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Summary

This thesis poses a new geometric formulation for compressible Euler flows. A partial decomposition of this
model into Roe variables is applied; this turns mass density, momentum and kinetic energy into product
quantities of the Roe variables. Lie derivative advection operators of weak forms constructed with this de-
composed model naturally follow to be self-adjoint, which results in skew-symmetric discrete advection op-
erators in any number of dimensions. Under certain conditions these conserve products of the Roe variables,
leading to a discrete model formulation with advection operators that simultaneously conserve mass, mo-
mentum, kinetic energy, internal energy and total energy in compressible Euler flows. While this idea is not
new the novelty of this work lies in its extension to mimetic finite element methods and its application to
discontinuous compressible Euler flows.

The regular geometric Euler model and its Roe variable decomposition have been discretized through mimetic
isogeometric analysis. At the core of mimetic discretization methods lies the idea of retaining the De Rham
sequence of differential form spaces when projecting these to finite-dimensional approximations and when
constructing discrete operators. B-spline differential form spaces have been defined such that the exterior
derivative maps in a topologically exact and metric-free way, while the interior product has been discretized
in a weak way in order to retain its map between appropriate spaces in the De Rham sequence. Only primal
grids are used; the Hodge ? operator is discretized through the definition of an L2 inner product to resolve
weak forms. Cartan’s homotopy formula allows for a consistent discretization of the Lie derivative through
compositions of the interior product and exterior derivative.

Several tests were carried out to determine the efficacy and behavior of this regular geometric Euler model, its
Roe variable decomposition and the resulting discrete advection operators. Testing one-dimensional linear
advection and Burgers’ equation on periodic domains shows that discretizations of the self-adjoint advection
operators are consistent with conservative formulations. Sod’s shock tube is used as one-dimensional dis-
continuous compressible flow test. Both the regular Euler model and its Roe variable decomposition display
strong oscillatory tendencies, yet solution convergence is obtained without any issues. While application of
a simple moving average-filter removes the worst oscillations more sophisticated methods are necessary for
obtaining solutions that are free of unphysical oscillations. The Roe variable decomposition negatively af-
fects the accuracy of shock speed predictions. The presence of strong oscillations likely affects the numerical
conservation errors of both methods. Compared to finite volume package Clawpack and the nodal Discontin-
uous Galerkin (DG) method of Hesthaven & Warburton both models have less numerical diffusion on coarse
meshes with the regular model outperforming the Roe variable decomposition. Convergence of momentum
conservation error is slow and the errors are large compared to the reference methods.

For two-dimensional periodic vortices both the regular geometric Euler model and its Roe variable decom-
position outperform both reference methods for stationary and moving vortices. Clawpack displays diffusive
behavior, resulting in large L2 errors and high amounts of numerical diffusion. While the L2 errors of the
DG method are comparable to those of the two models developed in this work for all basis function orders
considered, the resulting DG discretization requires significantly more degrees of freedom to attain this. To
obtain similar levels of numerical diffusion the DG method needs up to ten times as many degrees of freedom
as the methods presented in the current research.
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Introduction

According to Moore’s law the number of transistors on computer chips doubles every two years. Since he
made this prediction in the 1960s the transistor count on a chip of a given size has increased by at least seven
orders of magnitude1. With this increase in transistor count the available computing power has also increased
rapidly. One particular metric for this is the computing performance of the largest 500 supercomputers,

Figure 1: Combined computing performance of Top 500 supercomputers on Earth over
time; shown as well are the performance of #1 and #500 on this list. Image courtesy of
www.top500.org

which is shown in figure 1. As
can be seen the computing perfor-
mance (expressed in floating point
operations per second) of the lowest-
ranked supercomputer on the Top
500 list has increased by a factor of
one million (six orders of magnitude)
since 1995. With this drastic increase
in available computing power the an-
alytic capabilities of physics simu-
lations have grown rapidly as well.
However, the development of im-
proved computational methods has
not kept the same speed. Com-
mercial software for simulating con-
tinuum problems such as fluid dy-
namics, solid mechanics and elec-
tromagnetics still relies on the rela-
tively simple and limited computa-
tional methods that were introduced
in the sixties, seventies and eight-
ies [32, 46]. These methods work
for relatively simply problems but re-
quire excessive amounts of computa-
tional power or outright fail for more
complicated cases; moreover, spe-
cific discretization approaches work only for particular types of problems. Part of the academic world has
turned to using a more extensive mathematical basis in an attempt to gain more understanding into the rea-
sons why these kinds of issues happen, and to discover new discretization approaches that perform better.

One class of computational methods to come out of this push for a more rigorous use of mathematics are the
so-called mimetic or structure-preserving methods. Tonti has pioneered this idea and has given an extensive
overview for a variety of field theories in [53]. These methods aim to leverage the geometric structure of phys-
ical field theories, together with the various symmetries that such theories contain. This unlike more classical
methods, where no such structure is taken into account - or it is used in often ad-hoc solutions that are hard to
generalize and often contain certain approximations. At the heart of mimetic or structure-preserving meth-
ods lies the idea to construct discrete counterparts to the various geometrical objects that are contained in
physical field theories, and to create discrete operators that map between the spaces of these objects in the
same way their continuous counterparts do. These continuous operators are often defined independently of
any metric notions such as distances, lengths or angles; in other words, they are purely topological. Retaining
this topological structure for discrete operators leads to numerical methods that are constructed based on
things that are universally true for a given domain - independent of how deformed a mesh is or how large
its cells are. The theoretical framework underlying mimetic methods has been shown to encompass a large
number of successful numerical methods, ranging from finite difference to finite volume and finite element

1https://en.wikipedia.org/wiki/Transistor_count

1

www.top500.org
https://en.wikipedia.org/wiki/Transistor_count
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methods. Chapters 1 and 2 cover the relevant underlying theory in a continuous and discretized setting re-
spectively.

The focus of this work lies in fluid flows; more specifically, Euler fluid flows. Mimetic or structure-preserving
methods have already been successfully applied to the Euler and Navier-Stokes equations. Examples for in-
compressible flows include the work of Evans and Hughes on mimetic (isogeometric) finite element methods
[14], the mimetic finite difference method of Abbà and Bonaventura [2] and the finite volume-like method
of Pavlov et al. [42]. A large focus in these methods is the simultaneous conservation of momentum and ki-
netic energy; these are two conserved parameters for the Euler equations in any number of dimensions. As is
covered in more detail in chapter 3, various numerical methods have been derived that can conserve both of
these parameters in incompressible Euler flows. However, they manage to do so by exploiting the divergence-
free nature of any solution; it turns out that for numerical solutions that are pointwise divergence-free the var-
ious forms of the nonlinear advection operator that is present in the Euler and Navier-Stokes equations are
identical. Simultaneous conservation of mass, momentum and kinetic energy is contingent on this pointwise
divergence-free character of any numerical solution. No such constraints exist for compressible flow models,
and because of this simultaneous conservation of mass, momentum and kinetic energy in compressible Eu-
ler flows has not been achieved yet.

The aims of this thesis are threefold. First a geometric model is proposed for the compressible Euler equa-
tions. Secondly, a partial decomposition into Roe variables is applied to this model. This decomposition
will lead to discrete advection operators that simultaneously conserve mass, momentum and kinetic energy.
Lastly both of these models are discretized. This will be done with a mimetic finite element discretization ap-
proach that employs ideas from isogeometric analysis [13]; in this approach B-splines are used to discretize
numerical solutions and domains. Since Computer-Aided Design (CAD) software uses B-splines to describe
geometrical objects, any such object can be represented exactly within an isogeometric discretization. Iso-
geometric mimetic methods have been applied to a variety of field theories, among which are the works of
Buffa et al. [11] and Back & Sonnendrücker [1] on electromagnetics, and the aforementioned work of Evans
and Hughes on incompressible Navier-Stokes flows [14] and Janssen [30] on incompressible Euler flows.

The aforementioned discrete advection operators are constructed such that they are skew-symmetric; with an
appropriate decomposition of variables this leads to advection operators that simultaneously conserve all the
physical variables mentioned above. After having derived and constructed these operators their effectiveness
will be demonstrated in a variety of tests. Starting with linear advection in chapter 5, the first nonlinear
test is Burgers’ equation in chapter 6. Both of these tests serve to show that the skew-symmetric advection
operators are consistent with non-skew-symmetric ones. Following this the one-dimensional Euler equations
are discretized in chapter 7, where Sod’s shock tube is simulated. This presents the first time the conservation
of all physical variables can be tested. Lastly the two-dimensional Euler equations are discretized and tested
with static and moving isentropic vortices. Comparisons are made with Clawpack (a finite volume code) and
a nodal Discontinuous Galerkin method for all simulations of the Euler equations; these are made in terms of
L2 errors, predicted shock locations (for Sod’s shock tube) and conservation errors. Exact solutions exist for
all test cases.
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Differential Geometry

Since the discretization approach that is central to this thesis aims to mimic the structure of continuous Euler
flow models, an understanding of this structure needs to be created first. The theory presented in this chapter
is not given in a thorough way and only serves to create a topical understanding of some of the relevant
concepts and aspects from differential geometry. For a more thorough overview of the relevant theory the
reader is referred to the books by Frankel [15], Nakahara [37] and Nash & Sen [38], as well as the dissertation
by Kreeft [31]; these works have also served as primary sources for this chapter.

Definition 1.1 (Frankel [15, Sec. 1.2]). An n-dimensional manifold M is a topological space that is homeo-
morphic to Rn and is covered by a collection of coordinate patches {Ui ,φUi }, i ∈N such that M =U1 ∪U2 ∪ . . ..
For each Ui there exists a one-to-one coordinate map φUi : Ui → Rn such that φUi (Ui ) ⊂ Rn is open. The im-

age φUi (p) for any point p ∈ Ui defines an n-tuple of coordinates
(
x1

Ui
(p), . . . , xn

Ui
(p)

)
. For any point p that

lies within two overlapping coordinate patches (p ∈Ui ∩U j ) its coordinates in both patches are related by the
differentiable function fU j ,Ui :

xk
U j

(p) = f k
U j ,Ui

(
x1

Ui
, . . . , xn

Ui

)
For k = 1, . . . ,n.

In other words, coordinate systems are not unique and can be converted between in a continuously differen-
tiable way. Note that a manifold is a topological space, meaning that there is no natural measure of distance
between points, nor any notion of angle or length on said manifold. While the coordinate maps φUi exist
these give out an n-tuple of coordinates in Rn for each point on a patch independently; for a notion of dis-
tance, angle or length to exist a function has to be introduced that compares points to one another. In order
to generalize the constructions in the following sections as much as possible, this function (called a metric
tensor) will be introduced only when necessary.

1.1. Objects on manifolds
Having defined the necessary spatial structure contained in a manifold, several objects that live on manifolds
are introduced.

1.1.1. Vectors & covectors
Definition 1.2 (Frankel [15, Sec. 1.3]). Let M be a manifold in Rn . A tangent or (contravariant) vector at a
point p0 ∈U ⊂ M assigns to coordinate patch (U ,φU ) an n-tuple of real numbers X i

U = (X 1
U , . . . , X n

U ) such that
for p0 ∈U ∩V :

X i
V =

n∑
j=1

X j
U

∂xi
V

∂x j
U

(p0)

In other words, the expressions of said vector XU and XV in the coordinates of patches U and V respectively are
related to each other in a continuously differentiable way.
Similarly, differentiably assigning a vector to every point p ∈U defines a vector field on U .

3
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It turns out that the set of all possible vectors at a point p define their own space:

Definition 1.3 (Frankel [15, Sec. 1.3a]). Let M be a manifold in Rn . The tangent space Tp (M) to M at point
p ∈ M is the real vector space consisting of all tangent vectors to M at p. Suppose that (x1, . . . , xn) is a local

coordinate system on the patch that contains p, then the basis of Tp (M) is formed by the set

{
∂
∂xi

∣∣∣
p

}i=n

i=1
. Any

vector in Tp (M) can be expressed as a linear combination of the elements of this basis. The tangent bundle
T (M) is defined as the collection of all tangent vectors at all points of M:

T (M) = ⋃
p∈M

Tp (M)

Note that the tangent space Tp (M) has the same number of dimensions as the manifold it is locally tangent
to. Its basis will vary depending on the coordinate patch and point p ∈ M . For example, suppose that mani-
fold M is a hollow sphere in R3; Tp (M) then consists of a (two-dimensional) plane that is tangent to M in p.

Another space can be defined, based on the tangent space and the manifold M :

Definition 1.4 (Frankel [15, Sec. 2.1]). Let M be a manifold in Rn and Tp (M) the tangent space in p ∈ M. The
cotangent space T ∗

p (M) is the space of linear functionals acting on elements of Tp (M). That is, for v ∈ Tp (M)
there exist covectors α ∈ T ∗

p (M) such that α : Tp (M) →R.
Similarly, differentiably assigning a covector to all points p ∈ U ⊆ M open defines a covector field on U . The
cotangent bundle T ∗(M) is defined as the collection of all covectors at all points of M:

T ∗(M) = ⋃
p∈M

T ∗
p (M)

Since cotangent space T ∗
p (M) consists of linear functionals (covectors) it follows that α ∈ T ∗

p (M) acts directly

on the basis

{
∂
∂xi

∣∣∣
p

}i=n

i=1
of Tp (M). The bases of cotangent space T ∗

p (M) and tangent space Tp (M) thus have

a certain correspondence to them. A basis for T ∗
p (M) can be defined that is exactly dual to the basis of the

tangent space:

Definition 1.5 (Frankel [15, Sec. 2.1]). Let M be a manifold in Rn and Tp (M) the tangent space in p ∈ M.

Suppose Tp (M) admits basis

{
∂
∂xi

∣∣∣
p

}i=n

i=1
. We define the dual basis

{
d xi

p

}i=n

i=1
of cotangent space T ∗

p (M) such

that:

d xi
p

(
∂

∂x j

∣∣∣
p

)
= δi

j =
{

1 if i = j

0 otherwise

For a vector field v (x) = v1(x) ∂
∂x1 + v2(x) ∂

∂x2 + . . . expressed in the primal basis and covector field α(x) =
α1(x)d x1 +α2(x)d x2 + . . . expressed in the dual basis it follows that:

α (v ) =
∑
i , j
αi d xi v j ∂

∂x j
=∑

i , j
αi v jδi

j =
∑

i
αi v i

1.1.2. Differential forms
Covector field α = α1d x1 +α2d x2 + . . . consists of a linear combination of the dual basis vectors d xi , each
weighed with αi respectively. We would like to be able to associate multiple dual basis vectors to each αi ,
thereby generalizing the underlying covector structure:

Definition 1.6 (Frankel [15, Sec. 2.5b]). An (exterior) (differential) p-form is a covariant p-tensor α(p) ∈
⊗p T ∗(M) = T ∗(M)⊗T ∗(M)⊗ . . .⊗T ∗(M)︸ ︷︷ ︸

p times

that is antisymmetric:

α(p)(v1, . . . , vr , . . . , vs , . . . , vp ) =−α(p)(v1, . . . , vs , . . . , vr , . . . , vp )

The space of p-forms on M is denoted byΛ(p)(M).
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In other words, swapping any two vectors in the order will change the sign of α(p). Note that if vr = vs it fol-
lows that α(p) =−α(p), and thus α(p) = 0. This holds whenever the input vectors are not linearly independent,
as this implies at least one of the input vectors can be written as linear combination of the others. Since the
dimension of the tangent and cotangent spaces is equal to that of manifold M , the dimension of the manifold
limits the maximal degree of the differential forms that can be supported by M .

Not every element of ⊗p T ∗(M) is a differential p-form, since not all elements are antisymmetric. Taking
the tensor product of p-form α(p) ∈ ⊗p T ∗(M) and q-form β(q) ∈ ⊗q T ∗(M) does not automatically lead to a
p + q-form α(p) ⊗β(q); interchanging a vector of α(p) with a vector of β(q) is not guaranteed to change the
sign of α(p) ⊗β(p). A notable example of this is α(1) ⊗β(1); whereas both 1-forms have only one input vector
their tensor product is not a 2-form, as interchanging both vectors does not change its sign. To remedy this a
different product operator is defined:

Definition 1.7 (Frankel [15, Sec. 2.5b]). Let M be a manifold inRn . The exterior product (also known as wedge
product or Grassmann product) is the mapping ∧ : Λ(p)(M)×Λ(q)(M) → Λ(p+q)(M) that maps two lower-
degree differential forms to a higher-degree form, such that for α(p) ∈ Λ(p)(M), β(q) ∈ Λ(q)(M), γ(l ) ∈ Λ(l )(M)
and f ∈Λ(0)(M):

α(p) ∧β(q) = (−1)pqβ(q) ∧α(p)(
α(p) +β(q))∧γ(l ) =α(p) ∧γ(l ) +β(q) ∧γ(l )(
α(p) ∧β(q))∧γ(l ) =α(p) ∧

(
β(q) ∧γ(l )

)
f
(
α(p) ∧β(q))= f α(p) ∧β(q) =α(p) ∧ f β(q)

The wedge product thus provides a way of combining differential forms of various degrees to obtain higher-
degree forms.

Example 1. Let α(1) and β(1) be 1-forms on M ⊂R3, such that:

α(1) =α1d x1 +α2d x2 +α3d x3

β(1) =β2d x2 +β3d x3

Then:

α(1) ∧β(1) =(
α1d x1 +α2d x2 +α3d x3)∧ (

β2d x2 +β3d x3)
=α1β2d x1 ∧d x2 +α2β2 d x2 ∧d x2︸ ︷︷ ︸

=0

+α3β2 d x3 ∧d x2︸ ︷︷ ︸
=−d x2∧d x3

+α1β3 d x1 ∧d x3︸ ︷︷ ︸
=−d x1∧d x3

+α2β3d x2 ∧d x3 +α3β3 d x3 ∧d x3︸ ︷︷ ︸
=0

=α1β2d x1 ∧d x2 + (
α2β3 −α3β2

)
d x2 ∧d x3 −α1β3d x3 ∧d x1

Which is thus a 2-form on M.

One of the main advantages of differential forms over vectors is their natural integrability over appropriate
oriented regions. Differential 1-forms are naturally integrated along curves, 2-forms over surfaces and 3-
forms over volumes without having to make any use of dot products, cross products or similar constructions.
The integrals can be computed independently of the (local) coordinate system and without having to make
use of so-called ’metric concepts’ such as arc lengths or angles. Being able to compute these requires one to
introduce additional structure to manifold M : A metric. At the same time integrating a vector field over such
geometrical objects presents some difficulties: In order to integrate a vector field along a given curve on M
we need to know at every point along this curve how well the curve’s tangent vectors align with said vector
field, necessitating the use of a dot product. Whereas this is no issue in a continuous setting, it will lead to
approximation errors when projecting continuous relations to finite-dimensional discrete relations.

1.1.3. Vector- & covector-valued differential forms
In addition to vectors and covectors & other types of differential k-forms, some quantities are modeled as
covector-valued differential form:
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Definition 1.8 (Frankel [15, Sec. 16.3a], Kreeft [31, Sec. 11.2.1]). Let M be a manifold in Rn . A covector-valued
differential k-form on M is a mapα(1,k) : T (M)×T (M)× . . .×T (M)︸ ︷︷ ︸

k times

→ T ∗(M) =Λ(1)(M). In other words,α(1,k)

takes in k vectors to produce a covector (a 1-form). A general formulation is:

α(1,k) =∑
j

d x j ⊗∑
i
α j ,i d xi1 ∧d xi2 ∧ . . .∧d xik

The space of covector-valued k-forms will be denoted withΛ(k)(M ,T ∗(M)).

Similarly to how vectors and covectors are dual to one another, there exists an object dual to covector-valued
differential forms as well:

Definition 1.9 (Frankel [15, Sec. 16.3a], Kreeft [31, Sec. 11.2.1]). Let M be a manifold in Rn . A vector-valued
differential k-form on M is a map α1,(k) : T (M)×T (M)× . . .×T (M)︸ ︷︷ ︸

k times

→ T (M). In other words, α1,(k) takes in k

vectors to produce a vector. A general formulation is:

α1,(k) =∑
j

∂

∂x j
⊗∑

i
α j ,i d xi1 ∧d xi2 ∧ . . .∧d xik

The space of vector-valued k-forms will be denoted withΛ(k)(M ,T (M)).

Superscript notation (1,k) is used for covector-valued differential forms, while 1,(k) is used for vector-valued
forms. Note that trivially a vector-valued 0-form is a vector field, since:

α1,(0) =∑
j

∂

∂x j
⊗α j =

∑
j
α j

∂

∂x j

While a covector-valued 0-form is simply a covector field:

α(1,0) =∑
j

d x j ⊗α j =
∑

j
α j d x j

The duality of vector- and covector-valued differential forms can be used as follows:

Definition 1.10 (Kreeft [31, Sec. 11.2.2]). The duality pairing of a vector-valued k-form and covector-valued
l -form is defined as the mapping 〈·, ·〉 : Λ(k)(M ,T ∗(M)) ×Λ(l )(M ,T (M)) → Λ(k+l )(M) such that for α(1,k) ∈
Λ(k)(M ,T ∗(M)) and β1,(l ) ∈Λ(l )(M ,T (M)):

〈α(1,k),β1,(l )〉 = 〈∑
j

d x j ⊗∑
i
α j ,i d xi1 ∧d xi2 ∧ . . .∧d xik ,

∑
m

∂

∂xm ⊗∑
n
βm,n d xn1 ∧d xn2 ∧ . . .∧d xnl 〉

=∑
j

∑
m
〈d x j ,

∂

∂xm 〉 ⊗∑
i

∑
n
α j ,iβm,n d xi1 ∧d xi2 ∧ . . .∧d xik d xn1 ∧d xn2 ∧ . . .∧d xnl

=∑
j

∑
m
δ

j
m

∑
i

∑
n
α j ,iβm,n d xi1 ∧d xi2 ∧ . . .∧d xik d xn1 ∧d xn2 ∧ . . .∧d xnl

Specifically, linear momentum will be modeled as covector-valued differential form. This reflects the vector-
valued structure of momentum in physics: A momentum component can be defined in every spatial direc-
tion; conservation of momentum implies that every component is separately conserved. Examples of this are
the Euler or Navier-Stokes equations for fluid flows: For an incompressible (and thus divergence-free) flow in
Rn n coupled conservation equations have to be solved, usually one for each momentum component.

Example 2. Let M be a manifold in R2, with m(1,2) ∈Λ(2)(M ,T ∗(M)) on basis
{
d x,d y

}
, such that:

m(1,2) = d x ⊗mx d x ∧d y +d y ⊗my d x ∧d y
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Recall that vector fields are simply vector-valued 0-form. The duality pairing of m(1,2) with vector fields v =
vx

∂
∂x + vy

∂
∂y and w = wx

∂
∂x +wy

∂
∂y then is:

〈m(1,2), v〉 = vx〈 ∂
∂x

,d x〉⊗mx d x ∧d y + vy 〈 ∂
∂y

,d y〉⊗my d x ∧d y

〈m(1,2), w〉 = wx〈 ∂
∂x

,d x〉⊗mx d x ∧d y +wy 〈 ∂
∂y

,d y〉⊗my d x ∧d y

To model conservation of m(1,2) two equations would have to be posed on M. While these are usually taken as
conservation of 〈m(1,2), ∂

∂x 〉 and 〈m(1,2), ∂
∂y 〉 this is not strictly required. As long as vector fields v , w are linearly

independent in all p ∈ M (i.e. they span Tp (M) ∀p ∈ M) the momentum components mx , my can be computed
from 〈m(1,2), v〉 and 〈m(1,2), w〉.

1.2. Operators
The objects defined in the previous section can be modified and acted upon in various ways. Relevant oper-
ators are covered below; these will be used to pose the mathematical models that will be discretized later in
this thesis.

1.2.1. Exterior derivative
Within vector calculus the concept of a derivative or differential is often used. Operators such as the gradi-
ent, curl and divergence can be constructed using differentials in various arrangements. Within differential
geometry these operators are all replaced by a single operation:

Definition 1.11 (Frankel [15, Sec. 2.6a]). Let M be a manifold in Rn . The exterior derivative d : Λ(p)(M) →
Λ(p+1)(M) is the unique operator that maps differential p-forms to differential p +1-forms such that:

d
(
α(p) ∧β(p))= dα(p) +dβ(p)

d
(
α(p) ∧β(q))= dα(p) ∧β(q) + (−1)pα(p) ∧dβ(q)

d ◦dα(p) = 0

dα(0) =∑
i

∂α

∂xi
d xi

Note that for an n-dimensional manifold dα(n) = 0, since the resulting n+1-form will contain wedge products
with duplicate dual basis functions. As mentioned above, the exterior derivative acts as gradient, curl and
divergence operator; this depends on the degree of the differential form it acts upon.

Example 3. Suppose that M is a manifold in R3 with coordinate basis {x1, x2, x3}, let α(0) =α. Then:

dα(0) = ∂α

∂x1
d x1 + ∂α

∂x2
d x2 + ∂α

∂x3
d x3

For α(1) =α1d x1 +α2d x2 +α3d x3:

dα(1) =
(
∂α1

∂x2 d x2 + ∂α1

∂x3 d x3
)

d x1 +
(
∂α2

∂x1 d x1 + ∂α2

∂x3 d x3
)

d x2 +
(
∂α3

∂x1 d x1 + ∂α3

∂x2 d x2
)

d x3

=
(
∂α2

∂x1 − ∂α1

∂x2

)
d x1 ∧d x2 +

(
∂α3

∂x2 − ∂α2

∂x3

)
d x2 ∧d x3 +

(
∂α1

∂x3 − ∂α3

∂x1

)
d x3 ∧d x1

While for α(2) =α12d x1 ∧d x2 +α23d x2 ∧d x3 +α31d x3 ∧d x1:

dα(2) =∂α12

∂x3 d x3 ∧d x1 ∧d x2 + ∂α23

∂x1 d x1 ∧d x2 ∧d x3 + ∂α31

∂x2 d x2 ∧d x3 ∧d x1

+
(
∂α23

∂x1 + ∂α31

∂x2 + ∂α12

∂x3

)
d x1 ∧d x2 ∧d x3

From these examples it can be seen that the exterior derivative applied to 1-forms resembles taking its gradient,
while applying it to a 2- or 3-form aligns with the curl and divergence operators respectively.
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The exterior derivative also defines a relation between spaces of differential orders of all degrees on a mani-
fold, also known as a De Rham complex. For manifold M ⊂Rn :

R Λ(0) (M) Λ(1) (M) . . . Λ(n) (M) 0d d d d

A classic theorem that relates the exterior derivative of a differential form and integration is the generalized
Stokes’ theorem:

Theorem 1.2.1 (Frankel [15, Sec. 5.1]). Let M be a manifold inRn with V ⊂ M a compact oriented p-dimensional
submanifold. Then for α(p−1) ∈Λ(p) (M): ∫

V
dα(p−1) =

∫
∂V
α(p−1)

Where ∂V is the boundary of V . Interpreting integration as a duality pairing of a domain and a differential
form, it can be seen that boundary operator ∂ and exterior derivative d are each other’s adjoint:(

dα(p−1),V
)= (

α(p−1),∂V
)

Within differential geometry the generalized Stokes’ theorem is the equivalent of the theorems of Green &
Stokes as well as (Gauss’) divergence theorem.

1.2.2. Interior product
Similarly, there is an operator that decreases the degree of any differential form it acts upon. However, unlike
the exterior derivative this operator does not act in isolation. It requires the application of a vector (field) in
order to contract said differential form:

Definition 1.12 (Frankel [15, Sec. 2.9a]). Let M be a manifold in Rn . Suppose that v ∈ T (M) is a vector field.
The interior product is a mapping iv : Λ(p)(M) → Λ(p−1)(M), such that for α(0) ∈ Λ(0)(M), β(1) ∈ Λ(1)(M) and
γ(p) ∈Λ(p)(M):

ivα
(0) = 0

ivβ
(1) =β(1) (v )

ivγ
(p) = γ(p) (v , w2, . . . , wp

)
With w2, . . . , wp ∈ T (M) arbitrary vector fields. The interior product has the following properties:

iav+bwα
(p) = (aiv +biw )α(p)

iv ◦ iwα
(p) =−iw ◦ ivα

(p)

iv
(
α(p) ∧β(q))= ivα

(p) + (−1)pα(p) ∧ ivβ
(q)

Where v , w ∈ T (M) and α(p), β(q) differential p- and q-forms respectively.

