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Abstract
Background Currently, the relation between
Amyloid-β (Aβ) and tau have been associated
with Alzheimer’s Disease (AD). However, the ex-
act mechanism between their interactions have not
been fully understood. With the fast-developing
advances in the field of multi-omics technologies,
raises the question whether using multiple biolog-
ical measurements could help understand the intri-
cate mechanism or help with the classification of
AD. In this study, we looked at whether incorpo-
rating different omics, or a combination of multiple
omics, will give a better prediction of AD.
Approach For our analysis we looked at the single-
omics from the Religious Orders Study and Mem-
ory and Aging Project (ROSMAP), where we an-
alyzed the Proteomics (LC-SRM), Metabolomics
(Metabolon HD4), Epigenetics (ChIP Seq) and
Gene Expression (RNA array). In our analysis, we
used the Random Forest, Block Forest, k-Nearest
Neighbor (k-NN) and Support Vector Machines
(SVMs) models to determine the accuracies of clas-
sifying the cognitive diagnosis (cogdx).
Results The results suggest that there is no im-
provement in the classifications accuracies when
combining the single-omics.
Conclusion It was concluded that the use of multi-
omics did not improve the predictions of AD com-
pared to using single-omics.

1 Introduction
Alzheimer’s Disease (AD) is a complex age-related neuro-
generative brain disease, that slowly destroys the memory and
thinking skills of the individual. AD is currently the leading
cause of dementia, with no cure available [14]. Currently, the
leading hypothesis for AD is the ”Amyloid Cascade Hypothe-
sis”, which states that increase of the protein Amyloid-β (Aβ)
activates the tau pathology [10].

This relation between Aβ and tau is still not fully un-
derstood, existing work has used single-omics (The scien-
tific field associated with measuring biological molecules in
a high throughput way) [13] to see whether the correlation
between Aβ and tau are prevelant in the data. A study by
Kitani et al. [11] used Proteomics data from the Religious
Orders Study and Memory and Aging Project (ROSMAP) [2]
with integrative network analysis, concluded that they were
able to identify potential Aβ interactions in the Proteomics
data. Since the researchers focused solely on a single-omics
approach, this raises the question whether incorporating dif-
ferent omics or a combination of multiple single-omics could
provide deeper insights into the mechanisms of AD.

Development in multi-omics methods, raises the question
whether combining different omics, such as proteomics and
metabolomics, could provide better classifications of features
or a deeper insight into which features are more prominent,
than using single-omic data [17]. The use of multi-omics data
has been seen in analysis of other diseases such as classifying

tumors using a uncertainty-aware dynamic integration frame-
work, which saw an accuracy of 98% for classifying turmors
using the integration of DNA methylation, gene expression
and miRNA expression [7] and for the large-scale benchmark
study of survival prediction of cancer data [8].

There has been a study that did a comprehensive multi-
omics analysis to predict AD [16]. The study looked at the
results of using sparse generalized canonical correlation anal-
ysis (sGCCA) for predicting whether an individual had AD.
The researchers looked at four datasets from the ROSMAP.
Using the single-omics dataset Proteomics (LC-SRM), Epi-
genetics (DNA methylation), Genomic Variants (SNP Array)
and Gene Expression (RNAseq from bulk brain), the study
showed that incorporating the four datasets resulted in the ac-
curacy of classifying clinical diagnosis at the time of death
improved from about 0.60 for the single-omic predictions to
0.95 after integrating the four datasets. However, they only
looked at the use of sparse generalized canonical correlation
analysis, which uses a multivariate dimension reduction tech-
nique, and did not investigate the effect on other classifiers.
Moreover, they only looked at the performance when all four
single-omics were combined and have not considered any
partial combination of the omics, where two or three omics
were combined.

Here, we will look at whether incorporating different
omics, or a combination of multiple omics, will be better
for the prediction of AD. By comparing the results in [16]
using different models for the evaluation of single-omic and
multi-omics data and whether using a partial combination of
single-omics would provide better predictions.

2 Methodology
2.1 Datasets
The dataset we looked at, are from the Religious Orders Study
and Memory and Aging Project (ROSMAP) [2]. The project
looked at Catholic nuns, priests and brothers, from more than
40 groups across the United States and that agreed upon an-
nual clinical evaluation and brain donation.

