of the handle is fixated, thus the 
steerable element is positional stiff. 
 The positional stiffness is a lot more compliant 
than the direction al stiffness. This is due to the fact 
that the positional stiffness is exclusively based on 
the helix cables, whereas the directional stiffness is 
based on the parallel cables as well. The parallel 
cables are fixated at rib 1 at the handle, while the 
helix cables are loaded by the springs. The 
magnitude of the positional stiffness is therefore 
dependent on the load in the helix cables. 
  
Shape flexibility 
When the model is exposed to FE3 of Figure 39, a 
third interesting behavior reveals itself. The external 
force results in a deformation of the steerable 
element while the position and direction of rib 1 is 
preserved. This effect will be referred to as the 
shape flexibility of the steerable element. 

The shape flexibility is analyzed based on a 
straight and a sine-shape steerable element exposed 
to FE3 on rib 6 and 4 respectively. The initial and 
deformed shapes are illustrated in Figure 41. The 
figure shows a deformation of certain segments, 
which inevitably means that the cable lengths in 
those segments change.  

L R-2r 

  

L & L+2r L & R-2r 

  
Figure 40: The four deformed shapes of the prototype as describe by the α-graph of Figure 38. 
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The position and direction of rib 1 remains unaltered 
through its directional stiffness and positional 
stiffness. For the directional stiffness and positional 
stiffness it was found that the total lengths of the 
cables do not change. From the direction 
preservation of rib 1 also follows that the overall 
angle of the steerable element is preserved and 

therefore the sum of all α-values for the initial and 
deformed shape should be equal. A positive α-
change as the result of FE3 must therefore be 
compensated by an equal negative α-change. This 
manner of compensation between segments differs 
between the parallel cables and the helix cables.   

Parallel cables lie at a constant distance rcn from 
the flexible axis. This means that for every segment 
the ratio between α and the length of the cable in a 
segment is equal. The deformation of a certain 
segment can therefore be compensated for by every 
other segment of the steerable element.  

For helix cables, this is not the case. An α-change 
in segment 1 will result in a larger change in the 
cable length than an equal α-change in segment 4. In 
order for segment 4 to compensate the cable length 
change of segment 1, it must therefore deform with 
a higher α-change. This would however mean that 
the overall angle of the steerable element should 
change, which is resisted through the directional 
stiffness of rib 1. 

For segment 10 however the ratio is equal to that 
of segment 1, since the absolute distances rC1 and 
rC10 are equal. Furthermore, a helix cable positioned 
on the right of the flexible axis in segment 1 is 
positioned on the left in segment 10. One can 
therefore state that the change of α in segment 1 
should be compensated for by an equal α-change in 
segment 10. The same can be said about the other 
segments with equal values of rcn. This relation will 
be referred to as the compensation relation by equal 
segments. 

The α-values of the steerable elements of Figure 
41 have been retrieved by the imaging process used 
for the validation process, using the blue markers on 
the ribs. Figure 42 shows the α-change per segment 
for the straight and sine-shape. One can see that the 
line representing the straight case approaches 

Straight 

 

 
Sine-Shape 

 

 
Figure 41: The straight shape of the steerable element is 
deformed by an external force on rib 6. The sine shaped 
steerable element is deformed by an external force on 
rib 4. Note that the fixation of rib 1 is purely to supply 
good data for shape flexibility analysis. The prototype 
does show the same shape flexibility behavior without 
the fixation, although the positional stiffness is to weak 
to keep rib 1 exactly in place.  

 

 
Figure 42: The α-changes per segment at load FE3. (do 
notice that this is not the α-line, but the change in α). 
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symmetry. This means that the deformation of for 
example segment 1 is equal to the deformation of 
segment 10. This is exactly what is expected. 

The line representing the α-change for the sine-
shape is not a symmetrical shape, since the external 
force is not placed in the middle of the steerable 
element. One can however still see that the α-
change of segment 1 is equal to the α-change of 
segment 10.  

The analysis based on the α-change of the other 
segments is a bit more difficult. Figure 43 therefore 
presents the cable length change per segment. 
Figure 43 also reveals that the absolute cable length 
change in segments 7 and 8 is not equal to those of 
segments 3 and 4 respectively. This is not in 
agreement with the compensation relation of equal 
segments. 

This mismatch can however be explained by 
analyzing what happens at segments 5 and 6. In 
Figure 42 one can see that these segments do 
deform, while Figure 43 shows no significant cable 
length change in those segments. This is because the 
helix cables in these segments cross the flexible axis 
and their length are therefore not affected by a 
change of α. Segments 7 and 8 do therefore no 
longer have to deform equally to segments 3 and 4 
respectively in order to contain the summed values 
of α. 

This does, however, not explain the fact that the 
cable length changes caused in segments 3 and 4 are 
not compensated for. This could be explained by the 
clearance in the validation model. The cable holes of 
the validation model are 0.5 mm while the cables 
are 0.15 mm. This clearance could be the reason 
why segments 5 and 6 are allowed to bend to 
compensate for segments 7 and 8. 
 

Sampling 
The shape flexibility results in another interesting 
behavior of the prototype as illustrated in Figure 44. 
While the rib 1 of the handle is fixated, the shape of 
the handle can be altered without influencing the 
shape of the tip. This effect can be explained by the 
fact that the cable lengths in the handle do not 
change due to the shape flexibility of the steerable 
element.  
  In Section 2.7 it was already mentioned that the 
deformed shapes of the steerable element actuated 
by helix cables can be interpreted as a sine function. 
By introducing an external force to the handle, the 
handle deforms by the compensation relation of 
equal segments. In Figure 42 one can see that the α-
changes due to the external force show a linear 
behavior with a direction change at the externally 
loaded rib. The angle of the actual α-line of the 
deformed steerable element will therefore be 
skewed and bended due to these α-changes, as 
illustrated in Figure 45. The α-line has now become 
similar to the pyramid shape of the α-line cable R-4r.   

The external force can therefore be compared to 
the peak force caused by the direction change of a 
cable. While the angle of the α-line determines the 
frequency of the sine-shape, one can interpret the 
effect of FE3 as an increase of steerable elements 
shape frequency. 

This additional sine is however not passed on to 

 

 
Figure 44: Not all alterations of the shape in the handle 
are transferred to the tip of the prototype. This 
phenomenon is referred to as sampling.  

 

 
 
Figure 43: Cable length change per segment. 
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the tip, as can be seen in Figure 44. The 
demonstration model therefore contains a sampling 
behavior that only allows the lowest frequencies to 
be passed on to the tip.   

3.6 Discussion 

3.6.1 Positioning and directing the tip 
As discussed in the introduction, a surgeon needs 
the ability of positioning and directing the tool of the 
instrument. In segmented parallel cable actuated 
instrumentation like the cable ring forceps of Figure 
3, the alteration of the direction and the position of 
the tip are coupled. With the prototype it has 
become apparent that the use of helix cables can 
decouple these two functions.  

For the use in laparoscopic surgery, this type of 
behavior is really interesting, since it would allow the 
surgeon to reposition the tip of the instrument 
without altering its direction, i.e. in other words 
allowing the surgeon to ‘pan’. Especially in surgeries 
like ESBS, were the operation area is limited and 
reached after a curved path, this type of behavior 
can potentially be very beneficial. 

3.6.2 Local positional stiffness 
The positional stiffness is unique for helix cables 
actuated steerable elements, with its magnitude 
based on the tension in the springs. Increasing the 
initial load of the springs would therefore result in a 
higher positional stiffness. 

The positional stiffness can also be described as a 
local stiffness, since it only involves the position of 
rib 1. This sort of positional stiffness is not yet 
included in any of the known steerable 
instrumentation. In these instruments, a positional 
stiffness of the tip is always accomplished by 
creating a fully stiff steerable element. The local 

positional stiffness could however prove to be a 
beneficial quality during surgery. The reason is that 
fully stiff instruments will be immovable when the 
side of the steerable segment is exposed to an 
external force. This lack of adaptation to external 
forces at the side of the steerable element can cause 
damage if the steerable element is forced against 
tissue. The local positional stiffness does, however, 
allow external forces to deform the steerable 
element without altering the direction of the tip’s 
very end. The compliant behavior could therefore 
reduce the risk of tissue damage. 

It could also be interesting to see whether the 
positional stiffness can be extended by the inclusion 
of cables L+4r and R-4r. One could argue that the 
cable force due to the direction change of the cables 
would introduce an additional local stiffness at the 
middle of the steerable element.  

3.6.3 Multiple segments 
The prototype demonstrates a very useful shape 
behavior. The combination of cables L and L+2r and 
their mirrored pairs seems very suitable for the use 
in steerable instrumentation. However, during 
procedures as ESBS the path to the operation area 
could consist out of a sequence of multiple curves. 
The functionality of the cable combination only 
allows a maximum number of two sequential curves 
and could therefore prove insufficient.  

A solution could lie in the expansion of the shape 
domain of the steerable element. This can be done 
by including additional cables, for example cable R-
4r, following a steerable element with three 
different sets of cables. Each cable set would 
however require its own positional plane, whilst 
otherwise the cables would interfere with each 
other. This cable configuration could therefore prove 
difficult to miniaturize.  

Another solution for increasing the shape domain 
of the instrument is to increase its number of 
steerable elements. The elements will be placed in 
series, equal to the configuration of the Multiflex of 
Figure 26. These different elements could be created 
by fixating the cables at different ribs. It should be 
noted that in this case the cables of the first element 
will influence the deformation of the second 
element as well. Therefore the following cable 
configuration is proposed. 

One begins with one set of helix cables at the 
top. If these two helix cables reach the other side of 

 
Figure 45: The α-graph of the initial sine-shape steerable 
element and after it is deformed by FE3. These α-graphs 
are based on the photos of Figure 41. 
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the steerable structure and therefore change 
direction, a second set of equally skewed helix 
cables are introduced. These new cables will deform 
only the bottom half of the structure. This cable 
configuration is illustrated in Figure 46.  

The most left figure shows the un-deformed 
shapes of both steerable elements. If a cable of the 
first cable-set is actuated without compensation by 
the cables of the second cable-set, the two steerable 
elements are deformed as illustrated by the second 
figure on the left.  

By adequately compensating with the cables of 
the second set, it would be possible to resist the 
deformation of the second steerable element. This 
means one would be able to control the first 
steerable element independently from the second 
element, as is illustrated by the second figure from 
the right.  

In order to realize the independent control of the 
second segment as well, one can use the same cable 
configuration principles used in the Multiflex of 
Figure 28. In the handle, the cables of the first 
element must follow the exact same path as the 
cables of the second element. This will ensure that 
the cables of the first element will adequately 
elongate or shorten to compensate for the 
deformation of the second steerable element and 
not influence the shape of the first element. The 
resulting deformation of both segments is illustrated 
in the right figure of Figure 46. 

Whilst the paths of the first and second cable 
sets are now equal, no additional cable planes are 
required. The result is an easier to miniaturized 
construction than the inclusion of differently skewed 
helix cables.  

4 Conclusions 
 

The main goal of this paper was to investigate the 
behavior of a steerable element actuated by helix 
cables. A two-dimensional simulation model based 
on a segmented structure of a steerable element 
was developed. The evaluation of its results gave 
insight in the influence of actuation cable placement 
on the shape of the steerable element. It was found 
that helix cables have the ability to deform a 
steerable element with a non-constant bending 
radius. Parallel cables do not have this ability. 
Furthermore it was found that the combined 
actuation of multiple differently placed helix cables 
can result in deformed shapes that single helix 
cables are not able to create.  

This knowledge was used for the construction of 
a mechanical control mechanism. Two steerable 
elements were placed inline and opposite to one 
another. This configuration was fitted two pairs of 
mirrored parallel and helix cables. To cope with the 
non-linear cable change of the helix cables, a pulley 
spring system was incorporated into the system. 

The resulting prototype enables the steerable 
element to be steered in a multitude of direction 
and position combinations. The coupling between 
the direction and position of the tip as seen for 
parallel cable actuated instruments is thereby 
decoupled.  

