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Chapter 1

Introduction

1.1 Background

Simulation models are widely used in various application areas like meteo-
rology, oceanography and chemistry. The use and results of these models
play an important role in nowadays live. Best known are probably models
for weather forecasting (Figure 1.1) but other models are important as well.
Some models are used for providing warning to the population for hazardous
situations like storms, floods and environmental accidents. Governments use
models in order to predict and investigate the impact of policies, and in en-
gineering, models are used to study new designs.

The quality of models can be improved by combining them with observed
data. The observations can be used to calibrate the model. In this way
the general performance of the model can be improved. Another way to
improve the quality of the predictions that are computed by the model is to
combine the model predictions with observations into a combined, updated
prediction. This approach is called data assimilation.

Simulation models are often implemented in a computer program. These
programs contain thousands to millions of lines of source code and are in
general very complex. The size and complexity of these programs is even
larger when data assimilation and calibration techniques are added.

The complexity of programs often increases much faster than the com-
plexity of the underlying mathematical models and the used mathematical
techniques [Langtangen, 2006]. The development and maintenance of these
large and complex programs is extremely expensive. The amount of work is
at least linear dependent from the program size and more skillful and there-
fore more expensive programmers are needed when the program complexity

7



8 CHAPTER 1. INTRODUCTION

Figure 1.1: Simulation models play in important role in daily life. For
example the weather forecast that is computed using complex simulation
models.

increases. This relationship between the complexity of the model, software
and development costs is illustrated in Figure 1.2.

A computer program needs to be able to perform various tasks. In case of
a simulation model for example the program is able to read and write input
and output files, process user input trough a (graphical) user interface, build
a mathematical model of the problem, and solve this model.

From Figure 1.2 it can be derived that the sum of the development and
maintenance costs of a number of small independent sub-programs is less
than the development and maintenance costs of a single large program that
contains the functionality of these sub-programs.

Small sub programs with a limited functionality are more likely to be
(re)used in multiple contexts. This is an additional advantage and cost re-
duction of developing small independent sub-programs in stead of large com-
plex programs. Examples of these kind of sub-programs is a generic software
library for reading and writing XML files or a numerical library for solving
linear algebra problems. Only a limited number of these generic libraries
have been developed like the Gnome C XML parser (libxml) [LIBXML,
2009] for handling XML and LAPACK [Anderson et al., 1999] for solving
linear algebra problems. These libraries are used in thousands of programs
saving the developers of these programs a significant effort in designing,
programming and debugging code.
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Mathematical complexity

Software complexity

Developments and maintenance costs

Figure 1.2: Relation between the mathematical complexity of the mathe-
matical model, the software complexity and development costs. The soft-
ware complexity grows often faster than the complexity of the mathematical
model. The development and maintenance costs grow even faster.

1.2 Research objectives

Computer programs that implement simulation models are already very
complex. Significantly more complex are programs that implement data
assimilation methods and/or calibration methods as well besides a simula-
tion model. The development and maintenance of these kind of programs is
even more complex and therefore very expensive.

The main research objective of the work that is presented in this thesis
is the design and development of a software framework for data assimilation
and model calibration. The purpose of this framework is to make it possible
to rapidly compose a data assimilation or model calibration program from
various independent sub programs. This approach should not only reduce
the program development and maintenance costs and complexity but should
as well enable the exchange of implementations of data assimilation methods
such that these implementations can be used in combination with various
simulation models. The possibility to make arbitrary combinations between
models and methods is a significant increment of the functionality compared
to a program that contains only a single or a few methods in combination
with a single model. Besides this it also reduces the implementation costs
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and increases the software reliability by using tested and evaluated methods
and sub-programs.

The resulting framework must be a serious alternative for programs
containing both the model and the data assimilation or model calibration
method. In order to achieve this objective, a number of requirements must
be met by the framework. The most important and most challenging re-
quirements are presented in the following paragraphs.

The amount of computational capacity that is necessary to perform sim-
ulations, especially when data assimilation or model calibration techniques
are used can be enormous. The performance of the framework is very im-
portant because the framework has no practical use when large operational
models cannot be run due to poor performance of the framework. The de-
sign and implementation of the framework must result in a computational
performance that is of the same order as existing programs.

The need for support for parallel computing is related to the perfor-
mance requirement. The amount of computations in a data assimilation
or model calibration run can be several orders higher than the amount of
computations in a normal simulation run. Parallel computing is therefore
a vital necessity for the framework in order to make these runs feasible.
Support for parallel computing should not be limited only to the data as-
similation and model calibration algorithms. Large simulation models use
parallel computing themselves as well. It must therefore be possible to use
these parallel models in the framework.

Not only the performance must be comparable to existing programs, but
the functionality as well. Using the framework, it must be possible to exactly
implement equivalent versions of existing algorithms such that the results
of existing software can be reproduced.

The framework should not only be useful for new applications but it
must be attractive as well to introduce the framework in existing programs
that already implement data assimilation or model calibration methods.
The amount of work to migrate existing code into the framework should be
relatively limited.

By reusing significant parts of code it must be possible to reduce the
programming costs and increase the reliability of the software since code
that is reused multiple times contains less errors than new code.
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1.3 Research path and outline of this thesis

The framework that is developed as the results of the work is called COSTA
(Common Tool Set of Tools for the Assimilation of Data). It must be pos-
sible to implement a wide range of data assimilation and model calibration
methods in COSTA in combination with dynamic models from various ap-
plication areas. The introductionary Chapter 2 describes the dynamic model
that is considered in this work. Additionally it will give an overview of var-
ious popular data assimilation and model calibration methods. Chapter 2
has two purposes; first it provides a reader that is not familiar with data as-
similation and model calibration the necessary background, second it gives
a sketch of the interaction between the various methods and the dynamic
model.

The main research objectives that are formulated in Section 1.2 do not
come out of the blue. The objectives were initially not yet specified. The
initial step of the research was to initiate a users group. This group of po-
tential users of the software framework was formed from data assimilation
experts from various research institutes in the Netherlands. The experience
and knowledge of the members of the users group have significantly con-
tributed in formulation of the objectives, initial set up of the main design
and making the various choices that have been made during the develop-
ment. The members of the users group represent a subset of the diverse field
of data assimilation and model calibration and they cover various applica-
tion areas including air quality, hydrodynamic and water quality, ground
water modelling and oil reservoir modelling.

The COSTA framework has not followed the path of starting with a
complete design and then start the implementation (the waterfall approach
[Royce, 1970]). Instead an evolutionary iterative approach is used [Larman,
2004]. In the iterative approach, the system evolves in a large number
of iterations. The result of each iteration is a new working version of the
software. Each iteration is an individual mini project including requirements
analysis, design and testing. The product of an iteration is a so called
iteration release, which is a stable, integrated and tested partially complete
system. The iteration release often offers new functionality but sometimes,
due to new insights parts of the system are changed or even discarded and
redeveloped. The development is evolutionary because the overall design is
not fully defined at front. The design and requirements evolve during the
whole development process. The advantage of this evolutionary approach
is that it is possible to use and experiment with the system in an early
stage. In this way the iteration releases offer important insight in strong
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and weak points of the design of the system that can be further exploit or
changed in the following iterations. Chapter 3 will give an overview of the
design of the COSTA framework. Chapter 3 also presents the complete set of
requirements as they are formulated by the users group and the assessment
of a number of alternative frameworks.

The core of this thesis is formed by the three chapters 4, 5 and 6. These
chapters contain the following three papers:

• COSTA a problem solving environment for data assimilation applied
for hydrodynamical modelling, by Nils van Velzen and Martin Verlaan,
published in Meteorologische Zeitschrift, 16:777-793, 2007,

• A problem-solving environment for data assimilation in air quality
modelling, by Nils van Velzen and Arjo Segers, published in Environ-
mental Modelling & Software, 2009, DOI: 10.1016/j.envsoft.2009.08.008

• A generic object oriented approach towards parallel computing and
combining models in the COSTA framework for data assimilation, by
Nils van Velzen, Hai Xiang Lin, Edwin Vollebregt and Erwin Loots,
submitted to Scientific Programming.

In these three papers work is presented that provides the answers to the
main research objectives.

One of the main objectives is that the COSTA framework should provide
more flexibility and functionality than existing operational data assimilation
systems. Therefore it must be possible to include the functionality of ex-
isting operational systems in COSTA. This property is investigated in an
early stage. A first experiment with a large operational model is performed
directly after the initial design and implementation of the framework. In the
first experiment it was investigated whether it was possible to exactly repro-
duce the results and functionality of an operational model with data assim-
ilation capabilities. The WAQUA/TRIWAQ shallow water model [Stelling,
1983, Vollebregt et al., 2003] with the RRSQRT-filter [Verlaan and Heemink,
1997b, Verlaan, 1998] was selected as candidate for this first experiment. It
was known in advance that the implemented RRSQRT filter code contained
numerous model specific issues. For example the way that drying and flood-
ing is handled in the RRSQRT-filter implementation and not in the model
code. The experiment consists of two parts. First the model is wrapped such
that it can be used in COSTA. The second part concerns the transformation
of the existing RRSQRT algorithm into a COSTA RRSQRT algorithm that
can be used with other models as well.
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The first experiment and the results are described in Chapter 4. Chapter
4 serves as well as a general guide for transforming an existing model such
that it can be used in the COSTA framework. Other models like the air
quality models LOTOS-EUROS[Schaap et al., 2008] and Chimere [Bessagnet
et al., 2008] are transformed for usage in COSTA using the same approach.

The successful use of the WAQUA/TRIWAQ model in COSTA only il-
lustrated that it was possible to substitute an existing data assimilation
application with COSTA. In order to show that the framework offers addi-
tional functionality a special second case study has been set up. The goal
of this second case study is to show that it is easy to combine a model in
COSTA with various data assimilation methods. In this way it becomes
possible to compare the performance of various methods and select the best
suited data assimilation method. This second experiment is used as well to
show that off-the-shelf data assimilation methods can be used for an arbi-
trary model and that it is possible to exchange these methods. A pitfall
in the development of a generic framework is the scope of genericity. The
WAQUA/TRIWAQ model was therefore not a suitable candidate since it
has already been used earlier in the first study that is described in Section
4. Therefore an alternative model, the LOTOS-EUROS air chemistry model
is used in this second study. The experiment and the results are discussed
in detail in Chapter 5.

Concepts from object oriented programming make it possible to handle
parallel computing in the COSTA framework in an elegant way. In Chapter
6 it is explained how concepts from object oriented programming are used
to automatically parallelize the computations in the data assimilation and
model calibration methods. It is shown that the chosen approach can be used
as well for creating composite models from a number of smaller models and
to use parallel models in COSTA. The parallel capabilities are illustrated
by various experiments with the LOTOS-EUROS model, a large domain
decomposition WAQUA/TRIWAQ model and the Chimere model.

This thesis concludes with Chapter 7. In this section the main results
and work are summarized and a roadmap is set out for future development
and research.
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Chapter 2

Data assimilation and model
calibration

2.1 Introduction

Data assimilation techniques are used to improve the predictions of a dy-
namic model using observations. Depending on the application area different
sources of observations are available. Observations can be gathered by earth
observation satellites. These satellites can be used to measure various as-
pects of the earth and the atmosphere among others cloud systems, land and
water temperature, snow cover, ocean currents, vegetation, ice fields and air
pollution. Besides satellites other observation devices can be used as well
like buoys for measuring water level and current speed and direction and air
quality measurement stations. The source, kind, amount and quality of the
observations differs as well. The data assimilation techniques that are used
to combine these observations with the model predictions can be used in a
wide range of application areas and kinds of observations.

Another group of techniques that uses observations to improve the qual-
ity of the predictions of dynamic models are calibration techniques. In model
calibration, not the prediction of the model is adjusted but the model itself
is changed using the observations. In general, data assimilation techniques
are used in an on-line operational setting and calibration techniques are used
to calibrate a model before it will be used operational.

The basic concepts from dynamic models, data assimilation and model
calibration methods are presented in this chapter. The goal of this chapter
is to provide the necessary background into the formulation of the model
and the data assimilation and model calibration methods.

15
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The basic concepts of dynamic simulation models that are considered in
this thesis are described in Section 2.2. Then in Section 2.3 a number of
popular data assimilation methods are presented. This section will discuss
some empirical methods, the Kalman filter type methods and variational
methods. The reader is referred to [Bouttier and Courtier, 1999, Cooper
et al., 1999] and [Evensen, 2006] for a more detailed introduction to data
assimilation methods.

Section 2.4 describes the model calibration techniques that are currently
available in COSTA. An more detailed description of methods can be found
in [Edgar and Himmelblau, 1989].

It is not the intention of this chapter to give a thorough overview of
the field of data assimilation. It provides an overview of the range of data
assimilation methods that are already or should be supported by COSTA.
Additional, this chapter will provide the reader that is not very familiar
to data assimilation methods and model calibration methods the necessary
background for understanding the following chapters of this thesis. However
it does provide an overview and insight into the various (mathematical) oper-
ations that are used in the formulations of a wide range of data assimilation
and model calibration methods as discussed in Section 2.5.

2.2 Dynamical simulation models and observations

A mathematical model is a representation of a system in a mathematical
language. Here a system is a set of interacting or interdependent entities,
real or abstract, forming an integrated whole. A system that is described
in a mathematical language can be investigated in a systematic way using
generic mathematical tools. In order to create a mathematical model it is
necessary to identify and understand the mechanisms behind the system.
A mathematical model has the form of a set of variables and relationships
between them. Mathematical models can be used in many application areas
including physics, biology, earth science, meteorology, electrical engineer-
ing and economics. Mathematical models can be classified in various ways
for example linear/non-linear, deterministic/stochastic and static/dynamic
models.

Dynamic models describe systems in which time plays a role. These
models can be used to produce forecasts, like the weather prediction, air
quality prediction and waterlevel predictions of rivers and seas.

The variables in a dynamic model can be classified in various groups.
Often all variables of a single group are represented by a vector. The general
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form of the dynamic models that are considered in this thesis is the following:

dx(t)
dt

= M (x(t),p,u(t),w(t), t) (2.1)

where the variables are classified in four groups: the state variables x, pa-
rameters p, forcings or input variables u and the random variables w, which
is a Brownian motion in the continuous formulation. The dynamic model is
denoted by the operator M and time by t. All variables are time dependent
except for the model parameters.

Most models that are implemented make use of a time discretization
with ti = t0 + i∆t with i ∈ N+. The general non-linear model timestep can
then be written as

xk+1 = Mk (xk,p,uk,wk) , (2.2)

where the sub-script denotes the time index of the variable e.g. xk = x (tk).
The random variable wk for the time descrete formulation is assummed
to have zero mean and covariance Qk. Linear models are an important
sub-class of dynamic models. Linear models are the least complex class of
models. Most data assimilation methods and model calibration methods
for non-linear models are extensions of the methods for linear models. A
discrete linear model can be written in matrix form as:

xk+1 = Mkxk + Bkuk + wk (2.3)

Complex systems can in general not be described exactly by a model.
When a model is developed a trade off needs to be made between complexity
and accuracy of the model. Therefore, models contain in general simplifi-
cations and are not able to exactly describe the system that is modeled.
The model operator Mk will therefore not be exact and contains errors, dif-
ferences between the real system and the model. Besides the errors in the
model operator there are other sources of errors. For instance the numeri-
cal errors that are the result of performing the computations on a computer
with a finite precision representation of the variables and errors in the initial
model state, parameters and forcings of the model.

Besides a model of the real system, observations are often available as
well. Observations of the system that are available at time t are denoted by
y(t). The corresponding observation operator is:

y(t) = H (t,x(t)) + v(t) (2.4)

the operation H interpolates and transforms the state variables to the ob-
servations. The observation error v(t) includes both the instrumental and
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representation error and is supposed to have zero mean and covariance R(t).
In the case timediscretization is used, the operation is written as:

yk = Hk (xk) + vk (2.5)

and for linear operators as:

yk = Hkxk + vk (2.6)

with error covariance matrix Rk.
The differences between the system and the results of the dynamic model

can be reduced by using these observations of the system. Two classes of
methods that combine observations with a dynamic system are considered
in this thesis. The first category are the data assimilation methods and the
second category are the calibration methods.

An short introduction on these methods will be given in the Sections 2.3
and 2.4.

2.3 Data assimilation techniques

2.3.1 Introduction

Data assimilation methods combine a model prediction with observations
in order to create a more accurate prediction. The algorithm improves the
state of the model xk by use of the observations in the so called analysis
step.

Data assimilation techniques can be divided into two groups: sequential
data assimilation and non-sequential data assimilation. Sequential data as-
similation techniques start with a guess of the initial state x0. This state
is propagated forward in time by the dynamic model to the moment that
observations are available. This is the forecasted state xf

k . The differences
between the observations and the forecasted state are used in the analysis
step to compute the analyzed state xa

k. The analyzed state is then propa-
gated to the next time where observations are available and the procedure
is repeated. This process is illustrated in figure 2.1.

The other group of data assimilation methods, the non-sequential data
assimilation methods do not only use observations at a single time instance
in the analysis but all observations in a time window. The observations
are used to improve the background state xb in order to improve the model
results in the time window. This procedure is illustrated in Figure 2.2.
There is an important distinction between the background state xb and the
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Figure 2.1: Example of a sequential data assimilation method. The correc-
tion is made at the moments that observations are available.

forecasted state xf . The forecasted state already contains information from
all observations in the past, where the background state does not.

A large number of data assimilation methods has been developed and
applied. These methods differ in their accuracy, suitability and amount of
computations that have to be performed for computing an analysis. It is
not in the scope of this chapter to give a thorough overview of the different
data assimilation techniques. Only a few examples are described to give
a basic understanding of the differences between the various methods and
their application. These methods vary from computational inexpensive and
generally inaccurate to computationally expensive and accurate.

2.3.2 BLUE

This section presents the basic formulation and notation of the data assimi-
lation problem and will conclude with the BLUE estimator. This estimator
is important since many data assimilation methods are derived from it. The
model state as computed by the model without applying data assimilation is
called the background state and denoted by xb. The state that is computed
after the analysis is denoted by xa and the true state of the system is de-
noted by xt. The state that is predicted by the model is an approximation
of the true state. The difference between the true state and the background
state is the background error, defined by

εb = xb − xt. (2.7)
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Figure 2.2: Example of a non-sequential data assimilation method. All
states are improved in a time window in which observations are available.
This method yields a more continuous solution in time.

The errors are caused by various sources like simplifications in the model
operator, errors in the forcings and initial state-vector. If we assume that
all these sources are stochastic, than εb is a stochastic variable as well. A
popular choice is to assume a Gaussian distribution for the background error.
The background error covariance matrix is defined by

Pb = E
((

εb − E(εb)
) (

εb − E(εb)
)T

)
. (2.8)

The observations of the system that are available are denoted by y. The
observations cannot be directly related to elements of the state. The obser-
vation operator makes the relation from the state-space to the observation
space. When this relation is linear than the true observation (without any
error) is given by

yt = Hxt (2.9)

or in the non-linear case by

yt = H
(
xt

)
(2.10)

Like the model state, the measurements are likely to contain errors. A
Gaussian measurement error is defined by

εo = y −Hxt, (2.11)
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or for a non-linear observation operator

εo = y −H (xt), (2.12)

with covariance matrix

R = E
(
(εo − E(εo)) (εo − E(εo))T

)
. (2.13)

The differences between Hxb and the observations y are called innova-
tions and are denoted by

d = y −Hxb. (2.14)

Based on these assumptions we can derive the Best Linear Unbiased
Estimator (BLUE) of xt. This estimator is very important since many al-
gorithms are derived from it. For the case that the errors εb and εo are
unbiased and not correlated (E(εbε

o) = 0). The BLUE analysis is given by

xa = xb + K
(
y −Hxb

)
(2.15)

with

K = PbHT
(
HPbHT + R

)−1
(2.16)

The analysis error covariance matrix Pa is minimized by the BLUE analysis
and is given by

Pa = (I−KH)Pb (I−KH) + KRKT . (2.17)

Equation 2.17 is valid for all choices of K. If K is optimal and satisfies
Equation 2.16 then Equation 2.17 can be simplified to

Pa = (I−KH)Pb. (2.18)

Until now we have derived the BLUE estimator given the background
state and know error statistics. This method does not include time and the
model operator. This concept can be extended for a sequential data assimi-
lation context as well where time and the model play a role. These methods
will update the forecasted state xf and optionally the error statistics at each
time that observations are available. Various methods that include time and
model are presented in the following sections.
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2.3.3 Emperical linear interpolation and Optimal interpola-
tion

The emperical methods are a class of methods that have been polular from
the late 1950’s to about 1980 [Cooper et al., 1999]. These methods are com-
putational inexpensive and easy to understand. Three popular emperical
linear interpolation methods are the Cressman Analysis [Cressman, 1959],
nudging and optimal interpolation [Kalnay, 2002].

The Cressman analysis updates the points of the forecasted state by a
linear combination of the inovations, the difference between the forcasted
values and the observations. Each element of the state is updated according
to

xa
k = xf

k + Kdk (2.19)

where dk denotes the innovation dk = yk −Hxf
k .

The matrix K is weighting matrix of weighting factors k(i, j) The weight-
ing factors are chosen based on the distance between the element of the state
x(i) and the observation y(j). The state will be updated to the observed
value near the observation and will not be updated for elements that lie far
from the observation location. There are many ways to choose the weighting
values.

A popular variation is nudging or Newtonian Relaxation Scheme where
the state is slightly changed towards the observations. The values of w(i, j)
can be smaller that 1 at the observation locations. This approach avoids
large changes to the model that can cause problems in the model. The
coefficients are determined a priori but can vary in time.

Both Cressman analysis as nudging assume that the observations repre-
sent the true value and do not contain any measurement errors.

Optimal interpolation (OI) also called statistical interpolation is a method
that uses the background error covariance of the model and the error co-
variance of the observations in order to compute the weights w(i, j). This
method is an approximation of the best linear unbiased estimator and is
based on the idea that only observations in the neighborhood of a state el-
ement determine the analysis state increment as illustrated in Figure 2.3.
The global analysis problem is therefore split up into blocks. This reduces
the size of the problem that needs to be solved in the analysis as well as the
computational time. When the analysis of various blocks are combined that
overlap it might be possible that jumps occurs in the model state. An other
disadvantage of OI is that it is difficult to use observations with complex
observation operators because the background error of the model must be
computed.
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x(2)

Figure 2.3: Example of selecting the observations that are used for comput-
ing the analysis of two elements of the state-vector. Two of the observations
are selected for both state elements.

2.3.4 Kalman filter methods

The classical Kalman filter (KF) algorithm is a sequential data assimilation
method. The analysis step of this method only uses the state of the model
and the available measurements at a single time instance.

A single timestep with the Kalman filter for linear systems is computed
according to

xf
k+1 = Mkxa

k (2.20)

Pf
k+1 = MkPa

kM
T
k + Qk (2.21)

xa
k+1 = xf

k+1 + Kk+1

(
yk+1 −Hk+1x

f
k+1

)
(2.22)

Kk+1 = Pa
k+1H

T
k+1

(
Hk+1Pa

k+1H
T
k+1 + R

)−1
(2.23)

Pa
k+1 = (I−Kk+1Hk+1)Pa

k (2.24)

where Mk denotes the model operator and Qk the error covariance matrix
of added noise to the model.

The classical Kalman filter can only be used for linear models. The ex-
tension of the classical Kalman filter is the Extended Kalman Filter (EKF).
The model operator Mk is replaced by the tangent linear approximation
(TLM) of the non-linear model M (xk). The TLM is a matrix of partial
derivatives. The j-th column of TLM is defined by:

M:,j =
∂Mk (xk)
∂(xk)j (tk)

. (2.25)
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Where (xk)j denotes the j-th element of the vector xk. Both KF as EKF
can only be used for dynamic models with a small state size because the
matrix P is too large to handle for large state spaces. Another complication
of EKF is the need for a tangent linear model.

Various algorithms are developed that avoid these problems and can be
used for dynamic models with a large state space. These methods approxi-
mate the error covariance P and do not use the TLM. Examples of these algo-
rithms are EnKF [Evensen, 2003], RRSQRT [Verlaan and Heemink, 1997b,
Verlaan, 1998], EnSRF [Whitaker and Hamill, 2002] and COFFEE [Heemink
et al., 2001]. These algorithms are discussed in more detail in Section 5.4.

A Kalman filter can be used as well for the calibration of models. In
order to be able to calibrate the model using a Kalman filter it is neccesary
to extend the model state xm by adding the parameters xp that have to be
calibrated according to

x =
[

xm

xp

]
(2.26)

and the stochastic model then becomes

xk+1 =
(

M
(
xm

k ,xp
k,uk,wk, t

)
xp

k + vk

)
, (2.27)

where the noise v is added to the parameters. The model parameters (xp) are
then calibrated by the Kalman filter that is appied on this extended model.
It must be noted that the parameters are changed during the simulation as
a result of the added noise and filter updates. Updating parameters during
the run is not always trivial and can therefore not be implemented easily for
some models. In that case it is probably better to use one the optimization
methods that are discussed in Section 2.4 that do not require the parameters
to be changed during the model run.

2.3.5 Kalman smoother

A Kalman smoother [Anderson and Moore, 1979, Stephen et al., 1994,
Evensen and van Leeuwen, 2000] is an extension of a Kalman filter that
makes it possible to improve the model state using observations from the
future as well.

A Kalman filter or one of the derived methods like EnKF, computes
the estimate of the current state given all observations from the past. The
general idea of a Kalman smoother is to use the observations from future as
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well. This is accomplished by extending the state of the model with values
of the state from the past.

There are three main smoothing strategies. Fixed time smoothing is
a method where observations from future and past are used to estimate
the system at one particular time. Fixed interval smoothing is similar to
4D-var, a variational data assimilation method that is presented in Section
2.3.6 where the observations of given timewindows are used to improve the
state vector. The third strategy is fixed lag smoothing where a moving time
window is used to improve the system.

The overall state-vector xs for a fixed lag smoother of length n is given
by

xs
k =


xk

xk−1

xk−2
...

xk−n

 , (2.28)

and the corresponding model by

xs
k+1 =


M

(
xk,x

p
k,uk,wk, t

)
xk
...

xk−n+1

 (2.29)

By extending the model with state variables from the past it is possible
to use the observations up to n + 1 timesteps for updating the model state.
If n is chosen big enough than all observations can be used to improve the
value of the initial state x0.

2.3.6 Variational methods

An other class of methods are the variational methods. In this section we will
discuss variational methods for finding the optimal value xa. The variational
methods are based on a different but equivalent formulation of the BLUE
and are stated in the form of a minimization problem. The goal is to find
the (initial) state xa that minimizes the object function:

J (x) =
(
x− xb

)T (
Pb

)−1 (
x− xb

)
+ (y −Hx)T R−1 (y −Hx) (2.30)
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3D-var is a data assimilation method that computes the analysis by
minimizing Equation 2.30. The gradient of the criterion 2.30 is given by

∇J (x) = 2
(
Pb

)−1 (
x− xb

)
− 2HTR−1 (y −Hx) (2.31)

and is zero at the minimum. The minimization problem is in general not
completely solved but an approximation is computed by performing a num-
ber of iterations of a minimization algorithm such that

|∇J(x)| < ε (2.32)

for some predefined tolerance ε. The iterative process is illustrated in Figure
2.3.6.

xa
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Figure 2.4: Example of the minimization process in a 3D-var algorithm. The
contour lines represent the values of J(x).