The interior product is thus linear: Any vector field can be broken up into its individual components, applied
separately to a differential form and summed together afterwards.

Example 4. Suppose that M is a manifold in R3 and let v = v1 ∂
∂x1

+v2 ∂
∂x2

+v3 ∂
∂x3

be a vector field. For a 1-form

α(1) =α1d x1 +α2d x2 +α3d x3:
ivα

(1) =α1v1 +α2v2 +α3v3

Whereas for a 2-form α(2) =α12d x1 ∧d x2 +α23d x2 ∧d x3 +α31d x3 ∧d x1:

ivα
(2) =α12

(
v1d x2 − v2d x1)+α23

(
v2d x3 − v3d x2)+α31

(
v3d x1 − v1d x3)

= (
α31v3 −α12v2)d x1 + (

α12v1 −α23v3)d x2 + (
α23v2 −α31v1)d x3

While for 3-form α(3) =α123d x1 ∧d x2 ∧d x3:

ivα
(3) =α123

(
v1d x2 ∧d x3 − v2d x1 ∧d x3 + v3d x1 ∧d x2)

=α123v3d x1 ∧d x2 +α123v1d x2 ∧d x3 +α123v2d x3 ∧d x1
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Similar to the exterior derivative, the interior product thus defines a sequence similar to a De Rham complex
on manifold M :

0 Λ(0) (M) Λ(1) (M) . . . Λ(n) (M) R
iv iv iv iv

Where v is an arbitrary vector field. Note that the exterior derivative and interior product are not each other’s
inverses; although they map between spaces in opposite directions they describe fundamentally different
things.

1.2.3. Lie derivative
Advection is a core part of the fluid flow models described in this thesis and a topic that has been widely
described in research into mathematical fluid flows. A departure point for much of this research has been the
definition of a flow:

Definition 1.13 (Frankel [15, Sec. 1.4a]). Let M be a manifold in Rn and let v ∈ T (M). This vector field defines
a one-parameter family of maps (parameterized with t) φt : M → M that describe the transport of x ∈ M under
v , such that:

vx := dφt (x)

d t

Then φt is called a flow. The collection of points φt (x) at various t is called an integral curve.

As the name implies a flow models the transport of particles (or alternatively the deformation of a manifold)
under a given vector field. Whereas in this definition vector field v was kept independent of t (i.e. steady),
time-varying vector fields v (t ) can also be used. The transport and deformation of a given flow can be mea-
sured and computed through the Lie derivative:

Definition 1.14 (Frankel [15, Sec. 4.2a]). Let M be a manifold in Rn and let v ∈ T (M) with flow φt . The Lie
derivative Lv :Λ(p)(M) →Λ(p)(M) of a differential p-form α(p) under v is defined as:

Lvα
(p)(x) : = d

d t

[
φ∗

t α
(p)(x)

]
t=0

= lim
t→0

φ∗
t α

(p)
(
φt (x)

)−α(p)(x)

t

With x ∈ M. In words: The Lie derivative of α(p) under v is equal to the difference between α(p) evaluated at
x and α(p) evaluated at φt (x) pulled back to x under flow pullback operator φ∗

t , in the limit of t → 0. The Lie
derivative has the following properties:

Lv ◦dα(p)(x) = d ◦Lvα
(p)(x)

Lv ◦ ivα
(p)(x) = iv ◦Lvα

(p)(x)

Lv
(
α(p) ∧β(q))=Lvα

(p) ∧β(q) +α(p) ∧Lvβ
(q)

This last property is often referred to as the Lie derivative’s Leibniz rule.

One can see how this definition measures the instantaneous effect of a flow upon p-form α(p). Within this
work a different formulation of the Lie derivative is used. This formulation is entirely equivalent to the defi-
nition above, as was proven by Cartan. It is also known as Cartan’s homotopy or magic formula:

Theorem 1.2.2 (Frankel [15, Sec. 4.2b]). Let M be a manifold in Rn , v ∈ T (M) and α(p) ∈Λ(p)(M). Then:

Lvα
(p) = (d ◦ iv + iv ◦d)α(p)

The proof is short and can be found in [15, Sec. 4.2b]. Note that the Lie derivative acting on differential forms
maps p-forms into other p-forms; this is consistent with the interior product mapping p-forms into p −1-
forms and the exterior derivative mapping p-forms into p +1-forms.
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Example 5. Suppose that M is a manifold in R2 and let v = v1 ∂
∂x1

+ v2 ∂
∂x2

. For a 0-form α(0) =α:

Lvα
(0) = (div + iv d)α(0)

= ∂α

∂x1 v1 + ∂α

∂x2 v2

Whereas for 1-form α(1) =α1d x1 +α2d x2:

Lvα
(1) = (div + iv d)α(1) = (divα

(1) + iv dα(1)

=∂α1v1

∂x1 d x1 + ∂α2v2

∂x2 d x2 + v2
(
∂α1

∂x2 − ∂α2

∂x1

)
d x1 + v1

(
∂α2

∂x1 − ∂α1

∂x2

)
d x2

=
(
∂α1v1

∂x1 + v2 ∂α1

∂x2 − v2 ∂α2

∂x1

)
d x1 +

(
∂α2v2

∂x2 + v1 ∂α2

∂x1 − v1 ∂α1

∂x2

)
d x2

While for 2-form α(2) =α12d x1 ∧d x2:

Lvα
(2) = (div + iv d)α(2)

=
(
∂v1α12

∂x1 + ∂v2α12

∂x2

)
d x1 ∧d x2

Note that the expressions for the Lie derivative of 0- and n-forms (in Rn) are the shortest; this is due to div and
iv d being zero for 0- and n-forms respectively. As is covered in more detail in chapter 3, the Lie derivative of a
0-form coincides with the convective formulation of the advection operator often found in fluid flow models.
Similarly the Lie derivative of a volume form (an n-form on a manifold in Rn) coincides with the conservative
formulation of such an advection operator.

1.2.4. Musical isomorphisms
The previous operators could all be defined independently from any metric; no notions of distances, angles
or lengths on manifold M were necessary to define and apply them to any differential p-form. There are
however some operations that do require such a metric definition. For this a function will first be defined
that allows one to work with metric structures:

Definition 1.15 (Frankel [15, Sec. 2.1d]). Let M be a manifold in Rn with
{

∂
∂xi

}
a basis for tangent space T (M).

We define matrix g as the metric tensor with the following entries:

gi j (x) =
〈

∂

∂xi
,
∂

∂x j

〉
For every point x ∈ M. Here 〈·, ·〉 : T (M)×T (M) →R is an inner product. If the inner product is positive definite
for all x ∈ M, M is called a Riemannian manifold. The inverse of a positive definite metric tensor is denoted by

(g )−1, and its entries by g i j . If
{

∂
∂xi

}
is an orthonormal basis gi j = δ j

i and the metric tensor is thus equal to the

identity matrix.

The metric tensor allows us to define operators that convert vectors into covectors and vice versa. In fact, for
a given vector v we can interpret the inner product as a covector v (1)(w ) = 〈v , w〉, as it takes in vector w and
maps from tangent space T (M) to R. Expanding v (1) in the covector basis

{
d x j

}
:

v (1) =∑
j
= v j d x j =∑

j
v

(
∂

∂x j

)
d x j

=∑
j

〈
v ,

∂

∂x j

〉
d x j

=∑
j

〈∑
i

v i ∂

∂xi
,
∂

∂x j

〉
d x j

=∑
j

(∑
i

v i gi j

)
︸ ︷︷ ︸

=v j

d x j

From which follow two operators:
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Definition 1.16 (Kreeft [31, Sec. 10.2.1]). Let M be a Riemannian manifold in Rn equipped with metric tensor
g . The ’musical’ isomorphisms (named after their notation) map between T (M) and T ∗(M) = Λ(1)(M). The
flat [ : T (M) → Λ(1)(M) and sharp ] : Λ(1)(M) → T (M) operators acting on 1-form α(1) and vector field v are
defined as:

(v )[ =
(∑

i
v i ∂

∂xi

)[
=∑

i

(∑
j

v i gi j

)
︸ ︷︷ ︸

=vi

d xi = v (1)

(
α(1))] = (∑

i
αi d xi

)]
=∑

i

(∑
j

v j g i j

)
︸ ︷︷ ︸

=αi

∂

∂xi
=α

At this point it should be noted that the domains used in this research are equipped with orthogonal coordi-

nate systems, such that 〈 ∂
∂xi , ∂

∂x j 〉 = δ j
i . Hence metric tensor g is just the identity matrix.

1.2.5. Hodge? operator
Similar to how vectors and covectors (1-forms) are related to one another, n − 1-forms are associated to a
vector (field) through the standard volume form:

Definition 1.17 (Kreeft [31, Sec. 4.3]). Let M be a Riemannian manifold in Rn . The standard or canonical
volume form σ(n) is defined as:

σ(n) :=p
g d x1 ∧d x2 ∧ . . .∧d xn

With some abuse of notation, g is the determinant of the metric tensor.

For a given vector v the aforementioned associated n −1-form can be computed with the interior product:
ivσ

(n). Vectors are thus associated to both 1-forms and n −1-forms, and these differential 1- and n −1-forms
are thus transitively dual to one another as well. This duality of differential forms of different degrees is
generalized by the Hodge ? operator:

Definition 1.18 (Frankel [15, Sec. 14.1]). Let M be a Riemannian manifold in Rn . The Hodge ? operator is a
mapping ? :Λ(p)(M) →Λ(n−p)(M) such that, for a p-form α(p) ∈Λ(p)(M):

?α (x1, . . . , xn)d xi1 ∧d xi2 ∧ . . .∧d xip =p
g sgn α (x1, . . . , xn)d xip+1 ∧d xip+2 ∧d xin

With
{
i1, i2, . . . , ip

}⊆ {1,2, . . . ,n},
{
ip+1, ip+2, . . . , in

}= {1,2, . . . ,n}\
{
i1, i2, . . . , ip

}
and where:

sgn =
{
−1 if

{
i1, i2, . . . , ip , ip+1, . . . , in

}
is an even permutation of {1,2, . . . ,n}

1 otherwise

Applying the Hodge ? twice gives:
??α(p) = (−1)p(n−p)α(p)

For the inverse mapping Λ(n−p)(M) → Λ(p)(M) the factor
√

g−1 appears, causing the composition ?? to be
equal to plus or minus the identity map.

The Hodge?maps any k-form basis to its dual elements and does not affect the value of any differential form;
the factor

p
g merely accounts for the curvature of manifold M . There is a geometrical interpretation for the

action of the Hodge operator. To see this we endow every geometric element in R3 with an inner orientation,
which defines a positive and negative direction internal to each object. These are shown in figure 1.1a. The
Hodge ? maps an object with a given inner orientation to its dual object with an outer orientation. These
outer orientations are shown in figure 1.1b. Note how the inner orientations of k-dimensional objects match
with the outer orientations of 3−k-dimensional objects. This is not coincidental: While the orientation of a
differential form is conserved by the Hodge ? its association with a geometric object is modified under the
same operation. While this property of the Hodge ? is not used in this research, numerical methods can be
constructed that use this structure to discretize the Hodge? operator. The finite volume method of Toshniwal
[55, 56] is an example of this.
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(a) Inner orientations of geometric objects (from left to right: points, curves, surfaces and volumes) in R3

(b) Outer orientations of geometric objects (from left to right: volume, surfaces, curves and points) in R3

Figure 1.1: Orientations of various spatial elements in R3, taken from [55, p. 6]

Example 6. For manifold M in R2 the Hodge ? acts as follows:

?1 =σ(2) =p
g d x1 ∧d x2

?d x1 =p
g d x2

?d x2 =−pg d x1

?d x1 ∧d x2 =p
g

With the Hodge?wedge products of two differential p-forms can be written as an n-form, for which integra-
tion over n-dimensional manifold M is possible:

Definition 1.19 (Kreeft [31, Sec. 4.7]). Let M be a Riemannian manifold in Rn . The Hodge? operator gives rise
to an L2 inner product on M, (·, ·)M :Λ(p)(M)×Λ(p)(M) →R. For α(p),β(p) ∈Λ(p)(M):(

α(p),β(p))
M :=

∫
M
α(p) ∧?β(p)

This L2 inner product allows us to restrict the spaces Λ(p)(M) of differential p-forms on Riemannian manifold
M. The space of L2-integrable p-forms on M will be denoted by L2Λ(p)(M).

1.3. De Rham complex and relations between spaces
As was already alluded to before, the operators covered here can be used to relate the various spaces of dif-
ferential forms to one another in a De Rham complex. With the Hodge ? operator this can be extended to a
double De Rham complex:

R Λ(0) (M) Λ(1) (M) . . . Λ(n) (M) 0

0 Λ(n) (M) Λ(n−1) (M) . . . Λ(0) (M) R

d

?

d

?

d

?

d

?

d d d d

Here the horizontal mappings are purely topological and do not incorporate any notion of metric concepts
such as distance, length or angles. Hence the exact same mappings are valid for any member of a given
equivalence class of domains. It is the vertical mappings, performed by the Hodge ?, where metric notions
come into play through the metric tensor g .



2
Structure-preserving isogeometric analysis

Now that the relevant concepts from differential geometry have been introduced the topic of structure-preserving
isogeometric discretization methods can be covered. This chapter will treat the ways in which discrete oper-
ators are constructed that reflect the structure of the continuous operators which were covered in chapter 1.
Subspaces of the k-form spaces are constructed on which ’discrete differential forms’ are represented with a
finite number of continuous degrees of freedom. The underlying thought behind the construction of discrete
operators is to preserve the mappings of the continuous operators between different k-form spaces. Since
the discrete k-forms are a subspace of all k-forms, it is thus paramount that any discrete operator maps be-
tween the spaces of discrete k-forms. In this way the De Rham complex presented in the previous chapter is
reflected in structure-preserving methods.

To kick this off section 2.1 goes over the relevant discrete objects that are used as counterparts of the con-
tinuous objects presented in chapter 1. Section 2.2 introduces the spline basis functions from isogeometric
analysis that are used in this research, in addition to several operations that can be performed on splines.
These functions are then used in section 2.3 to construct discrete versions of the exterior derivative, interior
product and Lie derivative; each of these discrete operators maps between the discretized spaces that cor-
respond to the spaces between which their continuous counterparts map. Finally section 2.4 combines all
of the preceding information into a large commutative diagram that shows the relations between the vari-
ous spaces introduced in this & the previous chapter and how the continuous and discrete operators map
between them.

2.1. Discrete objects
A central theme in scientific computing is the approximation of infinite-dimensional problems by a finite
number of variables, such that computers can determine approximate solutions in some finite time. The
ways in which numerical methods construct these approximations are what set them apart from one another.
Numerical solutions, their governing problems and the domain on which these problems are posed all have
to be represented by some finite-dimensional set of variables.

2.1.1. Cell complexes
Many numerical methods start by decomposing the computational domain into a finite number of subdo-
mains called cells:

Definition 2.1 (Kreeft [31, Sec. 5.1.1]). Let M be a manifold inRn . A k-cell τ(k) of dimension k ≤ n is a set τ(k) =
{x ∈ M } that is homeomorphic to the closed k-ball Bk = {

x ∈Rk : ||x|| ≤ 1
}
. Its boundary ∂τ(k) is homeomorphic

to ∂Bk = {
x ∈Rk : ||x|| = 1

}
.

The boundary of a k-cell (∂τ(k)) consists of k −1-cells. Starting with 0-cells (points) on a manifold in R3, 1-
cells (lines or curves) can be drawn to connect the points; these 1-cells define the borders of 2-cells (surfaces),
which in turn are the boundaries of 3-cells (volumes). Within this work cuboid cells are used and the test cases
are limited to R2. Thus only points, lines and surfaces are used to cover any computational domain. In R2 all
surfaces are bordered by four lines, which in turn have two points on their boundary (one point at each end).

13
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Similarly a one-dimensional manifold can be covered only with lines, each of which also has two points on
its boundary. A collection of k-cells that covers a manifold is also called a cell complex:

Definition 2.2 (Kreeft [31, Sec. 5.1.1], Hatcher [23, p. 5]). Let M be a manifold in Rn . A cell complex D on M is
a finite collection of k-cells with k = {n,n −1, . . . ,0}:

D = {
τ(n)

}∪{
τ(n−1)

}∪ . . .∪{
τ(0)

}
Such that

{
τ(n)

}
covers M, every face of a k-cell is contained in

{
τ(k−1)

}
and for any pair of k-cells τ(k),σ(k) ∈ D

for which τ(k) 6=σ(k):

τ(k) ∩σ(k) =
{

s(k−1) if τ(k),σ(k) share boundary s(k−1)

; otherwise

For finite-dimensional cell complexes to exist, manifold M must be compact.

Cell complexes are commonly referred to as meshes in computational science. These thus form a finite-
dimensional representation of a compact manifold, in the sense that this manifold is covered by a finite num-
ber of n-cells. From these n-cells follow the n −1-cells that define the boundary of each n-cell and so forth

	

Figure 2.1: Example positive global inner orienta-
tion directions of 2-, 1- and 0-cells

down to 0-cells as is covered above. Each cell is given an inner
orientation; that is, a positive orientation that is internal to each
cell. An example of these orientations for a 2-cell (surface) and
its neighboring 1- (lines) and 0-cells (points) is shown in figure
2.1. As can be seen the 2-cell orientation consists of a positive
rotational direction, whereas the 1-cell orientation defines a pos-
itive direction along the cell and the 0-cell orientation defines a
positive incidence direction. Also note how the different inner
orientations of k- and k −1-cells align: They either agree or op-
pose one another. Which direction is considered positive for a
k-cell depends on the global orientation; the exact choice of this
global orientation does not matter, as long as it is applied consis-
tently to all elements of cell complex D . For example, in figure 2.1 the positive orientation of 1-cells has been
defined to be upward or to the right.

2.1.2. Chains and cochains
With these cell orientations linear combinations of k-cells can be made, which is formalized in the following
definition:

Definition 2.3 (Kreeft [31, Sec. 5.1.2], Hatcher [23, p. 105]). Let D be a cell complex D on compact manifold
M. Ck (D), the space of k-chains of D, consists of linear combinations of k-cells, such that:

Ck (D) =
{

c(k) ∈Ck (D) : c(k) =
∑

i
c iτ(k),i ,c i = {−1,0,1},τ(k) ∈ D

}

The coefficients c i depend on the orientation of each cell in chain c(k):

c i =


1 if the orientation of τ(k),i agrees with its orientation in D

−1 if the orientation of τ(k),i opposes its orientation in D

0 if τ(k),i is not in chain c(k)

Chains are thus simply combinations of k-cells that take into account the alignment of orientation of each
k-cell relative to its global orientation. Chains of k- and k − 1 cells are related to one another through the
boundary operator:

Definition 2.4 (Kreeft [31, Sec. 5.1.2], Hatcher [23, p. 105]). Let D be a cell complex on compact manifold M.
The boundary operator ∂ is a map ∂ : Ck (D) →Ck−1(D), such that for chain ck ∈Ck (D):

∂ck = ∂∑
i

c iτ(k),i =
∑

i
c i∂τ(k),i

=∑
i

c i

(∑
j

e i
jτ(k−1), j

)
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Where the coefficients e i
j are defined as:

e j
i =


1 if the orientation of τ(k−1), j aligns with the orientation of ∂τ(k),i

−1 if the orientation of τ(k−1), j opposes the orientation of ∂τ(k),i

0 if τ(k−1), j ∩∂τ(k),i =;

For ∂ it holds that:

∂c(0) =;
∂∂c(k) =;

In other words, the boundary of a 0-chain is empty and the boundary’s boundary is empty as well. The latter
holds because the boundary of a k-chain consists of closed cycles, which do not have any end-nodes.

The boundary operator thus maps between the various spaces of chains Ck (D) on cell complex D . All chain
spaces are thus related through a series of maps:

0 C0(D) C1(D) . . . Cn(D) R
∂ ∂ ∂ ∂

If one introduces a global ordering of chain spaces Ck (D) and Ck−1(D), the coefficients of chains c(k), c(k−1)

can be placed in global coefficient vectors c(k), c(k). The boundary mapping ∂ : Ck (D) →Ck−1(D) can then be
written as a matrix Ek−1,k .

Example 7. Consider the cell complex shown in figure 2.1 with their global orientations; these are also shown
(and have been labeled) in figure 2.2a. Also shown are a 2-chain in figure 2.2b and a 1-chain in 2.2c; both with
the orientation of each cell in their respective chains. Then:

∂c(2) = ∂ (s1) =−l1 + l2 + l3 − l4

Since ∂c(2) is a cycle consisting of the four lines bordering s1, ∂∂c(2) = ;. On the other hand, for the 1-chain
c(1) =−l1 + l2 shown in figure 2.2c:

∂c(1) = ∂ (−l1 + l2) =−(p4 −p1)+ (−p1 +p2) = p2 −p4

Thus the boundary operator acting on c(2) can be represented with the following vector:

E1,2 =


−1
1
1
−1


Which maps the coefficient vector

[
s1] (corresponding to s1) to coefficient vector

[
l1 l2 l3 l4

]
. Similarly the

boundary operator acting on c(1) can be formulated as:

E0,1 =


−1 −1 0 0
0 1 −1 0
0 0 1 1
1 0 0 −1


From which it follows that:

E0,1E1,2 =


−1 −1 0 0
0 1 −1 0
0 0 1 1
1 0 0 −1



−1
1
1
−1

=


0
0
0
0


Which reflects the nilpotency of the boundary operator: Applying ∂ twice in succession results in an empty set.

Dual objects can be created for chains just as was done for vectors:
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	s1l1 l3

l2

l4

p1

p3

p2

p4

(a) Positive global inner orientation
directions of labeled 2-, 1- and 0-
cells in cell complex D

	s1

l2

(b) Example 2-chain c(2) = s1

l1

l2p1

p3

p2

p4

(c) Example 1-chain c(1) =−l1 + l2

Figure 2.2: Example positive global inner orientation directions of 2-, 1- and 0-cells

Definition 2.5 (Kreeft [31, Sec. 5.2.1], Frankel [15, App. B.b]). Let Ck (D) be the space of k-chains on cell complex
D. Its dual space is the cochain space C k (D). Cochains are maps c(k) ∈C k (D) such that c(k) : Ck (D) →R, and:

c(k) =∑
i

ciτ
(k),i

Where τ(k),i is dual to k-chain τ(k),i , such that for their duality pairing 〈τ(k),i ,τ(k), j 〉 = δ j
i . Then:

〈c(k),c(k)〉 =
∑

i

∑
j

ci 〈τ(k),i ,τ(k), j 〉︸ ︷︷ ︸
=δ j

i

c j =∑
i

ci c i

Cochains play the part of discrete counterparts to differential forms in structure-preserving methods. The
duality pairing of cochains and chains can be used to define an operator that is adjoint to boundary operator
∂:

Definition 2.6 (Kreeft [31, Sec. 5.2.1], Frankel [15, App. B.b]). Let D be a cell complex. The coboundary opera-
tor δ is the mapping δ : C (k)(D) →C (k+1)(D) that is adjoint to boundary operator ∂. For k +1-chain c(k+1) and
k-cochain c(k):

〈δc(k),c(k+1)〉 = 〈c(k),∂c(k+1)〉
Then, similarly to the boundary operator, δ is nilpotent: δδc(k).

Just like how the boundary operator defined a series of mappings that relate all spaces of k-chains to one
another, the coboundary operator links all spaces of k-cochains together:

R C (0)(D) C (1)(D) . . . C (n)(D) 0δ δ δ δ

As it is the adjoint of ∂, the coboundary operator is equal to the transpose of the incidence matrix Ek−1,k , since
for k-cochain a(k) = aτ(k) and k +1-chain b(k+1) = bτ(k+1):

〈δa(k),b(k+1)〉 = 〈δ
(

aτ(k)
)

,bτ(k+1)〉 = δ (a)τ(k+1)
(
τ(k+1)

)T

︸ ︷︷ ︸
=I

bT = δ (a)bT

〈a(k),∂b(k+1)〉 = 〈aτ(k),∂
(
bτ(k+1)

)
〉 = aτ(k)

(
τ(k)

)T

︸ ︷︷ ︸
=I

(
Ek,k+1b

)T = abT ET
k,k+1

From which follows that δ= Ek+1,k = ET
k,k+1.

2.1.3. Linking continuous and discrete variables
Having defined cochains, a connection needs to be defined that links the infinite-dimensional differential
forms to the finite-dimensional cochains that are dual to the collection of chain spaces on manifold Ω. This
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raises a bigger question: How can (continuous) models posed in terms of differential forms inΛ(k)(Ω) be pro-
jected to spaces of discrete differential formsΛ(k)

h (Ωh) ⊂Λ(k)(Ω) on cell complexΩh such that the discretized

model retains the structure of the continuous model? Ideally any map T :Λ(k)(Ω) →Λ(l )(Ω) would commute

with the projection operator π(q) :Λ(q)(Ω) →Λ
(q)
h (Ωh), such that:

Λ(k) (Ω) Λ(l ) (Ω)

Λ(k)
h (Ωh) Λ(l )

h (Ωh)

T

π(k) π(l )

T

In this way it does not matter whether one applies a given operator to an already-discretized problem or
whether said operator is applied to the continuous problem followed by a projection to the finite-dimensional
(discrete) basis: π(l ) ◦T = T ◦π(k). This idea has been formalized in greater detail by (among others) Bochev
& Hyman in [7] and Hyman & Scovel in [28]. Projection π(k) is defined as the composition of a reduction step
followed by a reconstruction step.

Definition 2.7 (Kreeft [31, Sec. 6.1]). Let Ω be a manifold in Rn covered by cell complex Ωh . The reduction
operator R(k) is a mapping R(k) :Λ(k)(Ω) →C (k)(Ωh) that maps differential k-forms to k-cochains, such that:

Λ(k) (Ω) Λ(k+1) (Ω)

C (k) (Ωh) C (k+1) (Ωh)

d

R(k) R(k+1)

δ

In other words, the reduction operator preserves the commutative relation between the coboundary operator
δ and exterior derivative d, since δR(k) = R(k+1)d. Note that the reduction operator is degree-specific (R(k) 6=
R(k+1)).

The reduction operator thus maps differential forms on manifold Ω to corresponding cochains on cell com-
plexΩh . Note that the cochains under consideration in this work are of a finite size. This defines the first part
of projection operator π. To finish the map Λ(k)(Ω) →Λ(k)

h (Ωh) a reconstruction operator is to be defined as
well:

Definition 2.8 (Kreeft [31, Sec. 6.1]). LetΩ be a manifold inRn covered by cell complexΩh . The reconstruction
operator I (k) is a mapping I (k) : C (k)(Ωh) →Λ(k)

h (Ωh) that maps k-cochains to discrete differential k-forms,
such that:

Λ(k)
h (Ωh) Λ(k+1)

h (Ωh)

C (k) (Ωh) C (k+1) (Ωh)

d

δ

I (k) I (k+1)

The reconstruction operator preserves the commutative relation between δ and d, as did the reduction operator.

Reconstruction operator I (k) thus maps k-cochains to discrete differential forms. These are differential
forms that can be represented by a finite number of degrees of freedom (the cochains); the reconstruction
operator merely defines the map that is used to go from a discrete representation in terms of cochains to a
continuous representation that is contained in Λ(k)

h (Ωh) ⊂ Λ(k)(Ω). Different choices for the reduction and
reconstruction operators distinguish many discretization methods. For example, classical finite difference
methods represent differential forms using sets of point values, and reconstruct these into discrete differen-
tial forms through Taylor series expansions. On the other hand, finite volume- and finite element methods
reduce differential forms into a set of integral values and either use interpolation methods (finite volume) or
basis function expansions (finite element) to reconstruct continuous solutions.
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Having defined the reduction and reconstruction operators, projection π(k) : Λ(k)(Ω) → Λ(k)
h (Ωh) can be de-

fined as π(k) =I (k) ◦R(k). Differential k-forms are thus mapped to the space of ’discrete differential k-forms’.
This space contains precisely those differential forms that can be represented on the k-cochains in cell com-
plex Ωh , and as such Λ(k)

h (Ωh) ⊂Λ(k)(Ω). In order to have an effective discretization approach the following
two properties are required:

• R(k) ◦I (k)α(k)
h = I ∀ α(k)

h ∈Λ(k)
h (Ωh)

• ||α(k) −I (k) ◦R(k)α(k)|| =O (hp ) ∀ α(k) ∈Λ(k)(Ω)

The first of these describes consistency: Any discrete differential k-form α(k)
h ∈Λ(k)

h (Ωh) should be reduced in

such a way that reconstructing it from its associated k-cochain description leads again toα(k)
h . Repeated pro-

jection of α(k)
h should thus not alter it in any way. The latter is called the approximation property, and implies

that successful discretization methods should approximate any differential form more closely (expressed in
some error norm || · ||) as characteristic grid size h is reduced; the speed with which this error decreases de-
pends on the polynomial degree p of the approximations made in the projection step.