Next to a directional stiffness of the tip as already 
included in parallel cable actuated instruments, the 
prototype also contains a local positional stiffness of 

Set 1: Free 
Set 2: Free 

Set 1: Actuated 
Set 2: Free 

Set 1: Actuated 
Set 2: Compensating 

Set 1: Free 
Set 2: Actuated 

    
Figure 46: Two steerable elements created by fixating an identical helix cable-set (dark blue) half way along a steerable 
structure. 
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the tip.  
The prototype also revealed a quality referred to 

as shape flexibility. This quality results from the 
additional positional stiffness at the tip and means 
that the steerable element can be reshaped by 
external forces without effecting the position and 
direction of the tip. Shape flexibility leads to a 
sampling behavior between handle an tip, wherein 
only the lowest shape frequencies in the handle are 
passed on to the tip.  

The demonstration prototype is the first known 
segmented cable actuated system that is able to 
create a multitude of shapes.  
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Appendix A. Simulation Model 

A.1 Equations 
 

Segment 1 
 

Equation 3-4 
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  (

|    |

|    |
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Distance |C1D2| is rewritten as: 

 
|    |  |    |   (  ) 
|    |  |    |      

 
Distance |A1O1| is the bending radius of the 
segment. The curved distance |A1A2| is equal to the 

fixed length of the segment (l) and equal to a 
fraction      ⁄  of the complete circumference of 
the circle described by distance |A1O1|. By using the 
circumference formula of a circle one can therefore 
state:  
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And therefore: 
 

|    |  (
 

  
    )   (  ) 

 
Distance |C2D2| is equal to: 
 

|    |  |    |  |    | 
 

Distance |B2D2| can be determined by realizing 
distance |C1O1| is equal distance |B2O1| meaning 
triangle ∆B2C1O1 is isosceles. Therefore one can state 
that ∠B2C1O1 is equal to ∠C1B2O1. Since the sum of 
all angles of a triangle is equal to π, one can state: 
 

∠       ∠       
    
 

 

 
Using the sum of triangles for ∆B2C1O1 angle ∠B2D2C1 
is equal to half π, one can now describe ∠B2C1D2 by: 
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Distance |B2D2| can now be described by the 
product of distance|C1D2|and the tangent of 
∠B2C1D2: 
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Distance |C2B2| is the difference between the r1 and 
r2. Since the initial position of the cable from 
segment 1 to n is a straight line, the difference 
between rn-1 and rn is constant and will be denoted 
by dr: 
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In where ∠β stands for the initial angle of the cable 
(Figure 7), for a parallel cable ∠β is equal to half π 
which reduces dr to zero. ∠δ1 can now be written as: 
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This simplifies to: 
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Figure 47: Moments, forces and moment arms of 
segment 1. 
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Equation 3-5 

 
The moment arm dC1x is equal to the difference 
between |A2O1| and |D2O1|. Noticing |A2O1|is 
already described for equation 3-4 as the bending 
radius of the segment: 
 

|    |  
 

  
 

 
|D2O1| is the product of |C1O1| and the cosine of 
∠α1. |C1O1| is equal to the bending radius |A2O1| 
minus rC1: 
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Moment arm dC1x is therefore equal to: 
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The moment arm dC1y is the product of |C1O1| and 
the sine of ∠α1: 
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Equation 3-6 

 
The moment balance starts as: 
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Each element is described by: 
Moment: 
         

 
Cable forces: 
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This is the description of ∠δ1 before the simplification 
done in the above explanation of equation 3-4. 
 
Moment arms: 
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The moment balance can now be written as Eq. A-1. 
It includes arctangent terms inside sinus and cosine 
terms. In order to simplify the moment balance, the 
arctangent is rewritten into arcsines and arccosine 
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Eq. A-1 
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Eq. A-2 
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terms by: 
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This leads to arcsines term within a sine and a 

arccosine term within a cosine, leaving just the 
terms inside the arcsines and arccosine. The 
moment balance can therefore be written as Eq. A-2. 
 
 

Segment 2 
 

Equation 3-7 

Fa is always equal but opposite to Fr. Through the 
change in local coordinate system and the 
deformation of segment 2, the direction of reaction 
force Fr1 is altered. This alteration can be visualized 
by: 

 
The decomposition of Fa1 should therefore be 
written as: 
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Equation 3-8 

The description of ∠γ2 starts by realizing that: 
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The description of ∠C2.1 can be deducted from the 
evaluation of segment 1 and since ∆C1C2D2 is 
rectangular is equal to: 
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The description of ∠ 2.4 derived in the same manner 
as ∠δ1 and can therefore be copied and adequately 
altered into: 
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Since triangle ∆C2O2D3 is rectangular on can state:  
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The description of ∠γ2 can now be written as Eq. 
A-3. 
 

Equation 3-9 
 

Force FC2 is decomposed by ∠δ2 which is equal to: 
 

∠   ∠   ∠     
 
The full description of ∠δ2 is giving by Eq. A-4. 

 
Figure 48: Configuration of FC2 
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Equation 3-10 

 
The decomposition of forces FC2x and FC2y is realized by: 
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           (∠  ) 
 
In where FC2 is equal to: 
 

           (  ) 
 
The full descriptions of the decomposed forces FC2x and FC2y thereby becomes a rather large functions. They 
can however be simplified with the use of several sine and cosine rules. First the composition of FC2x is 
explained. 
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The full description is equal to: 
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Eq. A-3 
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Eq. A-4 
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For ease of notation the arctangent terms will for now be noted by: 
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This equation can be rewritten to: 
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The sine and cosine terms can be simplified: 
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With the following equations of sine and cosine the terms can be further rewritten. 
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The force can therefore be written as: 
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And can be rewritten into: 
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By filling in descriptions for A and B, one gets: 
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The arctangent terms inside the sine and cosine terms can be rewritten into arcsines and arccosine terms by:  
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Rewriting the arctangent terms in arcsines and arccosine terms: 
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The final description of FC2x is now equal to: 
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FC2y 

 
The full description is equal to: 
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The notations of the arctangent terms are simplified:  
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The sine and cosine terms are rewritten in order to single out ∠α2: 
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Rewritting: 
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Now the following sine and cosine rules are used: 
 

    (
   

 
)   (

   

 
)   ( )  ( ) 

   (
   

 
)   (

   

 
)   ( )  ( ) 

 
This results in the following description of FC2y: 
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Rewriting the cosine: 
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Filling in A en B: 
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The arctangent terms inside the sine and cosine terms can be rewritten into arcsines and arccosine terms by:  
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The final description of FC2y is therefore: 
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A.2 Negative α 
 

The Figure 49 shows segment 1 bended by a helix 
cable to the left. This results in a negative value for 
∠α1. The question is if the derived equations for 
segment 1 can still be applied in this configuration.  

First realize that the values of rC1 and rC2 will be 
negative if positioned on the left side of the flexible 
axis. Now each term of the moment balance of 
segment 1 is going to be evaluated for a negative 
value of α1 as illustrated in Figure 50. 

 

∑                                 

 
         

Since ∠α1 is now negative, the bending moment will 
also be negative. While the flexible axis is bended in 
the opposite direction, this is exactly what is 
expected. 

 
          (  ) 

The magnitude of FC1x will be equal to the positive 
α1-case, but have an opposite direction. From the 

sine it is known that: 
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This means that for an equal magnitude but 
opposite direction the angle ∠δ1 should change 
sign. The description of ∠δ1 is: 
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From the tangent one knows that: 
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So in order for angle ∠δ1 to change its sign, the term 
inside the arctan() should change its sign. For the 
first term this is true because: 
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For the second term is: 
 

 
Figure 49: Deformed segment 1. 

 
 
 
 
 
 

  
Figure 50: Left: Moment, forces and moment arm of segment 1 with negative ∠α1. Right: Moment, forces and moment 

arm of segment 1 with positive ∠α1. 
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One should realize that the dr is equal to rC1.1 minus 
rC1.2, which will be negative. The numerator of the 
division therefore becomes negative. The 
denominator stays positive, because one can state 
for a negative value of ∠α1: 
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 (  )    

 
Noting that length l divided by ∠α1 will always have 

a higher magnitude then rc1.1. The decomposition of 
FC1 into FC1x is therefore correct for negative values 
of ∠α1. 
 

     (
 

  
      )   (  ) 

The moment created by Fc1x and dC1y should change 
direction, as is seen Figure 50. Since FC1x changes 
direction, dC1y should stay equal.  The function of 
dC1y was already seen in the evaluation of force FC1x 
and was found to stay positive.  
 
           (  ) 

From the evaluation of force FC1x one has seen that 
angle ∠δ1 changes from sign if ∠α1 becomes 
negative. From the cosine it is know that: 
 

 ( )   (  ) 
 
This means that FC1y correctly does not change 
direction.  
 

      
 

  
 (

 

  
      )   (  ) 

From Figure 50 it can be deducted that the moment 
created by FC1y and dC1x should change direction. 
Since ∠α1 and rC1.1 are both negative and c(α1) will 
stay positive, the value of dC1x stays equal in 
magnitude, but correctly changes sign. 

The equations of segment 1 are therefore 
suitable for negative values of α1. Since the 
equations of segment 2 are based on the same 
principles it is safe to state these equations are also 
suitable. (this statement is checked but the math is 
not noted) 
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A.3 α1 & α2 opposite signs 

 
In Figure 51 a case is presented in where ∠α1 is 
absolutely larger but opposite to ∠α2. One can see 
that the direction of FC2 is completely different to 
the example case discussed in the paper. One can 
therefore ask the question if the derived equations 
are still applicable in this particular case.  

The magnitude of FC2 is determined by: 
 

           (  ) 
 
With ∠γ2 defined by: 
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In where ∠C2.1 was originally defined as: 
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In this case however, since ∠α1 is negative, ∠δ1 is 
equal to ∠C1.1 and therefore  
 

∠       
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and ∠C2.1 should be defined as: 
 

∠     
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However, earlier in the negative α-case presented 
above it was found that ∠δ1 will have the same 
magnitude but an opposite sign. This means that 

the original description of ∠C2.1 will still provide the 
correct value. The original equation for ∠γ2 will 
therefore give the angle defined by ∠C2.3 + ∠C2.4.  

From Figure 51 one can however deduct that the 
magnitude of FC2 is determined by ∠C2.5 and not by 
∠C2.3 + ∠C2.4.  The angle is however placed inside a 
cosine term, for which the following rule applies:  

 
   (   )      ( ) 

 
Since the summation of ∠C2.3, ∠C2.4 and ∠C2.5 define 
a straight line, one can state: 
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   (∠    )      (∠     ∠    ) 
 

So the magnitude of the force will be equal for both 
angles.  

The cosine will be negative if ∠γ2 lies between ½ 
π and 1½ π, which is the case for this particular 
cable position. Therefore if ∠C2.3 + ∠C2.5 is used as 
∠γ2, the magnitude of FC2 will be negative. This is 
what one would expect since the force is directed to 
the other side of the cable. The original equation for 
calculating the magnitude of FC2 will therefore still 
be correct. 

The following equations are used for the 
decomposition of FC2: 
 

          (∠  ) 

           (∠  ) 
 

With ∠δ2 originally equal to: 
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∠   ∠     

 

 
Figure 51: Deformed segments 1 and 2. Segment 1 with a negative α-value and segment 2 with a positive α-value. 
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However, from Figure 51 one can see that for the 
decomposition of FC2 one should use: 

 
∠   ∠     ∠     

 
Since the summation of ∠C2.3, ∠C2.4 and ∠C2.5 define 
a straight line, one can state: 
 

∠     ∠        ∠     
 
The following rules apply to sine and cosine terms: 
 

   (   )      ( ) 
   (   )      ( ) 

 
So again if the angles of the original equations are 
used, the magnitude of the decomposed forces 
would be correct. 

Now if FC2 is negative, FC2x should be negative as 
well. Since the sine of ∠C2.3 is positive for 0 to π, this 
will be the case. If FC2 is negative and ∠C2.3 is smaller 
than ½ π, the cosine of the decomposition into FC2y 
will be positive. This means FC2y positive and from 
Figure 51 one can see that this is correct. If however 
∠C2.3 is greater than ½ π, the cosine would be 
negative, resulting in a negative value of FC2y. Again 
this is confirms the expectations.  