The datasets, came from Synapse1 and we looked at the fol-
lowing single-omics: Proteomics (LC-SRM), Metabolomics
(Metabolon HD4), Epigenetics (ChIP Seq) and Gene Expres-
sion (RNA array).

Proteomics is the set of proteins expressed by a cell, tis-
sue or organism and the data has been collected by the use of
Liquid Chromatography-Selected Reaction Monitoring (LC-
SRM) [1]. Metabolomics is the set of molecules found as a
result of metabolism, the data has been gathered by the use
of the Metabolon LIMS system [13]. Epigenetics looks at
how cells control gene activity without changing the DNA
sequence with the data being gathered using Chromatin Im-
munoprecipitation Sequencing (ChIP-Seq) [12]. Lastly, Gene
Expression measures the levels of mRNA, which have been
gathered with an integrative network-based approach [19].

For our analysis we will be taking the ”Final consensus
cognitive diagnosis (cogdx)” as the targets of the predictors.
The cogdx is the overall cognitive diagnosis, neurologists

1Synapse: https://www.synapse.org/Synapse:syn3219045



Target
Values Coding

CT NCI: No cognitive impairment
CT MCI: Mild cognitive impairment and No other cause of CI
CT MCI: Mild cognitive impairment AND another cause of CI
AD AD: Alzheimer’s dementia and No other cause of CI
AD AD: Alzheimer’s dementia AND another cause of CI

- Other dementia: Other primary cause of dementia

Table 1: The target values of the final consensus cognitive diagnosis (cogdx) values. Where the control (CT) values contains the individuals
with Mild Cognitive Impairment (MCI), with or without other causes of Cognitive Impairment (CI), and individuals with No Cognitive
Impairment (NCI). The Alzheimer’s Disease (AD) values containing individuals with Alzheimer’s Dementia (AD) with or without other
causes of Cognitive Impairment (CI). Individuals with other type of dementia have been left out in the new assignment.

Single-Omic Number
of Samples

Number
of Features

Number of
Missing Values

Number of Features
Containing Missing Values

Proteomics 147 (1209) 184 (184) 3 (375) 1 (48)
Epigenetics 147 (668) 26386 (26386) 0 (0) 0 (0)

Gene Expression 147 (668) 48805 (48805) 0 (0) 0 (0)
Metabolomics 147 (512) 1057 (1057) 49441 (171666) 576 (629)

Table 2: The number of samples and features for the different single-omics, including the number of missing values and the number of
features that contain missing values, filtered on the samples that overlap in each single-omic. The numbers in bracket show the original
values, before filtering.

with an expertise in dementia gave after reviewing all the
available clinical data from a patient, after death.

The cogdx can contain six different values: No Cognitive
Impairment (NCI); Mild Cognitive Impairment (MCI) and no
other cause of Cognitive Impairment (CI); MCI and another
cause of CI; Alzheimer’s Dementia (AD) and no other cause
of CI; and AD and another cause of CI; and other primary
cause of dementia. However, for the analysis, we have com-
bined the six different values to have the target be a binary
classifier. We have done this by combining the values NCI
and MCI into a single control (CT) target and combined the
two Alzheimer’s dementia labels into a single Alzheimer’s
Disease (AD) label. We dropped the individuals, which have
another primary cause of dementia. The resulting target val-
ues with their original interpretation are shown in Table 1.

For the creation of the multi-omics dataset, we first com-
bined the four different single-omics features into a single
dataset keeping the samples that overlapped. The number of
overlapping samples was 147 samples with the distribution
of the target values being 102 for CT and 45 for AD based
on Table 1. For the single-omics, we filtered them to only
contain the 147 samples that are also present in the multi-
omics dataset. The number of samples and features for each
single-omic, with the number of missing values and the num-
ber of features containing missing values after filtering can be
seen in Table 2. The number in brackets indicate the original
numbers before filtering. The partial combinations have been
created by combining the single-omics features and filtering
them to contain the same 147 as in the multi-omics dataset.

2.2 Models

For our analysis, we will be taking 4 different models into
consideration.

Firstly, we will be considering a k-Nearest Neighbors al-
gorithm (k-NN), since it is a simple naive approach to see
whether samples are similar to each other [5]. Secondly, we
will also be considering, Support Vector Machines (SVMs)
for our analysis, since they are useful for high dimensional
datasets [5].