Combining the commutative diagrams shown earlier then leads to the following relation between continuous
differential forms, cochains and discrete differential forms:

. . . Λ(k) (Ω) Λ(k+1) (Ω) Λ(k+2) (Ω) . . .

. . . C (k) (Ωh) C (k+1) (Ωh) C (k+2) (Ωh) . . .

. . . Λ(k)
h (Ωh) Λ(k+1)

h (Ωh) Λ(k+2)
h (Ωh) . . .

d d

R(k)

d

R(k+1) R(k+2)

d

δ δ

I (k)

δ

I (k+1) I (k+2)

δ

d d

R(k) R(k+1)

d

R(k+2)

d

2.2. Splines and isogeometric analysis
Isogeometric analysis is used within this research as finite element discretization technique. This approach
was introduced by Hughes et al. in [27] and covered more extensively by Cottrell et al. in [13]. Its premise is
the following: Instead of using the normal basis consisting of local polynomial functions defined on each cell,
a basis consisting of B-spline functions is used. One major advantage of this is the fact that geometries gen-
erated in Computer-Aided Design (CAD) software can be discretized exactly on (very) coarse meshes. CAD
software uses B-splines and Non-Uniform Rational B-splines (NURBS) to describe continuous shapes with
only a finite number of degrees of freedom; using the same functions in a finite element method allows one
to describe numerical solutions and cell boundaries in terms of B-splines. The discrete representation of an
object in CAD software can thus be taken as a direct input for generating both object-internal and -external
meshes. An example of the former would be calculating stress distributions throughout an object subject to a
load, while an example of the latter is calculating the fluid flow around said object. No local refinements are
thus required for capturing the curvature of an object accurately.

A second advantage of isogeometric analysis over classical finite elements is the higher-order continuity
found in numerical solutions and geometries. Whereas classical finite elements feature only C 0 inter-element
continuity in both the numerical solutions and mesh boundaries, isogeometric analysis allows one to achieve
higher-order continuity by simply using higher-order spline functions. Examples mentioned in [27] where
this is especially advantageous are the structural analysis of thin-shell structures and compressible Euler
flows; these both exhibit particular sensitivity to the smoothness of geometries.

Most spline functions S(x) consists of a summation of compactly-supported basis functions:

S(x) =
N∑

i=1
siψi (x) (2.1)

Where ψi (x) are the spline basis functions and si are the spline coefficients. Whereas the exact definition of
each basis function type used within this research will vary, the support of each individual function depends
directly on the definition of a finite set of discrete numbers called a knot vector.
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Definition 2.9 (Piegl & Tiller [45, p. 50]). Let Ξ = [ξ0,ξ1, . . . ,ξm] be a non-decreasing sequence of numbers in
R; then ξi ≤ ξi+1, i = 0,1, . . . ,m −1. The numbers ξi are called knots while Ξ is the knot vector. The half-open
intervals [ξi ,ξi+1) are called knot spans. Note that knot repetition is allowed.

2.2.1. B-splines
Various ways exist that can be used to evaluate B-spline basis functions. Some of these are covered by Piegl &
Tiller at the start of section 2.2 in [45].

Definition 2.10 (Piegl & Tiller [45, p. 50]). Let Ξ= [ξ0,ξ1, . . . ,ξm] be a knot vector. Then the i th B-spline basis
function of degree p at point x ∈ [ξ0,ξm] is denoted by Ni ,p (x) and defined as:

Ni ,0(x) =
{

1 if x ∈ [ξi ,ξi+1)

0 otherwise

Ni ,p (x) = x −ξi

ξi+p −ξi
Ni ,p−1(x)+ ξi+p+1 −x

ξi+p+1 −ξi+1
Ni+1,p−1(x)

This algorithm for evaluating B-spline basis functions is called the Cox-De Boor recursion method. For the
fractions used it is defined that 0

0 = 0.

B-spline basis function Ni ,0 is thus piecewise-constant and nonzero only on knot span [ξi ,ξi+1). Figure 2.3
shows basis functions of different degrees on the same uniform knot vector. As can be seen only N0,0 is
nonzero at x = ξ0 = 0. The support of each basis function is equal to p + 1 knot spans; Ni ,p is nonzero on
[ξi+1,ξi+p+2). Basis functions of degree p are calculated by taking linear combinations of two basis functions
of degree p−1, with the weights of both basis functions depending on the location x. Note that Ni ,p (x) ∈ [0,1]
and that the supports of successive basis functions overlap for p > 0. Moreover, the set of basis functions

{Ni ,p }i=m−p
i=1 generated by knot vector Ξ= [ξ0,ξ1, . . . ,ξm] forms a partition of unity. That is, summing all basis

functions at any point x ∈ [ξ0,ξm] gives a combined value of 1. Lastly it is noted that B-spline basis functions
are C∞-continuous everywhere except at the knots; here C p−r -continuity is achieved, with r the multiplicity
of said knot.

0 1 2 3 4 5
x [−]

0.0

0.2

0.4

0.6

0.8

1.0 N1, 0
N1, 1
N1, 2
N1, 3
N1, 4

Figure 2.3: B-spline basis functions N1,p for different p on knot vector Ξ= [0,1,2,3,4,5]

In a similar way to evaluating Ni ,p at location x its derivative can be determined:

Theorem 2.2.1 (Piegl & Tiller [45, p. 59]). Let Ξ= [ξ0,ξ1, . . . ,ξm] be a knot vector. Then the derivative of the i th

B-spline basis function of degree p at point x ∈ [ξ0,ξm] can be calculated with:

d Ni ,p (x)

d x
= p

ξi+p −ξi
Ni ,p−1(x)− p

ξi+p+1 −ξi+1
Ni+1,p−1(x)

The proof for this theorem can be found on page 59 of [45].
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2.2.2. M-splines
A different kind of splines used as well in structure-preserving isogeometric analysis are the M-splines; these
are based on B-splines as follows:

Definition 2.11 (Back & Sonnendrücker [1, p. 4]). Let Ξ= [ξ0,ξ1, . . . ,ξm] be the knot vector that generates the

set of B-spline basis functions {Ni ,p }i=m−p
i=1 . The corresponding M-spline basis functions (also known as Curry-

Schoenberg B-splines) are calculated as follows:

Mi ,p (x) = p +1

ξi+p+1 −ξi
Ni ,p (x)

Note that M-splines are thus ’merely’ scaled B-splines; this scaling results in their integral being equal to
exactly 1. For knot vector Ξ= [ξ0,ξ1, . . . ,ξm]:∫ ξi+p+1

ξi

Mi ,p (x) d x = 1

Secondly, the derivative of a B-spline can be written exactly as linear combination of lower-order M-splines:

d Ni ,p (x)

d x
= p

ξi+p −ξi
Ni ,p−1(x)− p

ξi+p+1 −ξi+1
Ni+1,p−1(x) (2.2)

= Mi ,p−1(x)−Mi+1,p−1(x) (2.3)

This property will come in useful when constructing discrete operators in section 2.3.

2.2.3. Non-Uniform Rational B-Splines
The third kind of spline used in this work is also related to the B-splines covered above. Whereas M-splines
are simply a scaled version of B-splines, the Non-Uniform Rational B-Splines (NURBS) form a generalization.
Recall from (2.1) that B-splines are a direct summation of products of expansion coefficients and (B-spline)
basis functions. NURBS are formulated in a similar albeit slightly different way:

Definition 2.12 (Piegl & Tiller [45, p. 59]). LetΞ= [ξ0,ξ1, . . . ,ξm] be the knot vector that generates B-spline basis

functions {Ni ,p }i=m−p
i=1 . Then the Non-Uniform Rational B-Spline (NURBS) function S(x) based on Ξ is:

S(x) =
N∑

i=1

Ni ,p si∑N
j=1 N j ,p s j

Where si are the spline coefficients. While this definition of NURBS specifically uses B-spline basis functions
and the same spline functions are used in the numerator and denominator, further generalizations and varia-
tions of this structure (using M-splines or using different splines in the numerator and denominator) are used
throughout this thesis; these are all referred to as NURBS.

2.2.4. Spline multiplication
A specific operation carried out on B- and M-splines in later chapters of this thesis is spline multiplication.
From the recursive definition of B-spline basis functions it can already be seen that higher-degree functions
are built up from lower-degree functions, and this is the case with products of B-splines as well. Since B-
splines are defined through knot vectors, a product knot vector needs to be constructed:

Theorem 2.2.2 (Mørken [36, Eq. 3.1]). Let Ξ = [ξ0,ξ1, . . . ,ξn], Θ = [θ0,θ1, . . . ,θm] be knot vectors defining the

basis function sets {Ni ,p }i=n−p
i=1 , {N j ,q } j=m−q

j=1 respectively, such that:

f (x) =
n−p∑
i=1

fi Ni ,p (x)

g (x) =
m−q∑
j=1

g j N j ,q (x)

Let Ξ◦ = [ξ◦0,ξ◦1, . . .], Θ◦ = [θ◦0,θ◦1, . . .] denote the knot vectors containing only unique knots (i.e. with the mul-
tiplicities reduced to one) and let Ξc = [ξc,0,ξc,1, . . .], Θc = [θc,0,θc,1, . . .] denote the multiplicity vectors of Ξ, Θ;
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that is, Ξ andΘ can be constructed from repeating each knot in Ξ◦,Θ◦ by the number of times indicated by the
corresponding entry in Ξc ,Θc .

LetΠ◦ =Ξ◦∪Θ◦ be the knot vector that contains all unique entries ofΞ◦,Θ◦. Then the entriesπc,k of multiplicity
vectorΠc are defined as follows:

πc,k =


max

(
p +θc,k , q +ξc,k

)
if θc,k > 0 and ξc,k > 0

p +θc,k if θc,k > 0 and ξc,k = 0

q +ξc,k if θc,k = 0 and ξc,k > 0

0 if θc,k = 0 and ξc,k = 0

In other words, the multiplicity of each knot is increased by the amount necessary to maintain the same local
degree of continuity in the product spline f (x)g (x) as is found in the separate splines f (x) and g (x). Knot vector
Π can be constructed fromΠ◦ andΠc .

Generating knot vector Π from Ξ and Θ like this allows us to compute the product f (x)g (x) pointwise-exact
as a higher-degree B-spline.

Theorem 2.2.3 (Mørken [36, Sec. 5]). Let f (x), g (x) be B-splines functions with knot vectors Ξ, Θ and bases

{Ni ,p }i=n−p
i=1 , {N j ,q } j=m−q

j=1 respectively. Also let h(x) = f (x)g (x) be the product of these two functions. Then the

knot vector of h(x), Π = [π0,π1, . . . ,πl ], can be found through theorem 2.2.2. This knot vector generates basis

{Nk,p+q }k=l−(p+q)
k=1 such that:

f (x) =
n−p∑
i=1

fi Ni ,p (x)

g (x) =
m−q∑
j=1

g j N j ,q (x)

h(x) =
l−(p+q)∑

k=1
hk Nk,p+q (x)

The coefficients hk are defined as:
hk =∑

i , j
fi g jΓi , j ,p,q (k)

With Γ computed from the following recurrence relations:

Γi , j ,p,q (k) = p −1

p +q −1

[
ωi ,p (πk+p+q−1)Γi , j ,p−1,q (k)+ (

1−ωi+1,p (πk+p+q−1)
)
Γi+1, j ,p−1,q (k)

]
+ q −1

p +q −1

[
ω j ,q (πk+p+q−1)Γi , j ,p,q−1(k)+ (

1−ω j+1,q (πk+p+q−1)
)
Γi+1, j ,p,q−1(k)

]
Where:

Γi , j ,1,q (k) =αi ,1(k)α j ,q (k)

Γi , j ,p,1(k) =αi ,p (k)α j ,1(k)

αi ,p (k) =ωi ,p (πk+p+q−1)αi ,p−1(k)+ (
1−ωi+1,p (πk+p+q−1

)
αi+1,p−1(k)

And lastly:

αi ,0(k) = Ni ,0(πk )

ωi ,p (x) =
{ x−πi
πi+p−1−πi

if πi <πi+p−1

0 otherwise

The resulting function h(x) is pointwise-equal to the product of B-splines f (x) and g (x) and has a B-spline
description with its own knot vector and function basis of degree p +q .
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2.2.5. Open and periodic B-spline bases
As mentioned before, knot vector Ξ and degree p define a function basis

{
Ni ,p

}
. Within this research two

kinds of knot vectors are used, leading to two function bases with different properties. The first of these is the
open knot vector:

Definition 2.13. Let Ξ be a knot vector and p ∈N, such that:

Ξ= [ξ0,ξ1 = ξ0, . . . ,ξp = ξ0︸ ︷︷ ︸
ξ0 repeated p+1 times

,ξp+1, . . . ,ξm−p−1,ξm−p = ξm , . . . ,ξm−1 = ξm ,ξm︸ ︷︷ ︸
ξm repeated p+1 times

]

If this happens, i.e. if the first p +1 knots of Ξ are equal to one another and the same holds for the last p +1
knots, then Ξ is an open knot vector.

Note that knot vectors are thus open only for a specific basis function degree p. Recall from figure 2.3 that
only p = 0 leads to basis functions that are nonzero on the left-side boundary of knot vector Ξ. With an
open knot vector the associated B-spline function basis

{
Ni ,p

}
has nonzero values on ∂Ξ = [ξ0,ξm]. Figure

2.4 shows such a function basis for p = 2; as can be seen the first basis function N1,2 is nonzero at x = ξ0 = 0,
whereas the last basis function N5,2 is nonzero at x = ξm = 3.

Using a spline basis with an open knot vector thus allows one to have nonzero spline values at both ends
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N2, 2
N3, 2
N4, 2
N5, 2

Figure 2.4: B-spline basis functions
{

Ni ,2
}

on open knot vector Ξ= [0,0,0,1,2,3,3,3]

of a one-dimensional domain. The exact spline multiplication algorithm covered in the previous section is
valid for open knot vectors as well. This spline basis is used in chapter 7 to generate numerical solutions
to Sod’s shock tube problem, for which nonzero mass and energy densities are used on both ends of a one-
dimensional domain.

In addition to bases generated from open knot vectors, a periodic basis will be used for simulations on peri-
odic domains. The knot vector that generates this basis is defined as follows:

Definition 2.14. Let Ξ be a knot vector and let Ω = [xl , xr ] be a one-dimensional periodic domain. Ξ is a
periodic knot vector if:

Ξ= [ξ0 =− (xr −xl )p

n
+xl ,ξ1 = ξ0 +∆ξ,ξ2 = ξ1 +∆ξ, . . . ,ξm−1 = ξm −∆ξ,ξm = xr ]
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Where n is the number of elements in the resulting basis, p the degree of the basis functions and:

∆ξ= xr + (xr −xl )p
n

n −1

The resulting spline basis of degree p generated by Ξ is periodic across ∂Ω.

This periodic knot vector is not the only ingredient necessary for obtaining a periodic basis: The basis func-
tions themselves have to be modified as well. This is a fairly straightforward operation:

Definition 2.15. LetΞ be a periodic knot vector with periodic domainΩ= [xl , xr ] and let
{

Ni ,p
}

be the (regular)
B-spline basis generated byΞ. Then the periodic B-spline basis can be generated by the following basis function
map:

Ni ,p (x) → Ni ,p (x)+Ni ,p (x −xr )

The same map can be implemented for M-splines as well, replacing Ni ,p with Mi ,p .

The result of using a periodic knot vector with the periodic basis map is a set of basis functions that are
periodic across a certain domain. Note that the knot vector extends outside of this domain on one side.
Figure 2.5 shows such a periodic basis. Note that with this basis the spline values on the edges of the periodic
domain ([0,1] in figure 2.5) are again nonzero for all degrees p.
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Figure 2.5: Periodic B-spline basis functions
{

Ni ,2
}

on periodic knot vectorΞ= [− 2
5 ,− 1

5 ,0, 1
5 , 2

5 , 3
5 , 4

5 ,1]; the resulting basis is periodic on
interval [0,1]

2.2.6. Mimetic B-splines
Mimetic isogeometric analysis is not an entirely new concept: Among others Back & Sonnendrücker [1, 5],
Buffa et al. [10, 11], Evans & Hughes [14], Hiemstra [25] and Janssen [30] already looked into mimetic isoge-
ometric methods for a range of continuum physics applications. While the various discrete operators that
are used in this research are introduced in section 2.3, this section focuses on the spline functions used to
discretize the various differential forms that occur. Let Ω be a manifold in R; it thus supports differential 0-

and 1-form. Let Ξ be a knot vector of length m +p +1 that generates B-spline basis
{

Ni ,p
}i=m+1

i=1 of degree p.

The space of discrete 0-formsΛ(0)
h,p (Ωh) ⊂Λ(0)(Ω) is then defined as:

Λ(0)
h,p (Ωh) := Span

{
Ni ,p : i = 1,2, . . . ,m +1

}
Although not directly reflected in this notation,Λ(0)

h,p (Ωh) also depends on knot vectorΞ. This knot vector also

generates the space of discrete 1-formsΛ(1)
h,p−1(Ωh) ⊂Λ(1)(Ωh):

Λ(1)
h,p−1(Ωh) := Span

{
Mi ,p−1 : i = 2, . . . ,m +1

}
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The choice for modeling Λ(1)
h,p−1(Ωh) in this way with M-splines of degree p −1 is not expanded upon in this

section; instead it will come up naturally when the discrete exterior derivative operator is introduced in sec-
tion 2.3.2.

Discrete 0- and 1-forms α(0)
h ∈Λ(0)

h,p (Ωh) and β(1)
h ∈Λ(1)

h,p−1(Ωh) are generated by defining vectors of expansion

coefficients α and β of appropriate lengths and associating each expansion coefficient to one of the basis
functions ofΛ(0)

h,p (Ωh),Λ(1)
h,p−1(Ωh) respectively.

Now letΩ be a manifold in R2, with knot vectorsΞ(x) (of length m+p+1) andΘ(y) (of length l +q+1); nowΩ

supports 0-, 1- and 2-forms. The one-dimensional basis function definitions can simply be extended to two
dimensions by using a tensor product structure:

α(0)
h (x, y) =∑

i

∑
j
αi j Ni ,p (x)N j ,q (y)

β(1)
h (x, y) =β(1x )

h +β(1y )
h

=∑
i

∑
j
βx

i j Mi ,p−1(x)N j ,q (y) d x

+∑
i

∑
j
β

y
i j Ni ,p (x)M j ,q−1(y) d y

γ(2)
h (x, y) =∑

i

∑
j
γi j Mi ,p−1(x)M j ,q−1(y) d x ∧d y

And thus the spaces of discrete differential forms are defined by:

Λ(0)
h,p,q (Ωh) =Span

{
Ni ,p : i = 1,2, . . . ,m +1

}×Span
{

N j ,q : j = 1,2, . . . , l +1
}

Λ
(1x )
h,p−1,q (Ωh) =Span

{
Mi ,p−1 : i = 2, . . . ,m +1

}×Span
{

N j ,q : j = 1,2, . . . , l +1
}

Λ
(1y )
h,p,q−1(Ωh) =Span

{
Ni ,p : i = 1,2, . . . ,m +1

}×Span
{

M j ,q−1 : j = 2, . . . , l +1
}

Λ(2)
h,p,q (Ωh) =Span

{
Mi ,p−1 : i = 2, . . . ,m +1

}×Span
{

M j ,q−1 : j = 1,2, . . . , l +1
}

This structure generalizes for manifolds in Rn , but this is outside of the cases that are presented in this re-

search. Note that the discrete 1-form space is a combinationΛ(1x )
h,p−1,q (Ωh)

⊕
Λ

(1y )
h,p,q−1(Ωh) of the 1-form space

generated by each dual basis element.

To simplify the notation of basis functions a unified notation is introduced. All basis functions are denoted
by ψ(k)

i , where i is the index in the corresponding basis; in case of multidimensional problems lexicographic
ordering is used (keeping the x-index constant while looping over the y-index). The dimensionality of any
problem is apparent from context, and hence no notational differences are made between basis functions in
one or two dimensions unless required for putting emphasis on certain things. This single-index convention
lends itself to vector notation as well. ForΩ in R2:

α(0)
h (x, y) =∑

i
αiψ

(0)
i =αTψ(0)

β(1)
h (x, y) =β(1x )

h +β(1y )
h =∑

i
βx

i ψ
(1x )
i d x +∑

i
β

y
i ψ

(1y )
i d y

=(
βx)T

ψ(1x ) + (
βy )T

ψ(1y )

γ(2)
h (x, y) =∑

i
γiψ

(2)
i d x ∧d y =γTψ(2) d x ∧d y

While here the dual basis functions d xi are explicitly shown they will often be left out in order to simplify and
shorten the notation used in this thesis. They will be included only when relevant to the discussion or when
to clarify a certain construction. An example of this is section 2.3.3, where the discrete Hodge ? operator is
covered.

No explicit connection has been made up to now between the cochain complexes covered in section 2.1.3 and
the mimetic B-splines covered here. As covered in more detail by Janssen in [30, p. 43], a dual B-spline basis
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can be determined such that multiplying any B-spline basis function with its dual results in the Kronecker

delta δ j
i . This allows one to define reduction and reconstruction operators I and R that map between the

cochain spaces C (k)(Ωh) and B-spline spacesΛ(k)
h (Ωh).

2.3. Discrete operators
Now that the relevant theory has been covered and isogeometric analysis has been introduced, the discrete
operators that have been used in this research can be covered. Only the operators that are present in the test
cases presented in chapters 5-8 are covered here. A couple of examples are given for each operator; most of
these correspond to how they are used in later chapters.

Section 2.3.1 first goes over how the overall finite element discretization is carried out and how this leads to
the definition of so-called mass matrices. Independent from this the discrete exterior derivative is defined in
section 2.3.2 such that it is exact and topological, by exploiting the relation of discrete 0- and 1-form spaces.
At this point metric concepts have to be introduced, starting with the Hodge ? operator. This discrete metric
operator is defined in accordance with the aforementioned mass matrices. Lastly the discrete interior product
is covered in section 2.3.4, based on which the discrete Lie derivative is introduced in section 2.3.5; through
Cartan’s homotopy formula the Lie derivative is defined as a composition of the discrete interior product and
exterior derivative.

The numerical entries of the various matrices used throughout this work to represent differential operators
can be computed with appropriate numerical integration rules. In this research Gaussian quadrature rules
were used.

2.3.1. Weak forms and mass matrices
In this research a finite element (isogeometric) discretization approach is used. A number of works that use
the same approach have been given in section 2.2.6. Some works that cover the finite element method in
general are [8, 57]. In the finite element approach governing models defined on domain Ω are multiplied
with a test function and integrated over Ω. Let P denote such a (linear) model, acting on differential form
α(k) such that:

P α(k) = 0

Let β(k) be an arbitrary discrete k-form, referred to as a test function. Multiplying after applying the Hodge ?
to β(k) gives, after integration overΩ: ∫

Ω
P α(k) ∧?β(k) = 0 (2.4)

This is the weak form of the governing model. Solutions that satisfy the weak form are called weak solutions
whereas solutions to the original model are called strong solutions, since they satisfy said model in a point-
wise fashion. Note that strong solutions are necessarily also weak solutions, but not every weak solution is a
strong solution. Let Ωh denote a cell complex on Ω. A basis function expansion is used to project α(k) to a
finite-dimensional space:

α(k)
h =

n∑
i=1

αiψ
(k)
i

Where the subscript h denotes a discretized version of α(k). In isogeometric analysis B-splines are used for
this, whereas classic finite elements use polynomial functions with compact, local supports and spectral el-
ement methods use functions with a global support (for example, trigonometric functions). Applying this
decomposition to (2.4) gives: ∫

Ωh

P α(k)
h ∧?β(k) =

n∑
i=1

αi

∫
Ωh

Pψ(k)
i ∧?β(k) = 0

In the Bubnov-Galerkin finite element method the test function is expanded in the same basis that was used
for the decomposition of α(k). Expanding β(k) in the same way gives:

n∑
i=1

αi

∫
Ωh

Pψ(k)
i ∧?β(k)

h =
n∑

j=1
β j

n∑
i=1

αi

∫
Ωh

Pψ(k)
i ∧?ψ(k)

j = 0
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A unique solution to this problem with n unknowns can be found by using n linearly independent test func-
tions; letting the test function coefficient β j = 1 for a single j ∈ {1,2, . . . ,n} with βl = 0 for l 6= j allows one

to consider each individual basis element ψ(k)
j as separate test function. Doing this results in a system of

equations with one equation for each ψ(k)
j . This results in the following linear system:

∫
Ωh

Pψ(k)
1 ∧?ψ(k)

1

∫
Ωh

Pψ(k)
2 ∧?ψ(k)

1 . . .
∫
Ωh

Pψ(k)
n ∧?ψ(k)

1∫
Ωh

Pψ(k)
1 ∧?ψ(k)

2

∫
Ωh

Pψ(k)
2 ∧?ψ(k)

2 . . .
∫
Ωh

Pψ(k)
n ∧?ψ(k)

2
...

...
. . .

...∫
Ωh

Pψ(k)
1 ∧?ψ(k)

n
∫
Ωh

Pψ(k)
2 ∧?ψ(k)

n . . .
∫
Ωh

Pψ(k)
n ∧?ψ(k)

n



α1

α2
...
αn

=


0
0
...
0


Which can be solved for coefficient vector α, thereby defining numerical solution α(k)

h that weakly satisfies

P α(k)
h = 0.

Governing model P often contains multiple terms. In the process of setting up a finite element discretization
one can expect to find matrices whose entries consist of an integral of products ψ(k)

i ∧?ψ(k)
i :

M(k) =


∫
Ωh
ψ(k)

1 ∧?ψ(k)
1

∫
Ωh
ψ(k)

2 ∧?ψ(k)
1 . . .

∫
Ωh
ψ(k)

n ∧?ψ(k)
1∫

Ωh
ψ(k)

1 ∧?ψ(k)
2

∫
Ωh
ψ(k)

2 ∧?ψ(k)
2 . . .

∫
Ωh
ψ(k)

n ∧?ψ(k)
2

...
...

. . .
...∫

Ωh
ψ(k)

1 ∧?ψ(k)
n

∫
Ωh
ψ(k)

2 ∧?ψ(k)
n . . .

∫
Ωh
ψ(k)

n ∧?ψ(k)
n


M(k) is called a mass matrix; these are used throughout this research. The Hodge ? appearing here is covered
in section 2.3.3. Discrete operators can map α(k)

h to the space of k − 1-, k- or k + 1-forms, but they do not
interact in any way with the test functions nor with the integral overΩh . Hence mass matrices are can be en-
countered in finite element formulations after discrete operators have been applied. Note that multiple mass
matrices are defined on cell complex Ωh , and thus a unique mass matrix exists for every type of differential
k-form that is supported byΩh .

2.3.2. Exterior derivative
As was alluded to in section 2.2.6 the spline spaces of discrete differential forms can be defined such that the
discrete exterior derivative is exact. Let α(0)

h ∈Λ(0)
h,p (Ωh) withΩh a covering ofΩ⊂R, such that:

α(0)
h (x) =∑

i
αi Ni ,p (x)

Then:

dα(0)
h (x) =∑

i
αi
∂Ni ,p (x)

∂x
d x

And as can be seen in (2.2), this derivative of B-spline basis functions is exactly equal to:

dα(0)
h (x) =∑

i
αi

(
Mi ,p−1(x)−Mi+1,p−1

)
d x

The 1-form spline space that is thus necessary for having an exact relation β(1)
h = dα(0)

h isΛ(1)
h,p−1(Ωh). Then:

β(1)
h =

n∑
j=2

β j M j ,p−1(x) d x = dα(0) =
n−1∑
i=1

αi
(
Mi ,p−1(x)−Mi+1,p−1

)
d x =

n∑
i=2

(αi −αi−1) Mi ,p−1(x) d x

Thus β j = αi −αi−1 ensures that β(1)
h = dα(0)

h . This relation is encoded in incidence matrix E(1,0) in the exact
same way as is the case for the coboundary operator acting on 0-cochains. With this specific choice of discrete
spline spaces the exterior derivative thus maps exactly between the discrete spline spaces of 0- and 1-forms;
the expansion coefficients of α(0)

h correspond to a cochain and are mapped into C (1)(Ωh) by the coboundary
operator. Recall that the coboundary operator δ is the adjoint of the boundary operator ∂, which is a purely
topological operator that only takes into account adjacency of the different chains present in cell complex
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Ωh ; it is exact even for highly deformed meshes. Due to the tensor product structure of the multidimensional
discrete spline spaces the exterior derivative can be made to map in this way between the discrete k- and
k+1-form spline spaces exactly, with an incidence matrix E(k+1,k) that is equal to the transpose of the bound-
ary operator ∂mapping between chain spaces Ck+1(Ωh) →Ck (Ωh). The connection between k-cochains and
discrete k-forms that was covered in section 2.2.6 shows that the incidence matrices conserve the relations
between the spaces of discrete k- and k −1-forms.