So the equations presented in the paper 
correctly handle the case in where ∠αn-1 and ∠αn 
have opposite signs. 
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A.4 Convexity of the moment balances 
 

A function is convex if its derivative does not 
changed sign, so it is either zero and/or positive or 
zero and/or negative. If one can prove that the 
moment balance is convex, it means that it will only 
cross the zero-line once and the Matlab function 
fzero can be used to find this point. 
 The moment balance of segment 1 is equal to: 
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Bending moment: 
          

 
Cable forces: 
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Moment arms: 
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Now one wants to find the derivatives of each 
moment component. The case of a parallel cable is 
evaluated, since it reduces the mathematical 
complexity while still providing a good impression of 
the process. This means dr will be equal to zero and 
∠δ1 can therefore be written as: 
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If the segment size is large enough, ∠α1 will become 
small. To further simplify the process, the sine and 
cosine terms can be approximated for small values 
of ∠α1 by: 
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This results in the following simplifications: 

 

          
  
 

 

          

           

              

 
The derivatives of each moment are now given by: 
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If the amount of segments is increased, the 
segment length   will decrease. One can therefore 
analyze the behavior of the derivatives by taking 
their limit for l goes to zero: 
 

   
   

   

 
    

     
   

           
     

 
             

 
By realizing that ∠α1 goes to zero when   goes to 
zero, one can confidently state the following. 
 

   

 
            

     

 
 

 
So for a parallel cable the derivative of bending 
moment Mr1 is always greater than that of the 
moments created by FCx1 and FC1y. Because it is also 
constant in respect to ∠α1, one can also confidently 
state that the moment balance for a parallel cable is 
a convex function and thereby crosses the zero-line 
for ∠α1 only once.  
 For a helix cable, dC1x and dC1y are equal to those 
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of a parallel cable and only FC1x and FC1y will differ. 
This will however not change the fact that the limit 
of the derivative of Mr1 for   goes to zero 
approaches infinity, while those of the moments of 
FC1x and FC1y do not. Therefore one can also safely 
state that the moment balance of segment 1 will 
also be convex for helix cables.  
 For segment 2, the math will become more 
complex, but the end result will stay the same. The 
derivatives of the moments created by the forces 
Fa1 and FC1 are all influenced by   and α which 
approach zero if one would increase the amount of 
segments. Therefore the derivatives will approach 
zero, while the derivative of the bending moment 
would approach infinity. The moment balance will 
therefore always be convex if the amount of 
segments is high enough. 
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Appendix B. Matlab code 
 
The matlab code contains two parts: the simulation model and the imaging algorithm for retrieving the data of the validation model. 
 

B.1 The simulation model 
 

Run.m 
One starts by running run.m. The m-files that are run in this script are listed in chronological order. The plotting files are not presented while they do 
not contain interesting information. 
 

%%% Simulation Model %%% 
% 2D-Model of a segmented steerable segment actuated by parallel and helix 
% cables.  

  
% Created in 2012-2013 
% by P.W.J. Henselmans 

  
clc, clear all, close all 

  
% Enter the amount of cables and segments  
amount_of_cables = 2 
amount_of_segments = 100 

  
% Initial values based on the dimensions and characteristics of the model 
run Parameters 

  
% Initial cable parameters. Each column divines a cable. The number of column is not limited.  

Force_cables : defines the pulling force 

r_cable : the starting position. A negative number represents a starting           position at the 

left. 

Direction : defines the direction of the helix cable, a negative value   indicates a direction to the 

left. 

Beta : is the angle of the helix cable. It can be divined a number of as r0,r1,r2,r4 which 

represent the horizontal distance a cable travels and is created in Parameters.m   
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Force_cables        = [0.3     0.1      0.5         0.1       ]*9.81; %N 
r_cable             = [15      -15      -10         0            ];%m 
direction           = [-1       1        -1         1        ]; 
beta                = [r4       r2       r4         r0        ];%rad 
  

% Running the model 
run Model 
  

% Creating the data used for plotting 
run Create_Plotting_Data 

  
% Plot the deformed steerable element, alpha, moments and forces 
run Plot 

  
% Plot the deformed steerable element, the alpha graph and the forces 
% individually 
run Plot_Deformed_Shape 
run Plot_Alpha 
run Plot_Forces 

  
% Plots the summation of the moments M_Fa and M_Fc along the flexible axis to create an 
% intuitive view of their contribution to Mr. Best for 1 cable. 
run Plot_Summation_of_Moments 

  
% Calculate the lengths of the cables 
run Cable_length 

 

Parameters.m 
 

%% Parameters 

  
l_total             = 130;           %total length steerable element [mm] 
l                   = l_total/amount_of_segments;   %length of a segment [mm] 
r                   = 16;            %radius of the steerable element [mm] 
b                   = 30;            %width of the flexible axis [mm] 
h                   = 0.2;           %thickness of the flexible axis [mm]   
E                   = 210E3;         %modulus of elasticity of the flexible  

                axis [N/mm^2]    
I                   = (b*(h^3))/12;  %moment of inertia of the flexible axis  
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                [mm^4] 
c                   = E*I/l;         %stiffness of the flexible axis [Nmm/rad] 

  
% beta angles based on the horizontal distance of a cable.  
r0 = 0; 
r1 = atan((1*r)/l_total); 
r2 = atan((2*r)/l_total); 
r4 = atan((4*r)/l_total); 

 

 

Model.m 
Model.m is divided into a part for segment 1 and segments 2 to n. It uses four functions: alpha_1_function, Forces_1, alpha_n_function and Forces_n. 

 
% Simulation Model  
for m = 1:amount_of_cables 
    % Determine distance dr per segment 
    dr(m) = l * tan(beta(m)); 

     
    % Setting the force for each cable. This function allows to set Force 
    % to zero for calculating the individual outputs of cables for 
    % approximating alpha during combined actuation. 
    Force(m) = Force_cables(1,m); 

  
    % Configurating r_cable for all segments 
    for n = 2:amount_of_segments  
        r_cable(n,m) = r_cable(n-1,m) + direction(m) * dr(m); 
        r_cable(n+1,m) = r_cable(n,m) + direction(m) * dr(m);     

       
        if abs(r_cable(n+1,m)) > r +0.001 
            direction(1,m) = -direction(1,m); 
            r_cable(n+1,m) = r_cable(n,m) + direction(m) * dr(m); 
        end 
    end 
end 
% Searching for alpha of segment 1 by a line search along the domain of alpha. 
% FMINBND is used to minimize the outcome of the moment balance by varying 
% alpha 
    options = optimset('MaxFunEvals',5000,'MaxIter',10000,'TolFun',0.1e-50,'TolX',1e-50); 
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alpha(1,1) = fzero(@(alpha_1) alpha_1_function(alpha_1,c, Force, l, r_cable, amount_of_cables),[-0.5 

0.5], options); 

  
% Calculating the reaction and cable forces with the newly found alpha of 
% segment 1 

[Fr,Fa, Fc, M_Fa, M_Fc] = Forces_1(Force, l, r_cable, amount_of_cables, alpha(1,1)); 

  
% Calculating segments 2 to n 
for n = 2:amount_of_segments 
        % Searching for alpha of segment n by a line search along the domain of alpha. 
        % the fzero function is used to minimize the outcome of the moment balance by varying 
        % alpha 

alpha(n,1) = fzero(@(alpha_n) alpha_n_function(alpha_n,alpha,Fr,Fc,n,c,l,r_cable,amount_of_cables), 

[-0.5 0.5], options); 

  
        % Calculating the reaction and cable forces with the newly found alpha of 
        % segment n 

        [Fr, Fa, Fc, M_Fa, M_Fc] = Forces_n(alpha,Fr,Fa,Fc,n,l,r_cable, amount_of_cables,M_Fa,M_Fc);  
end   

 

alpha_function_1 
function Moment_Balance = alpha_1_function(alpha_1,c, Force, l, r_cable, amount_of_cables) 

  
for m = 1:amount_of_cables     
     % Force - cable 
     Fc(1,1,m) = Force(1,m); 

     
     % For alpha 1 is zero, the moment arms and distances of trianlge 
     % C1C2D2 are not effected by a deformation. 
     if alpha_1 == 0 
         % Moment arms - cable 
         d_cx(m) = r_cable(1,m); 
         d_cy(m) = l; 

  
         % Distances of the triangle C1D2C2 
         c1d2 = l; 
         c2d2 = r_cable(1,m) - r_cable(2,m); 
         c1c2 = sqrt(c1d2^2 + c2d2^2); 
     else    
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         % Moment arms - cable 
         d_cx(m) = (l/alpha_1) - ((l/alpha_1)-r_cable(1,m)) * cos(alpha_1); 
         d_cy(m) = ((l/alpha_1)-r_cable(1,m)) * sin(alpha_1); 

  
        % Distances of the triangle C1D2C2 
         c1d2 = ((l/alpha_1) - r_cable(1,m))*sin(alpha_1); 
         c2d2 = (((l/alpha_1) - r_cable(1,m))*sin(alpha_1)) * tan(alpha_1/2) + r_cable(1,m) - r_cable(2,m); 
         c1c2 = sqrt(c1d2^2 + c2d2^2); 
     end 

      
     % The sine and consine term for the decomposition of the cable forces 
     sin_decomposition = c2d2/c1c2; 
     cos_decomposition = c1d2/c1c2; 

  
     % Moments generated by the cable forces. Mc1_x is Mc(1,1), Mcy is 
     % Mc1_y(1,2) 
     MFc(m)     = Fc(1,1,m) * (sin_decomposition * d_cy(m) - cos_decomposition * d_cx(m)); 

  
end 

  
% Complete moment balance 
Moment_Balance  = alpha_1*c + sum(MFc(:)); 

 

 

Forces_1 
function Moment_Balance = alpha_1_function(alpha_1,c, Force, l, r_cable, amount_of_cables) 

  
for m = 1:amount_of_cables     
     % Force - cable 
     Fc(1,1,m) = Force(1,m); 

     
     % For alpha 1 is zero, the moment arms and distances of trianlge 
     % C1C2D2 are not effected by a deformation. 
     if alpha_1 == 0 
         % Moment arms - cable 
         d_cx(m) = r_cable(1,m); 
         d_cy(m) = l; 
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         % Distances of the triangle C1D2C2 
         c1d2 = l; 
         c2d2 = r_cable(1,m) - r_cable(2,m); 
         c1c2 = sqrt(c1d2^2 + c2d2^2); 
     else    
         % Moment arms - cable 
         d_cx(m) = (l/alpha_1) - ((l/alpha_1)-r_cable(1,m)) * cos(alpha_1); 
         d_cy(m) = ((l/alpha_1)-r_cable(1,m)) * sin(alpha_1); 

  
        % Distances of the triangle C1D2C2 
         c1d2 = ((l/alpha_1) - r_cable(1,m))*sin(alpha_1); 
         c2d2 = (((l/alpha_1) - r_cable(1,m))*sin(alpha_1)) * tan(alpha_1/2) + r_cable(1,m) - r_cable(2,m); 
         c1c2 = sqrt(c1d2^2 + c2d2^2); 
     end 

      
     % The sine and consine term for the decomposition of the cable forces 
     sin_decomposition = c2d2/c1c2; 
     cos_decomposition = c1d2/c1c2; 

  
     % Moments generated by the cable forces. Mc1_x is Mc(1,1), Mcy is 
     % Mc1_y(1,2) 
     MFc(m)     = Fc(1,1,m) * (sin_decomposition * d_cy(m) - cos_decomposition * d_cx(m)); 

  
end 

  
% Complete moment balance 
Moment_Balance  = alpha_1*c + sum(MFc(:)); 
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alpha_function_n 
function Moment_Balance = alpha_n_function(alpha_n,alpha,Fr,Fc,n,c,l,r_cable, amount_of_cables,Ma,Mc) 

