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Abstract

Statistics Netherlands performs many different surveys to obtain estimates of unknown characteristics
of the Dutch population. To keep the response burden on the Dutch households low, Statistics Nether-
lands applies a screening procedure to their selected samples. In our research, we investigate the
effects of the screening procedure on the survey sampling process. We conclude that the effects of
the screening process cannot be considered negligible.

We derive an approximation of the inclusion probability of an element in the sample after screening.
This probability is dependent on the number of people on address and the sampling fraction. Con-
sequently, the probability is not equal for all inhabitants and the effects of the screening procedure
become larger as sample sizes increase.

Two different statistical tests are developed and applied to existing samples that have recently been
selected and screened by Statistics Netherlands, to determine whether the sample after screening is
representative for the population (and for the sample before screening) with respect to relevant auxil-
iary variables.

From a super-population viewpoint, we investigate the properties of the generalised regression es-
timator. We prove that under modest conditions the generalised regression estimator is consistent
and asymptotically unbiased for the self-weighting two-stage sampling design that is used at Statistics
Netherlands. When screening is applied, we cannot conclude that the generalised regression estima-
tor is consistent and asymptotically unbiased. We show how the Horvitz-Thompson estimator and the
generalised regression estimator can be used to undo the effects of the screening procedure during
the estimation of population characteristics.

Keywords: Survey sampling, sampling design, inclusion probability, Horvitz-Thompson estimator,
multivariate hypergeometric distribution, parametric bootstrap, generalised regression estimator, super-
population model, consistency, asymptotically unbiased.
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1
Introduction

In a society where the amount of information is growing explosively, free access to reliable and integral
data is crucial. There is an ever-growing demand for statistical information about the economic, social,
political and cultural shape of countries. As the national statistical office, Statistics Netherlands (CBS)
provides reliable statistical information and data to produce insight into social issues, thus supporting
the public debate, policy development and decision-making while contributing to prosperity, well-being
and democracy [1]. Sometimes, this information can be retrieved from existing sources, from for exam-
ple administrative records, but quite often there is a lack of such sources. A survey is then a powerful
instrument to collect new statistical information.

Many surveys are carried by Statistics Netherlands to obtain information about the Dutch popula-
tion. In order to do this, a sample of inhabitants is selected from all Dutch inhabitants. The inhabitants
that are in selected in this sample receive a letter with the request to fill in a questionnaire. The data
that is collected from the inhabitants in the sample, is then used to estimate characteristics about the
whole Dutch population.

Statistics Netherlands aims to spread their surveys equally among the Dutch inhabitants, such that
each inhabitant is selected in a sample of Statistics Netherlands approximately as often as the others.
To ensure this, inhabitants have an equal probability to be selected in a sample. Furthermore, it is
ensured that inhabitants can only be selected in a sample once per year.

Statistics Netherlands tries to keep the response burden on the Dutch households low. However,
it can sometimes occur that two or more inhabitants who live on the same address are approached
in a short period of time (or even at the same time). If this occurs, it is assumed that those inhabi-
tants experience this as response burden. This is not desirable and it is expected that this leads to
nonresponse.

To prevent this from happening, Statistics Netherlands applies a so-called screening procedure to
their samples, which makes some inhabitants in the sample not eligible for participating in the survey.
Inhabitants that are not eligible after screening do not receive a letter with the request to participate
in the survey. This screening procedure for example ensures that if an inhabitant is selected in the
sample, any other inhabitant who lives on the same address cannot be selected in a sample of Statistics
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2 1. Introduction

Netherlands in the next twelve months.
A consequence of this screening procedure is that not every inhabitant has the same probability to

become non-eligible after screening. For example, an inhabitant who lives on his/her own on his/her
address, will never become not eligible from the sample by that reason, whereas an inhabitant who
lives with many others on his/her address has a higher probability to become non-eligible after screen-
ing. Consequently, not every inhabitant has the same probability to be selected in the sample after
screening.

Thus far, it is assumed that the effects of the screening procedure are negligible. In other words,
despite applying the screening procedure, it is assumed that if inhabitants have equal probabilities to
be selected in the sample, inhabitants also have an equal probability to be selected in the sample after
screening.

Over the past few years, sample sizes have been increasing. In the past the amount of inhabitants
that become not eligible by the screening procedure was relatively small in comparison to the current
situation. Now that sample sizes are increasing, the question arises whether it is still fair to assume
that the effects of the screening procedure are negligible.

1.1. Research questions
The aim of this thesis is to investigate the consequences of the screening procedure. We will determine
if it is fair to assume that the screening procedure is negligible. To investigate this, we have defined
four main research questions:

(RQ1) What is the probability that an inhabitant becomes not eligible after screening the sample? And
what is the probability that an inhabitant is selected in the sample after screening?

(RQ2) Is the sample after screening representative for the population with respect to several auxiliary
variables? And is the sample after screening representative for the sample before screening with
respect to several auxiliary variables?

(RQ3) What are the effects of the screening procedure on the procedure of estimation of population
characteristics?

(RQ4) If the screening procedure cannot be considered negligible, how can we undo the effects of the
screening procedure?

To formulate an answer to these questions, we use two approaches throughout this thesis. The first
one is by a more theoretical point of view by computing the probabilities that an inhabitant becomes
not eligible after screening the sample. Secondly, we can use the samples that have recently been
selected and screened by Statistics Netherlands to measure the effects of the screening procedure.

1.2. Data
Throughout this thesis we make use of data that is made available by Statistics Netherlands. Since the
Dutch population is continuously changing, we make use of the Dutch population at different specified
time stamps (one per month). The data that is used is pseudonymised, such that inhabitants are not
traceable. For example, no names, addresses or social security numbers (BSN) are included in the
data. However, additional information for these inhabitants such as gender, marital status and age are
included in the data.
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Furthermore we use data of several surveys samples that are performed by Statistics Netherlands
recently. For each sample, it is known which inhabitants are included in the sample. Throughout this
thesis we often focus on the mobility survey.

1.2.1. Mobility survey
Statistics Netherlands performs different surveys to collect all types of data about the Dutch population.
Since 1978 Statistics Netherlands investigates the mobility of Dutch inhabitants using the mobility sur-
vey. In the past this was done by surveys which were called Onderzoek Verplaatsingsgedrag (OVG)
or Onderzoek Verplaatsingen Nederland (OViN) [2]. Since January 2018 the mobility survey continued
under the name Onderweg in Nederland (ODiN). The goal of the mobility survey is to deliver useful
information about the mobility of Dutch inhabitants on a daily basis to the Ministry of Infrastructure and
Water Management and others [2].

The Dutch inhabitants that are participating in the survey are requested to provide for one specific
day where he/she traveled to, with what purpose, how long the traveling took, and what means of
transportation were used. Additionally, there are questions that relate to the possession of (electrical)
bicycles or cars and the average use of different means of transport [2].

We have chosen to focus on this survey because its size is relatively large. The aim is that 45.000
Dutch inhabitants participate in the survey on a yearly basis [2]. The target population for the mobility
survey contains all Dutch inhabitants that are six years or older.

1.3. Thesis outline
This thesis is structured as follows. In Chapter 2 we introduce basic (mathematical) concepts on survey
sampling, which are used in the further chapters. In Chapter 3 the procedure for selecting a sample at
Statistics Netherlands is described. Subsequently, the procedure for screening the sample is described
in detail in Chapter 4. In this chapter, an approximation for the probability that an inhabitant becomes not
eligible by the screening procedure is derived. In Chapter 5 we discuss two different statistical tests that
are applied to a recent sample, which allows us to compare the distributions of auxiliary variables in the
population, sample before screening and the sample after screening. To investigate the influence of the
sample size on the screening procedure, statistical tests are applied to a hypothetical situation where
sample sizes are larger than in the current situation. Chapter 7 is dedicated to estimation of population
characteristics from the collected data of inhabitants in the sample. We investigate the properties of
the estimator that is used and the influences of the screening procedure on this estimator. In Chapter
8 we discuss the possibilities to correct for the screening procedure in the estimation procedure. We
complete this thesis by providing a summarising conclusion and discussion on our work in Chapter 9,
and our view on future research on the matter in Chapter 10.





2
Survey sampling

Carrying out a survey is a complex process that requires careful consideration and decision making.
The main idea of a survey is to collect data for a part of the population and use that data to obtain an
estimate for some characteristic of the total population.

This section gives an overview of the various steps in the process and basic (mathematical) con-
cepts on survey sampling. Figure 2.1 shows the different steps in the survey process. First, a sample
of the population is selected (step 1). Then data is collected for that part of the population (step 2),
followed by estimating characteristics of the whole population (step 3). Finally, the obtained estimates
can be published (step 4).

Sample selection

Data collection

Estimation

Publication

STEP 1:

STEP 2:

STEP 3:

STEP 4:

Define target population

Construct sampling frame

Define sampling design

Choose type of interviewing

Define estimator

Figure 2.1: Graphical representation of the survey sampling process

2.1. Sample selection
The main goal of survey sampling is to obtain an estimate for a parameter of the population that is
not yet known. The first step in the survey process is the step where elements are selected from a
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6 2. Survey sampling

population. Before any elements can be selected, it needs to be clear which population will exactly be
investigated. For example, for the mobility survey only the Dutch inhabitants that are six years or older
are considered.

Definition 2.1. The target population 𝑈 is a finite set

𝑈 = {1, … , 𝑘, … , 𝑁} (2.1)

of 𝑁 elements. Here the quantity 𝑁 is called the population size, which is usually known. The numbers
1, 2, … , 𝑁 denote the sequence numbers of the elements in the target population [3]. The 𝑘-th element
of the population is represented by its label 𝑘 and we usually refer to it as element 𝑘. Sometimes we
may refer to element 𝑘 as inhabitant or person.

It is important to define the target population properly. For example, for an unemployment survey
one should define if inhabitants below or above a certain age should or should not be included in the
target population. The next step is to define the target variables that need to be measured by the
questions in the survey.

Definition 2.2. A target variable 𝑦 represents an unknown characteristic of the elements in the target
population. Let 𝑦𝑘 represent the unknown characteristic for the 𝑘-th element and let 𝐲 = (𝑦1, … , 𝑦𝑁 )
denote the vector of characteristics of the elements in the population 𝑈 [4].

Two important population parameters that are usually estimated with the use of a survey are the
population total of the target variable 𝑦

𝑡𝑦 =
𝑁

∑
𝑘=1

𝑦𝑘 (2.2)

or the population mean of 𝑦

𝑦𝑈 = 1
𝑁

𝑁

∑
𝑘=1

𝑦𝑘 (2.3)

Observing 𝑦 for all of elements of 𝑈 would usually prove too expensive or impractical [4], so to estimate
the parameters we observe 𝑦𝑘 for a subset of 𝑈 . This limited set of 𝑦𝑘 can then be used to calculate
estimates of 𝑡𝑦 and 𝑦𝑈 .

Definition 2.3. A subset of the population 𝑈 is called a sample of 𝑈 . A sample is usually denoted by
𝑠 and the set of possible samples is denoted by S[4].

While discussing a sample, one often makes use of the vector of indicators

𝐈 = (𝐼1, … , 𝐼𝑁 ) (2.4)

where the value of the indicator 𝐼𝑘 (for 𝑘 = 1, 2, … , 𝑁) is equal to 1 if element 𝑘 is included in sample
𝑠 and 0 otherwise [4]. Note that the indicator 𝐼𝑘 = 𝐼𝑘(𝑠) is a function of the sample 𝑠. These indicators
are sometimes referred to as the sample membership indicators.

A sample should be selected such that it allows drawing conclusions for the population as a whole.
As Bethlehem [3] describes, a requirement for this is the availability of a sampling frame, which is a list
of elements in the population. For every element in the target population, there must be information
on how to contact that element. The sampling frame should be an accurate representation of the
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Figure 2.2: Figure from Applied Survey Methods, a Statistical Perspective by Bethlehem [3].

population, or else there is a risk of drawing wrong conclusions from the survey [3]. Figure 2.2 shows
two situations that can cause problems: undercoverage and overcoverage.

Undercoverage occurs if the target population contains elements that are not included in the sam-
pling frame, which means that those elements can never be selected in the sample. In the case of
overcoverage, the sampling frame contains elements that are not part of the target population.

For selecting a sample from the total population in the Netherlands, a population register is avail-
able. Each municipality in the Netherlands maintains its register of their inhabitants and all municipal
information is combined in one register that is used by Statistics Netherlands for its surveys. This reg-
ister is known as the Personal Records Database1. Because time passes by between selecting the
sample and observing the inhabitants, a little under- and overcoverage occurs, because inhabitants
may be born, pass away, emigrate or immigrate in the meantime. However we assume that the under-
and overcoverage is negligible and a sampling frame covering the whole population is available for
selecting samples.

Another requirement is to select the sample by means of a probability sample, where every element
in the target population has a nonzero probability of being selected in the sample [3]. In general, sample
selection is carried out by a series of randomised experiments, which will result in a selected sample 𝑠.

Given the procedure to select a sample from the population 𝑈 , it is possible to compute the prob-
ability of selecting a specific sample 𝑠. We will assume that there exists a function 𝑝(⋅) that assigns a
probability to each possible sample.

Definition 2.4. A sampling design 𝑝(⋅) assigns a probability 𝑝(𝑠) to every possible sample 𝑠 ∈ S from
population 𝑈 , such that [4]

(i) 0 ≤ 𝑝(𝑠) ≤ 1

(ii) ∑𝑠∈S 𝑝(𝑠) = 1

For a given sampling design, we can regard any sample 𝑠 as the outcome of a set-valued random
variable 𝑆, whose probability distribution is given by 𝑝(⋅), i.e.

ℙ (𝑆 = 𝑠) = 𝑝(𝑠) (2.5)

1In Dutch better known as Basisregistratie Personen (BRP).
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Definition 2.5. The sample size 𝑛𝑠 of a sample 𝑠 from a population 𝑈 is defined as the number of
elements in the sample 𝑠. The sample size can be computed from 𝑠 by

𝑛𝑠 =
𝑁

∑
𝑘=1

𝐼𝑘(𝑠) (2.6)

Note that 𝑛𝑠 is not necessarily the same for all samples 𝑠 ∈ S. However, in many cases the sampling
design defines the sample size to be fixed. The fixed sample size means that every sample 𝑠 with
positive probability 𝑝(𝑠) has the same sample size 𝑛𝑠. In this case we write 𝑛 for the sample size. The
quantity 𝑛/𝑁 is known as the sampling fraction and is denoted by the letter 𝑓 .

Note that for some sampling designs elements can be selected more than once in the sample. For
such a sampling design, 𝑛𝑠 in Equation (2.13) denotes the number of unique elements in the sample.

If a sampling design has been defined, it is possible to compute the probability 𝜋𝑘 that element 𝑘 is
included in the sample.

Definition 2.6. The first-order inclusion probability 𝜋𝑘 of element 𝑘 is the probability that element 𝑘 is
included in a sample. It can be obtained by a given sampling design 𝑝(⋅) by [4]

𝜋𝑘 = ℙ (𝑘 ∈ 𝑆) = ℙ (𝐼𝑘 = 1) = ∑
𝑠∋𝑘

𝑝(𝑠) (2.7)

Here 𝑠 ∋ 𝑘 denotes that the sum is over those samples 𝑠 that contain the given element 𝑘.

In the same way, the probability that both elements 𝑘 and 𝑙 are included can be obtained from 𝑝(⋅).

Definition 2.7. The probability that both elements 𝑘 and 𝑙 are included in the sample is known as the
second-order inclusion probability, and it is obtained by

𝜋𝑘𝑙 = ℙ (𝑘, 𝑙 ∈ 𝑆) = ℙ (𝐼𝑘𝐼𝑙 = 1) = ∑
𝑠∋𝑘,𝑙

𝑝(𝑠) (2.8)

We have that 𝜋𝑘𝑙 = 𝜋𝑙𝑘 for all 𝑘, 𝑙 ∈ 𝑈 . Note that in case 𝑘 = 𝑙

𝜋𝑘𝑘 = ℙ (𝐼2
𝑘 = 1) = ℙ (𝐼𝑘 = 1) = 𝜋𝑘 (2.9)

The inclusion probabilities can be used to obtain useful properties of the sample membership indi-
cators of Equation (2.4). For an arbitrary sampling design 𝑝(⋅) it holds:

(i) The expected value of the indicator 𝐼𝑘 is equal to the inclusion probability of element
𝑘 (𝑘 = 1, … , 𝑁), i.e.

𝔼 (𝐼𝑘) = ℙ (𝐼𝑘 = 1) = 𝜋𝑘 (2.10)

(ii) The variance of the indicator for an arbitrary sampling design 𝑝(⋅) can be expressed as

𝕍 (𝐼𝑘) = 𝔼 (𝐼2
𝑘) − 𝔼 (𝐼𝑘)2

= 𝔼 (𝐼𝑘) − 𝔼 (𝐼𝑘)2

= 𝜋𝑘 − 𝜋2
𝑘

= 𝜋𝑘(1 − 𝜋𝑘)

(2.11)

(iii) For an arbitrary sampling design and two elements 𝑘, 𝑙 = 1, … 𝑁 the covariance of the indicators
is

Cov(𝐼𝑘, 𝐼𝑙) = 𝔼 (𝐼𝑘𝐼𝑙) − 𝔼 (𝐼𝑘) 𝔼 (𝐼𝑙) = 𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙 (2.12)
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(iv) The sample size is equal to the sum of the sample membership indicators

𝑛𝑠 =
𝑁

∑
𝑘=1

𝐼𝑘(𝑠) (2.13)

and the expected value of the sample size is equal to the sum of the inclusion probabilities for all
elements

𝔼 (𝑛𝑠) = 𝔼
(

𝑁

∑
𝑘=1

𝐼𝑘(𝑠)
)

=
𝑁

∑
𝑘=1

𝔼 (𝐼𝑘(𝑠)) =
𝑁

∑
𝑘=1

𝜋𝑘 (2.14)

If all elements in a population have the same inclusion probability, then such a sample is called a
self-weighting sample.

Definition 2.8. If all elements in the population have the same probability of being selected in the
sample, the sample is called self-weighting. A sampling design can be chosen such that the obtained
sample becomes self-weighting. In that case, the sampling design is also called self-weighting. [3]

We will now introduce two self-weighting sampling designs: simple random sampling without re-
placement and systematic sampling. For both designs, we describe the design and compute the first-
and second-order inclusion probabilities. The sampling design that is used by Statistics Netherlands is
build on these two designs and is introduced in Section 3.

2.1.1. Simple random sampling without replacement (SRSWR)

Simple random sampling without replacement (SRSWR) is a widely used sampling design. The SR-
SWR design is a fixed size sampling design, which means that every sample that can be selected
contains exactly 𝑛 distinct elements of the population. Then the number of possible samples is

(
𝑁
𝑛 ) = 𝑁!

𝑛!(𝑁 − 𝑛)! (2.15)

Simple random sampling without replacement assigns equal probabilities to each possible sample [5].
Sampling without replacement, means that this is a way of sampling in which each element can appear
at most once in a sample.

Sampling design We have already seen that the possible number of samples with size 𝑛 is (𝑁
𝑛 ).

Any sample 𝑠 with size 𝑛 then has the probability of 1/(𝑁
𝑛 ) to be selected, so the sampling design for

SRSWR is

𝑝(𝑠) =
⎧⎪
⎨
⎪⎩

1
(𝑁

𝑛 )
if 𝑠 has 𝑛 elements

0 otherwise
(2.16)

First-order inclusion probability Let 𝑘 be an element from population 𝑈 = {1, … , 𝑁}. There
are exactly (𝑁−1

𝑛−1 ) samples 𝑠 that contain element 𝑘. We have seen that every possible sample 𝑠 has
probability 1/(𝑁

𝑛 ) to be selected. Combining these results gives that the first-order inclusion probability
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equals

𝜋𝑘 = ∑
𝑠∋𝑘

𝑝(𝑠)

= (
𝑁 − 1
𝑛 − 1 ) ⋅ 1

(𝑁
𝑛 )

= (𝑁 − 1)!
(𝑛 − 1)!(𝑁 − 𝑛)! ⋅ 𝑛!(𝑁 − 𝑛)!

𝑁!
= (𝑁 − 1)!

𝑁! ⋅ 𝑛!
(𝑛 − 1)!

= 𝑛
𝑁

(2.17)

Second-order inclusion probability Let 𝑘 and 𝑙 be two elements from population 𝑈 = {1, … , 𝑁},
such that 𝑘 ≠ 𝑙. Then there are (𝑁−2

𝑛−2 ) possible samples 𝑠 that include both elements 𝑘 and 𝑙. The
second-order inclusion probability is

𝜋𝑘𝑙 = ∑
𝑠∋𝑘,𝑙

𝑝(𝑠)

= (
𝑁 − 2
𝑛 − 2 ) ⋅ 1

(𝑁
𝑛 )

= (𝑁 − 2)!
(𝑛 − 2)!(𝑁 − 𝑛)! ⋅ 𝑛!(𝑁 − 𝑛)!

𝑁!
= (𝑁 − 2)!

𝑁! ⋅ 𝑛!
(𝑛 − 2)!

= 𝑛(𝑛 − 1)
𝑁(𝑁 − 1)

(2.18)

If 𝑘 = 𝑙, we have 𝜋𝑘𝑘 = 𝜋𝑘 = 𝑛
𝑁 .

2.1.2. Systematic sampling
Systematic sampling offers several practical advantages, particularly because of its simplicity of ex-
ecution [3]. For systematic sampling in its most basic form, assume that the population size 𝑁 is a
multiple of the sample size 𝑛. Systematic sampling starts by dividing the population into 𝐹 = 𝑁/𝑛
equal parts. 𝐹 is a positive integer and is known as the step length [3] or sampling interval [4]. The
first element of the sample is determined by randomly drawing element 𝑏 ∈ {1, 𝐹 }. Then the other
elements are determined by systematically taking every 𝐹 -th element thereafter [4]. The element 𝑏 is
known as the random start and can only assume 𝐹 different values. Consequently, there are only 𝐹
different samples possible.

Sampling design Let S𝑠𝑦𝑠 denote the set of all possible samples that can be selected by systematic
sampling. There are only 𝐹 different and non-overlapping samples in S𝑠𝑦𝑠. Consequently, the sampling
design is given by

𝑝(𝑠) =
{

1
𝐹 if 𝑠 ∈ S𝑠𝑦𝑠
0 otherwise

(2.19)

First-order inclusion probability Wehave seen that there are exactly𝐹 different and non-overlapping
samples possible. Each element 𝑘 is included in exactly one of those elements. Consequently, the
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first-order inclusion probability of element 𝑘 is

𝜋𝑘 = ℙ (𝑘 ∈ 𝑠) = 1
𝐹 = 𝑛

𝑁 (2.20)

Note that the first-order inclusion probabilities of systematic sampling are identical to the first-order in-
clusion probabilities of simple random sampling without replacement.

Second-order inclusion probability The second-order inclusion probabilities for systematic sam-
pling are not equal to the second-order inclusion probabilities for SRSWR. For systematic sampling,
elements can only be selected in the same sample if they are both included in the sample 𝑠 ∈ S𝑠𝑦𝑠. This
means that two inhabitants can only be selected in the sample together, if the distance between them is
exactly one step length. The second-order inclusion probability is therefore dependent on the order of
the inhabitants. Consequently, there is no explicit formula for the second-order inclusion probability [3].

Systematic sampling is also possible without the assumption that 𝑁 is a multiple of 𝑛. Again let
the step length be defined as 𝐹 = 𝑁

𝑛 . Note that 𝐹 is not necessarily integer, but it is real-valued. The
population 𝑈 of size 𝑁 can be represented by the interval (0, 𝑁], which can be divided into 𝑁 intervals
of length 1:

(0, 1], (1, 2], … , (𝑁 − 1, 𝑁]
A random start is then defined by selecting a random value 𝑏 from the interval (0, 𝐹 ] uniformly. Then
the values

𝑏, 𝑏 + 𝐹 , 𝑏 + 2𝐹 , … , 𝑏 + (𝑛 − 1)𝐹
all correspond to one of the intervals of length one. If a value is contained in the interval (𝑘 − 1, 𝑘]
then element 𝑘 is selected in the sample. The procedure that is used to select a sample by systematic
sampling is summarised in Algorithm 2.1.

In the next example, we show that if 𝑁 is not a multiple of 𝑛, the possible samples have equal
probability to be selected. The elements have an equal inclusion probability of 1

𝐹 .

Example 2.1. Suppose a sample of size 𝑛 = 2 has to be selected from a population of size 𝑁 = 5
with equal probabilities. Then 𝐹 = 𝑁

𝑛 = 5
2 . There are five possible samples, that all have probability 1

5
to be selected. These samples are 𝑠1 = {1, 3} , 𝑠2 = {1, 4} , 𝑠3 = {2, 4} , 𝑠4 = {2, 5} and 𝑠5 = {3, 5}.
A graphical representation of this example is given in Figure 2.3. We can now easily compute the
probability that sample 𝑠2 is selected by

ℙ (𝑆 = 𝑠2) = ℙ (𝑏 ∈ (
1
2, 1]) = 1

2 ⋅ 1
𝐹 = 1

5 (2.21)

Algorithm 2.1: Procedure that is used to select a sample according to a systematic sampling design.

Systematic sampling

1. Initialisation:
𝑁 population size
𝑛 sample size

2. Compute 𝐹 = 𝑁
𝑛

3. Select a random number 𝑏 ∈ (0, 𝐹 ] uniformly
4. Determine the sample by 𝑠 = {𝑘 | 𝑏 + (𝑗 − 1)𝐹 ∈ (𝑘 − 1, 𝑘] , 𝑗 = 1, … , 𝑛}
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Figure 2.3: Graphical representation of the five different samples that are possible for Example 2.1.

The probabilities for the other samples can be computed similarly. The inclusion probability for the
elements can also be computed. For element 3 we have

𝜋3 = ℙ (𝑆 = 𝑠1) + ℙ (𝑆 = 𝑠5) = ℙ (𝑏 ∈ (2, 5
2]) + ℙ (𝑏 + 𝐹 ∈ (2, 3])

= 1
2 ⋅ 1

𝐹 + 1
2 ⋅ 1

𝐹 = 2
5

(2.22)

2.2. Data collection
After the sample is selected from the target population using a sampling design, the elements in the
sample are requested to complete a questionnaire to collect data. It may occur that inhabitants in the
sample do not respond to the questionnaire. This phenomenon is known as nonresponse. Throughout
this thesis, we will assume all elements in the sample will respond to the questionnaire (so nonresponse
does not occur) unless we state otherwise.

The collection of data is done with the use of electronic or paper questionnaires, which are used for
three types of interviews:

(i) Computer-Assisted Personal Interviewing (CAPI)

(ii) Computer-Assisted Telephone Interviewing (CATI)

(iii) Computer-Assisted Web Interviewing (CAWI)

In the past, most questionnaires were to be completed in face-to-face (or personal) interviews. In-
terviewers visited the persons selected in the sample and filled in the information on a questionnaire.
Although the rate of response was high the quality of the data tended to be good, it required a lot of
interviewers and (travel) time which was expensive. In order to reduce costs, the cluster size 𝑚 was
introduced, which is defined as the minimum number of persons in a region that should be selected in
the sample [3]. It means that in case a person in a region is selected in the sample, we should select
𝑚 − 1 or more elements in the same region, such that the interviewer has to travel a shorter distance,
which reduces costs. The introduction of the cluster size introduces a phenomenon called the cluster
effect. The cluster effect occurs in case inhabitants in a region are more similar to one another than
inhabitants in different regions with respect to the target variable of the survey. Collecting data from
𝑚 ’similar’ elements implies that less information is obtained than collecting data from 𝑚 elements that
are randomly chosen throughout the whole population [3]. For example, if aim of the survey is to draw
conclusions about the religion of the Dutch population, selecting multiple inhabitants in the same region
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may lead to less information than selecting inhabitants randomly. This is because religious involvement
may be dependent on the region.

An alternative for face-to-face interviews is telephone interviewing, which requires interviewers who
call the inhabitants to obtain information. No more traveling is necessary with telephone interviewing,
which makes it a cheaper option. However, telephone interviewing is not always possible because not
all inhabitants have a telephone number that is listed and questionnaires cannot be too long or too
complicated.

Nowadays, web interviewing is used for most surveys of Statistics Netherlands. Persons that are
selected in the sample receive a letter with the request to complete the form on the internet. Although
reminders are set, fewer people tend to respond through this way of interviewing compared to the other
types of interviewing [6]. Just like for telephone interviewing, web interviewing is not always possible,
because not all inhabitants have internet access in the Netherlands. Because web interviewing is used
for most surveys, the use of the cluster size became unnecessary. Therefore, the cluster size is usually
equal to 1 nowadays.