This can also be seen directly by applying some of the commutative relations between the various operators
of section 2.1.2 to the adjoint relation between δ and ∂:

〈Rk+1dα(k)
h︸ ︷︷ ︸

=δRkα(k)

,c(k+1)〉 = 〈δRkα(k)
h ,c(k+1)〉 = 〈Rkα(k)

h︸ ︷︷ ︸
=α

,∂c(k+1)〉

Example 8. As mentioned extensively the action of the exterior derivative on a discrete k-form α(k)
h can be

discretized by letting incidence matrix E(k+1,k) act on its cochain vector and noting that the resulting spline is a
discrete k +1-form:

dα(k)
h = d

(
ψ(k)

)T
α=

(
ψ(k)

)T
E(k+1,k)α

Consider the orientations of 0- and 1-cochains in R shown in figure 2.6a and 1- and 2-cochains in R2 shown in

figure 2.6b. The incidence matrix for the 0-cochain vector
[
p1 p2 p3 p4 p5

]T
shown in figure 2.6a then

p1 p2 p3 p4 p5

l1 l2 l3 l4

(a) Inner orientations of 0- and 1-cochains in R1

	

	

	

	
s1 s2

s3 s4

l1 l2

l3 l4

l5 l6

l7

l8

l9

l10

l11

l12

(b) Inner orientations of 1- and 2-cochains in R2

Figure 2.6: Example cochains with inner orientations indicated

is E(1,0) ∈R4×5:

E(1,0) =


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 0 0
0 0 0 −1 1


Which maps from the aforementioned 0-cochain to 1-cochain

[
l1 l2 l3 l4

]T
. Note that each column cor-

responding to an interior node and every row (each corresponding to a line section) contain a single 1 and a

single −1. Similarly, the incidence matrix for the 1-cochain
[
l1 l2 . . . l11 l12

]T
shown in figure 2.6b is

E(2,1) ∈R4×12:

E(2,1) =


1 0 −1 0 0 0 −1 0 1 0 0 0
0 1 0 −1 0 0 0 0 −1 0 1 0
0 0 1 0 −1 0 0 −1 0 1 0 0
0 0 0 1 0 −1 0 0 0 −1 0 1


Which thus maps the 1-cochain to 2-cochain

[
s1 s2 s3 s4

]T
. Every column now corresponds to a line sec-

tion and every row row corresponds to a surface. Each column contains at most two nonzero entries (one posi-
tive, one negative) while every row contains precisely four nonzero entries, two of which are positive and two of
which are negative.

It is worth emphasizing at this point that the discrete spline spaces for 0- and 1-forms have been explicitly
defined such that the exterior derivative can be discretized exactly.
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2.3.3. Hodge? operator
While defining the mass matrices in section 2.3.1 the Hodge? operator was encountered. For example, when
constructing M(k) on manifoldΩ⊂Rn with cell complexΩh :

M(k) =
∫
Ωh

[(
ψ(k)

)T
d xi1 ∧d xi2 ∧ . . .∧d xik

]
∧?

[
ψ(k) d xi1 ∧d xi2 ∧ . . .∧d xik

]
In these cases the discrete Hodge ? operator is taken to act like its continuous counterpart, in the sense that
it maps k-forms to their Hodge-dual n−k-forms and does not affect the values of the underlying description
of a discrete k-form. For example, mapping α(1)

h =αTψ(1) d x onΩ⊂R to its dual 0-form gives:

?α(1)
h =?αTψ(1) d x = α̃T ψ̃(1)

Where α̃ and ψ̃ are the Hodge-dual 0-form coefficients and basis functions respectively. Pointwise it holds
that α̃T ψ̃(1) = αTψ(1). Instead of computing the Hodge-dual coefficients and basis functions the original
descriptionαTψ(1) is used here. Hence mass matrix M(k) has the following entries:

M(k) =
∫
Ωh

[(
ψ(k)

)T
d xi1 ∧d xi2 ∧ . . .∧d xik

]
∧?

[
ψ(k) d xi1 ∧d xi2 ∧ . . .∧d xik

]
=p

g
∫
Ωh

[(
ψ(k)

)T
d xi1 ∧d xi2 ∧ . . .∧d xik

]
∧

[
ψ(k)d xik+1 ∧d xik+2 ∧ . . .∧d xin

]
= sg n

p
g

∫
Ωh

(
ψ(k)

)T
ψ(k) d xi1 ∧d xi2 ∧ . . .∧d xin

Where sg n = ±1 depending on the order of the dual basis elements d xi , and
p

g is the square root of the
determinant of metric tensor g . Note that in this research sg n = 1 and

p
g = 1.

Using this discrete description of the Hodge ? does come at a certain cost: It cannot be used to easily con-
struct a double discrete De Rham complex since part of the commutativity of the Hodge ? with the exterior
derivative is lost. For example, forΛ(0)

h,p+1(Ωh),Λ(1)
h,p (Ωh) on cell complexΩh coveringΩ⊂R:

Λ(0)
h,p+1(Ωh) Λ(1)

h,p (Ωh)

Λ̃(1)
h,p+1(Ωh) Λ̃(0)

h,p (Ωh)

d

? ?

In other words, the discrete Hodge ? maps discrete 0-forms to Hodge-dual 1-forms and discrete 1-forms to
Hodge-dual 0-forms. While the discrete exterior derivative d maps between the spaces of discrete 0- and 1-
forms, this construction was made by selecting conforming bases for the spline spaces. It remains to be seen
whether this arrangement extends to the Hodge-dual 0- and 1-form spaces in a consistent way. This is not
an issue within the current research, since all discrete exterior derivatives are imposed on Hodge-primal k-
forms. Thus this loss of structure when discretizing the Hodge? operator in the current way does not impact
the resulting numerical methods.

2.3.4. Interior product
For the interior product a different approach is used. As shown by Hirani [26, Lemma 8.2.1], for vector field
vh and α(k) ∈Λ(k)(Ω):

ivhα
(k)
h = (−1)k(n−k)?

(
?α(k)

h ∧v [h

)
(2.5)

Based on this, Kreeft remarked that the interior product is adjoint to the wedge product. Forβ(k−1) ∈Λ(k−1)(Ω):

〈ivhα
(k)
h ,β(k−1)

h 〉 = 〈α(k)
h ,β(k−1)

h ∧v [h〉 (2.6)

Even though β(k−1)
h ∧ v [h ∈ Λ(k)(Ω), using the mimetic spline spaces defined in section 2.2.6 does not give

guarantees that β(k−1)
h ∧ v [h ∈Λ(k)

h,p (Ω) for any degree p. Instead a weak form based on (2.5) and (2.6) is used
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to ensure that ivh maps between the spaces of discrete k- and k −1-forms. For this mapping to behave in this
way it is required that:

ivhα
(k)
h = ivh

∑
i
αiψ

(k)
i = γ(k−1)

h =∑
j
γ jψ

(k−1)
j

By integrating (2.6) over cell complexΩh it follows that:

∫
Ωh

〈ivhα
(k)
h ,β(k−1)

h 〉 =
∫
Ωh

〈α(k)
h ,β(k−1)

h ∧v [h〉∫
Ωh

ivhα
(k)
h︸ ︷︷ ︸

=γ(k−1)
h

∧?β(k−1)
h =

∫
Ωh

α(k)
h ∧?

(
β(k−1)

h ∧v [h

)
∫
Ωh

βTψ(k−1)
(
ψ(k−1)

)T
γ=

∫
Ωh

v [hβ
Tψ(k−1)

(
ψ(k−1)

)T
α

βT
∫
Ωh

ψ(k−1)
(
ψ(k−1)

)T

︸ ︷︷ ︸
=M(k−1)

γ=βT
∫
Ωh

v [hψ
(k−1)

(
ψ(k)

)T

︸ ︷︷ ︸
=C(k−1,k)

vh

α

βTM(k−1)γ=βTC(k−1,k)
vh

α

Since this equality has to hold for all β ∈ Rr (with r the total number of k − 1-form basis vectors) it follows
that:

γ=
(
M(k−1)

)−1
C(k−1,k)

vh
α

Here α is the coefficient vector of discrete k-form α(k)
h and γ contains the coefficients of the discrete k −1-

form γ(k−1)
h such that ivhα

(k)
h = γ(k−1)

h . M(k−1) is the mass matrix corresponding to discrete k − 1-forms, as

covered in section 2.3.1, while C(k−1,k)
vh

contains at index (i , j ) the integral of the product of basis functions

ψ(k−1)
i ψ(k)

j multiplied with v [h . Thus the discrete formulation of the interior product that maps between the

spaces of discrete k- and k −1-forms is
(
M(k−1)

)−1
C

(k−1,k)
vh

.

Example 9. Let Ω be a manifold in R, with cell complex Ωh . Let vh be a vector field and α(1)
h = ∑

i αiψ
(1)
i ∈

Λ(1)
h,p (Ωh) a discrete 1-form. Then:

ivhα
(1)
h = ivh

∑
i
αiψ

(1)
i = ivhα

Tψ(1) =
[(
M(0))−1

C(0,1)
vh

α
]T
ψ(0)

And thus ivhα
(1)
h ∈Λ(0)

h,p+1(Ωh).

Example 10. LetΩ be a manifold inR2, with cell complexΩh . Letα(2)
h ∈Λ(2)

h,p,p (Ωh) andβ(1)
h ,γ(1)

h ∈Λ(1x )
h,p,p+1(Ωh)⊕

Λ
(1y )
h,p+1,p (Ωh) and vh ∈ T (Ω), such that:

α(2)
h =∑

i
αiψ

(2)
i d x ∧d y =αTψ(2)

β(1)
h =∑

i
βx

i ψ
(1x )
i d x +βy

i ψ
(1y )
i d y = (

βx)T
ψ(1x ) d x + (

βy )T
ψ(1y ) d y

γ(1)
h =∑

i
γx

i ψ
(1x )
i d x +γy

i ψ
(1y )
i d y = (

γx)T
ψ(1x ) d x + (

γy )T
ψ(1y ) d y

v [h = v x d x + v y d y
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Then: ∫
Ωh

ivhα
(2)
h︸ ︷︷ ︸

=γ(1)
h

∧?β(1)
h =

∫
Ωh

(
γx (

ψ(1x ))T
d x +γy (

ψ(1y ))T
d y

)
∧?

((
βx)T

ψ(1x ) d x + (
βy )T

ψ(1y ) d y
)

=
∫
Ωh

(
γx (

ψ(1x ))T
d x +γy (

ψ(1y ))T
d y

)
∧

((
βx)T

ψ(1x ) d y − (
βy )T

ψ(1y ) d x
)

=
∫
Ωh

(
γx (

ψ(1x ))T
ψ(1x ) (βx)T +γy (

ψ(1y ))T
ψ(1y ) (βy )T

)
d x ∧d y

=
∫
Ωh

[
γx

(
ψ(1x )

)T
ψ(1x )

(
βx

)T

γy
(
ψ(1y )

)T
ψ(1y )

(
βy

)T

]
d x ∧d y

∫
Ωh

α(2)
h ∧?

(
β(1)

h ∧v [h

)
=

∫
Ωh

α
(
ψ(2))T

d x ∧d y ∧?
[((
βx)T

ψ(1x ) d x + (
βy )T

ψ(1y ) d y
)
∧ (

v x d x + v y d y
)]

=
∫
Ωh

α
(
ψ(2))T

d x ∧d y ∧?
[((
βx)T

ψ(1x )v y − (
βy )T

ψ(1y )v x
)

d x ∧d y
]

=
∫
Ωh

α
(
ψ(2))T

d x ∧d y ∧
((
βx)T

ψ(1x )v y − (
βy )T

ψ(1y )v x
)

=
∫
Ωh

[
α

(
ψ(2)

)T
ψ(1x )v y

(
βx

)T

−α(
ψ(2)

)T
ψ(1y )v x

(
βy

)T

]
d x ∧d y

And thus: ∫
Ωh

ivhα
(2)
h ∧?β(1)

h =
∫
Ωh

α(2)
h ∧?

(
β(1)

h ∧v [h

)
∫
Ωh

[
γx

(
ψ(1x )

)T
ψ(1x )

(
βx

)T

γy
(
ψ(1y )

)T
ψ(1y )

(
βy

)T

]
d x ∧d y =

∫
Ωh

[
α

(
ψ(2)

)T
ψ(1x )v y

(
βx

)T

−α(
ψ(2)

)T
ψ(1y )v x

(
βy

)T

]
d x ∧d y

So to determine the 1-form coefficient vector γ= [
γx γy]T

two separate linear systems have to be solved:

M(1x )γx =C(1x ,2)
vh

α

M(1y )γy =−C(1y ,2)
vh

α

Where contraction matrix C(1x ,2)
vh

uses the velocity component in y-direction and C
(1y ,2)
vh

α the component in
x-direction. The discrete interior product then is:

ivhα
(2)
h =

[(
M(1x ))−1

C
(1x ,2)
vh

α
]T
ψ(1x ) −

[(
M(1y ))−1

C
(1y ,2)
vh

α
]T
ψ(1y )

Which indeed maps α(2)
h toΛ(1x )

h,p,p+1(Ωh)⊕Λ(1y )
h,p+1,p (Ωh).

2.3.5. Lie derivative
With the discrete exterior derivative and interior product in place, discretizing the Lie derivative is straight-
forward. Recalling Cartan’s homotopy formula given in (1.2.2), the discrete Lie derivative simplifies to a com-
position of the aforementioned discrete operators. For vector field vh and discrete k-form α(k)

h :

Lvhα
(k)
h = (

divh + ivh d
)
α(k)

h

=
(
E(k,k−1)

(
M(k−1)

)−1
C(k−1,k)

vh
+

(
M(k)

)−1
C(k,k+1)

vh
E(k+1,k)

)
α(k)

h

In the same way as is the case for the continuous Lie derivative, this discrete operator maps from the space of
discrete k-forms back into the same space. Furthermore, the discrete Lie derivative of a 0-form contains only
the first of the two terms, whereas a discrete n-form (in Rn) is only affected by the latter term.
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2.4. Combining discrete operators into a discrete complex
The projection to a finite-dimensional space Λ(k)

h (Ωh) can be combined with the discrete exterior derivative
and interior product in a commutative diagram, in order to show the relations between continuous opera-
tions and their discrete counterparts:

. . . Λ(k) (Ω) Λ(k+1) (Ω) Λ(k+2) (Ω) . . .

. . . C (k) (Ωh) C (k+1) (Ωh) C (k+2) (Ωh) . . .

. . . Λ(k)
h (Ωh) Λ(k+1)

h (Ωh) Λ(k+2)
h (Ωh) . . .

Λ̃(n−k)
h (Ωh) Λ̃(n−(k+1))

h (Ωh) Λ̃(n−(k+2))
h (Ωh)

d

ivh

d

R(k)

ivh

d

R(k+1)

ivh

R(k+2)

d

ivh

E(k,k−1) E(k+1,k)

I (k)

E(k+2,k+1)

I (k+1) I (k+2)

E(k+3,k+2)

(
M(k−1))−1

C
(k−1,k)
vh

R(k)

?

(
M(k))−1

C
(k,k+1)
vh

R(k+1)

?

(
M(k+1))−1

C
(k+1,k+2)
vh

R(k+2)

?

(
M(k+2))−1

C
(k+2,k+3)
vh

In the upper row the k-form spaces Λ(k)(Ω) on manifold Ω are shown, together with the exterior derivative
and interior product with vector field vh ; these relations are all metric-independent and topological, meaning
that local deformations of Ω do not affect them in any way (due to deformations not affecting the topology
of Ω). Each k-form can be reduced to a k-cochain in C (k)(Ωh), as indicated by the reduction mapping R(k).
The reconstruction mapping I (k) can be used to convert the k-cochain to a discrete k-form. The spaces of
discrete k-forms are subspaces of the k-form spaces: Λ(k)

h (Ωh) ⊂Λ(k)(Ω).

The discrete exterior derivative acting on discrete k-forms can be computed in a purely topological (and thus
metric-independent) way by reducing any discrete k-form back to its corresponding k-cochain and applying
the coboundary operator; this operator is represented exactly by incidence matrix E(k+1,k) acting on said k-
cochain. Subsequently reconstructing a discrete k +1-form from the resulting k +1-cochain in a consistent
way allows one to compute the exterior derivative mapping discrete k-forms to k +1-forms in a topologically
exact way.

On the other hand the interior product maps directly from discrete k +1- to k-form spaces, using the Hodge
? operator to help define a weak form of the map Λ(k+1)

h (Ωh) →Λ(k)
h (Ωh). This construction does not use the

cochains and depends on the metric tensor through the Hodge ?. The resulting discrete k-form satisfies the
interior product only weakly and in an integral sense; this is necessary for restricting the image of the interior
product map toΛ(k)

h (Ωh).

Not shown here is the Lie derivative. Through Cartan’s homotopy formula a discrete Lie derivative is con-
structed by successively applying the discrete exterior derivative and interior product to any discrete k-form.
Although the continuous Lie derivative is metric-free, requiring that the discrete exterior derivative and in-
terior product map between spaces of discrete differential forms thus induces a metric dependence for the
discrete Lie derivative as well.





3
Momentum, kinetic energy and the

compressible Euler equations

This chapter contains most of the novel ideas presented in this thesis work. Section 3.1 will start by covering
variational formulations of the Euler equations. As will be shown these variational formulations are limited
to incompressible flows and isentropic compressible flows. This necessitates the use of a non-variational
formulation to be able to define numerical models for the general compressible Euler equations; this non-
variational formulation is posed in section 3.2. This thesis work focuses on improving the numerical results
that are obtained by directly discretizing the model given in section 3.2 through the application of a partial
decomposition of its primary variables into Roe variables. Before doing this section 3.3 discusses how the dis-
cretization approach for incompressible flows cannot be generalized to compressible flows and covers some
alternative approaches that have been used in literature. Following this the concept of Roe variables is intro-
duced in section 3.4; despite having first been described and used in 1981 by Philip Roe for the construction
of his approximate Roe solver for finite volume methods, not a lot of work has been published that exploits
their structure.

The aim of this partial decomposition into Roe variables is to minimize numerical diffusion by constructing
discrete skew-symmetric advection operators that simultaneously conserve momentum and kinetic energy.
Section 3.5 covers the way in which the (partial) Roe-decomposed formulation can be derived from the non-
variational Euler equations, in an arbitrary number of dimensions. The time stepping methods that are used
in this thesis are then covered in section 3.6.2; their application to each (semi-discrete) numerical model
will be covered in later chapters, as is the case for the spatial discretization. Lastly, section 3.6.3 covers the
approach that has been used to linearize the numerical models employed throughout this thesis.

3.1. Variational geometric Euler equations
Before the Roe variable discretization can be derived in a geometric setting, the corresponding Euler equa-
tions need to be defined. We start by considering the case of incompressible inviscid (perfect) flows followed
by perfect compressible flows, which result in the isentropic (entropy-conserving) Euler equations.

The equations corresponding to perfect fluid flows (incompressible Euler) can be derived from a variational
principle [4, 17, 20], leaning directly on the fact that kinetic energy is conserved. The Lagrangian density
used in variational formulations with perfect fluids is the kinetic energy density; thus conservation of this
Lagrangian coincides with kinetic energy conservation. As it turns out the incompressible Euler equations
are recovered when minimizing an action principle over the Lie group of volume-preserving (divergence-
free) diffeomorphic flow maps. This results in the following equations:

∂v (1)

∂t
+Lu v (1) =−dπ(0)

Luσ
(n) = divu = 0

(3.1)

Where v (1) = g (u, ·) = u[ with g the metric tensor and σ(n) is the canonical volume form given in definition

33
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1.17. v (1) is the 1-form that represents momentum, which is being transported by the vector field u. π(0)

is a Lagrange multiplier that enforces the divergence-free nature of v (1); since v (1) directly corresponds to
u the divergence-free requirement on u implies that v (1) should be divergence-free as well. This coincides
with derivations in vector calculus; usually an argument is made that the pressure solution on the right-hand
side of the momentum equation is not unique, since any constant can be added to the pressure field without
changing the momentum balance at any point in the domain. Hence not the absolute pressure values mat-
ter, but only their gradients. From the more extensive theoretical basis of variational analysis and differential
geometry the pressure field π(0) turns out to be a Lagrange multiplier.

Since v (1) = u[:
∂u[

∂t
+Lu u[ =−dπ(0) (3.2)

Arnold and Khesin derive in [4, Thm. IV.1.17] for a vector field and its dual 1-form:

Lu v (1) = (∇u u)[+ 1

2
d g (u,u)

We use this identity and apply to (3.2) the sharp operator ], as covered in section 1.2.4. This then gives:

∂u

∂t
+∇u u =−∇p (3.3)

Where p(0) = π(0) + 1
2 g (u,u) and ∇p = (

d p(0)
)]

. As is known from vector calculus the pressure field depends
on the square of the velocity. Note furthermore that ∇p is a vector; this is consistent with the notion of ]
converting 1-forms (such as d p(0)) to their vector field counterpart, in the same way as how v (1) and u are
related. ∇u u is the covariant derivative of u under influence of u. Lastly we note that taking the exterior
derivative of (3.1) results in a conservation equation for a 2-form d v (1) often denoted as vorticity:

∂d v (1)

∂t
+Lu d v (1) = 0

Which follows from the geometric momentum equation since the exterior derivative is nilpotent (d ◦d = 0)
and commutes with the time and Lie derivatives.

This approach can be extended to certain compressible flow models. Instead of requiring the diffeomorphic
flow maps to be volume-preserving (incompressible) with respect to (constant) volume forms they are now
required to be incompressible with respect to a coordinate system moving with the fluid density [4, p. 320]
[16]. A similar derivation procedure is used as in the incompressible case [20] and leads to the following
system of equations:

∂ρ(0)

∂t
+Luρ

(0) = 0

ρ(0)
[
∂v (1)

∂t
+Lu v (1) − 1

2
d g (u,u)

]
=−d p(0)

∂θ(0)

∂t
+Luθ

(0) = 0

(3.4)

Where (again) v (1) is the 1-form velocity corresponding to the velocity vector field u, ρ(0) is the fluid mass
density and θ(0) is the entropy density. Note the similarity of the momentum equations of (3.1) and (3.4):
The only apparent differences are the addition of the term − 1

2 d g (u,u) and the factor ρ(0) that appear on the
left-hand side when going from incompressible to compressible flows. Another difference is that the pres-
sure field is no longer a Lagrange multiplier, but has a physical interpretation right from the outset and is
usually obtained through an equation of state. This constitutive relation links the pressure field p(0) to the
other variables being solved for. Often p(0) = p(0)(ρ(0)), p(0) = p(0)(ρ(0),e(0)) (with e(0) the internal energy) or,
as in this case, p(0) = p(0)(ρ(0),θ(0)). There is no physical quantity ’linear momentum’ explicitly present in the
momentum equation; the entire equation is formulated in terms of v (1), u, ρ(0) and p(0).

These variational geometric formulations do not allow for reversible effects like heat diffusion, friction, vis-
cosity and shock waves. This prevents them from being extended to more elaborate physical models (such
as Navier-Stokes) and generally restricts them to simple, academic cases: For example, no-slip boundary
conditions produce friction, which destroys the variational structure.
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3.2. Non-variational geometric Euler equations
This limited applicability of variational formulations for the Euler equations has lead to a need for posing a
non-variational model that is to be decomposed into Roe variables. Instead of using the 1-form v (1) linear
momentum is modeled as covector-valued volume form. Recall that in vector calculus momentum is mod-
eled as vector quantity ρu, with ρ the mass density and u the velocity vector field. Each entry of ρu is a scalar
field ρui , corresponding to the linear momentum in the direction of velocity component ui . In this research
we denote (linear) momentum with m(1,n), such that:

m(1,n) =
n∑

i=1
mi d xi ⊗σ(n)

Instead of being treated as a (co)vector, m(1,n) is now a covector-valued differential form. To pick out a com-
ponent of m(1,n) we take its duality pairing with vector field direction ∂i = ∂

∂xi , as introduced in definition
1.10:

〈m(1,n),∂i 〉 =
∑

j
m j 〈d x j ,∂i 〉︸ ︷︷ ︸

=δ j
i

σ(n) = miσ
(n) = m(n)

i

This construction can be used to derive a set of geometric Euler equations for compressible flows that ex-
plicitly encode momentum conservation. Note that each momentum component m(n)

i is a volume form that
thus naturally integrates over volumes. Toshniwal in [55, 56] follows a control volume approach motivated by
Tonti in chapter 12 of [53]. In this approach the rate of change of momentum present in a volume is equal to
the momentum flux across the volume’s surface plus the impulse of volume and surface forces. By neglecting
the effects of viscosity only the pressure force remains, acting on the surface of said volume. Through Stokes’
theorem the following conservation law for linear momentum is then obtained:

∂〈m(1,n),∂i 〉
∂t

+diu〈m(1,n),∂i 〉 =−di∂i p(n) (3.5)

Since 〈m(1,n),∂i 〉 is a volume form we recognize that the convection term can be restated as Lie derivative
through the use of Cartan’s homotopy formula, leading to:

∂〈m(1,n),∂i 〉
∂t

+Lu〈m(1,n),∂i 〉 =−di∂i p(n) (3.6)

In a similar way it can be shown that the rate of change of energy contained in a volume is equal to the energy
flux across its surface plus the work done by volume and surface forces. Again volume forces are neglected (for
now) leaving only the pressure force, acting on the volume’s boundary. The work performed by the pressure
force p(n) is equal to its contraction with the velocity field u: iup(n). Through Stokes’ theorem the surface
integral of iup(n) is then equal to the volume integral of diup(n), which is interpreted as the Lie derivative
Lup(n) in the same way as was done before. The resulting geometric energy conservation law becomes:

∂E (n)

∂t
+LuE (n) +Lup(n) = 0 (3.7)

Where E (n) is the total energy density. A similar conservation law holds for the mass contained in a volume,
the primary difference being that no mass is destroyed or created by any force acting upon said volume.
Combining the mass, momentum and energy conservation laws mentioned here results in the following for-
mulation for the compressible geometric Euler equations:

∂ρ(n)

∂t
+Luρ

(n) = 0

∂〈m(1,n),∂i 〉
∂t

+Lu〈m(1,n),∂i 〉+di∂i p(n) = 0

∂E (n)

∂t
+LuE (n) +Lup(n) = 0

(3.8)

Not covered until now is the velocity vector field u and the equation of state that is necessary to close system
(3.23). Note that although u appears in (3.8), in its discretization only the corresponding 1-form u[ is used.
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We thus define the velocity field as follows:

u[ = ?m(1,n)

?ρ(n)
=

∑
i d xi ⊗?(

mi d x1 ∧d x2 ∧ . . .∧d xn
)

?
(
ρ d x1 ∧d x2 ∧ . . .∧d xn

)
=

p
g

∑
i d xi ⊗mip

gρ

=∑
i

d xi ⊗ mi

ρ

The metric contributions of ? thus cancel. Kreeft [31, Sec. 11.2.3] introduces the flat and sharp Hodge ? op-
erators to convert (co)vector-valued k-forms into (co)vector-valued n −k-forms, based on the work of Yavari
in [58]; while the same construction can be used here to compute u, doing so is not necessary since only u[

is used while discretizing (3.23).