  
% Calculate the action forces of segment n based on Fr and the direction  
% change of the local coordinate system. They are named F_a instead of Fa 
% in order not to distort the actual array of Fa created in Forces_n. The 
% same is done for moments M_Fa to MFa and M_Fc to MFc  
F_a(1,1) = -Fr(n-1,1); 
F_a(1,2) = -(Fr(n-1,2) * cos(alpha_n) + Fr(n-1,3) * sin(alpha_n)); 
F_a(1,3) = -(Fr(n-1,3) * cos(alpha_n) - Fr(n-1,2) * sin(alpha_n)); 

  
% % Moment arms of the action forces 
if alpha_n == 0 
    d_ax = 0; 
    d_ay = l; 
else 
    d_ax = (l/alpha_n) -(l/alpha_n)* cos(alpha_n); 
    d_ay = (l/alpha_n)* sin(alpha_n); 
end 

  
% Calculate the combined moments of the action force components 
MFa = -F_a(1,2)*d_ay + F_a(1,3)*d_ax; 

  
for m = 1:amount_of_cables 
    % The moment arms or distance c2c3, c2d3 and c3d3 are not effect by 
    % deformation for alpha_n is zero 
    if alpha_n == 0 
        % Moment arms - cable 
         d_cx(m) = r_cable(n,m); 
         d_cy(m) = l; 

  
        % Distances segment n 
         c2d3  = l;  
         c3d3  = r_cable(n,m) - r_cable(n+1,m); 
         c2c3  = sqrt(c2d3^2 + c3d3^2); 
    else 
        % Moment arms - cable 
         d_cx(m) = (l/alpha_n) - ((l/alpha_n)-r_cable(n,m)) * cos(alpha_n); 
         d_cy(m) = ((l/alpha_n)-r_cable(n,m)) * sin(alpha_n); 
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        % Distances segment n 
         c2d3  = ((l/alpha_n) - r_cable(n,m)) * sin(alpha_n);  
         c3d3  = ((l/alpha_n) - r_cable(n,m)) * sin(alpha_n) * tan(alpha_n/2) + r_cable(n,m) - 

r_cable(n+1,m); 
         c2c3  = sqrt(c2d3^2 + c3d3^2); 
    end 

     
    % The moment distances c1c2, c1d2 and c2d2 are not effect by 
    % deformation for alpha_n-1 is zero 
    if alpha(n-1,1) == 0 
         % Distances segment n-1 
         c1d2  = l;  
         c2d2  = r_cable(n-1,m) - r_cable(n,m); 
         c1c2  = sqrt(c1d2^2 + c2d2^2); 
    else            
         % Distances segment n-1 
         c1d2  = ((l/alpha(n-1,1)) - r_cable(n-1,m)) * sin(alpha(n-1,1));  
         c2d2  = ((l/alpha(n-1,1)) - r_cable(n-1,m)) * sin(alpha(n-1,1)) * tan(alpha(n-1,1)/2) + r_cable(n-

1,m) - r_cable(n,m); 
         c1c2  = sqrt(c1d2^2 + c2d2^2); 
    end  

          
    % Decomposition terms for the decomposition of the cable forces 
     x_decomposition      = (c2d2/c1c2)*cos(alpha_n) + (c1d2/c1c2)*sin(alpha_n) - (c3d3/c2c3); 
     y_decomposition      = (c1d2/c1c2)*cos(alpha_n) - (c2d2/c1c2)*sin(alpha_n) - (c2d3/c2c3); 

  
    % Combined moment of the cable force components 
     MFc(n,m)     = Fc(1,1,m) * (-x_decomposition * d_cy(m) + y_decomposition * d_cx(m)); 

     
end 

  
% Complete moment balance   
 Moment_Balance = alpha_n*c - alpha(n-1,1)*c + MFa + sum(MFc(n,:)); 

  

 
  



65 
 

Forces_n 
function [Fr, Fa, Fc, M_Fa, M_Fc] = Forces_n(alpha,Fr,Fa,Fc,n,l,r_cable, amount_of_cables,M_Fa,M_Fc) 

  
% Calculate the action forces of segment n 
Fa(n,1) = -Fr(n-1,1); 
Fa(n,2) = -(Fr(n-1,2) * cos(alpha(n,1)) + Fr(n-1,3) * sin(alpha(n,1))); 
Fa(n,3) = -(Fr(n-1,3) * cos(alpha(n,1)) - Fr(n-1,2) * sin(alpha(n,1))); 

  
% Moment arms of the action forces 
if alpha(n,1) == 0 
    d_ax = 0; 
    d_ay = l; 
else 
    d_ax = (l/alpha(n,1)) -(l/alpha(n,1))* cos(alpha(n,1)); 
    d_ay = (l/alpha(n,1))* sin(alpha(n,1)); 
end 

  
% Moments created by Fa 
M_Fa(n,1) = -Fa(n,2)*d_ay;  
M_Fa(n,2) = Fa(n,3)*d_ax; 

  
for m = 1:amount_of_cables 

     
    % Calcuation of the moment arms and distances c2d3, c2c3 and c3d3. 
    % Again the difference is made for alpha is zero  
    if alpha(n,1) == 0 
         % Moment arms - cable 
         d_cx(m) = r_cable(n,m); 
         d_cy(m) = l; 

          
        % Distances segment n 
         c2d3  = l;  
         c3d3  = r_cable(n,m) - r_cable(n+1,m); 
         c2c3  = sqrt(c2d3^2 + c3d3^2); 
    else 
        % Moment arms - cable 
         d_cx(m) = (l/alpha(n,1)) - ((l/alpha(n,1))-r_cable(n,m)) * cos(alpha(n,1)); 
         d_cy(m) = ((l/alpha(n,1))-r_cable(n,m)) * sin(alpha(n,1)); 
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        % Distances segment n 
         c2d3  = ((l/alpha(n,1)) - r_cable(n,m)) * sin(alpha(n,1));  
         c3d3  = ((l/alpha(n,1)) - r_cable(n,m)) * sin(alpha(n,1)) * tan(alpha(n,1)/2)  

+ r_cable(n,m) - r_cable(n+1,m); 
         c2c3  = sqrt(c2d3^2 + c3d3^2); 
    end 

     
    if alpha(n-1,1) == 0 
         % Distances segment n-1 
         c1d2  = l;  
         c2d2  = r_cable(n-1,m) - r_cable(n,m); 
         c1c2  = sqrt(c1d2^2 + c2d2^2); 
    else            
         % Distances segment n-1 
         c1d2  = ((l/alpha(n-1,1)) - r_cable(n-1,m)) * sin(alpha(n-1,1));  

c2d2  = ((l/alpha(n-1,1)) - r_cable(n-1,m)) * sin(alpha(n-1,1)) * tan(alpha(n-1,1)/2)  

+ r_cable(n-1,m) - r_cable(n,m); 
         c1c2  = sqrt(c1d2^2 + c2d2^2); 
    end  

     
    % Decomposition terms 
     x_decomposition      = (c2d2/c1c2)*cos(alpha(n,1)) + (c1d2/c1c2)*sin(alpha(n,1)) - (c3d3/c2c3); 
     y_decomposition      = (c1d2/c1c2)*cos(alpha(n,1)) - (c2d2/c1c2)*sin(alpha(n,1)) - (c2d3/c2c3); 

  
    % Combined moment of the cable force components 
     Fc(n,2,m) = Fc(1,1,m) * x_decomposition; 
     Fc(n,3,m) = Fc(1,1,m) * y_decomposition; 
     Fc(n,1,m) = sqrt(Fc(n,2,m)^2 + Fc(n,3,m)^2); 

      
    % Combined moment of the cable force components 
     M_Fc(n,:,m)     = Fc(1,1,m) * [-x_decomposition * d_cy(m)  y_decomposition * d_cx(m)]; 
end 

  
% Calculate the reaction forces 
Fr(n,2) = -(Fa(n,2) + sum(Fc(n,2,:))); 
Fr(n,3) = -(Fa(n,3) + sum(Fc(n,3,:))); 
Fr(n,1) = sqrt(Fr(n,2)^2 + Fr(n,3)^2); 
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Create_Plotting_Data.m 
Create_Plotting_Data takes the alpha values of the model and creates data to enable to plot the deformed shape. In contrary to the model it starts at 
segment n, which is why certain data is flipped. 
% Creating Plotting Data 

  
% Determine the amount of ribs to be plotted. This is needed since for high 
% amount of segments it is not preferable to plot all ribs  
teller = 1; 
amount_of_ribs = amount_of_segments; 
skip = 0.85; 
while amount_of_ribs > 20 || floor(amount_of_ribs)~=ceil(amount_of_ribs) || floor(skip)~=ceil(skip) 
    teller = teller +1; 
    amount_of_ribs = (amount_of_segments/teller); 
    skip = amount_of_segments/amount_of_ribs; 
end 
amount_of_ribs = amount_of_ribs+1; 

  
% Data is flipped because the plotting proces starts at the bottom rib, in 
% contrairy to the shape calcuation proces 
alpha_flipped = flipud(alpha(:,1)); 
r_cable_flipped(:,:) = flipud(r_cable(:,:)); 

  
% Starting potitions 
point_axis(1,:) = [0 0]; 
% point_cable 

  
% Plot central axis 
for i = 2:amount_of_segments+1 
    % Determine the shift in x and y for the new cable point 
    if alpha == 0 
        d_x = 0; 
        d_y = l; 
    else 
        d_x = (l/alpha_flipped(i-1,1)) -(l/alpha_flipped(i-1,1))* cos(alpha_flipped(i-1,1)); 
        d_y = (l/alpha_flipped(i-1,1))* sin(alpha_flipped(i-1,1));  
    end 
    % Adjust d_x and d_y for the global coordination system 
        dx = d_x * cos(sum(alpha_flipped(1:i-2,1))) + d_y * sin(sum(alpha_flipped(1:i-2,1))); 
        dy = d_y * cos(sum(alpha_flipped(1:i-2,1))) - d_x * sin(sum(alpha_flipped(1:i-2,1))); 
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    point_axis(i,:) = point_axis(i-1,:) + [dx dy]; 
end 

  
% Plot the ribs 
for i = 1 : amount_of_ribs 
    % Skip certain ribs 
    j = i*skip - (skip -1); 

     
    dx_cylinder = r * cos(sum(alpha_flipped(1:j-1,1))); 
    dy_cylinder = r * sin(sum(alpha_flipped(1:j-1,1))); 

     
    % The right and left rib coordinates 
    point_rib(1,:,i) = point_axis(j,:) + [dx_cylinder -dy_cylinder]; 
    point_rib(2,:,i) = point_axis(j,:) + [-dx_cylinder  dy_cylinder]; 
end 

  

  
% Plot cable points 
for i = 1:amount_of_cables 
    for j = 1:amount_of_segments+1    
        % Determine the cable point positions on the ribs 
        r_cable_x(j,i) = r_cable_flipped(j,i) * cos(sum(alpha_flipped(1:j-1,1))); 
        r_cable_y(j,i) = r_cable_flipped(j,i) * sin(sum(alpha_flipped(1:j-1,1))); 
        % Relocate the cable points to the axis points 
        point_cable(j,:,i) = point_axis(j,:) + [r_cable_x(j,i) -r_cable_y(j,i)];    
    end 
end 
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Cable_Length 
Can be used to calculate the lengths of the cables. The cable lengths per segment is presented by cable_length_per_segment. 
 
% Calculation of the cables lengths 
for i = 1:amount_of_cables 
    r_cable_x(1,i) = r_cable_flipped(1,i); 
    r_cable_y(1,i) = 0; 

     
    for j = 2:amount_of_segments+1 
        r_cable_x(j,i) = r_cable_flipped(j,i) * cos(sum(alpha_flipped(1:(j-1),1))); 
        r_cable_y(j,i) = r_cable_flipped(j,i) * sin(sum(alpha_flipped(1:(j-1),1)));      
    end 
    for j = 1:amount_of_segments+1 
        point_cable_length(j,:,i) = point_axis(j,:) + [r_cable_x(j,i) -r_cable_y(j,i)]; 
    end    
end 
cable_length(1,1:amount_of_cables) = 0; 

  
for i = 1:amount_of_cables 
    for j = 1:amount_of_segments 
        cable_length(j,i) = sqrt((point_cable_length(j,1,i)-point_cable_length(j+1,1,i))^2 + 

(point_cable_length(j,2,i)-point_cable_length(j+1,2,i))^2); 
    end  
end 

  
cable_length_per_segment = cable_length; 
cable_length = sum(cable_length) 
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Combined_Actuation.m 
One can use this file to plot the individual cables and their combined result.  
 