2.3. Estimation
The data that is collected by completing the questionnaires can be used to obtain estimates for popu-
lation parameters. Suppose the goal of the survey is to obtain an estimate for the population mean 𝑦𝑈 ,
which was defined in Equation (2.3). Any estimator �̂�𝑈 of 𝑦𝑈 is a statistic that produces values that, for
most samples, lie near the unknown population parameter 𝑦𝑈 [4]. Often the estimator is denoted by
�̂�𝑈 = �̂�𝑈 (𝑆), which means that for any realisation 𝑠 of 𝑆 it is possible to compute �̂�𝑈 from the target
variables 𝑦𝑘 for 𝑘 ∈ 𝑠.

The performance of estimators can be determined by four quantities: expected value, bias, variance
and mean squared error [3]. These four quantities are defined as:

Definition 2.9. The expectation of an estimator �̂�𝑈 of 𝑦𝑈 is defined by

𝔼 (�̂�𝑈 ) = ∑𝑠∈S
𝑝(𝑠)�̂�𝑈 (𝑠) (2.23)

where 𝑝(𝑠) is the sampling design from Definition 2.4. The expected value is the weighted average of
the possible values of �̂�𝑈 (𝑠) where the weight is the probability the sample 𝑠 is selected [4].

Definition 2.10. The bias of an estimator �̂�𝑈 of 𝑦𝑈 is defined as the difference between the expected
value of the estimator and the population parameter 𝑦𝑈 [4], i.e.

𝔹 (�̂�𝑈 ) = 𝔼 (�̂�𝑈 ) − 𝑦𝑈 (2.24)

An estimator �̂�𝑈 is said to be unbiased for 𝑦𝑈 if 𝔹 (�̂�𝑈 ) = 0. Note that in general it is not possible to

compute the bias, because 𝑦𝑈 is unknown.

Definition 2.11. The variance of an estimator �̂�𝑈 of 𝑦𝑈 is given by [4]

𝕍 (�̂�𝑈 ) = ∑𝑠∈S
𝑝(𝑠) (𝔼 (�̂�𝑈 ) − �̂�𝑈 (𝑠))

2

= 𝔼 ((𝔼 (�̂�𝑈 ) − �̂�𝑈 (𝑠))
2

)

= 𝔼 (�̂�2
𝑈 ) − 𝔼 ((�̂�𝑈 ))

2

(2.25)
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Definition 2.12. The mean square error (MSE) of �̂�𝑈 is defined as [4]

MSE(�̂�𝑈 ) = 𝔼 ((�̂�𝑈 − 𝑦𝑈 )
2

) (2.26)

Note that the mean squared error is equal to the sum of the variance and the square of the bias, i.e.

MSE(�̂�𝑈 ) = 𝔼 (�̂�2
𝑈 ) − 2𝔼 (�̂�𝑈 ) 𝑦𝑈 + 𝑦2

𝑈 + (𝔼 (�̂�𝑈 ))
2

− (𝔼 (�̂�𝑈 ))
2

= 𝔼 (�̂�2
𝑈 ) − (𝔼 (�̂�𝑈 ))

2
+ (𝔼 (�̂�𝑈 ) − 𝑦𝑈 )

2

= 𝕍 (�̂�𝑈 ) + (𝔹 (�̂�𝑈 ))
2

(2.27)

2.3.1. The Horvitz-Thompson estimator
Horvitz and Thompson [7] introduced an estimator for the population mean that uses the inclusion
probabilities of the elements in the population to estimate the population total 𝑦𝑈 . This resulted in the
Horvitz-Thompson estimator, which is also known as the 𝜋-estimator [4].

Definition 2.13. The Horvitz-Thompson estimator �̂�HT for 𝑦𝑈 is defined as

�̂�HT = 1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

𝑦𝑘 (2.28)

It is often useful to express the Horvitz-Thompson estimator as a linear function of the indicators

�̂�HT = 1
𝑁

𝑁

∑
𝑘=1

𝑦𝑘
𝜋𝑘

𝐼𝑘 (2.29)

The operation dividing the value variable for element 𝑘 by the inclusion probability of element 𝑘 will
be used often in this thesis. So like Särndal et al. [4] do in their book, we introduce the notation

̆𝑦𝑘 = 𝑦𝑘
𝜋𝑘

(2.30)

In the following theorems the most important properties of the Horvitz-Thompson estimator are
described and proved.

Theorem 2.1 (Unbiasedness Horvitz-Thompson estimator). The Horvitz-Thompson estimator �̂�HT is
an unbiased estimator for the population mean 𝑦𝑈 [4].

Proof. Using the expectation of the sample membership indicator in Equation (2.10), the expectation
of �̂�HT is

𝔼 (�̂�HT) = 𝔼
(

1
𝑁

𝑁

∑
𝑘=1

𝑦𝑘
𝜋𝑘

𝐼𝑘)
= 1

𝑁
𝑁

∑
𝑘=1

̆𝑦𝑘𝔼 (𝐼𝑘) = 1
𝑁

𝑁

∑
𝑘=1

𝑦𝑘 = 𝑦𝑈 (2.31)

Theorem2.2 (VarianceHorvitz-Thompson estimator). The variance of the Horvitz-Thompson estimator
for 𝑦𝑈 is [4]

𝕍 (�̂�HT) = 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝑦𝑘 ̆𝑦𝑙 (2.32)
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Proof. The proof can be found in Appendix A.1.

Theorem 2.3 (Variance Horvitz-Thompson estimator for fixed sample size designs). If the sample size
𝑛 of the sampling design 𝑝(⋅) is fixed, the variance of the Horvitz-Thompson estimator in Equation (2.32)
can be written alternatively as [4]

𝕍 (�̂�HT) = − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝑦𝑘 − ̆𝑦𝑙)2 (2.33)

Proof. The proof can be found in Appendix A.2

2.3.2. TheHorvitz-Thompson estimator for SRSWR
Since simple random sampling without replacement is a widely used sampling design and the Horvitz-
Thompson estimator is a widely used estimator, we examine the Horvitz-Thompson estimator for SR-
SWR.

For simple random sampling without replacement, the Horvitz-Thompson estimator for the popula-
tion mean 𝑦𝑈 equals the the sample mean of 𝑦, i.e.

�̂�HT = 1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

𝑦𝑘 = 1
𝑁 ∑

𝑘∈𝑠

𝑁
𝑛 𝑦𝑘 = 1

𝑛 ∑
𝑘∈𝑠

𝑦𝑘 (2.34)

Simple random sampling without replacement is a fixed sample size design, which gives that we can
use Theorem 2.3 to find the variance for the Horvitz-Thompson estimator for SRSWR.

First, note that for SRSWR, 𝑘 ≠ 𝑙 and the sampling fraction 𝑓 = 𝑛
𝑁 we have that

𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙 = 𝑛(𝑛 − 1)
𝑁(𝑁 − 1) − 𝑛

𝑁
𝑛
𝑁 = 𝑓 (

𝑛 − 1
𝑁 − 1 − 𝑛

𝑁 )

= 𝑓 (
(𝑛 − 1)𝑁 − 𝑛(𝑁 − 1)

𝑁(𝑁 − 1) )

= 𝑓 (
𝑛 − 𝑁

𝑁(𝑁 − 1)) = − 𝑓
𝑁 − 1

𝑁 − 𝑛
𝑁

= −𝑓(1 − 𝑓)
𝑁 − 1

(2.35)

The variance of the Horvitz-Thompson estimator then equals [4]

𝕍 (�̂�HT) = − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝑦𝑘 − ̆𝑦𝑙)2

= − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑘≠𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝑦𝑘 − ̆𝑦𝑙)2 − 1
2𝑁2

𝑁

∑
𝑘=1

(𝜋𝑘𝑘 − 𝜋𝑘𝜋𝑘) ( ̆𝑦𝑘 − ̆𝑦𝑘)2

= − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑘≠𝑙=1

−𝑓(1 − 𝑓)
𝑁 − 1 (

𝑁
𝑛 (𝑦𝑘 − 𝑦𝑙))

2
+ 0

= 1
2𝑁2

𝑓(1 − 𝑓)
𝑁 − 1

1
𝑓 2

𝑁

∑
𝑘=1

𝑁

∑
𝑘≠𝑙=1

(𝑦𝑘 − 𝑦𝑙)2

(2.36)
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Since (𝑦𝑘 − 𝑦𝑙)2 is zero for 𝑘 = 𝑙, we can just write

𝕍 (�̂�HT) = 1
2𝑁2

𝑓(1 − 𝑓)
𝑁 − 1

1
𝑓 2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝑦𝑘 − 𝑦𝑙)2 (2.37)

Recall from Equation (2.3) that the population mean of 𝑦 is denoted by 𝑦𝑈 , which gives

𝕍 (�̂�HT) = 1
2𝑁2

1 − 𝑓
𝑁 − 1

1
𝑓

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

((𝑦𝑘 − 𝑦𝑈 ) − (𝑦𝑙 − 𝑦𝑈 ))
2

= 1
2𝑁2

1 − 𝑓
𝑁 − 1

1
𝑓 (

2𝑁
𝑁

∑
𝑘=1

(𝑦𝑘 − 𝑦𝑈 )
2 − 2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝑦𝑘 − 𝑦𝑈 ) (𝑦𝑙 − 𝑦𝑈 ))

= 1
2𝑁2

1 − 𝑓
𝑁 − 1

1
𝑓 (

2𝑁
𝑁

∑
𝑘=1

(𝑦𝑘 − 𝑦𝑈 )
2 − 2

𝑁

∑
𝑘=1 ((𝑦𝑘 − 𝑦𝑈 )

𝑁

∑
𝑙=1

(𝑦𝑙 − 𝑦𝑈 )))

= 1
2𝑁2

1 − 𝑓
𝑁 − 1

1
𝑓 (

2𝑁
𝑁

∑
𝑘=1

(𝑦𝑘 − 𝑦𝑈 )
2 − 2

𝑁

∑
𝑘=1

(𝑦𝑘 − 𝑦𝑈 ) (𝑁𝑦𝑈 − 𝑁𝑦𝑈 ))

= 1 − 𝑓
𝑛

1
𝑁 − 1

𝑁

∑
𝑘=1

(𝑦𝑘 − 𝑦𝑈 )
2

= 1 − 𝑓
𝑛 𝑆2

𝑦𝑈

(2.38)

where 𝑆2
𝑦𝑈 denotes the population variance, i.e.

𝑆2
𝑦𝑈 = 1

𝑁 − 1

𝑁

∑
𝑘=1

(𝑦𝑘 − 𝑦𝑈 )
2 (2.39)

2.4. Publication
After the collected data is used to obtain estimates for population characters, the results of the survey
are published in, for example, a report or on the internet. Sometimes the results may also contain
some further analysis on the collected data, such as possible patterns/relations in the collected data or
testing hypotheses that have been formulated about the population [3]. Results of surveys of Statistics
Netherlands are often published on Statline [8].



3
Sampling design

An important part of selecting the sample, is the decision for the sampling design that is used. Through-
out this thesis, we only consider sampling designs where elements are selected with equal probability.
In survey sampling terminology such a sample is known as self-weighting, see Definition 2.8.

In this section, we describe the sampling design that is used for selecting self-weighting samples
at Statistics Netherlands. The sampling design was developed at a time when there was no sampling
frame available for the total population of the Netherlands, but each municipality had its own population
register [3]. Therefore, it was decided to use a two-stage sampling design to select samples from the
Dutch population [3]. In practice this means that first municipalities are selected and subsequently in-
habitants are selected from the selected municipalities. Another reason to use this sampling design is
that costs can be reduced by the introduction of the cluster size, see Section 2.2. In the first stage, mu-
nicipalities are selected by systematic sampling with probabilities proportional to the population sizes of
the municipalities. In the second stage, inhabitants from the selected municipalities are selected using
simple random sampling without replacement (SRSWR). The municipalities are sometimes referred to
as the primary sampling units and the inhabitants as the secondary sampling units.

The Netherlands is divided into 40 NUTS-3-regions1, see Figure 3.1. The NUTS (Nomenclature
des Unités Territoriales Statistiques) is a regional classification of the European statistical office Eu-
rostat [9]. Each NUTS-3-region consists of a number of municipalities. To make sure the elements
in the sample are proportionally distributed among the different NUTS-3-regions, the sampling design
that is described in this section is applied to each region independently. This means that a stratified
sampling is applied, where the strata are the NUTS-3-regions [4]. The sample size in a NUTS-3-region
is proportional to the population size in the corresponding NUTS-3-region.

3.1. Selectingmunicipalities with probabilities proportional to size
Let the target population in a NUTS-3-region be denoted by 𝑈 = {1, 2, … , 𝑁}. Suppose a sample of
size 𝑛 should be selected from the population 𝑈 such that each element in the population has an equal
probability to be selected in the sample.

1In Dutch known as COROP-region, which is an abbreviation for Coördinatiecommissie Regionaal Onderzoeksprogramma.

17
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Figure 3.1: Map of the Netherlands divided into 40 NUTS-3-regions. Figure from regioatlas.nl [9].

The population is divided into 𝐼 municipalities which do not overlap and cover the complete popu-
lation 𝑈 . We denote the 𝑖-th (𝑖 = 1, … , 𝐼) municipality by 𝑈𝑖 such that

𝑈 = 𝑈1 ∪ ⋯ ∪ 𝑈𝐼 and 𝑈𝑖 ∩ 𝑈𝑗 = ∅ ∀ 𝑖, 𝑗 = 1, … , 𝐼 (3.1)

Let the population size of municipality 𝑈𝑖 be denoted by 𝑁𝑖. Then the sum of the population sizes of
the municipalities equals the total population size, i.e.

𝐼

∑
𝑖=1

𝑁𝑖 = 𝑁 (3.2)

The municipalities 1, … , 𝐼 are now selected by systematic sampling, with probabilities proportional
to the sizes 𝑁1, … , 𝑁𝐼 . The idea is similar to systematic sampling with equal probabilities, that was
introduced in Section 2.1.2, but now municipalities do not have equal inclusion probabilities. Suppose
the municipalities are sorted in random order. Let the total population 𝑈 be represented by the interval
I = (0, 𝑁] and the population of municipality 𝑈𝑖 by the interval

I𝑖 =
(

𝑖−1

∑
𝑗=1

𝑁𝑗 ,
𝑖

∑
𝑗=1

𝑁𝑗]
for 𝑖 = 2, … , 𝐼 (3.3)

and I1 = (0, 𝑁1]. Note that this is defined such that I𝑖 has length 𝑁𝑖, for 𝑖 = 1, … , 𝐼 and

I =
𝐼

⋃
𝑖=1

I𝑖 (3.4)
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Denote the number of municipalities to select by 𝑛𝐼 . We will sometimes refer to 𝑛𝐼 as the sample
size of municipalities. As was described in Section 2.2 the cluster sizewas introduced in order to reduce
costs. The cluster size is defined as the minimum number of inhabitants to be selected in a municipality,
if the municipality is selected. We will denote the cluster size by 𝑚. It means that when a municipality
𝑈𝑖 is selected, at least 𝑚 inhabitants from municipality 𝑈𝑖 should be selected in the sample. It follows
that the number of municipalities to select is at most 𝑛/𝑚, which we denote by 𝑛max

𝐼 , i.e.

𝑛𝐼 ≤ 𝑛max
𝐼 = 𝑛

𝑚 (3.5)

Let the step length or sampling interval 𝐹 be computed by

𝐹 = 𝑁
𝑛max

𝐼
= 𝑁 𝑚

𝑛 (3.6)

The first municipality is selected by choosing a random number 𝑏 in the interval (0, 𝐹 ] uniformly. The
municipality 𝑈𝑖 for which 𝑏 ∈ I𝑖 is selected in the sample of municipalities, that we will denote by 𝑠𝐼 .
The other municipalities are determined by selecting the municipalities that correspond to the values
𝑏 + 𝐹 , 𝑏 + 2𝐹 , … , (𝑛/𝑚 − 1)𝐹 . So we can denote the sample of municipalities as

𝑠𝐼 = {𝑈𝑖 | 𝑏 + (𝑗 − 1)𝐹 ∈ I𝑖, 𝑗 = 1, … , 𝑛
𝑚 − 1} (3.7)

Note that there may be municipalities that have a population size that is greater than or equal to
the step length. This would mean that those municipalities are selected at least once in the sample
of municipalities 𝑠𝐼 . Municipalities 𝑈𝑖 for which 𝑁𝑖 ≥ 𝐹 are called self-selecting municipalities, and
municipalities for which 𝑁𝑖 < 𝐹 are called non-self-selecting municipalities.

The next example shows that self-selecting municipalities are always selected and can be selected
more than once in the sample of municipalities.

Example 3.1. Suppose a population of size 10 contains 3 municipalities 𝑈1, 𝑈2, 𝑈3 with sizes 𝑁1 = 6,
𝑁2 = 3 and 𝑁3 = 1. Let the cluster size be 𝑚 = 2 and the sample size 𝑛 = 4. Then we should select
at most 4

2 = 2 municipalities and the step length is 𝐹 = 10 ⋅ 2
4 = 5. In Figure 3.2 this is illustrated

graphically. In the example in Figure 3.2, the random start is 𝑏 = 3. Note that municipality 𝑈1 has a
population size that is greayer than the step length. Consequently, municipality 𝑈1 is self-selecting,
and hence it is selected in the sample 𝑠𝐼 for all possible values of 𝑏. Depending on the value of the
random start, 𝑈2 or 𝑈3 can be selected in the sample of municipalities. Note that if 𝑏 is smaller than 1,
municipality 𝑈1 is selected in the sample twice.

Under the circumstances that there are self-selecting municipalities, municipalities can be selected
more than once in the sample. In Section 3.4, we will describe a simplification of the design that ensures
municipalities can only be selected once in the sample 𝑠𝐼 . But first, we compute the first-order inclusion
probabilities of the municipalities.

3.2. First-order inclusion probabilities of themunicipalities
We have seen that there are self-selecting municipalities and non-self-selecting municipalities. For
both municipalities, we compute the first-order inclusion probabilities.

Consider a non-self-selecting municipality 𝑈𝑖 with population size 𝑁𝑖. Let 𝑠𝐼 be the outcome of a
set-valued random variable 𝑆𝐼 . Then the inclusion probability of the municipality, which we denote by
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Figure 3.2: Graphical representation of Example 3.1, with a population of size 10 containing 3 municipalities.

𝜋𝑈𝑖 is [3]

𝜋𝑈𝑖 = ℙ (𝑈𝑖 ∈ 𝑆𝐼 )
= ℙ (𝑏 ∈ I𝑖) + ℙ (𝑏 + 𝐹 ∈ I𝑖) + ⋯ + ℙ (𝑏 + (

𝑛
𝑚 − 1) 𝐹 ∈ I𝑖)

= 𝑁𝑖
𝐹 = 𝑁𝑖

𝑁
𝑛
𝑚

(3.8)

Next, consider a self-selecting municipality 𝑈𝑖. Then the population size 𝑁𝑖 is greater than or equal
to 𝐹 . We have seen that self-selecting municipalities are selected at least once in the sample of
municipalities 𝑠𝐼 . Consequently, if 𝑈𝑖 is a self-selecting municipality we define its inclusion probability
equal to 1.

To sum up, the first-order inclusion probability of a municipality 𝑈𝑖 is

𝜋𝑈𝑖 = ℙ(𝑈𝑖 ∈ 𝑆𝐼 ) =
⎧
⎪
⎨
⎪
⎩

𝑁𝑖
𝑁

𝑛
𝑚 if 𝑁𝑖 < 𝑁 𝑚

𝑛

1 if 𝑁𝑖 ≥ 𝑁 𝑚
𝑛

(3.9)

3.3. Selecting inhabitants with equal probabilities
The sample of municipalities 𝑠𝐼 is determined by applying systematic sampling with probabilities pro-
portional to the population size of the municipalities. The goal is to obtain a sample of inhabitants 𝑠
of size 𝑛 such that each inhabitant has the same probability to be selected. This means that each
inhabitant should have an inclusion probability of 𝑛/𝑁 . This can be obtained by choosing the number
of inhabitants to be selected from each municipality properly.

Let 𝑛𝑖 denote the number of inhabitants to be selected from municipality 𝑈𝑖. The 𝑛𝑖 inhabitants
are selected from the population of size 𝑁𝑖 by simple random sampling without replacement, that was
described in Section 2.1.1. Recall that a municipality can either be non-self-selecting or self-selecting.
We will consider those cases separately.

Non-self-selecting municipality Consider a non-self-selecting municipality 𝑈𝑖 with population size
𝑁𝑖. Then

𝑁𝑖 < 𝐹 and 𝜋𝑈𝑖 = 𝑁𝑖
𝑁

𝑛
𝑚 (3.10)

Consider element 𝑘 in municipality 𝑈𝑖. Then the inclusion probability of element 𝑘 is

𝜋𝑘 = ℙ (𝑘 ∈ 𝑆) = ℙ (𝑘 ∈ 𝑆|𝑈𝑖 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖 ∈ 𝑆𝐼 ) = 𝑛𝑖
𝑁𝑖

⋅ 𝑁𝑖
𝑁

𝑛
𝑚 = 𝑛𝑖

𝑁
𝑛
𝑚 (3.11)
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By selecting exactly 𝑛𝑖 = 𝑚 inhabitants from 𝑈𝑖, the inclusion probability of element 𝑘 is 𝑛/𝑁 . So, for
each non-self-selecting municipality 𝑈𝑖 select 𝑛𝑖 = 𝑚 inhabitants by SRSWR.

Self-selecting municipality Consider a self-selecting municipality 𝑈𝑖 with population size 𝑁𝑖. Then

𝑁𝑖 ≥ 𝐹 and 𝜋𝑈𝑖 = 1 (3.12)

Again, consider inhabitant 𝑘 in municipality 𝑈𝑖. Then

𝜋𝑘 = ℙ (𝑘 ∈ 𝑆) = ℙ (𝑘 ∈ 𝑆|𝑈𝑖 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖 ∈ 𝑆𝐼 ) = 𝑛𝑖
𝑁𝑖

(3.13)

This inclusion probability is equal to 𝑛/𝑁 if and only if 𝑛𝑖 = 𝑛
𝑁 𝑁𝑖. So for each self-selecting municipality

𝑈𝑖, select 𝑛𝑖 = 𝑛
𝑁 𝑁𝑖 inhabitants by SRSWR.

To summarise, the sample size of a municipality 𝑈𝑖 is

𝑛𝑖 =
⎧
⎪
⎨
⎪
⎩

𝑚 if 𝑈𝑖 non-self-selecting

𝑛
𝑁 𝑁𝑖 if 𝑈𝑖 self-selecting

(3.14)

Remark 3.1. Note that this procedure can result in several non-integer sample sizes. In practice that
cannot be the case, so sample sizes are rounded. This can cause slight deviations, which are usually
ignored.

3.4. Practical simpli cation of the sampling design
The two-stage sampling design that was described in the previous sections, is applied for selecting
self-weighting samples that are selected from the whole Dutch population at Statistics Netherlands.
We have seen that the self-selecting municipalities have an inclusion probability of 1, which means
that those municipalities are always included in the sample 𝑠𝐼 . Consequently, we can start by in-
cluding the self-selecting municipalities in 𝑠𝐼 and excluding them from the population. This leads to a
simplification of the implementation of the two-stage sampling design.

Let �̃� denote the total population size for all non-self-selecting municipalities and let 𝐼 denote
the number of non-self-selecting municipalities. Then the total population size of the self-selecting
municipalities is 𝑁 −�̃� and there are 𝐼 −𝐼 self-selecting municipalities. We have seen that from each
self-selecting 𝑈𝑖, we select 𝑛𝑖 = 𝑛

𝑁 𝑁𝑖 inhabitants. Consequently, the sample size of inhabitants in all
self-selecting municipalities equals

𝑛
𝑁 (𝑁 − �̃�) (3.15)

Let ̃𝑛 denote the sample size of inhabitants from all non-self-selecting municipalities. Then ̃𝑛 is equal
to

̃𝑛 = 𝑛 − 𝑛
𝑁 (𝑁 − �̃�) (3.16)

Recall that the municipalities are sorted in random order. Without loss of generality, we may assume
that the first 𝐼 municipalities are non self-selecting. Then the population of all non-self-selecting mu-
nicipalities can be represented by the interval

∼
I = (0, �̃�] (3.17)
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and each non-self-selecting municipality 𝑈𝑖 can be represented by a subinterval

∼
I 𝑖 =

(

𝑖−1

∑
𝑗=1

𝑁𝑗 ,
𝑖

∑
𝑗=1

𝑁𝑗]
, for 𝑖 = 2, … , 𝐼 (3.18)

and
∼
I 1= (0, 𝑁1]. From each non-self-selecting municipality at least 𝑚 inhabitants should be selected,

which gives that the number of non-self-selecting municipalities to select is

̃𝑛𝐼 = ̃𝑛
𝑚 = 1

𝑚 (𝑛 − 𝑛
𝑁 (𝑁 − �̃�)) = 𝑛

𝑚 − 𝑛
𝑚 + 𝑛

𝑚
�̃�
𝑁 = 𝑛

𝑚
�̃�
𝑁 (3.19)

We can now apply systematic sampling with unequal probabilities again, with a step length 𝐹 of size

𝐹 = �̃�
̃𝑛𝐼

= 𝑁 𝑚
𝑛 (3.20)

Note that the step length 𝐹 is the same as the step length 𝐹 that was defined in Equation (3.6). Now the
first non-self-selecting municipality is determined by choosing the random start 𝑏 ∈ (0, 𝐹 ] uniformly.
The municipality 𝑈𝑖 for which 𝑏 ∈ ∼

I 𝑖 is selected in 𝑠𝐼 . The other municipalities in 𝑠𝐼 are the munici-
palities that correspond to the values 𝑏 + 𝐹 , 𝑏 + 2𝐹 , … , 𝑏 + ( ̃𝑛𝐼 − 1)𝐹 . The sample of municipalities
𝑠𝐼 can be denoted by

𝑠𝐼 = {𝑈𝑖 | 𝑁𝑖 ≥ 𝐹 } ∪ {𝑈𝑖 | 𝑏 + (𝑗 − 1)𝐹 ∈ ∼
I 𝑖 , 𝑗 = 1, … , ̃𝑛𝐼 } (3.21)

The procedure is summarised in Algorithm 3.1.

Remark 3.2. Recall that in Section 2.2 we have explained that since web interviewing is used for most
surveys nowadays, the cluster size is usually defined as 1. This means that the step size 𝐹 is equal
to 𝑁/𝑛. If sample sizes are large enough, most municipalities are self-weighting. We use data that is
available on Statline [8]. In 2018, the Dutch population size was 17, 181, 084 [8]. If we use a sample
size of 𝑛 = 4, 000, then the step size is equal to 4, 295. For this sample size, only four out of 380
municipalities are non-self-selecting. Consequently, if the cluster size is equal to 1 and the sample
sizes are large enough, the self-weighting two-stage sampling design is comparable to SRSWR.

3.5. Second-order inclusion probabilities
In Section 7 we will discuss the estimator that is used at Statistics Netherlands. For computing the
variance of the estimator, the second-order inclusion probabilities are required. In this section we
compute the second-order inclusion probabilities corresponding to the self-weighting two stage design,
first for municipalities and then for inhabitants.

3.5.1. Second-order inclusion probabilities of municipalities
Consider two municipalities 𝑈𝑖 and 𝑈𝑗 in the Netherlands. We will compute the second-order inclusion
probability 𝜋𝑈𝑖𝑈𝑗 , that denotes the probability that both municipalities 𝑈𝑖 and 𝑈𝑗 are included in the
sample of municipalities 𝑠𝐼 . Without mentioning it explicitly, we assume that 𝑈𝑖 ≠ 𝑈𝑗 , because for
𝑈𝑖 = 𝑈𝑗 we simply have

𝜋𝑈𝑖𝑈𝑖 = 𝜋𝑈𝑖 (3.22)

where 𝜋𝑈𝑖 is given by Equation (3.9).
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Algorithm 3.1: Procedure to select a sample according to the two-stage self-weighting sampling design that is used by Statistics
Netherlands.