This system of conservation laws contains n+2 equations on manifoldΩ⊂Rn and n+3 unknowns: ρ(n), E (n),
p(n) and m(n)

i (i = 1,2, . . . ,n). Thus it needs to be closed with a constitutive relation. For this an equation of

state is posed to relate pressure p(n) to the other variables. For this the ideal gas law is used:

p(n) = (
γ−1

)(
E (n) −E (n)

ki n

)
Whereγ is the ratio of specific heats that is commonly encountered in compressible aerodynamics and E (n)

ki n
is the kinetic energy density, defined as:

E (n)
ki n = 1

2

〈m(1,n),?]m(1,n)〉
?ρ(n)

(3.9)

Here ?] is the sharp Hodge ? mentioned above: It acts as the Hodge ? on the n-form leg of m(1,n) and as ]
on its covector-valued leg; therefore it converts the covector-valued n-form m(1,n) to a vector-valued 0-form.
The duality pairing in (3.9) is then the duality pairing between vector- and covector-valued differential forms
given in definition 1.10.

3.3. Momentum- and kinetic energy-conserving methods
Accurately and correctly mimicking the (non)conservative behavior of (systems of) conservation laws is a
central theme when constructing numerical methods. Numerical solutions are only approximations to the
exact solutions of any problem; encoding correct conservation behavior into such an approximation is one
way in which physically correct numerical solutions are sought. For a long time discretization methods have
been derived that explicitly encode the conservation of primary variables. Examples of these numerical meth-
ods include finite volume- and finite element methods. These primary variables are the parameters for which
the aforementioned conservation laws have been explicitly posed. For example, when applied to the (nonlin-
ear) compressible Euler or Navier-Stokes equations the finite volume- and element methods simultaneously
conserve the primary variables mass, linear momentum and either total or internal energy, depending on the
model formulation that has been used for discretization.

While the conservation of these primary variables in any numerical solution is desirable and physically cor-
rect, the conservation of several secondary invariants of the Euler and Navier-Stokes models is not guaranteed
by these methods. Within this thesis we focus on kinetic energy, one of the secondary invariants of the (invis-
cid) Euler equations. Kinetic energy conservation and minimizing numerical diffusion is not only important
for the (long- and short-time) stability of a numerical simulation [39, 44] but also relevant for (among others)
Direct Numerical Simulations (DNS) and for Large Eddy Simulations (LES), where subgrid models are used
to model correct energy diffusion on scales that are not directly resolved by the simulation; numerical dissi-
pation interferes with this, hence there is a need for low-dissipation methods.

Kinetic energy conservation in numerical methods for incompressible Euler flows can be achieved simulta-
neously with conservation of mass and momentum, by exploiting its divergence-free constraint. As shown
by Arnold the incompressible Euler equations admit a Hamiltonian structure [4]; its solutions are precisely
the shortest paths on the Lie group of divergence-free diffeomorphisms [3]. This structure has been used
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throughout literature to obtain numerical solutions to the Euler equations that simultaneously conserve
mass, momentum and kinetic energy. Examples of this include the work of: Evans and Hughes, who con-
struct a mimetic isogeometric method for doing so [14]; Pavlov et al. and Gawlik et al., who approximate the
Lie group of divergence-free diffeomorphisms with a finite Lie group subspace and apply variational analysis
to this finite-sized group [17, 42]. In a somewhat different way, Palha & Gerritsma construct divergence-free
solutions to the velocity-vorticity formulation of the Navier-Stokes equations: When viscosity is neglected
this leads to conservation of mass, kinetic energy and vorticity [41].

In each of these methods the pointwise divergence-free nature of the numerical solutions leads to an equiv-
alence between different forms of the advection operator in the incompressible Euler and Navier-Stokes
models. In general, discretizing different forms of the nonlinear advection operator leads to formulation-
dependent conservation behavior and accuracy. A handful of different (nonlinear) advection operator for-
mulations are used throughout literature [12, 35]:

Convective : u ·∇u

Conservative : ∇· (u ⊗u) = u ·∇u + (∇·u)u

Skew-symmetric : u ·∇u + 1

2
(∇·u)u

(3.10)

In the (continuous) Euler and Navier-Stokes equations these all lead to the exact same solutions; switching
between them is a matter of algebraic manipulation. It is only when discretizing or linearizing these operators
that differences between them appear. Especially linearization destroys these equivalencies: Let ũ denote a
linearized velocity vector field. Then the linearized advection operators become:

Convective : ũ ·∇u

Conservative : ∇· (ũ ⊗u)

Skew-symmetric : ũ ·∇u + 1

2
(∇·u) ũ

(3.11)

These linearized operators behave differently than those in (3.10) unless ũ = u, which only occurs when the
full nonlinear solution has been found up to machine precision. This poses a stringent requirement on com-
putational cost, especially for large numerical systems. Whereas directly discretizing the linearized convec-
tive advection operator with a finite element method does not lead to conservation of momentum nor kinetic
energy unless the full nonlinear solution is computed, using the linearized conservative form leads to a nu-
merical scheme that does conserve momentum (ρ)u at all times. Similarly the linearized skew-symmetric
form conserves kinetic energy

( 1
2ρ

)
u2.

For numerical solutions that are only weakly divergence-free the convective, conservative and skew-symmetric
forms of the advection operator given in (3.10) are markedly different; only for strongly (i.e. pointwise)
divergence-free solutions, with ·∇u everywhere, the convective, conservative and skew-symmetric operators
are identical. When this happens the conservation properties of both the conservative and skew-symmetric
hold simultaneously; that is, both momentum and kinetic energy are conserved. Mass is conserved as well,
since the divergence-free velocity field constraint is fulfilled.

This way of obtaining simultaneous conservation of momentum and kinetic energy does not generalize to
compressible flows. Not only are the advection operators no longer posed purely in terms of u (the momen-
tum vector m = ρu appears, since the density field can no longer be moved outside all derivatives), but the
velocity fields are no longer desired to be divergence-free as the continuity equation does not simplify to
∇·u = 0. Hence the convective, conservative and skew-symmetric advection operators are markedly different
and cannot be made equivalent anymore.

In the continuous Euler and Navier-Stokes models this is not an issue, since algebraic manipulation can be
used to transition between advection operator forms. However as mentioned previously, after numerical dis-
cretization this is no longer possible and the conservation behavior of the discrete method depends on which
advection form has been discretized. Often this means making a choice between conservation of momentum
or kinetic energy. In the next section an approach is introduced that leads to discrete advection operators that
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do simultaneously conserve mass, momentum and kinetic energy. This reflects part of the structure of ad-
vection: To merely move around mass, momentum and kinetic energy and not to produce or destroy any of
it.

3.4. Roe variable decompositions
As already remarked by Roe in 1981 in his seminal paper [46], the variables and fluxes of the Euler equations in
any number of dimensions can all be written as quadratic quantities. For example, following the convention
of Rozema et al. [48] the following state vector can be defined for a two-dimensional Euler flow:

h =


p
ρp
ρup
ρvp
ρe

=


h1

h2

h3

h4


Where ρ is the fluid mass density, ρu = [

ρu ρv
]T

is the momentum vector and ρe is the internal energy
density. The physical variables can be reconstructed as quadratic quantities:

ρ =h2
1

ρu =h1h2

ρv =h1h3

Eki n =1

2

(
h2

2 +h2
3

)
e =h2

4

Etot al = Eki n +e =h2
4 +

1

2

(
h2

2 +h2
3

)
Note specifically that the momentum components, kinetic- and internal energy are all quadratic variables.
This fact can be exploited to yield advection operators that conserve both mass, momentum and kinetic-,
internal- and total energy. To see this, let φ,ψ ∈ [h1,h2,h3,h4], each subject to an advection equation:

∂φ

∂t
+C (u)φ= 0

∂ψ

∂t
+C (u)ψ= 0

With C (u) an advection operator. Multiplying the advection equation for φ with ψ & vice versa and adding
the two together then gives:

ψ
∂φ

∂t
+φ∂ψ

∂t︸ ︷︷ ︸
= ∂φψ

∂t

+ψC (u)φ+φC (u)ψ= 0 (3.12)

∂φψ

∂t
+ψC (u)φ+φC (u)ψ= 0 (3.13)

Suppose that C (u) is anti-self-adjoint, such that:

〈φ,C (u)ψ〉 =−〈C (u)φ,ψ〉

Then in (3.12) ∂(φψ)
∂t = 0, directly leading to conservation of the productφψ= hi h j , with hi ,h j ∈ [h1,h2,h3,h4].

Whereas this was derived in a continuous setting, discrete advection operators that retain this structure exist
and can be constructed; for any matrix C it holds that:

v T C w =−w T C v (3.14)

By noting that: (
v T C w

)T = w T C T v
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It can be concluded that (3.14) holds for any vectors v , w if and only if C T =−C . In other words, this holds if
and only if matrix C is skew-symmetric. If discrete skew-symmetric advection operators are thus used, they
can simultaneously conserve mass, momentum and kinetic energy. An additional condition for this to hap-
pen is that all conservation equations have to use the same matrix as advection operator.

This approach to discretizing conservative advection operators with skew-symmetric matrices was intro-
duced by Rozema et al. in [47, 48] for finite volume methods. In this research it is extended to (isogeometric)
mimetic finite element methods. Other uses throughout literature are scarce. While various of its elements
appear in the approximate Roe solver [46], not much additional research seems to have gone into this model-
ing approach for advection in compressible fluid flows. Pettersson et al. in [43] use a similar decomposition
for a stochastic finite element method in what they refer to as ’Roe variables’.

3.5. Obtaining a partial Roe variable formulation
In section 3.2 a non-variational formulation of the Euler equations was posed. A (partial) decomposition of
this model can be derived in terms of Roe variables. LetΩ be a manifold in Rn . For clarity the model given in
(3.8) is repeated here:

∂ρ(n)

∂t
+Luρ

(n) = 0

∂〈m(1,n),∂i 〉
∂t

+Lu〈m(1,n),∂i 〉+di∂i p(n) = 0

∂E (n)

∂t
+LuE (n) +Lup(n) = 0

Starting with mass conservation we reformulate the density field as: ρ(n) =p
ρ(0)∧pρ(0)∧σ(n) =p

ρ(0)pρ(0)σ(n)

with σ(n) the canonical volume form. Note that 0-forms are ’just functions’: Due to their lack of association
with any dual basis elements d xi they can be moved around in wedge products at will. Applying this decom-
position to the time derivative of the continuity equation gives:

∂ρ(n)

∂t
= ∂

p
ρ(0)pρ(0)σ(n)

∂t
= 2

p
ρ(0) ∂

p
ρ(0)σ(n)

∂t

Where σ(n) is explicitly taken to be time-independent, allowing for it to be moved in- and out of the time
derivative as desired. Similarly, for the Lie derivative:

Lu
(
ρ(n))=Lu

(p
ρ(0)

)
∧p

ρ(0)σ(n) +p
ρ(0) ∧Lu

(p
ρ(0)σ(n)

)

=p
ρ(0)

Lu

(p
ρ(0)

)
σ(n) +Lu

(p
ρ(0)σ(n)

)
︸ ︷︷ ︸

=Lu
(p
ρ(0)σ(n)

)


=p

ρ(0)
Lu

(p
ρ(0)σ(n)

)
Resulting in the following continuity equation for Roe variable

p
ρ(n):

2
p
ρ(0)

[
∂
p
ρ(0)σ(n)

∂t
+ 1

2
Lu

(p
ρ(0)σ(n)

)]
= 0

∂
p
ρ(0)σ(n)

∂t
+ 1

2
Lu

(p
ρ(0)σ(n)

)
= 0

Which, by noting that
p
ρ(0)σ(n) =p

ρ(n), is written as:

∂
p
ρ(n)

∂t
+ 1

2
Lu

(p
ρ(n)

)
= 0 (3.15)

Here the Lie derivative is applied to 0-forms and volume forms. As was mentioned in example 5, when ap-
plied to a 0-form the Lie derivative results in the convective advection form, whereas applying it to a volume
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form leads to the conservative formulation of the advection operator.

Turning to the momentum equation, the covector-valued momentum volume form m(1,n) is introduced:

m(1,n) =∑
i

d xi ⊗m(0)
i σ(n)︸ ︷︷ ︸
=m(n)

i

=∑
i

d xi ⊗m(n)
i

For which the following Roe variable decomposition is used:

m(1,n) =∑
i

d xi ⊗m(n)
i =∑

i
d xi ⊗p

ρ(0)φ(0)
i σ(n) =p

ρ(0) ∑
i

d xi ⊗φ(0)
i σ(n) =p

ρ(0)φ(1,n) (3.16)

Here φ(0)
i is shorthand for

p
ρui in the Roe variable decomposition shown in section 3.4. The application of

this decomposition to the momentum equation gives:

∂
(p
ρ(0)φ(0)

i σ(n)
)

∂t
=φ(0)

i σ(n) ∂
p
ρ(0)

∂t
+p

ρ(0)
∂
(
φ(0)

i σ(n)
)

∂t

Lu

(p
ρ(0)φ(0)

i σ(n)
)
=φ(0)

i σ(n)Lu

(p
ρ(0)

)
+p

ρ(0)Lu

(
φ(0)

i σ(n)
)

Which turn the momentum equation into:

∂〈m(1,n),∂i 〉
∂t

+Lu〈m(1,n),∂i 〉+di∂i p(n) = 0

φ(0)
i σ(n) ∂

p
ρ(0)

∂t
+p

ρ(0)
∂
(
φ(0)

i σ(n)
)

∂t︸ ︷︷ ︸
= ∂〈m(1,n),∂i 〉

∂t

+φ(0)
i σ(n)Lu

(p
ρ(0)

)
+p

ρ(0)Lu

(
φ(0)

i σ(n)
)

︸ ︷︷ ︸
=Lu〈m(1,n),∂i 〉

+di∂i p(n) = 0

Now the continuity equation of (3.15) is inserted in place of the time derivative
∂
p
ρ(0)

∂t . In order to obtain the

time derivative of
p
ρ(0) the Hodge ? operator is applied to the continuity equation:

?
∂
p
ρ(n)

∂t
+ 1

2
?Lu

(p
ρ(n)

)
= 0

∂
p
ρ(0)

∂t
=−1

2
?Lu

(p
ρ(n)

)
Combining everything into the momentum equation then gives the following (intermediate) result:

φ(0)
i σ(n)

(
−1

2
?Lu

(p
ρ(n)

))
+p

ρ(0)
∂
(
φ(0)

i σ(n)
)

∂t
+φ(0)

i σ(n)Lu

(p
ρ(0)

)
︸ ︷︷ ︸

I

+pρ(0)Lu

(
φ(0)

i σ(n)
)
+di∂i p(n) = 0 (3.17)

Where:

φ(0)
i σ(n)

(
−1

2
?Lu

(p
ρ(0)σ(n)

))
=φ(0)

i σ(n)
(
−1

2
?

[
Lu

(p
ρ(0)

)
σ(n) +Lu

(p
ρ(0)σ(n)

)])
=−1

2
φ(0)

i σ(n)
(
Lu

(p
ρ(0)

)
+?Lu

(p
ρ(0)σ(n)

))
=−1

2
φ(0)

i σ(n)
(
Lu

(p
ρ(0)

)
+?Lu

(p
ρ(0)

)
σ(n) +?pρ(0)Lu

(
σ(n)))

=−1

2
φ(0)

i σ(n)

2Lu

(p
ρ(0)

)
︸ ︷︷ ︸

I

+?p
ρ(0)Lu

(
σ(n))



=−φ(0)
i σ(n)

Lu

(p
ρ(0)

)
︸ ︷︷ ︸

I

+1

2
?
p
ρ(0)Lu

(
σ(n))



(3.18)
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Note that it is explicitly used that ?σ(n) = 1. The terms indicated with I in (3.17) and (3.18) cancel, which
leaves the following:

p
ρ(0)

∂
(
φ(0)

i σ(n)
)

∂t
+p

ρ(0)Lu

(
φ(0)

i σ(n)
)

︸ ︷︷ ︸
I I

− 1

2
φ(0)

i σ(n)?
p
ρ(0)Lu

(
σ(n))︸ ︷︷ ︸

I I I

+di∂i p(n) = 0 (3.19)

The terms indicated with I I and I I I are those related to the advection operator. Focusing on the first of these
terms it can be seen that:

p
ρ(0)Lu

(
φ(0)

i σ(n)
)
= 1

2

p
ρ(0)

[
Lu

(
φ(0)

i σ(n)
)
+Lu

(
φ(0)

i σ(n)
)]

= 1

2

p
ρ(0)

[
Lu

(
φ(0)

i σ(n)
)
+

(
σ(n)Lu

(
φ(0)

i

)
+φ(0)

i Lu
(
σ(n)))]

Whereas for the term marked with I I I we take a slightly longer detour, and start by remarking that:

1

2
φ(0)

i σ(n)?
p
ρ(0)Lu

(
σ(n))= 1

2
φ(0)

i

p
ρ(0)σ(n)?Lu

(
σ(n)) (3.20)

Note that the canonical volume form is σ(n) =p
g d x1 ∧d x2 ∧ . . .∧d xn . From working out the Lie derivative

it can be found that:

σ(n)?Lu
(
σ(n))=σ(n)?diu

(
σ(n))

=σ(n)?

(∑
i

∂
p

g ui

∂xi
d x1 ∧d x2 ∧ . . .∧d xn

)
︸ ︷︷ ︸

=Lu(σ(n))

=σ(n)?

∑
i

∂
p

g ui

∂xi
d x1 ∧d x2 ∧ . . .∧d xn︸ ︷︷ ︸

= σ(n)p
g


=σ(n)

(
1p
g

∑
i

∂
p

g ui

∂xi

)

= 1p
g

∑
i

∂
p

g ui

∂xi
σ(n)

=∑
i

∂
p

g ui

∂xi
d x1 ∧d x2 ∧ . . .∧d xn =Lu(σ(n))

In short, σ(n)?Lu
(
σ(n)

)=Lu(σ(n)) and thus it can be found from (3.20) that:

1

2
φ(0)

i

p
ρ(0)σ(n)?Lu

(
σ(n))= 1

2
φ(0)

i

p
ρ(0)Lu

(
σ(n))

At this point the modified versions of terms I I and I I I are plugged back into (3.19):

p
ρ(0)

∂
(
φ(0)

i σ(n)
)

∂t
+ 1

2

p
ρ(0)

[
Lu

(
φ(0)

i σ(n)
)
+

(
σ(n)Lu

(
φ(0)

i

)
+φ(0)

i Lu
(
σ(n)))]︸ ︷︷ ︸

I I

− 1

2
φ(0)

i

p
ρ(0)Lu

(
σ(n))︸ ︷︷ ︸

I I I

+di∂i p(n) = 0

The Lie derivatives of canonical volume form σ(n) are equal and of opposite sign, thereby canceling one an-
other. This leads to the following formulation:

p
ρ(0)

∂
(
φ(0)

i σ(n)
)

∂t
+ 1

2

p
ρ(0)

[
Lu

(
φ(0)

i σ(n)
)
+Lu

(
φ(0)

i

)
σ(n)

]
︸ ︷︷ ︸

=Lu

(
φ(0)

i σ(n)
)

+di∂i p(n) = 0
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As was found for the continuity equation the advection operator is Lu , this time acting on φ(0)
i σ(n) instead ofp

ρ(0)σ(n). The resulting Roe variable momentum conservation law is found by dividing with
p
ρ(0):

∂
(
φ(0)

i σ(n)
)

∂t
+ 1

2
Lu

(
φ(0)

i σ(n)
)
+ 1
p
ρ(0)

di∂i p(n) = 0

Which by using covector-valued differential form φ(1,n) defined in (3.16) becomes:

∂〈∂i ,φ(1,n)〉
∂t

+ 1

2
Lu

(〈∂i ,φ(1,n)〉)+ 1
p
ρ(0)

di∂i p(n) = 0

Note that dividing with
p
ρ(0) is not ill-defined, since

p
ρ(0) is the fluid mass density and is thus strictly posi-

tive as long as the assumption of a continuous medium is valid.

While the relationship between mass, momentum and kinetic energy (all three being quadratic functions of
{
p
ρ(n),φ(n)

i }) leads to improvements in conservation behavior, no such advantage is obtained by formulating

the (total) energy density E (n) as Roe variable. As such the original form of the energy equation is maintained.
The (partial) Roe variable conservation laws are therefore:

∂
p
ρ(n)

∂t
+ 1

2
Lu

(p
ρ(n)

)
= 0

∂〈∂i ,φ(1,n)〉
∂t

+ 1

2
Lu

(〈∂i ,φ(1,n)〉)+ 1
p
ρ(0)

di∂i p(n) = 0

∂E (n)

∂t
+LuE (n) +Lup(n) = 0

(3.21)

Where:
Lu

(p
ρ(n)

)
=Lu

(p
ρ(0)

)
σ(n) +Lu

(p
ρ(0)σ(n)

)
(3.22)

And a similar relation holding for Lu

(
φ(n)

i

)
. As can be seen some instances of

p
ρ(0) and φ(0)

i still remain in

(3.21) and (3.22). It can be noted that
p
ρ(0) =?pρ(0)σ(n) and φ(0)

i =?φ(0)
i σ(n). Furthermore we note that:

Lu

(p
ρ(0)

)
σ(n) =?Lu

(
?
p
ρ(0)σ(n)

)
And similar for Lu

(
φ(0)

i

)
σ(n).

As remarked by Kreeft?Lu
(
?
p
ρ(0)σ(n)

)
is equal to the negative of the adjoint Lie derivative, since [31, p. 228]:

?Lu

(p
ρ(0)σ(n)

)
=−Lu

(
?
p
ρ(0)σ(n)

)
Noting that ??α(k) = (−1)k(n−k)α(k) for any k-form α(k) ∈ Λ(k)(Ω) on n-dimensional manifold Ω it follows
that:

Lu

(p
ρ(0)

)
σ(n) =?Lu

(
?
p
ρ(0)σ(n)

)
=−Lu

(p
ρ(0)σ(n)

)
Where Lu is the adjoint Lie derivative. Advection operator Lu given in (3.22) can thus be stated as:

Lu

(p
ρ(n)

)
=Lu

(p
ρ(0)

)
σ(n) +Lu

(p
ρ(0)σ(n)

)
=Lu

(p
ρ(0)σ(n)

)
−Lu

(p
ρ(0)σ(n)

)
As such the combined advection operator Lu is self-adjoint. Applying the aforementioned relations to (3.21)
results in:

∂
p
ρ(n)

∂t
+ 1

2
?Lu

(
?
p
ρ(n)

)
+ 1

2
Lu

(p
ρ(n)

)
= 0

∂〈∂i ,φ(1,n)〉
∂t

+ 1

2
?Lu

(
?〈∂i ,φ(1,n)〉)+ 1

2
Lu

(
φ(n)

i

)
+ 1

?
p
ρ(0)

di∂i p(n) = 0

∂E (n)

∂t
+LuE (n) +Lup(n) = 0

(3.23)
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Advection operator Lu thus satisfies the requirement that was set out in section 3.4: The Roe-decomposed
continuity and momentum equations have the same anti-self-adjoint advection operator, making it possible
to construct skew-symmetric discrete advection operators that simultaneously conserve mass, momentum
and kinetic energy.

Velocity field u is defined in a similar way as is the case in the non-Roe variable model given in (3.23):

u[ = ?φ(1,n)

?
p
ρ(n)

=
∑

i d xi ⊗?(
φi d x1 ∧d x2 ∧ . . .∧d xn

)
?

(p
ρ d x1 ∧d x2 ∧ . . .∧d xn

)
=

p
g

∑
i d xi ⊗φip
g
p
ρ

=∑
i

d xi ⊗ φip
ρ

Where again the metric contributions of the Hodge ? cancel.

The ideal gas law is again used as equation of state. Due to the Roe variables the definition of the kinetic
energy is more straightforward, as it is now a quadratic quantity:

E (n)
ki n = 1

2
〈m(1,n),?]m(1,n)〉 (3.24)

3.6. Aspects of discretization
Chapter 2 already introduced the mimetic isogeometric discretization methods and operators that will are
used in this thesis. Having introduced most of the relevant theory and defined the continuous model with
a Roe variable decomposition, several aspects of this discretization process are yet to be covered. While dis-
cretization of the Roe variable models is covered in chapters 7 (in one dimension) and 8 (in two dimensions),
some of these aspects are also necessary for describing the discretization steps that have been used for the
linear advection equation in chapter 5 and Burgers’ equation in chapter 6; as such they are covered here.
First is the approach for reconstructing physical variables from the Roe variables in section 3.6.1, followed by
the time stepping methods that have been used in section 3.6.2. Lastly section 3.6.3 covers the linearization
method that has been used to convert systems (3.8) and (3.23) into linear systems of equations.

3.6.1. Discrete reconstruction of physical variables
Isogeometric analysis employs B-splines to model solutions to physical continuum phenomena. For the
model that is partially decomposed in Roe variables the numerical solution does not directly correspond
to physical variables; these thus need to be reconstructed from the Roe variables. On manifold Ω ⊂ R2 with
cell complex Ωh the partial Roe variable vector is

[p
ρ(2) φ(2)

1 φ(2)
2 E (2)

]
; thus the mass density, momen-

tum density and kinetic energy density need to be reconstructed in some way. This can be done in an exact
way with B-splines. Let (Ξ,Θ) be a tuple of knot vectors, each of length m+p +1 and generating 2-form basis{
ψ(2)

i

}i=m+1

i=1
, such that:

p
ρ(2)

h =∑
i

p
ρiψ

(2)
i d x ∧d y

φ(2)
1,h =∑

i
φ1

i ψ
(2)
i d x ∧d y

φ(2)
2,h =∑

i
φ2

i ψ
(2)
i d x ∧d y

Note that it is required to expand all Roe variables in the same basis in order to preserve the simultaneous
conservation of mass, momentum and kinetic energy. The discrete mass density field ρ(2)

h can be computed
as follows:

ρ(2)
h =p

ρ(2)
h ∧?pρ(2)

h =∑
i

∑
j

p
ρi

p
ρ jψ

(2)
i ψ(2)

j d x ∧d y



44 3. Momentum, kinetic energy and the compressible Euler equations

Section 2.2.4 defines the algorithm put forth by Mørken in [36] that is used to exactly compute the product of
any pair of B-splines as a higher-degree B-spline. For

p
ρ(2)

h ∈Λ(2)
h,p (Ωh) this method provides a mapΛ(2)

h,p (Ωh)×
Λ(2)

h,p (Ωh) →Λ(2)
h,2p (Ωh) for computing ρ(2)

h ∈Λ(2)
h,2p (Ωh). In the same way the 2-form legs of the covector-valued

momentum 2-form m(1,2) can be calculated:

m(2)
1,h =p

ρ(2)
h ∧?φ(2)

1,h =∑
i

∑
j

p
ρiφ

1
jψ

(2)
i ψ(2)

j d x ∧d y

m(2)
1,h =p

ρ(2)
h ∧?φ(2)

2,h =∑
i

∑
j

p
ρiφ

1
jψ

(2)
i ψ(2)

j d x ∧d y

In this way the primary variables of the Euler equations can be reconstructed from the Roe variables that
were defined in the previous section. As mentioned before, using this Roe variable decomposition leads to
conservation of quadratic variables. With this way of exactly reconstructing the quadratic variables from the
Roe variables the (quadratic) physical variables can be described as B-spline as well.

3.6.2. Time stepping
Spatial discretization presents only a portion of the discretization steps that have to be taken to arrive at a
numerical method. Any advantageous properties of the spatial discretization need to be supported by ap-
propriate time stepping methods, otherwise the conservation behavior found in the semi-discrete PDEs will
not be present in the fully-discrete problem. Two different time stepping methods are used for the numerical
methods derived in this research work. Before specifying these, their general class of time stepping methods
is defined:

Definition 3.1. Suppose we have a time-dependent variable u(t ) defined on domainΩ× [0,T ] with:

∂u

∂t
= F (t ,u)

And let t n+1, t n ∈ [0,T ] (with ∆t = t n+1 − t n) be two time levels. Then an s-stage Runge-Kutta method used to
find u(t n+1) = un+1 from u(t n) = un is:

un+1 = un +∆t
s∑

i=1
bi ki

Where s is the number of stages of the method, with:

ki = F

(
t n + ci∆t ,un +∆t

s∑
j=1

ai j k j

)

The coefficients bi , ci , ai j ∈ R fully specify the Runge-Kutta method used and are usually given in a Butcher
tableau:

c1 a11 a12 . . . a1s

c2 a21 a22 . . . a2s
...

...
...

. . .
...

cs as1 as2 . . . ass

b1 b2 . . . bs

Remark. Runge-Kutta time stepping methods can be divided into implicit and explicit methods. For an explicit
Runge-Kutta method with s stages the coefficients ai j are equal to zero for s ≥ j ≥ i . As a consequence of this
the j th time stepping variable k j can be computed from the variables ki , with 0 ≥ i < j , in a fully decoupled
way. Explicit Runge-Kutta methods thus allow one to generate the variables k1 → k2 → . . . → ks successively. In
contrast, implicit Runge-Kutta require one to solve a system of equations for the variables ki . The higher the
number of stages, the larger resulting linear system that needs to be solved for.