% Combined Actuation 
clc, clear all, close all 

  
% Enter the amount of cables you want to combine 
amount_of_cables = 4 
% Enter the amount of segments 
amount_of_segments = 100 

  
for cn = 1:amount_of_cables+1 
run Parameters 

  
% Initial cable parameters 
Force_cables        = [4       4      4       4     4        5      ]; %N%N 
r_cable             = [-15      15      -15     15    0        0       ];%m 
direction           = [-1       -1       1      -1     -1       -1    ]; 
beta                = [ r0     r2      r2      r2     r1       r2  ];%rad 

  
if cn ~= amount_of_cables+1 
    for i = 1:amount_of_cables 
        if i ~= cn 
        Force_cables(1,i)        = 0; 
        end 
    end 
end 
run Model 

  
clearvars 'm' 

  
save(['Data/' [num2str(cn)] '.mat']) 
end 

  

  
run Plot_Combined_Cables
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B.2 Imaging algorithm 
The algorithm uses an imaging package called dipimage to evaluate the photos. This can be downloaded 
for free at: http://www.diplib.org/. 
 
The validation photos are placed in a directory. In this directory, each validated cable has its own 
directory wherein the photos of underloading and overloading are saved, each marked with the number 
and the letter a or b respectively. 
 
The imaging algorithm allows for multiple photos to be evaluated in one single run. One starts with 
taking a sample of a red marker and a green marker of a photo of the validation model: 

 
 
These markers must be loaded in Find_RGB_Values.m. One must therefore type in the name of 
the marker one wants to evaluate in rule 10 filename and then define the folder in which these 

samples are place by altering path the rule 11.   
By running Find_RGB_Values.m the algorithm presents a grey picture of the sample. By holding the left 
mouse button and dragging one can define the area of the sample that needs to be evaluated on its RGB 
values. All the pixels are then presented in two figures of Red, Green and Blue. The mean values are given in 
the command window.  
One must now open Image_Processing.m and manually fill in the found RGB values for the green and 
red markers on the top of the file. 

The imagine algorithm is started by Retrieving_Images.m. One can select which cable(s) must be 
processed by defining the value of i. This directory is then opened and all the photos of that cable are 
processed by Image_Processing.m. The results of the imaging process are one file with the 
marker positions and the segment angles and a figure of the photo with the markers so one can check if 
the process has succeeded. Both the file and the figure is saved in the same directory as the original 
photo. 
 

The algorithm of Image_Processing.m works in the following steps: 

- The image is loaded and turned into the RGB color space, resulting in three matrixes for the red, 
green and blue values. The matrixes are as big as the amount of pixels of the image. The three 

matrixes are defined in image_rgb 
- The green markers will be searched for first since they are the easiest to find. Their positions will 

later be used to indicate the positions of the red markers. 
- A domain around the RGB-values of the green makers is created. The size is defined by 

threshold 
- The number of green markers must be equal to 11, otherwise the algorithm adjusts the 

threshold accordingly. The threshold increases if the number of markers is lower than 11 and 
decreases if the number of markers is higher than 11. 

- The Red-matrix is scanned for pixels that belong to the R-domain. The same is done for the 
Green-matrix and Blue-matrix. 

- The resulting matrixes are combined; meaning that if a pixel belongs to all three domains it is 
marked with a 1. Else the pixel is given the value 0. This creates the matrix 
image_array_binary 

- Pixels with a 1 value are now grouped together. This is done because a marker in the photo will 
consist of multiple pixels which must be grouped to form one marker. The grouping is done by 
checking around a pixel if it is surrounded by other pixels marked by 1. If so, the area between 

http://www.diplib.org/
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the pixels is also marked with a 1. If this was not done, the algorithm will see the initial pixels 
with value 1 as individual markers. Also a single pixel that falls into the RGB-domain but does not 
belong to an actual marker could be falsely identified as a marker. The grouping process does 
not let this happen since a group must contain at least 10 pixels that belong the RGB-domain. 

- The algorithm now determines the center of these groups and labels this center point as a 
marker. 

- If 11 markers are found, the algorithm continues to finding the red markers.  If not, the 
thresholds are adjusted accordingly and the process repeats itself. If after 10 repeating still no 11 
markers are found, the RGB-domains are adjusted based on the mean RGB-values of the markers 
that where identified. 

- The red markers are more difficult to find, since the screws on the flexible axis can be falsely 
identified as a marker.  Therefore a circle around found green markers is colored black, resulting 
in a matrix defining the following grey figure: 

 
- This image is now used to find the positions of the red markers.  
- If all the red markers are found, the markers are sorted based on their heights. 
- The positions of the markers are used to calculate the angles of the ribs, save in the m-file as 

segment_angles 
- Finally the photo with the identified markers is plotted and saved: 
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Find_RGB_Values 
% Find RGB Values 

  
clc, clear all, close all 
% Start the imaging software package. 
addpath('C:\Program Files\DIPimage 2.4.1\common\dipimage'); 
dip_initialise; 
dipsetpref('ImageFilePath', 'C:\Program Files\DIPimage 2.4.1\images'); 

  
% Load image 
filename = ['green'] 
path = 

['C:\Users\T\Dropbox\Afstuderen\Afstuderen\Verslag\Matlab\Matlab\Validation - 

kopie\' [filename] '.png'] 
[image_out,map] = readim(path); 

  
% Turn into RGB color space 
image_rgb = colorspace(image_out,'RGB'); 

  
% Converting image into matlab matrix 
image_array_original = dip_array(image_rgb); 
size_x = size(image_array_original,2); 
size_y = size(image_array_original,1); 

  
% Crop a sample of the marker 
H = dipshow(image_array_original); 
[B,C] = dipcrop(H); 

  
% Converting the marker sample into matlab matrix 
B_array = dip_array(B); 

  
% Determine the mean RGB-values of the marker sample 
Red = mean(mean(B_array(:,:,1))) 
Green = mean(mean(B_array(:,:,2))) 
Blue = mean(mean(B_array(:,:,3))) 

  

  
% Plot the u and v values of the image and the ball sample 
% plot(image_array_original(:,:,2), image_array_original(:,:,3),'r.'); 
% hold on 
figure(1) 
plot(B_array(:,:,1), B_array(:,:,2),'b.'); 
xlabel ('R') 
ylabel ('G') 
figure(2) 
plot(B_array(:,:,2), B_array(:,:,3),'b.'); 
xlabel ('G') 
ylabel ('B') 
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Retrieving_Images.m 
clc, clear all 

  
% The imaging software package is started 
run dip_image 

  
% The algorithm defines the directory in where the photos of the validation 
% model are placed. Then the algoritm Image_Processing is run which identifies 
% the red and green markers. 
for i = 15 

  
if i == 1 
directory = 'Initial Position\Chronological'; 
else if i == 2 
directory = 'L'; 
else if i == 3 
directory = 'L+r'; 
else if i == 4 
directory = 'L+2r\Load 1'; 
else if i == 5 
directory = 'L+2r\Load 2'; 
else if i == 6 
directory = 'L+2r\Load 3'; 
else if i == 7 
directory = 'L+2r\Load 4'; 
else if i == 8 
directory = 'L+2r\Load 5'; 
else if i == 9 
directory = 'L+4r\Load 1'; 
else if i == 10 
directory = 'L+4r\Load 2'; 
else if i == 11 
directory = 'L+4r\Load 3'; 
else if i == 12 
directory = 'L+4r\Load 4'; 
else if i == 13 
directory = 'L+4r\Load 5'; 
else if i == 14 
directory = 'R'; 
else if i == 15 
directory = 'R-2r'; 
else if i == 16 
directory = 'R & R-2r'; 
else if i == 17 
directory = 'R & L+4r & R-2r'; 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
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    end 
    end 
    end 
    end 
    end 
end 
    % Define the number of photos per cable 
    for j = 1:10 
        % Defines the under and overloading photos 
        for p = 1:2 
            close all 
            if j == 1 
                loading = 'a'; 
            else if j == 2 
                    loading = 'b'; 
                end 
            end 

             
    % Define the directory wherein the directories of the photos are placed 
    path_basis = 

'C:\Users\T\Dropbox\Afstuderen\Afstuderen\Verslag\Foto\Photoshop\'; 
    path_extra = [directory '\']; 

     
    file_name = [loading ' (' num2str(p) ')']; 
    load_name = [path_basis path_extra file_name '.jpg'] 
    save_name = [path_basis path_extra file_name]; 

  
    % First is checked if the photo can be found, if it is found, the 
    % image_Processing is run 
    if exist(load_name, 'file') == 2 
        run Image_Processing 
    end 
    end 
    end 
end 
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 Image_Processing.m 
% Image Processing 
close all  

  
% Green marker RGB values 
R_green = 162; 
G_green = 201; 
B_green = 98; 

  
% Red marker RGB values 
R_red = 209; 
G_red = 104; 
B_red = 88; 

  
% Load the image 
[image_out,map] = readim(load_name); 

  
% Turn into RGB color space 
image_rgb = colorspace(image_out,'RGB'); 

  
% Converting image into matlab matrix 
image_array_original = dip_array(image_rgb); 
size_x = size(image_array_original,2); 
size_y = size(image_array_original,1); 

  
% Define after how many runs the RGB values of the makers should be updated 
% into the mean values of the markers that are found. 
new_rgb = 10; 

  
% First the algorithm searches for the green markers. These markers are the 
% easiest to find and the positions will be used to eliminate errors when the 

algorithm 
% searches for the red markers. 
for p = 2 

     
    % Set initial values 
    error = 0; 
    num_markers = 0; 
    r = 0;  
    R_value = 0; 
    g = 0; 
    G_value = 0; 
    b = 0; 
    B_value = 0; 

  
    if p == 2 
        % RGB values: Right - Green 
        threshold = 25; 
        threshold_green = threshold; 
        R_threshold = R_green; 
        G_threshold = G_green; 
        B_threshold = B_green;      
    end 

     
% If the number of markers is not equal to 11, the threshold in adjusted 
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while num_markers ~= 11 
    image_array = image_array_original; 
    num_markers 
    p; 
if num_markers < 11 
    threshold = threshold+1; 
    error = error+1; 
else if num_markers > 11 
    error = error+1; 
    threshold = threshold-1; 
    end 
end 

  
% if after 10 threshold adjustments the number of markers is still not equal 

to 11, 
% the RGB-values are adjusted based on the average RGB-values of the 
% markers that are identified 
if error == new_rgb 
    error = 0; 
    threshold = 25; 
    R_threshold = ceil(mean(R_value)) 
    G_threshold = ceil(mean(G_value)) 
    B_threshold = ceil(mean(B_value)) 
end 