Two-stage systematic sampling design with probabilities proportional to size

1. Initialisation:
𝑁 population size
𝑛 sample size
𝐼 number of municipalities
𝑁𝑖 population size municipality 𝑈𝑖 (𝑖 = 1, … , 𝐼)
𝑚 cluster size

2. Compute 𝐹 = 𝑁 𝑚
𝑛

3. For each municipalities 𝑈𝑖 (𝑖 = 1, … , 𝐼)
If 𝑁𝑖 ≥ 𝐹

Municipality 𝑈𝑖 is self-selecting
Add 𝑈𝑖 to 𝑠𝐼
Select 𝑛𝑖 = 𝑛

𝑁 𝑁𝑖 elements from 𝑈𝑖 by SRSWR
If 𝑁𝑖 < 𝐹

Municipality 𝑈𝑖 is non-self-selecting
4. Compute:

�̃� population size of all non-self-selecting municipalities
̃𝑛 = 𝑛 − 𝑛

𝑁 (𝑁 − �̃�) number of inhabitants to select of all self-selecting municipalities

̃𝑛𝐼 = 𝑛
𝑚

�̃�
𝑁 number of non-self-selecting municipalities to select

𝜆𝑖 indicator function that is 1 for non-self-selecting municipalities

5. Compute the subintervals
∼
I 𝑖 = (∑𝑖−1

𝑗=1 𝜆𝑗𝑁𝑗 , ∑𝑖
𝑗=1 𝜆𝑗𝑁𝑗]

6. Choose 𝑏 ∈ (0, 𝐹 ] randomly

7. Add the municipalities {𝑈𝑖 | 𝑏 + (𝑗 − 1)𝐹 ∈ ∼
I 𝑖 , 𝑗 = 1, … , ̃𝑛𝐼 } to 𝑠𝐼

8. For each non-self-selecting municipalities 𝑈𝑖 ∈ 𝑠𝐼
Select 𝑛𝑖 = 𝑚 elements from 𝑈𝑖 by SRSWR

Note that the two-stage sampling design is applied to each NUTS-3-region independently. Due to
the independence, second-order inclusion probabilities for a pair of municipalities in different NUTS-3-
regions are easy to calculate. If 𝑈𝑖 and 𝑈𝑗 are in different NUTS-3-regions, then

𝜋𝑈𝑖𝑈𝑗 = 𝜋𝑈𝑖𝜋𝑈𝑗 (3.23)

where 𝜋𝑈𝑖 is the first-order inclusion probability as was described in Equation (3.9). From now on,
assume that 𝑈𝑖 and 𝑈𝑗 are municipalities in the same NUTS-3-region, then municipalities 𝑈𝑖 and 𝑈𝑗
can be self-selecting or non-self-selecting municipalities. We consider each case for the municipalities
𝑈𝑖 and 𝑈𝑗 separately.

(i) Suppose 𝑈𝑖 and 𝑈𝑗 are both self-selecting municipalities. Then

𝜋𝑈𝑖𝑈𝑗 = ℙ (𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 ) = 1 (3.24)

(ii) Suppose 𝑈𝑖 is a self-selecting municipality and 𝑈𝑗 is a non-self-selecting municipality, then

𝜋𝑈𝑖𝑈𝑗 = ℙ (𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 ) = ℙ (𝑈𝑗 ∈ 𝑆𝐼 ) = 𝜋𝑈𝑗 = 𝑁𝑖
𝑁

𝑛
𝑚 (3.25)
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Note that this case is similar to the case when 𝑈𝑖 is non-self-selecting and 𝑈𝑗 is self-selecting.

(iii) Suppose 𝑈𝑖 and 𝑈𝑗 are both non-self-selecting municipalities. Then the second-order inclusion
probability is more difficult to compute, because the second-order inclusion probabilities are de-
pendent on the order of the municipalities, see Section 2.1.2.

Vondenhoff and van Berkel [10] derive the second-order inclusion probability for two non-self-
selecting municipalities. The calculations of these probabilities is computationally intensive, so
several approximations for the second-order inclusion probability are derived [10]. The simplest
approximation for 𝜋𝑈𝑖𝑈𝑗 is bilinear in the pair (𝑁𝑖, 𝑁𝑗)[10], which gives

𝜋𝐵
𝑈𝑖𝑈𝑗

= 𝐶𝑁𝑖𝑁𝑗 (3.26)

where 𝐶 > 0 is a constant

𝐶 = 1
𝐹 2 (1 − 1

̃𝑛𝐼 )
⎛
⎜
⎜
⎝
1 − 1

∑𝐼
𝑔=1

𝑁2
𝑔

�̃�2

⎞
⎟
⎟
⎠

(3.27)

3.5.2. Second-order inclusion probabilities of inhabitants
Let 𝑘 and 𝑙 be two elements of the population 𝑈 = {1, 2, … , 𝑁}, such that 𝑘 is in municipality 𝑈𝑖 and 𝑙
in municipality 𝑈𝑗 . We can now compute the probability that both element 𝑘 and 𝑙 (𝑘 ≠ 𝑙) are selected
in the sample. We will use the first- and second order inclusion probabilities of the municipalities from
Sections 3.2 and 3.5.1, and the first- and second-order inclusion probabilities for SRSWR from Section
2.1.1. This gives the conditional first-order inclusion probability

ℙ (𝑘 ∈ 𝑆 | 𝑈𝑖 ∈ 𝑆𝐼 ) = 𝑛𝑖
𝑁𝑖

(3.28)

and if 𝑘 and 𝑙 both in municipality 𝑈𝑖, the conditional second-order inclusion probability

ℙ (𝑘, 𝑙 ∈ 𝑆 | 𝑈𝑖 ∈ 𝑆𝐼 ) = 𝑛𝑖(𝑛𝑖 − 1)
𝑁𝑖(𝑁𝑖 − 1) (3.29)

To compute the unconditional second-order inclusion probabilities for inhabitants we will distinguish
the different cases:

(i) If inhabitant 𝑘 and 𝑙 are in the same municipality, so 𝑈𝑖 = 𝑈𝑗 then

𝜋𝑘𝑙 = ℙ (𝑘, 𝑙 ∈ 𝑆 | 𝑈𝑖 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖 ∈ 𝑆𝐼 )

= 𝑛𝑖(𝑛𝑖 − 1)
𝑁𝑖(𝑁𝑖 − 1)𝜋𝑈𝑖

(3.30)

Here the sample size 𝑛𝑖 and the inclusion probability 𝜋𝑈𝑖 depend on whether 𝑈𝑖 is self-selecting
or not, see Equations (3.9) and (3.14). If 𝑈𝑖 is self-selecting we have

𝜋𝑘𝑙 =
𝑛
𝑁 𝑁𝑖 ( 𝑛

𝑁 𝑁𝑖 − 1)
𝑁𝑖(𝑁𝑖 − 1) = 𝑛

𝑁

𝑛
𝑁 𝑁𝑖 − 1
𝑁𝑖 − 1 (3.31)

And if 𝑈𝑖 is non-self-selecting we have

𝜋𝑘𝑙 = 𝑚 (𝑚 − 1)
𝑁𝑖(𝑁𝑖 − 1) ⋅ 𝑁𝑖

𝑁
𝑛
𝑚 = 𝑛

𝑁
𝑚 − 1
𝑁𝑖 − 1 for 𝑚 ≥ 2 (3.32)

Note that if the cluster size 𝑚 is defined as 1, the second-order inclusion probability is zero in this
case.
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(ii) Suppose inhabitants 𝑘 and 𝑙 are in different municipalities that are in different NUTS-3-regions.
Recall that the sampling design is applied to each NUTS-3-region independently, which gives that
the second-order inclusion probability is rather simple in this case

𝜋𝑘𝑙 = ℙ (𝑘, 𝑙 ∈ 𝑆 | 𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 )
= ℙ (𝑘 ∈ 𝑆 | 𝑈𝑖 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑙 ∈ 𝑆 | 𝑈𝑗 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑗 ∈ 𝑆𝐼 )
= 𝑛𝑖

𝑁𝑖

𝑛𝑗
𝑁𝑗

𝜋𝑈𝑖𝜋𝑈𝑗

(3.33)

The sample sizes 𝑛𝑖 and 𝑛𝑗 and the inclusion probabilities of the municipalities 𝜋𝑈𝑖 and 𝜋𝑈𝑗
depend on whether 𝑈𝑖 and 𝑈𝑗 are self-selecting or not, see Equations (3.9) and (3.14). Note
that in each case we have that 𝜋𝑘𝑙 = 𝑛

𝑁
𝑛
𝑁 . Recall that the sampling design is applied to each

NUTS-3-region independently. Given the independency, we could have stated immediately that
𝜋𝑘𝑙 = 𝑛

𝑁
𝑛
𝑁 .

Besides assuming 𝑘 ≠ 𝑙, from now on we will assume 𝑈𝑖 ≠ 𝑈𝑗 and that municipalities 𝑈𝑖 and 𝑈𝑗 are
in the same NUTS-3-region.

(iii) Suppose 𝑈𝑖 and 𝑈𝑗 are both self-selecting municipalities, then

𝜋𝑘𝑙 = ℙ (𝑘, 𝑙 ∈ 𝑆 | 𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 )
= ℙ (𝑘 ∈ 𝑆 | 𝑈𝑖 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑙 ∈ 𝑆 | 𝑈𝑗 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 )
= 𝑛𝑖

𝑁𝑖
⋅

𝑛𝑗
𝑁𝑗

⋅ 1

= 𝑛
𝑁

𝑛
𝑁

(3.34)

(iv) If 𝑈𝑖 is a self-selecting municipality and 𝑈𝑗 a non-self-selecting municipality, then

𝜋𝑘𝑙 = ℙ (𝑘, 𝑙 ∈ 𝑆 | 𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 )
= ℙ (𝑘 ∈ 𝑆 | 𝑈𝑖 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑙 ∈ 𝑆 | 𝑈𝑗 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑗 ∈ 𝑆𝐼 )

= 𝑛𝑖
𝑁𝑖

𝑛𝑗
𝑁𝑗

𝑁𝑗
𝑁

𝑛
𝑚

= 𝑛
𝑁

𝑚
𝑁𝑗

𝑁𝑗
𝑁

𝑛
𝑚

= 𝑛
𝑁

𝑛
𝑁

(3.35)

This case is similar to the case where 𝑈𝑖 is non-self-selecting and 𝑈𝑗 is self-selecting.

(v) Suppose 𝑈𝑖 and 𝑈𝑗 are both non-self-selecting municipalities, then the second-order inclusion
probability for elements 𝑘 and 𝑙 is

𝜋𝑘𝑙 = ℙ (𝑘, 𝑙 ∈ 𝑆 | 𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 )
= ℙ (𝑘 ∈ 𝑆 | 𝑈𝑖 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑙 ∈ 𝑆 | 𝑈𝑗 ∈ 𝑆𝐼 ) ⋅ ℙ (𝑈𝑖, 𝑈𝑗 ∈ 𝑆𝐼 )
= 𝑛𝑖

𝑁𝑖

𝑛𝑗
𝑁𝑗

⋅ 𝜋𝑈𝑖𝑈𝑗

= 𝑚
𝑁𝑖

𝑚
𝑁𝑗

⋅ 𝜋𝑈𝑖𝑈𝑗

(3.36)
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where an approximation of 𝜋𝑈𝑖𝑈𝑗 is given by Equation (3.26). So an approximation for the second-
order inclusion probability is

𝜋𝐵
𝑘𝑙 = 𝑚

𝑁𝑖
𝑚

𝑁𝑗
⋅ 𝜋𝐵

𝑈𝑖𝑈𝑗

= 𝑚
𝑁𝑖

𝑚
𝑁𝑗

⋅ 𝐶𝑁𝑖𝑁𝑗

= 𝑚2 1
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(3.37)

Note that if ̃𝑛𝐼 and ∑𝐼
𝑔=1

𝑁2
𝑔

�̃�2 are large we have that 𝜋𝐵
𝑘𝑙 ≈ 𝑛

𝑁
𝑛
𝑁 .

3.6. Conclusion
The self-weighting two-stage sampling design that is introduced in this chapter, is similar to simple
random sampling without replacement. In both designs, inhabitants are selected with equal probabilities
and without replacement. However, the second-order inclusion probabilities of the two-stage sampling
design are not equal to those of SRSWR. This is because the two-stage sampling design ensures that
at least 𝑚 inhabitants are selected per municipality, and the number of inhabitants per municipality is
proportional to the population size of the municipality.

For simplicity, we sometimes use simple random sampling without replacement instead of the two-
stage sampling design in the next chapters. We have shown that when the cluster size is equal to 1 and
the sample size is large enough, most municipalities are self-selecting. Note that if most municipalities
are self-selecting, the second-order inclusion probabilities are comparable to the second-order inclusion
probabilities of SRSWR. So if the cluster size is equal to 1 (which is usually the case nowadays) and if
the sample size is large enough, SRSWR can be used as an approximation to the two-stage sampling
design.



4
Screening the sample

The sample that is selected by the self-weighting two-stage sampling design described in Section 3 is
not the sample that is used for data collection. The sample that was selected by the sampling design
first undergoes a screening procedure, which eliminates some elements from the sample. This is
mainly done to make sure the surveys of Statistics Netherlands are equally spread among the Dutch
households and to ensure that inhabitants who cannot or presumably will not participate in the survey
do not receive a request. In this section, we will discuss the different reasons to apply a screening
procedure and the different steps of the screening procedure in detail.

The inhabitants that are removed from the sample due to the screening, can be grouped into three
categories:

(i) Inhabitants whose information cannot be used due to confidentiality.

(ii) Inhabitants whose address already occurred in another sample of Statistics Netherlands in the
past twelve months.

(iii) Inhabitants that are removed by other reasons.

We will refer to the inhabitants that are removed from the sample as inhabitants which are not
eligible after screening and the inhabitants that are still in the sample after screening as eligible after
screening. In the next sections, we will describe these categories in detail.

4.1. Con dential information
In Section 2.1 we discussed that Statistics Netherlands is in possession of a sampling frame that covers
the whole Dutch population. This means that for every inhabitant of the Netherlands, information on
how to contact that person is available.

Dutch inhabitants can request their municipality to not share their data in the Personal Records
Database with any third parties. Consequently, the data of these inhabitants are not shared with or-
ganisations such as sports clubs, institutional health care organisations and charity organisations [11].
Although Statistics Netherlands is provided with data of these inhabitants by law [12], it has been

27
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decided to do not approach these inhabitants for any of its surveys. This fulfils the desires of these in-
habitants and moreover, it is assumed that those inhabitants will presumably not respond to any survey
of Statistics Netherlands, so including them would not be beneficial.

Approximately 2% of the Dutch inhabitants have declared that their data in the Personal Records
Database may not be shared with any third parties. After a sample is selected by the two-stage sam-
pling design of Section 3, the most recent data from the Personal Records Database is used to see if
there are any inhabitants in the sample that have declared that their data should not be shared with
any third parties. Those inhabitants are then removed from the sample by the reason that we denote
as confidential information. The inhabitants are then marked as not eligible after screening.

In Appendix C the distributions of several auxiliary variables for the population is plotted. Here a
distinction is made based on whether inhabitants have a confidentiality indicator or not. As far as we
can draw conclusions from these plots, the distribution is different for the two parts of the population.
For example, for the auxiliary variable gender, we can conclude that relatively more women have de-
clared that their data is confidential. It seems like there are some relationships between those auxiliary
variables and the confidentiality of data.

4.2. Occurrence of an address
Statistics Netherlands wants to spread their surveys among the Dutch inhabitants as good as possible.
To lower the response burden of surveys on the Dutch households, a screening procedure is applied
to the sample. It is assumed that inhabitants, who live on the same address and who receive multiple
requests to participate in a survey within a short period of time experience a high response burden.
This makes it less likely that the inhabitants respond to the survey, which is not desirable.

To lower the response burden on the Dutch inhabitants, the screening procedure ensures that the
sample after screening meets the following requirements:

(i) If two or more inhabitants who live on the same address are selected in the sample, then only
one of them is eligible.

(ii) If the address of an inhabitant in the sample already occurs in another sample of Statistics Nether-
lands in the past twelve months1, then the inhabitant is not eligible.

If an inhabitant is not eligible by one of these requirements, then we will denote it as not eligible by
the occurrence of an address.

Remark 4.1. Applying a screening procedure to ensure that the sample meets these requirements is
not the only regulation Statistics Netherlands made to lower the response burden. One example of a
regulation is that the Dutch population is divided into different non-overlapping subpopulations. Each
year a different subpopulation is considered for selecting samples. Consequently, inhabitants cannot
be selected in a sample two years in a row. We assume that these regulations do not have any effects
on the sampling design.

4.2.1. Inclusion probability after screening on the occurrence of an address
Let 𝑆∗ denote the set-random variable of the sample of inhabitants that are eligible after screening. In
this section, we will compute the inclusion probability of inhabitant 𝑘 in 𝑆∗. The inclusion probability is
computed under the following simplifying assumptions:
1Only self-weighting samples that are selected from the whole population are included.
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(A1) Simple random sampling without replacement is applied to select the sample, instead of the
sampling design of Section 3.

(A2) All samples of Statistics Netherlands for one year are selected at the same moment. This means
that we will treat all different samples that are usually selected throughout the year as one big
sample that is selected at the same moment.

(A3) Only screening on the occurrence of an address is applied.

By making these assumptions, we derive an approximation of the inclusion probability ℙ (𝑘 ∈ 𝑆∗).
By assuming (A2) we approximate the second requirement of the screening on the occurrence of an
address by ensuring that if two or more inhabitants with the same address are selected in the sample,
only one of them can be eligible. This means that within the sample of one year, no inhabitants can
have the same address.

Let 𝑈 = {1, 2, … , 𝑁} denote the target population of size 𝑁 and let 𝑆 denote the random variable
of the sample that was selected from the population by SRSWR. Let 𝑛 be the total sample size of all
samples of Statistics Netherlands in one year. Under the assumptions (A1) - (A3), we will compute
the inclusion probability of inhabitant 𝑘 after the screening on the occurrence of an address, that is the
probability ℙ (𝑘 ∈ 𝑆∗).

The probability that inhabitant 𝑘 is eligible after screening on the occurrence of an address is depen-
dent on the number of people that live on the address of inhabitant 𝑘. Let 𝑎𝑘 ≥ 1 denote the number
of people that have the same address as inhabitant 𝑘 (including inhabitant 𝑘). This number is known
for all Dutch inhabitants at Statistics Netherlands. The inclusion probability of inhabitant 𝑘 in 𝑆∗ is

ℙ (𝑘 ∈ 𝑆∗) = ℙ (𝑘 ∈ 𝑆∗ | 𝑘 ∈ 𝑆) ⋅ ℙ (𝑘 ∈ 𝑆) (4.1)

The event {𝑘 ∈ 𝑆∗ | 𝑘 ∈ 𝑆} is dependent on the number of inhabitants in 𝑆 that have the same
address as inhabitant 𝑘, i.e.

ℙ (𝑘 ∈ 𝑆∗ | 𝑘 ∈ 𝑆) =
𝑎𝑘−1

∑
𝑖=0

ℙ (𝑘 ∈ 𝑆∗ | 𝑘 ∈ 𝑆 with 𝑖 other inhabitants with same address)

⋅ ℙ (𝑘 ∈ 𝑆 with 𝑖 other inhabitants with same address)

(4.2)

The conditional probability that inhabitant 𝑘 is in the sample𝑆 together with exactly 𝑖 (𝑖 = 0, 1, 2, … , 𝑎𝑘 − 1)
other inhabitants with the same address is

ℙ (𝑘 ∈ 𝑆 with 𝑖 other inhabitants with same address) = (
𝑎𝑘 − 1

𝑖 )(
𝑁 − 𝑎𝑘
𝑛 − 𝑖 − 1)

1
(𝑁−1

𝑛−1 )
(4.3)

Given that 𝑘 is in the sample with exactly 𝑖 other inhabitants with the same address, the probability that
𝑘 is in sample 𝑆∗ is

ℙ (𝑘 ∈ 𝑆∗ | 𝑘 ∈ 𝑆 with 𝑖 other inhabitants with same address) = 1
𝑖 + 1 (4.4)

Consequently, the conditional probability in Equation (4.1) equals

ℙ (𝑘 ∈ 𝑆∗ | 𝑘 ∈ 𝑆) =
𝑎𝑘−1

∑
𝑖=0

1
𝑖 + 1(

𝑎𝑘 − 1
𝑖 )(

𝑁 − 𝑎𝑘
𝑛 − 𝑖 − 1)

1
(𝑁−1

𝑛−1 )
(4.5)
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Figure 4.1: Plot of the conditional probability in Equation (4.5) as a function of the sampling fractions 𝑓 and 𝑎𝑘 (the number of
people that live on the address of element 𝑘).

The conditional probability in Equation (4.5) is dependent on the population size 𝑁 , the sample size
𝑛 and the number of inhabitants on the address 𝑎𝑘. The probability is computed for different values
of 𝑎𝑘 and different values of the sampling fraction 𝑓 = 𝑛

𝑁 , see Figure 4.1. Note that for a sampling
fraction of 𝑓 = 1, we have that the conditional probability equals 1

𝑎𝑘
. The figure illustrates that the

more inhabitants live on the same address, the smaller the conditional probability is, which matches
the intuitive expectations.

Furthermore, Figure 4.1 illustrates that the effects of the screening procedure become larger as
the sampling fraction increases. For a larger sampling fraction, the difference between the conditional
probability for the different values of 𝑎𝑘 are larger.

Using Equation (4.5), the inclusion probability of element 𝑘 in 𝑆∗ is

ℙ (𝑘 ∈ 𝑆∗) = ℙ (𝑘 ∈ 𝑆∗ | 𝑘 ∈ 𝑆) ⋅ ℙ (𝑘 ∈ 𝑆)

=
𝑎𝑘−1

∑
𝑖=0

1
𝑖 + 1

1
(𝑁−1

𝑛−1 )(
𝑎𝑘 − 1

𝑖 )(
𝑁 − 𝑎𝑘
𝑛 − 𝑖 − 1)

𝑛
𝑁

=
𝑎𝑘−1

∑
𝑖=0

1
𝑖 + 1

1
(𝑁

𝑛 )(
𝑎𝑘 − 1

𝑖 )(
𝑁 − 𝑎𝑘
𝑛 − 𝑖 − 1)

(4.6)

The inclusion probability after screening on the occurrence of an address is plotted in Figure 4.2 for
different values of 𝑎𝑘 and for different sampling fractions. Note that in case 𝑎𝑘 = 1, the probability in
Equation (4.6) equals the first-order inclusion probability of simple random sampling without replace-
ment.

In Figures 4.1 and 4.2 the weighted average of the probabilities is plotted. This line represents
the probability for an average inhabitant of the Netherlands. This probability can be used to obtain
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Figure 4.2: Plot of the inclusion probability in Equation (4.6) for different sampling fractions 𝑓 and values of 𝑎𝑘 (the number of
people that live on the address of element 𝑘).

an estimation for the amount of people that become not eligible by screening on the occurrence of an
address.

Example 4.1 (The Dutch Crime Victimisation Survey). One survey of Statistics Netherlands is the
The Dutch Crime Victimisation Survey2. The aim of the survey is to estimate the safety perception,
victimisation and criminality among the Dutch inhabitants [13]. Municipalities and regional police units
have the possibility to participate in the safety monitor to obtain more data from their own regions
[13]. As a consequence sampling fraction are different among regions. The selected samples of these
regions are then screened on the occurrence of an address. In Figure 4.3 the results of the screening
on the occurrence of an address is shown for the different regions. The probability of Equation (4.5) is
plotted for comparison. Note that in general the realisations follow the theoretical probability quite well.
However, there are some outliers, which can be explained by the distribution of number of people on
an address in each region. The theoretical probability is based on the distribution of number of people
on an address in the whole population, but this distribution may be different in some regions.

4.3. Other reasons
Inhabitants can be removed from the sample by confidential information or another inhabitant with the
same address is already selected in the same or another sample in the past twelve months. Further-
more, inhabitants who meet the following conditions are not eligible after screening:

(i) Inhabitants who passed away or emigrated recently

(ii) Inhabitants that belong to an institutional household

2In Dutch better known as the Veiligheidsmonitor.
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Figure 4.3: Results of the screening on the occurrence of an address for the samples of the Dutch crime victimisation survey in
the different regions. Every blue dot represents a region and the probability denotes the percentage of inhabitants that are still
egligible after screening. The theoretical probability is the probability of Equation (4.5) for an average Dutch inhabitant

(iii) Inhabitants whose name and address details cannot be obtained for other reasons, because for
example contact information is missing.

The main reason those inhabitants are not included in the sample after screening is that those inhabi-
tants cannot or presumably will not participate in the survey.

4.4. Screening in 2018
The screening procedure is applied to all self-weighting samples that are selected from the whole
population. In 2018, approximately 92% of the inhabitants that were included in the sample before
screening are eligible after screening, see Figure 4.4. In other words, in 2018 approximately 8% of the
inhabitants that were included in the sample are not eligible after screening. Approximately 3 out of 4
inhabitants that are not eligible after screening, are not eligible by the occurrence of an address, see
Figure 4.5. Almost all other non-eligible inhabitants are not eligible by confidentiality. Note that only a
negligible amount of inhabitants are removed from the sample by other reasons.

The amount of inhabitants that become non-eligible by the screening procedure has increased over
the last years, as the sample sizes have increased. By contrast, in 2007 approximately 2% of the inhab-
itants became not eligible by the screening procedure, whereas this is approximately 8% nowadays.

4.5. Conclusion
Inhabitants that are selected in the sample before screening can become not eligible after the screening
by three different reasons. We have seen that most non-eligible inhabitants are not eligible because of
screening on the occurrence of an address.

From this section we can conclude that one should be cautious with assuming that inhabitants have
an equal probability to be eligible after screening. The probability that an inhabitant is eligible after
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Figure 4.4: Representation of the sample after screening per period. The eligible and non-eligible inhabitants by different reasons
of the screening procedure are plotted for the samples of all months of 2018.

Figure 4.5: Representation of the non-eligible inhabitants for all months in 2018. Approximately 75% of the non-eligible inhabi-
tants are not eligible by the screening on occurrence of an address.

screening on the occurrence of an address is strongly dependent on the number of people living on
the same address, see Equation (4.5). Furthermore, we have seen that the approximated probability
is dependent on the sampling fraction. As the sampling fraction increases, the effects of the screen-
ing on the occurrence of an address become larger. Moreover, we have seen that the distribution of
auxiliary variables is different for inhabitants with a confidentiality indicator than for inhabitants with no
confidentiality indicator. It seems that there is a relation between the confidentiality indicator and those
auxiliary variables. This means that during the screening procedure not every inhabitant has the same
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probability of becoming not eligible by confidentiality.
Furthermore, we have seen that the effects of the screening become larger as the sample size

increases.



5
Statistical testing

To identify the effects of the screening procedure (see Section 4) on the sample, the distribution of
auxiliary variables in the population and the sample after screening are compared. For each auxiliary
variable, we determine if the sample after screening is representative for the population.

A sample is said to be representative with respect to a variable if its relative distribution in the sam-
ple is equal to its relative distribution on the population [3]. For example, a sample is representative
with respect to gender if the percentages of males and females in the sample are in expectation equal
to the percentages of males and females in the population.

The intention of selecting a self-weighting sample is that the selected sample is representative for the
population with respect to all relevant auxiliary variables. In Section 4 we have seen that the inclusion
probability in the sample after screening is not equal for all inhabitants. The question arises whether the
sample after screening is representative for the population with respect to relevant auxiliary variables. In
addition to comparing the distributions of the sample after screening with the population, we determine
if the sample after screening is representative for the sample before screening with respect to the
relevant auxiliary variables.

In this section, we discuss two statistical tests, one to determine whether the sample after screening
is representative for the population and one to determine if the sample after screening is representative
for the sample before screening, with respect to a given auxiliary variable. Those tests are applied to
several auxiliary variables, which are available for the whole population at Statistics Netherlands.

5.1. Themultivariate hypergeometric distribution
Suppose we observe a categorical auxiliary variable with 𝐾 categories C1, … , C𝐾 . Let the population 𝑈
have size 𝑁 and let 𝑐1, … , 𝑐𝐾 denote the number of inhabitants in categories C1, … , C𝐾 respectively,
so that

𝑐1 + ⋯ + 𝑐𝐾 = 𝑁 (5.1)

So 𝑐𝑗 denotes the number of inhabitants beloning to category C𝑗 (𝑗 = 1, … , 𝐾). The vector of inhab-
itants per category in the population for the observed auxiliary variable is known at Statistics Nether-
lands.