The first of the methods used in this thesis is the implicit midpoint method:
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Definition 3.2 (Sanderse [49]). Suppose we have a time-dependent variable u(t ) defined on domainΩwith:

∂u

∂t
= F (u)

We define time levels t n+1, t n (with ∆t = t n+1− t n) and apply a one-stage (s = 1) Runge-Kutta method with the
following Butcher tableau:

1
2

1
2

1

This results in the implicit midpoint method:

un+1 = un +∆tk1 (3.25)

Where:

k1 = F

(
t n + ∆t

2
,un + ∆t

2
k1

)
(3.26)

Which presents a (non)linear system that is to be solved and depends on the form of F . The implicit midpoint
method is the one-stage method of the broader class of Gauss methods. This group of methods is of order O (2s);
the implicit midpoint method uses one stage and is thus second-order accurate.

Remark. The way the implicit midpoint method has been introduced here differs from the definitions often
given in literature. To see that they are identical, reorder (3.25):

k1 = un+1 −un

∆t

And apply this to the right-hand side of (3.26):

k1 = F

(
t n + ∆t

2
,un + ∆t

2

un+1 −un

∆t

)
= F

(
1

2

[
t n+1 + t n]

,
1

2

[
un+1 +un])

The implicit midpoint method has been used in literature for structure-preserving discretizations of various
flow types, including incompressible [30, 40, 41] and compressible [6] flows. As covered by Sanderse in [49]
Gauss time stepping methods are energy-conserving, time-reversible and algebraically stable.

While carrying out numerical experiments with the implicit midpoint method applied to the two-dimensional
Euler equations it was found that unphysical oscillations were propagating across the domain and pollut-
ing the numerical solutions. Hence it was decided to use a different time stepping approach, the Radau IIB
method:

Definition 3.3 (Sanderse [49]). Suppose that we again have a time-dependent variable u(t ), for which:

∂u

∂t
= F (u)

The Radau IIB method is a two-stage implicit Runge-Kutta method with the following Butcher tableau:

1
3

3
8 - 1

24

1 7
8

1
8

3
4

1
4

3.6.3. Linearization and nonlinear convergence
Depending on the formulation of the right-hand side function F introduced in the previous section, applying
a time stepping method can result in a nonlinear scheme for un+1. This is the case in chapters 6, 7 and 8 of
this thesis. Various approaches exist for linearizing a nonlinear model. In this work Picard linearization is
used. Suppose that the following discrete system of equations has been obtained:

A(u)u = f
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Where A(u) is a matrix depending on solution vector u and f is the right-hand-side source vector. Picard
linearization is an iterative method. Let k denote the index of the current iteration, such that uk is a known
estimate for the nonlinear solution. Then Picard linearization works as follows:

A(uk )uk+1 = f

A new nonlinear solution estimate uk+1 is thus obtained by applying current estimate uk to the system of
equations where necessary. This results in a sequence of nonlinear solution estimates u0 → u1 → . . .. In this
research the Picard iterations are considered to have converged when:

||uk+1 −uk ||∞ < ε

Where ε is the nonlinear convergence tolerance. A simulation (during any time step) is thus deemed to have
converged when the maximum absolute difference between successive solution estimates uk ,uk+1 is smaller
than ε.

The Euler equations given in (3.8) and its partial Roe variable decomposition given in (3.23) both pose a
coupled nonlinear system of equations. Since the nonlinearity for both models is contained in the velocity
vector field u, Picard linearization can be implemented in a straightforward way to yield a system of linear
equations. Linearizing through u removes the direct coupling between the continuity equation on one side
and the momentum & energy equations on the other side. Letting k again denote the iteration index, the
linearized regular Euler model becomes:

∂ρ(n)
k+1

∂t
+Lukρ

(n)
k+1 = 0

∂〈m(1,n)
k+1 ,∂i 〉
∂t

+Luk 〈m(1,n)
k+1 ,∂i 〉+

(
γ−1

)
di∂i

(
E (n)

k+1 −
(
E (n)

ki n

)
k

)
= 0

∂E (n)
k+1

∂t
+γLuk E (n)

k+1 − (γ−1)Luk

(
E (n)

ki n

)
k
= 0

(3.27)

Where thus the only parameter linking the continuity equation to the momentum equations is the velocity
vector field uh . For the Roe variable model the linearized system is:

∂
p
ρ(n)

k+1

∂t
+ 1

2
?Luk

(
?
p
ρ(n)

k+1

)
+ 1

2
Luk

(p
ρ(n)

k+1

)
= 0

∂〈∂i ,φ(1,n)
k+1 〉

∂t
+ 1

2
?Luk

(
?〈∂i ,φ(1,n)

k+1 〉
)
+ 1

2
Luk

(
〈∂i ,φ(1,n)

k+1 〉
)
+ (γ−1)

1

?
p
ρ(0)

k+1

di∂i

(
E (n)

k+1 −
(
E (n)

ki n

)
k

)
= 0

∂E (n)
k+1

∂t
+γLuk E (n)

k+1 − (γ−1)Luk

(
E (n)

ki n

)
k
= 0

(3.28)

Here the same is observed as for the regular model: The continuity and momentum equations become decou-
pled. Note that the last term in the momentum equation contains 1/?

p
ρ(0)

k+1: This is required for momentum
conservation. During any nonlinear iteration the continuity equation is thus to be solved for first, after which
the updated solution

p
ρ(0)

k+1 is used to construct the momentum equation.

Also note that in both models the kinetic energy
(
E (n)

ki n

)
k

is resolved in an explicit way: This quantity is non-

linear in itself, so resolving it implicitly in a fully linear way is not possible.
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Reference models

Two external models have been used in the current research to benchmark the performance of the newly-
proposed mimetic isogeometric finite element (FE) method. One of these is a package implementing the
finite volume (FV) method called Clawpack [34] and the other is the nodal Discontinuous Galerkin (DG)
method treated by Hesthaven and Warburton in [24]. One way to look at the relations between these three
methods is to view the DG method as a hybrid between FV methods on the one hand and FE methods, under
which the method derived in this research work falls, on the other hand. Figure 4.1 shows a Venn diagram
that displays this relation.

Finite Volume
methods

Finite Element
methods

Discontinuous
Galerkin
methods

Figure 4.1: Venn diagram showing the relation between the various types of numerical discretization approaches covered in this research
work; Discontinuous Galerkin methods combine aspects and ideas of FV- and FE methods

This chapter covers some of the basic theory of the aforementioned external methods in order to contrast
their derivation and (dis)advantages for various types of physical models. To allow for a fair comparison with
the method developed in this research work numerical aspects such as filtering, time stepping and boundary
condition implementations are also covered. Section 4.1 will first cover the Clawpack FV package; part of this
theory will come in useful in section 4.2, where the nodal DG method is covered. Following this section 4.3
briefly introduces the grid types that are used in the test cases on which both Clawpack and the DG method
were used.

4.1. Clawpack
Clawpack1 (short for Conservation Laws Package) [34] is an open-source package that implements a range
of FV methods for linear and nonlinear hyperbolic systems of conservation laws. Section 4.1.1 will first cover
the fundamental approach taken in finite volume discretization methods, after which several aspects of this
approach are covered separately in order to provide a transparent overview of the algorithms from Clawpack

1http://www.clawpack.org/
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used as reference in this research. These aspects are time stepping, discrete flux functions & flux limiting
and boundary condition implementation, covered in sections 4.1.2, 4.1.3 and 4.1.4 respectively. Whereas
the FV discretization approach is presented here for one spatial dimension the same method can be used
in any number of dimensions; wherever appropriate the extension from one to multiple spatial dimensions
will be mentioned briefly. Publications discussing FV methods are numerous: Among others the books by R.
Leveque [32, 33] provide a much more thorough derivation and theoretical background. Clawpack was used
to create of the numerical examples and results given in the latter of these references.

4.1.1. Finite volume discretization
Consider the following equation on finite domainΩ⊂R:

∂u

∂t
+ ∂F (u)

∂x
= 0 (4.1)

Where u is an unknown variable and F is a (possibly nonlinear) flux. This equation is supplemented with a
suitable initial condition and boundary values on ∂Ω. We cover Ω with a finite set of non-overlapping cells
{Ωk }k=N

k=1 and integrate (4.1) over cellΩk :∫
Ωk

∂u

∂t
dΩk +

∫
Ωk

∂F (u)

∂x
dΩk = 0

∂

∂t

∫
Ωk

u dΩk︸ ︷︷ ︸
=Uk

+F (u)
∣∣∣
∂Ωk

= 0

∂Uk

∂t
+F (u)

∣∣∣
∂Ωk

= 0

Where the divergence theorem was used to convert the integral of ∂F
∂x to a boundary evaluation. We define

the degree of freedom associated withΩk to be the area-averaged integral of u overΩk , which we denote with
Uk . The only things that are still needed to obtain a numerical method are a time stepping method and some

way to compute F (u)
∣∣∣
∂Ωk

, the flux operator on the two boundary sides of Ωk . In multiple dimensions this

boundary term is an integral over ∂Ωk , as per the divergence theorem. We denote the interface between cells
Ωk ,Ωk+1 with ∂Ωk+1/2; note that the flux operator evaluated on this interface F (Uk+1/2) contributes positively
to Uk+1 and negatively to Uk or vice versa. We do not know the values of u on ∂Ω. For cell Ωk we thus need a
way to compute the discrete flux functions F (Uk−1/2) and F (Uk+1/2) from the cell integrals Ui , i ∈ [0,1, . . . , N ].
This leads to the following semi-discrete formulation for FV methods:

∂Uk

∂t
+F (Uk+1/2)︸ ︷︷ ︸

=Fk+1/2

−F (Uk−1/2)︸ ︷︷ ︸
=Fk−1/2

= 0

In other words: The time rate of change of Uk is equal to the difference between the flux entering and exiting
Ωk . Most finite volume methods follow the so-called REA approach to march a numerical solution from time
level t n to t n+1: Reconstruct, Evolve, Average. This approach works as follows:

1. Reconstruct: Use the area-averaged integral degrees of freedom Uk ,k ∈ [0,1, . . . , N ] (which generate
a piecewise-constant solution) to approximate or otherwise reconstruct the boundary fluxes Fk−1/2,
Fk+1/2 for every cell k.

2. Evolve: Use the hyperbolic structure of advection to extrude the boundary fluxes Fk−1/2(t ), Fk+1/2(t ) in
and out of every cell boundary over the time step t n → t n+1.

3. Average: Compute the area-averaged integral degrees of freedom U n+1
k at time level n + 1 from the

evolved solution; the result is a new piecewise-constant solution with discontinuities on the cell bound-
aries. This solution can be used in the next reconstruction step.

This is the general approach with which FV methods resolve discretized conservation laws. Local conserva-
tion of the primary variables is achieved in each cell: Uk changes only because of the net flow across ∂Ωk .
Similarly, Uk+1 receives an inflow across ∂Ωk+1/2 that is exactly equal to the outflow of Uk across ∂Ωk+1/2,
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dictated by the (discrete) flux function Fk+1/2.

The concepts covered here all generalize to two-, three- and higher-dimensional cases. Cell boundary ∂Ck will
then consist of multiple patches, and flux functions are defined on each boundary patch separately. Leveque
discusses these multidimensional extensions in chapter 18 of [32]. In case unknown u is a vector of variables
instead of a scalar, Uk will also be a vector. The fluxes F of each variable will be different, though they all
depend on the local velocity field for their extrusion.

4.1.2. Time stepping
Now that the spatial discretization approach has been introduced, we are left to discuss time discretization.
With this the time steps are defined over which the boundary fluxes Fk−1/2(t ), Fk+1/2(t ) are extruded. Within
this research Clawpack’s implementation of the Lax-Wendroff method is used to generate the numerical so-
lutions. This is a classic second-order method in space and time, and is discussed by Leveque in [33]. It is an
explicit time stepping method; in other words, the solution at time level n +1 is computed based solely on
the solution and discrete fluxes computed at time level t n . Since the Lax-Wendroff method is a higher-order
method it displays dispersive behavior around discontinuities. To remedy this a flux limiter will be used to
correct the discrete fluxes that result from the flux function formulation.

4.1.3. Flux functions and limiting
A great deal of research has gone into obtaining suitable flux functions and many have been proposed during
the over sixty years of research into Finite Volume methods. Leveque gives an overview of many of the classi-
cal flux functions in [32, 33]; as mentioned previously, Clawpack was used to simulate many of the examples
given in the latter reference. As it turns out the flux functions that produce monotone solutions in regions
with high gradients and discontinuities cannot be more than first-order accurate [32, Thm. 15.6]. This first-
order scaling behavior means that excessively fine meshes are required to resolve numerical simulations with
a higher degree of accuracy, limiting the usefulness of these methods due to the required computational costs.
The cause of this is the high amount of numerical dissipation produced by these monotone methods. Higher-
order-accurate flux functions exist but display dispersive (oscillatory) behavior in high-gradient regions and
around discontinuities. So-called ’high-resolution’ schemes were created in an attempt to combine the ad-
vantages offered by higher-order schemes with the stability and monotonicity of monotone first-order flux
functions. This section first covers the high-order flux functions that are used for the one-dimensional Euler
equations, followed by some steps that result in a high-resolution scheme. Afterwards the schemes used for
the two-dimensional Euler equations are briefly treated. The aim of this section is to provide a brief overview
of the functions used from Clawpack to obtain the reference results that are given in chapters 7 and 8; a more
elaborate discussion and derivation of these methods can be found in [32, 33].

In this research the high-order fluxes for the one-dimensional Euler equations are computed with the Harten-
Lax-van Leer-Contact (HLLC) Riemann solver. This solver is an extension of the Harten-Lax-van Leer (HLL)
method originally published in [22]. Riemann solvers are numerical methods used to solve the so-called
Riemann problem, a (system of) conservation equation(s) with piecewise-constant initial conditions with
a single discontinuity at x = x0. This discontinuous initial condition results in a pattern of left- and right-
running shock waves and discontinuities that each follow a characteristic direction of the underlying (system
of) conservation law(s). The HLL method models this structure by only considering the fastest left- and right-
running waves, resulting in three distinct regions around the discontinuity location x0.

If we let x0 = ∂Ωk+1/2 and take Uk , Uk+1 as initial conditions (recall that the degrees of freedom are cell-
averaged and thus piecewise-constant) the discrete flux Fk+1/2 can be computed with the HLL Riemann
solver. A weakness of the HLL method is that it does not take into account any waves between the fastest
left- and right-running waves emanating from x0. This results in the absence of certain types of waves and
the production of numerical diffusion, leading to certain waves experiencing unphysical damping. Various
extensions have been proposed to remedy this, one of which is the Harten-Lax-van Leer-Contact (HLLC) Rie-
mann solver that is used in this research work. This method was originally published by Toro et al. in [54] and
supposes the existence of a contact wave between the fastest left- and right-running waves, all emanating
from x0. Incidentally, as can be seen in chapter 7, this three-wave structure corresponds to the exact solution
of the Euler equations for Sod’s shock tube.
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As mentioned this Riemann solver is used to compute the discrete fluxes Fk−1/2, Fk+1/2 at the cell boundaries
∂Ωk , which are then used in the Lax-Wendroff method to march the numerical solution between time levels
t n → t n+1. As the Lax-Wendroff method is second-order-accurate it is dispersive around discontinuities; to
avoid this a high-resolution method is desired. These require a higher-order flux function FH (U ) (such as the
HLL or HLLC solvers mentioned above), a low-order flux function FL(U ) (Clawpack uses the upwind scheme)
and a flux limiter φ(U ). The high-resolution flux function F (U ) at a cell boundary is then defined as:

F (U ) = FL(U )+φ(U ) (FH (U )−FL(U ))

In other words: The high-resolution flux function F can be seen as the low-order flux function plus a higher-
order correction. Flux limiter φ thus controls whether FL or FH dominates the high-resolution flux locally;
the aim is to use FH in smoother regions (because of its higher-order accuracy), and to switch to FL in high-
gradient regions and around discontinuities (because of its monotone behavior and stability). In this research
Clawpack’s implementation of the minmod limiter is used.

Definition 4.1 (Leveque [32, Eq. 16.53]). Let r be a function that signals whether the local data is smooth. The
minmod limiter φmm is defined as:

φmm = max(0,min(1,r ))

Remark (Leveque [32, Eq. 16.15]). To determine the high-resolution flux F (Uk+1/2) = Fk+1/2 at cell boundary
k +1/2 the signal function rk is used; a possible formulation is based on the ratios of neighboring gradients:

rk = Uk −Uk−1

Uk+1 −Uk

4.1.4. Boundary condition application
The zero-flux boundary conditions that are used in the one-dimensional test case (Sod’s shock tube) can be
applied to the FV method by simply setting the discrete flux functions on ∂Ω to zero.

Similarly, periodic boundary conditions can be imposed through the discrete flux functions as well. Suppose
that a one-dimensional domain Ω is covered by cells Ωk , k = 1,2, . . . ,n. The discrete flux functions that are
used to compute the fluxes across the cell boundaries ∂Ωk+1/2 are also imposed on the cell boundaries that lie
on ∂Ω: ∂Ωn+1/2 on the right side ofΩ and ∂Ω1/2 on the left side of the domain. Imposing that ∂Ωn+1/2 = ∂Ω1/2

allows us to apply a discrete flux function on said cell boundaries that makes ∂Ω=;.

The same can be done for a two-dimensional domain. Suppose that Ω is a square two-dimensional domain
that is covered by cellsΩk,l , k = 1,2, . . . ,n, l = 1,2, . . . ,m. Then ∂Ωhas boundaries on its north (∂Ωk,m+1/2), east
(∂Ωn+1/2,l ), south (∂Ωk,1/2) and west (∂Ω1/2,l ) side. Letting ∂Ω1/2,l = ∂Ωn+1/2,l ∀ l ∈ 1,2, . . . ,m and ∂Ωk,1/2 =
∂Ωk,m+1/2 ∀ l ∈ 1,2, . . . ,n then results in a two-dimensional domain that’s periodic in both directions.

4.2. Nodal Discontinuous Galerkin
The Discontinuous Galerkin method used as reference in this research is the nodal DG method given by
Hesthaven and Warburton in [24]. Written below is a brief overview of some of the fundamentals of said DG
method: Section 4.2.1 gives a general derivation of the DG approach, after which section 4.2.2 goes into some
more detail about the flux functions that have been used in this research. The final three aspects covered
here are the time stepping methods in section 4.2.3, filtering and flux limiting in section 4.2.4 and lastly the
application of boundary conditions in section 4.2.5. A GitHub repository2 contains an implementation of the
nodal DG method as described by Hesthaven and Warburton in [24].

4.2.1. Discontinuous Galerkin discretization
Suppose that we want to simulate (4.1) again. We coverΩwith a set of non-overlapping cellsΩk and suppose
that the solution u on each cellΩk can be expanded in basis functions:

uk
h(x, t ) =

Np∑
n=1

ûk
n (t )ψn(x) (4.2)

2https://github.com/tcew/nodal-dg

https://github.com/tcew/nodal-dg
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Where ψn(x) is a local polynomial up to degree p (Np = p + 1, p = 0 corresponds to a piecewise-constant
solution). We multiply (4.1) with test function ψn(x) and integrate overΩk to obtain a weak form:∫

Ωk

∂uk
h

∂t
ψn dΩk +

∫
Ωk

∂F
(
uk

h

)
∂x

ψn dΩk = 0

Next we apply integration by parts to the second term on the left-hand side to arrive at:∫
Ωk

∂uk
h

∂t
ψn dΩk −

∫
Ωk

∂ψn

∂x
F (uk

h) dΩk =−F (uk
h)ψn

∣∣∣
∂Ωk

(4.3)

Note that in contrast to FV methods we have a pointwise definition for uk
h on Ωk , given by basis function

expansion (4.2). When gluing together the solutions defined on each cell we find that the solution on ∂Ωk is
multivalued: At the interface of cellsΩk ,Ωk+1 we have the solutions of uk

h and uk+1
h , both of which are equally

valid. In order to decide on which solution is correct (or whether the correct value is a combination of both
solutions) we introduce a flux function that depends on the local function values from uk

h and uk+1
h :

∫
Ωk

∂uk
h

∂t
ψn dΩk −

∫
Ωk

∂ψn

∂x
F (uk

h) dΩk =−F∗(uk
h)ψn

∣∣∣
∂Ωk

Where F∗ is the imposed flux function. This defines a discrete weak form: The integrals are computed nu-
merically with an appropriate quadrature rule and the coefficients ûk

n are solved for.

What makes this DG method a nodal DG method is the choice of basis functions. In (4.2) the basis functions
ψn are shown; while these are local polynomials, an equivalency exists with a nodal form:

uk
h(x, t ) =

Np∑
n=1

ûk
n (t )ψn(x) =

Np∑
i=1

uk
i

(
xk

i , t
)

l k
i (x) (4.4)

Where l k
i are Lagrange polynomials that have been defined through the Np grid points xk

i on every cell. The

expansion coefficients ûk
n and uk

i can be converted into one another, as is explained in greater detail by Hes-
thaven & Warburton in [24]. An effect of this is that increasing the degree p of the basis function expansion
is handled slightly differently than for many other finite element methods. In order to retain the equivalence
between both forms shown in (4.4) degree increases are additive; the basis used for an expansion of degree
p contains polynomials of degrees 0,1, . . . , p and uses Np = p +1 degrees of freedom on each cell. Increas-
ing the basis function degree thus also leads to an increase in the number of degrees of freedom, a process
called k-refinement. This is unlike the other methods considered within this work; Clawpack can only do
h-refinement (i.e. using smaller cells), and the numerical methods presented in this thesis can do only h-
and p-refinement (i.e. substituting the degree of the basis functions used for a different degree). Whereas
k-refinement is also possible with the newly-developed methods introduced in this work, this has not been
implemented.

4.2.2. Flux functions
Discontinuous Galerkin methods are similar to FV methods when it comes to handling cell interfaces: Flux
functions are defined in order to describe the influence that neighboring cells have on one another. In the
same way as for FV methods there is some freedom in selecting a flux function formulation. In this research
the Lax-Friedrichs flux function is used:

Definition 4.2 (Hesthaven & Warburton [24, p. 32]). Let F∗
LF,k+1/2(uk

h ,uk+1
h ) denote the one-dimensional Lax-

Friedrichs flux on cell boundary ∂Ωk+1/2, which depends on the local function values uk
h

∣∣∣
∂Ωk+1/2

(on the left

side of the cell boundary) and uk+1
h

∣∣∣
∂Ωk+1/2

(on the right side of the cell boundary). Then:

F∗
LF,k+1/2(uk

h ,uk+1
h ) = F (uk

h)+F (uk+1
h )

2
+ C

2
(uk

h

∣∣∣
∂Ωk+1/2

−uk+1
h

∣∣∣
∂Ωk+1/2

)

Where F is the flux formulation of the original PDE (as given in (4.1)) and C ∈ R is a parameter that can be
chosen appropriately. The two-dimensional Lax-Friedrichs flux formulation is given on page 208 of [24].
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Remark. In this research C is taken as the maximum local characteristic velocity, which corresponds to the
highest eigenvalue of the local Euler equations:

C =
√
γp

ρ
+

∣∣∣∣m

ρ

∣∣∣∣
Where γ is the ratio of specific heats, p is pressure, ρ fluid mass density and m momentum density.

4.2.3. Time stepping
Similar to the methods presented in this thesis the nodal DG method uses Runge-Kutta (RK) time stepping
methods. More specifically, as is covered in section 5.7 of [24] Strong Stability-Preserving (SSP) explicit Runge-
Kutta methods (SSP-RK) are used. For the one-dimensional Euler equations the following time stepping
method is used is used:

Definition 4.3 (Gottlieb et al. [21, Prop. 4.1]). Suppose that we again have a time-dependent variable u(t ), for
which:

∂u

∂t
= F (u)

The third-order Strong Stability-Preserving Runge-Kutta (SSP-RK) method is a three-stage explicit Runge-
Kutta method with the following Butcher tableau:

0 0 0 0

1 1 0 0
1
2

1
4

1
4 0

1
6

1
6

2
3

As its name implies this time stepping method has third-order accuracy and is strong stability-preserving,
meaning that it does not add any additional oscillations to an existing semi-discrete method, making it very
suitable for cases with large gradients or discontinuous solutions.

Note that this method requires simultaneous storage of three solution arrays for every variable. In a similar
way the following method is used for the two-dimensional Euler equations:

Definition 4.4 (Hesthaven and Warburton [24, Table 3.2]). Assume that we again have a time-dependent vari-
able u(t ), for which:

∂u

∂t
= F (u)

The fourth-order Low-Storage Runge-Kutta (LSRK) method is a five-stage explicit Runge-Kutta method with
the following Butcher tableau:

c1 a1 0 0 0 0
c2 0 a2 0 0 0
c3 0 0 a3 0 0
c4 0 0 0 a4 0
c5 0 0 0 0 a5

b1 b2 b3 b4 b5

Where:

i ai bi ci

1 0 1432997174477
9575080441755 0

2 - 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

3 - 2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 - 3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 - 1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

These coefficients are also given in table 3.2 of [24]. Again, as implied by its name this is a fourth-order explicit
Runge-Kutta method. It is not strong stability-preserving, but this is not necessary for the isentropic vortex test
case considered in this thesis for the two-dimensional Euler equations.
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The Butcher tableau of this low-storage Runge-Kutta method shows that only one solution array has to be
stored for every variable during any given time step. This is especially useful for higher-dimensional prob-
lems, where the amount of degrees of freedom can increase rapidly when meshes are refined.

4.2.4. Filtering and limiting
In order to increase the stability of the nodal DG method a slope limiter and a residual filtering approach have
been implemented for the one- and two-dimensional Euler equations. This slope limiter is based on a min-
mod function. Note that this function is unrelated to the minmod limiter that was introduced for Clawpack
in section 4.1.3.

Definition 4.5 (Hesthaven and Warburton [24, Eq. 5.24]). Let a1, a2, . . . , am ∈R be m input arguments and let
s denote the average of their sign functions:

s = 1

m

m∑
i=1

sign(ai )

Where the sign function is a function that return 1 or −1 for positive and negative arguments respectively. Let
m denote the minmod function:

m(a1, a2, . . . , am) =
{

s min1≤i≤m
∣∣ai

∣∣ ∣∣s∣∣= 1

0 otherwise

Remark. Note that m thus returns a nonzero argument if and only if all input arguments a1, a2, . . . , am have
the same sign; for any other case |s| 6= 1. When all input arguments have the same sign m will return the smallest
input argument, with the same sign it had before. As remarked by Hesthaven and Warburton [24, p. 150] this
function can be used as a slope limiter by inputting the linear slopes of the solution on three neighboring cells;
if the slope signs of these three cells do not match m returns a zero, otherwise m returns the shallowest slope.

The slope limiter for the one-dimensional Euler equations is then constructed by following a specific order of
steps [24, p. 152]:

1. Compute a linear approximation to the solution uk
h on each cell; this approximation is defined to be

equal to the cell average ūk
h in the centroid of the cell (as to conserve uk

h) and has slope
(
uk

h

)
x

. This

approximation results in cell boundary values vk
l and vk

r on the left- and right-side cell boundaries
respectively.

2. If the approximated cell boundary values vk
l and vk

r match uk
h on the left- and right-side cell boundaries

no limiting needs to be done.

3. Otherwise use the previously-computed linear approximation to uk
h and apply the minmod function to

the cell slope
(
uk

h

)
x

by giving the cell averages of cell k and its neighbors as input: m(ūk−1
h , ūk

h , ūk+1
h ).

Since the cell averages are not affected by this slope limiting the slope-limited solution can be computed in
each cell independently.

The case used in this research for the two-dimensional Euler equations does not contain any discontinuities.
Nonetheless a simple filter is used in order that stabilizes the DG method especially when under-resolved
solution features exist. For this a cut-off filter is used. Recall the expansion in term of local polynomial basis
functions given in (4.2). Reducing the amplitude of the coefficients associated with the highest-degree basis
functions on each cell by only 5% leads to a more stable method. Hesthaven and Warburton give a compari-
son between filtered and unfiltered results for the two-dimensional isentropic vortex in [24, Sec. 6.6.1].