  
% Filtering the image. image_array consists of three matrixes, one for the 
% R-values, one for the G-values and one for the B-values. Each matrix is 
% scanned for values that fall into the RGB-domains, defined by 
% R_threshold_down and R_threshold_up. If a certain pixel falls into all 
% three domains, the pixel is identified as belonging to a marker. 
r = 0; 
R_threshold_down = image_array(:,:,1) > R_threshold-threshold; 
R_threshold_up = image_array(:,:,1) < R_threshold+threshold; 
for i=1:size_y 
    for j=1:size_x 
        if R_threshold_down(i,j) ~= 1 || R_threshold_up(i,j) ~= 1 
            image_array(i,j,1) = 0; 
        else if error == new_rgb-1 && randi(10,1) == 5 
            r = r+1; 
            R_value(r) = image_array(i,j,1);     
            end 
        end 
    end 
end 

  
g = 0; 
G_threshold_down = image_array(:,:,2) > G_threshold-threshold; 
G_threshold_up = image_array(:,:,2) < G_threshold+threshold; 
for i=1:size_y 
    for j=1:size_x 
        if G_threshold_down(i,j) ~= 1 || G_threshold_up(i,j) ~= 1  
            image_array(i,j,2) = 0; 
        else if error == new_rgb-1 && randi(10,1) == 8 
            g = g+1; 
            G_value(g) = image_array(i,j,2);  
            end 
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        end 
    end 
end 

  
b = 0; 
B_threshold_down = image_array(:,:,3) > B_threshold-threshold; 
B_threshold_up = image_array(:,:,3) < B_threshold+threshold; 
for i=1:size_y 
    for j=1:size_x 
        if B_threshold_down(i,j) ~= 1 || B_threshold_up(i,j) ~= 1  
            image_array(i,j,3) = 0; 
        else if error == new_rgb-1 && randi(10,1) == 3 
            b = b+1; 
            B_value(b) = image_array(i,j,3);  
            end 
        end 
    end 
end 

  
% The three matrixes of image_array are combined to form one binary matrix. 
% A pixel that belongs to a marker is given the value 1, other pixels get 
% the value 0. 
for i=1:size_y 
    for j=1:size_x 
        if image_array(i,j,1) == 0 || image_array(i,j,2) == 0 || 

image_array(i,j,3) == 0 
            image_array_binary(i,j) = 0; 
        else 
            image_array_binary(i,j) = 1; 
        end 
    end 
end 

  
% A square area around each marker pixel is scanned for other marker 
% pixels. If a group of at least 15 marker pixels are identified for lying 
% in the square defined by i_min, i_max, j_min and j_max, all pixels in 
% that square are identified as a marker-pixel. This is done to ensure that 
% one marker is not identified as multiple markers. 
image_binary = zeros(size_x,size_y); 
group_image_binary = zeros(size_x,size_y); 
group_amount = 0; 

  
for i=1:size_y 
    for j=1:size_x 
        group_amount = 0; 
        image_group = [0 0]; 
        if image_array_binary(i,j) == 1  
            for k = i-15:i+15 
                for l = j-15:j+15 
                    if k >= 1 && k<= size_y && l >= 1 && l<= size_x 
                        if image_array_binary(k,l) == 1 
                            group_amount = group_amount +1; 
                            image_group(group_amount,:) = [k l];  
                        end 
                    end 
                end 
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            end 

             
            i_min(1) = min(image_group(:,1)); 
            i_max(1) = max(image_group(:,1)); 
            j_min(1) = min(image_group(:,2)); 
            j_max(1) = max(image_group(:,2)); 

  
            if group_amount > 10  
                for m = i_min:i_max 
                    for n = j_min:j_max 
                        group_image_binary(m,n) = 1; 
                    end 
                end 
            else 
                group_image_binary(i,j) = 0; 
            end     
        end 
    end 
end 

  
% The marker pixels are now clustered and the centerpoint of a cluster is 
% calculated and will be used as a marker. 
L=bwlabel(group_image_binary); 
if p == 2 
    markers_right = regionprops(L,'Centroid'); 
    num_markers = numel(markers_right); 
end 

  
end 
end 

  
% The markers are sorted on their height. 
for k = 1:numel(markers_right) 
    markers_unsorted(k,:,2) = markers_right(k).Centroid; 
end 

  
% The marker are fliped upside down.  
markers(:,:,2) = sortrows(markers_unsorted(:,:,2),2); 
markers(:,:,2) = flipud(markers(:,:,2)); 

  

  
% Now the algorithm will search for the red markers. 
for p = 1 
    error = 0; 

     
    num_markers = 0; 
    r = 0;  
    R_value = 0; 
    g = 0; 
    G_value = 0; 
    b = 0; 
    B_value = 0; 

     
    if p == 1 
        % RGB values: Left - Red 
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        threshold = 25; 
        threshold_red = threshold; 
        R_threshold = R_red; 
        G_threshold = G_red; 
        B_threshold = B_red; 
    end 

     
    % The known positions of the green markers are used to color in the 
    % area between the green and red marker. This eliminates the 
    % possibility of a rib, knut or the flexible axis beining identified as 
    % a marker. 
    image_array_blacked = image_array_original; 
     for n = 1:11 
        for i = 1:290 
            for j=1:290 
                if sqrt(i^2 + j^2) <= 290 
                    if  (round(markers(n,2,2))+i) < size_y && 

(round(markers(n,1,2))+j) < size_x  
                        

image_array_blacked(round(markers(n,2,2))+i,round(markers(n,1,2))+j,:) = 0; 
                    end 

                     
                    if  (round(markers(n,2,2))+i) < size_y && 

(round(markers(n,1,2))-j) > 0 
                        

image_array_blacked(round(markers(n,2,2))+i,round(markers(n,1,2))-j,:) = 0; 
                    end 

                     
                    if  (round(markers(n,2,2))-i) > 0 && 

(round(markers(n,1,2))+j) < size_x  
                        image_array_blacked(round(markers(n,2,2))-

i,round(markers(n,1,2))+j,:) = 0; 
                    end 

                     
                    if  (round(markers(n,2,2))-i) > 0 && 

(round(markers(n,1,2))-j) > 0 
                        image_array_blacked(round(markers(n,2,2))-

i,round(markers(n,1,2))-j,:) = 0; 
                    end 
                end 
            end 
        end 
     end         

            
    image_aangepast = dip_image(image_array_blacked) 
    image_aangepast 

  

  
% If the number of markers is not equal to 11, the threshold in adjusted 
while num_markers ~= 11 
    image_array = image_array_blacked; 
    num_markers 
    p; 
if num_markers < 11 
    threshold = threshold+1; 
    error = error+1; 
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else if num_markers > 11 
    error = error+1; 
    threshold = threshold-1; 
    end 
end 
if error == new_rgb 
    error = 0; 
    threshold = 15; 
    R_threshold = ceil(mean(R_value)) 
    G_threshold = ceil(mean(G_value)) 
    B_threshold = ceil(mean(B_value)) 
end 

  

  
% Filtering the image 
r = 0; 
R_threshold_down = image_array(:,:,1) > R_threshold-threshold; 
R_threshold_up = image_array(:,:,1) < R_threshold+threshold; 
for i=1:size_y 
    for j=1:size_x 
        if R_threshold_down(i,j) ~= 1 || R_threshold_up(i,j) ~= 1 
            image_array(i,j,1) = 0; 
        else if error == new_rgb-1 && randi(10,1) == 5 
            r = r+1; 
            R_value(r) = image_array(i,j,1);     
            end 
        end 
    end 
end 

  
g = 0; 
G_threshold_down = image_array(:,:,2) > G_threshold-threshold; 
G_threshold_up = image_array(:,:,2) < G_threshold+threshold; 
for i=1:size_y 
    for j=1:size_x 
        if G_threshold_down(i,j) ~= 1 || G_threshold_up(i,j) ~= 1  
            image_array(i,j,2) = 0; 
        else if error == new_rgb-1 && randi(10,1) == 8 
            g = g+1; 
            G_value(g) = image_array(i,j,2);  
            end 
        end 
    end 
end 

  
b = 0; 
B_threshold_down = image_array(:,:,3) > B_threshold-threshold; 
B_threshold_up = image_array(:,:,3) < B_threshold+threshold; 
for i=1:size_y 
    for j=1:size_x 
        if B_threshold_down(i,j) ~= 1 || B_threshold_up(i,j) ~= 1  
            image_array(i,j,3) = 0; 
        else if error == new_rgb-1 && randi(10,1) == 3 
            b = b+1; 
            B_value(b) = image_array(i,j,3);  
            end 
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        end 
    end 
end 

  
for i=1:size_y 
    for j=1:size_x 
        if image_array(i,j,1) == 0 || image_array(i,j,2) == 0 || 

image_array(i,j,3) == 0 
            image_array_binary(i,j) = 0; 
        else 
            image_array_binary(i,j) = 1; 
        end 
    end 
end 

  
image_binary = zeros(size_x,size_y); 
group_image_binary = zeros(size_x,size_y); 
group_amount = 0; 

  
for i=1:size_y 
    for j=1:size_x 
        group_amount = 0; 
        image_group = [0 0]; 
        if image_array_binary(i,j) == 1  
            for k = i-15:i+15 
                for l = j-15:j+15 
                    if k >= 1 && k<= size_y && l >= 1 && l<= size_x 
                        if image_array_binary(k,l) == 1 
                            group_amount = group_amount +1; 
                            image_group(group_amount,:) = [k l];  
                        end 
                    end 
                end 
            end 

             
            i_min(1) = min(image_group(:,1)); 
            i_max(1) = max(image_group(:,1)); 
            j_min(1) = min(image_group(:,2)); 
            j_max(1) = max(image_group(:,2)); 

  
            if group_amount > 30 && (i_max - i_min) < 25  && (j_max - j_min) < 

25 
                for m = i_min:i_max 
                    for n = j_min:j_max 
                        group_image_binary(m,n) = 1; 
                    end 
                end 
            else 
                group_image_binary(i,j) = 0; 
            end     
        end 
    end 
end 

  

  
L=bwlabel(group_image_binary); 
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if p == 1 
    markers_left = regionprops(L,'Centroid'); 
    num_markers = numel(markers_left);     
end 
if p == 2 
    markers_right = regionprops(L,'Centroid'); 
    num_markers = numel(markers_right); 
end 

  
end 
end 

  
% The markers are sorted based on their height and fliped upside down. 
for k = 1:numel(markers_left) 
    markers_unsorted(k,:,1) = markers_left(k).Centroid; 
    markers_unsorted(k,:,2) = markers_right(k).Centroid; 
end 

  
markers(:,:,1) = sortrows(markers_unsorted(:,:,1),2); 
markers(:,:,1) = flipud(markers(:,:,1)); 

  
% The angles of the ribs and the angle between two ribs are calculated.  
% The angle of the bottom rib is used as the horizontal refference line. 
marker_angles(1)= atan((markers(1,2,2)-markers(1,2,1))/abs(markers(1,1,2)-

markers(1,1,1))); 

  
for i = 2:numel(markers_left) 
    marker_angles(i) = atan((markers(i,2,2)-

markers(i,2,1))/abs(markers(i,1,2)-markers(i,1,1))); 
    segment_angles(i-1) = marker_angles(i)-marker_angles(i-1); 
end 

  
% The angles are rewritten from rad to degrees. 
marker_angles_degrees = marker_angles*360/(2*pi) 
segment_angles_degrees = segment_angles*360/(2*pi) 

  
marker_center(1,1) = markers(1,1,1) + round((markers(1,1,2) - 

markers(1,1,1))/2); 
marker_center(1,2) = markers(1,2,1) - round((markers(1,2,1) - 

markers(1,2,2))/2); 

  
% The markers are rotated based on the angle of the bottom rib. 
for i = 1:numel(markers_left) 

markers_rotated(i,1,1) = ((markers(i,1,1)-

marker_center(1,1))*cos(marker_angles(1)) + (marker_center(1,2)-

markers(i,2,1))*sin(marker_angles(1))); 
markers_rotated(i,2,1) = ((marker_center(1,2)-

markers(i,2,1))*cos(marker_angles(1)) + (markers(i,1,1)-

marker_center(1,1))*sin(marker_angles(1))); 
markers_rotated(i,1,2) = ((markers(i,1,2)-

marker_center(1,1))*cos(marker_angles(1)) + (marker_center(1,2)-

markers(i,2,2))*sin(marker_angles(1))); 
markers_rotated(i,2,2) = ((marker_center(1,2)-

markers(i,2,2))*cos(marker_angles(1)) + (markers(i,1,2)-

marker_center(1,1))*sin(marker_angles(1)));     
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end 
savefile = [save_name '.mat']; 
save(savefile, 'segment_angles','markers', 'marker_center', 'markers_rotated', 

'marker_angles'); 

  
% the image is plotted with the markers. 
image_out 
hold all 
for k = 1:numel(markers_left)    
    plot(markers(k,1,1), markers(k,2,1), 'g.'); 
    text(markers(k,1,1), markers(k,2,1), num2str(k),'FontSize', 15, 

'VerticalAlignment','bottom', ... 
                             'HorizontalAlignment','right') 
end 
hold all 
for k = 1:numel(markers_right)     
    plot(markers(k,1,2), markers(k,2,2), 'r.'); 
    text(markers(k,1,2), markers(k,2,2), num2str(k),'FontSize', 15, 

'VerticalAlignment','bottom', ... 
                             'HorizontalAlignment','right') 
end 
hold all 
plot(marker_center(1,1),marker_center(1,2),'b+') 
hold all     

  
savefigure = [save_name '- marked']; 
saveas(gcf,savefigure,'jpg') 
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Initial_Angles_Calculation.m 
Used to calculate the initial position of the flexible axis out of the multiple photos. 
 