35
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Let 𝑆SRSWR be the set-random variable denoting the sample of size 𝑛 that is selected from the
population 𝑈 by simple random sampling without replacement, see Section 2.1.1. Let 𝐏 = (𝑃1, … , 𝑃𝐾 )
denote the random number of inhabitants in each category in the sample such that

𝑃1 + ⋯ + 𝑃𝐾 = 𝑛 and 𝑃𝑗 ≤ 𝑐𝑗 ∀ 𝑗 = 1, … , 𝐾 (5.2)

Let 𝐩 = (𝑝1, … , 𝑝𝐾 ) denote a realisation of the vector 𝐏 for a given sample 𝑠SRSWR. Then the joint
distribution of 𝐏 = (𝑃1, … , 𝑃𝐾 ) has probability mass function

ℙ (𝐏 = 𝐩) = ℙ
(

𝐾

⋂
𝑗=1

{𝑃𝑗 = 𝑝𝑗})
=

∏𝐾
𝑗=1 (𝑐𝑗

𝑝𝑗)

(𝑁
𝑛 )

(5.3)

The distribution in Equation (5.3) is called a multivariate hypergeometric distribution with parameters
(𝑛, 𝑐1, … , 𝑐𝐾 ) [14]. We will denote this distribution by

𝐏 = (𝑃1, … , 𝑃𝐾 ) ∼ Mult.Hypgeom. (𝑛, 𝑐1, … , 𝑐𝐾 ) (5.4)

The marginal distribution of 𝑃𝑗 is univariate hypergeometric with paramaters (𝑛, 𝑐𝑗 , 𝑁) [14], that is

ℙ (𝑃𝑗 = 𝑝𝑗) =
(𝑐𝑗

𝑝𝑗)(𝑁−𝑐𝑗
𝑛−𝑝𝑗 )

(𝑁
𝑛 )

(5.5)

The vector of expected values of 𝐏 is

𝔼 (𝐏) = (
𝑛
𝑁 𝑐1, … , 𝑛

𝑁 𝑐𝐾) (5.6)

The variance of 𝑃𝑗 is given by [14]

𝕍 (𝑃𝑗) = 𝑛(𝑛 − 1)
𝑁(𝑁 − 1)𝑐𝑗 (𝑐𝑗 − 1) + 𝑛

𝑁 𝑐𝑗 − (
𝑛
𝑁 𝑐𝑗)

2

= 𝑛(𝑁 − 𝑛)
𝑁(𝑁 − 1)𝑐𝑗 (𝑁 − 𝑐𝑗)

(5.7)

Let the sample 𝑆 of size 𝑛 denote the sample that is selected from the population by the sampling
design that was described in Section 3. After the screening process described in Section 4 we have a
sample 𝑆∗ of size 𝑛∗ containing only eligible elements, such that 𝑆∗ ⊆ 𝑆 and 𝑛∗ ≤ 𝑛. Let the vector
𝐌 = (𝑀1, … , 𝑀𝐾 ) denote the random vector of number of inhabitants per category in the sample 𝑆
and let 𝐌∗ = (𝑀∗

1 , … , 𝑀∗
𝐾) denote the random vector of number of inhabitants per category in the

sample after screening 𝑆∗, so that

𝑀1 + ⋯ + 𝑀𝐾 = 𝑛 and 𝑀∗
1 + ⋯ + 𝑀∗

𝐾 = 𝑛∗ (5.8)

If the process of screening the sample is a random process with equal probabilities, the sample after
screening 𝑆∗ should be representative for both the population 𝑈 and the sample 𝑆 with respect to all
relevant auxiliary variables. We formulate two different hypotheses:

Hypothesis 1 The sample after screening 𝑆∗ is representative for the population 𝑈 with respect to
a given auxiliary variable, i.e. 𝐌∗ follows a multivariate hypergeometric distribution with parameters

(𝑛∗, 𝑐1, … , 𝑐𝐾).
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Hypothesis 2 The sample after screening 𝑆∗ is representative for the sample before screening 𝑆
with respect to a given auxiliary variable, i.e. 𝐌∗|𝐌 follows a multivariate hypergeometric distribution
with parameters (𝑛∗, 𝑀1, … , 𝑀𝐾).

We define two different statistical tests for these hypotheses in the next two sections.

5.2. Testing hypothesis 1
The first question that arises is whether the distribution of a given auxiliary variables in the sample after
screening 𝑆∗ is similar to the distribution of the auxiliary variable in the population 𝑈 . Define the null-
and alternative hypothesis as

𝐻0 ∶ 𝐌∗ ∼ Mult.Hypgeom. (𝑛∗, 𝑐1, … , 𝑐𝐾)
𝐻𝑎 ∶ 𝐌∗ ≁ Mult.Hypgeom. (𝑛∗, 𝑐1, … , 𝑐𝐾)

(5.9)

Note that since the observed auxiliary variable is known for the whole population, the vector (𝑐1, … , 𝑐𝐾 )
is given.

Under the null hypothesis, the distribution of the auxiliary variable in the sample after screening is
a realisation from the multivariate hypergeometric distribution with parameters (𝑛∗, 𝑐1, … , 𝑐𝐾). Thus,
we can compare the expected values for the number of inhabitants per category in the sample after
screening with the observed values, i.e. we compare

‖𝔼 (𝐌∗) − 𝐦∗‖
2 (5.10)

where 𝐦∗ = (𝑚∗
1, … , 𝑚∗

𝐾) represents the realisation of the vector of inhabitants per category in the
sample after screening. The expected value is known under the null-hypothesis, namely

𝔼 (𝐌∗) = (
𝑛∗

𝑁 𝑐1, … , 𝑛∗

𝑁 𝑐𝐾) (5.11)

The squared difference between the observed and expected values is then equal to

𝐾

∑
𝑗=1

(𝔼 (𝑀∗
𝑗 ) − 𝑚∗

𝑗 )
2

=
𝐾

∑
𝑗=1

(
𝑛∗

𝑁 𝑐𝑗 − 𝑚∗
𝑗 )

2
= (𝑛∗)

2
𝐾

∑
𝑗=1 (

𝑐𝑗
𝑁 −

𝑚∗
𝑗

𝑛∗ )

2

(5.12)

We define the test statistic for this test as

𝑇1 =
𝐾

∑
𝑗=1 (

𝑐𝑗
𝑁 −

𝑚∗
𝑗

𝑛∗ )

2

(5.13)

Let 𝑡∗
1 denote the value of this test statistic for the observed sample after screening. The distribution of

𝑇1 is unknown, so it is not possible to compute the probability ℙ (𝑇1 ≥ 𝑡∗) directly. Using parametric
bootstrapwe can find an approximate value for this probability. Parametric bootstrapping is a technique
for obtaining estimates of the properties of statistical estimators by assuming the underlying data is
distributed as some specified parametric distribution [15]. The main idea of this test is to independently
draw 𝑅 realisations from the distributionMult.Hypgeom. (𝑛∗, 𝑐1, … , 𝑐𝐾). For each realisation, we can
compute the value of the test statistic 𝑇1. Let the values of the test statistic for these samples be denoted
by the 𝑅-vector (𝑇1,1, … , 𝑇1,𝑅). Then the 𝐩-value corresponding to this test can be approximated by
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counting the number of times that 𝑇1,𝑖 is greater than or equal to 𝑡∗
1, for 𝑖 = 1, … , 𝑅, that is

𝐩 = ℙ (𝑇1 ≥ 𝑡∗
1) ≈ 1

𝑅
𝑅

∑
𝑖=1

𝟙 {𝑇1,𝑖 ≥ 𝑡∗
1} (5.14)

The procedure that should be followed to apply this test is summarised in Algorithm 5.1.

Algorithm 5.1: Procedure that describes the parametric bootstrap approach to test the null-hypothesis that the vector of the
number of inhabitants per category in the sample after screening is selected from the multivariate hypergeometric distribution
with parameters (𝑛∗, 𝑐1, … , 𝑐𝐾 ).

STATISTICAL TEST 1

1. Derive (𝑐1, … , 𝑐𝐾 ) from 𝑈

2. Compute 𝑡∗ = ∑𝐾
𝑗=1 (

𝑐𝑗
𝑁 − 𝑚∗

𝑗
𝑛∗ )

2
for the population 𝑈 and the sample after screening 𝑠∗

3. For 𝑖 from 1 to 𝑅

4. Draw 𝐌∗ ∼ Mult.Hypgeom. (𝑛∗, 𝑐1, … , 𝑐𝐾)

5. Compute 𝑇1,𝑖 = ∑𝐾
𝑗=1 (

𝑐𝑗
𝑁 − 𝑚∗

𝑗
𝑛∗ )

2

6. Compute 𝐩 ≈ 1
𝑅 ∑𝑅

𝑖=1 𝟙 {𝑇1,𝑖 ≥ 𝑡∗}

5.3. Testing hypothesis 2
The second hypothesis is that the distribution of a given auxiliary variable in the sample after screening
is similar to the distribution of the auxiliary variable in the sample before screening. Recall that 𝐌
denotes the random vector of number of inhabitants per category in the sample before screening 𝑆
and 𝐌∗ denotes the random vector of number of inhabitants per category in the sample after screening
𝑆∗. Define the null- and alternative hypothesis for this test as

𝐻0 ∶ 𝐌∗|𝐌 ∼ Mult.Hypgeom. (𝑛∗, 𝑀1, … , 𝑀𝐾)
𝐻𝑎 ∶ 𝐌∗|𝐌 ≁ Mult.Hypgeom. (𝑛∗, 𝑀1, … , 𝑀𝐾)

(5.15)

Note that 𝐌 is a random vector and is therefore not known in advance.

Under the null-hypothesis the vector 𝐌∗ given the vector 𝐌 is a realisation from the multivariate
hypergeometric distribution with parameters (𝑛∗, 𝑀1, … , 𝑀𝐾). We compare the expected values for
the number of inhabitants per category in 𝑆∗ given the vector 𝐌 with the observed vector of inhabitants
per category in the sample after screening 𝑆∗, i.e.

‖𝔼 (𝐌∗|𝐌) − 𝐦∗‖
2 =

𝐾

∑
𝑗=1

(𝔼 (𝑀∗
𝑗 |𝐌) − 𝑚∗

𝑗 )
2

=
𝐾

∑
𝑗=1

(
𝑛∗

𝑛 𝑀𝑗 − 𝑚∗
𝑗 )

2

= (𝑛∗)
2

𝐾

∑
𝑗=1 (

𝑀𝑗
𝑛 −

𝑚∗
𝑗

𝑛∗ )

2 (5.16)



5.4. Results 39

where 𝐦∗ = (𝑚∗
1, … , 𝑚∗

𝐾) represents the observed realisation of the vector 𝐌∗. Define the test
statistic for this test as

𝑇2 =
𝐾

∑
𝑗=1 (

𝑀𝑗
𝑛 −

𝑚∗
𝑗

𝑛∗ )

2

(5.17)

Let 𝑡∗
2 denote the value of this test statistic for the observed sample before screening and sample after

screening. The distribution of 𝑇2 is unknown, so we need to approximate the 𝐩-value for this test using
a parametric bootstrap approach.

The vector 𝐌 is a random vector that can be obtained from the sample 𝑆 after the sampling design
is applied. Consequently, the vector 𝐌 is not known in advance and is different for each different
sample 𝑆.

To approach this test using bootstrap, we randomly draw the sample 𝑆 from the sampling design
from Section 3 𝑅 times. Then we obtain 𝑅 different vectors 𝐌 = (𝑀1, … , 𝑀𝐾 ). For each of such
a vector 𝐌 we can draw vector 𝐌∗ from the multivariate hypergeometric distribution with parameters

(𝑛∗, 𝑀1, … , 𝑀𝐾). So we obtain 𝑅 different vectors 𝐌∗. For each pair of vectors 𝐌 and 𝐌∗ the test
statistic is computed. The procedure that is followed to apply this test is summarised in Algorithm 5.2.

Algorithm 5.2: Procedure that describes a parametric bootstrap approach to test the null-hypothesis that the vector of the num-
ber of inhabitants per category in the sample after screening is selected from the multivariate hypergeometric distribution with
parameters (𝑛∗, 𝑀1, … , 𝑀𝐾 ).

STATISTICAL TEST 2

1. Compute 𝑡∗ = ∑𝐾
𝑗=1 (

𝑀𝑗
𝑛 − 𝑀∗

𝑗
𝑛∗ )

2
from the observed samples 𝑠 and 𝑠∗

2. For 𝑖 from 1 to 𝑅

3. Draw sample 𝑆 from 𝑈 according to the sampling design

4. Derive 𝐌 = (𝑀1, … , 𝑀𝐾 ) from 𝑆

5. Draw 𝐌∗|𝐌 ∼ Mult.Hypgeom. (𝑛∗, 𝑀1, … , 𝑀𝐾)

6. Compute 𝑇2,𝑖 = ∑𝐾
𝑗=1 (

𝑀𝑗
𝑛 − 𝑀∗

𝑗
𝑛∗ )

2

7. Compute 𝐩 ≈ 1
𝑅 ∑𝑅

𝑖=1 𝟙 {𝑇2,𝑖 ≥ 𝑡∗}

5.4. Results
The statistical tests for Hypothesis 1 and Hypothesis 2 are applied to the sample of the mobility survey
of April 2019. This sample was selected from the population by the self-weighting two-stage sampling
design of Section 3. Subsequently, this sample was screened according to the procedure that was
described in Section 4.

The sample size of the mobility survey from April 2019 is 8427. The target population for the mobility
survey is all Dutch inhabitants that are 6 years or older. In Table 5.3 it is shown how many elements are
eligible and not eligible after screening. For example, 449 of the 8427 elements in the sample are not
eligible by the screening on the occurrence of an address. The main goal of the test corresponding to
hypothesis 1 is to determine whether the sample after screening is representative for the population with
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Eligible after screening 7807 92.6%
Not eligible after screening 620 7.4%

Not eligible by occurrence of address 449 5.3%
Not eligible by confidential information 151 1.8%
Not eligible by other reason 20 0.2%

Total sample 8427 100 %

Table 5.3: Sample of the mobility survey of April 2019.

respect to relevant auxiliary variables. The aim of the second test is to determine whether the sample
after screening is representative for the sample before screening with respect to relevant auxiliary
variables. Furthermore, it is also interesting to see if the sample containing inhabitants that are not
eligible after screening is representative for the population and the sample before screening with respect
to those auxiliary variables. Therefore the tests are not only applied to the sample after screening but
also to:

(i) The sample after screening (only eligible inhabitants)

(ii) The non-eligible inhabitants by screening on the occurrence of an address

(iii) The non-eligible inhabitants by screening on confidential information

(iv) The non-eligible inhabitants (all reasons of screening)

Furthermore, the first test is also applied to the sample before screening. The sample before screen-
ing was selected by the two-stage self-weighting sampling design, which means that every inhabitant
has an equal inclusion probability. Consequently, the sample before screening should be representa-
tive for the population with respect to all auxiliary variables.

The auxiliary variables that are used for the tests are gender, marital status, age, ethnicity, place
in household, type of household, number of people in household and number of people on address.
These are all categorical variables and the definitions for the categories can be found in Appendix B. In
Appendix D the distributions of the auxiliary variables for the different samples of the mobility survey of
April 2019 are plotted. This allows the reader to compare the distribution of an auxiliary variable in the
population with the distribution in the sample after screening. In this Appendix we have plotted for all
auxiliary variables the distribution in the population against the sample before screening, the sample
after screening, the non-eligible inhabitants by occurrence of address, the non-eligible inhabitants by
confidential information and the non-eligible inhabitants. Furthermore, we have plotted the sample
before screening against the sample after screening, the non-eligible inhabitants by occurrence of
address, the non-eligible inhabitants by confidential information and the non-eligible inhabitants. The
results of the two tests applied to the mobility survey of April 2019 are presented in Table 5.4 and Table
5.5.

We reject the null-hypothesis for small values of the 𝐩-value. First of all note that we can conclude
that for all auxiliary variables the sample before screening is representative for the population. This
is as expected, because the sampling design is self-weighting. For each auxiliary variable, we briefly
discuss on the results.
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Hypothesis 1 Hypothesis 2

Test statistic 𝐩-value Test statistic 𝐩-value
Gender

Sample before screening 6.418 ⋅ 10−5 0.29442 − −
Sample after screening 1.047 ⋅ 10−4 0.19826 4.940 ⋅ 10−6 0.30234
Not eligible by occurrence of address 5.604 ⋅ 10−3 0.02340 6.868 ⋅ 10−3 0.01086
Not eligible by confidential information 1.993 ⋅ 10−2 0.01094 1.773 ⋅ 10−2 0.01906
Not eligible 3.984 ⋅ 10−4 0.46881 7.824 ⋅ 10−4 0.30600

Marital status

Sample before screening 2.011 ⋅ 10−5 0.77950 − −
Sample after screening 1.922 ⋅ 10−4 0.08414 1.105 ⋅ 10−4 < 1 ⋅ 10−5

Not eligible by occurrence of address 2.302 ⋅ 10−2 < 1 ⋅ 10−5 2.376 ⋅ 10−2 < 1 ⋅ 10−5

Not eligible by confidential information 4.211 ⋅ 10−2 0.00015 4.282 ⋅ 10−2 0.00013
Not eligible 1.674 ⋅ 10−2 < 1 ⋅ 10−5 1.745 ⋅ 10−2 < 1 ⋅ 10−5

Age

Sample before screening 1.151 ⋅ 10−4 0.33673 − −
Sample after screening 2.183 ⋅ 10−4 0.05405 6.086 ⋅ 10−5 < 1 ⋅ 10−5

Not eligible by occurrence of address 1.824 ⋅ 10−2 < 1 ⋅ 10−5 1.857 ⋅ 10−5 < 1 ⋅ 10−5

Not eligible by confidential information 9.462 ⋅ 10−3 0.11356 1.031 ⋅ 10−2 0.07757
Not eligible 9.221 ⋅ 10−3 < 1 ⋅ 10−5 9.639 ⋅ 10−3 < 1 ⋅ 10−5

Ethnicity

Sample before screening 2.370 ⋅ 10−5 0.57609 − −
Sample after screening 8.182 ⋅ 10−5 0.18744 1.751 ⋅ 10−5 0.01226
Not eligible by occurrence of address 9.794 ⋅ 10−4 0.30826 1.308 ⋅ 10−3 0.19884
Not eligible by confidential information 7.448 ⋅ 10−3 0.06097 8.311 ⋅ 10−3 0.04302
Not eligible 2.286 ⋅ 10−3 0.03238 2.773 ⋅ 10−3 0.01351

Place in household

Sample before screening 5.284 ⋅ 10−5 0.74249 − −
Sample after screening 2.313 ⋅ 10−4 0.05489 1.145 ⋅ 10−5 < 1 ⋅ 10−5

Not eligible by occurrence of address 3.956 ⋅ 10−2 < 1 ⋅ 10−5 3.987 ⋅ 10−2 < 1 ⋅ 10−5

Not eligible by confidential information 2.684 ⋅ 10−2 0.00034 2.872 ⋅ 10−2 0.00014
Not eligible 1.739 ⋅ 10−2 < 1 ⋅ 10−5 1.814 ⋅ 10−2 < 1 ⋅ 10−5

Type of household

Sample before screening 4.636 ⋅ 10−5 0.74441 − −
Sample after screening 1.982 ⋅ 10−4 0.08801 9.490 ⋅ 10−5 < 1 ⋅ 10−5

Not eligible by occurrence of address 4.399 ⋅ 10−2 < 1 ⋅ 10−5 4.399 ⋅ 10−2 < 1 ⋅ 10−5

Not eligible by confidential information 5.123 ⋅ 10−2 < 1 ⋅ 10−5 5.364 ⋅ 10−2 < 1 ⋅ 10−5

Not eligible 1.436 ⋅ 10−2 < 1 ⋅ 10−5 1.503 ⋅ 10−2 < 1 ⋅ 10−5

Table 5.4: Results of the statistical test for hypothesis 1 and hypothesis 2 (𝑅 = 100.000) for the auxiliary variables: gender,
marital status, age, ethnicity, place in household and type of household.
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Hypothesis 1 Hypothesis 2

Test statistic 𝐩-value Test statistic 𝐩-value
Number of people in household

Sample before screening 7.820 ⋅ 10−5 0.48276 − −
Sample after screening 2.828 ⋅ 10−4 0.02458 1.259 ⋅ 10−4 < 1 ⋅ 10−5

Not eligible by occurrence of address 3.984 ⋅ 10−2 < 1 ⋅ 10−5 4.074 ⋅ 10−2 < 1 ⋅ 10−5

Not eligible by confidential information 1.265 ⋅ 10−2 0.04658 1.331 ⋅ 10−2 0.03533
Not eligible 1.902 ⋅ 10−2 < 1 ⋅ 10−5 1.994 ⋅ 10−2 < 1 ⋅ 10−5

Number of people on address

Sample before screening 7.663 ⋅ 10−5 0.50860 − −
Sample after screening 3.313 ⋅ 10−4 0.01107 1.779 ⋅ 10−4 < 1 ⋅ 10−5

Not eligible by occurrence of address 6.015 ⋅ 10−2 < 1 ⋅ 10−5 6.125 ⋅ 10−2 < 1 ⋅ 10−5

Not eligible by confidential information 1.040 ⋅ 10−2 0.08949 1.092 ⋅ 10−2 0.07141
Not eligible 2.728 ⋅ 10−2 < 1 ⋅ 10−5 2.817 ⋅ 10−2 < 1 ⋅ 10−5

Table 5.5: Results of the statistical test for hypothesis 1 and hypothesis 2 (𝑅 = 100.000) for the auxiliary variables: number of
people in household and number of people on address.

Gender For the auxiliary variable gender we cannot reject both null-hypotheses. This means that
for the variable gender, the sample after screening can be considered representative for the population
and for the sample before screening. The inhabitants that are not eligible can also be considered
representative for the population and for the sample before screening. However, the inhabitants that are
not eligible by screening on the occurrence of an address and by screening on confidential information
are not representative for the population. This is remarkable, but can be explained by looking at the
plots in Appendix D. Apparently, for this specific sample men are deleted more often by occurrence of
address while women are more often non-eligible by confidential information.
Marital status For a significance level of 𝛼 = 0.05 we cannot reject the null-hypothesis that the
sample after screening is representative for the population. However, for a significance level of 𝛼 = 0.1
we could reject this hypothesis. Furthermore we can conclude that with respect to marital status the
sample after screening is not representative for the sample before screening. When looking at the
plots, it seems that unmarried inhabitants become non-eligible by the screening procedure more often
than other inhabitants. No parts of the sample can be considered representative for the sample before
screening.
Age For a significance level of 𝛼 = 0.1 we can reject that the sample after screening is represen-
tative for the population with respect to age. However, for a significance level of 𝛼 = 0.05 we cannot
reject this. We can reject the hypothesis that the sample after screening is representative for the sam-
ple before screening. Also the non-eligible inhabitants cannot be considered representative for the
population or the sample before screening, yet the non-eligible inhabitants by confidential information
can be considered representative for both the population and the sample before screening. From the
plots in Appendix D we can conclude that the young inhabitants (under age 25) become non-eligible
by screening on the occurrence of an address relatively often. Apparently inhabitants from age 50 to
64 have a confidentiality indicator relatively often.
Ethnicity For ethnicity, we can only reject the hypothesis that the non-eligible inhabitants are repre-
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sentative for the population. So with respect to ethnicity we can consider the sample after screening
representative for the population, but the sample after screening cannot be considered representative
for the sample before screening. From the plots we can conclude that native Dutch inhabitants become
not eligible by the screening procedure less often than non-native Dutch habitants.
Place in Household For a significance level of 𝛼 = 0.1 we can reject all hypotheses. But although
the 𝐩-value is low, for a significance level of 𝛼 = 0.05 we cannot reject the hypothesis that the sample
after screening is representative for the population. When looking at the plots in Appendix D we can
conclude that children (Category 1) or partners with children (Category 6) become non-eligible by the
screening on the occurrence of an address relatively often, which seems understandable since those
inhabitants presumably live with multiple people on one address.
Type of Household The results with respect to the variable type of household are similar to the
results with respect to the variable place in household. We can almost reject all hypothesis, except
for the hypothesis that the sample after screening is representative for the population. From the plots
we can conclude that inhabitants in a household consisting of a married couple with children become
non-eligible by screening on the occurrence of an address relatively often. Furthermore, it seems that
inhabitants in single-person households and single-parent household become not eligible by confiden-
tiality relatively often.
Number of people in household Based on the variable number of people in household, we can
conclude that the sample after screening is neither representative for the population, nor for the sample
before screening. For the screening on occurrence of address this seems reasonable, since there is
presumably a highly correlation between the number of people in a household and the number of people
on an address. What is remarkable is that inhabitants with a 1-person household become non-eligible
by confidential information relatively often.
Number of people on address This variable probably has the most obvious results, since we
showed in Chapter 4 that the screening on occurrence of address is directly dependent on the number
of people on an address.

For the sample of the mobility survey of April 2019, we have discussed the results of the two sta-
tistical tests in detail. The results for other samples may be different because of sampling fluctuations.
In Appendix E the results for testing hypothesis 1 for different periods are presented. Performing the
second test is computationally intensive, so we did not perform those tests for the other samples.

From these results we see that for each realisation, there is at least one auxiliary variable for which
we can reject the null-hypothesis. This means that in general the sample after screening cannot be
considered as representative for the population. Furthermore, we can conclude that the elements
that are not eligible by screening are not representative for the population with respect to all auxiliary
variables, except for gender. This holds for all realisations we have seen.

5.5. Conclusion
In general we can conclude that the inhabitants that become not eligible by the screening are not
representative for the population. For some samples, this may cause that the sample after screening
is not representative for the population, but for some samples the sample after screening can still be
considered as representative for the population. For the sample of the mobility survey of April 2019, we
have seen that for all auxiliary variables except gender, the sample after screening is not representative
for the sample before screening.





6
Simulation study

In Section 5 two different statistical tests were applied to samples from the mobility survey. Recall from
Section 4 that the effects of the screening become larger as the sample size increases. In this section
we investigate the consequences of the screening procedure if the total sample size of all samples
in one year becomes larger. In the current situation the amount of inhabitants that are selected in a
self-weighting sample that is selected from the total Dutch population is approximately 500.000, see
Figure 6.1. We will suppose an extra survey is selected every month with a sample size of 30.000
inhabitants each month. This would mean that in one year approximately 5% of the Dutch inhabitants
will be selected in a self-weighting sample of Statistics Netherlands. This situation is comparable with
the situation that is likely to happen at Statistics Netherlands, where the Labour Force Survey (LFS)1

becomes a self-weighting survey sample that is selected from the whole Dutch population. Nowadays,
the Labour Force Survey has a different sampling design, so it is not included in the screening proce-
dure. Note from Figure 6.1 that there is a positive trend in the sampling fraction of the sample size of
all samples in the previous year.

Because the sample size is different every period, we are not able to rely on the data of the of survey
samples that are selected by Statistics Netherlands anymore. Therefore a simulation study is needed.
We will simulate the current situation (case A) and the situation where sample sizes are increased
(case B).

6.1. Simulating the current situation
To reproduce a similar situation as in Section 5, we need all samples that are selected from the popula-
tion from the previous year. First, note that the population is continuously changing, since inhabitants
are born, inhabitants pass away or immigrate or emigrate. Once a month, we have access to the most
recent population at that time. This means that for each month, a dataset containing the inhabitants in
the Dutch population at that time is available.

Furthermore, note that each sample that is selected is screened with respect to all samples that
were selected in the past twelve months. This is impossible to reproduce, since this requires selecting
samples for multiple years in the past. Therefore we try to approximate the screening procedure as

1In Dutch known as the Enquête Beroepsbevolking (EBB).
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Figure 6.1: Sampling fractions of the sample size of all samples in the previous year.

good as possible. We start with selecting samples for 12 months without screening them yet. Let this
sample be denoted by 𝑠A,year. Subsequently, all selected samples are screened with respect to each
other. Note that by this approximation each sample is screened with respect to 12 months of samples.
We are only able to apply screening on the occurrence of an address and on confidential information.
Most inhabitants that become not eligible by other reasons are inhabitants that have passed away or
emigrated recently. This is difficult to reproduce and can be considered negligible. This results in a
sample after screening, which we will denote by 𝑠∗

A,year. All inhabitants that are eligible after screening
would hypothetically have received a letter from Statistics Netherlands with the request to participate
in one of the surveys. Note that this basically means that 𝑠∗

A,year contains all unique addresses of the
inhabitants that do not have a confidentiality indicator in 𝑠A,year. Next we can draw a sample 𝑠 that has
the same size as the mobility survey of April 2019 and screen this sample with respect to the samples
after screening 𝑠∗

A,year.

Note that we are considering sampling without replacement, which means that an inhabitant can
only be selected once in the sample. Since we use a new version of the population each month we
need to keep track on the inhabitants that have already been selected in the sample and remove those
from the updated version of the population.

6.2. Simulating the situationwith increased sample sizes
Simulating this situation is similar to the simulation of the current situation, but we will use larger sample
sizes fpr all samples in the past twelve months. Let the sample in this situation be denoted by 𝑠B,year
and the sample after screening by 𝑠∗

B,year. To be able to compare the sample after screening in both
situations, we make sure that 𝑠A,year is a subset of 𝑠B,year. This allows us to select one sample 𝑠 and
screen it against both samples 𝑠∗

A,year and 𝑠∗
B,year.
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6.3. Results
We have selected the samples 𝑠A,year and 𝑠B,year and screened them with respect to each other to
obtain the samples 𝑠∗

A,year and 𝑠∗
B,year. Then we select a sample 𝑠 from the population and we screen it

against 𝑠∗
A,year and 𝑠∗

B,year to obtain the screened samples 𝑠∗
A and 𝑠∗

B respectively. Next, we can apply
the tests from Section 5 to both samples.

We have applied the statistical test corresponding to Hypothesis 1 (see Section 5.2) to four different
realisations of the sample 𝑠. The results are presented in Tables 6.1 and 6.2.

If we look at the 𝐩-values of the sample after screening we see that in most cases the 𝐩-values
in case B is lower than in case A. This confirms that the effects of the screening procedure becomes
larger if sample sizes become larger. If we consider the results in Tables 6.1 and 6.2 it occurs regularly
that in case A we cannot reject that the sample after screening is representative for the population with
respect to an auxiliary variable, but we can reject this in case B.

6.4. Conclusion
The effects of screening the sample become larger as sample sizes increase. As sample sizes in-
crease, more inhabitants become non-eligible by the screening on the occurrence of an address. As
a consequence, the sample after screening is not representative for the population with respect to an
auxiliary variable more often.