Moreover, we will be using the method of [8], that did a
large-scale benchmark study of survival times using a multi-
omics dataset of cancer datasets. It was concluded that the
Cox model and Block Forest algorithm both show compet-
itive performance. For our analysis we will use the Block
Forest algorithm, since the Cox model is more specifically
tailored for survival times and the Block Forest gives a more
general approach. Additionally, Block Forest showed great
results in the study that compared five different random for-
est variants developed for multi-omics covariate data analysis
[9].

The Block Forest algorithm is an variant of the Random
Forests algorithm [3]. The Block Forest algorithm randomly
chooses which block of variables it should consider at each
split. Afterwards, the algorithm uses the variables from the
selected block to decide how to do the splitting. The Block
Forest algorithm has been implemented as an extension from
the Ranger implementation in C++ and R [18]. We will also
be considering the (standard) Random Forests, to see whether
the variation has a significant impact on the results.



2.3 Implementation Details
In this research we used the Delft AI Cluster (DAIC) from the
TU Delft [6]. To use the Block Forest model, we used the R
implementation with the rpy22 interface. This package makes
it possible for R code to be used within Python. This decision
has been made to ensure that we can run the model on the
DAIC cluster, the parameters have been kept to their standard
values for the analysis. For the Random Forests, k-Nearest
Neighbors and Support Vector Machines. We used the im-
plementations provided by the Scikit-learn3 Python library.
Specifically, the methods RandomForestClassifier, KNeigh-
borsClassifier and SVC have been used, with their parameters
kept at their default values.

Train/Test Split: The training and tests sets were created
using a stratified 10-fold cross-validation, to ensure each fold
preserves the percentage of samples for each class in the to-
tal dataset. Within each fold additional processing were done
before running them on the models, this is done to avoid leak-
ing information from the train data to the test data. Firstly, the
training data has been normalized using the mean normaliza-
tion in Formula 1, with x being the current cell value, µ being
the mean of the samples in the feature and σ the standard de-
viation. An extra term ϵ has been added in the case that the
standard deviation σ would be evaluated to zero. The ϵ was
set to 10−100. In addition, the test data has also been normal-
ized by using the same mean µ and standard deviation σ from
the training data.

x′ =
x− µ

σ + ϵ
(1)

Moreover, for each fold, the missing values have been filled
by taking the mean values from every feature in the train-
ing data. The same mean values have also been used to fill
in the test data. If the feature in the train data only con-
tained missing values the feature was dropped in both the
train and test data. This step only effected the Proteomics
and Metabolomics datasets since the Epigenetics and Gene
Expression datasets had no missing values.

Due to the imbalance in the target counts, with 102 samples
being CT and 45 samples being AD, we also used the over-
sampling method Synthethic Minority Over-sampling Tech-
nique (SMOTE) to make the target counts in the train and test
data in each fold more equal [4]. SMOTE creates synthetic
samples of the minority class to balance the dataset.

Additionally, we used a feature selection technique for
each fold to reduce the number of features for the models
by calculating the ANOVA F-value of the train data and kept
the top number of features equal to the number of rows in the
train data. The ANOVA F-value looks at the variance between
the features and chooses the features that are significantly dif-
ferent. The same features selected in the train data were also
selected for the test data.

Evaluation Measures: Between different models in each
fold, we trained the models on the same train data and deter-
mined the accuracy on the test data. Moreover, a confusion

2RPY2: https://rpy2.github.io/
3Scikit-learn: https://scikit-learn.org/stable/

Figure 1: Barplot displaying the mean accuracies of classifying the
cognitive diagnosis using different models, across the 10-fold strat-
ified cross-validation for the different single-omics and the multi-
omics dataset, where all 4 single-omics were combined. The error
bar show the standard deviation present in the accuracy scores.

matrix has also been made by combining the individual con-
fusion matrices from every fold on the test data. For the par-
tial combinations of single-omics, we determined their mean
accuracy on the test data across the 10-fold cross-validation.

We also kept track of the top 100 features selected in each
fold by the ANOVA F-value and Random Forest, and deter-
mined which features occured the most in every fold. For the
Epigenetics we used the CruzDB 4 package to determine the
closest gene based on the start, end and chromosome infor-
mation within the Epigenetics feature. CruzDB is an interface
for the University of California, Santa Cruz (UCSC) genome
browser, to retrieve information about genomes [15].