% initial angles calculation 
clc, clear all 

  
for p = 1:23 
    path = 

'C:\Users\T\Dropbox\Afstuderen\Afstuderen\Verslag\Foto\Photoshop\Initial 

Position\'; 
    filename = [path 'IP (' num2str(p) ').mat']; 
    load(filename); 
    segment_angles(1,:) = fliplr(segment_angles(1,:)); 
    angles_matrix(p,:) = segment_angles(1,:); 
    angles_degrees(p,:) = (segment_angles(1,:)*360)/(2*pi); 
end 

  
for q = 1:10 
    initial_angles(q) = mean(angles_matrix(:,q)); 
    u(q) = mean((angles_matrix(:,q)*360)/(2*pi)); 
    plot_zero(q) = 0; 
end 

  
for w = 1:14 
    difference(w,:) = u - angles_degrees(w,:); 
    MD_per_image(w) = mean(difference(w,:));   
    MAD_per_image(w) = mean(abs(difference(w,:))); 
    MD_d_MAD_per_image(w) = MD_per_image(w)/MAD_per_image(w); 

  
    std_per_image(w) = std(difference(w,:),1); 
end     

  
for n = 1:10 
    variance(n) = var(difference(:,n)); 
end 

  

  
figure(1) 
plot(u(1,:),'r','linewidth', 3) 
hold all 
for p = 1:23 

  
plot(angles_degrees(p,:),'b','linewidth', 0.1) 
hold all 

  
end 
plot(plot_zero,'k--') 
title ('Average Initial Angles', 'Fontsize', 18) 
xlabel ('Segment (n)', 'Fontsize', 15) 
ylabel ('Angle (degrees)', 'Fontsize', 15) 

 

 

  



86 
 

Combine_Angles 
Combines the angles found for the underloading and overloading procedures. 
 
clc, clear all 

  
% Load the initial position 
load ('Initial_Angles.mat') 

  
excel_file_name = 'Combined_Angles.xls' 

  
% Delete existing excel file 
if exist(excel_file_name, 'file') == 2 
    delete(excel_file_name) 
end 

  

  
% The algorithm defines the directory in where the photos of the validation 
% model are placed. Then the algoritm Read_Images is run which identifies 
% the red and green markers. 
for i = 2:17 

  
if i == 1 
directory = 'Initial Position'; 
else if i == 2 
directory = 'L'; 
cable_name = 'L'; 
else if i == 3 
directory = 'L+r'; 
cable_name = 'L+r'; 
else if i == 4 
directory = 'L+2r\Load 1'; 
cable_name = 'L+2r - Load 1'; 
else if i == 5 
directory = 'L+2r\Load 2'; 
cable_name ='L+2r - Load 2'; 
else if i == 6 
directory = 'L+2r\Load 3'; 
cable_name = 'L+2r - Load 3'; 
else if i == 7 
directory = 'L+2r\Load 4'; 
cable_name = 'L+2r - Load 4'; 
else if i == 8 
directory = 'L+2r\Load 5'; 
cable_name = 'L+2r - Load 5'; 
else if i == 9 
directory = 'L+4r\Load 1'; 
cable_name = 'L+4r - Load 1'; 
else if i == 10 
directory = 'L+4r\Load 2'; 
cable_name = 'L+4r - Load 2'; 
else if i == 11 
directory = 'L+4r\Load 3'; 
cable_name = 'L+4r - Load 3'; 
else if i == 12 
directory = 'L+4r\Load 4'; 
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cable_name = 'L+4r - Load 4'; 
else if i == 13 
directory = 'L+4r\Load 5'; 
cable_name = 'L+4r - Load 5'; 
else if i == 14 
directory = 'R'; 
cable_name = 'R'; 
else if i == 15 
directory = 'R-2r'; 
cable_name = 'R-2r'; 
else if i == 16 
directory = 'R & R-2r'; 
cable_name =  'R & R-2r'; 
else if i == 17 
directory = 'R & L+4r & R-2r'; 
cable_name = 'R & L+4r & R-2r'; 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
end 

  
    for j = 1:2 
        for p = 1:10 
            close all 
            if j == 1 
                loading = 'a'; 
            else if j == 2 
                    loading = 'b'; 
                end 
            end 

             

  
    path_basis = 

'C:\Users\T\Dropbox\Afstuderen\Afstuderen\Verslag\Foto\Photoshop\'; 
    path_extra = [directory '\']; 

     
    file_name = [loading ' (' num2str(p) ')']; 
    load_name = [path_basis path_extra file_name '.mat']; 
    save_name = [path_basis path_extra cable_name]; 

  
    if exist(load_name, 'file') == 2 
        load (load_name) 
        segment_angles_degrees = fliplr(segment_angles)*360/(2*pi); 
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        if j == 1 
            underloaded_angles(p,:) = segment_angles_degrees - 

initial_angles_degrees; 
        else if j == 2 
            overloaded_angles(p,:) = segment_angles_degrees - 

initial_angles_degrees;   
            end 
        end 
        clearvars segment_angles 
    end     
    end 
    end 

     
    angles_combined = [underloaded_angles; overloaded_angles]; 

     
    for w = 1:10 
        combined_angles(1,w) = mean(angles_combined(:,w)); 
        underloaded_mean(1,w) = mean(underloaded_angles(:,w)); 
        overloaded_mean(1,w) = mean(overloaded_angles(:,w)); 
        underloaded_deviation(:,w) =  combined_angles(1,w) - 

underloaded_angles(:,w); 
        overloaded_deviation(:,w) =  combined_angles(1,w) - 

overloaded_angles(:,w); 
        difference(1,w) = overloaded_mean(1,w) - underloaded_mean(1,w) 
        plot_zero(w) = 0; 
    end 
% underloaded_deviation 
% overloaded_deviation 
    MD = mean(difference) 
    MAD = mean(abs(difference)) 
    std_dif = std(difference,1) 
    deviation(:,:) = [underloaded_deviation; overloaded_deviation]; 

     
    mean_deviation_ps = mean(deviation) 
    mean_deviation = mean(mean_deviation_ps) 
    mean_underloaded_deviation_ps = mean(underloaded_deviation) 
    mean_underloaded_deviation = mean(mean_underloaded_deviation_ps) 
    mean_overloaded_deviation_ps = mean(overloaded_deviation) 
    mean_overloaded_deviation = mean(mean_overloaded_deviation_ps) 

     

     
    std_ps = std(deviation,1) 
    std = mean(std_ps) 

     
    screen_size = get(0, 'ScreenSize'); 
    f1 = figure(1); 
    set(f1, 'Position', [0 0 screen_size(3)/2 screen_size(4)/2 ] ); 
    for q = 1:size(underloaded_angles(:,1),1) 
%     for q = 4 
        h(1) = plot(1:10,underloaded_angles(q,:),'g'); 
        hold all 
        g(1) = plot(1:10,overloaded_angles(q,:),'b'); 
        hold all 
    end 
%     h(1) = plot(1:10,underloaded_mean(1,:),'g--','linewidth', 1); 
%     hold all 
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%     g(1) = plot(1:10,overloaded_mean(1,:),'b--','linewidth', 1); 
%     hold all 
    v(1) = plot(1:10,combined_angles(1,:),'r','linewidth', 1.5); 
    hold all 
    plot(1:10,plot_zero(:),'k-.') 
    hold all 
    title (cable_name, 'Fontsize', 18) 
    xlabel ('Segment (n)', 'Fontsize', 15) 
    ylabel ('Angle (degrees)', 'Fontsize', 15) 
    Leg1 = legend([h(1), g(1), v(1)],'Underloaded','Overloaded','Average', 

'Location', 'Best'); 
%     Leg1 = legend([h(1), g(1)],'Underloaded','Overloaded', 'Location', 

'SouthEast'); 
    set(Leg1, 'Fontsize',14) 

     
    save_figure = 

['C:\Users\T\Dropbox\Afstuderen\Afstuderen\Verslag\Foto\Photoshop\Combined 

Angles\' cable_name] 
    saveas(gcf,save_figure,'bmp')   

     
    save_file = 

['C:\Users\T\Dropbox\Afstuderen\Afstuderen\Verslag\Foto\Photoshop\Combined 

Angles\' cable_name ' - Combined_Angles'] 
    save(save_file,'combined_angles', 'underloaded_mean', 'overloaded_mean') 

  
    name_cable = {cable_name}; 

     
  xlswrite(excel_file_name,[name_cable],'Combined Angles',['A'  

num2str(i+1)])   
    xlswrite(excel_file_name,[std],'Combined Angles',['B' num2str(i+1)])    
    xlswrite(excel_file_name,[{'Std'}],'Combined Angles',['B' num2str(2)]) 
    xlswrite(excel_file_name,[std_ps],'Combined Angles',['D' num2str(i+1)])  
    xlswrite(excel_file_name,[{'per 

seg:'},{'S1'},{'S2'},{'S3'},{'S4'},{'S5'},{'S6'},{'S7'},{'S8'},{'S9'},{'S10'}]

,'Combined Angles',['C' num2str(2)]) 
%      

     
    clearvars std_ps std mean_variance variance mean_overloaded_deviation 

mean_underloaded_deviation underloaded_angles overloaded_angles 

combined_angles segment_angles deviation underloaded_deviation 

overloaded_deviation 
%     close all 
End 
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Validation_model_vs_Simualtion_model.m 
Compares the outputs of the simulation model to those of the validation model. 
 
clc, clear all, close all 

  
excel_file_name = 'Model_vs_Validaton.xls' 

  
% Delete existing excel file 
if exist(excel_file_name, 'file') == 2 
    delete(excel_file_name) 
end 

  
for as = 1:2 
    if as == 1 
    amount_of_segments = 10; 
    else if as == 2 
         amount_of_segments = 1000; 
    else if as == 3 
         amount_of_segments = 50;      
    else if as == 4 
         amount_of_segments = 100;      
    else if as == 5 
         amount_of_segments = 1000; 
    else if as == 6 
         amount_of_segments = 3000; 
        end     
        end 
        end 
        end 
        end 
    end 

  