We have seen that samples sizes have become larger in the previous months. If this trend contin-
ues, the problem of applying the screening procedure becomes bigger.
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7
Estimation of population characteristics

The aim of survey sampling is to obtain an estimate of a population characteristic that lies close to
the true value of the population characteristic. This estimate has to be based on information that is
collected from the inhabitants in the sample. In Section 2.3.1 we have introduced the Horvitz-Thompson
estimator. We have seen that it is an unbiased estimator, and that it makes no explicit use of auxiliary
information. Explicit use of auxiliary variables can be used to define an estimator that has a smaller
variance. Statistics Netherlands therefore makes use of the generalised regression estimator to obtain
estimates.

In this chapter, we first define this estimator and subsequently we show that the approximated
variance of the generalised regression estimator is smaller than or equal to the variance of the Horvitz-
Thompson estimator. In the next section we prove that the generalised regression estimator is con-
sistent and asymptotically unbiased under specific conditions. We end this chapter by describing the
effects of the screening procedure on the generalised regression estimator.

7.1. The generalised regression estimator
Let the population be denoted by 𝑈 = {1, … , 𝑁} where 𝑁 is the population size. Suppose a sample 𝑠
of size 𝑛 is selected from 𝑈 by a sampling design 𝑝(⋅) with inclusion probabilities 𝜋𝑘 > 0. Suppose we
are interested in estimating the population mean for a certain variable 𝑦. Suppose there are 𝑝 auxiliary
variables 𝑥1, … , 𝑥𝑝 available for the whole population. Let 𝐗 be the 𝑁 × 𝑝-matrix of all auxiliary
variables,

𝐗 =
⎛
⎜
⎜
⎜
⎜
⎝

𝑥11 𝑥12 … 𝑥1𝑝
𝑥21 𝑥22 … 𝑥2𝑝
⋮ ⋮ ⋱ ⋮

𝑥𝑁1 𝑥𝑁2 … 𝑥𝑁𝑝

⎞
⎟
⎟
⎟
⎟
⎠

(7.1)

where the 𝑘−th row of 𝐗 is denoted by the vector 𝐱𝑇
𝑘 = (𝑥𝑘1, 𝑥𝑘2, … , 𝑥𝑘𝑝) of auxiliary variables for

element 𝑘. The 𝑝-vector of population means for all auxiliary variables is denoted by

𝐱𝑈 = 1
𝑁

𝑁

∑
𝑘=1

𝐱𝑘 (7.2)
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52 7. Estimation of population characteristics

Let 𝑦1, … , 𝑦𝑁 be the target values for all elements in the population. Suppose one is interested to
estimate the population mean

𝑦𝑈 = 1
𝑁

𝑁

∑
𝑘=1

𝑦𝑘 (7.3)

We follow the model that is described by Wright [16] and Särndal et al. [4]. If the auxiliary variables
are correlated with the target variable 𝑦, then it is possible to write the vector (𝑦1, … , 𝑦𝑁 ) as a function
of 𝐗. One possible model to use is linear regression, which means that there exists a suitably chosen
vector 𝜷 = (𝛽1, … , 𝛽𝑝)𝑇 of regression coefficients of a best linear fit of 𝑦 on 𝐗. The residuals 𝜺 =
(𝜀1, … , 𝜀𝑁 )𝑇 are then defined by

𝜀𝑘 = 𝑦𝑘 − 𝐱𝑇
𝑘 𝜷 (7.4)

The residuals 𝜀𝑘 are random variables satisfying

𝔼(𝜀𝑘) = 0 and 𝔼(𝜀𝑘𝜀𝑙) =
{

𝜎2𝑣𝑘 if 𝑘 = 𝑙
0 if 𝑘 ≠ 𝑙

(7.5)

Here 𝜎2 > 0 and 𝜷 = (𝛽1, … , 𝛽𝑝)𝑇 are the parameters of the linear model and 𝑣𝑘 is a positive auxiliary
variable, that is not contained in 𝐗 [16]. Suppose that ∑𝑘∈𝑠 𝐱𝑘𝐱𝑇

𝑘 1/𝑣𝑘 is nonsingular for all possible
samples 𝑠 ∈ S. Based on the whole population 𝑈 , the weighted ordinary least squares method gives
an estimator 𝜷𝑈 for 𝜷 [4]

𝜷𝑈 =
(

𝑁

∑
𝑘=1

𝐱𝑘𝐱𝑇
𝑘

1
𝜎2𝑣𝑘 )

−1

(

𝑁

∑
𝑘=1

𝐱𝑘𝑦𝑘
1

𝜎2𝑣𝑘 )
(7.6)

Let 𝐸𝑘 = 𝑦𝑘 − 𝐱𝑇
𝑘 𝜷𝑈 be the population fit residuals. In case ∑𝑘∈𝑠 𝐱𝑘𝐱𝑇

𝑘 1/𝑣𝑘 is singular, one can use
a generalised inverse of ∑𝑘∈𝑠 𝐱𝑘𝐱𝑇

𝑘 1/𝑣𝑘 instead.

In general, the vector 𝜷𝑈 will not be known, particularly because 𝑦𝑘 is unknown for all elements.
Note that the unknown parameter 𝜎2 cancels out in Equation (7.6). Let 𝐓𝐱𝐱 and 𝐭𝐱𝑦 denote

𝐓𝐱𝐱 =
𝑁

∑
𝑘=1

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘

and 𝐭𝐱𝑦 =
𝑁

∑
𝑘=1

𝐱𝑘𝑦𝑘
1
𝑣𝑘

(7.7)

Then 𝜷𝑈 = 𝐓−1
𝐱𝐱 𝐭𝐱𝑦. The vector 𝜷𝑈 can be estimated from the sample using the Horvitz-Thompson

estimators for respectively 𝐓𝐱𝐱 and 𝐭𝐱𝑦, which Särndal et al. [4] and Nieuwenbroek and Boonstra [17]
define as

�̂�𝐱𝐱,HT = ∑
𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘

and ̂𝐭𝐱𝑦,HT = ∑
𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘𝑦𝑘
1
𝑣𝑘

(7.8)

The vector ̂𝜷 defined by

̂𝜷 = (�̂�𝐱𝐱,HT)
−1 ̂𝐭𝐱𝑦,HT (7.9)

is an estimator for 𝜷𝑈 . The regression model is used to define the generalised regression estimator
for 𝑦𝑈 . Under the linear regression model, the population mean can be written by

𝑦𝑈 = 1
𝑁

𝑁

∑
𝑘=1

𝑦𝑘 = 1
𝑁

𝑁

∑
𝑘=1

𝐱𝑇
𝑘

̂𝜷 + 1
𝑁

𝑁

∑
𝑘=1

(𝑦𝑘 − 𝐱𝑇
𝑘

̂𝜷) (7.10)
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The first part in Equation (7.10) is known, whereas the second part is unknown, since 𝑦𝑘 is only known
for 𝑘 ∈ 𝑠. By making use of the Horvitz Thompson estimator, an unbiased estimator for the second
part can be found, which gives that the generalised regression estimator for 𝑦𝑈 is defined as

�̂�GREG = 1
𝑁

𝑁

∑
𝑘=1

𝐱𝑇
𝑘

̂𝜷 + 1
𝑁 ∑

𝑘∈𝑠 (
1

𝜋𝑘
𝑦𝑘 − 1

𝜋𝑘
𝐱𝑇

𝑘
̂𝜷)

= 1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

𝑦𝑘 + 1
𝑁

𝑁

∑
𝑘=1

𝐱𝑇
𝑘

̂𝜷 − 1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

𝐱𝑇
𝑘

̂𝜷

= �̂�HT + (𝐱𝑈 − �̂�HT)
𝑇 ̂𝜷

(7.11)

where �̂�HT and �̂�HT are the Horvitz-Thompson estimators for 𝑦𝑈 and 𝐱𝑈 respectively, i.e.

�̂�HT = 1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

𝑦𝑘 and �̂�HT = 1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘 (7.12)

7.1.1. Alternative expressions for the generalised regression estimator
The generalised regression estimator can be expressed as a weighted sample sum of the target vari-
able, which makes calculations more intuitively, i.e.

�̂�GREG = �̂�HT + (𝐱𝑈 − �̂�HT)
𝑇 ̂𝜷

= �̂�HT + (𝐱𝑈 − �̂�HT)
𝑇

(�̂�𝐱𝐱,HT)
−1 ̂𝐭𝐱𝑦,HT

= 1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

𝑦𝑘 + (𝐱𝑈 − �̂�HT)
𝑇

(�̂�𝐱𝐱,HT)
−1

∑
𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘𝑦𝑘
1
𝑣𝑘

= ∑
𝑘∈𝑠 (

1
𝑁

1
𝜋𝑘

𝑦𝑘 + (𝐱𝑈 − �̂�HT)
𝑇

(�̂�𝐱𝐱,HT)
−1 1

𝜋𝑘
𝐱𝑘𝑦𝑘

1
𝑣𝑘 )

= ∑
𝑘∈𝑠

1
𝜋𝑘 (

1
𝑁 + (𝐱𝑈 − �̂�HT)

𝑇
(�̂�𝐱𝐱,HT)

−1 𝐱𝑘
1
𝑣𝑘 ) 𝑦𝑘

= ∑
𝑘∈𝑠

𝑤𝑘𝑦𝑘

(7.13)

where the weights are defined by

𝑤𝑘 = 1
𝜋𝑘 (

1
𝑁 + (𝐱𝑈 − �̂�HT)

𝑇
(�̂�𝐱𝐱,HT)

−1 𝐱𝑘
1
𝑣𝑘 ) (7.14)

Writing the generalised regression in this way, means that each inhabitant in the sample obtains a
weight that is used for estimation. The estimated value is then obtained by computing the weighted
average of the target variables.

Under specific conditions, the generalised regression estimator can be simplified [18], [19], [20]. If
there exists a 𝑝-vector 𝐜 such that

𝐱𝑇
𝑘 𝐜 = 𝑣𝑘 for all 𝑘 = 1, … , 𝑁 (7.15)

then the weights of the generalised regression estimator can be rewritten. Note that if there exists such
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a 𝑝-vector 𝐜, then 𝐜𝑇 𝐱𝑘
1

𝑣𝑘
= 1, which gives

(�̂�HT)
𝑇

(�̂�𝐱𝐱,HT)
−1 𝐱𝑘

1
𝑣𝑘

=
(

1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

⋅ 1 ⋅ 𝐱𝑇
𝑘 ) (∑

𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 )

−1

𝐱𝑘
1
𝑣𝑘

=
(

1
𝑁 ∑

𝑘∈𝑠

1
𝜋𝑘

⋅ 𝐜𝑇 𝐱𝑘
1
𝑣𝑘

⋅ 𝐱𝑇
𝑘 ) (∑

𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 )

−1

𝐱𝑘
1
𝑣𝑘

= 1
𝑁 𝐜𝑇

(∑
𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 ) (∑

𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 )

−1

𝐱𝑘
1
𝑣𝑘

= 1
𝑁 𝐜𝑇 𝐱𝑘

1
𝑣𝑘

= 1
𝑁

(7.16)

Under the condition in Equation 7.15, the weights of the generalised regression estimator can be written
as

𝑤𝑘 = 1
𝜋𝑘 (

1
𝑁 + (𝐱𝑈 − �̂�HT)

𝑇
(�̂�𝐱𝐱,HT)

−1 𝐱𝑘
1
𝑣𝑘 )

= 1
𝜋𝑘 (

1
𝑁 + 𝐱𝑇

𝑈 (�̂�𝐱𝐱,HT)
−1 𝐱𝑘

1
𝑣𝑘

− (�̂�HT)
𝑇

(�̂�𝐱𝐱,HT)
−1 𝐱𝑘

1
𝑣𝑘 )

= 1
𝜋𝑘

𝐱𝑇
𝑈 (�̂�𝐱𝐱,HT)

−1 𝐱𝑘
1
𝑣𝑘

(7.17)

Consequently, under the condition that there exists a 𝑝-vector 𝐜 such that 𝐱𝑇
𝑘 𝐜 = 𝑣𝑘, the generalised

regression estimator is

�̂�GREG = ∑
𝑘∈𝑠

𝑤𝑘𝑦𝑘

= ∑
𝑘∈𝑠

1
𝜋𝑘

𝐱𝑇
𝑈 (�̂�𝐱𝐱,HT)

−1 𝐱𝑘
1
𝑣𝑘

𝑦𝑘

= 𝐱𝑇
𝑈 (�̂�𝐱𝐱,HT)

−1
∑
𝑘∈𝑠

1
𝜋𝑘

𝐱𝑘𝑦𝑘
1
𝑣𝑘

= 𝐱𝑇
𝑈 (�̂�𝐱𝐱,𝐻𝑇 )

−1 ̂𝐭𝐱𝑦,HT

= 𝐱𝑇
𝑈 ̂𝜷

(7.18)

7.2. Variance of the generalised regression estimator
Statistics Netherlands uses the generalised regression estimator because its approximated variance
is smaller than the variance of the Horvitz-Thompson estimator. We prove this for simple random
sampling without replacement.

Because of the complex nature of the generalised regression estimator it is not possible to compute
the variance exactly. We derive an approximation of the variance by using Taylor linearisation.

Theorem 7.1 (Approximated variance generalised regression estimator). The generalised regression
estimator �̂�GREG for 𝑦𝑈 has approximated variance

𝔸𝕍 (�̂�GREG) = 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝐸𝑘 ̆𝐸𝑙 (7.19)
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where 𝐸𝑘 = 𝑦𝑘 − 𝐱𝑇
𝑘 𝜷𝑈 denote the population fit residuals, and as was introduced in Section 2.3 the ̆

denotes the operation of dividing a value variable by the inclusion probability, i.e. ̆𝐸𝑘 = 1
𝜋𝑘

𝐸𝑘.

Proof. The proof can be found in Appendix A.3.

Theorem 7.2 (Approximated variance generalised regression estimator for fixed size designs). If the
sample size 𝑛 of the sampling design 𝑝(⋅) is fixed, the approximated variance of the generalised re-
gression estimator in Equation (7.19) can be written alternatively as

𝔸𝕍 (�̂�GREG) = − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝐸𝑘 − ̆𝐸𝑙)
2 (7.20)

Proof. The proof can be found in Appendix A.4.

Remark 7.1. Under the same condition that is made for obtaining the simplified expression for the
generalised regression estimator in Equation (7.18), the sum of the population fit residuals is zero. In
other words, if there exists a 𝑝-vector 𝐜 such that 𝐱𝑇

𝑘 𝐜 = 𝑣𝑘, then ∑𝑁
𝑘=1 𝐸𝑘 = 0.

Proof.

𝑁

∑
𝑘=1

𝐸𝑘 =
𝑁

∑
𝑘=1

(𝑦𝑘 − 𝐱𝑇
𝑘 𝜷𝑈 )

=
𝑁

∑
𝑘=1

𝑦𝑘 −
𝑁

∑
𝑘=1

𝐱𝑇
𝑘 𝜷𝑈

=
𝑁

∑
𝑘=1

𝑦𝑘 −
(

𝑁

∑
𝑘=1

1 ⋅ 𝐱𝑇
𝑘 ) (

𝑁

∑
𝑘=1

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 )

−1

(

𝑁

∑
𝑘=1

𝐱𝑘𝑦𝑘
1
𝑣𝑘 )

=
𝑁

∑
𝑘=1

𝑦𝑘 −
(

𝑁

∑
𝑘=1

𝐜𝑇 𝐱𝑘
1
𝑣𝑘

⋅ 𝐱𝑇
𝑘 ) (

𝑁

∑
𝑘=1

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 )

−1

(

𝑁

∑
𝑘=1

𝐱𝑘𝑦𝑘
1
𝑣𝑘 )

=
𝑁

∑
𝑘=1

𝑦𝑘 − 𝐜𝑇
(

𝑁

∑
𝑘=1

𝐱𝑘𝑦𝑘
1
𝑣𝑘 )

=
𝑁

∑
𝑘=1

𝑦𝑘 −
𝑁

∑
𝑘=1

𝑦𝑘 = 0

(7.21)

The approximated variance of the regression estimator for simple random sampling can be derived
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from Equation (7.20). We use Remark 7.1 and Equation (2.35).

𝔸𝕍 (�̂�GREG) = − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝐸𝑘 − ̆𝐸𝑙)
2

= − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑘≠𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝐸𝑘 − ̆𝐸𝑙)
2 − 1

2𝑁2

𝑁

∑
𝑘=1

(𝜋𝑘𝑘 − 𝜋𝑘𝜋𝑘) ( ̆𝐸𝑘 − ̆𝐸𝑘)
2

= − 1
2𝑁2

−𝑓(1 − 𝑓)
𝑁 − 1

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(
𝑁
𝑛 (𝐸𝑘 − 𝐸𝑙))

2

= − 1
2𝑁2

−𝑓(1 − 𝑓)
𝑁 − 1

1
𝑓 2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝐸𝑘 − 𝐸𝑙)2

= 1
2𝑁2

1 − 𝑓
𝑁 − 1

1
𝑓

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝐸2
𝑘 − 2𝐸𝑘𝐸𝑙 + 𝐸2

𝑙 )

= 1
2𝑁2

1 − 𝑓
𝑁 − 1

1
𝑓 (

2𝑁
𝑁

∑
𝑘=1

𝐸2
𝑘 − 2

𝑁

∑
𝑘=1 (

𝐸𝑘

𝑁

∑
𝑙=1

𝐸𝑙))

= 1
2𝑁2

1 − 𝑓
𝑁 − 1

1
𝑓 2𝑁

𝑁

∑
𝑘=1

𝐸2
𝑘

= 1 − 𝑓
𝑛

1
𝑁 − 1

𝑁

∑
𝑘=1

𝐸2
𝑘

= 1 − 𝑓
𝑛 𝑆2

𝑦𝑈 (1 − 𝑄2)
(7.22)

where

𝑄2 = 1 − 1
𝑆2

𝑦𝑈

1
𝑁 − 1

𝑁

∑
𝑘=1

𝐸2
𝑘 (7.23)

and 𝑆2
𝑦𝑈 is the population variance, which is given by Equation (2.39). Recall that the variance of the

Horvitz-Thompson estimator for simple random sampling without replacement is given by (see Equation
2.38)

𝕍 (�̂�HT) = 1 − 𝑓
𝑛 𝑆2

𝑦𝑈 (7.24)

Then the ratio of approximated variance of the generalised regression estimator and the variance
of the Horvitz-Thompson estimator for SRSWR is

𝔸𝕍 (�̂�GREG)

𝕍 (�̂�HT)
=

1−𝑓
𝑛 𝑆2

𝑦𝑈 (1 − 𝑄2)
1−𝑓

𝑛 𝑆2
𝑦𝑈

= 1 − 𝑄2 (7.25)

Then we conclude that
𝔸𝕍 (�̂�GREG) ≤ 𝕍 (�̂�HT) if and only if 𝑄2 ≥ 0 (7.26)

Consequently, the generalised regression estimator is by approximation likely to be an improvement
over the Horvitz-Thompson estimator if 𝑄2 > 0.
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7.3. Consistency and asymptotically design unbiasedness
Although the approximated variance of the generalised regression estimator is smaller than the vari-
ance of the Horvitz-Thompson estimator (if 𝑄2 > 0), the generalised regression estimator is not an
unbiased estimator whereas the Horvitz-Thompson estimator is an unbiased estimator. However, the
generalised regression estimator is asymptotically unbiased. In practice, this means that the gener-
alised regression estimator can be considered approximately unbiased when the sample size 𝑛 is large
enough [4]. Moreover, the generalised regression estimator is a consistent estimator, which means that
the sampling distribution of �̂�GREG can be considered tightly concentrated around 𝑦𝑈 , when 𝑛 is large
enough [4]. In this section, we give more formal and precise definitions for asymptotically unbiasedness
and consistency. Subsequently, we prove that the generalised regression estimator is asymptotically
unbiased and consistent under specific conditions.

To introduce definitions for consistency and asymptotic unbiasedness of estimators, a more com-
prehensive framework known as the super-population model is required. The main idea is to assume
that we can treat the finite population of size 𝑁 as if it were a iid sample of an infinite super-population
[20], [21], [22]. The super-population model allows us to investigate properties of estimators as the
sample size and the population size become large.

Thus far we have treated the sampling design 𝑝(𝑠) as the probability that a sample outcome 𝑠 is
selected by the design. The target variables 𝑦𝑘 are considered non-stochastic but unknown numbers
and probability statements arise from selection of units in the sample [22]. This limits our inference to
the reference population only.

By contrast, the super-population view regards the finite population of interest as a sample of size
𝑁 from an infinite population [21]. Consequently, under the super-population model the sample of size
𝑛 is generated by a two step procedure:
STEP 1: Draw an iid sample of size 𝑁 from an infinite super population
STEP 2: Draw a sample of size 𝑛 < 𝑁 from the sample obtained from STEP 1.

Note that the first step is an imaginary step. Usually it is assumed that the resulting sample elements
are independent and identically distributed. In terms of the super-population model, the finite population
sampling may be regarded as being based on the conditional distribution given a particular outcome of
drawing a sample of size 𝑁 from an infinite population [21].

Rubin-Bleuer et al. [22] state that the finite population 𝑈 is associated with a super-population that
consists of a probability space (Ω,F , 𝑃 ) and random vectors (𝑌𝑘, 𝐗𝑘), 𝑌𝑘 ∶ Ω → ℝ, 𝐗𝑘 ∶ Ω → ℝ𝑝,
such that 𝑌𝑘(𝜔0) = 𝑦𝑘 and 𝐗𝑘(𝜔0) = 𝐱𝑘 for some 𝜔0 ∈ Ω. Here 𝑌𝑘 represents the random variable
of the target variable and 𝐗𝑘 ∈ ℝ𝑝 the random vector of the auxiliary information. Rubin-Bleuer et al.
[22] write the vectors 𝐘𝑁 and 𝐗𝑁 as

𝐘𝑁 = (𝑦𝑘)𝑘=1,…,𝑁 and 𝐗𝑁 = (𝐱𝑘)𝑘=1,…,𝑁 (7.27)

Then any distribution of (𝐘𝑁 , 𝐗𝑁 ) that is given a priori is called a super-population model and the
finite population 𝑈 is a realisation of the super-population.

To allow us to investigate the properties of the generalised regression estimator for large population-
and sample sizes, consider an infinite sequence of populations 𝑈1, 𝑈2, 𝑈3, … where 𝑈𝜏 consists of the
first 𝑁𝜏 elements from the infinite sequence of populations, that is 𝑈𝜏 = {1, 2, … , 𝑁𝜏}. Assume that
𝑈1 ⊂ 𝑈2 ⊂ 𝑈3 ⊂ ⋯ and hence 𝑁1 < 𝑁2 < 𝑁3 < ⋯ [20].
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For each population 𝑈𝜏 consider a probability sampling design 𝑝𝜏(⋅) that assigns a probability 𝑝𝜏(𝑠𝜏)
to each possible sample 𝑠𝜏 of elements of 𝑈𝜏 . Let 𝜋𝑘𝜏 and 𝜋𝑘𝑙𝜏 (𝑘, 𝑙 = 1, 2, … , 𝑁𝜏) denote the first-
and second-order inclusion probabilities determined by the sampling design 𝑝𝜏(⋅). Let the sample size
𝑛𝜏 of sample 𝑠𝜏 be fixed and such that 𝑛𝜏 ≤ 𝑁𝜏 for all 𝜏. Assume that 𝑛1 < 𝑛2 < 𝑛3 < ⋯. Now 𝜏 → ∞
means that both 𝑛𝜏 → ∞ and 𝑁𝜏 → ∞, but it is not required that 𝑛𝜏 increases as fast as 𝑁𝜏 [23].

Let 𝐼𝑘𝜏 be an indicator stating whether element 𝑘 from population 𝑈𝜏 is in the sample 𝑠𝜏 or not. Let
𝐘𝜏 = (𝑌1, … , 𝑌𝑁𝜏 ) denote the vector of independent random variables and let 𝜉 denote the probability
distribution of the infinite sequence of random variables 𝑌1, 𝑌2, …. This setup is also known as the
super-population model, which is also denoted by 𝜉 for short. Let 𝑡𝐘𝜏 be the a population parameter of
population 𝑈𝜏 , which means that 𝑡𝐘𝜏 is a function of 𝑌1, … , 𝑌𝑁𝜏 . Let ̂𝑡𝐘𝜏 be an estimator for 𝑡𝐘𝜏 .

Definition 7.1. The estimator ̂𝑡𝐘𝜏 is asymptotically design unbiased for 𝑡𝐘𝜏 if

lim𝜏→∞ 𝔼𝑝𝜏 ( ̂𝑡𝐘𝜏 | 𝐘𝜏) − 𝑡𝐘𝜏 = 0 𝜉- almost surely (7.28)

Definition 7.2. The estimator ̂𝑡𝐘𝜏 is consistent for 𝑡𝐘𝜏 if ∀𝜀 > 0

lim𝜏→∞ ℙ𝑝𝜏 (| ̂𝑡𝐘𝜏 − 𝑡𝐘𝜏 | > 𝜀) = 0 𝜉- almost surely (7.29)

In this framework, the population mean for population 𝑈𝜏 is written as 𝑦𝑈𝜏 = 1
𝑁𝜏

∑𝑁𝜏
𝑘=1 𝑌𝑘 and the

generalised regression estimator from Equation (7.11) for 𝑦𝑈𝜏 is written as

�̂�𝜏,GREG = �̂�𝜏,HT + (𝐱𝑈 − �̂�HT)
𝑇 ̂𝜷𝜏

= 1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋𝑘𝜏

𝑌𝑘 +
(

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐱𝑘 − 1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋𝑘𝜏

𝐱𝑘)

𝑇

̂𝜷𝜏

= 1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋𝑘𝜏

𝑌𝑘 +
𝑝

∑
𝑗=1 ((

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑥𝑘𝑗 − 1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋𝑘𝜏

𝑥𝑘𝑗) ( ̂𝜷𝜏)𝑗)

= 1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

𝑌𝑘 +
𝑝

∑
𝑗=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗 ( ̂𝜷𝜏)𝑗)

(7.30)

where ( ̂𝜷𝜏)𝑗
represents the 𝑗-th element of the vector of regression coefficients ̂𝜷𝜏

̂𝜷𝜏 =
(

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋𝑘𝜏

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 )

−1

(

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋𝑘𝜏

𝐱𝑘𝑌𝑘
1
𝑣𝑘 )

(7.31)

Before we prove asymptotically unbiasedness and consistency, a few conditions on the auxiliary-
and target variables and on the inclusion probabilities are imposed.

(C0) ∑𝑘∈𝑠 𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘

is nonsingular for all possible samples 𝑠 ∈ S

(C1) lim sup
𝜏→∞

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑥2
𝑘𝑗 < ∞ for 𝑗 = 1, … , 𝑝

(C2) lim sup
𝜏→∞

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘 < ∞ 𝜉- almost surely
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(C3) lim sup
𝜏→∞

𝔼𝜏 (

𝑝

∑
𝑗=1 (( ̂𝜷𝜏)𝑗)

2

|
𝐘𝜏)

< ∞ 𝜉- almost surely

(C4) lim inf𝜏→∞ 𝑁𝜏 min
1≤𝑘≤𝑁𝜏

𝜋𝑘𝜏 = ∞

(C5) lim𝜏→∞ max
1≤𝑘≠𝑙≤𝑁𝜏 |

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1| = 0

The most important result from Robinson and Särndal [23] is formulated in the following theorem.

Theorem 7.3. Under conditions (C0) to to (C5), the generalised regression estimator �̂�𝜏,GREG from
Equation (7.30) is asymptotically design unbiased and consistent for 𝑦𝑈𝜏 .

Proof. This proof follows the proof that is given by Robinson and Särndal [23]. We use some important
inequalities that are introduced in Appendix A.5.