3 Results
Method overview
In our analysis, we used the Random Forest, Block Forest, k-
Nearest Neighbors and SVM classifiers to classify the cogdx
values of AD patients from the ROSMAP dataset. After de-
termining the number of overlapping samples for the multi-
omics dataset, the single-omics were also filtered to also only
contain the same overlapping samples.

Comparison of general accuracies show no
improvement for multi-omics approach
Figure 1 displays the mean accuracy over the 10-fold cross-
validation for the single-omics and multi-omics dataset. Ad-
ditionally, the error bars show the standard deviation in the
accuracies. The figure shows no improvement for the classi-
fication accuracy of cogdx for the multi-omics compared to
the single-omics.

Comparison of Wilcoxon tests for k-Nearest
Neighbors shows worse performance compared to
the other models
Figure 1 shows that the k-Nearest Neighbors has the worst
mean accuracy compared to the other models. However, to
determine whether the difference is significant, we used the
Wilcoxon test, since the samples are not assumed to be nor-
mally distributed. The null hypothesis (H0) states that the two
populations should be equal, while the alternative hypothesis

4CruzDB: https://github.com/brentp/cruzdb



(Ha) states that the two populations are not equal. The p-
values from the Wilcoxon test were all significant (p < 0.05)
for all of the omics and models compared to the k-Nearest
Neighbors. Which means the k-Nearest Neigbhbor does not
perform the same as the other models.

Wilcoxon test for Random Forest and Block Forest
show the models perform the same
Comparing the Random Forest with the Block Forest model
using the Wilcoxon test. The resulting p-values show that
they are all not statistically significant (p > 0.05), with the
p-values being [0.9375, 0.2382, 0.0937, 0.1250, 0.6640] re-
spectively. Which means the model perform the same.

Confusion matrices show that k-Nearest Neighbors
often miss-classifies the control label
Table 3 shows the confusion matrices of the different omics
and models, where the matrices have been created by deter-
mining the individual confusion matrices on the test set in ev-
ery fold of the 10-fold cross-validation and combining them,
by adding the individual matrices together at the end. The ta-
ble shows that for the Random Forest, Block Forest and SVM
model, all classify the true CT label the most. The k-Nearest
Neighbors does classify the AD labels the most, however it
does misclassify the CT labels a lot.

UpSet plots for partial combination of single-omics
classification of cogdx show uniform accuracies for
the different models
Figure 2 shows the UpSet plots for the Random Forest, k-
Nearest Neighbors and SVM. The UpSet plots show the mean
accuracies for classifying the cogdx of the 10-fold cross-
validation. The plots also indicate which single-omics were
combined for the predictions. The figure shows that the accu-
racies are all quite uniform.

Feature importance of Random Forest and ANOVA
F-Value show overlap in features
Table 4 show the top 10 most occurring features for the dif-
ferent omics from the Random Forest and ANOVA F-Value
based on their feature importance. For the different omics we
can see that there are some feature overlapping with what the
Random Forest determined to be important with their corre-
sponding ANOVA F-Value. As an example, for Proteomics
we can see that both MLF2 2, bA and STX1A show impor-
tance for both the Random Forest and the ANOVA F-Value.

Feature importance of single-omics show relations
with Alzheimer’s Disease
Taking the features from Table 4 in the context of AD, shows
that some of the features do have a correlation with AD. As
an example, for Proteomics we can see that bA (Amyloid-β)
and tau 12E8 s262 have a correlation with AD, in the context
of the ”Amyloid Cascade Hypothesis”.

Multi-omics feature importance show a strong
contribution from Epigenetics features
The feature importance for multi-omics in Table 4, also shows
a strong preference for features from the Epigenetics dataset.

(a) UpSet plot displaying the mean accuracies for the Random
Forest model on partial-omics

(b) UpSet plot displaying the mean accuracies for the k-Nearest
Neighbor model on partial-omics

(c) UpSet plot displaying the mean accuracies for the Support
Vector Machine (SVM) model on partial-omics

Figure 2: UpSet plots for the different models, with the bar display-
ing the mean accuracies of classifying the cognitive diagnosis across
the 10-fold stratified cross-validation, for the different combinations
of single-omics (partial-omics).



Random Forest Block Forest k-Nearest Neighbors SVM

Proteomics

Epigenetics

Gene Expression

Metabolomics

Multi-Omics

Table 3: Confusion matrices showing the true labels against the predicted labels, for the cognitive diagnosis control (CT) and Alzheimer’s
Disease (AD) values, for the different models and omics across the 10-fold stratified cross-validation. The vertical axis of the confusion
matrices contain the true labels and the horizontal axis contain the predicted labels.