The advantage of 3D-var is that it is quite straight forward, it can handle
complex observation operators, as long as the TLM of the observation op-
erator is available. However, it is necessary to construct a positive definite
background error covariance matrix Pb and specify error covariances in the
observation sub-space in order to be able to use the 3D-var method.

4D-var is an non-sequential data assimilation method that can be seen
as an extension of 3D-var. In 4D-var all observations are taken into account
in a given time interval. The non-linear object function that is minimized
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in the 4D-var algorithm is given by

J(x0) = (x0 − xb)T
(
Pb

)−1
(x0 − xb) +

n∑
k=0

(yk −Hkxi)
T R−1

k (yk −Hkxk) . (2.33)

Note that all values of xk can be expressed in x0 by

xk = M0→k−1 (x0) = Mk−1 (Mk−2 (...M0 (x0.))) (2.34)

Where Mk denotes the nonlinear timestep operator according to Equation
2.2 with known parameters and forcings. Using the TLM of the model oper-
ator and observation operator it is possible to derive the following equation
for the foreward sensitivities:

yk −HkM0→k−1x0 ≈ yk −HkM0→k−1x0. (2.35)

The object function 2.33 and the corresponding gradient can be com-
puted in the following way: In a single forward run compute all values of xi

for i = 0..n and the corresponding departures multiplied by the inverse of
the observation error covariance Ri according to

dk = R−1
k (yk −Hk (xk)) . (2.36)

The object function can then be computed by:

J(x0) = (x0 − xb)T
(
Pb

)−1
(x0 − xb) +

n∑
k=0

(yk −Hk (xk))
T dk. (2.37)

The gradient is in this case given by

∇J(x0) = 2
(
Pb

)−1 (
x0 − xb

)
− 2

n∑
k=0

MT
0 ...MT

k−1H
T
k dk (2.38)

There is an additional requirement for using 4D-var compared to 3D-var.
In order to efficiently compute the gradient (Equation 2.38) it is necessary
to have the adjoint model operator MT

i that appears in Equation 2.38. The
construction of this operator is far from trivial for complex dynamic models
and involves writing an adjoint version of all (computational) routines of the
model code. Even using software tools like OpenAD and TAF [Naumann
et al., 2009, Giering and Kaminski, 2000] this is still an significant amount
of work.

A gradient based minimization method is often used the 3D- and 4D-var
minimization method. Some of these methods will be discussed in Section
2.4 because they are used for the calibration of models as well.



28 CHAPTER 2. DATA ASSIMILATION AND MODEL CALIBRATION

2.4 Calibration

2.4.1 Introduction

Model calibration techniques are used in order to find the best set of model
parameters p for a (dynamic) model such that the output of the model
matches best to the system. Model calibration is generally performed off-
line.

The calibration methods that are considered in this section try to find the
model parameters p such that it minimizes an object function that measures
the misfit between the dynamic model and the system.

The weighted least square difference between the model predictions and
observations is an example of such an object function and given by

f(p) =
n∑

k=0

(
yk −Hkx

p
k

)T Wk

(
yk −Hkx

p
k

)
. (2.39)

where xp denotes the model state computed by the model with parameters
p and a weighting matrix Wk e.g. based on the model errors in what case
we can substitite it by R−1

k .
The calibration problem can be illustrated using a simple 1-D advection

model. This model transports the forcing that is specified at the left side
of the domain with a constant speed v from left to right as illustrated in
Figure 2.5.

Assume for the calibration model that the frequency of the model forc-
ings u (tk) = 1 + sin

(
2π
p tk

)
is specified by a single parameter p. The exact

value of p is not known but observations at different locations and moments
are available. The solution of the advection model for an initial choice of p
together with the observations at a single time instance are plotted in Figure
2.6. A calibration algorithm will try to find a suitable value for p such that
the frequency matches to the observed values. This solution is given by the
dotted line in Figure 2.6. Note that this simple 1-D advection can be very
hard to tackle due to the periodic behavior of the model especially when
the observations are sparse in time. If the errors between the observations
and the model are not caused by a wrong frequency but e.g. as a result of
a phase shift it is possible that the calibration method will end up with a
completely wrong value of p. Therefore it is important to carefully select
those model parameters for calibration that are suitable for reducing the
differences between the model and observations.

Model calibration is a minimization problem like 3D- and 4D-var. There
are however some differences. Calibration does in general not involve the
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Figure 2.5: Solution of the advection model at t = 0.4, with forcing u(tk) =
1 + sin

(
2π
10 tk

)
at the left of the domain. The advection model moves the

initial scalar field with constant speed v = 1.
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Figure 2.6: Calibration of the frequency of the forcings of the 1-D advec-
tion model. A single time instance is plotted for the initial parameter, the
calibrated parameter and the observed values.
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background error covariance matrix Pb which needs to be constructed for
3D- and 4D-var. The minimization problem that has to be solved for the
calibration can be quite more complex than the 3D-var and 4D-var problems.
Since the model parameters p often have a physical meaning and a valid
value should often be in some predefined range. This can be specified by
adding inequality constraints to the minimization problem.

Data assimilation algorithms generally concern improving the results of
only a single scenario. With a scenario is meant a simulation in a given time
window t0..tf with a single set of forcings ut and initial model-state x0.

The objective of model calibration can be to improve the parameters
such that the model performs better for multiple scenarios. An example
of a calibration that involves multiple scenarios is the following; assume a
river model is to be calibrated. In the calibration the bottom roughness is
adjusted. There are two sets of observations available one set for a period
in the summer period and one in the winter period. The parameters must
be selected such that the model is improved both for the winter as summer
scenario. An evaluation of the object function will then consists of at least
running two scenarios.

Model calibration algorithms are often very computational demanding.
The computation of the object function involves at least a single model run
of the dynamic model.

The calibration methods that are available in COSTA will be described
in the following sections.

2.4.2 Gradient methods

A special class of calibration methods are the so called gradient methods.
For these methods it is not only needed to be able to compute the value of
the object function f(p) but the corresponding gradient

∇f (p) =
(

∂f

∂p1
,

∂f

∂p2
, ...,

∂f

∂pn

)T

(2.40)

as well. These algorithms are in general more robust and need less overall
iterations to converge to a (local) solution than the gradient free methods
like the Simplex method that is discussed in Section 2.4.5. A drawback of
these methods is the need of a gradient.

When the number of parameters is limited it is possible to approximate
the gradient by finite difference,

∇if (p) ≈ ε−1 (f (p + eiε)− f (p)) , (2.41)
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where ei denotes the i-th unit vector. If some of the parameters are (al-
most) independent it is even possible to reduce the number of model runs
in the finite difference approximation of the gradient by disturbing multiple
independent parameters in a single run. For a small number of independent
groups of parameters it is still feasible to compute the gradient by finite
difference but for a large number of parameters it is not.

For larger numbers of parameters it is necessary to compute the gradient
in a more efficient way e.g. by using the adjoint of the dynamic model.

There are a vast number of gradient based algorithms that can be used for
calibration. In the next two sections (2.4.3 and 2.4.4) two of these methods,
that are implemented in COSTA are described.

2.4.3 The conjugate gradients method

The problem of minimization of a multivariable function is usually solved
by determining a search direction vector and solve it as a line minimization
problem. If p is a vector containing the variables to be determined and
h is the vector of search direction, at each iteration step the minimization
problem of the function f is formulated as to find the step size λ that
minimizes f(p + λh). At the next iteration, p is replaced by p + λh and
a new search direction is determined. Different methods basically propose
different ways of finding the search direction.

The conjugate gradient method is an algorithm for finding the nearest
local minimum of a function which uses conjugate directions for going down-
hill. Two vectors u and v are said to be conjugate (with respect to a matrix
A) if

uTAv = 0, (2.42)

where in the minimization problem, A is typically the Hessian matrix of the
cost function. In the conjugate gradient methods, the search direction is
somehow constructed to be conjugate to the old gradient.

The two most important conjugate gradient methods are the Fletcher-
Reeves [Fletcher and Reeves, 1964] and the Polak-Ribierre methods [Press
et al., 1989]. These algorithms calculate the mutually conjugate directions of
search with respect to the Hessian matrix of the cost function directly from
the function and the gradient evaluations, but without the direct evaluation
of the Hessian matrix. The new search direction hi+1 is determined by using

hi+1 = gi+1 + γihi (2.43)

where hi is the previous search direction, gi+1 is the negative of local gra-
dient at iteration step i + 1, while γi is determined by using the following
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equations for Fletcher-Reeves and the Polak-Ribierre methods respectively:

γi =
〈gi+1, gi+1〉
〈gi, gi〉

(2.44)

γi =
〈(gi+1 − gi), gi+1〉

〈gi, gi〉
(2.45)

where 〈u,v〉 is used to denote the innerproduct between u and v. If the
vicinity of the minimum has the shape of a long, narrow valley, the minimum
is reached in far fewer steps than would be the case using the steepest
descent method, which makes use of minus of the local gradient as the
search direction.

A line search method is used in order to find a suitable value for λ such
that is approximately minimizes f(p + λh).

This method needs a gradient of the object function which has to be ap-
proximated using finite difference when no adjoint of the model is available.

2.4.4 The LBFGS method

For the problem of minimizing a multivariable function quasi-Newton meth-
ods [Han, 1977, Spellucci, 1993] are widely employed. These methods involve
the approximation of the Hessian matrix (or its inverse) of the object func-
tion. The LBFGS (Limited memory-Broyden-Fletcher-Goldfarb-Shanno)
[Nocedal, 1990, Byrd et al., 1994] method is basically a method to approxi-
mate the Hessian matrix in the quasi-Newton method of optimization. It is
a variation of the standard BFGS method.

pi+1 = pi − λiHigi, i = 0, 1, 2, · · · (2.46)

where λi is a steplength, gi is the local gradient of the cost function, and
Hi is the approximate inverse Hessian matrix which is updated at every
iteration by means of the formula

Hi+1 = VT
i HiVi + ρisisT

i (2.47)

where

ρi =
1

yT
i si

(2.48)

Vi = I − ρiyisT
i (2.49)
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and

si = pi+1 − pi (2.50)
yi = gi+1 − gi (2.51)

Using this method, instead of storing the matrices Hi, one stores a cer-
tain number of pairs, say m, of pairs {si,yi} that define them implicitly.
The product of Higi is obtained by performing a sequence of inner prod-
ucts involving gi and the m most recent vector pairs {si,yi} to define the
iteration matrix.

Like in conjugate gradient methods, the line minimization is needed for
determining λ in equation (2.46).

2.4.5 The simplex method

The simplex method as suggested by Nelder and Mead [1965] is a systematic
procedure for generating and testing candidate vertex solutions to a mini-
mization problem. It begins at an arbitrary corner of the solution set. At
each iteration, the simplex method selects the variable that will produce the
largest change towards the minimum solution. That variable replaces one of
its compatriots that is most severely restricting it, thus moving the simplex
to a different corner of the solution set and closer to the final solution.

A simplex is the geometrical figure consisting, in n dimensions, of n +
1 points and all their interconnecting line segments, polygonal faces, etc.
In two dimensions, a simplex is a triangle. In three dimensions it is a
tetrahedron. The simplex method must be started with n + 1 points of
initial guess, defining the initial simplex. The simplex method now takes a
series of steps. The first step is to move the vertex where the cost is largest
through the opposite face of simplex to a lower point. This step is called the
reflect step. When the cost of the new vertex is even smaller than all the
remaining, the method expands the simplex even further, called the expand
step. If none of these steps produce a better vertex, the method will contract
the simplex in the same direction of the previous step and take a new point.
This step is called the contract step. When the cost of the new point is still
not better than the previous one, the method will take the last step called
shrink. In this step all of the simplex points, except the one with the lowest
cost, are ’shrinked’ toward the best vertex.

As it basically only tries and compares the solution of several different
sets of parameters, the method requires only function evaluations and no
derivatives.
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2.5 A more abstract approach

A number of data assimilation and model calibration methods have been
described in the previous sections. This is only a brief overview of some
of the available methods. There are numerous alternatives, variations and
combinations of methods possible.

The formulation of various methods can be completely different like the
variational methods and the Kalman Filters. But from a more abstract level
there is a lot that all these methods have in common. These are the basic
building blocks that are used to formulate the algorithms. The algorithms
perform, mostly linear algebra, operations on model state-vectors x or model
parameters p. For all algorithms that are described it is necessary to be able
to perform model timesteps, where the state-vector is propagated forward
in time. All methods improve the dynamic model by using observations of
the system. In order to do so, it is necessary to use an observation operator
H (x), that transforms the model state to the observed values.

Some other building blocks are not needed by all methods like an adjoint
of the model or an scaling vector (see Section 4.5.1) for comparing various
quantities in the state-vector. These less common building blocks are not
necessary for all methods but still for a sub-set of methods. Like the adjoint
for 4D-var and gradient based calibration methods and the scaling vector
for the RRSQRT, COFFEE and for model reduction [Altaf et al., 2008].

Since all methods are constructed from the same basic building blocks
it is conceptually possible to use the same approach for the software that
implements these methods and develop a framework for data assimilation
and model calibration as will be described in more detail in the next chapter.



Chapter 3

COSTA

3.1 Introduction

The COSTA framework for data assimilation and model calibration is the
main result of the research presented in this thesis. The framework is dis-
cussed in detail in the three papers that are presented in the Chapters 4,
5 and 6. This chapter will present aspects of COSTA that are not, or only
briefly mentioned in the three papers.

An analysis of requirements is important before any development can
take place. Requirements form the basis of the whole design and the choices
that are made in the development process. The requirements that are de-
fined for COSTA in cooperation with users are presented in Section 3.2.

The fundamental setup of the COSTA framework and how this setup
relates to the requirements is presented in Section 3.3. The technical aspects
on the object oriented programming principles in the COSTA framework
that are not discussed in the papers are presented in this section as well.

Besides COSTA there are other software packages and frameworks avail-
able for data assimilation as well. The main aspects of these packages, how
they are related to COSTA and the requirements are discussed in Section
3.4.

3.2 Requirements of a generic framework for data
assimilation

An important step in the development of a software system is to formu-
late and analyse the requirements. The set of requirements that describes
what a system must be able to do are referred to as functional requirements.

35
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Requirements that describe how a system must perform its functions are re-
ferred as the non-functional requirements. The non-functional requirements
include among others the performance and the ease of use of the system.

The functional and non-functional requirements are very important be-
cause they form the basis of the system and most design decisions will be
made such that they match the requirements. However this does not mean
that the initial written requirements are not to be changed. It is possible
that requirements are added, changed or removed but this should be based
on new insight in what requirements fit best to the system. Not because
some requirements are not met.

In order to get a set of requirements for COSTA that describes a use-
ful system, the COSTA users’ group is formed. The COSTA users’ group
consists of experts in the field of data assimilation and large scale modeling
from different institutions in the Netherlands: Delft university of technology,
VORtech, Deltares, TNO-MEP, TNO-NITG, and HKV. The set of require-
ments that are formulated in the following sections are based on the input
from members of the COSTA users’ group.

COSTA is an innovative system. In advance it was not known what was
feasible and what not. The set of requirements is therefore initially chosen
to be not too extensive and not too detailed. The requirements form a list of
wishes from the members of the users’ group and define the properties of an
ideal data assimilation and model calibration framework. The requirements
form the context in which the system is developed and they have proven to
be useful for making design choices while developing the system.

To better understand the background of the requirements it is important
to realize that there are various categories of users for which COSTA is a
useful tool. Depending on the kind of user, the user will have different
requirements. The users are divided into three categories:

1. Developers of data-assimilation methods, these developers are
scientists with a thorough knowledge of data assimilation methods
but with varying programming skills;

2. Developers of computational models, these are developers with
various skills both on model knowledge and programming skills.

3. End-users of computational models with data-assimilation ca-
pability, these users have a fair understanding of both the dynamic
model as data assimilation methods but are in general not program-
mers.
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The first two kinds of users will be involved in programming using the
COSTA framework. The end-users however will only use the system and do
not need to be able to program at all.

3.2.1 Functional requirements

In this section we give an overview of the functional requirements of the
COSTA framework. These requirements are formulated using the input of
the COSTA users’ group.

The term COSTA model will be frequently used in the formulation of
the requirements. A COSTA model is a dynamic model that is adapted,
wrapped or prepared in order to work in the COSTA framework. Similar,
a data assimilation or model calibration method that is implemented in
COSTA is called a COSTA method.

The following functional requirements are formulated by the COSTA
users’ group:

• Both data assimilation and model calibration system can be imple-
mented with COSTA.

• COSTA models can be combined with arbitrary COSTA methods and
vice versa.

• Parallel computing can be used in COSTA in order to improve the
performance of the data assimilation and model calibration algorithms.

• Besides using parallel computing in the algorithms it must be possi-
ble to use models in COSTA that by them self already use parallel
computing. Using these parallel models in COSTA should not be fun-
damentaly different to using sequential models.

• Applying a method in COSTA should provides sufficient feedback on
the progress and effect of the applied method to the end user.

• COSTA must be a suitable framework both for large and complex
(operational) models as well for doing research on small (academic)
models.

3.2.2 Non-functional requirements

The set of non-functional requirements that are defined by the COSTA users’
group are:
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• A set of basic building blocks for data assimilation and model cali-
bration must be defined for COSTA. Besides the definition it must
provide generic implementations of these building blocks in order to
enable the rapid development of COSTA methods.

• COSTA allows the reuse of software especially it must be possible to:

– share COSTA models and COSTA methods among COSTA users,
– replace the generic implementations of the COSTA building blocks

by alternative implementations and share these alternative imple-
mentations amoung users and applications.

• The COSTA framework and the software developed using COSTA
must be portable. Therefore it must be:

– platform independent,
– and possible to use COSTA in combination with (model) software

that is developed in various programming languages, especially:
Fortran77/90/95 and C.

• Software that is developed using COSTA must be computational ef-
ficient. The performance of COSTA should be of the same order as
dedicated implementations of data assimilation and model calibration
methods.

• The COSTA framework must be easy to use, both for end users and
developers.

– It must enable end-users of models with data-assimilation capa-
bility to easily experiment with data-assimilation algorithms and
the settings of parameters therein

– It does not require end-users to have any programming skills in
order to use COSTA.

– It does not require the end-user to do any programming in order
to combine COSTA models with COSTA methods.

– A method in COSTA is not more difficult to program than the
same method independent from COSTA in a generic program-
ming language like Fortran, C or Matlab.

– The transformation of a dynamic model into a COSTA model
should not be more difficult or time consuming than preparing the
same dynamic model for use with a dedicated data assimilation
or calibration method.
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• COSTA must be an open source platform and aims at beeing a stan-
dard. The license should allow to use COSTA in combination with
dynamic models and other existing software that is propriatory as
well as open source. Such that it is easy accessible for a large group
of potential users.

3.3 Overview of the system

An overview of the core design of the COSTA framework is presented in this
section. This section does not give a detailed description of the available
classes and components. The most relevant classes and components are
discussed in the Chapters 4, 5 and 6.

The most fundamental choice in COSTA is the use of concepts from
object oriented programming. As a result of this design choice it was pos-
sible to fulfill a number or requirements. The motivation for the object
oriented approach is given in Section 3.3.1. The COSTA framework consists
of various building blocks of various size and complexity. In Section 3.3.2
it is explained how these building blocks relate to each other. COSTA uses
concepts from object oriented programming but can be used in imperative
languages as well. The technical aspects of using object oriented concepts
in imperative programming languages are explained in Section 3.3.3.

3.3.1 An object oriented approach

One of the requirements states that it must be possible in COSTA to com-
bine dynamic models with the available data assimilation and calibration
methods. There is another, rather similar requirement. This requirements
states that COSTA should define basic building blocks for data assimila-
tion and model calibration that enable the rapid development of COSTA
methods.

There are roughly two approaches that enable easy replacement of parts
of a software system in software devellopement. The first approach focuses
on the way data is stored. In this approach a strict definition is made for the
representation of data. When all data storage is standardized it is possible
to use and share the data among parts of the software system. Standardizing
of the data makes it possible to provide generic routines as building blocks
for the data assimilation and calibration framework. In order to be able
to combine arbitrary models with data assimilation and model calibration
methods it is not sufficient to only standardize the data representation. It
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is also necessary to define a set of functions that can be used in the code of
the data assimilation method in order to interface with the model.

This approach is however not very suited for systems that are pro-
grammed in various programming languages. Basic data representation like
scalars or arrays of integers, real numbers and strings can be shared among
most programming languages without too much problems. Complex forms
of data representation like the Fortran90 types that groups various kinds
of data into a composite data representation are very language specific and
it is far from trivial to share them among code that is written in different
languages. This can be avoided by using only simple forms of data repre-
sentation in the interface. The disadvantage is that most data cannot be
represented by a single variable. As a result the functions will have a large
number of arguments.

To overcome the problem of sharing complex data structures, COSTA
uses concepts from object oriented programming. The building blocks in
COSTA are similar to classes in object oriented languages but they can also
be used in non-object oriented languages like Fortran and C. An important
aspect of the object oriented approach is that the data, called the state of
an instance of a class, cannot be accessed directly. The actual representa-
tion is completely hidden from the code that uses the instance of the class.
The state of an instance can only be changed by using a predefined set of
functions. Similarly it is only possible to get data from the state by a set
of functions. These functions together form the interface of the class. The
object oriented approach has a disadvantage as well. It is not possible in
the object oriented approach to directly access the data of a class instance.
Copying of data is needed when a class does not provide the necessary meth-
ods in the interface. This is undesirable since it will have a negative impact
on the performance and memory requirements. Therefore it is important to
carefully design the interface of the classes such that the overhead for the
object oriented approach is reduced to marginal proportions.

The arguments of the functions of the interface only consist of instances
of COSTA classes and basic data representations like scalars or arrays of in-
tegers, reals and strings. In this way it is possible to implement the COSTA
classes in various programming languages without complications. The im-
plementation of the class is completely hidden and independent from the
context in which the class is used.

Most classes in COSTA are quite simple in the sense that they contain
a limited amount of functionality. These simple classes are in general data
containers, replacements for complex data structures. Examples of these
kinds of classes are the time-, vector-, matrix- and file-class. There are
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three classes in COSTA that provide a large amount of functionality. These
classes are called components: the model, the stochastic observer and data
assimilation or model calibration method. Typically together they form a
data assimilation or model calibration system.

The object oriented approach isolates all model specific information from
the outside and offers an uniform way for using models in a data assimila-
tion or model calibration method. The object oriented approach has other
applications as well. By only using the methods from the COSTA model
interface it is possible to create larger composite models using a generic tool
called the model combiner. In a similar way it is possible to automatically
parallelize independent propagations of model state-vectors and the use par-
allel models in COSTA. These additional applications are discussed in detail
in Chapter 6. The creation of a COSTA model component for an existing
model is described in detail in Chapter 4.

The observations are represented in the form of a stochastic observer
class. The stochastic observer contains the measured values and all neces-
sary information related to the observation including the location, measure-
ment error statistics and observation kernel of satellite measurements. The
stochastic observer is discussed in more detail in Section 4.3.5.

3.3.2 Set-up of the system

The COSTA framework is built up in different layers as illustrated in Fig-
ure 3.1. The bottom layer is not specific for data assimilation but provides
the basic tools for programming the COSTA classes. This layer contains
a number of useful software libraries that are written by third parties and
the basic classes like vectors, matrices, time, functions and handles. The
function and handle classes play an important role in the object orientation
in COSTA and will be discussed in more detail in Section 3.3.3. This layer
contains also robust and efficient numerical methods, input/output facilities
and data storage. On top of this first layer, the data assimilation and cali-
bration specific classes and components are constructed like the tree-vector,
model, observations, model combiner and black box model builder. The top
layer contains complete (utility) programs including the COSTA workbench
program that can be used by the end user to run any combination of model,
observations and data assimilation or calibration method in parallel or se-
quentially. The use of this program is explained in more detail in Chapter
6.

Generic implementations are available for all COSTA classes and compo-
nents. This makes it possible to quickly compose a data assimilation system.
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MPIBLAS LAPACK XML HDF SQLITE NETCDF

Tree−vector Meta informationObservation descriptions

ModelStochastic observations Black−box model builder

Data assimilation method Model combiner

Functions Time Relation Table HandlesTree Vector Matrix

Graphical post processing COSTA workbench
Level of 

abstraction

Third party implementations

Not data assimilation
specific

Data assimilation
specific components
and tools

and utility programs
Data assimilation

Figure 3.1: An overview of the layers in COSTA. The bottom layer contains
non data assimilation and calibration specific software. The middle layer
contains data assimilation components and the top layer contains utility
programs

The developers of a dynamic model initially only need to create a COSTA
model component and can build the whole data assimilation system using
the already existing implementations of the classes. Developers of data as-
similation methods only need to implement the method and various models
are already available to do experiments with.

In a later stage, when necessary it is possible to use alternative imple-
mentations of COSTA classes in order to improve the performance of the
system or add additional functionality like e.g. output to specific data for-
mats.

3.3.3 Object oriented programming in imperative languages

The setup of COSTA is object oriented. However most existing model im-
plementations are in imperative languages like Fortran and C. Therefore
COSTA provides full functionality for these languages. Two COSTA classes,
the function and handle provide the basis for the object oriented concepts
that are available in the COSTA framework.

The COSTA handle is the base of all COSTA classes, it can be compared
to the base class in object oriented languages. A COSTA handle associates
an ID (unique integer value) to an instance of a COSTA class e.g. a vector
or model instance. A handle has two attributes the type of the class and a
block of memory. The size and content of the block of memory are dependent
on the type of the class.
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The second basic COSTA class is the function. The function class holds
a pointer to a function written in e.g. C or Fortran. Typically to a function
that implements one of the methods of a COSTA class. When a function
instance is created, it is possible to directly associate it to a function or to
load the function from a dynamic library.

Most COSTA classes can be replaced by alternative implementations
except for the handle and function classes because they form the core of the
whole COSTA framework. The classes, for which it is possible to provide
alternative implementations, are associated to a third basic class in COSTA
called classimplementation. The classimplementation holds a list of the
functions that together implement the interface of the COSTA class.

Instances of COSTA classes are constructed from these three basic classes.
This is illustrated in Figure 3.2 for an instance of a COSTA vector.

The COSTA framework implements an interface layer for all COSTA
classes. All methods of any class instance that are executed in the COSTA
framework are direct calls to functions in the interface layer with the in-
stance handle as one of the arguments. The interface layer performs some
consistency checks and will then get the corresponding function pointer from
the classimplementation instance. This function will than be called with
the implementation specific data as one of the arguments. The computa-
tional overhead of the interface layer is very limited compared to the total
amount of computations that are generally performed by a method. The
implementation in pseudo code of the interface layer implementation of the
norm2-method of the vector class is given in Figure 3.3.

function cta_vector_norm2(vec,norm){
checkHandle(vec,’isVector’);
func=GetFunctionPointer(vec,’norm2’);
data=GetDataPointer(vec);
func(data,norm);

}

Figure 3.3: Implementation of the interface layer of the norm2 method of
the vector class. The handle of the vector instance is first checked then
the implementation specific data is retrieved together with the function the
implements the method. Finally this function is called with the implemen-
tation specific data block

The interface is more sophisticated for some classes than the example
in Figure 3.3. Some methods in the interface are redundant, which means
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that they can be derived from other methods in the interface. For example
in case of the vector class, every method can be implemented using the
getValues and setValues methods although not computationally efficient.
The interface layer can implement some redundant methods when they are
not provided in the class implementation. This enables rapid development of
class implementations because it is not necessary to implement all methods.
However for an optimal performance it is eventually necessary to implement
them all.