  
%     close all      
for i = 2:17 
close all 
run Parameters 

     
if i == 2 
    directory = 'L'; 
    cable_name = 'L'; 
    amount_of_cables = 1; 
    Force_cables    = load_2;  
    r_cable         = -16.5; 
    direction       = 1; 
    beta            = r0; 
else if i == 3 
    directory = 'L+r'; 
    cable_name = 'L+r'; 
    amount_of_cables = 1; 
    Force_cables    = load_4;  
    r_cable         = -15; 
    direction       = 1; 
    beta            = r1; 
else if i == 4 
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    directory = 'L+2r\Load 1'; 
    cable_name = 'L+2r - Load 1'; 
    amount_of_cables = 1; 
    Force_cables    = load_1;  
    r_cable         = -15; 
    direction       = 1; 
    beta            = r2; 
else if i == 5 
    directory = 'L+2r\Load 2'; 
    cable_name ='L+2r - Load 2'; 
    amount_of_cables = 1; 
    Force_cables    = load_2;  
    r_cable         = -15; 
    direction       = 1; 
    beta            = r2; 
else if i == 6 
    directory = 'L+2r\Load 3'; 
    cable_name = 'L+2r - Load 3'; 
    amount_of_cables = 1; 
    Force_cables    = load_3;  
    r_cable         = -15; 
    direction       = 1; 
    beta            = r2; 
else if i == 7 
    directory = 'L+2r\Load 4'; 
    cable_name = 'L+2r - Load 4'; 
    amount_of_cables = 1; 
    Force_cables    = load_4;  
    r_cable         = -15; 
    direction       = 1; 
    beta            = r2; 
else if i == 8 
    directory = 'L+2r\Load 5'; 
    cable_name = 'L+2r - Load 5'; 
    amount_of_cables = 1; 
    Force_cables    = load_5;  
    r_cable         = -15; 
    direction       = 1; 
    beta            = r2; 
else if i == 9 
    directory = 'L+4r\Load 1'; 
    cable_name = 'L+4r - Load 1'; 
    amount_of_cables = 1; 
    Force_cables    = load_1; 
    r_cable         = -15; 
    direction       = 1; 
    beta            = r4; 
else if i == 10 
    directory = 'L+4r\Load 2'; 
    cable_name = 'L+4r - Load 2'; 
    amount_of_cables = 1; 
    Force_cables    = load_2; 
    r_cable         = -15; 
    direction       = 1; 
    beta            = r4; 
else if i == 11 
    directory = 'L+4r\Load 3'; 
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    cable_name = 'L+4r - Load 3'; 
    amount_of_cables = 1; 
    Force_cables    = load_3; 
    r_cable         = -15; 
    direction       = 1; 
    beta            = r4; 
else if i == 12 
    directory = 'L+4r\Load 4'; 
    cable_name = 'L+4r - Load 4'; 
    amount_of_cables = 1; 
    Force_cables    = load_4; 
    r_cable         = -15; 
    direction       = 1; 
    beta            = r4; 
else if i == 13 
    directory = 'L+4r\Load 5'; 
    cable_name = 'L+4r - Load 5'; 
    amount_of_cables = 1; 
    Force_cables    = load_5; 
    r_cable         = -15; 
    direction       = 1; 
    beta            = r4; 
else if i == 14 
    directory = 'R'; 
    cable_name = 'R'; 
    amount_of_cables = 1; 
    Force_cables    = load_2; 
    r_cable         = 16.5; 
    direction       = 1; 
    beta            = r0; 
else if i == 15 
    directory = 'R-2r'; 
    cable_name = 'R-2r'; 
    amount_of_cables = 1; 
    Force_cables    = load_4;  
    r_cable         = 15; 
    direction       = -1; 
    beta            = r2; 
else if i == 16 
    directory = 'R & R-2r'; 
    cable_name =  'R & R-2r'; 
    amount_of_cables = 2; 
    Force_cables    = [load_3 load_5];   
    r_cable         = [16.5 15]; 
    direction       = [-1 -1]; 
    beta            = [r0 r2]; 
else if i == 17 
    directory = 'R & L+4r & R-2r'; 
    cable_name = 'R & L+4r & R-2r'; 
    amount_of_cables = 3; 
    Force_cables    = [load_3 load_2 load_3];  
    r_cable         = [16.5 -15 15]; 
    direction       = [-1 1 -1]; 
    beta            = [r0 r4 r2]; 
    end 
    end 
    end 
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    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
    end 
end 

  
% Run Model 
run Model_line_search 

  
% If the amount of segment is higher then 10, summarize alpha on intervals 
if amount_of_segments ~= 10 

  
    interval = amount_of_segments/10; 
    alpha_summed(1,1) = sum(alpha(1:interval)); 
    for d = 2:10 
        j = (d-1)*interval + 1; 
        alpha_summed(1,d) = sum(alpha(j:d*interval)); 
    end 
    alpha = alpha_summed' 
end 

     
alpha_model = (flipud(alpha')*360)/(2*pi); 

  
% Load validation data 
    path_basis = 

'C:\Users\T\Dropbox\Afstuderen\Afstuderen\Verslag\Foto\Photoshop\Combined 

Angles\'; 

  
    load_name = [path_basis cable_name ' - Combined_Angles.mat']; 
    load(load_name); 
    alpha_validation = combined_angles; 

  
% Create zero line 
    zero_line(1:10) = 0; 

  
    abs_max_model = max(abs(alpha_model)); 
    screen_size = get(0, 'ScreenSize'); 

  
% Plot Model against Validation data 
    f1 = figure(1); 
    set(f1, 'Position', [0 0 screen_size(3) screen_size(4)] ); 
    H = plot(alpha_model,'b', 'Linewidth', 2); 
    hold all 
    G(1) = plot(alpha_validation, 'r', 'Linewidth', 2); 
    hold all 
    plot(zero_line,'k--') 
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    % text(l_place ,alpha_model(l_place), ['L' weight],'FontSize', 14, 

'VerticalAlignment','top', ... 
    %                          'HorizontalAlignment','right') 

  
%     title([cable_name ' - Model vs Validation - ' 

num2str(amount_of_segments) ' Segments'], 'FontSize', 50) 
    title([cable_name], 'FontSize', 70) 
%     title('L+4r', 'FontSize', 70) 
%     title('L+2r', 'FontSize', 70) 
    xlabel('Segment [n]', 'FontSize', 60) 
    ylabel('\alpha [deg]', 'FontSize', 60) 
    axis([1 10 -1.5*abs_max_model 1.5*abs_max_model]) 
%     Leg1 = legend([H,G],'Model','Validation','Location', 

'Northeastoutside'); 
%     set(Leg1, 'Fontsize',45) 
    set(gca,'fontsize',45) 
    hold all 

  
    save_figure = 

['C:\Users\T\Dropbox\Afstuderen\Afstuderen\Verslag\Figuren\Validation\Results\

' num2str(amount_of_segments) ' Segments\' cable_name] 
    saveas(gcf,save_figure,'bmp')   

  
    clearvars r_cable 

     
% Determine mean deviation and variance 
    abs_max_model = max(abs(alpha_model)); 
    error_ps = alpha_model - alpha_validation; 
    ME = mean(error_ps); 
    MAE = mean(abs(error_ps)); 
    ME_perc = (ME/abs_max_model)*100;  
    MAE_perc = (MAE/abs_max_model)*100;  
    Std = std(error_ps,1); 
    Std_perc = (Std/abs_max_model)*100; 

     
    name_cable = {cable_name}; 
%      
    xlswrite(excel_file_name,[name_cable],['Segments ' 

num2str(amount_of_segments)],['A' num2str(i+1)])   
    xlswrite(excel_file_name,[ME, ME_perc, MAE, MAE_perc, Std, 

Std_perc],['Segments ' num2str(amount_of_segments)],['B' num2str(i+1)])    
    xlswrite(excel_file_name,[{'ME'},{'% ME'},{'MAE'},{'% MAE'},{'Std'},{'% 

Std'}],['Segments ' num2str(amount_of_segments)],['B' num2str(2)]) 
    xlswrite(excel_file_name,[error_ps],['Segments ' 

num2str(amount_of_segments)],['I' num2str(i+1)])    
    xlswrite(excel_file_name,[{'ME per 

seg:'},{'S1'},{'S2'},{'S3'},{'S4'},{'S5'},{'S6'},{'S7'},{'S8'},{'S9'},{'S10'}]

,['Segments ' num2str(amount_of_segments)],['G' num2str(2)]) 
end 
end 
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Appendix C. Validation pilot study 
The data from the validation model is retrieved by taken a photo, as illustrated by the figure below. These 
photos were then scanned by the imaging process as described in Appendix B.2. 

 
 

Initial position 
In unloaded position the validation model will ideally be in a straight position and the data collected from the 
validation model would reveal all segments angles to be zero. however, the validation model might not be 
completely straight, the markers on the ribs might not be completely centered or/and the imaging process 
might not be completely free of error. These reasons can result in a deviation from the ideal all zero segment 
angles position. To monitor this deviation, the validation model is captured in unloaded position throughout 
the validation process.  

The mean angle per segment will be used as the reference of the initial position for all measurements. This 
means that the initial position is subtracted from every measurement. 

In order to determine the initial position, a number of measurements of an unloaded validation model are 
taken between the evaluations of different cable positions. The needed amount of measurements to assure a 
valid initial position is calculated from the pilot study. 14 Measurements are available from the pilot study, 
which are shown the figure below. The table shows the mean value and the variance of each segment. 
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Segmen
ts: 

1 2 3 4 5 6 7 8 9 10 

Mean: µ -0.34 -0.03 0.20 -0.07 -0.24 0.36 0.05 0.16 0.25 0.23 
 

Var: σ
2
 0.04 0.01 0.02 0.009 0.026 

 
0.078 0.053 0.018 0.015 0.060 

 

 
The sample size of an experiment determines at which confidence level (ε) one can state whether a certain 

margin of error (w) is reached. The sample size of a standard normal distribution can be calculated by: 

       ⁄  
 

√ 
 

 
Where zε/2 stands for the critical value and is determined by ε and the standard normal distribution.  

 

 (     ⁄ )   
 
 ⁄  

 
The confidence level is set on 0.05, resulting in zε/2 being equal to 1.645. Now this critical value is based on a 
standard normal distribution. In order to translate the critical value to the normal distribution of the initial 
values, one has to do the following: 

   ⁄  
   ⁄   

 
 

 
Where in xε/2 is the critical value belonging to the normal distribution. Now sample size n can be determined 
by: 

  (
     ⁄   

 
)
 

 

 
Based on these values the minimal sample size is 5. This feels quite low and since it is not time consuming, the 
unloaded position will be evaluate more often. 

 
Underloaded and overloaded 
The figure below represents the underloaded and overloaded evaluation of cable L+2r of the pilot study. 
One can see that the lines are positioned close to one another and even overlap.  
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The evaluation of a cable position will be consisting of out of n times an underloaded and an overloaded 
measurement. The mean of a segment will become the evaluation angle of that segment.  

In order to determine the needed sample size n, the underloaded and overloaded values of the pilot study 
are used. The sample size is calculated for every cable position. This revealed very different values varying 
from 4 for cable L+r to 15 for cable L+4r. These values are based on only 1 underloaded and 1 overloaded 
evaluation. The sample size is therefore not actually based on these evaluations. The sample size is therefore   
set on 10 underloaded and 10 overloaded evaluations. Judging on the results of the pilot study this seems 
sufficient. 

 
Validated cable positions 
There are a couple of features that need to be evaluated, namely the symmetry of the model itself, the 
behavior of single cables, the behavior of combined cables and the effect of different loads. 
 
Symmetry 
L+2r is compared to the results of R-2r for a single load. 

 
Behavior: single cable 
This examination includes the following four cables: L, L+r, L+2r and L+4r. These cables will be evaluated in 
one position, or in other words for one load. Cables L+r, L+2r and L+4r will be loaded with 400 gr and in order 
to prevent damage due to overloading, cable L will be loaded with 200 gr. 
 
Behavior: combined cables 
For the validation of combined cables a single cable combination will be evaluated. That combination will be L 
& R-2r. This cable combination is chosen because it is used in the demonstration prototype. 
 
Force 
To force behavior of the validation model is studied by the examination of the two cable positions L+2r and 
L+4r. The choice is fallen on these particular positions because it allows the evaluation of the sideway forces 
that arise by the cable direction change in cable position L+4r. 
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The following table represents the validated cable positions. 
 

Cable Load Underloading Overloading 

Symmetry    

L 2 10 10 

Initial position    

R 2 10 10 

Initial position    

R-2r 4 10 10 

Initial position    

    

Behavior    

L+r 4 10 10 

Initial position    

R & R-2r 3 & 5 10 10 

Initial position    

R & L+4r & R-2r 3 & 2 & 3 10 10 

Initial position    

    

Force    

L+2r 1 10 10 

L+2r 2 10 10 

L+2r 3 10 10 

L+2r 4 10 10 

L+2r 5 10 10 

Initial position    

L+4r 1 10 10 

L+4r 2 10 10 

L+4r 3 10 10 

L+4r 4 10 10 

L+4r 5 10 10 
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Appendix D. Drawings 

D.1 Validation model 
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D.2 Demonstration prototype 
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