Using the Markov inequality (Lemma A.1) it follows that to prove asymptotically design unbiased-
ness and consistency, it is sufficient to prove

lim𝜏→∞ 𝔼𝜏 (|�̂�𝜏,GREG − 𝑦𝑈𝜏 ||𝐘𝜏) = 0 (7.32)

𝜉 -almost surely. Here 𝔼𝜏 denotes the expected value with respect to 𝜏. Using the triangle inequality
and the generalised regression estimator from Equation (7.30) we have that

|�̂�𝜏,GREG − 𝑦𝑈𝜏 | =
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

𝑌𝑘 +
𝑝

∑
𝑗=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗 ( ̂𝜷𝜏)𝑗)
− 1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌𝑘|

=
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 ((

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘 +
𝑝

∑
𝑗=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗 ( ̂𝜷𝜏)𝑗)|

≤
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘|
+

|
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑝

∑
𝑗=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗 ( ̂𝜷𝜏)𝑗|

(7.33)

Consequently

𝔼𝜏 (|�̂�𝜏,GREG − 𝑦𝑈𝜏 ||𝐘𝜏) ≤ 𝔼𝜏 (|
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘||
𝐘𝜏)

+ 𝔼𝜏 (|
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑝

∑
𝑗=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗 ( ̂𝜷𝜏)𝑗||
𝐘𝜏)

(7.34)

Applying the Lyapounov inequality (Lemma A.2) with 𝑝 = 1 and 𝑟 = 2 to the first part, gives that

𝔼𝜏 (|
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘||
𝐘𝜏)

≤
⎛
⎜
⎜
⎝
𝔼𝜏

⎛
⎜
⎜
⎝
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

1
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
I

(7.35)

For the second part we have that

𝔼𝜏 (|
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑝

∑
𝑗=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗 ( ̂𝜷𝜏)𝑗||
𝐘𝜏)

= 𝔼𝜏 (|

𝑝

∑
𝑗=1

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗 ( ̂𝜷𝜏)𝑗|)
(7.36)
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Applying the Cauchy-Schwarz inequality (Lemma A.3) gives that

𝔼𝜏 (|

𝑝

∑
𝑗=1

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗 ( ̂𝜷𝜏)𝑗|)

≤
⎛
⎜
⎜
⎝
𝔼𝜏

⎛
⎜
⎜
⎝

𝑝

∑
𝑗=1 |

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

1
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
II

⋅
(

𝔼𝜏 (

𝑝

∑
𝑗=1 (( ̂𝜷𝜏)𝑗)

2

|
𝐘𝜏))

1
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
III

(7.37)

We evaluate the parts I, II and III separately as 𝜏 → ∞. For the first part, we start by developing the
square, which gives

lim𝜏→∞ 𝔼𝜏
⎛
⎜
⎜
⎝
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

= lim𝜏→∞ 𝔼𝜏 (
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝑁𝜏

∑
𝑙=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) (
𝐼𝑙𝜏
𝜋𝑙𝜏

− 1) 𝑌𝑘𝑌𝑙|
𝐘𝜏)

= lim𝜏→∞ 𝔼𝜏 (
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1)
2

𝑌 2
𝑘 |

𝐘𝜏)

+ lim𝜏→∞ 𝔼𝜏 (
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝑁𝜏

∑
𝑘≠𝑙=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) (
𝐼𝑙𝜏
𝜋𝑙𝜏

− 1) 𝑌𝑘𝑌𝑙|
𝐘𝜏)

(7.38)

Next, we use that the expected value of a sum equals the sum of expectations, which gives

lim𝜏→∞ 𝔼𝜏
⎛
⎜
⎜
⎝
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

= lim𝜏→∞
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝔼𝜏 ((
𝐼𝑘𝜏
𝜋𝑘𝜏

− 1)
2

𝑌 2
𝑘 |

𝐘𝜏)

+ lim𝜏→∞
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝑁𝜏

∑
𝑘≠𝑙=1

𝔼𝜏 ((
𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) (
𝐼𝑙𝜏
𝜋𝑙𝜏

− 1) 𝑌𝑘𝑌𝑙|𝐘𝜏)

= lim𝜏→∞
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝔼𝜏 (
𝐼𝑘𝜏𝐼𝑘𝜏
𝜋𝑘𝜏𝜋𝑘𝜏

− 2 𝐼𝑘𝜏
𝜋𝑘𝜏

+ 1) 𝑌 2
𝑘

+ lim𝜏→∞
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝑁𝜏

∑
𝑘≠𝑙=1

𝔼𝜏 (
𝐼𝑘𝜏𝐼𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 𝐼𝑘𝜏
𝜋𝑘𝜏

− 𝐼𝑙𝜏
𝜋𝑙𝜏

+ 1) 𝑌𝑘𝑌𝑙

(7.39)

Recall that 𝔼𝜏 (𝐼𝑘𝜏) = 𝜋𝑘𝜏 , 𝔼𝜏 (𝐼𝑘𝜏𝐼𝑙𝜏) = 𝜋𝑘𝑙𝜏 if 𝑘 ≠ 𝑙 and 𝔼𝜏 (𝐼𝑘𝜏𝐼𝑙𝜏) = 𝜋𝑘𝜏 if 𝑘 = 𝑙. We use this to
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compute the expected values. This gives

lim𝜏→∞ 𝔼𝜏
⎛
⎜
⎜
⎝
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

= lim𝜏→∞
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1 (

1
𝜋𝑘𝜏

− 1) 𝑌 2
𝑘 + lim𝜏→∞

1
𝑁2

𝜏

𝑁𝜏

∑
𝑘=1

𝑁𝜏

∑
𝑘≠𝑙=1 (

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1) 𝑌𝑘𝑌𝑙

(7.40)

The first term in Equation (7.40) is dominated by

lim𝜏→∞
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1 (

1
𝜋𝑘𝜏

− 1) 𝑌 2
𝑘 ≤ lim𝜏→∞

1
𝑁2

𝜏

𝑁𝜏

∑
𝑘=1

1
𝜋𝑘𝜏

𝑌 2
𝑘

≤ lim𝜏→∞ (𝑁𝜏 min
1≤𝑘≤𝑁𝜏

𝜋𝑘𝜏)
−1 1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘

(7.41)

and the second term in Equation (7.40) is dominated by

lim𝜏→∞
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝑁𝜏

∑
𝑘≠𝑙=1 (

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1) 𝑌𝑘𝑌𝑙 ≤ lim𝜏→∞ max
1≤𝑘≠𝑙≤𝑁𝜏 |

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1|
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝑁𝜏

∑
𝑘≠𝑙=1

𝑌𝑘𝑌𝑙

≤ lim𝜏→∞ max
1≤𝑘≠𝑙≤𝑁𝜏 |

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1| (
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌𝑘)

2 (7.42)

Applying the Cauchy-Schwarz inequality (Lemma A.3) to (
1

𝑁𝜏
∑𝑁𝜏

𝑘=1 𝑌𝑘)
2
gives

(
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌𝑘)

2

=
(

𝑁𝜏

∑
𝑘=1

1
𝑁𝜏

𝑌𝑘)

2

≤
(

𝑁𝜏

∑
𝑘=1

1
𝑁2

𝜏 ) (

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘 )

= 1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘

(7.43)

Consequently, part I is dominated by

lim𝜏→∞ 𝔼𝜏
⎛
⎜
⎜
⎝
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

≤ lim𝜏→∞ (𝑁𝜏 min
1≤𝑘≤𝑁𝜏

𝜋𝑘𝜏)
−1 1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘

+ lim𝜏→∞ max
1≤𝑘≠𝑙≤𝑁𝜏 |

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1|
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘

(7.44)

By using Conditions (C2), (C4) and (C5) we obtain the desired result of part I as 𝜏 → ∞

lim𝜏→∞

⎛
⎜
⎜
⎝
𝔼𝜏

⎛
⎜
⎜
⎝
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (

𝐼𝑘𝜏
𝜋𝑘𝜏

− 1) 𝑌𝑘|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

1
2

= 0 𝜉- almost surely (7.45)
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Obtaining the result for part II is quite similar to part I. By similarly developing the square, computing
the expected values and by using the same type of dominations we obtain that

lim𝜏→∞ 𝔼𝜏
⎛
⎜
⎜
⎝

𝑝

∑
𝑗=1 |

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

≤ lim𝜏→∞ (𝑁𝜏 min
1≤𝑘≤𝑁𝜏

𝜋𝑘𝜏)
−1 1

𝑁𝜏

𝑝

∑
𝑗=1

𝑁𝜏

∑
𝑘=1

𝑥2
𝑘𝑗

+ lim𝜏→∞ max
1≤𝑘≠𝑙≤𝑁𝜏 |

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1| (
1

𝑁𝜏

𝑝

∑
𝑗=1

𝑁𝜏

∑
𝑘=1

𝑥𝑘𝑗)

2

(7.46)

Now applying the Cauchy-Schwarz inequality (Lemma A.3) to (
1

𝑁𝜏
∑𝑝

𝑗=1 ∑𝑁𝜏
𝑘=1 𝑥𝑘𝑗)

2
gives

(
1

𝑁𝜏

𝑝

∑
𝑗=1

𝑁𝜏

∑
𝑘=1

𝑥𝑘𝑗)

2

=
(

𝑁𝜏

∑
𝑘=1 (

1
𝑁𝜏

𝑝

∑
𝑗=1

𝑥𝑘𝑗))

2

≤
(

𝑁𝜏

∑
𝑘=1

1
𝑁2

𝜏 )
⎛
⎜
⎜
⎝

𝑁𝜏

∑
𝑘=1 (

𝑝

∑
𝑗=1

𝑥𝑘𝑗)

2⎞
⎟
⎟
⎠

≤ 1
𝑁𝜏

𝑝

∑
𝑗=1

𝑁𝜏

∑
𝑘=1

𝑥2
𝑘𝑗

(7.47)

Then we have that

lim𝜏→∞ 𝔼𝜏
⎛
⎜
⎜
⎝

𝑝

∑
𝑗=1 |

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

≤ lim𝜏→∞ (𝑁𝜏 min
1≤𝑘≤𝑁𝜏

𝜋𝑘𝜏)
−1 1

𝑁𝜏

𝑝

∑
𝑗=1

𝑁𝜏

∑
𝑘=1

𝑥2
𝑘𝑗

+ lim𝜏→∞ max
1≤𝑘≠𝑙≤𝑁𝜏 |

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1|
1

𝑁𝜏

𝑝

∑
𝑗=1

𝑁𝜏

∑
𝑘=1

𝑥2
𝑘𝑗

(7.48)

And conditions (C1), (C4) and (C5) give the desired result for part III:

lim𝜏→∞

⎛
⎜
⎜
⎝
𝔼𝜏

⎛
⎜
⎜
⎝

𝑝

∑
𝑗=1 |

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑗|

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

1
2

= 0 𝜉- almost surely (7.49)

Note that part III immediately follows from Condition (C3)

lim𝜏→∞ (
𝔼𝜏 (

𝑝

∑
𝑗=1 (( ̂𝜷𝜏)𝑗)

2

|
𝐘𝜏))

< ∞ 𝜉- almost surely (7.50)

Combining all three parts now gives that

lim𝜏→∞ 𝔼𝜏 (|�̂�𝜏,GREG − 𝑦𝑈𝜏 ||𝐘𝜏) = 0 𝜉- almost surely (7.51)

which completes the proof.
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7.4. The generalised regression estimator and the screening procedure
To discuss the effects of the screening procedure on the generalised regression estimator, we consider
two different sampling designs: simple random sampling without replacement (see Section 2.1.1) and
the two-stage self-weighting sampling design that was described in Section 3. We have seen that the
generalised regression estimator is consistent and asymptotically unbiased under Conditions (C0) to
(C5). For both sampling designs, we will check if the conditions are met and subsequently, we discuss
the effects of the screening procedure on the generalised regression estimator.

Recall from Section 3 that the first-order inclusion probabilities are equal for the two sampling de-
signs, but the second-order inclusion probabilities are different. Since only Condition (C5) is dependent
on the second-order inclusion probabilities, we discuss Conditions (C0) until (C4) in general.

Condition (C0) The first condition is related to the singularity of the matrix ∑𝑘∈𝑠 𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘
, which is

dependent on the auxiliary variables that are used. In general, the auxiliary variables that are used at
Statistics Netherlands are mostly categorical. Note that any categorical (or quantitive variable) can be
replaced by a set of dummy variables. A dummy variable is equal to 1 of the inhabitant is in a category
and 0 otherwise. If the matrix ∑𝑘∈𝑠 𝐱𝑘𝐱𝑇

𝑘
1

𝑣𝑘
is singular, one can skip some dummy variables to prevent

that ∑𝑘∈𝑠 𝐱𝑘𝐱𝑇
𝑘 is singular [17].

Condition (C1) In general, mostly categorical variables are used at Statistics Netherlands. This
means that each variable has a finite number of categories and that each inhabitant belongs to ex-
actly one category. By using solely categorical variables, it is assured that the auxiliary variables are
bounded, which gives that Condition (C1) is met. If quantitative auxiliary variables (variables that mea-
sure a phenomenon at a numerical scale) are used the condition is also met if the auxiliary variables are
bounded. Furthermore, note that quantitative variables can always be replaced by a set of categorical
variables.

Condition (C2) This condition is related to the target variables. At Statistics Netherlands target vari-
ables are always bounded, and usually categorical. Consequently, Condition (C2) is met.

Condition (C3) First, note that Condition (C3) can be written as

lim sup
𝜏→∞

𝔼𝜏 (|| ̂𝜷𝜏 ||
2

|𝐘𝜏) < ∞ 𝜉 − almost surely (7.52)

where

|| ̂𝜷𝜏 ||
2

= ||(�̂�𝐱𝐱,HT)
−1 ̂𝐭𝐱𝑦,HT||

2
= ̂𝐭𝑇

𝐱𝑦,HT (�̂�𝐱𝐱,HT)
−1

(�̂�𝐱𝐱,HT)
−1 ̂𝐭𝐱𝑦,HT (7.53)

The norm of ̂𝜷𝜏 can be further rewritten as

|| ̂𝜷𝜏 ||
2

= || ̂𝜷𝜏 ||
2

||
1

𝑁𝜏
̂𝐭𝐱𝑦,HT||

2 ⋅ ||
1

𝑁𝜏
̂𝐭𝐱𝑦,HT||

2

=
1

𝑁𝜏
̂𝐭𝑇
𝐱𝑦,HT (

1
𝑁𝜏

�̂�𝐱𝐱,HT)
−1

(
1

𝑁𝜏
�̂�𝐱𝐱,HT)

−1 1
𝑁𝜏

̂𝐭𝐱𝑦,HT

1
𝑁𝜏

̂𝐭𝑇
𝐱𝑦,HT

1
𝑁𝜏

̂𝐭𝐱𝑦,HT
⋅ ||

1
𝑁𝜏

̂𝐭𝐱𝑦,HT||
2

(7.54)
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We use this expression for the norm later. First we make a remark on the consistency of the estimator
1

𝑁𝜏
�̂�𝐱𝐱,HT for the matrix 1

𝑁 𝐓𝐱𝐱.

Remark 7.2 (Consistency of 1
𝑁𝜏

�̂�𝐱𝐱,HT). The estimator 1
𝑁𝜏

�̂�𝐱𝐱,HT is consistent for the matrix 1
𝑁𝜏

𝐓𝐱𝐱.

Proof. The proof can be found in Appendix A.6.

Let the largest eigenvalue of the matrix 𝐀 be denoted by 𝜆max (𝐀), then [24]

𝜆max (𝐀) = max
||𝐯||2=1

𝐯𝑇 𝐀𝐯 (7.55)

This gives that the norm of ̂𝜷𝜏 is bounded by

|| ̂𝜷𝜏 ||
2

≤ 𝜆max ((
1

𝑁𝜏
�̂�𝐱𝐱,HT)

−1

(
1

𝑁𝜏
�̂�𝐱𝐱,HT)

−1

)
⋅ ||

1
𝑁𝜏

̂𝐭𝐱𝑦,HT||
2

(7.56)

Recall that if 𝜆 is an eigenvalue of 𝐀 then 𝜆2 is an eigenvalue for 𝐀2 [24]. And for a matrix 𝐀, the largest
eigenvalue of 𝐀−1 is equal to the 1 divided by smallest eigenvalue of 𝐀 [24]. This gives that

|| ̂𝜷𝜏 ||
2

≤ 1

(𝜆min (
1

𝑁𝜏
�̂�𝐱𝐱,HT))

2 ⋅ ||
1

𝑁𝜏
̂𝐭𝐱𝑦,HT||

2

(7.57)

We impose a new condition (C0*) on the positivity of smallest eigenvalue of the matrix 1
𝑁𝜏

𝐓𝐱𝐱, i.e.

(C0*) ∃ 𝜖 > 0 such that lim inf𝜏→∞ 𝜆min (
1

𝑁𝜏
𝐓𝐱𝐱) ≥ 𝜖

Note that condition (C0*) implies condition (C0).

Condition (C0*) and the consistency of the estimator 1
𝑁𝜏

�̂�𝐱𝐱,HT for the matrix 1
𝑁𝜏

𝐓𝐱𝐱 (see Remark
7.2) imply that ∃ 𝜖 > 0 such that

lim inf𝜏→∞ 𝜆min (
1

𝑁𝜏
�̂�𝐱𝐱,HT) > 𝜖 (7.58)

Consequently,

lim sup
𝜏→∞

𝔼𝜏 (|| ̂𝜷𝜏 ||
2

|𝐘𝜏) ≤ lim sup
𝜏→∞

𝔼𝜏 (
1
𝜖2 ⋅ ||

1
𝑁𝜏

̂𝐭𝐱𝑦,HT||
2

|
𝐘𝜏)

(7.59)

We compute the expected value with respect to the design of the norm of the vector 1
𝑁𝜏

̂𝐭𝐱𝑦,HT.

𝔼𝜏 (||
1

𝑁𝜏
̂𝐭𝐱𝑦,HT||

2

|
𝐘𝜏)

= 𝔼𝜏
⎛
⎜
⎜
⎝

𝑝

∑
𝑗=1 (

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋𝑘𝜏

𝑥𝑘𝑗𝑌𝑘
1
𝑣𝑘 )

2|
|
|
||
𝐘𝜏

⎞
⎟
⎟
⎠

(7.60)

By applying the Cauchy-Schwarz inequality (see Lemma A.3) to the right-hand side, we obtain

𝔼𝜏 (||
1

𝑁𝜏
̂𝐭𝐱𝑦,HT||

2

|
𝐘𝜏)

≤
𝑝

∑
𝑗=1 (

𝔼𝜏 (
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏𝐼𝑘𝜏
𝜋𝑘𝜏𝜋𝑘𝜏

𝑥2
𝑘𝑗

1
𝑣𝑘 |

𝐘𝜏)
⋅ 𝔼𝜏 (

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘

1
𝑣𝑘 |

𝐘𝜏))

=
(

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘

1
𝑣𝑘 )

𝑝

∑
𝑗=1

𝔼𝜏 (
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋2

𝑘𝜏
𝑥2

𝑘𝑗
1
𝑣𝑘 )

(7.61)
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where

𝔼𝜏 (
1
𝑁

𝑁

∑
𝑘=1

𝐼𝑘𝜏
𝜋2

𝑘𝜏
𝑥2

𝑘𝑗
1
𝑣𝑘 )

= 1
𝑁

𝑁

∑
𝑘=1

1
𝜋𝑘𝜏

𝑥2
𝑘𝑗

1
𝑣𝑘

≤ 1
lim inf𝜏→∞ 𝜋𝑘𝜏

1
𝑁

𝑁

∑
𝑘=1

𝑥2
𝑘𝑗

1
𝑣𝑘

(7.62)

Recall in the introduction of the model (see Equation (7.5)) we have assumed that the auxiliary variable
𝑣𝑘 is positive [16]. Consequently, if Condition (C1) holds, we also have that

lim sup
𝜏→∞

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑥2
𝑘𝑗

1
𝑣𝑘

< ∞ for 𝑗 = 1, … , 𝑝 (7.63)

Similarly, we can conclude

lim sup
𝜏→∞

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑌 2
𝑘

1
𝑣𝑘

< ∞ 𝜉 -almost surely (7.64)

Assume that the infimum of the inclusion probabilities is strictly greater than zero as 𝜏 → ∞, i.e.

lim inf𝜏→∞ 𝜋𝑘𝜏 > 0 (7.65)

Under this assumption and conditions (C0*), (C1), (C1*) (see Appendix A.6), (C2), (C4) and (C5) we
can conclude that

lim sup
𝜏→∞

𝔼𝜏 (||
1

𝑁𝜏
̂𝐭𝐱𝑦,HT||

2

|
𝐘𝜏)

< ∞ (7.66)

and hence that

lim sup
𝜏→∞

𝔼𝜏 (|| ̂𝜷𝜏 ||
2

|𝐘𝜏) < ∞ 𝜉 − almost surely (7.67)

To sum up, we have shown that Condition (C3) is met under some extra modest conditions.

Condition (C4) In Section 3.1 we have seen that the first order inclusion probability is equal to the
sampling fraction for all inhabitants for both sampling designs. In the super-population model this is
denoted by

𝜋𝑘𝜏 = 𝑓𝜏 = 𝑛𝜏
𝑁𝜏

(7.68)

Then for condition (C4) we have

lim inf𝜏→∞ 𝑁𝜏 min
1≤𝑘≤𝑁𝜏

𝜋𝑘𝜏 = lim inf𝜏→∞ 𝑁𝜏
𝑛𝜏
𝑁𝜏

= lim inf𝜏→∞ 𝑛𝜏 = ∞ (7.69)

since in the super-population model 𝜏 → ∞ means that 𝑛𝜏 → ∞.

7.4.1. Simple random sampling without replacement
It remains so check if Condition (C5) is met for SRSWR.
Condition (C5) Using the second-order inclusion probability we have computed in Section 2.1.1, we
find

|
𝜋𝑘𝑙𝜏

𝜋𝑘𝜏𝜋𝑙𝜏
− 1| = |

𝑁𝜏
𝑛𝜏

𝑁𝜏
𝑛𝜏

𝑛𝜏 (𝑛𝜏 − 1)
𝑁𝜏 (𝑁𝜏 − 1) − 1| = |

𝑛𝜏 − 1
𝑛𝜏

𝑁𝜏
𝑁𝜏 − 1 − 1| (7.70)

Recall that 𝜏 → ∞ means that 𝑛𝜏 → ∞ and 𝑁𝜏 → ∞, so it follows that Condition (C5) is met

lim𝜏→∞ max
1≤𝑘≠𝑙≤𝑁𝜏 |

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1| = 0 (7.71)
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We have seen that under extra modest assumptions for simple random sampling without replace-
ment all conditions are met. This means that the generalised regression estimator is consistent and
asymptotically unbiased for simple random sampling without replacement.

By applying the screening procedure on the sample, second-order inclusion probabilities are zero
for inhabitants who live on the same address. This would mean that by applying the screening proce-
dure Condition (C5) is not met and consequently, we cannot conclude that the generalised regression
estimator is consistent and asymptotically unbiased in this case.

7.4.2. Two-stage self-weighting sampling design
We check if Condition (C5) is met for the two-stage self-weighting sampling design.
Condition (C5) Recall that the second order inclusion probability of two inhabitants is dependent on
the municipalities those inhabitants live in, see Section 3.5.2. We assume that the size of municipalities
increases to infinity but the number of municipalities does not increase as 𝜏 → ∞, i.e.

lim𝜏→∞ 𝑁𝑖𝜏 = ∞ ∀ 𝑖 = 1, … , 𝐼 (7.72)

In Remark 3.2 we have explained that if the cluster size 𝑚 is equal to 1 and if the sample size is large
enough almost all municipalities become self-selecting. So since 𝑛𝜏 → ∞ as 𝜏 → ∞ we can assume
that all municipalities are self-selecting in the super-population model. So for verifying Condition (C5),
we assume that inhabitants 𝑘 and 𝑙 are in self-selecting municipalities.

First suppose that inhabitants 𝑘 ≠ 𝑙 are not in the samemunicipality 𝑈𝑖. Recall from Section 3.5 that
if inhabitants 𝑘 ≠ 𝑙 are not in the same municipality we have that the second-order inclusion probability
is equal to

𝜋𝑘𝑙𝜏 = 𝑛𝜏
𝑁𝜏

𝑛𝜏
𝑁𝜏

(7.73)

Then we simply have
𝜋𝑘𝑙𝜏

𝜋𝑘𝜏𝜋𝑙𝜏
= 𝑁𝜏

𝑛𝜏

𝑁𝜏
𝑛𝜏

𝑛𝜏
𝑁𝜏

𝑛𝜏
𝑁𝜏

= 1 (7.74)

It easily follows that Condition (C5) is met.
Suppose 𝑘 and 𝑙 are in the same municipality 𝑈𝑖. In the super-population model, the second-order

inclusion probability is

𝜋𝑘𝑙𝜏 = 𝑛𝑖𝜏 (𝑛𝑖𝜏 − 1)
𝑁𝑖𝜏 (𝑁𝑖𝜏 − 1) (7.75)

where 𝑛𝑖𝜏 = 𝑁𝑖𝜏
𝑛𝜏
𝑁𝜏

. Note that the sample size 𝑛𝑖𝜏 is chosen such that 𝑛𝑖𝜏
𝑁𝑖𝜏

= 𝑛𝜏
𝑁𝜏

. Consequently, we
have

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

= 𝑁𝜏
𝑛𝜏

𝑁𝜏
𝑛𝜏

𝑛𝑖𝜏 (𝑛𝑖𝜏 − 1)
𝑁𝑖𝜏 (𝑁𝑖𝜏 − 1) = 𝑁𝜏

𝑛𝜏

𝑛𝑖𝜏 − 1
𝑁𝑖𝜏 − 1 =

𝑁𝑖𝜏 − 𝑁𝜏
𝑛𝜏

𝑁𝑖𝜏 − 1 (7.76)

Then

|
𝜋𝑘𝑙𝜏

𝜋𝑘𝜏𝜋𝑙𝜏
− 1| =

|
|
||

𝑁𝑖𝜏 − 𝑁𝜏
𝑛𝜏

𝑁𝑖𝜏 − 1 − 1
|
|
||

=
|
|
||

𝑁𝑖𝜏 − 𝑁𝜏
𝑛𝜏

− 𝑁𝑖𝜏 + 1
𝑁𝑖𝜏 − 1

|
|
||

=
|
|
||

1 − 𝑁𝜏
𝑛𝜏

𝑁𝑖𝜏 − 1
|
|
||

(7.77)

Assume that the population size divided by the sample size is bounded as 𝜏 → ∞ i.e.

lim𝜏→∞
𝑁𝜏
𝑛𝜏

< ∞ (7.78)

Under these assumptions stated in Equation (7.72) and in Equation (7.78), we have

lim𝜏→∞ max
1≤𝑘≠𝑙≤𝑁𝜏 |

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1| = 0 (7.79)
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To sum up, it follows that Condition (C5) is met for the two-stage self-weighting sampling design
if we assume that all municipalities are self-selecting as 𝜏 → ∞. Consequently, under the assump-
tions that all municipalities become self-selecting the generalised regression estimator is consistent
and asymptotically unbiased for the two-stage self-weighting sampling design of Section 3. If there are
still non-self-selecting municipalities Condition (C5) is not met.

Again, by applying the screening procedure to the sample, second order inclusion probabilities be-
come zero for inhabitants that live on the same address. This would mean that Condition (C5) is not
met. Hence if the screening procedure is applied, we cannot conclude that the generalised regression
estimator is consistent and asymptotically unbiased anymore.

7.5. Conclusion
Statistics Netherlands uses the generalised regression estimator to estimate unknown population char-
acteristics, because its approximated variance is smaller than or equal to the variance of the Horvitz-
Thompson estimator. However, the generalised regression estimator is not unbiased. We have shown
that under specific conditions, the generalised regression estimator is consistent and asymptotically
design unbiased. We have shown that if simple random sampling without replacement is used for
selecting the samples, all conditions are met. Furthermore we have shown that under some extra
modest assumptions, the conditions are met if the self-weighting two-stage sampling design is used for
selecting a sample.

Applying the screening procedure to the sample causes that Condition (C5) is not met, despite the
sampling design that is used. This means that when the screening procedure is applied, we cannot
conclude that the generalised regression estimator is consistent and asymptotically unbiased.





8
Correcting for the screening procedure

during estimation

The main goal of survey sampling is to estimate properties of the population that are unknown. For
example, suppose the goal is to obtain an accurate estimate for the population mean of target variable
𝑦. The value for this variable 𝑦 is only known for the elements that are included in the sample 𝑠.
We will assume that every element in the sample 𝑠 responds to the survey, so nonresponse does
not occur. There are different types of estimators that can be used to estimate the mean of 𝑦; the
Horvitz-Thompson estimator and the generalised regression estimator are two examples.

In the previous sections, we have seen that not all inhabitants have the same probability to be eligible
in the sample after screening. Thus far, it is assumed that the effects of the screening procedure are
negligible and hence during the estimation of population characteristics the screening procedure is not
taken into consideration.

The accuracy of the conclusions of a survey is to a large extent based on the choice of the sampling
design and the estimator [3]. One combination of an estimator and a sampling design may lead to more
precise estimates than other combinations. For example, the advantages of a well-chosen sampling
design can be undone by a badly chosen estimator. On the other hand, a badly chosen sampling design
can be undone by using an effective estimator [3].

In this section we discuss two possibilities for estimators that can be used to undo the effects of the
screening procedure. We focus on the screening on the occurrence of an address. We use simulated
target variables to show how the Horvitz-Thompson estimator and the generalised regression estimator
can be used to correct for the screening on the occurrence of an address during the estimation of
population characteristics. The estimation is done using the survey-package in R [25].

8.1. Simulating target variables
In Chapter 4.2.1 we have showed that the probability that an inhabitant is eligible after screening on the
occurrence of an address is dependent on the number of people on an address. If the target variable
𝑦 is related to the number of people on address, the screening procedure will affect the estimated
population characteristic.
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Let 𝐚 = (𝑎1, … , 𝑎𝑁 ) denote the vector of the number of elements on an address for each element in
the population. We will generate six different variables that all have a different positive correlation with
𝐚. We use those variables to show the effects of screening on the estimated values for the population
mean. Furthermore, we use those variables to show how the Horvitz-Thompson estimator and the
generalised regression estimator can be used to correct for the screening on the occurrence of an
address.