A Java interface is available for COSTA as well. This interface called
OpenDA is developed in collaboration with the developers at Deltares of
DATools, see Section 3.4. Using this interface it is possible to develop data
assimilation and model calibration methods in Java. The interfacing with
Java combines the object oriented syntax and utilities of Java with the
computational efficiency of C and Fortran. The Java interfacing is similar
to the COSTA interface layer.

3.4 Alternative frameworks

COSTA is not the only available software that is useful for creating data as-
similation applications. Implementations of data assimilation methods and
model calibration methods are available in the form of software libraries
and MATLAB-toolboxes. In this section an overview is given of some other
frameworks, packages and software that are like COSTA useful for imple-
menting data assimilation techniques for dynamic models.

ReBEL
A MATLAB toolbox called ReBEL (Recursive Bayesian Estimation Library)
[der Merwe and Wan, 2006] is developed at the Oregon Health & Science
University. The toolbox implements various variations of Kalman and par-
ticle filters. The packages focuses on relatively small models of which full
error covariances can be handled in memory. In order to be able to use a
model with Rebel it is necessary to implement a set of MATLAB functions.
The ReBEL toolbox is not open source but is available free of change for
educational purposes.

DAIHM Toolbox
The DAIHM toolbox [Drécourt et al., 2003, Drécourt, 2001, 2004] is a MAT-
LAB toolbox developed at DHIWater & Environment. The package only
implements an Ensemble Kalman filter. An important aspect of the toolbox
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is the representation of the state-vector. The state-vector is not represented
as a vector but it includes additional information. This information is used
to make a mapping between the spatial representation of the values and the
vector representation that is used in the Ensemble Kalman Filter. Various
tools are available to visualize the results. The models are not programmed
in MATLAB. The original model executables are started from the MATLAB
code. The DAIHM Toolbox is a propriatory piece of software of DHI.

NERSC ensemble Kalman Filter
The NERSC ensemble Kalman filter by [Evensen, 2007] is suited for very
large dynamic models. The interface with the model is realized by reading
the initial state of the ensemble from file and after the assimilation step writ-
ing the ensemble back to file. A parallel version is available to reduce the
memory requirements and computational time. The source is freely avail-
able.

DART
The Data Assimilation Research testbed (DART) [Anderson et al., 2009] is
a framework for data assimilation that is developed at the National Center
for Atmospheric Research (NCAR). DART contains various data assimila-
tion methods. Models can be used in DART by writing a wrapper around
the executable of the model or wrap the model directly by implementing a
number of routines. DART contains an advanced ensemble Kalman filter
implementation including inflation and smoothing. Some of the computa-
tions can be performed in parallel and the system is successfully linked to
some large operational model including CAM, WRF, AM2. DART is not
open source but it is available for research purposes.

DATools
The DATools toolbox [Serafy et al., 2007] is developed at Deltares (for-
merly Delft Hydraulics) to offer a range of data assimilation methods and
tools for the dynamic models that are originaly developed and used at Delft
Hydraulics. An important aspect of DATools is the interfacing with the
end-user. The toolbox contains various tools that simplify the specification
of uncertainty in the dynamic models. DATools has been successfully used
in combination with various models at Deltares.

Palm
The PALM project of Cerfacs [Morel et al., 2008, Lagarde, 2000] offers a tool
to compose a data assimilation application from various units that have been
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created by the programmer. The units are coupled into the overall applica-
tion be linking them using the PALM graphical user interface. The PALM
framework will be in charge in for managing the sequences of the units and
the messages that are send between them. The PALM framework is used
for various operational system including the French Operational oceanogra-
phy project MERCATOR. PALM is propriatory software of Cerfacs but it
is available for other users as well.

The following frameworks are not specially designed for data assimilation
but in principle that can be used for implementing (parts) of a data assim-
ilation framework.

The Dutch OMS
The OMS project was initiated to migrate the two Dutch modeling sys-
tems for Delft3D of Delft Hydraulics and SIMONA of Rijkswaterstaat into
a single system called the Dutch Open Modeling System (OMS). One of the
products was the development of the OMS-backbone a system for combin-
ing and (parallel) running of various software components. The system has
been successfully used to link models in to a larger composite model like
WAQUA-SWAN and Delft3D-FLOW with morphology functionality.

HarmonIT
The HarmonIT project [HarmonIT, 2009] is a European a research project.
The objective is to develop and implement the Open Modeling Interface and
Environment (OpenMI). The OpenMI interface should simplify the linking
of various models. OpenMI is already implemented in various operational
models of various institutes including amonng others DHI, Deltares and
Wallingford. OpenMI makes it possible to combine different models of var-
ious institutions in a single forecasting system.

The DATools toolbox and DART toolbox are the systems that have the
most similarities with COSTA. All three systems are intended to be used
with various models. Another similarity between these projects is that they
were all approximately initiated at the same time. Members of the develop-
ment team of DATools are part of the COSTA users group. This opportunity
has been picked up to start working together in an early stage. The result of
this cooperation is an almost similar design of the data assimilation building
blocks. The first steps are already taken to combine DATools with COSTA
into single framework for data assimilation that will be called OpenDA.

There are three fundamental differences between DART and COSTA.
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DART only implements an ensemble Kalman Filter and the coupling be-
tween DART and the models is develloped for usage with this method.
COSTA and the model interface in COSTA are develloped such that they
can be used for a range of data assimilation methods and model calibration
methods. This does imply that DART cannot be used in the future in com-
bination with other methods but then it is necessary to extend the DART
coupling with models considerably. The DART developers do not use an
object oriented approach and use Fortran variables and structs for storing
data and sharing data. Finally DART is not freely available what makes it
currently not possible to use it in combination with propriatory models or
for commercial use.

PALM, OMS and HarmonIT are mainly concerned in linking software
components. These frameworks are not limited to applications on the field
of data assimilation. These tools provide a mean for software components to
communicate with each other but they do not define what the components
must be able to do such that they can be used and reused in a data assim-
ilation framework. These frameworks are in some sense complementary to
COSTA because the focus of COSTA is to identify the generic components
in data assimilation and design their interface such that they can be reused.
COSTA supports various kinds of parallel computing but this is completely
hidden from the component interface. Frameworks like PALM, OMS and
HarmonIT can be used in combination with COSTA e.g. a COSTA model
interface can be created on top of the OpenMI interface of a model.



Chapter 4

Application for
Hydrodynamic Modelling 1

4.1 Abstract

A problem solving environment for data assimilation called COSTA is de-
veloped at Delft University of Technology. The goal of COSTA is to of-
fer a modular framework where simulation models can be combined with
various data assimilation methods. COSTA defines a number of building
blocks called components. Examples of components are model, method,
stochastic observer and tree-vector. New data assimilation systems can be
created by combining these components. This paper describes the applica-
tion of COSTA to the WAQUA/TRIWAQ shallow water simulation model.
In the past a model specific RRSQRT Kalman filter has been implemented
for WAQUA/TRIWAQ. However, this implementation cannot be used in
combination with other models. The WAQUA/TRIWAQ model is changed
into a COSTA model component and the original RRSQRT Kalman filter
is changed into a generic filter that can be used for other models as well.
The new filter is now a part of the COSTA environment. The original filter
contained a number of WAQUA/TRIWAQ specific aspects e.g. the drying
and flooding of areas in the model. These model specific issues are iden-
tified, isolated and moved into the model component. A COSTA based

1The content of this chapter is publised in Meteorologische Zeitschrift [van Velzen
and Verlaan, 2007]; COSTA a problem solving environment for data assimilation applied
for hydrodynamical modelling, by Nils van Velzen and Martin Verlaan, published in Me-
teorologische Zeitschrift, 16:777-793, 2007. The content is slightly updated for changed
terminology.
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implementation of WAQUA/TRIWAQ with the RRSQRT Kalman filter is
realized and compared to the original system in a number of experiments.
The experiments show that the COSTA based system produces the correct
results and the computational overhead for using COSTA is low. The new
RRSQRT Kalman filter is also combined with other COSTA models in-
cluding the LOTOS-EUROS model for atmospherical transport, chemistry
(chemical reaction) and deposition of air pollution on the scale of Europe.

4.2 Introduction

COSTA (COmmon Set of Tools for the Assimilation of data) is a prob-
lem solving environment for data assimilation and model calibration that
is developed at Delft University of Technology. COSTA offers a modular
framework, containing data assimilation methods, calibration methods and
tools that can be combined with various simulation models [van Velzen,
2006].

COSTA is an open source project released under the LGPL license and
is available at sourceforge.net, project costapse. Under the LGPL license it
is possible to freely use COSTA in combination with open source models as
for propriatory models.

The goal of COSTA is the simplification of the application of data assim-
ilation methods. In this way we want to make data assimilation available to
a larger group of researchers and application areas. COSTA defines a set of
building blocks for data assimilation that can be interchanged. This opens
the way to the reuse data assimilation and calibration methods. Reversely,
new data assimilation and calibration methods developed in COSTA can be
tested on the available models that are already linked to COSTA.

This article describes the application of COSTA to models developed at
the Dutch National Institute for Coastal and Marine Management (Rijk-
swaterstaat/RIKZ). Important tasks of Rijkswaterstaat are: the protection
of the country from flooding, the management of shipping routes and ports
and water management in terms of quantity and quality.

Furthermore Rijkswaterstaat is responsible for the construction, man-
agement and maintenance of public works, and for research and regulations
related to the public works.

The models at Rijkswaterstaat are used for operational purposes, for
supporting policy making, and for research, to gain better understanding of
the physical processes. The most important model is WAQUA/TRIWAQ,
which implements 2D and 3D simulation models for shallow waters: rivers,
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estuaries and coastal areas [Stelling, 1983].
Various data assimilation methods have been implemented for WAQUA/

TRIWAQ over the years. The available methods are the Chandrasekhar
steady state- [Heemink and Kloosterhuis, 1990], RRSQRT- [Verlaan and
Heemink, 1997a] and ensemble Kalman [Evensen, 2003] filters. The ad-
joint of the 2D model, called WAQAD is also developed and is used for
model calibration [Mouthaan et al., 1994], [Verlaan et al., 1996]. There is
however a need to apply the same assimilation methods to other simula-
tion models at Rijkswaterstaat and to extend the number of assimilation
methods, including e.g. POEnK and COFFEE [Heemink et al., 2001] in
the existing software. The addition of new data assimilation techniques to
WAQUA/TRIWAQ is expensive and migration of the existing assimilation
techniques to other simulation software is far from trivial.

The COSTA framework offers tools for tackling these kind of problems.
Therefore Rijkswaterstaat is implementing the COSTA framework in their
simulation systems as it is being developed. The advantage for Rijkswater-
staat is that they can benefit from the advantages of COSTA at an early
stage. At the same time the development of COSTA’s concepts and its
software will also benefit from this. The problems and successes when im-
plementing COSTA in a complex operational system will give important
information for improving the COSTA system.

This article describes the first steps taken, where COSTA is introduced
in WAQUA/TRIWAQ. The existing software is reused and split into two
main parts: a COSTA model component of the WAQUA/TRIWAQ model
and an RRSQRT Kalman filter implementation that can be used in combi-
nation with other COSTA model components and that is equivalent to the
RRSQRT Kalman filter that is currently available in the WAQUA/TRIWAQ
software.

WAQUA/TRIWAQ is an operational system. Therefore the new version
of the software that is developed using COSTA must have the following
properties: the computational results must be very close to the original
version. An explanation must be found for all changes in the results. The
changes made to the software, especially the computational core must be
kept to a minimum and, the computational performance must be similar to
the original software.

The COSTA environment and the main building blocks are presented in
Section 4.3. Here we will also give an overview of the available data assim-
ilation and model calibration methods and describe the RRSQRT Kalman
algorithm in detail.

Existing models have to be linked to COSTA before the available meth-
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ods in COSTA can be used. In Section 4.4 we will illustrate how an existing
model can be linked to COSTA. Here we use the WAQUA/TRIWAQ model
as an example.

The operational WAQUA/TRIWAQ system with RRSQRT filter handles
a number of issues that are specific for the WAQUA/TRIWAQ model. We
will discuss these problems in Section 4.5.

In Section 4.6 we will describe from a software point of view how the ex-
isting RRSQRT Kalman filter is transformed into a reusable COSTA data as-
similation method and the WAQUA/TRIWAQ model is coupled to COSTA.

The new implementation is tested for results, computational perfor-
mance and reusability. The performed test and the results are presented
in Section 4.7.

We will conclude with a short overview of planned developments on the
COSTA environment in Section 4.8 and the conclusions in Section 4.9.

4.3 COSTA

COSTA is a problem solving environment developed at Delft University of
Technology. It is intended to facilitate data assimilation and model calibra-
tion for a wide range of simulation models. It provides a number of building
blocks for data assimilation and calibration systems. Combining and creat-
ing new building blocks should be possible with a minimum of effort. These
building blocks are called components and are discussed in more detail in
Section 4.3.1. There are building blocks for handling the observed data, dif-
ferent assimilation and calibration methods, (stochastic) models and noise
models. Besides these major components, COSTA also defines a number
of smaller more generic components like tree-vectors, vectors, matrices and
time.

COSTA is not the only available software for data assimilation. There
are data assimilation methods available in the form of software libraries or
MATLAB-toolboxes. Among many others there are the ReBEL developed
at OHSU, the DAIHM MATLAB Toolbox [Drécourt, 2004] and the NERSC
ensemble Kalman filter EnKF. The ReBEL toolkit contains a number of
Kalman filters and particle filters. The DAIHM and NERSC provide an
ensemble Kalman filter. These available methods are in general high qual-
ity methods. The number of available methods is however limited and all
methods use a different interface. This means that a model that is adjusted
to work with a particular package cannot be used in an other package.

The models used for data assimilation are in general very complex and
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the overall model is often a combination of several sub-models. The PALM
project of Cerfacs [Lagarde, 2000] and the ESMF project [Hill et al., 2004]
offer tools for handling these problems. Other projects that are very sim-
ilar but not especially designed for data assimilation are OMS [Hummel
et al., 2002] of the Dutch Rijkswaterstaat and WL|Delft Hydraulics and the
HarmonIT project [Gijsbers, 2004]. These projects offer tools for combin-
ing different components like model and assimilation method in a (parallel)
environment.

The focus of COSTA is to identify the generic components in data as-
similation and design their interface. This approach makes it possible to
interchange components. The other projects that are mentioned here like
PALM, ESMF, OMS and HarmonIT mainly provide tools for the combina-
tion of components in a parallel environment. These projects do not define
a set of components with their interface. At that point COSTA is supple-
mentary to PALM, ESMF, OMS and HarmonIT.

4.3.1 COSTA components

COSTA provides building blocks in the form of COSTA components. COSTA
components are very similar to classes in C++. Instances of a C++ class
or a COSTA component are called objects.

Objects have a state, which can be seen as its value(s). For every com-
ponent, COSTA defines an interface, which is a set of methods. A method
is something that can be done with an object: a function that returns in-
formation on the component or changes its state.

COSTA defines various components on different levels. These compo-
nents are the building blocks of the data assimilation system. An overview
of the most important components is given in Table 4.1.

The components are split up into two groups. The first group are the high
level components: the model, observations and data assimilation method.
The combination of these three components form a data assimilation system.

The second group of components contains a number of smaller useful
components like vector, matrix, time, tree-vector and pack object. These
components are used for building the main components and to pass infor-
mation between components.

Some of the components in Table 4.1 are marked with an asterisk. This
indicates that it is possible to add alternative versions of these components
to the COSTA environment. COSTA provides one or more versions of all
the components that are listed. For example there are a number of academic
models available in COSTA that are useful for testing assimilation methods.
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Component Name Short Description

Model(*) Simulation model.

Stochastic observer(*) A set of available observations, including the stochastic
roperties and observation description.

Data assimilation method(*) Data assimilation methods and model calibration meth-
ods.

Observation description(*) The properties of a set of observations. The description
describes the physical interpretation of the observations.

Tree-vector
Extension of a vector. The tree-vector can be build from
other tree-vectors and optionally contains meta informa-
tion for interpretation of the values in the vector.

Meta information(*)
Optional information associated to a tree-vector. It de-
scribes the physical meaning of the values in a tree-vector
This information is used for carrying out interpolations
between different tree-vectors.

Vector(*) Basic vector for carrying out basic linear algebra opera-
tions.

Matrix(*) Basic matrix for carrying out basic linear algebra opera-
tions.

Tree
Dynamic data structure in the form of a tree where all
leafs contain an instance of a arbitrary COSTA compo-
nent. The tree is used for grouping data in a structured
way.

Pack
Component in which we can store information in a con-
tinuous block in memory. Most COSTA components can
be packed. Their internal state is then added to the con-
tent of a pack object.

Time Component for describing time in an uniform way.

Model Combiner Create a COSTA model that is the combination of two
or more existing COSTA models.

Model Builder SP

Single Processor modelbuilder. This model builder sim-
plifies the development of new COSTA models from
new and existing software for models with some spe-
cial properties. The model builder handles most of the
code needed to support the object oriented property of
COSTA models where multiple instances of a model can
be created.

Model Builder PAR
PARallel model builder. This modelbuilder extends a
COSTA model for parallel computing. The computation
of timesteps various model instances are of the performed
in parallel when this model builder is used.

Table 4.1: Overview of the major components in the COSTA environment
including a short description. Components that are marked with an asterisk
(*) can be extended with alternative versions. For these components it is
possible to code and use an alternative version of this component instead or
as addition to the existing versions of the component.
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However it is possible to extend the set of available models.
The available components are a starting point for relatively quickly build-

ing a data assimilation system. It is possible to provide an alternative version
of some of the components e.g. for improving performance or functionality.
These alternative versions of components can be used in other data assimi-
lation systems as well because the interface is not changed.

The model, tree-vector, stochastic observer and available data assimila-
tion and calibration methods will be described in detail in the next sections.
After that we will give a detailed description of the RRSQRT Kalman filter
that is now part of the COSTA environment.

4.3.2 Mathematical description of a COSTA-model

COSTA models are COSTA components and therefore have a state (value)
and an interface. COSTA models are intended to describe stochastic models,
which means that a model is available for the uncertainties (differences be-
tween model results and reality). Deterministic models are seen as a special
case of a stochastic model, in which the uncertainties are ignored (assumed
zero).

The state of a COSTA-model is denoted as x(t) and the ’formal’ notation
for a model becomes,

dx(t)
dt

= M (t,x(t),p,u(t),w(t), t) (4.1)

where M denotes the model operator, which is in practice often an exist-
ing piece of software that solves the model-equations numerically. In most
cases an existing model will not describe uncertainties and thus a stochas-
tic extension is necessary. The inputs to the model are the initial state
x(0), time-independent parameters p, time dependent forcing u(t), and a
stochastic forcing w(t).

Besides a model, observations are sometimes available as well. The ob-
servations that available at time t are denoted by y(t). The corresponding
observation operator is:

y(t) = H (x(t)) + v(t) (4.2)

the operation H interpolates and transforms the state variables to the ob-
servations. The observation error v(t) includes both the instrumental and
representation error and is supposed to have zero mean and covariance R(t).
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4.3.3 Interface functions of the COSTA model component

The previous section has discussed the structure of COSTA models. The
interface of the COSTA model component that contains all the functions
necessary to support data assimilation methods is discussed in this section.

The ’value’ of a COSTA-model consists of {x,u,p}. The model interface
contains methods for changing the value of the model or getting information
from the model’s value. Table 4.2 gives an overview of all the methods that
form the interface of the model component.

An important property of the SetState, GetState and AxpyState op-
erations is that they can be directly performed between different model
instances. This will avoid unnecessary copying of data.

The AxpyState operation between two model instances can be used to
nicely handle some model specific problems inside the model component and
not in the filter implementation.

The AxpyState can be used by assimilation methods to update the state
of the model or to compute the difference between model states. Addition
and subtraction of model states does not always yield results that can be
used without problems in the following steps of the data assimilation meth-
ods. An updated state can have no physical meaningful value e.g. negative
concentrations or unstable stratification. The computed difference between
states of two (nonlinear) models sometimes needs some special treatment
in order to avoid unstable data assimilation methods. These model spe-
cific issues can be handled inside the AxpyState method of the model when
necessary.

The list of methods in the COSTA model interface will grow in time
when more assimilation methods will be added to COSTA. However this
does not mean that the creation of a COSTA model component for a model
will become more and more time consuming.

Some of the methods can be derived from other methods. The various
Axpy methods can be realized using the corresponding Get and Set methods.
These methods will automatically be realized by COSTA when they are not
provided.

There are however methods that cannot be realized automatically when
they are not provided. In that case it will not be possible to use the model in
combination with all the available data assimilation and calibration meth-
ods. For example when the model does not implement the methods for
changing the model parameters it cannot be used in combination with the
available model calibration methods.

When a model is linked to COSTA it is at first only necessary to im-
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Create

Create a new instance of a model having its own
internal state. Depending on the model all kinds of
initialization will be performed when this method
is called.

Free
Free a model instance, deleting its model state and
performing all tasks to stop the model instance in
a regular way and clear the used resources.

Compute
Carry out the time steps necessary to step through
a given time span (Equation 4.1).

GetObsValues

Interpolate the model prediction that corresponds
to a given set of observations. The information
on the observations are provided in the form of an
observation description component.

GetObsSelect

Given a set of observations, described by an ob-
servation description component, return the selec-
tion of observations that can be provided by the
GetObsValues method of the model. This method
is used to filter out observations of quantities that
are not described by the model or are measured
outside the modelled area.

AddNoise
The addition of random noise w in the Compute
can be switched on and off using this method.

GetNoiseCount
Return the number of noise parameters of the
stochastic model.

GetNoiseCovar Return the (root of) noise the covariance matrix
G.

SetState Set the state x of the model instance.
GetState Get a copy of the model state x.

AxpyState

Modify the model state by adding α times a tree-
vector to the state of the model. This operation can
be performed between a model and a tree-vector as
well between two model instances.

SetParam Set the model parameters p.
GetParam Get a copy of the model parameters p.
AxpyParam Add a offset to the model parameters p.

SetForc
Set the forcings of the model to a given value for a
specified timespan.

GetForc Get the forcings of the model for a given time

AxpyForc
Add a constant offset to the model forcings for a
given timespan.

Table 4.2: Overview of the methods of the interface of the COSTA model
component.
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plement the methods that are needed for the type of data assimilation or
model calibration method that will be applied first for the model. The miss-
ing methods can be added in a later stage when usage in combination with
other methods is needed.

4.3.4 Tree-vector

The tree-vector is an extension of a vector component. A tree-vector either
contains a single vector or is a concatenation of a number of tree-vectors,
called sub-tree-vectors in this context. A COSTA tree-vector represents a
tree structure where the leafs are vectors. The usage of sub-tree-vectors
makes it possible to concatenate models where the state of the two models
are the sub-states of the state of the concatenated model. An example
of such a concatenation is the extension of a deterministic model into a
stochastic model (see Equation 4.15). The sub-states are also very useful if
the state of the model is not represented as a single array inside the model
source code but is distributed over a number of arrays. Each array can be
associated with a single sub-tree-vector combined into the tree-vector of the
whole model.

Every (sub-) state has a tag. Tree-vectors having the same tag are
considered to be the same, meaning they have the same structure of sub-
states, length and data-types.

The Tree-vector of a model has a unique structure. Knowledge of the
structure is not necessary for performing manipulations on the state. A
tree-vector can always be manipulated like a normal vector. COSTA offers
a set of methods for manipulating tree-vectors.

4.3.5 Stochastic observer and observation description

The observed values are available in the form of a stochastic observer in
COSTA. An instance of a stochastic observer holds a number of observa-
tions including their distribution and covariance. The stochastic observer
also includes the available additional information on the observed values
like location, unit and physical meaning. This additional information is
represented in the form of an observation description component.

The information in the observation description component can be rep-
resented by a table where each column has a unique name called key. A
row in this table contains all information on a single observed value. The
keys can be freely selected and depend on the type of observation. The only
mandatory key is time.
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It is possible to create a new instance of a stochastic observer that is a
subset of an existing stochastic observer. The selection can be based on the
time associated with the observations or more generally based on a selection
criterion formulated in a subset of SQL.

The information in the observation description component is conceptu-
ally represented as a table. It does not imply that it needs to be stored in
memory in the form of a table. COSTA includes a default implementation of
the stochastic observer and observation description components. The obser-
vations and their description are stored in a database containing two tables.
One table contains time independent information that can be shared by var-
ious observations. The other table contains all time dependent information
for each observation. The data is externally represented as being one large
table but it is stored in a space efficient way.

In order to be able to use the default implementation of the stochastic
observer it is necessary to convert existing sources of observations into a
COSTA observation database. An alternative approach is to implement the
interface of the stochastic observer and observation description component
for an existing storage format or database.

4.3.6 Data assimilation and calibration methods in COSTA

The data assimilation and model calibration methods form the core of
COSTA. The methods are developed such that they do not contain model
specific information. All interaction between the method, the model and the
observations takes place by only using the defined methods in the interface
of the components. A model component that implements the COSTA model
interface can be combined with all the available methods in COSTA.

However this does not guarantee that the combination between a given
model and a data assimilation method will always be successful. The success
of the application of a specific method depends on the model properties e.g.
the nonlinearity of the model. In some cases it is also necessary to handle
some computations within the method in a model specific manner in order
to avoid problems like instability of the method.

This does however not mean that we cannot use a model independent
method as offered by COSTA. We will illustrate in Section 4.5.2 that a
necessary model specific computation can be handled within the appropriate
method of the COSTA model interface in specific cases.

Currently COSTA contains the following sequential data assimilation
methods: Ensemble Kalman Filter (EnKF) [Evensen, 2003], Ensemble Square
Root Filter (EnSRF) [Whitaker and Hamill, 2002], Complementary Orthog-
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Data assimilation methods
EnKF Ensemble Kalman Filter.
EnSRF Ensemble Square Root Filter.

COFFEE
Complementary Orthogonal subspace Filter for Efficient
Ensembles.

RRSQRT Reduced Rank Square Root filter.
Model calibration methods
CG Conjugate Gradient method.
LBFGS Quasi Newton methods using the LBFGS

method for approximating the Hessian
matrix.

Simplex Simplex method.

Table 4.3: Overview of the data assimilation and model calibration methods
that are currently available in the COSTA environment.

onal subspace Filter For Efficient Ensembles (COFFEE) [Heemink et al.,
2001] and RRSQRT Kalman filter [Verlaan and Heemink, 1997a].

The RRSQRT Kalman filter is added to the COSTA environment as part
of the work that is presented in this article. The algorithm is described in
Section 4.3.7.

COSTA also offers methods for model calibration where the time inde-
pendent model parameters p are calibrated. The available methods are:
the Conjugate Gradient (CG) method [Fletcher and Reeves, 1964] , a Quasi
Newton methods using the LBFGS method [Nocedal, 1990],[Byrd et al.,
1994] and the Simplex method [Nelder and Mead, 1965].

All data assimilation and model calibration methods that are currently
available in COSTA are presented in Table 4.3.
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4.3.7 The RRSQRT Kalman filter

The RRSQRT Kalman filter is an approximation of the Kalman filter equa-
tions:

xf
k+1 = Mkxa

k (4.3)

Pf
k+1 = MkPa
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T
k + Qk (4.4)
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where M is the model operator, xf the forecasted state vector, xa the an-
alyzed state vector, Q the error covariance matrix of added noise to the
model, y the observed values and H the interpolation operator between
model state and observations.