Protemics Gene Expression Epigenetics

Random Forest ANOVA F-Value Random Forest ANOVA F-Value Random Forest ANOVA F-Value

MLF2 2 MLF2 2 HS.246177 WDR64 MYO1D SH3PXD2B
bA bA MCF2L2.1 HS.246177 MPP2 MPP2
STX7 VGF WDR64 MCF2L2.1 SGF29 MYO1D
STX5 STX1A GSDMC LOC148915 SH3PXD2B RBFOX3
STX1A tau 12E8 s262 LOC654085 BMI1 S100A6 MIR29A
SNAP25 3 AMPD2 2 HS.542293 KIAA0090 RBFOX3 VAPA
VGF LDHB 1 LOC644783 C1ORF2 MARF1 MIR1302-7
SNAP25 7 PLXNB1 HS.552393 FRAS1 SRSF6 LOC102724163
AMPD2 2 IGFBP5 LOC148915 HS.529514 LOC102724163 DCAF8
LDHB 1 STX7 LOC339240 FAM83H TTC34 POLR1A

Metabolomics Multi-Omics

Random Forest ANOVA F-Value Random Forest ANOVA F-Value

glycerate glycerophospho-
ethanolamine HS.246177 RBFOX3

glycerophospho-
ethanolamine

glycerophosphoryl-
choline (GPC) MCF2L2.1 WDR64

O-sulfo-L-tyrosine glycerate RBFOX3 SH3PXD2B
1,2-dipalmitoyl-GPG (16:0/16:0) glutamate KIF5A.1 MARF1

tryptophan betaine 1-stearoyl-2-oleoyl-
GPE (18:0/18:1) WDR64 glycerophosphoryl-

choline (GPC)
glycerophosphoryl-
choline (GPC) 12-HHTrE POLR2A glycerophospho-

ethanolamine
homocarnosine 12-HETE SH3PXD2B VAPA
12-HHTrE homoarginine GSDMC LARP4
putrescine X - 23739 TMEM2 MCF2L2.1
1-stearoyl-2-oleoyl-
GPE (18:0/18:1) 2-aminoadipate glycerophospho-

ethanolamine BMI1

Table 4: Tables showing the top 10 features for the different single-omics and multi-omics dataset. The features have been determined by
noting the top 100 features for the Random Forest and ANOVA F-Value across each of the 10-fold cross-validation and seeing which features
appeared the most across the 10-folds. The Epigenetics features show the closest gene from their peaks based on the University of California,
Santa Cruz (UCSC) genome database.



Since the RBFOX3, SH3PXD2B, RBFOX3, MARF1, VAPA
and LARP4 all originate from the Epigenetics dataset.

4 Discussion
In this paper, we looked at whether incorporating multiple
single-omics could improve the the accuracy of predicting
Alzheimer’s Disease (AD) compared to only using single-
omics. For our analysis, we have used the datasets from
the Religious Orders Study and Memory and Aging Project
(ROSMAP), were we mostly looked at the omics: Pro-
teomics (LC-SRM), Metabolomics (Metabolon HD4), Epi-
genetics (ChIP Seq) and Gene Expression (RNA array).

For the analysis, we looked at the accuracies and confu-
sion matrices for the Random Forest, Block Forest, k-Nearest
Neighbor (k-NN) and Support Vector Machines (SVMs). Ad-
ditionally, we looked at the most occurring important features
and looked at the upset plots of partial-omics, where just 2 or
3 single-omics were combined.

In our analysis, we compared the general accuracies of
the single-omics against the multi-omics dataset, and saw
that there were no improvement in the multi-omics approach.
Comparing our results, with the results from Vacher et al.
[16]. They showed an improvement in the accuracy for the
use of multi-omics, while we saw no improvement in our
analysis.