Let 𝜌 be the correlation between 𝐚 and the target variable 𝐕𝜌. Let �̃� denote the standardised vector
of 𝐚 such that the sum of �̃� is zero. Let 𝐙 be a vector containing 𝑁 realisations of a standard normally
distributed variable 𝑍 ∼ 𝑁(0, 1). If the vectors 𝐙 and �̃� are not correlated, then the vector of target
variables for all elements in the population is generated by [26]

𝐕𝜌 = 𝜌 ⋅ �̃� + √1 − 𝜌2 ⋅ 𝐙 (8.1)

Then Cor (𝐚, 𝐕𝜌) = 𝜌. We can now rescale the vector 𝐕𝜌 with any mean 𝜇 and any standard deviation
𝜎. For each variable, we choose 𝜇 = 10 and 𝜎 = 3. Note that rescaling the vector does not change the
correlation with �̃�. We generate six different target variables, such that the correlation with the number
of people on an address are approximately 0, 0.2, 0.4, 0.6, 0.8 and 1 respectively.

8.2. TheHorvitz-Thompson estimator
The Horvitz-Thompson estimator makes no explicit use of auxiliary information, but it only makes use
of the inclusion probabilities. Under the assumption that the effects of the screening are negligible,
the Horvitz-Thompson estimator with equal inclusion probabilities will give an accurate estimate for
the population mean. However, we have seen that one should be cautious with assuming that the
screening procedure is negligible, because inhabitants have unequal probabilities to be eligible in the
sample after screening.

In Chapter 4.2.1 we have computed the inclusion probability of an inhabitant in the sample after
screening if only screening on the occurrence of an address is applied. We can use these adjusted
inclusion probabilities to undo the effects of the screening on the occurrence of an address during the
estimation of population characteristics.

Note that for equal inclusion probabilities, the Horvitz-Thompson estimator of the population mean
is equal to the sample mean. For unequal probabilities the Horvitz-Thompson estimator is a weighted
average, where the weight of an inhabitant is 1

𝜋𝑘
. By using the adjusted inclusion probabilities from

Section 4.2.1, inhabitants who live with multiple people on one address have a relatively lower inclu-
sion probability in the sample after screening. Consequently, the weight of inhabitants who live with
multiple people on an address is relatively higher.

We have generated the six target variables 𝐕0, 𝐕0.2, 𝐕0.4, 𝐕0.6, 𝐕0.8 and 𝐕1 for the population that
was used to select the mobility survey of April 2019. This is the same sample that we have discussed
in Section 5.4. For each target variable, we have computed the population mean and the mean in
the sample after screening with equal and the adjusted inclusion probabilities. The obtained estimates
for this sample are presented in Table 8.1. For all variables, the population mean is approximately
10, but the mean in the sample after screening with equal probabilities is lower than 10, especially if
the correlation with the number of people on an address is high. If the correlation with the number
of people on an address is high, the estimates obtained from the Horvitz-Thompson estimator with
adjusted probabilities is close to 10. This shows that by using the adjusted inclusion probabilities from
Section 4.2.1, the obtained estimates are closer to the value to be estimated than by using equal
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inclusion probabilities. This means that if the correlation between the target variable and the number
of people on an address is high, we can at least partly undo the effects of the screening procedure by
using the adjusted inclusion probabilities during the estimation of population characteristics.

𝐕0 𝐕0.2 𝐕0.4 𝐕0.6 𝐕0.8 𝐕1

Mean population 9.9998 9.9945 9.9991 9.9998 9.9992 10.0000
HT-estimator equal probabilities 9.9547 9.9861 9.9920 9.9365 9.9450 9.9311
HT-estimator adjusted probabilities 9.9479 9.9995 10.0174 9.9685 9.9874 9.9925

Table 8.1: Results of estimating the populationmean of themobility survey of April 2019 by using the Horvitz-Thompson estimator
with equal probabilities and the adjusted probabilities.

Note that results are different for different samples due to sampling fluctuations. We have applied
the Horvitz-Thompson estimator with equal and adjusted probabilities to several samples of the mo-
bility survey. These results are presented in Appendix F. These results imply that if the correlation
between the target variable and the number of people on an address is not zero, the use of the ad-
justed inclusion probabilities improves the estimated values of the population mean with respect to the
Horvitz-Thompson estimates with equal inclusion probabilities.

8.3. The generalised regression estimator
Instead of using the adjusted inclusion probabilities, we can also make use of auxiliary information
to undo the effects of the screening procedure during estimation of population characteristics. The
generalised regression estimator allows us to correct for screening using auxiliary information. We
have applied the generalised regression estimator to the mobility survey of April 2019 for several dif-
ferent weighting models each consisting of one auxiliary variable. The results are presented in Table
8.2. Recall from Section 7.1 that the generalised regression estimator requires the input of the inclu-
sion probabilities. To see the effects of the different auxiliary variables, we have used equal inclusion
probabilities for obtaining these estimates. Note that it also possible to use the adjusted inclusion
probabilities from Section 4.2.1.

From Table 8.2 we can conclude that by using the number of people on an address as an auxiliary
variable for the generalised regression estimator, the obtained estimates are close to the true values, if
the correlation between the target variable and the number of people on an address is high. Note that
the use of other variables result in estimates with a larger error.

Again, results are different for other samples. In Appendix F the results for different samples of the
mobility survey are presented. Results are similar to the results we have presented for the mobility
survey of April 2019. The best estimates are obtained when using the number of people on an address
as an auxiliary variable for the generalised regression estimator.

8.4. Horvitz-Thompson estimator vs. generalised regression estimator
The simulation study we did in Section 6 allows us to apply the Horvitz-Thompson estimator and the
generalised regression estimators to many different samples. We have selected 7,000 different sam-
ples by the simulation that are similar to the mobility survey of April 2019. Each sample undergoes the
screening procedure and subsequently, the populationmean of the variables𝐕0, 𝐕0.2, 𝐕0.4, 𝐕0.6, 𝐕0.8, 𝐕1
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𝐕0 𝐕0.2 𝐕0.4 𝐕0.6 𝐕0.8 𝐕1

Mean population 9.9998 9.9945 9.9991 9.9998 9.9992 10.0000
Mean sample after screening 9.9547 9.9861 9.9920 9.9365 9.9450 9.9311
Gender 9.9547 9.9859 9.9917 9.9367 9.9446 9.9311
Marital status 9.9562 9.9864 9.9929 9.9369 9.9450 9.9317
Age 9.9541 9.9861 9.9938 9.9371 9.9464 9.9344
Ethnicity 9.9552 9.9862 9.9917 9.9368 9.9456 9.9316
Place Household 9.9563 9.9871 9.9943 9.9383 9.9468 9.9337
Type Household 9.9566 9.9863 9.9931 9.9378 9.9464 9.9332
Number of people in household 9.9683 9.9692 10.0010 10.0137 9.9355 9.9352
Number of people in household 11a 9.9681 9.9692 10.0009 10.0137 9.9354 9.9353
Number of people on address 9.9472 9.9995 10.0214 9.9731 9.9942 10.0000
Number of people on address 11b 9.9517 9.9898 9.9969 9.9429 9.9566 9.9449

Table 8.2: Estimated means by the generalised regression estimator for different auxiliary variables. Based on the sample of
the mobility survey of April 2019.
a This is a categorical variable of the number of people in a household consisting of eleven categories: 1 to 10 and 11 or more.
b This is a categorical variable of the number of people on an address consisting of eleven categories: 1 to 10 and 11 or more.

are estimated by the Horvitz-Thompson estimator with equal and adjusted probabilities, and by the gen-
eralised regression estimator with the number of people on an address as an auxiliary variable. The
results are represented in Table 8.3 and Figure 8.1. In Table 8.3 we have presented the average of the
7,000 estimated values for the population mean for the three different estimators.

These results imply that the use of the number of people on an address as an auxiliary variable for
the generalised regression estimator undo the effects of the screening better than using the adjusted
inclusion probabilities for the Horvitz-Thompson estimator. We presume this is because the adjusted
inclusion probabilities are an approximation for the actual probability. We have not investigated this
any further.

𝐕0 𝐕0.2 𝐕0.4 𝐕0.6 𝐕0.8 𝐕1

Population mean 10.0021 9.9985 10.0004 9.9961 9.9968 10.0000
HT-estimator equal probabilities 10.0012 9.9841 9.9704 9.9526 9.9382 9.9271
HT-estimator adjusted probabilities 10.0011 9.9898 9.9823 9.9699 9.9614 9.9565
GREG-estimator 10.0009 9.9980 9.9999 9.9961 9.9957 10.0000

Table 8.3: Average of the estimated values for the population mean based on 7,000 different samples. Here ’HT-estimator’ is
an abbreviation for Horvitz-Thompson estimator and ’GREG’ is an abbreviation for generalised regression estimator.

8.5. Conclusion
We have showed how the Horvitz-Thompson estimator and the generalised regression estimator can
be used to undo the effects from the screening on the occurrence of an address during the estimation
of population characteristics. By using the adjusted inclusion probabilities we have derived in Section
4.2.1 we can use the Horvitz-Thompson estimator to undo the effects of the screening procedure.
Our simulation study showed that better results are obtained when using the generalised regression
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Figure 8.1: Estimated values of the population mean for the six simulated target variables for 7,000 different realisations that
were obtained by the simulation study that was described in Section 6.

estimator with the number of people on an address as an auxiliary variable.
It is important to make some comments on these conclusions though. We have only imposed a

way to undo the effects of the screening on the occurrence of an address, but not for the other parts
of the screening. Furthermore we have assumed that nonresponse does not occur, whereas in reality
nonresponse does occur. The rate of response differs for the surveys and is dependent on the type
of interviewing that is applied. For example, there are surveys for which Computer-Assisted Web
Interviewing is used that only have a response rate of approximately 30%. The nonresponse does
presumably have more effects than the screening procedure.
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Conclusion and discussion

In this thesis, we have presented the consequences of the screening procedure that is applied at Statis-
tics Netherlands. After describing the problem, we provided the reader with necessary background
information about survey sampling and the sampling design that is used by Statistics Netherlands
for selecting samples. We have seen that the self-weighting two-stage sampling design that is used
by Statistics Netherlands is in many aspects similar to simple random sampling without replacement.
First-order inclusion probabilities are equal for both sampling designs, but the second-order inclusion
probabilities are different. We assumed that if the cluster size is equal to one and the sample size is
large enough, simple random sampling without replacement can be used as an approximation for the
self-weighting two-stage sampling design. We did not further investigate the effects of using simple
random sampling without replacement as an approximation to the self-weighting two-stage sampling
design.

The screening procedure is applied to the selected samples to make sure the surveys are equally
spread among the Dutch households. Most inhabitants that become not eligible by the screening
procedure are not eligible by the screening on the occurrence of an address. Furthermore, inhabitants
can become not eligible by the screening on confidential information or by other reasons that can be
considered negligible.

Under simplifying assumptions, we derived an approximation for the conditional probability that an
inhabitant is eligible after the screening on the occurrence of an address, given that the inhabitant was
included in the sample before screening. This probability is dependent on the number of people on
an address, which gives that the probability is not equal for all inhabitants in the Dutch population.
Consequently, the inclusion probability for an inhabitant in the sample after screening is not equal for
all inhabitants. Moreover, we have seen that the conditional probability is dependent on the sampling
fraction, meaning that if the sampling fraction increases, the effects of the screening procedure become
larger.

Based on the figures, there seems to be a relationship between the confidentiality and the auxiliary
variables. We have not investigated the relationship in depth. The figures suggest that inhabitants do
not have an equal probability to become not eligible by confidential information.
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To identify the effects of the screening procedure on existing samples, we have compared the distri-
bution of auxiliary variables in the population, in the sample before screening and in the sample after
screening. We have developed two different statistical tests that allow us to determine whether the
sample after screening can be considered representative for the population and for the sample before
screening, with respect to a given auxiliary variable.

In general, we concluded that the inhabitants that are not eligible after screening are not represen-
tative for the population with respect to relevant auxiliary variables. For some samples this may cause
that the sample after screening is not representative for the population, but for others the sample after
screening can still be considered representative for the population. If the sample size increases, the
effects of the screening procedure become larger and the sample after screening is not representative
for the population with respect to the observed auxiliary variables more often.

Furthermore, for the samples we applied the second test to, the sample after screening cannot be
considered representative for the sample before screening with respect to most auxiliary variables. Be-
cause applying the second test is computationally intensive, we did not perform this to a lot of samples.
Additionally, more experiments will have to be conducted to derive solid conclusions on the second
hypothesis.

The main aim of survey sampling is to obtain accurate estimates for unknown population character-
istics. Statistics Netherlands uses the generalised regression estimator for obtaining these estimates.
The approximated variance of the generalised regression estimator is smaller than or equal to the vari-
ance of the Horvitz-Thompson estimator, but the generalised regression estimator is not unbiased.
We have shown that under modest conditions, the generalised regression estimator is consistent and
asymptotically unbiased. Under extra modest assumptions, these conditions are met for the sampling
design that is used by Statistics Netherlands.

Applying the screening procedure to the sample causes that Condition (C5) is not met. Conse-
quently, if the screening procedure is applied, we cannot conclude that the generalised regression
estimator is consistent and asymptotically unbiased.

During the estimation of population characteristics, the Horvitz-Thompson estimator and the gen-
eralised regression estimator can be used to undo the effects of the screening on the occurrence of an
address. By using the adjusted inclusion probabilities we have computed in Section 4.2.1 the inhabi-
tants that have a lower probability to be selected in the sample after screening obtain a higher weight
that is used for estimation by the Horvitz-Thompson estimator. Furthermore, the number of people on
an address can be used as an auxiliary variable for the generalised regression estimator.

Under the assumption that nonresponse does not occur, we have investigated the effects of the
screening procedure on six different simulated target variables. We introduced two ways to undo the
effects of the screening on the occurrence of an address, but we did not consider the other parts of the
screening procedure.

To sum up, we can conclude that it is not fair to assume that the effects of the screening procedure
are negligible. First of all, we have seen that the probability that an inhabitant is selected in the sample
after screening is not equal for all inhabitants. Secondly, we have shown that for existing samples the
sample after screening is often not representative for the population with respect to relevant auxiliary
variables and that the effects of the screening procedure become larger as the sample size increases.
Finally, we showed that if screening is applied, we cannot conclude that the generalised regression



77

estimator is consistent and asymptotically unbiased.
However, we should not forget that throughout this thesis we have assumed nonresponse does not

occur. In many cases the amount of inhabitants that do not respond to the questionnaire is greater
than the amount of inhabitants that become not eligible by the screening procedure. Consequently, the
nonresponse may have greater effects on the sample than the screening procedure.

We believe that our work makes useful contributions to the evaluation of the screening procedure.
Our approach may not be perfect in various aspects and many interesting directions for future work
remain to be explored.





10
Future work

In the previous chapters, we have discussed the effects of the screening procedure. Nonetheless,
there are still many improvements that can be made. In this chapter, we will present out suggestions
for future work on the matter.

10.1. Sampling design
We assumed that if the cluster size is equal to one and the sample size is large enough, simple ran-
dom sampling without replacement can be used as an approximation for the self-weighting two-stage
sampling design we described in Section 3. The differences of these two sampling designs could be fur-
ther investigated. Moreover, if the two sampling designs turns out to be similar, one could investigate
if simple random sampling without replacement can be used instead of the self-weighting two-stage
sampling design. This would simplify further calculations and implementations, which would probably
outweigh the advantages of the self-weighting two-stage sampling design.

10.2. Approximation adjusted inclusion probabilities
Under simplifying assumptions we have derived an approximation of the probability that an inhabitant
becomes not eligible by the screening on the occurrence of an address. Potential improvements on
this matter are:

• Although plots might imply that there are some relationships between the auxiliary variables and
the confidentiality indicator, the specific patterns are not investigated. We could estimate the
probability that an inhabitant becomes not eligible by confidential information. We presume that
logistic regression methods can be used for this.

• We have chosen derive an approximation under simplifying assumptions, to make calculations
easier. It is interesting to examine the probability that an inhabitant become not eligible by the
occurrence of an address under different assumptions. For example, it may be interesting to
compute the probability under the self-weighting two-stage sampling design.
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10.3. Statistical testing
In the execution of the statistical tests corresponding to hypothesis 1 and hypothesis 2, we assumed
that the distributions of the test statistics are unknown. Consequently, we have used a parametric
bootstrap approach to obtain an estimate of the 𝐩-values. We have assumed that the underlying data
is distributed according to the multivariate hypergeometric distribution. From Norman L. Johnson [14]
we know that the variance and the covariance of the univariate hypergeometric distribution are known.
Hence one can presumably derive the distribution of the test statistics, which would make the use of
parametric bootstrap unnecessary.

10.4. Correcting for the screening procedure during estimation
In Chapter 8, we have discussed two possibilities that can be used to undo the effects of the screening
procedure. The results of the simulation study imply that using the number of people on an address as
an auxiliary variable for the generalised regression estimator gives better estimates for the population
mean than using the adjusted inclusion probabilities for the Horvitz-Thompson estimator. We did not
investigate this any further. To be able to draw any further conclusions, it is important to be able to
explain these differences.

10.5. Nonresponse
Throughout our work we assumed that nonresponse does not occur. It should be investigated how large
effects of nonresponse are relative to the effects of the screening procedure. Statistics Netherlands
uses several methods to undo the effects of nonresponse already. It is interesting to investigate if the
same methods can be used to undo the effects of the screening procedure.
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A
Proofs

A.1. Proof of Theorem 2.2
We follow the proof that was given by Särndal et al. [4].

The variance of the Horvitz-Thompson estimator is given by

𝕍 (�̂�HT) = 𝕍
(

1
𝑁

𝑁

∑
𝑘=1

𝐼𝑘
𝑦𝑘
𝜋𝑘 )

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

Cov(𝐼𝑘
𝑦𝑘
𝜋𝑘

, 𝐼𝑙
𝑦𝑙
𝜋𝑙 )

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

Cov (𝐼𝑘, 𝐼𝑙) ̆𝑦𝑘 ̆𝑦𝑙

= 1
𝑁2

𝑁

∑
𝑘=1

𝕍 (𝐼𝑘) ̆𝑦2
𝑘 + 1

𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑘≠𝑙=1

Cov (𝐼𝑘, 𝐼𝑙) ̆𝑦𝑘 ̆𝑦𝑙

(A.1)

In Equations (2.11) and (2.12) we have computed the variance and the covariance of the sample mem-
bership indicators, which gives

𝕍 (�̂�HT) = 1
𝑁2

𝑁

∑
𝑘=1

𝜋𝑘 (1 − 𝜋𝑘) ̆𝑦2
𝑘 + 1

𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑘≠𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝑦𝑘 ̆𝑦𝑙

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝑦𝑘 ̆𝑦𝑙

(A.2)

A.2. Proof of Theorem 2.3
We follow the proof that was given by Särndal et al. [4].
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Developing the square in Equation (2.33) gives the expression for the variance that was stated in
Theorem 2.2.

𝕍 (�̂�HT) = − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝑦𝑘 − ̆𝑦𝑙)2

= − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝑦𝑘
2 − 2 ̆𝑦𝑘 ̆𝑦𝑙 + ̆𝑦𝑙

2
)

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝑦𝑘 ̆𝑦𝑙 − 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝑦𝑘
2

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝑦𝑘 ̆𝑦𝑙 − 1
𝑁2

𝑁

∑
𝑘=1 (

̆𝑦𝑘
2

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙))

(A.3)

Note that since for a fixed sample design it holds that ∑𝑁
𝑘=1 𝐼𝑘 = 𝑛 (see Equation (2.13)), we have

𝑁

∑
𝑙=1

𝜋𝑘𝑙 = 𝜋𝑘𝑘 +
𝑁

∑
𝑘≠𝑙=1

𝜋𝑘𝑙

= 𝜋𝑘 +
𝑁

∑
𝑘≠𝑙=1

𝔼 (𝐼𝑘𝐼𝑙)

= 𝜋𝑘 + 𝔼
(

𝐼𝑘 (

𝑁

∑
𝑘≠𝑙=1

𝐼𝑙))

= 𝜋𝑘 + (𝑛 − 1)𝔼 (𝐼𝑘) = 𝑛𝜋𝑘

(A.4)

This gives that the variance of the Horvitz-Thompson estimator for any fixed-size sampling design is

𝕍 (�̂�HT) = 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝑦𝑘 ̆𝑦𝑙 − 1
𝑁2

𝑁

∑
𝑘=1

̆𝑦𝑘
2 (𝑛𝜋𝑘 − 𝑛𝜋𝑘)

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝑦𝑘 ̆𝑦𝑙

(A.5)

A.3. Proof of Theorem 7.1
We follow the proof that was given by Särndal et al. [4]. The generalised regression estimator can be
written as a nonlinear function of estimators

�̂�GREG = �̂�HT + (𝐱𝑈 − �̂�HT)
𝑇 ̂𝜷

= �̂�HT + (𝐱𝑈 − �̂�HT)
𝑇

(�̂�𝐱𝐱,HT)
−1 ̂𝐭𝐱𝑦,HT

= 𝑓 (�̂�HT, �̂�HT, �̂�𝐱𝐱,HT, ̂𝐭𝐱𝑦,HT)

(A.6)
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Using Taylor linearisation, this function can be approximated by a linear function [4].

𝑓 (�̂�HT, �̂�HT, �̂�𝐱𝐱,HT, ̂𝐭𝐱𝑦,HT) ≈ 𝑓 (𝑦𝑈 , 𝐱𝑈 , 𝐓𝐱𝐱, 𝐭𝐱𝑦)

+ 𝜕𝑓
𝜕�̂�HT |

(𝑦𝑈 ,𝐱𝑈 ,𝐓𝐱𝐱 ,𝐭𝐱𝑦)
(�̂�HT − 𝑦𝑈 )

+
𝑝

∑
𝑗=1

𝜕𝑓
𝜕 (�̂�HT)𝑗

|
|
|
||
(𝑦𝑈 ,𝐱𝑈 ,𝐓𝐱𝐱 ,𝐭𝐱𝑦)

(�̂�HT − 𝐱𝑈 )𝑗

+
𝑝

∑
𝑗=1

∑𝑖≤𝑗

𝜕𝑓
𝜕 (�̂�𝐱𝐱,HT)𝑗,𝑖 |

(𝑦𝑈 ,𝐱𝑈 ,𝐓𝐱𝐱 ,𝐭𝐱𝑦)

(�̂�𝐱𝐱,HT − 𝐓𝐱𝐱)𝑗,𝑖

+
𝑝

∑
𝑗=1

𝜕𝑓
𝜕 ( ̂𝐭𝐱𝑦,HT)𝑗 |

(𝑦𝑈 ,𝐱𝑈 ,𝐓𝐱𝐱 ,𝐭𝐱𝑦)
( ̂𝐭𝐱𝑦,HT − 𝐭𝐱𝑦)𝑗

(A.7)

where (�̂�HT)𝑗
denotes the 𝑗-th component of �̂�HT and (�̂�𝐱𝐱,HT)𝑗,𝑖 denotes the value in position (𝑗, 𝑖)

in the matrix �̂�𝐱𝐱,HT. The partial derivatives in Equation (A.7) are

𝜕𝑓
𝜕�̂�HT

= 1 (A.8)

𝜕𝑓
𝜕 (�̂�HT)𝑗

= − ̂𝜷𝑗 , 𝑗 = 1, … , 𝑝 (A.9)

𝜕𝑓
𝜕 (�̂�𝐱𝐱,HT)𝑗,𝑖

= (𝐱𝑈 − �̂�HT)
𝑇

(− (�̂�𝐱𝐱,HT)
−1 𝚲𝑗,𝑖 (�̂�𝐱𝐱,HT)

−1
) ̂𝐭𝐱𝑦,HT, 𝑖 ≤ 𝑗 = 1, … , 𝑝 (A.10)

𝜕𝑓
𝜕 ( ̂𝐭𝐱𝑦,HT)𝑗

= (𝐱𝑈 − �̂�HT)
𝑇

(�̂�𝐱𝐱,HT)
−1 𝝀𝑗 , 𝑗 = 1, … , (A.11)

where 𝚲𝑗,𝑖 is a 𝑝 × 𝑝-matrix with value 1 in positions (𝑗, 𝑖) and (𝑖, 𝑗) and 0 on other positions; and 𝝀𝑗 a
𝑝-vector with a 1 in the 𝑗-th position and zero’s elsewhere.
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Evaluating these partial derivatives at the expected value point gives

𝑓 (�̂�HT, �̂�HT, �̂�𝐱𝐱,HT, ̂𝐭𝐱𝑦,HT)
≈ 𝑦𝑈 + 1 (�̂�HT − 𝑦𝑈 )

+
𝑝

∑
𝑗=1

− ̂𝜷𝑗 (�̂�HT − 𝐱𝑈 )𝑗

+
𝑝

∑
𝑗=1

∑𝑖≤𝑗
(𝐱𝑈 − 𝐱𝑈 )

𝑇
(− (𝐓𝐱𝐱)−1 𝚲𝑗,𝑖 (𝐓𝐱𝐱)−1

) 𝐭𝐱𝑦 (�̂�𝐱𝐱,HT − 𝐓𝐱𝐱)𝑗,𝑖

+
𝑝

∑
𝑗=1

(𝐱𝑈 − 𝐱𝑈 )
𝑇 (𝐓𝐱𝐱)−1 𝝀𝑗 ( ̂𝐭𝐱𝑦,HT − 𝐭𝐱𝑦)𝑗

= 𝑦𝑈 + �̂�HT − 𝑦𝑈 +
𝑝

∑
𝑗=1

−𝜷𝑗 (�̂�HT − 𝐱𝑈 )𝑗

= �̂�HT + (𝐱𝑈 − �̂�HT)
𝑇

𝜷

(A.12)

We can rewrite this approximation as

𝑓 (�̂�HT, �̂�HT, �̂�𝐱𝐱,HT, ̂𝐭𝐱𝑦,HT) ≈ �̂�HT + (𝐱𝑈 − �̂�HT)
𝑇

𝜷

= 1
𝑁

𝑁

∑
𝑘=1

𝐱𝑇
𝑘 𝜷 + 1

𝑁 ∑
𝑘∈𝑠 (

1
𝜋𝑘

𝑦𝑘 − 1
𝜋𝑘

𝐱𝑇
𝑘 𝜷)

= 1
𝑁

𝑁

∑
𝑘=1

𝐱𝑇
𝑘 𝜷 + 1

𝑁 ∑
𝑘∈𝑠

̆𝐸𝑘

(A.13)

where ̆𝐸𝑘 = 1
𝜋𝑘

𝐸𝑘 and 𝐸𝑘 = 𝑦𝑘 − 𝐱𝑇
𝑘 𝜷𝑈 . The approximated variance of the generalised regression

estimator equals the variance of the Taylor approximation of �̂�GREG, so

𝔸𝕍 (�̂�GREG) = 𝕍
(

1
𝑁

𝑁

∑
𝑘=1

𝐱𝑇
𝑘 𝜷 + 1

𝑁 ∑
𝑘∈𝑠

̆𝐸𝑘)

= 𝕍
(

1
𝑁

𝑁

∑
𝑘=1

𝐼𝑘 ̆𝐸𝑘)

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

̆𝐸𝑘 ̆𝐸𝑙 Cov (𝐼𝑘, 𝐼𝑙)

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

̆𝐸𝑘 ̆𝐸𝑙 (𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙)

(A.14)
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A.4. Proof of Theorem 7.2
This proof is similar to the proof of Theorem 2.3, see Appendix A.2. Developing the square of Equation
(7.20) gives

𝔸𝕍 (�̂�GREG) = − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝐸𝑘 − ̆𝐸𝑙)
2

= − 1
2𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ( ̆𝐸2
𝑘 − 2 ̆𝐸𝑘 ̆𝐸𝑙 + ̆𝐸2

𝑙 )

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝐸𝑘 ̆𝐸𝑙 − 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝐸2
𝑘

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝐸𝑘 ̆𝐸𝑙 − 1
𝑁2

𝑁

∑
𝑘=1 (

̆𝐸2
𝑘

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙))

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝐸𝑘 ̆𝐸𝑙 − 1
𝑁2

𝑁

∑
𝑘=1

̆𝐸2
𝑘 (𝑛𝜋𝑘 − 𝑛𝜋𝑘)

= 1
𝑁2

𝑁

∑
𝑘=1

𝑁

∑
𝑙=1

(𝜋𝑘𝑙 − 𝜋𝑘𝜋𝑙) ̆𝐸𝑘 ̆𝐸𝑙

(A.15)

A.5. Useful Lemma’s for the proof of Theorem7.3
The next Lemma’s from Gut [27] are used for the proof of Theorem 7.3.