The model error covariance matrix P is substituted by the product of
the root matrix LLT . Equation 4.4 is replaced by

Lw
k = [MkLa

k,Q
r
k] (4.8)

where Qr
k is a root matrix of Qk such that Qk = Qr

k (Qk)
T .

To avoid an ever-increasing number of columns in the L-matrix Lw
k , a new

square-root matrix Lf
k+1 will be calculated from Lw

k , with a fixed number
of columns. This narrower L-matrix reduces the rank of the approximated
covariance matrix to (at most) the chosen number of columns. Hence the
name ’Reduced Rank Square Root’ filter.

The new square-root matrix Lf
k+1 is chosen to minimize the error-measure

∆P := ‖Pk+1 − Lf
k+1

(
Lf

k+1

)T
‖sF . (4.9)

The norm used, ‖A‖sF :=
√∑

i,j(siai,j)2, is called the scaled Frobenius
norm. The scaling parameters si form a diagonal matrix, indicated by the
letter S. The determination of the scaling is important and model depen-
dent.

The L-matrix Lf is found by

Lf = LwU:,1:n (4.10)
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where U:,1:n is used to indicate the first n columns of U, with n the chosen
maximum number of columns in Lf . The columns of U:,1:n are the eigen-
vectors of (SLw)T (SLw) that correspond to the largest eigenvalues, where
S denotes the diagonal scaling matrix corresponding to scaling vector s.
Since the matrix (SLw)T (SLw) is symmetric positive definite, the matrix U
is orthonormal (UUT = I), and its eigenvalues are real and nonnegative.
Therefore an eigendecomposition exists of the following form:

(SLw)T (SLw) = UDUT (4.11)

where D is a diagonal matrix with decreasing, positive elements (d1,1 ≥
d2,2 ≥ · · · ≥ 0).

4.3.8 Propagation of the L-matrix

The columns of the root covariance matrix L contain in general nonphysical
values. For nonlinear models it is not possible to compute the propagation
of the columns of L (Equation 4.8) meaningfully using:

(Lw
k ):,j = Mk

((
Lf

k

)
:,j

)
(4.12)

where the subscript :, j indicates the j-the column of the L matrix. A tan-
gent linear model (TLM) can be used for the propagation of the columns of
L. However, the creation of a TLM is not trivial. The RRSQRT implemen-
tation will therefore use a finite difference approximation around the central
model state xf

k . The columns of L are propagated according to:
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assuming that xf
k + δLf

k for a selected δ is near a physical value and can be
propagated meaningfully by the model Mk .

4.4 Linking models to COSTA

There are various ways to create a COSTA model component from an ex-
isting model. The necessary approach depends on the type of model and
whether the source code of the model is available and can be changed. In this
section we will illustrate how a COSTA model component can be created
from an existing model. For this purpose we use the WAQUA/TRIWAQ
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model. The approach can be used for a whole class of models that have the
same timestepping structure as WAQUA/TRIWAQ.

4.4.1 WAQUA/TRIWAQ

The Dutch National Institute of for Coastal and Marine Management (Rijk-
swaterstaat/RIKZ) uses various simulation models for operational purposes.
The most important application is WAQUA/TRIWAQ.

WAQUA [Stelling, 1983] is used for two-dimensional and TRIWAQ for
three-dimensional hydrodynamic and water quality simulation of estuaries,
coastal seas and rivers. WAQUA/TRIWAQ is based on the shallow water
equations.

WAQUA/TRIWAQ is able to interact with other models for short waves,
sediment transport, morphodynamics and ecological processes. WAQUA/TRI-
WAQ can simulate the hydrodynamics and the distribution of dissolved sub-
stances in geographical areas based on rectilinear, curvilinear or spherical
coordinates.

The geographical areas in WAQUA/TRIWAQ are bounded by any com-
bination of closed boundaries (land) and open boundaries. Open boundaries
force the flows in the model by water levels, velocities, Riemann invariants,
discharges or distributed discharges. The system accounts for sources of
discharge, such as rivers or outfalls, for tidal flats, for islands and dams,
movable barriers or sluices and weirs.

WAQUA/TRIWAQ is by itself not a model but software implementing a
numerical method that makes it possible to do simulation of shallow water.
The actual models are defined in the form of an input file, that describes
all aspects of the model like geometry, forcings etc. In this article we will
however often refer to the WAQUA/TRIWAQ model. In this case we mean
the WAQUA/TRIWAQ software in combination with an arbitrary input file
specifying the model.

Rijkswaterstaat has developed a large number of WAQUA/TRIWAQ
models of rivers, estuaria and parts of the North Sea. Examples of models
simulated with WAQUA/TRIWAQ are the Dutch Continental Shelf Model
(DCSM), modelling a large part of the north sea and the Kuststrook model,
a model of the coastal region of the Netherlands. The grids of these models
are shown in Figure 4.1 and 4.2.
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Figure 4.1: The grid of the Dutch Continental Shelf Model (DCSM). The
DCSM model is a 2-dimensional model that is being used for day-to-day sea
level forecasts.
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Figure 4.2: The grid of the Kuststrook model, a detailed 3-dimensional
model of the coastal region of the Netherlands. The model is used for various
applications.
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4.4.2 Creating a COSTA model component of an existing
model

In COSTA, all interaction between a data assimilation method and a model
takes place by use of the COSTA model interface. Therefore in order to use
a model in COSTA, it is necessary to adjust or wrap an existing model such
that it implements the COSTA model interface. We will illustrate how a
model of which the source code is available can be wrapped. We use the
WAQUA/TRIWAQ model as an example.

Compute first half timestep of ADI−scheme

t=t+0.5*dt

Compute second half timestep of ADI−scheme

Process input and build geometry

Set intitial time t=tstart

t=t+0.5*dt

Read forcings from input

1

5

7

4

6

3

2 t<tstop

Figure 4.3: Nassi-Shneiderman diagram of the stand alone WAQUA/TRI-
WAQ program. After the initialization where the model is constructed from
the input, the model is simulated with fixed timesteps of length dt. The
shallow water equations are solved using an ADI-scheme. Each timestep is
therefore spit up into two half time steps. The necessary data needed for
computing the model forcings is read from the input at each timestep.

The program flow of WAQUA/TRIWAQ is given in the form of a Nassi-
Shneiderman diagram [Nassi and Shneiderman, 1973] in Figure 4.3. the
shallow water equations are solved in WAQUA/TRIWAQ using an ADI-
scheme. Each timestep is therefore divided into two half timesteps. At the
start of the global timestep the necessary model forcings are read from the
input.

In this example we will first create a COSTA model component of the
deterministic WAQUA/TRIWAQ model. The deterministic model is ex-
tended into a stochastic model afterwards. For application with the forward
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assimilation methods in COSTA it is sufficient to implement the methods;
Create, GetState, SetState, Compute, AxpyForc and GetObsValues.

III Copy internal variables to COSTA−state of model instance

7 Compute second half timestep of ADI−scheme

t=t+0.5*dt6

5 Compute first half timestep of ADI−scheme

t=t+0.5*dt4

II

Read forcings from input3

Set t

I Copy COSTA−state of model instance to internal variables

Add offset to forcings (as set with axpyforc)

Figure 4.4: Nassi-Shneiderman diagram of the Compute method. Most of
the program code is reused. Three steps are added in order to copy the state
of the model instance into the variables of WAQUA/TRIWAQ and back and
to add the specified offset on the forcings of the model.

The Compute method computes a model timestep of a model instance.
The Nassi-Shneiderman diagram in Figure 4.4 illustrates how the Compute
method is created using the existing code of WAQUA/TRIWAQ. Each
model instance holds its own state, time and the offset to the forcings if
these are specified by the AxpyForc method. Three parts of code, denoted by
Roman numerals, have to be added in order to create the compute method.

The first part of added code (I) will copy the state of the model instance
into the variables that hold the state in the existing WAQUA/TRIWAQ
code. At the end of the timestep the model state is copied from the internal
variables into the state of the model instance (III). The model component of
WAQUA/TRIWAQ also implements the AxpyForc method that is used to
add noise to the forcings of the model. In order to implement this, we add
the specified change to the forcings after the model forcings are computed
(II).

The Create method will create a new instance of the COSTA model
with its own internal state. The first time Create is called it will perform
the general WAQUA/TRIWAQ initialization, Step 1 in Figure 4.3, building
the geometry of the model and initializing WAQUA/TRIWAQ. The model
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state is defined by the time, the state-vector and a specified change to the
forcings. These items are allocated at the Create.

The methods GetState, SetState and AxpyForc can be created quickly
since they involve the copying of the data from and to the data that is
associated with a model instance.

Finally the method GetObsValues needs to be created. This method
interpolates the model state towards the observations. The observations
are described in the form of an observation description component. The
observation holds the description in ”key”-”values” pairs. The amount of
work needed to implement this method depends on what information is
provided in the observation description component and what interpolation
methods are already available. The observation description components in
WAQUA/TRIWAQ contains the name of the station that is also specified in
the model input. The matching between the model state and the observation
can therefore be resolved relatively easy.

4.4.3 Extending the deterministic model into a stochastic
model

In the previous section we have given a description of how a COSTA model
component can be created from an existing simulation model, using the
WAQUA/TRIWAQ model as an example. The created model is however
deterministic and does not describe the stochastic forcings w(t).

Before we can use the model in combination with one of the available
data assimilation methods in COSTA we need to add the stochastic forcings
to the model. We will use the WAQUA/TRIWAQ model as illustration
how the stochastic forcings can be added to a deterministic model from a
software engineering point of view.

For most data-assimilation algorithms the stochastic forcing w(t) needs
to be uncorrelated in time. For WAQUA/TRIWAQ we want to model time-
correlated noise n(t). This time correlated noise can be modelled as uncor-
related noise that is passed through a filter. For WAQUA/TRIWAQ we use
the popular AR(1) filter:

dn
dt

= − 1
T

n(t) + w(t) (4.14)

which transforms white noise into a series with exponential temporal corre-
lation.

The deterministic model and an AR(1) model for the stochastic forcing
of boundary conditions can be combined into one model. Mathematically
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this is done by extending the state

x̃(t) = [x(t);n(t)]. (4.15)

The deterministic COSTA model can be extended into a stochastic model
by implementing the noise model directly into the existing deterministic
model. An alternative approach is not to change the deterministic model
component but to create a new model component that is the combination of
a noise model and the unchanged deterministic model. The two models can
be combined into a larger model in COSTA using a component called the
ModelCombiner. The coupling of a deterministic model and a noise model
into a stochastic model is illustrated in Figure 4.5.

In the case of WAQUA/TRIWAQ the noise is modelled using an AR(1)
model and added to the forcings u(t). The AR(1) model is by itself a stochas-
tic COSTA model component also implementing the methods AddNoise,
GetNoiseCount and GetNoiseCovar.

A timestep of the stochastic WAQUA/TRIWAQ model is given by

x̃(t + ∆t) =
[

x(t + ∆t)
n(t + ∆t)

]
=

[
M (t,x(t),u(t) + n(t)))
N (t,n(t)) + w(t)

]
(4.16)

where M denotes the deterministic WAQUA/TRIWAQ model and N a dis-
crete the AR(1) noise model. The only interaction between the AR(1) model
and the deterministic model is the addition of the noise n(t) to the forcings
u(t) of the model. This interaction is realized using the AxpyForc method
of the model interface of the WAQUA/TRIWAQ model.

The tree structure of the COSTA state-vector simplifies the coupling of
the noise model and the WAQUA/TRIWAQ model. The state of the com-
bined model is a state with two sub-states, the WAQUA/TRIWAQ state and
the noise state. The methods of the combined model are trivial and hardly
produce overhead. For example the GetState method will return the com-
bined state of the model by using the GetState method of the deterministic
and noise model. The Compute method will also execute the Compute meth-
ods of the two models. It will however use the AxpyForc method of the
WAQUA/TRIWAQ model in order to add the noise to WAQUA/TRIWAQ
before it performs the Compute method.

The model that combines WAQUA/TRIWAQ to the AR(1) model is in-
dependent of the model that is specified in the input of WAQUA/TRIWAQ.
The noise model however, does depend on the model and geographical area
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that is simulated. The AR(1) model has its own configuration and needs to
be specially configured for the model that is simulated using WAQUA/TRI-
WAQ.

COSTA model component COSTA model component

COSTA model component

Deterministic model

Stochastic Model

Noise model

Figure 4.5: Example of a coupled model. A deterministic simulation model
which implements the COSTA model interface is coupled with a noise model.
The combination is a new COSTA model implementing a stochastic version
of the deterministic model. Since the noise model and deterministic model
are kept as two separate models it is possible to replace the noise without
changing the deterministic model.

4.5 The WAQUA/TRIWAQ data assimilation sys-
tem

Various data assimilation methods have been added to WAQUA/TRIWAQ
in the past including the RRSQRT-filter. The data assimilation system
where WAQUA/TRIWAQ is combined with the RRSQRT-Kalman filter is
used in an operational environment. This version of the software is not based
on COSTA and there is also no clear separation in the software between
the various building blocks like deterministic model, stochastic model and
data assimilation method. The lack of separation makes the software very
complicated. An other disadvantage is that the available data assimilation
code cannot be reused for other applications and it is hard and expensive
to add new alternative data assimilation methods to WAQUA/TRIWAQ.

In the following subsections we will discuss some of the model specific
properties and features of the original version of the data assimilation system
of WAQUA/TRIWAQ and the model specific RRSQRT Kalman filter imple-
mentation. In Section 4.6 we will explain how this model specific properties
are handled in the new COSTA based system.
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4.5.1 Scaling of the state-vector

The determination of the narrower L-matrix Lf as explained in Section
4.3.7 uses the scaling matrix S. This matrix, which is taken in the form of
a diagonal matrix, describes the relative importance of each of the state-
vector’s entries. The matrix SL is the square-root matrix of the covariance
matrix of the scaled state-vector z := Sx.

In the scaled state-vector, it should be possible to compare its vector
entries meaningfully. The state-vector x of WAQUA/TRIWAQ, however,
contains dissimilar quantities like water levels, flow velocities, salt concen-
trations, turbulent quantities k and ε and noise parameters.

The scaling is determined according to the amount of energy that is
related to the variables in the state-vector.

The scaling factors for the noise parameters are determined differently.
The idea behind the scaling is ’conservation’ of uncertainty. The scaling
factor of the j-th noise parameter is determined such that:∥∥∥M0

(
xf

0 + ejp
)
−M0

(
xf

0

)∥∥∥
s

= ‖ejp‖s (4.17)

where we use the scaled Euclidean norm ‖x‖s :=
√∑

i(sixi)2 and ej denotes
a unit vector with 1 at the position of the j-th noise parameter in the state
and p a selected perturbation on the noise parameter. The scaling parameter
sj for the j-th noise parameter is then defined by:

s2
j =

∥∥∥1φ
(
M0

(
xf

0 + Lf
0

)
−M0

(
xf

0

))∥∥∥2

s

(1− α2) p2
(4.18)

where 1φ denotes an identity matrix with zeros on the diagonal at the po-
sitions of the noise parameters in the extended state-vector and α the noise
time correlation parameter.

4.5.2 Drying and flooding

During the simulation period of a WAQUA/TRIWAQ model, it is possible
that dry areas will flood and flooded areas will become dry. The numerical
solution method cannot handle this in a continuous way. Almost dry cells
are taken out of the computations by putting screens between computational
cells. No water can flow trough a screen. When areas are flooded these
screens are removed. Figure 4.6 shows a computational area where screens
are placed to isolate temporarily dry areas.
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Figure 4.6: part of the Kuststrook-model where the river Ems discharges
into the Wadden sea. Some areas are dry and taken out of the computations
by screens that are placed between computational cells. The screens are
denoted by the black lines in the figure.
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The addition and removal of screens is handled during the iterative pro-
cess and the screens cannot be determined directly from the model state.
The screens must therefore be seen as a part of the model state:

x =
(

xIR

xIN

)
(4.19)

where xIR denotes the real part of the model state containing the waterlevels,
velocities, salinities, etc. and xIN the discrete part of the state containing
the screens.

Data assimilation methods can handle xIR but cannot handle xIN . The
screens are therefore ignored in most computations in the data assimilation
method.

When the difference is computed between two model states, as in the
propagation of the L matrix (Equation 4.13) and the computation of the
noise scaling parameters (Equation 4.18) the screens cannot be ignored.
Changes in the screens can locally result in large differences between states.
The RRSQRT Kalman filter will become unstable without special handling
at these gridcells.

To solve this problem the RRSQRT Kalman filter implementation in
WAQUA/TRIWAQ will take the screens into account when subtracting two
model states, setting the difference to 0 for all grid cells where the screens
are different. The RRSQRT implementation is therefore model specific.

4.5.3 Noise model

The stochastic model of WAQUA/TRIWAQ is similar to the stochastic
model that is described in Section 4.4.3. An AR(1) process is used to de-
scribe the noise on the forcings n. The noise is defined on a courser grid than
the model and is therefore interpolated before being added to the model in
order to reduce the number of noise parameters.

WAQUA/TRIWAQ implements an ADI method for solving the 2D and
3D shallow-water equations. Using the ADI method, the time discretization
is split into an implicit step for d/dx and then another implicit step for d/dy,
where x and y denote the horizontal and vertical grid directions respectively.
The noise time correlation α is applied to the noise parameters, after each
half time-step. The noise model is made part of the ADI solution scheme as
a result.
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4.6 The COSTA model component of WAQUA/TRI-
WAQ and the RRSQRT implementation

The existing data assimilation system of WAQUA/TRIWAQ that contains
the RRSQRT method is split into parts. We have created a COSTA model
component according to the strategy that is presented in Section 4.4. We
have also transformed the existing RRSQRT-filter implementation into a
COSTA data assimilation method that can be used in combination with
other models that implement the COSTA model interface.

In this section we will explain how this spitting up in parts is performed.
In Section 4.5 we have described the model specific issues including the
handling of the drying and flooding. Appendix 1 gives a detailed description
on the handling of drying in the COSTA component of WAQUA/TRIWAQ.

4.6.1 Stepwise transformation

The breaking up in parts of the existing software is performed in various
steps. The steps are selected such that we have a working data assimilation
system at the end of each step. In this way we can do tests in order to track
down errors at an early stage.

In the first step we have restructured the existing code. The filter code
and model code are isolated as much as possible and the model specific
handling in the filter code is identified.

In the second step we have introduced the COSTA components for hold-
ing the data that is exchanged between model and data assimilation method.
In this stage we introduce the COSTA tree-vector for holding the model state
and the observations are handled using the stochastic observer.

The COSTA model component of WAQUA/TRIWAQ is realized in the
third step. All interaction between the model and the RRSQRT filter is
performed using the available methods in the model interface.

The final step consists of splitting up the software. The RRSQRT filter
is integrated into the COSTA environment whereafter it is available for all
users of COSTA. The WAQUA/TRIWAQ model that now implements the
COSTA model interface is compiled into a library.

At all stages we have taken special care concerning changes to the model
code of WAQUA/TRIWAQ. At each point we have tried to minimize the
changes such that changes to the official version of the model can be inte-
grated easily into the COSTA version.
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4.6.2 The COSTA model component

The size and content of the state-vector in WAQUA/TRIWAQ is not fixed.
The dimension and even the existence of parts of the state are dependent on
the model that is specified in the input. For example, the part of the state
that holds the concentrations of dissolved substances is only present when
these are specified in the input. The structure of the state vector including
all elements that can be part of the state is given in Figure 4.7.

concentrations

water levels

turbulent energy

turbulent dissipation

flow velocities

velocities

waterlevels

discharges

Rieman invariants

boundary noise

wind velocities noise

viscosity noise

Stochastic

model

Deterministic

model

Noise

model

Figure 4.7: Overview of the sub-states that together form the state of the
stochastic WAQUA/TRIWAQ model.

From the structure of the state-vector in Figure 4.7 we can identify
the part of the state that belongs to the noise model and the part that
belongs to the deterministic model. The state of the stochastic model of
WAQUA/TRIWAQ is the concatenation of the noise parameters and the
state of the deterministic model.

The COSTA state-vector of the deterministic WAQUA/TRIWAQ model
is build up from sub-states. Each of the sub-states is associated with the
corresponding array in the WAQUA/TRIWAQ source code.

Noise is added to forcings of the WAQUA/TRIWAQ model by use of the
AxpyForc method in the model interface. The various forcings that can be
specified in the input are divided in groups.
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In the original software there is no separation between the deterministic
model and the noise model. The data assimilation method only interacts
with the stochastic model and has therefore no knowledge on the existence
of the deterministic model. Since the data assimilation does not need to
have knowledge on the deterministic model, it is possible to transform the
existing combined model directly into a COSTA model component. However
we have chosen to create a separate deterministic model and combine it with
an AR(1) model into a stochastic model, as described in Section 4.4.3, for
more flexibility.

4.6.3 COSTA RRSQRT Kalman filter

The RRSQRT Kalman filter of WAQUA/TRIWAQ is now a generic filter
and a part of the COSTA environment. The RRSQRT filter can be used
with other COSTA models as well. The filter algorithm is presented as a
Nassi-Shneiderman diagram in Figure 4.8.

Some of the steps are marked as an optional user function. It is possible
to provide a routine for performing these tasks. A generic implementation
will be used whenever a user function is not provided. A proper scaling
vector for the RRSQRT algorithm is necessary for most models to work.
When no routine is provided for computing a scaling vector the RRSQRT
algorithm will scale by identity. This will however only be useful for a very
special class of problems. In order to have good results with any truncation
based assimilation algorithm like RRSQRT, COFFEE and POEnK it is
important to provide a good scaling procedure for the model.

For WAQUA/TRIWAQ we have implemented all user functions. the
scaling of the deterministic model is based on the energy principle as de-
scribed in Section 4.5.1. This scaling method involves knowledge of the
model itself and can therefore not be handled in a generic way. The output
routines of step 6 and 8 prints uncertainty in the various quantities in the the
model as represented by the L-matrix. The end of timestep is used for writ-
ing all the simulation results after assimilation to the WAQUA/TRIWAQ
data-files.

4.7 Results

In this section we will present the test we have carried out with the COSTA
version of the RRSQRT filter and the COSTA model component of the
WAQUA/TRIWAQ model. The results are split into two sections.



4.7. RESULTS 77

Output information on the uncertainty in the 
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Figure 4.8: Nassi-Shneiderman diagram of the RRSQRT method as available
in the COSTA environment. Some of the steps are marked as an optional
user function. These steps can be replaced by code of the user. Addition
of a proper user implementation of the scaling will be necessary for most
models. The other two user routines can be used for customizing the output
of the filter.
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In Section 4.7.1 we want to show that the code of the COSTA version
of the RRSQRT filter and the COSTA version of the WAQUA-TRIWAQ
model that is now used within COSTA produces the same results as the
original version of the software. We will also compare the computational
performance of the new system with the operational system.

In Section 4.7.2 we discuss tests were we have combined the new RRSQRT
filter with other COSTA models in order to show that the new COSTA ver-
sion of the RRSQRT filter can be combined with other COSTA models.

4.7.1 Testing the COSTA based version of WAQUA/TRI-
WAQ

The tests are performed using the Dutch Continental Shelf Model (DCSM).
DCSM is used for storm surge forecasting in the Netherlands. The simula-
tion area and assimilation data locations of the DCSM model are presented
in Figure 4.9. The DCSM is a relatively small model with a state-size of
the order of 105 elements. The model can be run on a desktop computer in
moderate time. For that reason it is selected as test model.

Figure 4.9: DCSM area with the locations of the observation stations.
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We have performed several runs in order to check whether the new sys-
tem, where we use the COSTA RRSQRT filter and the COSTA model com-
ponent of WAQUA/TRIWAQ produces the correct results. This new system
is denoted by ”COSTA version”. We have made the choise to change the
noise model such that it is no longer a part of the ADI-scheme. As a result
it was possible to create a deterministic model component of WAQUA/TRI-
WAQ model and extend this into a stochastic model component.

The operational version of WAQUA/TRIWAQ with RRSQRT filter, de-
noted by ”original version”, cannot be directly compared to the ”COSTA
version” since we know that the results will be slightly different due to the
changed noise model. To be able to check the ”COSTA version” we have
created a special version of the operational version called ”Original version
with adjusted noise model”. This version is identical to the ”original ver-
sion” except for the adjusted noise model.

In Figures 4.10 and 4.11 we have plotted the results of these three dif-
ferent versions at the location of two observation stations. We can see that
the ”original version with adjusted noise model” produces exactly the same
results as the ”COSTA version”. All differences between the operationally
used version and the new COSTA version of WAQUA/TRIWAQ and the
RRSQRT filter are the result of the change in the noise model and not the
result of design or programming errors.

The created COSTA RRSQRT implementation is currently not fully
optimized for speed, however we have set up a small experiment in order
to get some insight in the extra computational costs of the new generic
system based on COSTA compared to the original operational version of
the software.

The DCSM model is used in this experiment where we compare the
computational performance of the ”COSTA version” based implementation
to the ”original version”. We simulate a period of 12 hours with time-steps
of 10 minutes using the RRSQRT Kalman filter. The test is repeated a
number of times with various numbers of modes, i.e. the number of columns
in the Lf -matrix. The observations of 8 observation stations are assimilated
at every timestep.

The computation time of the various runs is presented in Table 4.4. The
additional computational cost of the COSTA version is in the order of 10%
and seems to be decreasing for a larger number of modes.

The amount of extra computation time is therefore not a bottleneck for
applying the COSTA version of WAQUA/TRIWAQ with RRSQRT filter in
an operational environment.
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Figure 4.10: Water level after analysis at Sheerness for three different ver-
sions of the software; the original version of WAQUA/TRIWAQ, the original
version where only the time correlation of the AR(1) process is applied at
the whole time steps and the new COSTA version of the system. We can
see that the results of the adjusted original version is exactly the same as
the COSTA version.

Number of COSTA Original Extra time
modes (s) (s) (%)
10 82.7 74.3 + 11
20 149.8 136.2 + 10
40 295.3 271.9 + 9
80 623.4 586.0 + 6

Table 4.4: Computation time of a run with the WAQUA/TRIWAQ DCSM
model with RRSQRT filter for various numbers of modes, columns of the L
matrix, of the COSTA and original version of the software.
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Figure 4.11: Water level after analysis at Vlissingen three different versions
of the software; the original version of WAQUA/TRIWAQ, the original ver-
sion where only the time correlation of the AR(1) process is applied at the
whole time steps and the new COSTA version of the system. We can see
that the results of the adjusted original version is exactly the same as the
COSTA version.



82 CHAPTER 4. APPLICATION FOR HYDRODYNAMIC MODELLING

Operational models
WAQUA/TRIWAQ 2D and 3D Shallow water

simulation model
LOTOS-EUROS Air pollution pollution model
SobekRe 1D river model
COSTA test models
advec-1d 1-dimensional advection model
oscill model Spring mass system
heat model 2-dimensional heat model
Lorenz96 A very non-linear test model

Table 4.5: Overview of models that can be used with COSTA. These models
are split up into operational models and test models. Note: at this time the
SobekRe model can only be used for model calibration.

4.7.2 Applying the RRSQRT method to other COSTA mod-
els

The new RRSQRT filter implementation is tested in combination with the
available test models that are part of the COSTA environment. At this time
there are three big operational models available in the form of a COSTA
component. These models are the WAQUA/TRIWAQ model, the LOTOS-
EUROS model and SobekRe [Stelling and DuinMeijer, 2003]. All test models
are presented in Table 4.5. The SobekRe model is currently only available
as a deterministic model and has only be used for model calibration. It is
therefore not yet tested in combination with the RRSQRT Kalman filter.