This different could be explained by the difference in
classification we made for the ”cogdx” labels in Table 1.
Where they combined the Alzheimer’s Dementia (AD) and
Mild Cognitive Impairment (MCI) cases together and left the
No Cognitive Impairment (NCI) cases separate, while we
combined the MCI and NCI labels, and kept the AD sam-
ples separate. Moreover, the difference in accuracies could
be explained by the different single-omics we used in our
analysis. While we both use Proteomics (LC-SRM), the
other single-omics were different since they used Epigenet-
ics (DNA methylation array), Genomic Variants (SNP Array)
and Gene Expression (RNAseq from bulk brain) to maximize
the number of overlapping samples, to 455 samples. The
researchers also used different pre-processing techniques for
each single-omic, while we used a more general pipeline for
processing and for reducing our feature space. Furthermore,
the difference could be explained by the different models we
used since Vacher et al. [16] used space generalized canonical
correlation analysis (sGCCA), while we used more standard
models Random Forest, k-Nearest Neighbor (k-NN) and Sup-
port Vector Machines (SVMs).

For our analysis, we also looked at the confusion matrices
for the different omics and saw that k-Nearest Neighbors mis-
classified the control (CT) label a lot, compared to the other
models. This observation could be the results of the over-
sampling procedure using Synthetic Minority Over-Sampling
Technique (SMOTE), since SMOTE creates synthetic sam-
ples from the features space between the the minority classes,
which can result in the AD groupings created by k-Nearest
Neighbors to overlap with the CT samples.

We have also looked at the mean accuracies of partial com-
binations of single-omics, where two or three omics were
combined. The plots show that the accuracies were all quite

uniform, which could indicate that there is no additional pre-
dictive ability to combine multiple single-omics. However,
this could also be the result of the feature selection process
to make the number of features equal to the number of rows,
which could have greatly reduced the feature space and pre-
dictive ability of the models.

Furthermore, we determined the feature importance for the
Random Forest model and ANOVA F-Value used for feature
selection and saw that there are features that overlapped that
were important for both metrics. However, this could the
consequence of the implementation, since we first used the
ANOVA F-Value for feature selection and then used the se-
lected features for the Random Forest, so this could have had
an effect on the selected features.

Lastly, the feature importance also showed that features
with a relation with AD were also seemed as important pre-
dictive features for the Random Forest and ANOVA F-Value.

However, there is room for further exploration whether
there is a correlation of the features importance between the
different single-omics. As an example, whether the top pro-
teins found for Proteomics have a relation with the top genes
found in Gene Expression.

Moreover, our work did not consider all the different
single-omics available from the ROSMAP dataset. This could
also give room for exploration how the different single-omics
are correlated with each other.

5 Responsible Research
Ethical considerations: Firstly for our research, we have
used machine learning models to evaluate the accuracy of pre-
dicting Alzheimer’s Disease (AD). Machine learning models
are known to be quite resource intensive so we were given
access to the Delft AI Cluster (DAIC) [6] to gain extra com-
putation power to evaluate our models. However, as Ariti-
ficial Intelligence (AI) models and machine learning models
become more prevelant, the demand to use these type of clus-
ters and the need for computational power, requires more and
more energy to supply these machines.
Data Sensitivity: Secondly, the data we used come from
the Religious Orders Study and Memory and Aging Project
(ROSMAP) [2]. These kind of datasets contain sensitive per-
sonal medical information, which do have to be used with
permission and care. The participants of the study did give
permission for the use of the data. So the biggest discus-
sion is about the privacy and security of the data, since
we are working with medical data. The platform Synapse
(https://www.synapse.org/), were we gathered the data had
us, first requests access to the datasets and explain that we
wanted to use it for scientific research purposes. However, as
the bioinformatics field grows, there would be more demand
for data and raises the question how we should ethically han-
dle, safely store and use these sensitive information.
Reproducibility: Additionally, it is important that the work
we do and present are reproducible. Not only is it an inte-
grable part of scientific research, it also gives the opportu-
nity to verify results and avoid any false conclusions made.
Moreover, it gives other’s the opportunity to build on exist-
ing work and gives more transparancy in the work and results

https://www.synapse.org/


we achieve. For our analysis, since the data and the models
we used in the study are publically available it should give an
individual the possibility of reproducing the study with the
same models.
Biases: Lastly, in our work we used relatively simple mod-
els, where there results can be explanatory. However, a lot
of models, and more complex models can be seen as black-
boxes, which mean the reasoning behind how the models
come to their results are unexplanatory. This could raise the
issue of the models becoming overtrusted than the physician
or clinician, which can lead to issues of medical malpractice.

To summarise, the use of machine learning and other AI
models can help the progress in developed to solve medical
problems. However, these development does require us to
reflect on the use and safety of the data collected and the in-
terpretability of the results, the models give us.
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