4.2.5. Boundary condition application
Recall that in the DG formulation the variational problems on each cell are posed separately, after which
the cell-specific problems are glued together with the numerical flux functions. As can be seen in (4.3)
these fluxes are the only boundary terms present, and hence the zero-flux wall boundaries used in the one-
dimensional Euler test case can be enforced by setting the numerical flux functions equal to zero on the
domain boundaries.
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The periodic boundary conditions that are used in the test case for the two-dimensional Euler equations are
posed in an identical way to those used in Clawpack: The meshes used are constructed such that the eastern
& western and the northern & southern boundaries have one-to-one correspondence of mesh nodes and
edges. The usual numerical flux functions can then be posed across cell edge pairs on opposing boundary
sides.

4.3. Grids and degrees of freedom
Clawpack and the DG method have different arrangements for their grids and the degrees of freedom that
are defined on them. For Clawpack the meshes used in this research are straightforward: In one dimension a
one-dimensional grid consisting of intervals of identical length is defined. This structure is extended to two
dimensions in a tensor product way; as such the two-dimensional grid is uniform and Cartesian. Each cell
in one and two dimensions has one degree of freedom associated to it for each scalar variable that is being
solved for.

The discrete configuration of the DG method is a bit more complicated and depends on the maximum basis
function degree p. Again in one dimension a covering of the computational domain by a set of identically-
sized cells (intervals) is used. On each cell p + 1 degrees of freedom are defined; one degree of freedom is
associated to each basis function degree [0,1, . . . , p]. As covered in section 4.2.1 this is a defining feature of
nodal DG methods, since it retains a one-to-one correspondence between the local polynomials and La-
grange polynomial bases on each cell.

In two dimensions triangular grids have been used for the DG method. These are shown in figure 4.2. Each
grid can be obtained from a uniform Cartesian mesh by dividing each cell in two along one of its diagonals.
The periodic boundary conditions can thus be applied in a straightforward way, since there is a direct one-
to-one correspondence of mesh edges on the domain boundary. On each cell in this grid 1

2

(
p +1

)(
p +2

)
two-dimensional degrees of freedom have been defined.

(a) 32 cells (b) 72 cells (c) 128 cells

(d) 200 cells (e) 392 cells (f) 800 cells

Figure 4.2: Various meshes used for the nodal Discontinuous Galerkin method to simulate the two-dimensional Euler equations in
chapter 8
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One-dimensional linear advection

A series of test cases have been selected in order to study the behavior of the proposed Euler model and
discretization approach. Each test case described in this thesis increases the level of complexity with respect
to previous tests. Relevant aspects of the proposed Euler model and its discretization are covered as they
become relevant along the way. The first of these test cases is that of linear advection on periodic spatial
domainΩ=]0,1[. In vector calculus notation the one-dimensional linear advection equation is written as:

∂α

∂t
+u

∂α

∂x
= 0

This is a hyperbolic model problem that describes the physical (advective) transport of some quantity α due
to an imposed velocity field u. Within this thesis the imposed advective velocity field will simply be a constant
field of known value c. The exact solutions of the linear advection equation are well known. For a one-
dimensional time-dependent solution α(x, t ) and an imposed initial condition α(x,0) = α0(x) on a periodic
domain these are equal to:

α(x, t ) =α(x − ct ,0) =α0(x − ct ) (5.1)

Section 5.1 will first define the two linear advection models that have been tested. After the definition of these
models and the subsequent description of their discretization approach, two initial conditions are consid-
ered: The results obtained for the advection of a sine wave are covered in section 5.3. For this initial condition
the error convergence and numerical conservation behavior are presented, establishing the accuracy and
correctness of the implemented models.

5.1. Continuous models
Two formulations of the linear advection equation are considered onΩ=]0,1[:

∂α(1)

∂t
+Luα

(1) = 0 (5.2)
∂α(1)

∂t
+ 1

2
Luα

(1) + 1

2
?Lu

(
?α(1))= 0 (5.3)

Where α(1) ∈ Λ(1)(Ω) is a one-form, u is the advection velocity vector field, L is the Lie derivative and ? is
the Hodge ? operator. The difference between both models lies in their advection operators: As shown in
example 5 the Lie derivative of a volume form (i.e. the advection operator in (5.2)) corresponds to the con-
servative formulation of the linear advection equation. On the other hand the advection operator in (5.3) is a
combination of the Lie derivative and its adjoint. As will be shown in this chapter, this advection formulation
results in a skew-symmetric discrete advection operator. For both models a weak form is obtained by taking
the L2 inner product (as defined in (1.19)) onΩwith one-form v (1) ∈Λ(1)(Ω). This results in:

(
v (1),

∂α(1)

∂t

)
Ω

+ (
v (1),Luα

(1))
Ω = 0 ∀ v (1) ∈Λ(1)(Ω)

(5.4)

(
v (1),

∂α(1)

∂t

)
Ω

+ 1

2

(
v (1),Luα

(1))
Ω

+ 1

2

(
v (1),?Lu

(
?α(1)))

Ω = 0 ∀ v (1) ∈Λ(1)(Ω) (5.5)
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The presence of the Hodge ? operators in (5.5) implies undesirable metric dependence in the resulting dis-
cretization. To circumvent this the corresponding term will be manipulated before discretizing. First note
that this term is equal to: (

v (1),?Lu
(
?α(1)))

Ω =
∫
Ω

v (1) ∧?(
?Lu

(
?α(1))) (5.6)

From the properties of the Hodge ? operator it is known that ??β(k) = (−1)k(n−k)β(k) for all k-forms β(k) ∈
Λ(n)(Ω). In this case k = n = 1 since Luα

(1) ∈Λ(1)(Ω), and hence k(n −k) = 0. Therefore (5.6) becomes:

(
v (1),?Lu

(
?α(1)))

Ω =
∫
Ω

v (1) ∧?(
?Lu

(
?α(1)))= ∫

Ω
v (1) ∧Lu

(
?α(1)) (5.7)

The resulting term in (5.7) is not an L2-inner product; this is resolved by using the Lie derivative’s Leibniz rule,
with the intent of moving the Lie derivative from ?α(1) to v (1). Doing this in (5.7) gives:∫

Ω
v (1) ∧Lu

(
?α(1))= ∫

Ω
Lu

(
v (1) ∧?α(1))−∫

Ω
Lu

(
v (1))∧?α(1) (5.8)

Recalling that the Lie derivative of any volume form is Lu = diu, Stokes’ theorem can be used to turn the first
term on the right side of (5.8) into a boundary integral. The result of the manipulations covered here is:

(
v (1),?Lu

(
?α(1)))

Ω =−(
Luv (1),α(1))

Ω+
∫
∂Ω

iu
(
v (1) ∧?α(1))

From which it follows that (5.3) can be rewritten as:(
v (1),

∂α(1)

∂t

)
Ω

+ 1

2

(
v (1),Luα

(1))
Ω− 1

2

(
Luv (1),α(1))

Ω+ 1

2

∫
∂Ω

iu
(
v (1) ∧?α(1))= 0 ∀ v (1) ∈Λ(1)(Ω)

Since Ω=]0,1[, ∂Ω=;; as a result the boundary integral is exactly zero. The two models that are considered
here are thus:

(
v (1),

∂α(1)

∂t

)
Ω

+ (
v (1),Luα

(1))
Ω = 0 ∀ v (1) ∈Λ(1)(Ω)

(5.9)

(
v (1),

∂α(1)

∂t

)
Ω

+ 1

2

(
v (1),Luα

(1))
Ω

− 1

2

(
Luv (1),α(1))

Ω = 0 ∀ v (1) ∈Λ(1)(Ω) (5.10)

As will be shown in section 5.2 the discretization process for both models is identical. Nonetheless the differ-
ent formulations used for the (continuous) advection operators lead to different discrete advection operators
with different properties; a fact that will be exploited throughout this research work.

5.2. Discrete models

Knot vectorΞ is used to generate uniform periodic 1-form basis
{
ψ(1)

i

}i=n

i=1
as given in section 2.2.6. This basis

defines the space of discrete 1-forms Λ(1)
h,p (Ωh) ⊂ Λ(1)(Ω) of pth degree. As a result the discrete 1-forms α(1)

h ,

v (1)
h ∈Λ(1)

h,p (Ωh) become:

α(1)
h (x, t ) =

n∑
i=1

αi (t )ψ(1)
i (x) = (

ψ(1))T
α

v (1)
h (x, t ) =

n∑
i=1

vi (t )ψ(1)
i (x) = (

ψ(1))T
v

Picking Λ(1)
h,p (Ωh) also defines the space of discrete periodic 0-forms that conforms to the discrete De Rham

complex. As is covered in chapter 2, this space is generated by the uniform periodic 0-form basis
{
ψ(0)

i

}i=n

i=1
.

This basis spans Λ(0)
h,p+1(Ωh) ⊂Λ(0)(Ω). With the discrete operators defined in section 2.3 (5.9) and (5.10) are

reformulated as semi-discrete equations:
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vTM(1) ∂α

∂t
+vTM(1)E(1,0) (M(0))−1

C(0,1)
uh

α= 0 ∀ v ∈Rn

vTM(1) ∂α

∂t
+ 1

2
vTM(1)E(1,0) (M(0))−1

C(0,1)
uh

α

− 1

2
vT

[
M(1)E(1,0) (M(0))−1

C(0,1)
uh

]T
α= 0 ∀ v ∈Rn

Since these equations must hold for all v ∈ Rn , we set v equal to each unit vector in Rn ; doing this gives a set
of n test functions that span Λ(1)

h,p (Ωh) and thereby results in an n ×n linear system. Subsequently applying

the implicit midpoint rule results in two fully-discrete numerical methods. The first of these corresponds to
the conservative formulation of the linear advection, with the weak form given in (5.9):[

M(1) + ∆t

2
M(1)E(1,0) (M(0))−1

C(0,1)
uh

]
αk+1 =

[
M(1) − ∆t

2
M(1)E(1,0) (M(0))−1

C(0,1)
uh

]
αk (5.11)

This discrete model is thus referred to as the conservative method. The second numerical method corre-
sponds to the linear advection formulation given in (5.3), with the weak form given in (5.10):[

M(1) + ∆t

4

((
M(1)E(1,0) (M(0))−1

C(0,1)
uh

)
−

(
M(1)E(1,0) (M(0))−1

C(0,1)
uh

)T
)]
αk+1

=
[
M(1) − ∆t

4

((
M(1)E(1,0) (M(0))−1

C(0,1)
uh

)
−

(
M(1)E(1,0) (M(0))−1

C(0,1)
uh

)T
)]
αk (5.12)

Here the superscripts k, k + 1 indicate the time levels t k , t k+1 and ∆t = t k+1 − t k . Recall that uh is given
and independent of α; hence these numerical methods are linear and αk+1 can be found by solving a linear
system, provided that αk is known. Also note that the advection operators in (5.12) are skew-symmetric;
hence this model is referred to as the skew-symmetric method.

5.3. Sine wave test case
As first test case the initial condition α(1)(x,0) = (1+0.25sin(2πx))d x is imposed on Ω =]0,1[; the advection
velocity field used is uh = 1 ∂

∂x . The exact solution of this case is thus α(x, t ) = 1+ 0.25sin(2π(x − t )). The
performance of the considered models is evaluated based on their relative L2 errors and the accuracy of their
respective conservation behavior. The L2 errors are covered in section 5.3.1, after which section 5.3.2 briefly
covers the conservation behavior and introduces the relevant conservation metrics.

As a typical example, running the numerical methods from t = 0 to t = 10 with ∆t = 0.01 and n = 25 basis
functions of degree p = 2 results in the solutions at t = 10 shown below in figure 5.1.
No visible differences exist between the solutions shown in figure 5.1. After ten advection periods both nu-
merical solutions have a minor phase difference with respect to the exact solution.

5.3.1. Discretization error
Two sources of discretization error are present in these simulations, due to the decoupled space and time
discretizations. The error induced by the implicit midpoint method scales with O (∆t 2), whereas the spatial
discretization approach’s error scales with O (∆xp+1) and thus depends on the degree of the basis functions.

Figure 5.2 shows the spatial L2 error convergence of both numerical methods for various basis function de-
grees p. As can be seen both methods display optimal L2 convergence rates up to O (10−8); at this point the
error induced by the time step size ∆t = 10−4 starts to dominate the total L2 error. The differences in L2 error
between both methods are only O (10−14); hence they are indistinguishable in figure 5.2.

In the same way the temporal L2 error convergence obtained with different p is shown in figure 5.3 for n = 50.
The relative L2 error decreases with O (∆t 2) for all p, up to the point where the spatial discretization dominates
the L2 error.

5.3.2. Numerical conservation
As mentioned throughout this thesis, the numerical conservation behavior of various quantities is a major
focus of the current research. More specifically, it is desirable that the discrete models mimic the conservation
behavior of the continuous models. This is one of the cornerstones and aims of the modern development of
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Figure 5.1: Numerical solutions at t = 10 (obtained with∆t = 10−2, n = 25 basis functions of degree p = 2) for both methods discussed in
this chapter
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Figure 5.2: Convergence of the relative L2 error of the conservative and skew-symmetric models at t = 1 for ∆t = 10−4, varying amounts
of degrees of freedom n and basis function degrees p

numerical models. Various quantities will be considered, depending on structure of each continuous model.
For the linear advection equation the conservation of the integrals of α and α2 will be considered. In order
to give a sense of scale and importance to the variations of these quantities, the relative changes of their
integrals over time will be looked at. As such ’momentum’ and ’kinetic energy’ analogues are defined; while
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Figure 5.3: Convergence of the relative L2 error of both considered numerical models at t = 1 for n = 50 and varying time step sizes ∆t
and basis function degrees p

these quantities don’t have a physical interpretation for the linear advection equation within this research,
they do for subsequent test cases. The following definitions are used in this chapter:

m(t ) =
∫
Ω
α(1)

h (x, t ) E(t ) = 1

2

∫
Ω
α(1)

h (x, t )∧?α(1)
h (x, t )

Where m(t ) is the momentum analogue and E(t ) is the kinetic energy analogue. Their changes over time are
normalized with the momentum and kinetic energy analogues of the exact solution. The relative changes
over time of m(t ) and E(t ) can thus be defined as:

∆m(t ) = m(t )−m(0)

mexact(t )
∆E(t ) = E(t )−E(0)

Eexact(t )

Figure 5.4 shows the maximum absolute values of ∆m(t ) and ∆E(t ) for both models considered here. As can
be seen both models conserve m and E up to O

(
10−13

)
with no visible trends as p or n are increased.
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Figure 5.4: Maximum momentum and kinetic energy conservation errors of the conservative and skew-symmetric models for various
basis function degrees p, ∆t = 10−4 was used



6
Burgers’ equation

Burgers’ equation presents a more complex test case. While the advective velocity field in the linear ad-
vection model is known and imposed upon the distribution of a variable, Burgers’ equation is the simplest
model where "self-advection" takes place. In other words, Burgers’ equation describes the physical transport
of a quantity that advects under its own influence. An example of this phenomenon in fluid mechanics is
the advection term in the momentum equation of the incompressible Euler and Navier-Stokes models. Two
formulations of (the inviscid form of) Burgers’ equation are commonly given:

∂u

∂t
+u

∂u

∂x
= 0 (6.1)

∂u

∂t
+ 1

2

∂u2

∂x
= 0 (6.2)

As was covered in section 3.3, (6.1) is commonly referred to as the advective or convective formulation,
whereas (6.2) is the conservative formulation. One can easily check that both formulations are equivalent

to one another by applying the product rule to the derivative ∂u2

∂x . One big difference between Burgers’ equa-
tion and Euler & Navier-Stokes models is the relation between the various forms of the advection operator. In
the momentum equations of the incompressible Euler and Navier-Stokes models the advective formulation

u
∂(ρu)
∂x is algebraically similar to the conservative form

∂(ρuu)
∂x : Switching between them can be done through

substitution of the continuity equation into the momentum equations and appropriate algebraic manipula-
tions. Since Burgers’ equation consists of only a single equation, this algebraic similarity is absent.

Exact solutions to (the viscous and inviscid forms of) Burgers’ equation exist and can be computed with the
method of characteristics. A characteristic line emanating from initial condition u0(x) at point xc is straight
and has a slope of u0(xc ). Continuous initial conditions become discontinuous after some time if ∂u0

∂x < 0 at
any point in the domain, due to the characteristic lines intersecting. Leveque [32, Chap. 3] discusses ways of
obtaining exact solutions after such a discontinuity has formed.

6.1. Continuous models
Again Ω =]0,1[ is used as (periodic) domain. Let α(1) ∈ Λ(1)(Ω) such that α(1) = α d x and recall that ] :
Λ(1)(Ω) → T (Ω) is the operator that transforms 1-forms into their dual vector fields, such that ]α(1) = u =α ∂

∂x .
Then:

Luα
(1) = diu (α d x) = d

(
α2)= ∂α2

∂x
d x

?Lu
(
?α(1))=?iu d(?α d x) =?iu

(
∂α

∂x
d x

)
=?

(
α
∂α

∂x

)
=α∂α

∂x
d x

Hence the convective form corresponds to ?Lu
(
?α(1)

)
and the conservative form corresponds to 1

2 Luα
(1).

This factor of 1
2 affects the balance between the convective and conservative forms that is necessary for ob-

taining a skew-symmetric advection operator for Burgers’ equation.

The two formulations of the Burgers’ equation that are considered in this research are:
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62 6. Burgers’ equation

∂α(1)

∂t
+ 1

2
Lu

(
α(1))= 0 (6.3)

∂α(1)

∂t
+ 1

2

(
(1−a)Lu

(
α(1))+2a?Lu

(
?α(1)))= 0

(6.4)

With a = 1
3 (6.4) results in a skew-symmetric discretization, since in that case 1− a = 2a. To arrive at weak

forms the same approach is taken as in section 5.1: The L2 inner product is taken with 1-form v (1) ∈Λ(1)(Ω)
and the last term on the left side of (6.4) is rewritten with the help of (5.1). It follows that the weak forms of
(6.3) and (6.4) are:

(
v (1),

∂α(1)

∂t

)
Ω

+ 1

2

(
v (1),Luα

(1))
Ω = 0 ∀ v (1) ∈Λ(1)(Ω)

(6.5)

(
v (1),

∂α(1)

∂t

)
Ω

+ 1

3

(
v (1),Luα

(1))
Ω

+ 1

3

(
Lu v (1),α(1))

Ω = 0 ∀ v (1) ∈Λ(1)(Ω) (6.6)

6.2. Discrete models

Again knot vectorΞ is defined that generates a uniform periodic 1-form basis
{
ψ(1)

i

}i=n

i=1
of degree p onΩ. α(1)

and v (1) are discretized with this basis:

α(1)
h (x, t ) =

n∑
i=1

αi (t )ψ(1)
i (x) = (

ψ(1))T
α

v (1)
h (x, t ) =

n∑
i=1

vi (t )ψ(1)
i (x) = (

ψ(1))T
v

With α(1)
h , v (1)

h ∈Λ(1)
h,p (Ωh) ⊂Λ(1)(Ω). The resulting semi-discrete models resemble those of the linear advec-

tion equation:

vTM(1) ∂α

∂t
+1

2
vTM(1)E(1,0) (M(0))−1

C(0,1)
uh

α= 0∀ v ∈Rn

(6.7)

vTM(1) ∂α

∂t
+ 1

3
vTM(1)E(1,0) (M(0))−1

C(0,1)
uh

α

− 1

3
vT

[
M(1)E(1,0) (M(0))−1

C(0,1)
uh

]T
α= 0 ∀ v ∈Rn

(6.8)

A big difference between these (semi)-discrete models and those of the advection equation covered in chapter

5 is that these models are no longer linear. Since uh =
(
α(1)

h

)]
is used as advecting velocity field the solution

coefficient vector α is both an input and an output of the discretized Burgers’ equation. Before determining
how to proceed with linearization, equations (6.7) and (6.8) are discretized in time with the implicit midpoint
method. Factoring out the vector v T and applying this time stepping method results in the following discrete
nonlinear equations:[

M(1) + ∆t

4
M(1)E(1,0) (M(0))−1

C
(0,1)

uk+1/2
h

]
αk+1 =

[
M(1) − ∆t

4
M(1)E(1,0) (M(0))−1

C
(0,1)

uk+1/2
h

]
αk (6.9)

[
M(1) + ∆t

6

(
M(1)E(1,0) (M(0))−1

C
(0,1)

uk+1/2
h

−
[
M(1)E(1,0) (M(0))−1

C
(0,1)

uk+1/2
h

]T
)]
αk+1

=
[
M(1) − ∆t

6

(
M(1)E(1,0) (M(0))−1

C
(0,1)

uk+1/2
h

−
[
M(1)E(1,0) (M(0))−1

C
(0,1)

uk+1/2
h

]T
)]
αk (6.10)

Where uk+1/2
h = 1

2

(
uk

h +uk+1
h

)
is the source of nonlinearity, since uk+1

h =
(
α(1)

h

)] = [(
ψ(1)

)T
αk+1

]]
contains

the unknown left-hand side vector in systems (6.9) and (6.10). To be able to solve these systems a lineariza-
tion approach is required. As mentioned in section 3.6.3 Picard linearization is used for this. The following
estimate is used as initial guessαk+1

0 for the first iteration at time step k +1:

αk+1
0 =αk +

(
αk −αk−1

)
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6.3. Sine wave test case
The same initial condition as was used for the linear advection equation in section 5.3 is imposed onΩ=]0,1[:
α(1)(x,0) = (

1+ 1
4 sin(2πx)

)
d x. This initial condition is advanced to t = 1 with the conservative and skew-

symmetric discrete models given in (6.9) and (6.10) and compared to the exact solution. In this exact solution
the sine wave initial condition develops a shock discontinuity starting at t = 2

π ≈ 0.637, owing to the gradient-
steepening behavior of Burgers’ equation; this is the initial time at which a pair of characteristics emanating
from the initial condition intersect.

Figure 6.1 shows the exact solution and the numerical solutions obtained with both models presented in the
previous section, at four different times. 25 basis functions of degree p = 2 were used, together with a time
step size ∆t = 10−4 and nonlinear convergence tolerances ε = 10−6 and ε = 10−14. As can be seen the nu-
merical solutions obtained with these inputs are indistinguishable from one another. The largest differences
between the results of both models are O (10−3). This similarity is at least in part due to the values of ε used:
Since the differences between successive nonlinear iterations decrease monotonically, ε acts as an estimate of
an upper bound for the local error produced by using linearized solutions. As a result the pointwise difference
between the results obtained with ε= 10−6 and ε= 10−14 is O (10−6).
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Figure 6.1: Solutions obtained with conservative and skew-symmetric models given in (6.9) and (6.10) respectively compared to the exact
solution, at various times for ∆t = 10−4, n = 25 basis functions of degree p = 2 with nonlinear convergence tolerance ε= 10−14
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6.3.1. Discretization error
Figure 6.2 shows the behavior of the L2 errors for both models considered here at different time steps; ε =
10−6, ε = 10−14 and various basis function degrees p were used as the mesh is refined. Drastically different
behavior is found at the different time steps shown. The results are covered in chronological order, differ-
ences between the two values for ε and the conservative and skew-symmetric models are discussed.

At t = 0.25 both the conservative and skew-symmetric models display similar L2 error convergence to what
was found in chapter 5 for linear advection, up to the point where time discretization errors start to dom-
inate; with ∆t = 10−4 the L2 error induced by the implicit midpoint time stepping method is O

(
10−8

)
, the

same as for the linear advection equation. The results of both models are identical for all combinations of n
and p when ε= 10−14; with ε= 10−6 the relative L2 errors of both methods start to drift apart as the L2 errors
reach O

(
10−7

)
. In all points in this region the L2 error of the skew-symmetric model is smaller than that of

the conservative model.

At t = 0.5, the next time step shown, the relative L2 errors have grown; from a factor of roughly four for both
models with p = 1 to an increase with p = 5 between ten and a thousand times what it was at t = 0.25, depend-
ing on the mesh size. The error scales with n2 (and thus (∆x)2) for the coarsest meshes, independent of the
basis function degree p. As the mesh is refined the convergence rates for the various p drift apart; the higher
p, the higher the observed convergence rates. The differences between the L2 errors observed with ε= 10−6

and ε= 10−14 are negligible for both models everywhere except for the region n > 102: Here the conservative
model has a higher L2 error than the skew-symmetric model when ε= 10−6 is used.

Time steps t = 0.75, t = 1 are both preceded by the time of initial wave break, tb ≈ 0.637. The exact solution
has become discontinuous, and thus L2 convergence is no longer guaranteed. As is also reflected in the rep-
resentative solutions that are shown in figure 6.1, oscillations are created close to the moving discontinuity
that are advected across the domain; these dominate the L2 errors. The magnitudes of the L2 errors have
increased by factors between 10 and 100,000 compared to t = 0.5, depending on n and p. Refining the mesh
or increasing the degree of the basis functions also no longer leads to a significant decrease in L2 errors: The
maximal error convergence slope is encountered at t = 0.75 for the coarsest meshes. This slope is only 1

2 and
nearly identical for all p.

Keeping the mesh size n constant (n = 50), changing the time step size and looking at the L2 errors results
in figure 6.3. At t = 0.25 the convergence behavior is identical to what was observed for linear advection:
Initially convergence with (∆t )2 is achieved, after which the spatial discretization error starts dominating the
L2 error behavior. At t = 0.5 the differences between degrees p have become significantly smaller, indicating
that the spatial discretization dominates the total L2 error even when large time steps (∆t = 10−2) are used.
This trend continues at t = 0.75 and t = 1, where the differences in L2 error between different ∆t or p are
negligible compared to the total error magnitudes.

6.3.2. Numerical conservation
Momentum and kinetic energy analogues m(t ) and E(t ) are defined for Burgers’ equation in the same way as
was done for linear advection in section 5.3.2:

m(t ) =
∫
Ω
α(1)

h (x, t ) E(t ) = 1

2

∫
Ω
α(1)

h (x, t )∧?α(1)
h (x, t )

With their relative conservation errors:

∆m(t ) = m(t )−m(0)

mexact(t )
∆E(t ) = E(t )−E(0)

Eexact(t )

Figure 6.4 shows the maximum absolute conservation errors of the same simulations with varying n that
were discussed in the previous section. Due to the nonlinear nature of Burgers’ equation (and the subse-
quent linearization thus necessary for numerical simulations) simultaneous conservation of m and E can
only be obtained when the linearized solution solves the full nonlinear discrete system, i.e. when a nonlinear
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convergence tolerance ε is used that is sufficiently close to machine precision. This is the only way in which
equivalence between the convective and conservative advection operators can be achieved for this linearized
equation.

First we focus on the skew-symmetric model: The behavior mentioned above can be observed in figure 6.4 by
comparing the conservation results of the skew-symmetric model with ε= 10−6 and ε= 10−14; with ε= 10−14

both momentum and kinetic energy are conserved up to O
(
10−13

)
, whereas using ε= 10−6 leads to momen-

tum conservation errors up to O
(
10−6

)
while kinetic energy conservation is unchanged. The local growth in

momentum conservation error as the mesh is refined is caused by the slowdown in convergence speed (and
thus the nonlinear convergence error undershoot) on finer meshes. Because of this the actual nonlinear con-
vergence with ε= 10−6 on the coarsest meshes is O

(
10−9

)
(due to the rapid convergence on coarse meshes),

whereas on the fine meshes this is O
(
10−7

)
. Skew-symmetric solutions on the coarse meshes are thus closer

to the nonlinear solution, leading to better momentum conservation behavior.

Next we turn to the conservative method, which shows different behavior: Whereas it conserves momentum
up to O

(
10−13

)
for both ε’s considered here, taking ε = 10−14 does not lead to similar levels of kinetic energy

conservation error. In fact the differences in kinetic energy conservation error between ε= 10−6 and ε= 10−14

are only O
(
10−8

)
, not even visible in figure 6.4. This is negligible compared to the actual magnitude of the

kinetic energy conservation errors, which are O
(
10−4

)−O
(
10−5

)
. This is not only several orders of magnitude

larger than the momentum conservation errors obtained with the skew-symmetric method for ε= 10−6, the
conservation errors also do not decrease significantly as the nonlinear convergence tolerance is tightened.
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7
One-dimensional Euler equations

Following the initial tests with linear advection and the inviscid (nonlinear) Burgers’ equation, the Euler
model derived in chapter 3 is put through its first test: Sod’s shock tube. This one-dimensional test is a
particular case of a wider family of Riemann problems and was first proposed by Sod in 1978 [50]. Physically
speaking this case corresponds to a diaphragm inside of a tube, separating regions 1 and 5 of a gas at rest
with different pressures and densities. At time t = 0 the diaphragm is removed, leading to a rush of gas from
the high-pressure side (region 1) of the diaphragm to the low-pressure side (region 5). As a result a pattern
forms consisting of a shock wave, contact discontinuity and expansion fan, all due to the discontinuous pres-
sure and density profiles at the point where the diaphragm was originally located. This is a typical Riemann
problem, for which exact solutions exist. Leveque covers the process of how to obtain its exact solutions in
chapter 9 of [32].