The LOTOS-EUROS model is an operational computational model for
atmospherical transport, chemistry and deposition of air pollution on the
scale of Europe developed by the TNO Institute of Environmental Sciences,
Energy and Process Innovation and the Netherlands Environmental Assess-
ment Agency Institute of Public Health and the Environment (RIVM). It is
an Eulerian grid model with a resolution of 7.5 times 7.5 km and 4 vertical
layers. The model focuses on modelling the lower part of the troposphere.
It predicts the air quality and deposition of pollutants on an hourly basis.
Figure 4.12 illustrates computational results of the LOTOS-EUROS model
for the ozone concentration in Europe.

LOTOS-EUROS is a new model that is the combination of the air quality
models LOTOS (LOng Term Ozone Simulation) [Schaap et al., 2004] and
EUROS [Hanea et al., 2004].



4.8. FUTURE DEVELOPMENTS 83

Figure 4.12: Example of the results that are computed by the LOTOS-
EUROS model. Here we have plotted the concentration of ozone (µgm−3)
at the observation height in Europe for June, 6 1996, 15:00 hour

The creation of the COSTA model component of the LOTOS-EUROS
model is similar to the procedure we have described in Section 4.4.2. The
deterministic model is extended into a stochastic model by adding noise to
the emmisions.

Without the need to change the LOTOS-EUROS model or the RRSQRT
filter implementation in COSTA is was possible to combine both into a new
working data assimilation system.

4.8 Future developments

COSTA is a system under development. The basis of the system is realized
but a lot of work still needs to be done. In this section we will mention some
research and development issues that are currently carried out.

The scaling of the model state is not only necessary for the RRSQRT
filter. Other methods like COFFEE and POEnK also need a scaling vector
for the model state. The model interface will be extended with a method
that provides a scaling vector for the state. This will make it possible to
handle the scaling in a uniform way in the various data assimilation methods.
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The computational speed of the new system will be improved in the
future when the code of the RRSQRT Kalman filter is more optimized.

LOTOS-EUROS is combined with the COSTA RRSQRT filter. There
is still work to do on the determination of a suitable scaling vector and the
validation of the results.

The current version of COSTA only supports sequentional methods. We
are now working on the extension of the model interface and the addition
of variational methods.

In this article we have illustrated how a COSTA model component can
be created for a model of which the source code is available. A tool called
the Blackbox model builder is being developed that provides tools for linking
models to COSTA of which the source code is not available.

More operational models from different application fields need to be
added in order to improve the design and prove intended usability and flex-
ibility of COSTA. We are currently working on a COSTA model component
of SWAN [Booij et al., 1999] a wave model for coastal regions.

We are working together with WL|Delft Hydraulics in the openda.org-
project in order to have a mutual accepted interface to the main components,
and to share algorithms, that will become available in Java. As a result, in
the near future, COSTA compliant models can run in the DATools data
assimilation environment of WL|Delft Hydraulics and the models that are
available for DATools can be run in COSTA. These models include HBV-96
rainfall runoff model [Lindström et al., 1997], the representative elementary
watershed (REW) model [Reggiani and Schellekens, 2004] and the SobekRe
1D river model.

4.9 Conclusions

We have shown that the original WAQUA/TRIWAQ software can be split
up into a COSTA model component and a generic RRSQRT Kalman filter.

Model specific issues that were part of the original RRSQRT filter like
drying and flooding did not need to be part of the data assimilation method
and are handled by the COSTA model component of WAQUA/TRIWAQ.

Tests show that the computational overhead for creating generic reusable
data assimilation components is relatively small and can even be reduced in
the future.

A scaling vector that makes it possible to compare the various values
in the state of the model is model specific and should be made a part of a
COSTA model component since it is also necessary for other data assimila-
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tion methods.
The new RRSQRT Kalman filter is now part of the COSTA environment.

We have shown that it produces the correct results when combined with the
model component of the WAQUA/TRIWAQ model.

The new RRSQRT Kalman filter is combined with the LOTOS-EUROS
model for atmospherical transport, chemistry and deposition of air pollution
in order to show that new filter implementations can be used for other models
as well.

4.A The AXPY operation between model instances

The AxpyState method of the COSTA model interface changes the state of
the model instance y by adding a scaled state x to it.

y := αx + y (4.20)

The state y is the state of model instance for which the method AxpyState
is applied. For x there are two options. It is allowed to supply x in the form
of an instance of a COSTA tree-vector as well as directly in the form of a
model instance.

In general it is not necessary to supply the AxpyState method when
creating a COSTA model component. The method is automatically available
whenever the methods GetState and SetState are provided by the model.

However it is possible to provide a model specific implementation of the
AxpyState method.

The assimilation method needs to take special care of drying and flooding
for the WAQUA/TRIWAQ model as explained in Section 4.5.2. The special
handling for drying and flooding is handled in the AxpyState operation
between two model instances. When the AxpyState method is applied where
x is provided in the form of a COSTA model we have the drying and flooding
information at hand and can therefore compute the subtraction properly.

In order to make it work it is necessary that the data assimilation method
uses the AxpyState method between two model instances and not between
a model and a state. A general rule when developing a data assimilation for
COSTA is to use operations between models when possible and only work
with tree-vector instances when there is no other option. In this way it is
possible to handle model specific issues like drying and flooding by the model
component. Applying this rule will also limit the memory usage and copying
overhead of the data assimilation method since it will limit the copying of
data by limiting the usage of the GetState and SetState methods.
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4.B List of acronyms

ADI Alternating Direction Implicit
AR AutoregRessive
CG Conjugate Gradients
COFFEE Complementary Orthogonal subspace Filter For Efficient

Ensembles
COSTA COmmon Set of Tools for the Assimilation of data
DAIHM Data Assimilation In Hydrological and hydrodynamic

Modelling
DATools Data Assimilation Tools
DCSM Dutch Continental Shelf Model
ESMF Earth System Modeling Framework
EUROS EURopean Operational Smog
EnKF Ensemble Kalman Filter
EnSRF Ensemble Square Root Filter
GNU GNU’s Not Unix
HBV Hydrologiska Byr̊ans Vattenbalansavdelning
LBFGS Limited memory Broyden Fletcher Goldfarb Shanno
LGPL (GNU) Lesser General Public License
LOTOS LOng Term Ozone Simulation
NERSC National Energy Research Scientific Computing center
OMS Open Modellen Systeem
OHSU Oregon Health & Science University
PALM Projet d’Assimilation par Logiciel Multi-methodes
POEnK Partially Orthogonal Ensemble Kalman
REW Representative Elementary Watershed
RIVM RijksInstituut voor Volksgezondheid en Milieu
RRSQRT Reduced Rank SQuare RooT
ReBEL Recursive Bayesian Estimation Library
SQL Structured Query Language
SWAN Simulating WAves Nearshore
TLM Tangent Linear Model
TNO (Nederlandse organisatie voor) Toegepast

Natuurwetenschappelijk Onderzoek
TRIWAQ 3-Dimensional WAQUA
WAQAD WAQua ADjoint
WAQUA WAter QUAlity



Chapter 5

Comparing Kalman filtering
techniques for air quality
modelling 1

5.1 Abstract

A generic toolbox for data assimilation called COSTA (COmmon Set of
Tools for the Assimilation of data) makes it possible to simplify the appli-
cation of data assimilation to models and to try out various methods for
a particular model. Concepts of object oriented programming are used to
define building blocks for data assimilation systems that can be exchanged
and reused. The main building blocks in COSTA are the model component
and the stochastic observer component. These components can be created
by wrapping existing code. The LOTOS-EUROS air quality model will be
used for operational smog and aerosol forecasts in the Netherlands in the
near future. The COSTA framework will be used in this operational en-
vironment to implement the data assimilation techniques. As a first steps
towards this operational system the model component of LOTOS-EUROS
is created and the performance of various Kalman Filter based data assim-
ilation techniques are compared for a real live case study. The Ensemble
Kalman filter and the Ensemble Square Root filters converged faster than
the other tested techniques for the selected case study setup.

1The content of this chapter is publised in Environmental Modelling & Software [van
Velzen and Segers, 2009]; A problem-solving environment for data assimilation in air qual-
ity modelling, by Nils van Velzen and Arjo Segers, Environmental Modelling & Software,
2009, DOI: 10.1016/j.envsoft.2009.08.008
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5.2 Introduction

Most applications of data assimilation make use of a dedicated implemen-
tation of the data assimilation algorithm and processing of the observations
for a particular simulation model. Implementing a single data assimilation
method like an Ensemble Kalman Filter for a single model is in general
not really a problem since it does not take a huge amount of work. Data
assimilation algorithms like 4D-Var require an adjoint. In that case most
work will be the construction of the adjoint. In general it is not known in
advance what data assimilation method will perform best for a given model.
The other way around, it is desirable to try out newly proposed data assim-
ilation methods on various models and to compare them to existing data
assimilation methods.

In order to find the best suited data assimilation method for a model or
to investigate the performance of newly proposed algorithms it is necessary
to be able to perform simulations with a range of data assimilation methods.
The implementation of a number of different data assimilation algorithms
is a significant amount of work, not only because of the programming and
debugging of the data assimilation algorithms, but also because of the need
to adapt the model such that it can be used in combination with various
algorithms.

A generic toolbox for data assimilation called COSTA (COmmon Set
of Tools for the Assimilation of data) [van Velzen, 2006, van Velzen and
Verlaan, 2007] provides a framework wherein it is possible to combine models
with various data assimilation methods. Within this framework it is possible
to try out alternative data assimilation methods for a given model without
a lot of work. The strategy of COSTA is to define generic building blocks
for data assimilation. Building blocks of a similar type can be interchanged.
This makes it possible to reuse them in an alternative data assimilation
system. Models and data assimilation methods can be freely combined and
compared. The software will be better tested and contain less errors because
it can be tested in more than one applications. In addition, the reuse will
decrease the development time and costs of a data assimilation application.

The models that are used in data assimilation systems can be very com-
plex and sometimes they are a combination of several sub models. There
are various software tools available that simplify the connection of mod-
els to other software building blocks like e.g. a data assimilation method.
Examples of these tools are PALM of Cerfacs [Lagarde, 2000], ESMF [Hill
et al., 2004], OMS [Hummel et al., 2002] of the Dutch Rijkswaterstaat and
WL|Delft Hydraulics and the HarmonIT project [Gijsbers, 2004]. The fo-
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cuses of these tools is to provide means for linking arbitrary software compo-
nents together and to share or send data between these software components.

The focus of COSTA is not to link together arbitrary software compo-
nents but the identification and definition of the generic components that
are needed to construct a data assimilation application. COSTA is therefore
supplementary to PALM, ESMF, OMS and HarmonIT since these tools can
be used in combination with COSTA.

In this paper we present the results of a case study with COSTA and the
LOTOS-EUROS model. LOTOS-EUROS is a regional air quality model
used to simulate concentrations of pollutants on European scale [Schaap
et al., 2008]. The model focuses on the lower 2-3 km of the atmosphere,
and is therefore able to simulate pollution levels that have a direct impact
on human health. Simulated concentrations include oxidants and organic
compounds that are responsible for episodes of elevated ozone levels, often
referred to as summer smog. The model is able to perform simulations
over multiple years in reasonable time to support scenario studies for the
impact of emission regularisations and climate changes. Data assimilation
systems around LOTOS-EUROS and its predecessor have been implemented
in different forms of low-rank Kalman filters [van Loon et al., 2000, Hanea
et al., 2004, Denby et al., 2008].

In the near future, the LOTOS-EUROS model will be used for opera-
tional smog and aerosol forecasts in the Netherlands. Initially, the resolu-
tions are set to 25 km for the European domain in zoom mode over the
Netherlands at double resolution. The COSTA framework will be used in
this operational environment to implement the data assimilation techniques.
The case study we present in this paper is the first step taken towards the
operational system. The development of the COSTA toolbox and the de-
velopment of the operational modelling system are currently disjunct. The
example given in this paper is an illustration of how the application could
look like.

The COSTA framework is used in order to compare the performance of
various Kalman filtering techniques for a selected real life case study, in this
case for the European domain and resolution. The goal of this study is to
investigate whether a successful coupling between LOTOS-EUROS can be
established, to get insight in what Kalman filtering technique is most likely
best suited for the LOTOS-EUROS model and what aspects of the LOTOS-
EUROS model and the uncertainty model need to be improved. The case
study is used to illustrate how a comparisons between various methods can
be performed using COSTA. It is not in the scope of this paper to formulate
any substantive conclusions on the general performance of the various data
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assimilation methods. For this more research is needed in the future.
In Section 5.3 we give an overview of the COSTA framework and what

work needs to be done in order to use an existing model in COSTA. The
used data assimilation methods in the comparison are briefly described in
Section 5.4. The setup of the case study and the comparison of performance
of the various methods are presented in Section 5.5. The conclusions of the
presented work will be formulated in Section 5.6.

5.3 The COSTA environment for data assimila-
tion

COSTA is a problem solving environment (PSE) initially developed at Delft
University of Technology. It provides a framework for developing data as-
similation and model calibration systems and the reusage and exchange of
data assimilation software.

The COSTA software is freely available under the LGPL license and
can therefore be used in combination with both open source as propriatory
software.

The basic design philosophy of COSTA is illustrated in Figure 5.1. The
key elements in this picture are: a deterministic or stochastic model, col-
lection of observations, several data assimilation procedures and the core of
the COSTA-system that connects the different building blocks. The data
assimilation method is implemented on top of existing model software. In
order to do so it is necessary to wrap the model and observations in an
appropriate way.

COSTA uses the concepts of object oriented software. It defines building
blocks called classes. An instance of a class is a single variable of a class,
also called an object. The value of an object cannot be changed directly,
but only by a given set of functions called the interface of a class.

Components in COSTA are classes that involve a large amount of func-
tionality. Currently COSTA defines two components; the model and the
stochastic observer which are described in more detail in Section 5.3.1 and
Section 5.3.2. The interface of the model component consists of the list
of methods/routines that a model must provide. Examples are “perform a
time-step”, “deliver the model state”, or “accept a modified state”. This
interface of the model component is visualized through the shape of the
empty space in the bricks in Figure 5.1.

Usually an existing model code does not yet provide the required rou-
tines, and certainly not in the prescribed form. Therefore some additional
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Figure 5.1: Basic design of the COSTA system. Model and observation
components (dark/white bricks) are plugged into the core of the COSTA
environment (”Assim/Calib Method”), and can then exploit the available
data assimilation methods (upper bricks).
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code has to be written to convert between the existing code and the COSTA
model components interface. This is illustrated in Figure 5.1 using dark on
top of the white bricks: the white bricks stand for the original model code,
whereas the dark bricks concern the wrapping of the model in order to pro-
vide it in the required form.

COSTA similarly prescribes the interface of the COSTA observation
component. Similar to the model it is usually necessary to wrap existing
sources of observations in the required form such that it can be used in the
COSTA framework.

The data assimilation algorithms in Figure 5.1 implement different data
assimilation techniques with the elements provided by COSTA as the build-
ing blocks (models, observations, state vectors etc.).

The basic design of COSTA may seem disadvantageous at first, because
it appears to require additional programming work in comparison to an
approach where data assimilation is added to a computational model in an
ad-hoc way. This is usually not the case. Most of the work in restructuring
of the existing model code is needed in an ad-hoc approach too. This is
because data assimilation itself puts requirements on the way in which the
model equations are implemented in software routines: one must be able to
repeat a time step, to adjust the model state, to add noise to the forcings
or the model state, and so on, which is often not true for computational
models that are not implemented with data assimilation in mind.

The design of COSTA has the advantage over an ad-hoc approach for
adding data assimilation to an existing program that the different aspects
of a data assimilation algorithm are clearly separated. The algorithmic
of the filtering algorithm that is used are separated from the uncertainty
model, which in turn may be largely separated from the deterministic model
and the processing of observations. This makes it easy to experiment with
different choices for each of the parts: adjusting the noise model, adding
observations, testing another data assimilation algorithm and so on. This is
the major benefit of using the COSTA approach. Using COSTA introduce
some computational overhead. This overhead of COSTA mainly caused by
copying data from the generic COSTA data structures to the data structures
that are used in the original (model) code. However this is often necessary
as well in the case of a direct implementation of a data assimilation method
in existing model code. The overhead of using COSTA is only in the order
of a few percent [van Velzen and Verlaan, 2007].

COSTA is both a philosophy on how to set up data assimilation software
as well a software toolbox. The COSTA software consists of implementations
of the defined components, various implementations of data assimilation and
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model calibration methods and a number of (test) models and various tools
to simplify creation of a model component from an existing model code and
a tutorial. The COSTA workbench program, that is part of the software
as well, is used to start up the simulations. The input of this program
is an XML-file in which the user specifies what model, method and data
assimilation method is used and their configuration.

Interfaces of the COSTA classes are defined both for Fortran and C/C++.
An interface for Java is defined separately in the OpenDA project. This al-
lows data assimilation algorithms to be implemented in Java, and be used
together with model components made in Fortran and C.

5.3.1 Description of a COSTA-model

The first task in the application of COSTA is to define a model component.
The interface of the model component can be used both for stochastic and
deterministic models. Stochastic models contain a model for the uncertain-
ties (differences between model results and reality). Deterministic models
are seen as a special case of a stochastic model, in which the uncertainties
are ignored (assumed zero).

The ’formal’ notation of a model in COSTA is

dx(t)
dt

= M (x(t),p,u(t),w(t), t) (5.1)

where M denotes the model operator, which is in practice often an exist-
ing piece of software that solves the model-equations numerically. In most
cases an existing model will not describe uncertainties and thus a stochastic
extension is necessary.

The input of a model consists of the model state x(0), time-independent
parameters p, time dependent forcing u(t), and a stochastic forcing w(t).
It is very important to notice that the state of the COSTA model compo-
nent contains more than only the model state x. The state of the model
component also include the parameters p, forcings u(t) and the time t.

As an example of how the COSTA software should be used a number of
example codes have been included. The first example in Table 5.1 illustrates
the definition of a COSTA state that consists of a model state x and a noise
input w. In this particular example the model state consists of the four
dimensional concentration array of the LOTOS-EUROS model, described
in detail later on.

The Kalman filtering techniques that have been used for our case study
do not change the forcings or the parameters of the model. It is therefore
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subroutine my create ( datablk )
use my model , only : nx , ny , nz , nspec , nnoise , t s t a r t
! Datab lock to s t o r e the s t a t e o f the model
integer , dimension (∗ ) , intent (out ) : : datablk

! Handles to cos ta o b j e c t s f o r
integer : : x ! S ta t e vec tor
integer : : conc ! Vector with concen tra t ions
integer : : w ! S ta t e vec tor ( noise par t )
integer : : n o i s e ! Vector with noise
integer : : t ! Time ins tance o f the model
integer : : i e r r ! Error code

! Create the s ta t e−vec tor ( x )
ca l l c t a t r e e v e c t o r c r e a t e ( ’ l o t o s−euros−s ta te ’ , x , i e r r )
ca l l c t a v e c t o r c r e a t e (nx∗ny∗nz∗nspec , conc , i e r r )
ca l l c t a t r e e v e c t o r s e t v e c (x , conc , i e r r )

! Create the noise−vec tor (w)
ca l l c t a t r e e v e c t o r c r e a t e ( ’ l o t o s−euros−noise ’ ,w, i e r r )
ca l l c t a v e c t o r c r e a t e ( nnoise , no i se , i e r r )
ca l l c t a t r e e v e c s e t v e c (w, no i se , i e r r )

! Create the time tha t i s a s soc i a t ed to the model ins tance
ca l l c t a t ime c r e a t e ( t , i e r r )
ca l l c t a t ime s e t ( t , t s t a r t , i e r r )

! Store the hand les o f x and w in da ta b l k
datablk (1)=x
datablk (2)=w
datablk (3)= tmodel

end subroutine

Table 5.1: Example code in Fortran90 of an implementation of the Cre-
ate routine of a COSTA model. This routine creates the state of a model
instance. In this example, the state contains of the state-vector (x) of a
concentration array augmented with the noise values (w) and the time (t).
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possible the implement the interface of the model with a simplified form

dx(t)
dt

= M (x(t),w(t), t) (5.2)

An example code of how this timestep operator should be implemented in
the COSTA environment is given in Table 5.2.

subroutine my compute ( datablk , tend )
use my model , only : nx , ny , nz , nspec , nnoise , dt

integer , dimension (∗ ) , intent ( inout ) : : datablk ! S ta t e o f model
integer , intent ( in ) : : tend ! t a r g e t time

real , dimension (nx , ny , nz , nspec ) : : conc ! Concentration array
real , dimension ( nno i se ) : : no i s e ! Noise array
integer : : numstep ! Number o f t imes t eps
integer : : i e r r ! Error code
real : : t ! time o f model t imes tep

! Extrac t model arrays
ca l l c t a t r e e v e c t o r g e t v a l s ( datablk ( 1 ) , conc , i e r r )
ca l l c t a t r e e v e c t o r g e t v a l s ( datablk ( 2 ) , no i se , i e r r )

! Determine the number o f t imes t eps to reach tend
ca l l cta t ime numstep ( datablk ( 3 ) , tend , dt , numstep , i e r r )
ca l l c ta t ime ge t t ime ( datablk ( 3 ) , t , i e r r )

! Perform t imes t eps ( c a l l e x i s t i n g model code )
do i =1,numstep

t=t+dt
ca l l my model ( conc , no i se , t )

enddo

! Restore model arrays and new time
ca l l c t a t r e e v e c t o r s e t v a l s ( datablk ( 1 ) , conc , i e r r )
ca l l c t a t r e e v e c t o r s e t v a l s ( datablk ( 2 ) , no i se , i e r r )
ca l l c ta t ime copy ( tend , datablk ( 3 ) , i e r r )

end subroutine

Table 5.2: Example code in Fortran90 of an implementation of the Compute
routine. The result is the propagation of the model state vector for a number
of timesteps. This routine in general consists of three parts. First the state
of the model is copied to the model arrays, then the existing model routines
are called and finally the propagated state is saved.

Besides the definition of the model state and the timestep operator,
other methods need to be implemented too. Table 5.3 summarizes the most
essential methods of a COSTA model. For example the method AxpyState
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Create Create a new instance of a model having its own internal
state.

Free Free a model instance
Compute Carry out the time steps necessary to step through a

given time span (Equation 5.2).
GetObsValues Interpolate the model prediction that corresponds to

a given set of observations.
GetObsSelect Given a set of observations, return the selection of obser-

vations
that can be handled by the GetObsValues method of
the model. This method is used to filter out observations
of
quantities that are not described by the model or are
measured outside the modeled area.

AddNoise The addition of random noise w in the Compute
can be switched on and off using this method.

GetNoiseCount Return the number of noise parameters of the stochastic
model.

GetNoiseCovar Return the (root of) noise the covariance matrix Q.
SetState Set the state x of the model instance.
GetState Get a copy of the model state x.
AxpyState Modify the model state by adding α times a

state-vector to the state of the model.

Table 5.3: Overview of the methods that need to be implemented such that
the model component can be used in combination with the Kalman filtering
techniques in COSTA.
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is used by assimilation methods to update the state y of the model by x or
to compute the difference between model states x and y according to:

y := αx + y (5.3)

By default this method does not need to be implemented since it is automati-
cally implemented for a COSTA state. However in some cases the user might
extend the default functionality when necessary. For example, addition and
subtraction of model states does not always yield results that can be used
without problems in the following steps of the data assimilation methods.
An updated state can have physically meaningless values e.g. negative con-
centrations or an unstable stratification. The computed difference between
states of two (nonlinear) models sometimes needs some special treatment in
order to avoid unstable data assimilation methods. These model specific is-
sues can be handled inside a user specific implementation of the AxpyState
method of the model.

The transformation of an existing model is discussed in detail in van
Velzen and Verlaan [2007]. The implementation of the Compute method
will in general be the most time consuming when the model component is
created from an existing simulation model. Depending on the model, some
of the code needs to be restructured in order to be able to isolate the model
operator M from the code. However, this needs to be done as well when
a dedicated implementation of a data assimilation method is implemented.
The amount of work for creating a COSTA model component is therefore of
the same order as the work that needs to be performed to adjust the model
for a dedicated data assimilation method.

5.3.2 Observations handling

The formal notation of an observation operator is:

y(t) = Hx(t) + v(t) (5.4)

where y denotes the observed values and the operator H interpolates the
state variables to the observations. The observation error v includes both
the instrumental and representation error and is supposed to have zero mean
and covariance R.

Table 5.4 illustrates how the operator H can be implemented in the
COSTA framework. This example makes use of the so called observation
description that will be explained below.

The observed values are available in COSTA in the form of a so called
stochastic observer. An instance of a stochastic observer holds a number of
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subroutine my get obs va lues ( datablk , obsdescr , vpred )
use my model , only : nx , ny , nz , nspec , nno i se

implicit none
integer , dimension (∗ ) , intent ( in ) : : datablk
integer , intent ( in ) : : obsdesc r
integer , intent ( inout ) : : vpred

real , dimension (nx , ny , nz , nspec ) : : conc
real , dimension ( nno i se ) : : no i s e
. . . .

! Get p r op e r t i e s o f the ob s e r va t i on s from the obse rva t i on d e s c r i p t i on
ca l l c t a ob sd e s c r g e tp r op e r t yva l u e s ( obsdescr , ’LON’ , vlon , i e r r )
ca l l c t a ob sd e s c r g e tp r op e r t yva l u e s ( obsdescr , ’LAT’ , v lat , i e r r )
ca l l c t a ob sd e s c r g e tp r op e r t yva l u e s ( obsdescr , ’LEVEL’ , i l e v e l , i e r r )
ca l l c t a ob sd e s c r g e tp r op e r t yva l u e s ( obsdescr , ’COMP’ , icomp , i e r r )

! Get the model concen t ra t ions
ca l l c t a t r e e v e c t o r g e t v a l s ( datablk ( 1 ) , conc , i e r r )

! Ca l l model i n t e r p o l a t i o n rou t ine
ca l l my inte rpo l a t i on ( conc , vlon , v lat , i l e v e l , icomp , y )

! Set the output va lue s
c t a v e c t o r s e t v a l s ( vpred , y , i e r r )

end subroutine

Table 5.4: Example code in Fortran90 of an implementation of the GetOb-
sValues routine. The result is the simulated value of the model concentration
array at the observation sites specified by longitude, latitude height (level)
and component name.
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observations including their error distribution and covariance. The stochas-
tic observer also includes the available additional information on the ob-
served values like location, unit and physical meaning. This additional infor-
mation is represented in the form of an observation description component.

The information in the observation description component can be repre-
sented by a table where each column has a unique name called key. A row
in this table contains all information on a single observed value. The keys
can be freely selected and depends on the type of observation. The only
mandatory key is time.

It is possible to create a new instance of a stochastic observer that is a
subset of an existing stochastic observer. The selection can be based on the
time associated with the observations or more generally based on a selection
criterion formulated in a subset of SQL, a standard querying language for
managing databases.

The information in the observation description component is conceptu-
ally represented as a table. This does not imply that it needs to be stored
in memory in the form of a table. COSTA includes a default implemen-
tation of the stochastic observer and observation description components.
The observations and their description are stored in a database containing
two tables. One table contains time independent information that can be
shared by various observations. The other table contains all time depen-
dent information for each observation. The data is externally represented
as being one large table but it is stored in a space efficient way.