Lemma A.1 (Markov’s inequality). Suppose 𝔼 (|𝑋|𝑟) < ∞ for some 𝑟 > 0 and let 𝑎 > 0. Then

ℙ (|𝑋| > 𝑎) ≤
𝔼 (|𝑋|𝑟)

𝑎 (A.16)

Lemma A.2 (The Lyapounov inequality). For 0 < 𝑝 ≤ 𝑟,

(𝔼 (|𝑋|𝑝))
1
𝑝 ≤ (𝔼 (|𝑋|𝑟))

1
𝑟 (A.17)

Lemma A.3 (The Cauchy-Schwarz inequality). Suppose that 𝑋 and 𝑌 have finite variances. Then

|𝔼 (𝑋𝑌 )| ≤ 𝔼 (|𝑋𝑌 |) ≤ ||𝑋||2 ||𝑌 ||2 = (𝔼 (𝑋2) 𝔼 (𝑌 2))
1
2 (A.18)

For a summation, this means

(
𝔼

(

𝑁

∑
𝑘=1

𝑥𝑘𝑦𝑘))

2

≤
(

𝑁

∑
𝑘=1

𝔼 (𝑥2
𝑘)) (

𝑁

∑
𝑘=1

𝔼 (𝑦2
𝑘))

(A.19)

A.6. Proof of Remark 7.2
Recall from Definition 7.2 that the estimator 1

𝑁𝜏
�̂�𝐱𝐱,HT is consistent for 1

𝑁𝜏
𝐓𝐱𝐱 if ∀𝜀 > 0

lim𝜏→∞ ℙ𝑝𝜏 (|
1

𝑁𝜏
𝐓𝐱𝐱 − 1

𝑁𝜏
�̂�𝐱𝐱,HT| > 𝜀) = 0 𝜉-almost surely (A.20)
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Using the Markov inequality (Lemma A.1) it follows that it is sufficient to prove that

lim𝜏→∞ 𝔼𝑝𝜏 (|
1

𝑁𝜏
𝐓𝐱𝐱 − 1

𝑁𝜏
�̂�𝐱𝐱,HT|) = 0 (A.21)

The expressions for 𝐓𝐱𝐱 and �̂�𝐱𝐱,HT from Equations (7.7) and (7.8) give that

|
1

𝑁𝜏
𝐓𝐱𝐱 − 1

𝑁𝜏
�̂�𝐱𝐱,HT| =

|
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘

− 1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝐼𝑘𝜏
𝜋𝑘𝜏

𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 |

=
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝐱𝑘𝐱𝑇
𝑘

1
𝑣𝑘 |

(A.22)

The element (𝑖, 𝑗) , 𝑖, 𝑗 = 1, … , 𝑝, of the matrix is then denoted by

|
1

𝑁𝜏
𝐓𝐱𝐱 − 1

𝑁𝜏
�̂�𝐱𝐱,HT|(𝑖,𝑗)

=
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑖𝑥𝑘𝑗
1
𝑣𝑘 |

(A.23)

We show that expectation of the (𝑖, 𝑗)-th element of this matrix is zero as 𝜏 → ∞. By the Lyapuanov
inequality (Lemma A.2) we have

lim𝜏→∞ 𝔼𝑝𝜏 (|
1

𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑖𝑥𝑘𝑗
1
𝑣𝑘 |)

≤ lim𝜏→∞

⎛
⎜
⎜
⎝
𝔼𝑝𝜏

⎛
⎜
⎜
⎝
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑖𝑥𝑘𝑗
1
𝑣𝑘 |

2⎞
⎟
⎟
⎠

⎞
⎟
⎟
⎠

1
2

Similar steps as were taken in the proof of Theorem 7.3 give that

𝔼𝑝𝜏

⎛
⎜
⎜
⎝
|

1
𝑁𝜏

𝑁𝜏

∑
𝑘=1 (1 − 𝐼𝑘𝜏

𝜋𝑘𝜏 ) 𝑥𝑘𝑖𝑥𝑘𝑗
1
𝑣𝑘 |

2⎞
⎟
⎟
⎠

= 1
𝑁2

𝜏

𝑁𝜏

∑
𝑘=1 (

1
𝜋𝑘𝜏

− 1) 𝑥2
𝑘𝑖𝑥

2
𝑘𝑗

1
𝑣2

𝑘
+ 1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1

𝑁𝜏

∑
𝑘≠𝑙=1 (

𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏

− 1) 𝑥𝑘𝑖𝑥𝑘𝑗𝑥𝑙𝑖𝑥𝑙𝑗
1
𝑣𝑘

1
𝑣𝑙

(A.24)

The first part of Equation (A.24) is bounded by

lim𝜏→∞
1

𝑁2
𝜏

𝑁𝜏

∑
𝑘=1 (

1
𝜋𝑘𝜏

− 1) 𝑥2
𝑘𝑖𝑥

2
𝑘𝑗

1
𝑣2

𝑘
≤ lim𝜏→∞

1
𝑁2

𝜏

𝑁𝜏

∑
𝑘=1

1
𝜋𝑘𝜏

𝑥2
𝑘𝑖𝑥

2
𝑘𝑗

1
𝑣2

𝑘

≤ lim𝜏→∞ (𝑁𝜏 min
1≤𝑘≤𝑁𝜏

𝜋𝑘𝑡)
−1 1

𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑥2
𝑘𝑖𝑥

2
𝑘𝑗

1
𝑣2

𝑘

(A.25)

We impose a new Condition (C1*) that is similar to Condition (C1)

(C1*) 1
𝑁𝜏

𝑁𝜏

∑
𝑘=1

𝑥2
𝑘𝑖𝑥

2
𝑘𝑗

1
𝑣2

𝑘
< ∞ for 𝑖, 𝑗 = 1, … , 𝑝

Then under Conditions (C1*) and (C4) we obtain the desired result for the first part of Equation (A.24).
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The second part of Equation (A.24) is bounded by
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1
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𝜏
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1
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∑
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1
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𝑣𝑙
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𝜋𝑘𝑙𝜏
𝜋𝑘𝜏𝜋𝑙𝜏
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𝑁𝜏

𝑁𝜏
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1
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2
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2
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1
𝑣2

𝑘

(A.26)

Under Conditions (C1*) and (C5) the desired result is obtained, which concludes the proof.





B
De nitions auxiliary variables

Gender

M Male
V Female

Marital status

1 Unmarried
2 Married or partnership
3 Widowed after marriage or partnership
4 Divorced after marriage or partnership

Age

1 0 - 5 years
2 6 - 11 years
3 12 - 17 years
4 18 - 24 years
5 25 - 29 years
6 30 - 39 years
7 40 - 49 years
8 50 - 64 years
9 65 - 74 years
10 75 - 125 years
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92 B. De nitions auxiliary variables

Ethnicity

0 Native Dutch
1 From non-Western countries
2 From other Western countries

Place in household

1 Child
2 Single person
3 Partner in non-married couple without children
4 Partner in married couple without children
5 Partner in non-married couple with children
6 Partner in married couple with children
7 Parent in single-parent household
8 Reference person in other household
9 Other member of a household
10 Member of an institutional household

Type of household

1 Single person household
2 Non-married couple without children
3 Married couple without children
4 Non-married couple with children
5 Married couple with children
6 Singe-parent household
7 Other type of household
8 Institutional household



C
Additional gures to Section 4
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94 C. Additional gures to Section 4

(a) Gender (b) Marital status

(c) Age (d) Ethnicity
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(e) Place of household (f) Type of household

(g) Number of people on address (h) Number of people in household





D
Additional gures to Section 5
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98 D. Additional gures to Section 5

D.1. Gender

(a) Hypothesis 1

(b) Hypothesis 2



D.2.Marital status 99

D.2.Marital status

(a) Hypothesis 1

(b) Hypothesis 2
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D.3. Age

(a) Hypothesis 1

(b) Hypothesis 2



D.4. Ethnicity 101

D.4. Ethnicity

(a) Hypothesis 1

(b) Hypothesis 2



102 D. Additional gures to Section 5

D.5. Place in Household

(a) Hypothesis 1

(b) Hypothesis 2



D.6. Type of household 103

D.6. Type of household

(a) Hypothesis 1

(b) Hypothesis 2



104 D. Additional gures to Section 5

D.7. Number of people in household

(a) Hypothesis 1

(b) Hypothesis 2



D.8. Number of people on address 105

D.8. Number of people on address

(a) Hypothesis 1

(b) Hypothesis 2
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108 E. Additional results to Section 5

2018-04
2018-05

2018-06
2018-07

2018-08
2018-09

2018-10
2018-11

2018-12

G
ender
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ple

before
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0.25669
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0.81754
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0.75792
0.18710

0.03333
N
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0.78918
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N
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0.87598
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0.34793
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0.12446
M
aritalstatus
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0.36901
0.67819

0.82990
0.79266

0.64694
0.37776

0.70423
0.53991

0.86261
Sam

ple
afterscreening

0.07127
0.16311

0.55197
0.12639
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0.05114

0.15644
0.27762

0.26956
N
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<
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0.00003
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N
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N
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0.00072
A
ge
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0.91026
0.29789

0.81170
0.49706

0.72451
0.10812

0.79878
0.15878

0.89129
Sam

ple
afterscreening

0.31070
0.03563

0.39177
0.10581

0.92039
0.04056

0.72007
0.03700

0.27698
N
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occurrence

ofaddress
<

1⋅10 −5
<

1⋅10 −5
<

1⋅10 −5
<

1⋅10 −5
<

1⋅10 −5
<

1⋅10 −5
<

1⋅10 −5
<

1⋅10 −5
<

1⋅10 −5

N
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<

1⋅10 −5
0.00337

0.00167
0.00001

0.00005
0.00652

0.01581
0.06081

0.00153
N
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<
1⋅10 −5

<
1⋅10 −5

<
1⋅10 −5

<
1⋅10 −5

<
1⋅10 −5

<
1⋅10 −5

<
1⋅10 −5

<
1⋅10 −5

<
1⋅10 −5

Ethnicity

Sam
ple

before
screening

0.45088
0.93256

0.46286
0.61478

0.57071
0.89992

0.35444
0.92685

0.43296
Sam

ple
afterscreening

0.94472
0.04706

0.10344
0.08544

0.17883
0.29975

0.99762
0.10260

0.02350
N
oteligible

by
occurrence

ofaddress
0.12090

0.00037
0.69875

0.34114
0.00018

0.00055
0.12329
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0.00100

N
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by
confidentialinform
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<

1⋅10 −5
<

1⋅10 −5
0.00002
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1⋅10 −5
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<
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<
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<
1⋅10 −5

Table
E.1:

The
𝐩-values

ofthe
statisticaltestforhypothesis

1
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=
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forthe
sam

ples
ofthe

m
obility

survey
ofApril

2018
untilD

ecem
ber2018.



109

20
18
-0
4

20
18
-0
5

20
18
-0
6

20
18
-0
7

20
18
-0
8

20
18
-0
9

20
18
-1
0

20
18
-1
1

20
18
-1
2

Pl
ac
e
in

ho
us

eh
ol
d

Sa
m
pl
e
be

fo
re

sc
re
en

in
g

0.2
43

46
0.8

65
18

0.8
93

10
0.8

42
37

0.4
49

39
0.1

15
31

0.6
81

52
0.7

65
31

0.8
00

97
Sa

m
pl
e
af
te
rs

cr
ee

ni
ng

0.0
02

90
0.0

33
75

0.5
63

44
0.0

30
43

0.6
83

26
0.0

43
03

0.1
17

81
0.0

78
82

0.1
67

84
N
ot

el
ig
ib
le

by
oc

cu
rre

nc
e
of

ad
dr
es

s
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5

N
ot

el
ig
ib
le

by
co

nf
id
en

tia
li
nf
or
m
at
io
n

0.0
01

03
0.0

01
14

0.0
06

82
<

1⋅
10

−5
0.0

00
01

<
1⋅

10
−5

0.0
05

92
<

1⋅
10

−5
0.0

17
83

N
ot

el
ig
ib
le

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

Ty
pe

of
ho

us
eh

ol
d

Sa
m
pl
e
be

fo
re

sc
re
en

in
g

0.0
55

74
0.5

06
95

0.9
97

69
0.8

40
35

0.4
66

51
0.1

14
69

0.7
15

35
0.7

07
87

0.7
40

28
Sa

m
pl
e
af
te
rs

cr
ee

ni
ng

0.0
00

30
0.0

83
25

0.2
90

29
0.0

46
12

0.8
25

22
0.1

59
30

0.0
73

41
0.1

23
10

0.0
80

61
N
ot

el
ig
ib
le

by
oc

cu
rre

nc
e
of

ad
dr
es

s
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5

N
ot

el
ig
ib
le

by
co

nf
id
en

tia
li
nf
or
m
at
io
n

<
1⋅

10
−5

<
1⋅

10
−5

0.0
00

03
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
0.0

00
45

<
1⋅

10
−5

0.0
00

01
N
ot

el
ig
ib
le

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

N
um

be
ro

fp
eo

pl
e
in

ho
us

eh
ol
d

Sa
m
pl
e
be

fo
re

sc
re
en

in
g

0.5
86

27
0.9

48
90

0.9
61

98
0.4

51
14

0.1
86

93
0.0

08
47

0.0
71

34
0.7

31
62

0.2
80

96
Sa

m
pl
e
af
te
rs

cr
ee

ni
ng

0.0
30

34
0.1

84
31

0.6
06

62
0.0

45
63

0.2
31

79
0.0

10
52

0.0
05

57
0.0

90
47

0.2
22

08
N
ot

el
ig
ib
le

by
oc

cu
rre

nc
e
of

ad
dr
es

s
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5

N
ot

el
ig
ib
le

by
co

nf
id
en

tia
li
nf
or
m
at
io
n

0.0
90

80
0.5

65
86

0.9
58

97
0.1

71
57

0.0
42

16
0.0

55
72

0.0
33

25
0.0

16
63

0.1
10

89
N
ot

el
ig
ib
le

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

N
um

be
ro

fp
eo

pl
e
on

ad
dr
es
s

Sa
m
pl
e
be

fo
re

sc
re
en

in
g

0.6
43

93
0.9

55
16

0.9
26

86
0.4

74
01

0.4
22

42
0.0

27
95

0.1
58

23
0.8

11
75

0.4
12

64
Sa

m
pl
e
af
te
rs

cr
ee

ni
ng

0.0
25

76
0.0

46
87

0.2
25

98
0.0

04
90

0.1
40

88
0.0

01
41

0.0
02

29
0.0

25
61

0.0
17

33
N
ot

el
ig
ib
le

by
oc

cu
rre

nc
e
of

ad
dr
es

s
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5
<

1⋅
10

−5

N
ot

el
ig
ib
le

by
co

nf
id
en

tia
li
nf
or
m
at
io
n

0.0
67

63
0.3

11
17

0.8
66

02
0.1

48
90

0.0
11

47
0.1

99
44

0.0
22

74
0.0

71
33

0.0
36

56
N
ot

el
ig
ib
le

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

<
1⋅

10
−5

Ta
bl
e
E.
2:

Th
e

𝐩-
va

lu
es

of
th
e
st
at
is
tic
al

te
st

fo
rh

yp
ot
he

si
s
1
(𝑅

=
10

0.
00

0)
fo
rt
he

au
xi
lia
ry

va
ria

bl
es

:p
la
ce

in
ho

us
eh

ol
d,

ty
pe

of
ho

us
eh

ol
d,

nu
m
be

ro
fp

eo
pl
e
in

ho
us

eh
ol
d
an

d
nu

m
be

ro
fp

eo
pl
e
on

an
ad

dr
es

s
fo
rt
he

sa
m
pl
es

of
th
e
m
ob

ilit
y
su

rv
ey

of
Ap

ril
20

18
un

til
D
ec

em
be

r2
01

8.





F
Additional results to Section 8

111



112 F. Additional results to Section 8

𝐕0 𝐕0.2 𝐕0.4 𝐕0.6 𝐕0.8 𝐕1

2018-04

Mean population 9.9976 9.9992 9.9952 10.0002 10.0018 10.0000
HT-estimator equal prob. 10.0484 9.9831 9.9057 9.9574 9.9353 9.8967
HT-estimator adjusted prob. 10.0537 10.0069 9.9564 10.0339 10.0374 10.0310

2018-05

Mean population 9.9978 10.0036 10.00021 10.00031 10.0036 10.0000
HT-estimator equal prob. 9.9927 9.9595 9.9314 9.9678 9.9084 9.8959
HT-estimator adjusted prob. 9.9967 9.9759 9.9672 10.0202 9.9813 9.9880

2018-06

Mean population 9.9970 10.0032 10.0000 10.0065 9.9978 10.0000
HT-estimator equal prob. 9.9883 10.0272 9.9707 9.9486 9.9040 9.8907
HT-estimator adjusted prob. 9.9889 10.0459 9.9989 9.9862 9.9544 9.9557

2018-07

Mean population 10.0023 10.0011 9.9983 10.0000 10.0016 10.0000
HT-estimator equal prob. 9.9816 9.9987 9.9134 9.9364 9.9052 9.8923
HT-estimator adjusted prob. 9.9785 10.0275 9.9647 10.0212 10.0247 10.0375

2018-08

Mean population 10.0062 9.9998 9.9970 9.9993 10.0019 10.0000
HT-estimator equal prob. 9.9667 9.9534 9.9931 9.9254 9.8944 9.8860
HT-estimator adjusted prob. 9.9640 9.9650 10.0205 9.9655 9.9478 9.9530

2018-09

Mean population 9.9960 9.9971 9.9992 10.0011 10.0005 10.0000
HT-estimator equal prob. 10.0183 9.9635 9.9996 9.9179 9.9148 9.8867
HT-estimator adjusted prob. 10.0247 9.9841 10.0360 9.9714 9.9903 9.9805

2018-10

Mean population 10.0016 10.0022 10.0021 9.9996 10.0024 10.0000
HT-estimator equal prob. 10.0259 10.0087 9.9360 9.8764 9.8950 9.8873
HT-estimator adjusted prob. 10.0279 10.0404 9.9936 9.9626 10.0025 10.0242

2018-11

Mean population 9.9978 9.9952 9.9981 9.9979 9.9994 10.0000
HT-estimator equal prob. 9.9526 9.9713 9.9553 9.9552 9.9247 9.8891
HT-estimator adjusted prob. 9.9449 9.9982 10.0025 10.0243 10.0128 9.9984

2018-12

Mean population 10.0007 10.0061 10.0002 10.0029 10.0025 10.0000
HT-estimator equal prob. 9.9433 9.9903 9.9524 9.9013 9.9098 9.8873
HT-estimator adjusted prob. 9.9458 9.9995 9.9736 9.9386 9.9621 9.9520

Table F.1: Results of estimating the population mean by using the Horvitz-Thompson estimator with equal probabilities and the
adjusted probabilities.



113

𝐕0 𝐕0.2 𝐕0.4 𝐕0.6 𝐕0.8 𝐕1

2018-04

Mean population 9.9976 9.9992 9.9952 10.0002 10.0018 10.0000
Mean sample after screening 10.0484 9.9831 9.9057 9.9574 9.9353 9.8967
Gender 10.0491 9.9831 9.9059 9.9575 9.9344 9.8962
Marital status 10.0474 9.9838 9.9055 9.9572 9.9350 9.8967
Age 10.0477 9.9854 9.9080 9.9623 9.9408 9.9045
Ethnicity 10.0484 9.9831 9.9060 9.9575 9.9354 9.8968
Place Household 10.0475 9.9859 9.9110 9.9644 9.9428 9.9068
Type Household 10.0464 9.9862 9.9107 9.9652 9.9433 9.9077
Number of people in household 10.0478 9.9849 9.9102 9.9643 9.9439 9.9084
Number of people in household 11a 10.0472 9.9857 9.9113 9.9650 9.9450 9.9099
Number of people on address 10.0517 10.0011 9.9458 10.0164 10.0136 10.0000
Number of people on address 11b 10.0483 9.9877 9.9230 9.9815 9.9673 9.9383

2018-05

Mean population 9.9978 10.0036 10.00021 10.00031 10.0036 10.0000
Mean sample after screening 9.9927 9.9595 9.9314 9.9678 9.9084 9.8959
Gender 9.9926 9.9592 9.9314 9.9678 9.9084 9.8959
Marital status 9.9933 9.9595 9.9325 9.9698 9.9112 9.8991
Age 9.9945 9.9595 9.9333 9.9714 9.9127 9.9021
Ethnicity 9.9911 9.9612 9.9322 9.9686 9.9093 9.8977
Place Household 9.9930 9.9592 9.9353 9.9724 9.9151 9.9040
Type Household 9.9920 9.9609 9.9343 9.9713 9.9134 9.9027
Number of people in household 9.9916 9.9617 9.9369 9.9746 9.9163 9.9063
Number of people in household 11a 9.9908 9.9633 9.9395 9.9735 9.9177 9.9075
Number of people on address 9.9967 9.9779 9.9722 10.0272 9.9902 10.0000
Number of people on address 11b 9.9920 9.9658 9.9450 9.9875 9.9363 9.9303

2018-06

Mean population 9.9970 10.0032 10.0000 10.0065 9.9978 10.0000
Mean sample after screening 9.9883 10.0272 9.9707 9.9486 9.9040 9.8907
Gender 9.9887 10.0275 9.9712 9.9492 9.9040 9.8909
Marital status 9.9877 10.0276 9.9721 9.9502 9.9058 9.8932
Age 9.9875 10.0278 9.9731 9.9519 9.9073 9.8959
Ethnicity 9.9884 10.0268 9.9719 9.9497 9.9046 9.8922
Place Household 9.9879 10.0305 9.9737 9.9524 9.9099 9.8978
Type Household 9.9880 10.0292 9.9740 9.9528 9.9106 9.8984
Number of people in household 9.9888 10.0293 9.9747 9.9549 9.9142 9.9011
Number of people in household 11a 9.9888 10.0293 9.9750 9.9554 9.9143 9.9015
Number of people on address 9.9897 10.0578 10.0193 10.0123 9.9885 10.0000
Number of people on address 11b 9.9876 10.0375 9.9841 9.9656 9.9249 9.9201

Table F.2: Estimated means by the generalised regression estimator for different auxiliary variables. Based on the sample of
the mobility survey of April, May and June 2018.
a This is a categorical variable of the number of people in a household consisting of eleven categories: 1 to 10 and 11 or more.
b This is a categorical variable of the number of people on an address consisting of eleven categories: 1 to 10 and 11 or more.
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𝐕0 𝐕0.2 𝐕0.4 𝐕0.6 𝐕0.8 𝐕1

2018-07

Mean population 10.0023 10.0011 9.9983 10.0000 10.0016 10.0000
Mean sample after screening 9.9816 9.9987 9.9134 9.9364 9.9052 9.8923
Gender 9.9815 9.9986 9.9134 9.9361 9.9048 9.8919
Marital status 9.9814 9.9983 9.9146 9.9381 9.9069 9.8949
Age 9.9822 10.0009 9.9187 9.9415 9.9115 9.9009
Ethnicity 9.9827 9.9994 9.9135 9.9375 9.9065 9.8944
Place Household 9.9798 10.0015 9.9191 9.9436 9.9151 9.9043
Type Household 9.9795 10.0014 9.9181 9.9435 9.9150 9.9038
Number of people in household 9.9801 10.0009 9.9168 9.9446 9.9152 9.9047
Number of people in household 11a 9.9801 10.0011 9.9174 9.9453 9.9157 9.9055
Number of people on address 9.9788 10.0211 9.9511 9.9998 9.9932 10.0000
Number of people on address 11b 9.9791 10.0076 9.9303 9.9664 9.9467 9.9424

2018-08

Mean population 10.0062 9.9998 9.9970 9.9993 10.0019 10.0000
Mean sample after screening 9.9667 9.9534 9.9931 9.9254 9.8944 9.8860
Gender 9.9666 9.9533 9.9931 9.9255 9.8945 9.8860
Marital status 9.9657 9.9547 9.9955 9.9283 9.8985 9.8909
Age 9.9667 9.9560 9.9950 9.9288 9.8983 9.8905
Ethnicity 9.9667 9.9543 9.9938 9.9263 9.8961 9.8878
Place Household 9.9675 9.9546 9.9946 9.9278 9.8976 9.8897
Type Household 9.9668 9.9542 9.9948 9.9279 9.8976 9.8901
Number of people in household 9.9684 9.9558 9.9961 9.9307 9.9035 9.8968
Number of people in household 11a 9.9685 9.9549 9.9955 9.9306 9.9045 9.8975
Number of people on address 9.9620 9.9750 10.0389 9.9943 9.9858 10.0000
Number of people on address 11b 9.9651 9.9583 10.0038 9.9440 9.9201 9.9192

2018-09

Mean population 9.9960 9.9971 9.9992 10.0011 10.0005 10.0000
Mean sample after screening 10.0183 9.9635 9.9996 9.9179 9.9148 9.8867
Gender 10.0190 9.9644 9.9997 9.9182 9.9153 9.8876
Marital status 10.0180 9.9661 10.0022 9.9225 9.9207 9.8940
Age 10.0184 9.9656 10.0041 9.9232 9.9207 9.8949
Ethnicity 10.0182 9.9630 10.0003 9.9184 9.9159 9.8883
Place Household 10.0174 9.9660 10.0024 9.9217 9.9202 9.8926
Type Household 10.0173 9.9654 10.0012 9.9202 9.9194 9.8912
Number of people in household 10.0178 9.9666 10.0028 9.9254 9.9254 9.8992
Number of people in household 11a 10.0179 9.9663 10.0031 9.9261 9.9262 9.9001
Number of people on address 10.0260 9.9889 10.0434 9.9826 10.0055 10.0000
Number of people on address 11b 10.0211 9.9739 10.0125 9.9399 9.9468 9.9265

Table F.3: Estimated means by the generalised regression estimator for different auxiliary variables. Based on the sample of
the mobility survey of July, August and September 2018.
a This is a categorical variable of the number of people in a household consisting of eleven categories: 1 to 10 and 11 or more.
b This is a categorical variable of the number of people on an address consisting of eleven categories: 1 to 10 and 11 or more.
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2018-10

Mean population 10.0016 10.0022 10.0021 9.9996 10.0024 10.0000
Mean sample after screening 10.0259 10.0087 9.9360 9.8764 9.8950 9.8873
Gender 10.0259 10.0088 9.9360 9.8763 9.8950 9.8872
Marital status 10.0262 10.0099 9.9377 9.8791 9.8984 9.8916
Age 10.0259 10.0103 9.9401 9.8813 9.9010 9.8951
Ethnicity 10.0258 10.0087 9.9360 9.8764 9.8951 9.8874
Place Household 10.0261 10.0113 9.9392 9.8822 9.9015 9.8961
Type Household 10.0268 10.0119 9.9399 9.8829 9.9016 9.8969
Number of people in household 10.0248 10.0109 9.9407 9.8845 9.9045 9.8992
Number of people in household 11a 10.0252 10.0108 9.9410 9.8850 9.9051 9.8999
Number of people on address 10.0285 10.0357 9.9825 9.9469 9.9837 10.0000
Number of people on address 11b 10.0256 10.0179 9.9506 9.8987 9.9254 9.9256

2018-11

Mean population 9.9978 9.9952 9.9981 9.9979 9.9994 10.0000
Mean sample after screening 9.9526 9.9713 9.9553 9.9552 9.9247 9.8891
Gender 9.9527 9.9713 9.9545 9.9551 9.9246 9.8886
Marital status 9.9513 9.9722 9.9570 9.9583 9.9286 9.8936
Age 9.9510 9.9714 9.9579 9.9594 9.9302 9.8966
Ethnicity 9.9526 9.9705 9.9562 9.9565 9.9263 9.8913
Place Household 9.9516 9.9751 9.9586 9.9636 9.9325 9.9000
Type Household 9.9515 9.9739 9.9581 9.9620 9.9316 9.8979
Number of people in household 9.9515 9.9734 9.9595 9.9636 9.9333 9.9007
Number of people in household 11a 9.9516 9.9733 9.9597 9.9641 9.9346 9.9014
Number of people on address 9.9455 9.9968 10.0033 10.0258 10.0130 10.0000
Number of people on address 11b 9.9509 9.9791 9.9719 9.9775 9.9538 9.9252

2018-12

Mean population 10.0007 10.0061 10.0002 10.0029 10.0025 10.0000
Mean sample after screening 9.9433 9.9903 9.9524 9.9013 9.9098 9.8873
Gender 9.9426 9.9897 9.9525 9.9017 9.9096 9.8868
Marital status 9.9430 9.9901 9.9529 9.9026 9.9120 9.8900
Age 9.9441 9.9926 9.9559 9.9039 9.9138 9.8928
Ethnicity 9.9419 9.9907 9.9523 9.9037 9.9116 9.8895
Place Household 9.9432 9.9911 9.9545 9.9067 9.9160 9.8952
Type Household 9.9428 9.9906 9.9548 9.9063 9.9159 9.8951
Number of people in household 9.9451 9.9909 9.9549 9.9069 9.9167 9.8951
Number of people in household 11a 9.9450 9.9913 9.9555 9.9073 9.9170 9.8954
Number of people on address 9.9482 10.0079 9.9900 9.9658 10.0012 10.0000
Number of people on address 11b 9.9469 9.9943 9.9649 9.9210 9.9370 9.9191

Table F.4: Estimated means by the generalised regression estimator for different auxiliary variables. Based on the sample of
the mobility survey of October, November and December 2018.
a This is a categorical variable of the number of people in a household consisting of eleven categories: 1 to 10 and 11 or more.
b This is a categorical variable of the number of people on an address consisting of eleven categories: 1 to 10 and 11 or more.
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