In order to be able to use the default implementation of the stochastic
observer it is necessary to convert existing sources of observations into a
COSTA observation database. An alternative approach is to implement the
interface of the stochastic observer and observation description component
for an existing storage format or database.

5.4 Kalman filtering techniques in COSTA

The core of the COSTA environment are the available data assimilation
and model calibration methods. These methods can be used with arbitrary
models that implement the COSTA model interface. This simplifies the
comparison of various methods for a given model. In the case study with
the LOTOS-EUROS model that is presented in Section 5.5, we compare the
performance of various Kalman filtering techniques. The compared meth-
ods are the Ensemble Kalman Filter (EnKF) [Evensen, 2003], Ensemble
Square Root Filter (EnSRF) [Whitaker and Hamill, 2002], Complementary
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Orthogonal subspace Filter For Efficient Ensembles (COFFEE) [Heemink
et al., 2001] and the RRSQRT Kalman filter [Verlaan and Heemink, 1997b,
Verlaan, 1998].

5.4.1 Kalman filter

The classical Kalman filter (KF) algorithm for computing a time step from
time instance k to k + 1 consists of the following filter equations:

xf
k+1 = Mkxa

k (5.5)

Pf
k+1 = MkPa

kM
T
k + Qk (5.6)

xa
k+1 = xf

k+1 + Kk+1

(
y −Hk+1x

f
k+1

)
(5.7)

Kk+1 = Pf
k+1H

T
k+1

(
Hk+1P

f
k+1H

T
k+1 + R

)−1
(5.8)

Pa
k+1 = (I−Kk+1Hk+1)P

f
k (5.9)

where M denotes the model operator, P the model error covariance matrix,
R the observation error covariance, x the state vector, Q the error covari-
ance matrix of added noise to the model, y the observed values and H the
interpolation operator between model state and observations. The super-
script f denotes the forecasted value and a denotes assimilated value of the
variable.

The classical KF approach gives the BLUE (best linear unbiased estima-
tor) under the assumption that both the model and observation operator are
linear and the model and observation error are independent white noise with
known covariance. In addition, if model and measurement errors are Gaus-
sian, the KF is the maximum a posteriori or maximum likelihood estimator.
However, these assumptions are only valid for a limited set of applications.
The Extended Kalman filter (EKF) is the first order extension of the KF for
non-linear models. The only difference between KF and EKF is the usage of
a tangent linear approximation of the non-linear model operator M(x(tk))
according to

M:,j =
∂Mk (xk)
∂(xk)j

, (5.10)

where (xk)j denotes the j-th element of the vector xk. The applicability of
the filter however depends on the non-linearity of the model.

The tangent linear model needs to be available in order to apply the
EKF as well as the model error covariance matrix P. For large dynamical
models it is infeasible to compute M and store the matrices M and P.
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Approximations of the EKF have been proposed for applications where
the dimension of the state is too large to store the covariance matrix, or
that involve a model that is too complicated for formulation of a tangent
linear model. One of these, the reduced rank square root filter will be
discussed in one of the following sections. These EKF approximations avoid
the requirement of a tangent linear model, and use a low rank approximation
of the model error covariance matrix to bypass the storage problem. The
low rank approximation is also employed by the Ensemble Kalman filter,
that is discussed in the next section

In general all low rank methods operate on a low dimensional sub-space
such that storage and necessary computations become feasible.

5.4.2 Ensemble Kalman filter

The Ensemble Kalman filter [Evensen, 1994] is a popular example of a low-
rank filter. The method has been successfully applied in mainly geophysical
applications, for example in oceanography [Evensen and van Leeuwen, 1996]
and meteorology [Houtekamer and Mitchell, 1998].

The ensemble Kalman filter (EnKF) is based on a representation of the
probability density of the state estimate by a finite number N of randomly
generated system states X = [ξ1, ξ2, ..., ξN ].

The forecast of the covariance (Equation 5.6) is replaced by a propaga-
tion in time of each of the ensemble members by the model. This propagation
is for most practical applications computationally dominant. As a result the
computational effort required for the EnKF is approximately N model sim-
ulations. The standard deviation of the errors in the state estimate are of a
statistical nature and converge very slowly with the sample size (≈ N).

The update of the state (Equation 5.7) is replaced in EnKF by

Xa
k+1 = Xf

k+1 + Kk+1[Y −Hk+1X
f
k+1] (5.11)

where Y = [y + ν1,y + ν2, ...,y + νN ] denotes a matrix with realization
of the observed values with νi a realization of the observation noise. The
observation noise must be added in order to prevent underestimation of
model error covariance. It should be noted that for many atmospheric data
assimilation problems the analysis step is also a very time consuming part
of the algorithm in case of assimilation of large amounts of remote sensing
observations from satellites.

The major advantage of the EnKF is that the result will always converge
to the ’true’ solution of the filter problem for growing ensemble size, even
in case of a strongly non-linear model. For large ensembles, the sampling
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errors involved with use of random numbers will vanish. For small scale
problems where computation time is no issue, the EnKF will always provide
the correct result of the filter problem, although it might require a very
large ensemble. For practical application to large scale models, the required
ensemble size might become too large, in which case the filter problem should
be reconsidered and for example the problem should be reduced by taking a
simplified model or an uncertainty description with less degree of freedom.

5.4.3 Ensemble square-root filters

There is a fundamental problem associated with the use of EnKF. Small
ensembles have only a few degrees of freedom available to represent errors,
and suffer from sampling errors in the observations that will further degrade
the forecast error covariance representation. The addition of noise ν in the
update of the ensemble (Eq. 5.11) is omitted in the ensemble square-root fil-
ter (EnSRF) [Tippett et al., 2003, Evensen, 2004]. Since no random sample
is generated, this extra source of sampling error is eliminated. Therefore,
these methods are expected to perform better than the ones with perturbed
observations for a certain type of applications. The mean of the ensemble of
the EnSRF filter is first updated using the standard Kalman filter analysis
equation. The ensemble is then transformed such that the analyzed covari-
ance matches the theoretical solution. The transformation is not unique
and some of the suggested transformations like the one by Evensen [2004]
are not mean preserving. This can result in a bias in the results for some
applications. This problem is identified and alternative transformations are
suggested by Sakov and Oke [2008] and Livings et al. [2006]. The EnSRF
algorithm that is implemented in COSTA and used in the presented case
study uses the transformation as suggested by Sakov and Oke [2008].

The EnSRF method will, like the EnKF method, converge to the ’true’
solution for a large ensemble size.

5.4.4 Reduced-rank square-root Kalman

The reduced-rank square-root (RRSQRT) filter algorithm that is proposed
by Verlaan and Heemink [1997b] is based on a factorization of the covari-
ance matrix P of the state estimate according to P = LL′, where L is a
matrix containing the leading eigenvectors li (scaled by the square root of
the eigenvalues) .

The model error covariance matrix P is substituted by the product of
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the root matrix LLT . Equation 5.6 is replaced by

Lw
k = [MkLa

k,Q
r
k] (5.12)

where Qr
k is a root matrix of Qk such that Qk = Qr

k (Qr
k)

T and the super-
script w is used to indicates that the matrix Lw contains more columns than
L.

To avoid an ever-increasing number of columns in the L-matrix Lw
k , a new

square-root matrix Lf
k+1 will be calculated from Lw

k , with a fixed number
of columns. This narrower L-matrix reduces the rank of the approximated
covariance matrix to (at most) the chosen number of columns. Hence the
name ’Reduced Rank Square Root’ filter.

The new square-root matrix Lf
k+1 is chosen to minimize the error-measure

∆P := ‖Pk+1 − Lf
k+1

(
Lf

k+1

)T
‖sF . (5.13)

The norm used, ‖A‖sF :=
√∑

i,j(siai,j)2, is called the scaled Frobenius
norm. The performance of the method depends very strong on a proper
selection of the, possibly time depending elements si of the scaling vector
s. The scaling is model dependent; for LOTOS-EUROS it is described in
Segers et al. [2000]. Determining a proper scaling vector for a model is not
necessary for EnKF and EnSRF, therefore it requires more work to use the
RRSQRT-filter for a model.

The RRSQRT is deterministic in the sense that it does not depend on
random numbers as the EnKF. Results are therefore always reproducible.
A drawback is that the approximations on which the RRSQRT filter is
based are only valid for weakly-nonlinear models. For this type of models,
the RRSQRT might be a cheap alternative for the EnKF, which requires a
minimum number of modes to vanish the impact of using random numbers
even if the filter problem is linear and of limited rank. For strong non-linear
models, the EnKF remains the best option.

5.4.5 COFFEE filter

COFFEE (Complementary Orthogonal subspace Filter For Efficient Ensem-
bles) is a hybrid filter, which combines RRSQRT filter and EnKF [Heemink
et al., 2001, Hanea et al., 2007]. One problem of the RRSQRT algorithm
is that repeated projection on the leading eigenvalues leads to a systematic
bias in forecast errors. Because of the truncation, the covariance matrix is
always underestimated, which may result in filter divergence [Hanea et al.,
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2004]. The truncated part of the covariance matrix does not contribute to
the improvements of the state estimate. The COFFEE filter attempts to
solve this problem by representing the truncated part of the covariance ma-
trix as random ensembles and to add them to the EnKF part. The RRSQRT
part acts as a variance reductor for the ensemble filter, thus reducing the
statistical errors of the Monte Carlo approach. Moreover, by embedding the
reduced-rank filter in an EnKF the covariance is not underestimated, elim-
inating the filter divergence problems of the reduced-rank approach. Like
the RRSQRT filter it is necessary to provide a proper scaling vector for the
model state.

5.5 Comparison of filter performance

5.5.1 The LOTOS-EUROS model air quality model
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Figure 5.2: LOTOS-EUROS model domain used during the assimilation
experiments, and locations of the assimilated and validated measurement
sites.
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The LOTOS-EUROS model [Schaap et al., 2008] is an operational air
quality model of intermediate complexity focused on modelling the lower
part of the troposphere. The model domain is bounded to Europe or regions
within; in this study, the domain is bounded to the north western part of
Europe (Figure 5.2). The horizontal resolution is 0.50 deg. longitude by
0.25 deg. latitude, which leads to a horizontal grid of 40 by 40 cells . In the
vertical, the model takes into account a surface layer of 25 m, a boundary
layer with a height varying during the day, and 2 residual layers with a top
at 3.5 km or more in case of a strongly elevated boundary layer. Boundary
layer height is obtained as a part of the meteorological input, and determines
together with among others wind, temperature, pressure and humidity the
dynamics in the model. The trace gases included and chemical reactions
between them are based on the CBM-IV mechanism [Whitten et al., 1980].

To compare the performance of the various Kalman filtering techniques,
the LOTOS-EUROS model has been configured to simulate ozone concen-
trations for July 2003.

5.5.2 Observations

For the selected period, hourly surface measurements of ozone have been
collected from the EMEP network [Hjellbrekke and Solberg, 2005]. The
EMEP network contains sites that are representative for background con-
centrations, and the measurements could therefore be compared to the sim-
ulated concentrations by the LOTOS-EUROS model. Since the model is
unable to represent concentrations at higher altitudes, sites above 700 m
have been excluded. With this selection criterium, a total number of 38
measurement sites is available in the domain (Figure 5.2). The set of sites
was randomly split into a group of 21 locations from of which the observa-
tions are assimilated, and another group of 17 locations that are used for
validation.

The observation error is assumed to be normally distributed with a stan-
dard deviation of 10% of the measured value with a maximum of 2.5 ppm.
This includes instrumental errors as well as the representation error between
simulated concentrations in a grid box and the point measurements. The
value used here (10% of the observed value) is a pragmatic choice given the
grid resolution and the type of observations (hourly values from background
sites).
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5.5.3 Stochastic model

The simulations made by the model are uncertain for many reasons. These
uncertainties include for example modelling errors that are a consequence of
the parameterization of the processes in the model, e.g. chemistry, transport,
and deposition, which are only an approximation of the actual physical
processes. Another important uncertainty is the model input. Input errors
are present in for example emissions, meteorological fields and boundary
conditions, which are usually temporal and spatial averages that might not
describe the actual values at any time and location.

Since the focus of this study is on the performance of different filter im-
plementations, the stochastic model used to describe the model uncertainties
is kept rather simple. The only uncertain parameter considered here are the
emissions. Although not all errors in the model can be addressed to the
emission model, the actual emissions can differ largely in space and time
from the modelled emission which is based on yearly totals and average
time profiles, and therefore form one of the major uncertainties.

In the stochastic model, the emissions of nitrogen oxides (NOx) and
volatile organic compounds (VOCs) are described by:

ej
s(tk) = ēj

s(tk)
[
1 + ηj

s(tk)
]
, (5.14)

where s = {NOx, V OC} describes the emitted component; j identifies a
region, ēj

s is the deterministic value of the emissions, and ηj
s a normal dis-

tributed noise parameter. The regions considered are (1) Belgium, The
Netherlands, and Luxembourg; (2) Germany and Denmark; (3) France; and
(4) Great Britain. Each of the 8 noise parameters have the same standard
deviation σ = 0.25. The noise parameters are not correlated explicitly in
time or space.

Some form of spatial correlation is included in terms of the different
source regions: within each region, the emission uncertainty is spatially
correlated. Temporal correlation could be omitted since observations are
available in each source region on hourly basis. The filter state will therefore
be adapted quickly (each hour) into a direction of the emissions which are
most likely. This choice is suitable to investigate in what direction the model
is adjusted. For quantitative estimates of the true emissions an improved
stochastic model should be used.

5.5.4 Assimilation results

The COSTA assimilation environment has been used to test the perfor-
mance of the various filter implementations. In each experiment, the hourly



5.5. COMPARISON OF FILTER PERFORMANCE 107

ozone concentrations from the 21 analysis sites are assimilated with LOTOS-
EUROS simulations during a single month (July 2003).

The following filter implementations, as described in section 5.4 have
been applied:

• EnKF with either 5, 10, 15, 20, 30, 40 or 50 ensemble members. To
test the impact of the use of random numbers in the EnKF, the ex-
periments were performed twice with different random seeds in the
number generator. In addition, a run with 250 ensemble members was
performed to serve as the ’true’ solution of the filter.

• EnSRF with either 5, 10, 15, 20, 30, 40, or 50 ensemble members.

• RRSQRT with reduction to either 10, 20, 30, 40 or 50 modes

• COFFEE with either 7, 13, 20, 27 or 33 modes in the RRSQRT part
and either 3, 7, 10, 13 or 17 ensemble members in the EnKF part.

In addition, a single run with the deterministic model is available for
comparison. The total number of ensemble members and/or RRSQRT
modes correspond to the minimum number of model propagations that have
to be computed each timestep of the filter in order to propagate the co-
variance approximation forward in time. These model timesteps dominate
the computation time of the simulations we have performed. Therefore we
will compare the filter implementations that have the same total number of
modes and members. This assumption is only valid for a moderate number
of RRSQRT modes (≤ 50) like we have used in the experiment. The rank
reduction of the RRSQRT-filter can take a considerable amount of compu-
tational time when a large number of modes is used. For simplicity, the
term ’mode’ will be used to denote ensemble members as well.

For a first impression of the performance of the different filter techniques,
Figure 5.3 shows the timeseries of ozone concentrations in one of the assim-
ilation sites (BE32) during the first 10 days of the simulation period. The
figure shows the hourly ozone measurements, the simulation by the deter-
ministic model, and the analyzed mean for 4 different filter types. Each
of the applied filters used a total of 50 modes. It is clearly visible that
most filters provide more or less the same results: either all are close to
the observations or none. From this short time series of a single station no
quantitative conclusions about the performance of the individual filters can
be drawn, but the general behavior was found to be representative for other
locations and periods too.
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Figure 5.3: Example of ozone time series at EMEP site BE32 (Eupen, Bel-
gium) of measured values, model simulation, and analyzed filter mean.
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The most important feature in ozone time series is the height of the after-
noon ozone maximum, since this is incorporated in keynumbers describing
air quality. For the time series shown in this figure, the model captures the
general pattern visible in the measured maxima of higher values during days
6-8 and 10 and lower values at days 3-5 and 9. The concentrations of the af-
ternoon maximum are overestimated on days 1-2 and 8 and 10. Assimilation
of the ozone measurements is able to reduce these overestimations. There
are clearly differences between the filter implementations however. For the
time series shown, the ensemble type of filters (EnKF and EnSRF) provide
the best results during the first two days and for the ozone minima during
the night. RRSQRT and COFFEE provide better results for the high values
during days 6-10, but are unable to decrease the error during the first days.
The difference in performance of the various filters could be related to the
different treatment of nonlinearities. This will be discussed at the end of
this section.

For an overview of the average decrement in the error after assimilation,
Figure 5.4 shows the root-mean-square (rms) errors between analyzed mean
and observations with and without assimilation. The rms errors are com-
puted for each individual station over all measurements available during the
assimilation period. As expected, the rms errors decrease after assimilation.
This holds for the assimilated sites as well as for the validation sites, although
in general the errors in the validation sites exceed the values computed for
the analysis sites. The lowest rms errors after assimilation are obtained for
filter experiments using the EnKF and EnSRF implementations, where for
some sites the values are decreased by 50% . For the EnKF implementation
with 50 ensemble members as shown in this figure, the impact of the use of
random numbers seems to be limited. The results obtained differ slightly
between the experiments using different random seeds, but do not change
the general picture.

To judge the filter performance as a function of the computational costs,
Figure 5.5 and Figure 5.6 shows the rms error between model or filter mean
averaged over all sites (analyzed and validated), versus the total number
of modes. The total number of modes is a minimum for the number of
model evaluations required to propagate the covariance structure in time,
and therefore a suitable number for the amount of computation time to be
spent. The figure shows that, in the chosen experiment, the initial error
obtained with the deterministic model could be decreased with 25% . The
largest improvements are obtained for the EnKF and EnSRF filters, which
provide similar results if at least 10 or more modes are used. Both filters
converge quickly; for the chosen setup, 30 modes is enough to obtain similar
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Figure 5.4: Root-mean-square error between filter mean and observations
for all measurement sites (used for analysis (thick marks) or validation),
versus the error obtained using the deterministic model. Results for filters
with 50 modes each.
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Figure 5.5: Root-mean-square error between measurements and model or
filter, for different numbers of modes at the stations that are assimilated.
The line for the EnKF implementation is continued at the right side of the
figure to the value obtained using 250 ensemble members.
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Figure 5.6: Root-mean-square error between measurements and model or
filter, for different numbers of modes at the validation stations that are not
assimilated. The line for the EnKF implementation is continued at the right
side of the figure to the value obtained using 250 ensemble members.
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results as what could be obtained using an EnKF implementation with 250
modes, which is large enough to serve as the ’true’ converged value. Conver-
gence is much slower for the RRSQRT and COFFEE implementations. Both
implementations provide smaller errors with growing numbers of modes, but
have not converged to the EnKF-250 results even using 50 modes. These
results suggest that the stated filter problem is too non-linear to be treated
by filters based on the RRSQRT approach. The propagation from ozone-
precursor emissions to ozone concentrations includes non-linear processes in
chemistry and removal, which make the model strongly non-linear even on
small time scales.

Another difference between the ensemble type and reduced rank type
of filters is that the latter include a reduction of the covariance. Newly
introduced noise might be discarded in this reduction step. This can result
in a different error covariance matrix and a longer spin up period to provide
a reasonable state covariance. This needs to be further investigated in long
term simulations.

For the validation sites, the errors are slightly larger than for the assim-
ilation sites, but the general conclusions are the same for both sets.

5.6 Conclusions

COSTA is a flexible environment for creating data assimilation systems.
COSTA provides basic building blocks as well as a number of data assim-
ilation methods that make it possible to relatively quickly transform an
existing model to COSTA and use existing parts of software.

A COSTA model component is created for the operational LOTOS-
EUROS model. Using this model component we could perform a range
of experiments with the Kalman filtering techniques that are provided by
COSTA. We have compared the performance of the EnKF, EnSRF, RRSQRT,
and COFFEE filters for various numbers of modes.

The stochastic model used in this study is far from perfect. Experiments
will be continued to identify a more extensive stochastic model that captures
all differences between model and measurements. Similar to the comparison
of the various Kalman filtering techniques we can use the COSTA framework
for comparing the results of the experiments using alternative noise models.

An EnKF implementation seems to be a proper choice for these experi-
ments, since it requires hardly any other configuration parameters than the
number of ensemble members. If the stochastic model is found to be suitable
for a particular application, other filter implementations should be applied
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too in order to test whether these filters could reduce the computational
costs without significantly changing the results.

The RRSQRT and COFFEE implementations converge slower than the
EnKF and EnSRF filter implementations. The performance of these meth-
ods depends on the used scaling of the model state in the rank reduction step,
improvement of the used scaling might improve the performance of these
methods. An other possibility for the slow convergence of the RRSQRT
and COFFEE method is that the nonlinearity of the model cannot be cap-
tured well by the RRSQRT and COFFEE filter implementations. A detailed
investigation of what causes this slow convergence is left for future research.

Software

The COSTA software is freely available under the GNU LGPL license. Doc-
umentation an software is available at:

www.costapse.org.



Chapter 6

Parallel computing and
model coupling 1

6.1 Abstract

Extending an existing (large scale) dynamical model with respect to data
assimilation is an elaborate task. This is particularly so because data as-
similation schemes, such as Kalman filtering or calibration methods, have
consequences for the way in which the model operator is accessed. This
usually requires that the data assimilation method is built on top of the
existing model code, instead of under the existing code in a library.

COSTA is a generic toolbox that simplifies the application of data as-
similation techniques. It provides interfaces between the assimilation algo-
rithms and the model and observation handling code. It provides well-tested
implementations of various data assimilation techniques as well. Concepts
of object oriented programming are used to define building blocks for data
assimilation systems that can exchanged and reused.

In this work we describe COSTA’s parallel computing and model cou-
pling capabilities. Using COSTA, the parallelization of multiple model runs
is provided for free, i.e. does not require additional modification of the ex-
isting model code. Further COSTA provides templates for the easy incorpo-
ration of existing model codes that employ parallel computing themselves.
These capabilities are demonstrated by the application of COSTA to three

1The content of this chapter is submitted to Scientific Programming; A generic ob-
ject oriented approach towards parallel computing and combining models in the COSTA
framework for data assimilation, by Nils van Velzen, Hai Xiang Lin, Edwin Vollebregt and
Erwin Loots.
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large scale models in which parallel computing and domain decomposition
are used.

6.2 Introduction

Data assimilation concerns the incorporation of measured data into dynam-
ical models [Evensen, 2006]. It is used for instance in numerical weather
prediction (NWP). The present state of the atmosphere is known only up to
a certain accuracy. By combining observations and short-range forecasts, an
improved initial condition for NWP may be found. Data assimilation can
be used in order to improve the forecast performance of the model, realize a
better reconstruction of the past or to calibrate the model. For this different
techniques may be used, such as Kalman filtering [Evensen, 2003, Verlaan
and Heemink, 1997b, Whitaker and Hamill, 2002, Heemink et al., 2001],
3DVAR or 4DVAR [Talagrand and Courtier, 1987, Elbern et al., 2000].

The implementation of a data assimilation method for a model can be a
significant programming effort. This is particularly so because data assimi-
lation methods change the way in which a model is used. When developing
a dynamical model, a straight-forward approach is to initialize the model,
perform time steps and output results along the way, and finalize the com-
putation when the end-time is reached. This is not a suitable approach
when for instance an Ensemble Kalman filter is used. Within the Ensemble
Kalman filter, several different model states are computed simultaneously.
The model code must be adapted for this. It must incorporate noise pro-
cesses that characterize the uncertainty in the model forcings or operator,
must be able to solve multiple model states simultaneously or one by one,
and be able to perform a so-called analysis step where the predictions are
combined with the available measurements.

Up to recently, data assimilation was often implemented for each model
code separately. The adaptations of model code were designed for each
dynamical model separately, and the data assimilation methods were imple-
mented for each model anew, dedicated to work together with the specific
model code at hand. The disadvantage of this approach is the inflexibility.
It is not trivial to replace a dedicated data assimilation method by an al-
ternative method. The other way around, it is not possible to apply and
test the data assimilation method with alternative models. The same data
assimilation algorithms are therefore programmed over and over again and
it is difficult to thoroughly test them for programming errors since they can
only work in combination with a single dynamic model.
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COSTA [van Velzen, 2006, van Velzen and Verlaan, 2007] is a generic
toolbox for data assimilation initially developed at Delft University of Tech-
nology. It provides a framework wherein dynamic models can be combined
with various data assimilation methods and new data assimilation meth-
ods can be developed and tested for various models [van Velzen and Segers,
2009]. COSTA provides implementations of data assimilation methods, ex-
ample models and software building blocks that simplify the programming
of data assimilation methods and the adaption of models such that they can
be used in COSTA. COSTA is made available under the LGPL license and
can therefore be used in combination with both open source and propriatory
software.

COSTA uses a different approach than to more traditional packages for
scientific computing such as BLAS [Dongarra, 1989], LAPACK [Anderson
et al., 1999] or PETSc [Balay et al., 1997, 2004], or even PVM [Geist et al.,
1994] or MPI [Snir et al., 1998]. These traditional packages provide libraries
of routines that may be called from a user’s program. COSTA on the other
hand provides a framework and a set of assimilation techniques, and calls
routines from the original model code. For this the original model code has to
be modified. This approach is inevitable because data assimilation schemes
inherently require intervention in the way that the model operator is applied.
In its approach COSTA is not unique. Its way of working is comparable to
for instance OpenMI [Gijsbers and Moore, 2003] or the Common Component
Architecture CCA [CCA, 2009].

COSTA uses concepts of object oriented software development, see e.g.
[Szyperzki, 1997, Kruchten, 1998]. COSTA defines various building blocks
which are called classes. An object is an instantiation of a class. It comprises
its internal (member) variables and methods by which these variables may
be accessed or modified. The specification of the methods is called the
interface of a class. The idea is that classes can be substituted by alternative
implementations. Classes that involve a large amount of functionality are
called components. COSTA’s object oriented approach is further a powerful
method to standardize the way that dynamical models may be used in data
assimilation schemes.

In this work we concentrate on large scale dynamical models for which
parallel computing is required. We demonstrate that COSTA behaves favor-
ably in this respect. On the one hand, COSTA provides parallel evaluation
of different model instances for free. Even if the model has not been par-
allelized, large portions of a data assimilation run may be performed in
parallel. On the other hand, COSTA can easily accommodate model codes
that are internally parallelized or use other forms of model coupling as well.
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These advantages are achieved by the object oriented approach that is used.
They are illustrated by experiments for three large computational packages:
the LOTOS-EUROS air quality model [Schaap et al., 2008], the shallow wa-
ter model WAQUA/TRIWAQ [Stelling, 1983, Vollebregt et al., 2003], and
the air quality model Chimere [Bessagnet et al., 2008].

The rest of this paper is organized as follows. In Section 6.3 we will give a
basic sketch of the COSTA model component, which defines the operations
by which a dynamical model is used. Section 6.4 describes the so-called
“tree-vector”, by which information in COSTA is moved around. The tree-
vector allows for the easy construction of COSTA models and for creating
composite models as well, as is explained in Section 6.5. In Section 6.6 we
discuss general aspects of parallel computing for dynamic models and data
assimilation applications. Section 6.7 describes how “mode-parallelization”
is achieved automatically using COSTA’s object oriented approach. Section
6.8 concentrates on the use of parallel model code inside COSTA’s model
component, and shows that this is largely similar to the incorporation of
sequential model code. Finally Section 6.9 describes the experiments with
the three models mentioned above. The conclusions and the path towards
future developments are presented in Section 6.10.

6.3 Introduction of the COSTA model component

The model component in COSTA can be used both for stochastic and de-
terministic models. Stochastic models contain a model for the uncertainties
(differences between model results and reality). Deterministic models are
seen as a special case of a stochastic model, in which the uncertainties are
ignored (assumed zero).

The ’formal’ form of a model in COSTA is

dx(t)
dt

= M (x(t),p,u(t),w(t), t) (6.1)

where M denotes the model operator, x(t) the time dependent state-vector,
p the time-independent parameters, u(t) the time dependent and w(t) the
stochastic forcing. It is very important to notice that the state of the COSTA
model component contains more than only the model state-vector x. The
state of the model component also include the parameters p, forcings u(t),
noise w and the time t.

Multiple model instances, each with their own state, can be created. The
state of the model cannot be accessed or changed directly. It is only possible
to obtain information of the model state or to change the model state using
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the methods of the model interface. All methods of the model interface are
presented in Appendix 6.A.

The formal model operator M is in general not present in the code that
implements the model. Instead the code numerically propagates the state-
vector forward in time, often only for a given fixed stepsize ∆t, according
to:

x(t + ∆t) =
∫ t+∆t

t
M (x(t),p,u(t),w(t), t) dt

= M (∆t,x(t),p,u(t),w(t), t) (6.2)

The compute-method of the model interface propagates the state-vector for-
ward in time for a given value of ∆t according to Equation 6.2.

The transformation of an existing model is discussed in detail in [van
Velzen and Verlaan, 2007]. The general approach is to identify the vari-
ables in the model that represent the state of the model and to isolate the
code that implements the model operator M . These two steps are in gen-
eral the most time consuming, compared to the implementation of the other
methods of the model interface. These steps need also be taken for the
implementation of a dedicated data assimilation method. Therefore creat-
ing a model component takes approximately the same amount of work as
preparing model code for a dedicated data assimilation method.

6.4 Description of the COSTA tree-vector

The model state-vector x, parameters p, forcings u and stochastic forcings
w are usually represented as a single vector and stored in a continuous block
of memory in data assimilation algorithms.

This continuous storage format is practical from a computational point
of view but it does often not correspond to the representation of the corre-
sponding values in the model. Inside the model, these values can be scattered
over various vectors e.g. each holding a field with values of a given quan-
tity and in the case of a parallel model they can be distributed over various
processes.

Some kind of administration is necessary in order to make a translation
between the values in the vector representation and the representation in
the model.

The tree-vector class of COSTA is used for representing the vectors x ,p,
u and w. The important additional properties of a tree-vector compared to a
normal vector are its structure and the possibility to add meta information.
These properties will be discussed in the following subsections.



120 CHAPTER 6. PARALLEL COMPUTING AND MODEL COUPLING

6.4.1 Structure of the tree-vector

The tree-vector is an extension of a normal vector. The tree-vector has a
tree structure with nodes and leaves. The values are stored at the leaves
and they are represented as normal vectors. The nodes of a tree-vector
are a concatenation of tree-vectors, in this context called sub-tree-vectors.
All nodes and leaves have a unique tag for identification. It is possible to
directly access a sub-tree-vector by using its tag. Parts of the tree-vector can
therefore be accessed without any knowledge of the structure of the overall
tree-vector.

We illustrate the structure of the state vector using a state vector of a
deterministic shallow water model. On the highest level, the state contains
the velocity v, the concentration c, and the water level s. The velocity itself
is built up from two vectors vx and vy each holding a single directional
component of the velocity. The resulting state x is then defined by Equation
6.3.

x =
{{

vx
xvel,vy

yvel
}velocity

, swaterlevel, cconcentration

}detmodel

(6.3)

The tags are denoted by the super script. Leaving the tags out, we see from
Equation 6.3 that the tree-vector represents the concatenated vector of all
model variables.

x = {{vx,vy} , s, c} =
[
uT ,vT , sT , cT

]T
(6.4)

All operations that can be performed with a normal vector, like addition
and computation of norm and inner product can be performed with the tree-
vector as well. The vectors at the leaves of the tree-vector are instances of a
vector class. Therefore it is possible to use arbitrary vector implementations
for the vectors that are used in combination with the tree-vector.

The operations with a tree-vector involve visiting the nodes and leaves
of the tree-vector in depth-first order and performing the operations on
the leaves. The involved computational overhead is neglectable when the
number of leaves is small compared to the total dimension of the tree-vector.

6.4.2 Meta information

The tree-vector can optionally contain useful additional information on the
values. At all levels of the tree-vector (thus in nodes and in leaves) it is pos-
sible to add meta information. The meta information describes the physical
interpretation of the values in the sub-tree-vector. The meta information
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includes among others the quantity, unit and spatial information. Meta in-
formation of a leaf gives a description of the values of a single vector while
meta information at nodes describes the physical interpretation of all the
sub-tree-vectors of the node. This is necessary to describe e.g. vector fields
where the different spatial components of a vector value are distributed over
separate sub-tree-vectors, like the velocity in the example tree-vector of Sec-
tion 6.4.1.

Automatic interpolation between values of two tree-vectors can be per-
formed in the axpy operation (Equation 6.5) of two tree-vectors when the
meta information is provided for both vectors.

y := αx + y (6.5)

The interpolation is especially useful when various models are combined into
a larger model like a noise model and a deterministic dynamic model as will
be explained in section 6.5.

The meta information of tree-vectors is used as well when tree-vectors are
written to NETCDF files for postprocessing and further analysis. The arrays
on the NETCDF files are reshaped and gridding information is automatically
added if meta information is available. In this way it is possible to directly
view the data in the tree-vector with generic NETCDF viewers and post
processing software.

6.5 Combining COSTA model components

The models that are used in a data assimilation framework are sometimes
a combination of various models. This can be a combination of various
dynamic models like a runoff model and a river model in a flood forecast
system or a combination of a deterministic dynamic model with a noise
model, together forming a stochastic model.

The properties of the COSTA model component and the tree-vector
class make it possible to combine models into larger composite models using
a generic tool, called the model combiner. The model combiner can be
used to combine arbitrary COSTA models. The model combiner is itself a
COSTA model and it is configured using an XML-configuration file. This is
illustrated in Figure 6.1.
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The model combiner can only be used to create an explicit coupling be-
tween various models. This means that there should not be a recursive re-
lation between the propagated state-vectors of the sub-models. A combined
model is constructed using the model combiner from m models (Equation
6.2) with a selected fixed overall timestep ∆t. For these m model timestep
operators we use the notation:

xi,k+1 = Mi (xi,k,ui,k,pi, tk) , (6.6)

where subscript i denotes the index of the sub-model and k the time instance.
A timestep of the combined model consists of sequentially propagating the
state-vector of all sub-models (i = 1, ..,m) one at a time. Before the state-
vector of a sub-model is propagated it is possible to change the state-vector,
parameters and forcings of the sub-model using values from the state-vectors
of the previously propagated sub-models. The propagation of the state-
vector of the i-th sub model is given by Equation 6.7.

xi,k+1 = Mi

xi,k + Gx
0x.,k +

i−1∑
j=1

Gx
j xj,k+1,

ui,k + Gu
0x.,k +

i−1∑
j=1

Gu
j xj,k+1,

pi + Gp
0x.,k +

i−1∑
j=1

Gp
jxj,k+1, tk


+GM

0

i−1∑
k=1

GM
k xi,k+1 (6.7)

The matrices G denote the selection and interpolation of values from the
state-vectors of the other sub-models. The selection of the sub-states, using
the tags, is part of the configuration of the model combiner. The interpola-
tion is performed automatically using the meta information of the involved
tree-vectors.

The state-vector, forcings and parameters of the combined model (Equa-
tion 6.8, 6.9 and 6.10) are represented by a tree-vector with the values of
the various models as sub-tree-vectors.

xk =
{
xsx(1),k, xsx(2),k, ..., xsx(mx),k

}combined (6.8)

uk =
{
usu(1),k, usu(2),k, ..., usu(mu),k

}combined (6.9)
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p =
{
psp(1), psp(2), ..., psp(mp)

}combined (6.10)

Not all models implement the model interface to the parameters and
forcings. The combined model can therefore only combine the parameters
and forcings of the sub-models that do implement them. The number of
sub-models that implement interfacing with the parameters and forcings
are denoted by mp and mu, where the selection operators sp and su denote
these sub-models.

Similar to the forcings and parameters, mx and sx denote the number
and index of the models that form the combined state. This is necessary
because it is possible that the state-vectors of some of the sub-models are
only used for changing the input of other models and have no meaning in
the combined model. This is the case for models that can be written in the
form of Equation 6.11:

xi,k+1 = Mi (ui,k,p, tk) (6.11)

Examples of these kind of models are an AR(0)-noise model and a model
that performs some (complex) interpolation that cannot be handled by the
automatic tree-vector interpolation.

The combined model that is created with the model combiner is a COSTA
model. An instance of a combined model holds the instances of the sub-
models that are combined, the timestep algorithm, and the administration
on the structure of the combined state-vector, forcings and parameters (mx,
mu, mp, sx, su and sp). The values of the combined state-vector, forcings
and parameters are not directly administrated in the combined model but
are part of the state of the instances of the sub-models.

6.6 Parallel computing in data assimilation appli-
cations

Large simulation models can require a huge amount of memory as well as
computational time for performing a simulation. The memory requirements
per computer and the total simulation time can be reduced by using parallel
computing.

Data assimilation algorithms require even more computational time and
memory than normal simulations. The overall computational time of a simu-
lation with data assimilation is often a factor 10 to 100 more than a normal
simulation. Parallel computing is therefore often required to reduce the
computational time and memory requirements to reasonable amounts.
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There are various paradigms and programming models to incorporate
parallel computing in a simulation model and data assimilation application.
Multithreading is a paradigm for parallel computing where within a single
executable multiple threads are started that execute parts of the code in par-
allel. These threads use a shared memory. This form of parallel computing
can e.g. be implemented using OpenMP [Chapman et al., 2007].

Multiprocessing is another paradigm for parallel computing. The compu-
tations and data are split up over different processes. The processes cannot
directly access each other’s data. Information is passed between the pro-
cesses by sending messages to each other. Multiprocessing programs can
e.g. be developed using MPI [Snir et al., 1998] or PVM [Geist et al., 1994].

In parallel computing, a computation is first divided into a number of
(parallel) tasks. For instance, one of the commonly used approach is do-
main decomposition in which a spatial domain is sub-divided into a number
of subdomains. The computation of the problem on the entire domain is
then treated as a number of interacting subproblems each defined by a sub-
domain. Two common programming models for multiprocessing are the
master-worker and worker-worker (process farm) programming models. In
a master-worker approach there is one special process called the master.
The master process manages the overall coordination and hands out tasks
to the worker processes. Typically, after finishing a task a worker pro-
cess communicates its results to the master process and gets a new task (if
there is any). All the communication go through the master process. In
the worker-worker approach, the tasks to be computed are either put in a
pool (dynamic scheduling) or pre-assigned to the workers (static scheduling,
e.g., parallelization based on domain decomposition), all worker processes
then work together in order to perform the tasks assigned to them. Workers
processes communicate with each other directly in a worker-worker program-
ming model. All forms of parallel computing that have been mentioned in
this section can be used to parallize the models that are used in combina-
tion with COSTA. In Section 6.8 we explain how models that use parallel
computing themselve can be used in COSTA.

COSTA automatically parallelizes some of the computations in data as-
similation methods as well. For this the master worker approach is used,
where all model computations are handled by the worker processes. In
Section 6.7 we will discuss how parts of the algorithms are parallelized in
COSTA.
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6.7 Automatic parallelization of model timesteps

Data assimilation and model calibration algorithms often need to perform a
large number of propagations of the model state-vector forward in time ac-
cording to Equation 6.2. These timesteps are often computationally very ex-
pensive and they can dominate the computational time of the data-assimilation
or model calibration run.

The state-vector propagations in the filter algorithm are often indepen-
dent from each other. For example the propagation of all ensemble mem-
bers in an Ensemble Kalman filter [Evensen, 1994], the propagation of the
columns of the root covariance matrix in an RRSQRT-filter [Verlaan and
Heemink, 1997b, Verlaan, 1998], the propagation of the particles of a par-
ticle filter [Weerts and Serafy, 2006] or the determination of a gradient by
finite difference in a calibration algorithm.

The model state-vectors that are to be propagated in time are repre-
sented in COSTA data assimilation methods by instances of the model com-
ponent. The object oriented approach does not allow direct access to the
model state, therefore it is possible to store the state in the memory of
another process.

COSTA uses a master-worker programming model for automatically par-
allelizing the independent model timesteps of the model instances. A special
executable called costawb can be used to start up a data assimilation run
with one of the available data assimilation methods in COSTA and an ar-
bitrary COSTA model component.

A sequential run is started by starting up a single costawb executable.
All model instances will be created in the memory of the costawb process
as illustrated in Figure 6.2. The automatic parallelization is activated by
starting up multiple costawb executables. One costawb process will act as
the master process and will perform all data assimilation computations. The
other processes will become worker processes. The model instances that are
created by the data assimilation algorithm will be created on the worker
processes. For each model instance that is created on a worker process
a special model instance of the parallel interface model is created on the
master process as illustrated in Figure 6.3.

The parallel interface model handles all communication between the mas-
ter process and worker processes. In this way all parallel computing is hidden
from the data assimilation algorithm. Whenever the master process uses a
method of the interface model, the interface model will send a message to the
worker process on which the corresponding model instance is created. This
message contains the unique model instance ID, the name of the method and
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optionally the input arguments. Methods that return arguments are block-
ing, in which case the interface model instance must wait until the results
are received from the worker process. Otherwise the method is non-blocking
and the worker process can continue after the initial message has been sent
to the worker process.

The compute method that propagates the state-vector, changes the inter-
nal state of the model instance (x and t) but it does not return any results.
This method is therefore non-blocking and it is not necessary for the master
to wait until the propagation is completed. The master process can therefore
ask multiple model instances that are created on different worker processes
to propagate their state-vector simultaneously.

x,u,p,w

Dynamic model instance

x,u,p,w

Dynamic model instance

x,u,p,w

Dynamic model instance

Data assimilation method

Model Instances
........
........

costawb−process

Figure 6.2: Example of sequential run with a single costawb executable. The
data assimilation method uses a number of model instances of a dynamical
model.

The automatic parallel propagation of model state-vectors is available in
COSTA for all models that properly implement the COSTA model interface.
In this way COSTA provides the possibility to reduce the computational
time without the need to make any additional changes to the model or data
assimilation code. There are, however, limitations to the parallel perfor-
mance. The speedup of a parallel algorithm is defined by sp = t1

tp
where p is

the number of processors, t1 the execution time of the sequential algorithm
and tp the execution of the parallel algorithm with p processes. The ideal
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Parallel interface model instance

Number of worker process
Model instance ID

Parallel interface model instance

Number of worker process
Model instance ID

Parallel interface model instance

Number of worker process
Model instance ID

x,u,p,w

Dynamic model instance

x,u,p,w

Dynamic model instance

costawb−process 2 (Worker process 1)

Worker

Model Instances

x,u,p,w

Dynamic model instance

Worker

Model Instances

costawb−process 3 (Worker process 2)

Data assimilation method

Model Instances
........
........

costawb−process 1 (Master process)

messages

Figure 6.3: Example of a parallel run with one master and two worker
processes. The data assimilation method uses a number of instances of a
dynamical model. These instances are created on the worker processes and
for each model instance a parallel interface model instance is created on the
master processes. The parallel interface models handles all communication
between the master process and the worker processes.

speedup is obtained when sp = p. The efficiency of the parallel algorithm is
given by ep = sp

p .
The automatic parallelization will only parallelize the independent prop-

agation of model state-vectors. Therefore it will only execute a part of the
data assimilation algorithm in parallel. The sequential execution time of the
data assimilation algorithm is given by

t1 = tseq + ntmodel (6.12)

where tseq denotes the execution time of the sequential part of the algorithm,
often the assimilation procedure, tmodel the execution time of all timesteps
of a single model instance and n the number of model instances.

The data assimilation process can be run on the same processor as one
of the worker processes since it will not perform computations at the same
time as the workers. The optimal parallel execution time of the parallel data
assimilation algorithm using the automatic parallelization is therefore

t1 = tseq + dnp−1etmodel. (6.13)

As a result of the sequential bottle neck, this part of the parallelization is
not ment for massively parallel computing. However, it provides a practicle
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form of parallelization that reduces the ammount of computational time for
data assimilation and model calibration methods to feasable ammounts for
many real life applications.

The actual computation time will in practice be larger than Equation
6.13 due to the additional overhead that is caused by sending messages and
data between the master and worker processes.

6.8 Using parallelized model components

Simulation models that use parallel computing for propagating their state-
vector can be used in COSTA as well. The used approach for parallel com-
puting that is used in the model is important, since it determines the ap-
proach for creating the COSTA model component of the model. A model
that is parallelized using threads is in general not different to a sequential
model with respect to creating the COSTA model component because this
form of parallelism is likely to take place at a low level within the numeri-
cal computations and does not influence the program structure at the level
where the interface with COSTA is to be implemented. Models that are
parallelized by the master-worker programming model can be transformed
into a COSTA model component similar to a sequential model as well. Only
the master process needs to be adjusted such that it implements the model
interface and the worker processes can be kept intact. The only fundamental
difference is the start-up of the system where the worker processes of the
model need to be started up as well.

In the case of the worker-worker approach, the state-vector of the model
is distributed over the various worker processes. This form of parallelism
has similarities to a combined model as described in Section 6.5 where each
worker process implements a sub-model. The used approach allows models
to be couples to parallel models to COSTA that only use a limite number
of processors up to models that use massive parallel computing.

The coupling between COSTA and the sub-models of a worker-worker
model is at two points different to a combined model that is created with the
model combiner. In general it is not possible to perform the timesteps on the
sub-models one at a time since it is likely that the computation of a timestep
will involve communication between the various worker processes. Another
difference is that splitting up the model state-vector over the various worker
processes does not mean that the parameters and forcings are split-up as
well. The model that is represented by a single sub-domain has therefore
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the form of Equation 6.14.

xi,k+1 = Mi (xi,k,uk,p, tk) . (6.14)

The overall model state-vector is given by:

xk = {x1,k,x2,k, ...,xm,k}par combined . (6.15)

The parallel interface model is not only used in COSTA for the automatic
parallelization. The parallel interface model makes it possible to use models
in COSTA that are parallelized according to the worker-worker programming
model. A costawb worker process is started for each of the sub-domains of
the parallel model. The creation of a model instance of the parallel model
results in the creation of a model instance for each sub-domain on the worker
processes and the creation of a parallel interface model instance on the
master process as illustrated in Figure 6.4. The methods from the model
interface of the parallel interface model instance will optionally split up the
input arguments for the various sub-domains and simultaneously send a
request to all worker processes to execute the method for the corresponding
model instances of the sub-domains. For methods that return a result, the
parallel interface model will combine the returned results of the sub-domains
into a single result. The tree-structure of the tree-vector are used to identify
the parts of the global state-vector and the state-vectors of the sub-domains.
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The automatic parallelization of model propagations can be used for
parallel models as well. In that case a multiple of the number of sub-domains
of COSTA worker processes must be started up.

6.9 Experiments

6.9.1 Automatic mode-parallelization for the LOTOS-EUROS
model

We have tested the automatic parallelization capabilities of COSTA with
the LOTOS-EUROS model. The LOTOS-EUROS model [Schaap et al.,
2008] is an operational air quality model of intermediate complexity. The
model focuses on the lower 2-3 km of the atmosphere, and is therefore able
to predict the pollutant levels that have a direct impact on human health.
The model simulates the concentrations of oxidants and organic components
that are responsible for elevated ozone levels, also known as summer smog.

For the experiment we have simulated the air quality of the north western
part of Europe (Figure 6.5). This model has a grid of 40×40 cells with a grid
size of 1

2 deg. longitude by 1
4 deg. latitude. In the vertical the model has

a surface layer of 25 m, a boundary layer with a height varying during the
day, and 2 residual layers with a top at 3.5 km or more in case of a strongly
elevated boundary layer. Boundary layer height is obtained as a part of
the meteorological input, and these determine together with (among others)
wind, temperature, pressure, and humidity the dynamics in the model. The
included trace gases and chemical reactions between them are based on the
CBM-IV mechanism [Whitten et al., 1980].

The LOTOS-EUROS models has been configured to simulate ozone con-
centrations for July 2003. From the EMEP network [Hjellbrekke and Sol-
berg, 2005] we have selected 38 measurement sites (Figure 6.5). The set
of sites was randomly split into a group of 21 locations that was used for
assimilation of the observations, and another group of 17 locations that was
used for validation.

For the noise model we have selected the emissions as being uncertain.
Although not all errors in the model can be addressed to the emission model,
the actual emissions can differ largely in space and time from the modeled
emission which is based on yearly totals and average time profiles, and there-
fore form one of the major uncertainties.

In the original set-up in [van Velzen and Segers, 2009] we have simulated
a period of a month. Because the overall computational time is linear de-
pendent from the simulation period we have shortened the simulation period
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Figure 6.5: LOTOS-EUROS model domain used during the assimilation
experiments, and locations of the assimilated and validated measurement
sites.

to a single day in this experiment.
The Ensemble Kalman and Ensemble Square Root filters performed best

for the given model setup. These Kalman filter techniques converged with
approximately 30 members [van Velzen and Segers, 2009]. Therefore we
have selected to use the COSTA Ensemble Kalman filter with 32 members
for our parallel experiment.

We have run the simulation with varying number of worker processes on
a Linux workstation with two Intel Xeon quadcore processors. Each exper-
iment is performed a number of times in order to account for variation in
computation time. In figure 6.6 we have plotted the average relative com-
putational time of the simulation for a varying number of worker processes.
The dashed line in Figure 6.6 denotes the optimal theoretical computation
time according to Equation 6.13. The difference between the optimal and
realized computation time is the due to the communication overhead of
messages sent between the master and worker processes. This difference is
plotted in Figure 6.6 by the dotted line. We can see that the overhead first
decreases and then again slightly increases, having a value between 3 and
5% of the sequential computational time. The realized speedup and the the-
oretical speedup are presented in figure 6.7. The maximum realized speedup
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with 8 worker processes is almost 5. The difference between the realized and
optimal speedup increases when the number of worker processors increases.
This is due to the the fact that the communication overhead as plotted in
Figure 6.6, does not decrease under the 3% of the sequential computational
time when the number of processes is increased.
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Figure 6.6: Realized relative computation time of a one day LOTOS-EUROS
run using the COSTA Ensemble Kalman filter with 32 modes for varying
number of worker processes. The dotted line denotes the theoretical optimal
computation time.

The speedup of the auto parallelization in COSTA is close to the theo-
retical speedup. For a further improvement it is necessary to parallelize the
sequential part of the data assimilation algorithm as well.

6.9.2 Using COSTA for WAQUA/TRIWAQ with domain de-
composition

The WAQUA/TRIWAQ model

WAQUA/TRIWAQ [Stelling, 1983, Vollebregt et al., 2003] is a simulation
program that is used for simulating two and three dimensional hydrodynamic
and water quality of estuaries, coastal seas and rivers. WAQUA/TRIWAQ
is based on the shallow water equations. It is used both for operational and
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Figure 6.7: Realized and theoretical optimal speedup of a one day LOTOS-
EUROS run using the COSTA Ensemble Kalman filter with 32 modes for
varying number of worker processes

research purposes by the Dutch National Institute of for Coastal and Marine
Management (Rijkswaterstaat/RIKZ).

WAQUA/TRIWAQ is by itself not a model but software implementing a
numerical method that makes it possible to do simulations of shallow water.
The actual models are defined in the form of an input file that describes all
aspects of the model. Various coordinate systems and kinds of grids can be
used to model the geographical areas. The modeled areas are bounded by
any combination of closed boundaries (land) and open boundaries. Open
boundaries force the flows in the model by water levels, velocities, Riemann
invariants, discharges or distributed discharges. The system accounts for
sources of discharge, such as rivers or outfalls, for tidal flats, for islands and
dams, movable barriers and sluices and weirs.

We will however refer to the WAQUA/TRIWAQ model. In this case
we mean the WAQUA/TRIWAQ software in combination with an arbitrary
input file specifying the modeled geographical area.

The COSTA model component that has been created for WAQUA/TRI-
WAQ [van Velzen and Verlaan, 2007] is now part of the official distribution of
WAQUA/TRIWAQ. The various data assimilation methods that are avail-
able in COSTA can therefore be used in combination with WAQUA/TRI-
WAQ by all users.
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Parallel computing

The computation time of a simulation with WAQUA/TRIWAQ can be huge
when the simulated period is long or when very detailed models are used. In
order to be able to perform these kind of simulations within reasonable time,
WAQUA/TRIWAQ has been extended for parallel computing [Roest, 1997,
Vollebregt, 1997]. The chosen approach is illustrated in Figure 6.8. A par-
allel simulation starts with a pre-processing stage where the computational
domain is split up into smaller sub-domains. An input file for each sub-
domain is automatically generated from the original input file of the global
domain by the partitioner. After the preprocessing stage, a WAQUA/TRI-
WAQ process is started for each sub-domain and an additional process called
coexec. The WAQUA/TRIWAQ processes are exactly the same as those
used for a sequential simulation, however when used in parallel they will
communicate with the processes simulating neighboring sub-domains in or-
der to solve the global non-linear systems. The coexec process only plays a
role at the initialization stage and keeps track of the progress of the worker
processes and therefore needs a neglectable amount of CPU-time. After the
simulation, the output of the various sub-domains is collected into a single
file that is exactly the same as the result file of a sequential simulation.

Domain decomposition

There is an important limitation to the grid that can be specified in the
WAQUA/TRIWAQ input file. The number of layers must be constant in
the whole domain and the regular and curvilinear grids in the vertical cannot
be locally refined. As a consequence, when a high horizontal or vertical reso-
lution is necessary at a particular area of the model, the whole geographical
area must be modeled at high resolution.

WAQUA/TRIWAQ is extended with domain decomposition both in the
horizontal as vertical direction in order to overcome this limitation, increas-
ing the flexibility in grid definition and reducing the computational time.
The geographical area of interest in not described by a single grid but by a
number of grids that together describe the whole domain.

A domain decomposition simulation is similar to a parallel simulation as
explained in Section 6.9.2. The main difference is however that the prepro-
cessing stage does not start with a single input file but with a number of in-
put files, one for each sub-domain. The partitioning step will cut parts from
the sub-domain grids, as specified in the configuration of the partitioner,
such that all sub-domains fit together like a puzzle. Domain decomposition
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Figure 6.8: Steps of a parallel run with WAQUA/TRIWAQ. The original
input file of the global domain is split up into input files for smaller sub-
domains in the preprocessing stage. Then a WAQUA/TRIWAQ process is
started for each sub-domain. These processes communicate with each other
in order to solve the global problem. At the end of the simulation, the
output of all sub-domains are collected into a single output file of the global
domain.
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can be combined with parallel computing. In that case the sub-domains are
split up into smaller sub-domains by the preprocessor. The simulation is
exactly the same as a parallel simulation, although the communication is
more difficult since it involves interpolation of values between the various
grids. After the simulation the results are again collected.

Creation of a steady state filter for the CZUNO model

The operational model that is currently used in the Netherlands for day-to-
day sea level forecast is the Dutch Continental Shelf Model (DCSM), Figure
6.9. The model has a spherical regular grid of 201 times 173 grid cells with
a longitudinal grid size of 1

12 deg. and latitudinal grid size of 1
8 deg. This

corresponds to approximately 8 × 8 km grid cells. The model is driven by
tidal boundaries and wind. Measurements of the water level stations near
the British and Dutch coast are assimilated by use of a steady state Kalman
filter. The names and locations of the stations are plotted in Figure 6.9.

The mesh sizes near the Dutch coast are too coarse for accurate predic-
tions. In order to increase the resolution near the Dutch coast a new model
called CZUNO is currently developed by the Dutch Rijkswaterstaat. The
CZUNO model is a domain decomposition model that combines the meshes
of the new DCSM model (version 6) with a spherical curvilinear grid of 1121
times 1261 grid cells and the finer ZUNO (Zuidelijke Noordzee) model with
1458 times 654 grid cells that models the area near the Dutch coast. The
grid of the combined model is plotted in Figure 6.10.

At this time, the CZUNO model is still under development and a lot of
tuning and calibration work needs to be performed before the model can
be used operational. One of the operational applications will be the day-
to-day sea level forecast. In order to show that large and complex domain
decomposition models can be used in the COSTA framework we have created
a steady state filter for the CZUNO model.

The main sources of uncertainty are the forcings of the CZUNO model.
We have added noise on the wind and open boundary forcings modeled by
an AR(1) noise model. The stochastic model is given by

{x,nw,no} = {M (x,u(t) + {nw,no}) , αono, αwnw, } (6.16)

where x denotes the state-vector of the deterministic WAQUA/TRIWAQ
model, nw the noise parameters on the wind field and no the noise on the
open boundary forces and αw and αo the noise time correlation parameters
of the AR(1) noise model.
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The wind noise is assumed to be spatially correlated and is specified on
a regular grid with grid cells of 200 × 200km. When added to the model,
the noise is interpolated onto the finer wind grid that drives the model.
Similarly only a limited number of noise parameters are specified on the
openings where the noise is interpolated as well before it is added to the
model.

In total we have computed four steady state filters. The steady state
filters have been computed by performing a run of 12 hours using the
RRSQRT-filter [Verlaan and Heemink, 1997b, Verlaan, 1998] with 20 and
40 modes and with the Ensemble Kalman [Evensen, 1994] filter with 20 and
40 members. The waterlevel gain that is computed in these four runs for
the station at location North Shields is plotted in Figure 6.11.

There are some remarkable differences between the gains that are com-
puted with RRSQRT Kalman and Ensemble Kalman. The Ensemble Kalman
gain that is computed with 20 modes suffers from a large number of spurious
correlations that disappear when a higher number of members is used. The
gains that have been computed with RRSQRT have a remarkable spurious
correlation near Denmark. We have investigated the source of this correla-
tion and it is the result of a problem in the current version of the CZUNO
model. A significant difference between the RRSQRT gains and Ensemble
gains is the order. The gain that is computed by the RRSQRT filter is an
order 10 smaller than the Ensemble gain. This needs to be further inves-
tigated in the future. The differences might be caused by the non-linear
behavior of the model, that cannot be well captured by the RRSQRT filter
that linearizes around the central model at every timestep. Underestima-
tion of the model error covariance can be another source for the smaller
values in the gain matrix. The model error covariance matrix is truncated
in the rank reduction step of the RRSQRT filter. As a result the filter will
always underestimate the model error covariance. Possibly in combination
with a scaling strategy, that is not optimal, this can result in an significant
underestimation of the error in the waterlevels by the RRSQRT filter.

With this experiment we have shown that COSTA can be used with large
complex WAQUA/TRIWAQ models. The tools are now available and they
can be used for further calibration and development of the new CZUNO
model.
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Figure 6.9: The modeled area of the Dutch Continental Shelf Model and the
locations of the water level observation stations that are assimilated for the
operational forecasts.
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Zuno model

0.8

0.9

1

1.1

1.2

1.3

−0.2 −0.1 0 0.1 0.2

Figure 6.10: The grid of the CZUNO model. The grid is composed from the
ZUNO model and a part of the DCSM model
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Figure 6.11: Computed water level gain after a 12 hours run for station
North Shields for the CZUNO model computed with the COSTA Ensemble-
Kalman filter and RRSQRT-Kalman filter. The first row present the gain
computed with Ensemble Kalman with 20 and 40 members and the second
row the results that are computed with the RRSQRT filter with 20 and 40
modes
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6.9.3 Combined mode- and space-parallelization for Chimere

Background

Emissions of ships have a large influence upon the local air quality. Nearly
70 % of the ship emissions occur within 400 kilometers of land [Lowles and
Apsimon, 1996]. It was estimated [Lowles and Apsimon, 1996] that the air
around the busiest ports bordering the English Channel and the North Sea
had SO2 concentrations exceeding the WHO air quality guidelines. Given
the forecasted growth of cargo over seas in the next five years, the importance
of shipping emissions can not be overestimated.

In the IMPOSE-project (IMpact Of Shipping Emissions), funded by the
Dutch agency for aerospace programmes (NIVR), a monitoring system for
shipping-related emissions and air pollution will be developed. An extensive
database of satellite observations is currently being created, which can be
used for air quality and emission analyses. Data assimilation with COSTA
will be used to incorporate the relevant observations in the air quality model
Chimere.

Chimere [Bessagnet et al., 2008] is a chemistry-transport model primarily
designed to produce daily forecasts of ozone, aerosols and other pollutants.
Also, long-term simulations for emission control scenarios can be performed.
The model runs over a range of spatial scales from the urban scale (100 Km,
resolutions of 1 Km) to the regional scale (several thousands of kilometers
with resolutions of 100 Km). The model requires the following input data:
meteorological data, boundary conditions, land-use information and emis-
sions. For the former three types of input data, adequate default data is
provided. The emissions, to be provided by the user, are the most uncertain
and the noise model of the data assimilation therefore focuses upon these.

Parallelization in Chimere

The main spatial domain of Chimere is horizontally divided in rectangular
subdomains. The master-worker programming model is used: the master
performs all initializations and send to each worker its share of data, corre-
sponding to its subdomain. The master gathers results from the workers.

The Chimere model software has been adjusted to allow integration into
COSTA. This involved some reshuffling of the outer layer code while the
numerical and chemical kernel of Chimere was left intact.

The state vector of the Chimere model mainly consists of the arrays
of species concentrations. For the stochastic model, noise was added to
the antropic emissions. These emissions can be divided into ship-related
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and non-ship-related emissions to assess the specific impact of the ships
emissions.

The Chimere model is computationally rather demanding. While the
efficiency of the model (domain) parallelization has yet to be determined
more accurately for our schematization, parallelization of the model state
propagations seems to be promising given the relatively small state.

The Impose-model is still under development and a lot of tuning will be
needed before the operational use of the model. This tuning also involves
the use of averaging kernels to transform the vertical columns of NO2 as
computed in the model to the one-column value as acquired by the OMI
satellite data.

A first assessment consisted of a small computational domain of 15x10
cells and 8 vertical layers (which is the default value in Chimere). The do-
main was not subdivided (this amounts to 1 master and 1 worker per model
instance). It turned out that the speedup for the automatic parallelized com-
putation was almost linear in the number of processors used. That means
that, indeed, the assimilation time (which involves getting, putting and ma-
nipulating the tree-vector) is relatively short compared to the computational
work of Chimere itself.

Currently the Impose-model is further being developed. The assessment
of the combination of parallel propagation of model states and model-parallel
will be made again for the full-blown model.

6.10 Conclusions

In this paper we have presented the capabilities of the COSTA framework
for data assimilation with respect to parallel computing and model cou-
pling. For this we introduced the object oriented approach in which existing
dynamical models are wrapped into “COSTA model components”. We de-
scribed the COSTA tree-vector object that is used to provide an abstract
interface for moving information around, and COSTA’s model combiner
ideas.

The chosen object oriented approach makes it possible to solve some
complex issues in data assimilation and model calibration in a generic way.
Hiding the model state and using multiple instances of a model makes it
possible to automatically parallelize data assimilation and calibration meth-
ods without the need to change the code of the algorithms. The uniform
way to address model instances using the COSTA model interface makes it
possible to combine models into larger composite models. Finally we have
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shown that models that are parallelized can be used in COSTA as well.
We have shown experiments with three large scale, complex models:

the air quality models LOTOS-EUROS and Chimere and the shallow water
model WAQUA/TRIWAQ. These experiments demonstrate the feasibility of
the COSTA approach. The computational time for a data assimilation run
may be reduced significantly by using COSTA’s automatic parallelization
of the model runs. The experiments with WAQUA/TRIWAQ and Chimere
further illustrate that the models used may employ parallelization and do-
main decomposition as well.

At this time the computations in the data assimilation algorithms have
not yet been parallelized. Therefore future research is needed to include the
automatic parallelization of not only the state-vector propagation but the
other computations in the data assimilation methods as well.

6.A Interface of the COSTA model component

In this section we give an overview of all the methods that are part of the
interface of the COSTA model component. A COSTA model does not need
to implement all methods. There are two situations possible when a method
is not implemented by the model programmer:

1. COSTA will provide a generic implementation of the missing method.
This implementation will probably not be the most optimal or efficient
but at least it is available.

2. The method is not available for the model component. In that case
not all data assimilation methods or model calibration methods can
be used in combination with the model.

We have split up the methods in a number of groups. The first group
consists of methods that must be implemented or are available for all COSTA
models. A generic implementation is available for methods that are denoted
with an asterisk.

• Create: Create a new model instance

• Free: Free a model instance

• GetTimeHorizon: Get the time horizon of the model.

• GetCurrentTime: Get the current time of the model.
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• Compute: Propagate the model state-vector forward in time to a
given end-time.

• GetObsValues: Get (interpolate) the internal state of the model to
the observations described as specified in the observation description
component.

• AnnounceObsValues*:Announce in advance to the model which ob-
servations will be requested

• GetObsSelect*: Get a query for the stochastic observer in order to
filter out the observations that can actually be provided by the model

Stochastic models include the following additional methods:

• AddNoise: Add noise during during the given timespan at the Com-
pute

• GetNoiseCount: Get the number of noise parameters of the model

• GetNoiseCovar: Get the root covariance matrix of the noise param-
eters of the model

Calibration models change the model parameters p. The following meth-
ods are available for changing the model parameters:

• SetParam: Set the parameters of the model

• GetParam: Get a copy of the parameters of the model

• AxpyParam*: Add change to model parameters ∆p to model state-
vector p according to p := α∆p + p

Data assimilation methods change the model state x. The following
methods are available for changing the state:

• SetState: Set the state-vector of the model

• GetState: Get a copy of the state-vector of the model

• AxpyState: Add state-vector y to model state-vector x according to
y := αx + y

• GetStateScaling*: Get an element-wise scaling for the state-vector
of the model
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• Export: Export the whole internal state of a model

• Import: Import the whole internal state of a model

The model forcings are in general not adapted by data assimilation or
calibration algorithms. The methods that are provided can be used for
creating a stochastic model where noise is added to the forcings of the model.
The following methods are available for changing the forcings of the model:

• GetForcings: Get a copy of the value of the forcings of the model

• AxpyForcings: Add a constant change ∆u to the model forcings u(t)
according to u(t) := α∆u + u(t) for a given timespan ts...te

For models that provide an adjoint implementation the following meth-
ods need to be implemented:

• AdjSetointForc: Set the adjoint forcings of the model (corresponds
to the observations in a forward run).

• AdjPrepare: Announce to model that an adjoint run will follow the
normal forward run.

• AdjCompute: Run the adjoint model for the given timespan.

As already mentioned not all methods need to be implemented in order to
use the model in COSTA. A practical approach is to implement those meth-
ods that are needed for the preferred (group of) data assimilation methods
first. Optionally the interface can be extended to increase the performance
or usability of the model.
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Conclusions and future work

The work that is presented in this thesis forms the basis for a new approach
towards the development and programming of data assimilation and model
calibration software. The main scientific impact is that a generic framework
like COSTA allows data assimilationists easily to experiment with differ-
ent reliable and well tested implementations of data assimilation or model
calibration algorithms. These data assimilation and model calibration algo-
rithms can be developed independent from a particular simulation model or
application area.

The three main building blocks of any application of data assimilation
or model calibration method are the dynamic model, observations and algo-
rithm. In this work we present a software development strategy that allows
us to create software in which these three building blocks are strictly sepa-
rated from each other. The presented approach is based on concepts from
object oriented programming where all building blocks are defined as classes.

The use of object oriented programming in parallel and high performance
computing applications is still tentative. One of the main reasons for not
using object oriented programming is that it is expected to have a negative
impact on the performance. This thesis shows that object oriented program-
ming can be used without giving in to the performance of the application.
Object oriented programming can even be used to improve the performance
since it allows for automatic parallelization of computations and easy con-
nection with highly optimized third party software components. The most
important classes will be discussed in the next sections

The model class
The model class specifies the interface to the dynamic model to which the
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data-assimilation is applied. The implementation of the model class for an
existing model is not difficult and does not take a lot of programming. In
fact only the model class interface needs to be implemented. This will not
take more effort than preparing an existing model code in order to use it in
combination with a custom implementation of a data assimilation or model
calibration algorithm.

The interface can be implemented either by wrapping the model or inside
the model code. Wrapping the model provides a way to use models without
the need to make any changes to the model code. Implementing the interface
directly in the model code is usually more efficient but not always possible
or desirable.

Using a class representation for the models has a number of advantages.
It allows algorithms to be developed and implemented independent from
a particular model. Also, it makes it possible to automatically parallelize
the computations of model timesteps, therefore significantly improving the
computational performance without any additional programming effort or
knowledge on parallel computing. Finally, the object oriented approach of-
fers an uniform way for combining models into larger composite models and
finally it makes it possible to seamlessly use models that use parallel com-
puting themselves independent from the chosen parallelism methodology.

The interface of the model class contains an at first sight redundant but
important method called the axpy method on the model state. This method
is of vital importance to be able to handle model specific issues in comparing
and updating model states and to reduce copying overhead.

Tree-vectors
We have designed the tree-vector class, a novel approach for representing
model state vectors, parameters and forcings offsets. The tree-vectors main
purpose is the representation of vectors and performing optimized liner al-
gebra operations on vectors. Additionally, tree-vectors are extremely flex-
ible. Multiple tree-vectors can be combined in self describing composite
tree-vectors. This new approach provides an excellent bridge between the
preferred single vector presentation of variables in algorithms and the scat-
tering of these variables over multiple vectors in the model, additionally
it makes combining variables of a composite or parallel distributed model
trivial, whereas it is a difficult task in conventional programming.

Another important aspect of tree-vectors is the possibility to optionally
add meta information about the content of the tree-vector. The meta infor-
mation makes it possible to automatically interpolate between values and
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eases the post processing of data.

The Observations
Observations should not to be presented by a single vector per timestep.
Instead, a self describing class called the stochastic observer is presented in
this work. A stochastic observer not only contains the measurements but
information on among others the error statistics, location, units and ob-
servation kernels. Because the observations are self describing it becomes
possible to combine observations from various sources and to make selec-
tions of observations. The meta information of the observations is used as
well for interpolating the predicted model values to the observed values.

The COSTA framework
The concepts introduced in this thesis have been implemented and vali-
dated in the COSTA data-assimilation framework. The various experiments
using a range of models and algorithms have shown the effectiveness of the
proposed development strategy. Using COSTA we have been able to demon-
strate that the research objectives that are formulated in Section 1.2 can be
met.

COSTA has been applied to a range of operational dynamic models in-
cluding WAQUA/TRIWAQ and LOTOS-EUROS Chimere and Sobek-Re.
This illustrates that a single interface definition for the model can be used
for a range of models. Similarly we have implemented a range of data assim-
ilation and model calibration methods. We have performed a large number
of experiments to show that the presented concepts allow to make arbitrary
combinations between these methods and the models.

Algorithms
Using an uniform framework, the implementations of the data-assimilation
algorithms can be applied to and tested on various dynamic models. Hence,
the code is tested much more thoroughly than dedicated code that is devel-
oped for a single dynamic model. As a result these generic implementations
will be more robust and will contain less errors. The correctness of the
implementations is very important, not only in an operational context but
also in the scientific context. The performance of different algorithms can
only be investigated and compared meaningfully when the algorithms do
not contain significant errors.

The COSTA framework is very useful for the development of new al-
gorithms. It makes it possible to compare the performance (both in terms
of computational efficiency and in terms of effectiveness) of new algorithms
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with respect to algorithms that are already available in COSTA. The com-
parison can be made for all the models that are coupled to COSTA, from
small academic ’toy’ models to large and complex operational models.

New algorithms, once implemented in COSTA, can be directly made
available to other researchers and users of COSTA as well. Hence, new
developments can quickly be taken up in practice.

From the point of view of the users of data-assimilation methods, the
COSTA approach has the advantage that they can easily seek out the most
effective method for their model. These capabilities are shown using a
case study with the LOTOS-EUROS model. A wide range of experiments
with the LOTOS-EUROS model in combination with the EnKF, EnSRF,
RRSQRT, and COFFEE filters could be carried out without the need for
any programming.

The set of data assimilation methods in COSTA framework is constantly
being extended. The current ongoing research with COSTA includes the
calibration of the new WAQUA/TRIWAQ DCSM version 6 model. Model
reduction using Proper Orthogonal Decomposition is used to approximate
the covariance of the model variability [Altaf et al., 2008]. The adjoint of the
reduced model is used instead of the adjoint of the Tangent Linear model
in the variational method. This shows that variational methods can also be
accommodated in COSTA.

Performance
Existing operational data assimilation systems can be replaced by a COSTA
based system. It has been proven that an efficient equivalent COSTA based
alternative can be realized for the RRSQRT-Kalman filter implementation
of the WAQUA/TRIWAQ model. Model specific issues like in drying and
flooding of parts of the model can be handled in a generic way as well.
We have shown that the performance of the generic COSTA based code is
comparable to the original code.

The ability of COSTA to automatically parallelize computations is an-
other consequence of using object oriented concepts in high performance
computing. The automatic parallelization of data assimilation applications
is investigated and illustrated using the LOTOS-EUROS model. From this
experiment we see that speedup of the automatic parallelization was found
to be close to the theoretically optimal speedup. It has been shown using
the Chimere model and WAQUA/TRIWAQ that large scale parallel models
can be used without problems in the COSTA framework similar to the way
sequential models are used.

It has been shown that a significant improvement of the computational
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time can be accomplished using the automatic parallelization that is already
available in COSTA. However to get a good performance on a large number
of processors it is necessary as well to parallelize additional computations
in the algorithms. The possibilities to extend the automatic parallelization
in COSTA is one of the research items that will be carried out in the near
future. One of the options is to automatically parallelize the linear algebraic
calculations e.g. by using an third party software package like PETSc [Balay
et al., 2001, 1997] in combination with COSTA.

Towards the future
Currently the DATools package from Deltares and the COSTA framework
are combined into a new open source data assimilation framework called
OpenDA. Within OpenDA all high level programming and configuration
will use the Java programming language. Java provides an excellent ob-
ject oriented language for combining the building blocks and configuring the
system. The computations themselves will be performed by the native, C
and Fortran based, part of this new framework. The native part will be
mainly based on the existing COSTA code. The high performance native
part guarantees the performance and will implement the support for parallel
computing.
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Summary

A Generic Software Framework for Data Assimilation and Model
Calibration
Nils van Velzen

Dynamic simulation models are used in many application areas. The
accuracy of dynamic models can be increased by using observations in con-
junction with a data assimilation or model calibration algorithm. However,
implementing such algorithms usually increases the complexity of the model
software significantly. This leads to high costs for the maintenance and
further extension of the software.

To ease this problem, this thesis proposes a software framework for data
assimilation and model calibration that is strictly separated from the dy-
namic model. The interaction between the model and the framework is
established through a well-defined interface. Thus, the model can be main-
tained and developed further without significant influence from the data
assimilation and model calibration functionality.

Reversely, the data assimilation and calibration framework can also be
developed independently from the model software. It can be used for a
large number of models, thus making the investment to implement data
assimilation or model calibration for a model much lower. Also, the reuse
will quickly reveal any errors in the framework code.

At first experts in the field of data assimilation and calibration are con-
sulted in order to find out what the desired functionality should be of this
software framework. Then algorithms are studied to determine which com-
mon building blocks are used by these algorithms. These common building
blocks are translated into software building blocks using concepts from ob-
ject oriented programming. By combining these software building blocks it
is easy to create a data assimilation or model calibration program.

Based on the proposed design, a software package called COSTA is cre-
ated. With COSTA, it is possible to test the proposed approach on complex
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operational dynamical models. The proposed approach has been evaluated
and tested in three studies on large operational models.

The first study investigates whether it is possible to reconstruct the exist-
ing data assimilation functionality for the shallow water model WAQUA/TRI-
WAQ along the lines proposed in this thesis. The data assimilation function-
ality was reprogrammed in the COSTA framework and then coupled to the
original WAQUA/TRIWAQ code. This study demonstrates that the com-
bination of COSTA and WAQUA/TRIWAQ has the same functionality as
the original WAQUA/TRIWAQ-with-data-assimilation, but is much better
structured. Also, implementing the data assimilation with COSTA proved
to take relatively little effort. Moreover, the additional computational over-
head in the new more flexible program is very low.

In the second study, the flexibility of the system was studied. The pur-
pose of this study was to show that a dynamic model that complies with the
COSTA standard can be trivially combined with the different data assimi-
lation algorithms. To demonstrate this, a case study is set up wherein the
operational LOTOS-EUROS air quality model is combined with four data
assimilation methods. In this study, the results of these different methods
are compared. Due to the software framework, it was very simple to set up
the simulations and compare the results.

Finally, in the third study it is examined how parallel computing fits into
the proposed approach. A number of aspects of parallel computing are in-
vestigated. First, it is shown using the LOTOS-EUROS model how the data
assimilation computations can be automatically parallelized without any ef-
fort of the (model) programmer. Then it is explained how models that are
already parallel by themselves can easily be used. This is demonstrated by
performing experiments with the very large parallel domain decomposition
model WAQUA/TRIWAQ called CZUNO and parallel air quality model
Chimere.

In conclusion it has been possible to design and implement a software
framework that fulfills the predefined requirements. A road map is given on
how this framework can be further developed and improved in the future
such that it can be used by an even larger group of users.



Samenvatting

Een generiek software raamwerk voor data-assimilatie en model
kalibratie
Nils van Velzen

Dynamische simulatie modellen worden in vele toepassingsgebieden ge-
bruikt. De nauwkeurigheid van dynamische modellen kan vergroot worden
door gebruik te maken van observaties in combinatie met een data assimi-
latie of model kalibratie algoritme. Echter het implementeren van deze algo-
ritmes leidt in het algemeen tot een significante verhoging van de complex-
iteit van de programmatuur. Dit leid tot hogere kosten voor het onderhoud
en toekomstige uitbreidingen aan de programmatuur.

Om dit probleem te verkleinen wordt in dit proefschrift een software
raamwerk ontworpen voor data assimilatie en model kalibratie, waarbij de
algoritmes strikt gescheiden zijn van het dynamische model. Alle interactie
tussen het model en het raamwerk vindt plaats via een goed gedefinieerde
interface. Het model kan daardoor onderhouden en ontwikkeld worden zon-
der een noemenswaardige invloed van de data assimilatie en model kalibratie
functionaliteit.

Omgekeerd kan het data assimilatie en kalibratie raamwerk onafhankelijk
ontwikkeld worden van de model programmatuur. Het kan gebruikt worden
voor een groot aantal modellen. De investering die noodzakelijk is om data
assimilatie en model kalibratie technieken te implementeren voor een model
is daarom veel kleiner. Het hergebruiken van programmatuur zal ook tot
gevolg hebben dat fouten in het raamwerk sneller gevonden worden.

Allereerst is er met behulp van experts op het vakgebied gedefinieerd wat
de gewenste functionaliteit zou moeten zijn van een degelijk software raamw-
erk. Vervolgens zijn verschillende algoritmes bestudeerd om te achterhalen
welke bouwstenen deze algoritmes gemeenschappelijk hebben. Door gebruik
te maken van concepten uit het object geörienteerde programmeren zijn deze
bouwstenen vertaald in software bouwstenen waarmee het eenvoudig is om
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een data-assimilatie of model kalibratie programma samen te stellen.
Het ontwerp is uitgewerkt in een software pakket genaamd COSTA. Op

deze manier was het mogelijk om de voorgestelde aanpak ook daadwerkelijk
te testen in combinatie met complexe operationele dynamische modellen.
In een drietal studies is de voorgestelde aanpak uitgewerkt en is de bruik-
baarheid aangetoond voor grote operationele modellen.

In de eerste studie is het onderzocht of het mogelijk is om met een geringe
inspanning de bestaande data assimilatie functionaliteit van het ondiep wa-
ter model WAQUA/TRIWAQ te reconstrueren volgens de in dit proefschrift
voorgestelde concepten. De data assimilatie functionaliteit is geherprogram-
meerd in het COSTA raamwerk en daarna gekoppeld met de oorspronkelijke
WAQUA/TRIWAQ code. Deze studie toont aan dat de combinatie tussen
COSTA en WAQUA/TRIWAQ de zelfde functionaliteit heeft maar dan veel
beter gestructureerd. Tevens kon het algoritme met een geringe inspanning
in COSTA geprogrammeerd worden. Bovendien is gebleken dat de addi-
tionele rekentijd van het nieuwe veel flexibelere programma zeer gering is.

In de tweede studie is de flexibiliteit van het systeem onderzocht. Het
doel van deze studie was om aan te tonen dat een dynamisch model dat
aangepast is om binnen de generieke omgeving te werken op een triviale wi-
jze gecombineerd kan worden met verschillende data assimilatie algoritmes.
Om dit aan te tonen is er een studie uitgevoerd waarbij het operationele
luchtkwaliteits model LOTOS-EUROS gecombineerd is met een viertal data-
assimilatie methoden waarbij de resultaten van deze verschillende methodes
met elkaar vergeleken zijn. Dankzij het software raamwerk was het zeer
eenvoudig om de noodzakelijke simulaties uit te voeren en de resultaten met
elkaar te vergelijken.

Tot slot is in een derde studie onderzocht hoe parallel rekenen past bin-
nen de voorgestelde aanpak. Een aantal aspecten van parallel rekenen zijn
onderzocht. Ten eerste is met behulp van het LOTOS-EUROS model uit-
gewerkt hoe berekeningen automatisch geparallelliseerd kunnen worden zon-
der dat hiervoor enige inspanning van de (model) programmeur noodzakelijk
is. Vervolgens is uitgewerkt hoe modellen die zelf al parallel zijn ook op een
eenvoudige wijze gebruikt kunnen worden. Om dit aan te tonen zijn er
experimenten uitgevoerd met het zeer grote parallelle domein decompositie
model voor WAQUA/TRIWAQ genaamd CZUNO en het parallelle luchtk-
waliteits model Chimere.

Concluderend is het mogelijk gebleken om een software raamwerk te
ontwerpen en te implementeren dat aan de vooraf gestelde eisen voldoet.
Tevens zijn vervolgstappen aangegeven op welke wijze het software raamw-
erk in de toekomst nog verder ontwikkeld en verbeterd kan worden zodat
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deze voor een nog grotere groep gebruikers inzetbaar is.
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