Sod’s shock tube is a popular (initial) test case for numerical methods for several reasons. First off, around
the time it was initially proposed it was a challenging test case for (at the time) state-of-the-art numerical
schemes for discontinuous solutions; the original paper in which Sod proposed it compared how accurately
various well-known schemes solved it. Its emergence as a standard test case resulted in new numerical
schemes and corrections for dealing with problems in gas dynamics. Depending on the initial conditions
Sod’s shock tube can simultaneously result in an expansion fan, contact discontinuity and shock wave next
to one another. Secondly, exact solutions exist for Sod’s shock tube and can be computed based on the ini-
tial pressure and density ratios at t = 0 at the diaphragm. This allows for a direct comparison of numerical
methods with one another based on how well they resemble the exact solution and how well they satisfy its
conservation behavior. Thirdly, it is only a one-dimensional case and therefore it is much quicker and sim-
pler to implement numerical methods for solving it than for any two-dimensional case. It is often used as an
initial test for new numerical methods precisely because of this.

The structure of this chapter is similar to that of the previous chapters: First the continuous mimetic isoge-
ometric models and their weak forms will be given in section 7.1. As was done previously two forms of the
Euler equations that were derived in chapter 3 are covered. These weak forms are then discretized in section
7.2. Following the construction of said discrete models tests with Sod’s shock tube were carried out and are
covered in section 7.3. Their results are compared to the exact solution of this shock tube problem and the
numerical solutions obtained with Clawpack [34] and the nodal Discontinuous Galerkin method described
by Hesthaven & Warburton in [24]. These methods were both covered in chapter 4.
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7.1. Continuous models
The models derived in chapter 3 are considered here. First of these is the ’regular’ formulation given in (3.8),
repeated here for convenience:

∂ρ(n)

∂t
+Luρ

(n) = 0

∂〈m(1,n),∂i 〉
∂t

+Lu〈m(1,n),∂i 〉+di∂i p(n) = 0

∂E (n)

∂t
+LuE (n) +Lup(n) = 0

(7.1)

Here mass density ρ(n), energy density E (n), pressure p(n) ∈Λ(n)(Ω) and momentum m(1,n) ∈ T ∗(Ω)⊗Λ(n)(Ω).
With only one principal direction (7.1) contains one momentum equation, resulting from duality pairing
〈m(1,n),∂i 〉 = 〈∂x ,d x〉⊗ρux d x = ρux d x = m(1)

x . System (7.1) for one dimension is thus:

∂ρ(1)

∂t
+Luρ

(1) = 0

∂m(1)
x

∂t
+Lum(1)

x +di∂x p(1) = 0

∂E (1)

∂t
+LuE (1) +Lup(1) = 0

(7.2)

This model will be used as benchmark for the main focus of the current research, the Roe variable formulation
given in (3.23):

∂
p
ρ(n)

∂t
+ 1

2
?Lu

(
?
p
ρ(n)

)
+ 1

2
Lu

(p
ρ(n)

)
= 0

∂
(
φ(n)

i

)
∂t

+ 1

2
?Lu

(
?φ(n)

i

)
+ 1

2
Lu

(
φ(n)

i

)
+ 1

?
p
ρ(0)

di∂i p(n) = 0

∂E (n)

∂t
+LuE (n) +Lup(n) = 0

Which in one dimension corresponds to:

∂
p
ρ(1)

∂t
+ 1

2
?Lu

(
?
p
ρ(1)

)
+ 1

2
Lu

(p
ρ(1)

)
= 0

∂
(
φ(1)

x

)
∂t

+ 1

2
?Lu

(
?φ(1)

x

)+ 1

2
Lu

(
φ(1)

x

)+ 1

?
p
ρ(0)

di∂x p(1) = 0

∂E (1)

∂t
+LuE (1) +Lup(1) = 0

These models are supplemented with the equation of state for p(1) that was mentioned in chapter 7:

p(1) = (γ−1)
(
E (1) −E (1)

ki n

)
To obtain the weak forms corresponding to (7.2) and (7.1), define Ω ⊂ R and let test function v (1) ∈ Λ(1)(Ω).
Taking the L2 inner product of (7.2) with v (1) results in the following weak form:(

v (1),
∂ρ(1)

∂t

)
+ (

v (1),Luρ
(1))= 0(

v (1),
∂m(1)

x

∂t

)
+ (

v (1),Lum(1)
x

)+ (
v (1),di∂x p(1))= 0

(
v (1),

∂E (1)

∂t

)
+ (

v (1),LuE (1))+ (
v (1),Lup(1))= 0

(7.3)
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Similarly, for the Roe variable model of (7.1):(
v (1),

∂
p
ρ(1)

∂t

)
Ω

+ 1

2

(
v (1),?Lu

(
?
p
ρ(1)

))
Ω
+ 1

2

(
v (1),Lu

(p
ρ(1)

))
Ω
= 0(

v (1),
∂φ(1)

x

∂t

)
Ω

+ 1

2

(
v (1),?Lu

(
?φ(1)

x

))
Ω+ 1

2

(
v (1),Lu

(
φ(1)

x

))
Ω+

(
v (1),

1

?
p
ρ(1)

di∂i p(1)

)
Ω

= 0

(
v (1),

∂E (1)

∂t

)
Ω

+ (
v (1),LuE (1))

Ω+ (
v (1),Lup(1))

Ω = 0

(7.4)

As was done in chapters 5 and 6 the advection terms containing the Hodge ? operator in (7.4) are rewritten.
The relation shown in (5.1) is used to obtain the following weak form for the Roe variable model:(

v (1),
∂
p
ρ(1)

∂t

)
Ω

+ 1

2

(
v (1),Lu

(p
ρ(1)

))
Ω
− 1

2

(
Lu

(
v (1)) ,

p
ρ(1)

)
Ω
+ 1

2

∫
∂Ω

iu

(
v (1) ∧?pρ(1)

)
= 0(

v (1),
∂φ(1)

x

∂t

)
Ω

+ 1

2

(
v (1),Lu

(
φ(1)

x

))
Ω− 1

2

(
Lu

(
v (1)) ,φ(1)

x

)
Ω+ 1

2

∫
∂Ω

iu
(
v (1) ∧?φ(1)

x

)+(
v (1),

1

?
p
ρ(1)

di∂i p(1)

)
Ω

= 0

(
v (1),

∂E (1)

∂t

)
Ω

+ (
v (1),LuE (1))

Ω+ (
v (1),Lup(1))

Ω = 0

(7.5)

7.2. Discrete models
With the weak forms in place the next step is to discretize them. First the weak form of the regular model
as given in (7.3) is discretized, followed by the model posed in terms of Roe variables given in (7.5). For
both models closed knot vectors are used to generate the finite-dimensional bases for Λ(0)

h,p+1(Ωh) ⊂Λ(0)(Ω),

Λ(1)
h,p (Ωh) ⊂ Λ(1)(Ω). Once the discrete models have been defined we will take a look at two specific aspects

that come up when implementing these discretizations: Boundary condition application, which is covered in
section 7.2.3, and kinetic energy modeling, covered in section 7.2.4.

7.2.1. Regular model
We define:

v (1)
h =

N∑
i=1

viψ
(1)
i = vTψ(1) ρ(1)

h =
N∑

i=1
ρiψ

(1)
i =ρTψ(1)

(
m(1)

x

)
h =

N∑
i=1

(mx )i ψ
(1)
i = mT

x ψ
(1) E (1)

h =
N∑

i=1
Eiψ

(1)
i = ETψ(1)

Where v (1)
h , ρ(1)

h ,
(
m(1)

x

)
h

, E (1)
h ∈Λ(1)

h,p (Ωh). The discrete kinetic energy is computed according to (3.9):

(
E (1)

ki n

)
h
= 1

2

〈
(
m(1)

x

)
h

,?
(
m(1)

x

)
h
〉

?ρ(1)
h

(7.6)

In section 2.2.4 a method was introduced that allows one to construct B-splines that are exact products of
lower-degree B-splines. While that method can be applied here to resolve the product 〈m(1,n)

h ,?]m(1,n)
h 〉 this

leaves us with 1/
(
?ρ(1)

h

)
. This implies that

(
E (1)

ki n

)
h

does not fall within any B-spline-discretized subspace

of Λ(1)(Ω) but is in fact a Non-Uniform Rational B-Spline (NURBS). The question of how to discretize the

operators acting on
(
E (1)

ki n

)
h

is covered in section 7.2.4, for now the composition of these operators will be

denoted with K. For velocity field u a similar thing holds, since we know that:

u =
(

m(1)
x

?ρ(1)

)]
≈ uh =


(
m(1)

x

)
h

?ρ(1)
h

]
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As such uh is a NURBS as well and u[
h (the 1-form that is used to construct contraction matrices C(k+1,k)

u ) falls
outside of the 1-form space of the discrete (B-spline) De Rham complex. We can use this NURBS directly
in the discretized weak form since uh is only used in the nonlinear component of the contraction matrix of
the discrete interior product; it being a NURBS does not affect discrete interior product map Λ(1)

h,p (Ωh) →
Λ(0)

h,p+1(Ωh). Discretizing the exterior derivatives and interior products in the usual way then gives:

v TM(1) ∂ρ

∂t
+v TM(1)E(1,0) (M(0))−1

C
(0,1)
uh

ρ = 0

v TM(1) ∂mx

∂t
+v TM(1)E(1,0) (M(0))−1

C
(0,1)
uh

mx + (γ−1)v TM(1)E(1,0) (M(0))−1
C

(0,1)
∂x

E

−(γ−1)v TK∂x Eki n = 0

v TM(1) ∂E

∂t
+γv TM(1)E(1,0) (M(0))−1

C
(0,1)
uh

E − (γ−1)v TKuh Eki n = 0

(7.7)

Which should hold for all v ∈ RN and defines the semi-discrete problem. To reiterate, the formulation and
structure of the matrices denoted withKwill be covered in section 7.2.4. Note that the momentum and energy
equations are coupled through linear and nonlinear terms, whereas the coupling between the continuity and
momentum equations is exclusively nonlinear through uh . As is covered in section 3.6.3 the linearization
step will decouple the continuity and momentum equations during each nonlinear iteration, allowing us to
solve both equations separately from one another before updating velocity field uh . Applying the implicit
midpoint method to (7.7) gives the following nonlinear system to be solved:

M(1) + ∆t
2 M

(1)Luk+1/2
h

0 0

0 M(1) + ∆t
2 M

(1)Luk+1/2
h

(γ−1)∆t
2 M(1)L∂x

0 0 M(1) + γ∆t
2 M(1)Luk+1/2

h


ρk+1

mk+1
x

E k+1



=


M(1) − ∆t

2 M
(1)Luk+1/2

h
0 0

0 M(1) − ∆t
2 M

(1)Luk+1/2
h

− (γ−1)∆t
2 M(1)L∂x

0 0 M(1) − γ∆t
2 M(1)Luk+1/2

h


ρk

mk
x

E k



+(γ−1)∆t

 0
K∂x

Kuk+1/2
h

E k+1/2
ki n

(7.8)

Where the following notation has been introduced in order to improve the legibility of (7.8):

Luk+1/2
h

= E(1,0) (M(0))−1
C

(0,1)

uk+1/2
h

L∂x = E(1,0) (M(0))−1
C

(0,1)
∂x

The half-time step velocity field uk+1/2
h is computed as:

uk+1/2
h =


(
m(1)

x

)k+1/2

h

?
(
ρ(1)

)k+1/2
h


]

=


(
m(1)

x

)k

h
+

(
m(1)

x

)k+1

h

?
((
ρ(1)

)k
h + (

ρ(1)
)k+1

h

)

]

As can be seen in (7.8) the continuity equation is only coupled to the momentum and energy equations
through the nonlinear velocity contribution contained in discrete advection operator Luk+1/2

h
. Linearizing

(7.8) through the velocity field uk+1/2
h allows us to perform nonlinear Picard iterations by first estimating(

m(1)
x

)k+1

h
and

(
ρ(1)

)k+1
h such that uk+1/2

h can be approximated; this velocity estimate is then used in solving

the continuity equation: (
M(1) + ∆t

2
M(1)Luk+1/2

h

)
ρk+1 =

(
M(1) − ∆t

2
M(1)Luk+1/2

h

)
ρk
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After which the same velocity field estimate is used to solve the coupled momentum-energy system:

M(1) + ∆t
2 M

(1)Luk+1/2
h

(γ−1)∆t
2 M(1)L∂x

0 M(1) + γ∆t
2 M(1)Luk+1/2

h

[
mk+1

x

E k+1

]

=
M(1) − ∆t

2 M
(1)Luk+1/2

h
− (γ−1)∆t

2 M(1)L∂x

0 M(1) − γ∆t
2 M(1)Luk+1/2

h

[
mk

x

E k

]
+ (γ−1)∆t

[
K∂x

Kuk+1/2
h

]
E k+1/2

ki n

This gives new solution estimatesρk+1 and mk+1
x that can be used to update the velocity field estimate uk+1/2

h .
When the nonlinear convergence tolerance outlined in section 3.6.3 has been met the current time step is
finished and the solution is advanced to the next time step.

7.2.2. Skew-symmetric Roe variable model
Similar to what was done for the regular model we define the following discretized quantities for the variables
given in (7.5):

v (1)
h =

N∑
i=1

viψ
(1)
i = vTψ(1) p

ρ(1)
h =

N∑
i=1

p
ρiψ

(1)
i =p

ρTψ(1)

(
φ(1)

x

)
h =

N∑
i=1

(
φx

)
i ψ

(1)
i =φT

x ψ
(1) E (1)

h =
N∑

i=1
Eiψ

(1)
i = ETψ(1)

With v (1)
h ,

p
ρ(1)

h ,
(
φ(1)

x

)
h

, E (1)
h ∈Λ(1)

h,p (Ωh). As was defined in (3.24), kinetic energy
(
E (1)

ki n

)
h

is a squared quantity

in this model: (
E (1)

ki n

)
h
= 1

2
〈(φ(1)

x

)
h ,?

(
φ(1)

x

)
h〉 (7.9)

It can thus be computed exactly from
(
φ(1)

x

)
h

with the B-spline product operation outlined in section 2.2.4 but

still falls outside of the function spaces of the discrete De Rham complex. As was done for the regular model
the matrices K will be used to indicate compositions of operators acting on the discrete kinetic energy; in
section 7.2.4 these matrices are defined in more detail. Velocity field uh is computed in similar fashion to the
regular model:

u =
(

φ(1)
x

?
p
ρ(1)

)]
≈ uh =


(
φ(1)

x

)
h

?
p
ρ(1)

h

]

And as such uh is again a NURBS. The aforementioned basis function expansions are applied to (7.5), result-
ing in the following semi-discrete system:

v TM(1)
p
ρ

∂t
+ 1

2
v TM(1)E(1,0) (M(0))−1

C
(0,1)
uh

p
ρ− 1

2
v T
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M(1)E(1,0) (M(0))−1

C
(0,1)
uh

]T p
ρ+ 1

2

∫
∂Ω

iuh

(
v (1)

h ∧?pρ(1)
h

)
= 0

v TM(1) ∂φx

∂t
+ 1

2
v TM(1)E(1,0) (M(0))−1

C
(0,1)
uh

φx − 1

2
v T

[
M(1)E(1,0) (M(0))−1

C
(0,1)
uh

]T
φx + 1

2

∫
∂Ω

iuh

(
v (1)

h ∧?(
φ(1)

x

)
h

)
+(γ−1)v TDp

ρE
(1,0) (M(0))−1

C
(0,1)
∂x

E − (γ−1)v TK∂x Eki n = 0

v TM(1) ∂E

∂t
+γv TM(1)E(1,0) (M(0))−1

C
(0,1)
uh

E − (γ−1)v TKuh Eki n = 0

(7.10)

Where Dp
ρ is a matrix with entries

∫
Ω

ψ(1)
i ψ(1)

j

?
p
ρ(1)

h

. In other words, its entries are similar to those of mass matrix

M(1) apart from the mass density term in the denominator. The boundary integral terms in (7.10) are left in
their current formulations for reasons that are covered in section 7.2.3. Applying the implicit midpoint rule
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to (7.10) leads to: 
M(1) + ∆t

4 L̃uk+1/2
h

0 0

0 M(1) + ∆t
4 L̃uk+1/2

h
(γ−1)D(1)p

ρk+1/2L∂x

0 0 M(1) +γM(1)Luk+1/2
h


pρk+1

φk+1
x

E k+1



=


M(1) − ∆t

4 L̃uk+1/2
h

0 0

0 M(1) − ∆t
4 L̃uk+1/2

h
−(γ−1)D(1)p

ρk+1/2L∂x

0 0 M(1) −γM(1)Luk+1/2
h


pρk

φk
x

E k



+(γ−1)∆t

 0
K∂x

Kuk+1/2
h

E k+1/2
ki n

(7.11)

Where again additional notation was used to simplify (7.11):

Luk+1/2
h

= E(1,0) (M(0))−1
C

(0,1)

uk+1/2
h

L∂x = E(1,0) (M(0))−1
C

(0,1)
∂x

L̃uk+1/2
h

=M(1)Luk+1/2
h

−
[
M(1)Luk+1/2

h

]T +
∫
∂Ω

iuk+1/2
h

(
ψ(1) ∧?(

ψ(1))T
)

Similar to the regular model the half-time step velocity uk+1/2
h is computed with:

uk+1/2
h =


(
φ(1)

x

)k+1/2

h

?
(p
ρ(1))k+1/2

h


]

=


(
φ(1)

x

)k

h
+

(
φ(1)

x

)k+1

h

?
((p

ρ(1))k
h + (p

ρ(1))k+1
h

)

]

Similarly entry (i , j ) of matrix D(1)p
ρk+1/2 is computed with the half-time step mass density:

(
D

(1)p
ρk+1/2

)
i j
=

∫
Ω

ψ(1)
i ψ(1)

j

? 1
2

[(p
ρ(1)

h

)k +
(p
ρ(1)

h

)k+1
]

The continuity equation becomes decoupled from the momentum and energy equations just as was the case
for the regular model. Using the same approach (Picard iterations) to linearize the system through the velocity
field uk+1/2

h then allows one to iteratively solve the continuity equation and the momentum-energy system
separately. The linearized continuity equation is:(

M(1) + ∆t

4
L̃uk+1/2

h

)p
ρk+1 =

(
M(1) − ∆t

4
L̃uk+1/2

h

)p
ρk

Whereas the combined momentum-energy system is:[
M(1) + ∆t

4 L̃uk+1/2
h

(γ−1)D(1)p
ρk+1/2L∂x

0 M(1) +γM(1)Luk+1/2
h

][
φk+1

x

E k+1

]

=
[
M(1) − ∆t

4 L̃uk+1/2
h

−(γ−1)D(1)p
ρk+1/2L∂x

0 M(1) −γM(1)Luk+1/2
h

][
φk

x

E k

]
+ (γ−1)∆t

[
K∂x

Kuk+1/2
h

]
E k+1/2

ki n

A key difference between the skew-symmetric method and the regular model that was covered in the previ-
ous section is the matrix Dp

ρk+1/2 . After solving the continuity equation the newly-found solution for
p
ρk+1

is to be used in constructing Dp
ρk+1/2 for the momentum-energy system. This is required in order to main-

tain discrete momentum conservation. After having solved the momentum-energy system it is to be checked
whether the nonlinear convergence criteria have been fulfilled; if this is the case the current time step termi-
nates and the next time step is initialized.
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7.2.3. Application of boundary conditions
Whereas the test cases of chapters 5 and 6 were periodic and used explicitly periodic spline bases, the shock
tube case considered in this chapter is modeled with wall boundaries on either side of Ω= [0,1]. These wall
boundaries correspond to zero-flux conditions that are imposed on the regular- and skew-symmetric (Roe
variable) models given in (7.8) and (7.11) respectively. This will be done in various ways.

First off, the boundary integrals present in Roe variable system of equations (7.11) physically correspond to

the fluxes of
p
ρ(1)

h and
(
φ(1)

x

)
h

over ∂Ω, induced by velocity field uh . Since zero-flux conditions are imposed

the boundary integrals are equal to zero and thus removed from (7.11).

Furthermore we remark that wall boundaries not only imply zero-flux boundary conditions (i.e. prohibit
transport across said boundary), but also imply zero wall-normal velocity. Naturally these two conditions
are related to one another, but imply different things and are applied differently to the numerical system. To

ensure that uh

∣∣∣
∂Ω

= 0 we impose homogeneous Dirichlet conditions on
(
m(1)

x

)
h

and
(
φ(1)

x

)
h

. With the open

knot vector basis defined in section 2.2.5 this implies that the expansion coefficients of the first and last basis
function are zero.

Lastly, zero-flux boundary conditions are applied to the discrete interior products. Recall that the discrete
interior product is resolved with a weak form: To compute the discrete k − 1-form corresponding to a k-
form (and a vector field) the basis of the space of discrete k −1-forms is used as test functions. In this one-
dimensional context:

M(0)β=C(0,1)
u α

Where β,α are the coefficient vectors of β(0)
h , α(1)

h respectively:

β(0)
h =

N∑
i=1

βiψ
(0)
i =βTψ(1) α(1)

h =
N∑

i=2
αiψ

(1)
i =αTψ(1)

Such that β(0)
h = iuhα

(1)
h . Zero-flux boundary conditions imply that β(0)

h

∣∣∣
∂Ω

= 0 and thus correspond to Dirich-

let boundary conditions on β(0)
h . With closed knot vectors only ψ(0)

1 and ψ(0)
N are nonzero on ∂Ω, and thus

0-form coefficients β1 and βN are directly defined to be zero by the zero-flux conditions. This allows us to
slightly reduce the size of the matrices that encode the discrete interior product. Whereas normally M(0) ∈
R(N )×(N ) and C

(0,1)
u ∈ R(N )×(N−1) elimination of the boundary conditions results in M(0) ∈ R(N−2)×(N−2) and

C
(0,1)
u ∈R(N−2)×N , with 0-form coefficient vector β as follows:

β=
 0(
M(0)

)−1
C

(0,1)
u α

0


7.2.4. Kinetic energy advection modeling

As alluded to in sections 7.2.1 and 7.2.2 discrete kinetic energy
(
E (1)

ki n

)
h
∉ Λ(1)

h,p (Ωh). Thus a different way is

needed of applying the Lie derivative (consisting of the interior product and exterior derivative) to
(
E (1)

ki n

)
h

.

In both models covered here the kinetic energy term contains the square of each momentum component(
m(1)

i

)
h

and
(
φ(1)

i

)
h

. Recall from section 2.2.4 that there exists an exact method for computing the product of

two B-splines as another, higher-degree B-spline. Denote for now this operation with χ.

For the regular model the kinetic energy is then computed by dividing this product spline with the mass den-
sity ?ρ(1)

h , thereby making discrete kinetic energy a NURBS. While the discrete B-spline spaces Λ(0)
h,p+1(Ωh)

and Λ(1)
h,p (Ωh) were defined such that they form a discrete De Rham complex, currently no such construc-

tion is known for the more general NURBS functions. Let Γ(1)
h,p,q (Ωh) ⊂ Λ(1)(Ω) denote for now the space of

NURBS-discrete 1-forms of degree p in the numerator and degree q in its denominator. Resolving the kinetic

energy
(
E (1)

ki n

)
h

and its Lie derivative in the regular model is carried out in the way shown in the following
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commutative diagram, which relates the various function spaces used:

Λ(0)
h,p+1 (Ωh) Λ(1)

h,p (Ωh)

Λ(1)
h,2p (Ωh)

Γ(1)
h,2p,p (Ωh)

d

χ

÷?ρ(1)
h

iuh

Starting with
(
m(1)

x

)
h
∈Λ(1)

p (Ωh) the square 〈
(
m(1)

x

)
h

,?
(
m(1)

x

)
h
〉 ∈Λ(1)

h,2p (Ωh) can be computed exactly with χ,

followed by division with?ρ(1)
h (and application of appropriate scalar factors) to compute

(
E (1)

ki n

)
h
∈ Γ(1)

h,2p,p (Ωh).

To retain the discrete De Rham complex the discrete interior product iuh acting on
(
E (1)

ki n

)
h

is made to map

onto Λ(0)
h,p+1 (Ωh). Recall the approach taken in section 2.3.4 for the discrete interior product that maps k-

forms to k−1-forms: A weak form is constructed with test functionsψ(k−1)
i . In the current context the discrete

kinetic energy can thus be mapped to Λ(0)
h,p+1 (Ωh) by defining a weak form for iuh

(
E (1)

ki n

)
h

with the 0-forms

basis functions. The subsequent application of the exterior derivative d is then still exact, and the resulting
discrete Lie derivative maps Γ(1)

h,2p,p (Ωh) →Λ(1)
p (Ωh).

The discrete operators K∂x and Kuk+1/2
h

given in (7.8) are then defined as:

K∂x =M(1)E(1,0) (M(0))−1
C

(0,1̄)
∂x

Kuk+1/2
h

=M(1)E(1,0) (M(0))−1
C

(0,1̄)

uk+1/2
h

Where the superscript 1̄ is used to denote the space of NURBS 1-forms in contraction matrices C. These op-
erators are thus a composition of the discrete Lie derivative and mass matrix M(1) due to the weak form that
is used to discretize the model.

In the skew-symmetric (Roe variable) model the discrete kinetic energy is a product spline
(
E (1)

ki n

)
h
∈Λ(1)

h,2p (Ωh).

While it can be used directly it is nonetheless still not contained in any of the spline spaces that are part of
the discrete De Rham complex. This leaves two options: The first option would be to use the discrete interior

product to project
(
E (1)

ki n

)
h
∈ Λ(1)

h,2p (Ωh) to Λ(0)
h,p+1(Ωh), similar to the construction used in the regular model

that was covered previously. In the second option the discrete interior product maps
(
E (1)

ki n

)
h

to higher-degree

0-form spline spaceΛ(0)
h,2p+1(Ωh), which does form a discrete De Rham complex withΛ(1)

h,2p (Ωh). This does not

lead to a commutative relation between the product 0- and 1-form spline spaces, since the exterior derivative
does not map Λ(0)

2(p+1)(Ωh) →Λ(1)
2p (Ωh) (as 2(p +1) 6= 2p +1). These two constructions can be summarized in

commutative diagrams; the left-hand diagram below shows the structure of the first option, which has been
dubbed the ’approximate approach’, whereas the right-hand diagram shows the second option, that will be
referred to as the ’exact approach’:

Λ(0)
h,p+1 (Ωh) Λ(1)

h,p (Ωh) Λ(0)
h,p+1 (Ωh) Λ(1)

h,p (Ωh)

Λ(0)
h,2(p+1) (Ωh) Λ(1)

h,2p (Ωh) Λ(0)
h,2(p+1) (Ωh) Λ(1)

h,2p (Ωh)

Λ(0)
h,2p+1 (Ωh)

d

χχ

iuh

iuh

d

iuhχ χ

d

iuh
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In both commutative diagrams the spline product operators, interior products and exterior derivatives used
to resolve the kinetic energy are denoted with solid arrows. The dashed arrows indicate other operators that
are shown for illustrative purposes but are not used within the current context. One can see that in both
diagrams the discrete kinetic energy is modeled in Λ(1)

h,2p (Ωh), where it is found through the aforementioned

B-spline product map χ that was defined in section 2.2.4. The resulting discrete Lie derivative of the first
option mentioned above (indicated in the left diagram) maps Λ(1)

h,2p (Ωh) →Λ(1)
h,p (Ωh), whereas in the second

option a Lie derivative map Λ(1)
h,2p (Ωh) → Λ(1)

h,2p (Ωh) is used. For the approximate kinetic energy advection

modeling approach the following matrices have been indicated with K in (7.11):

K∂x =D(1)p
ρk+1/2E

(1,0) (M(0))−1
C

(0,1̃)
∂x

Kuk+1/2
h

=M(1)E(1,0) (M(0))−1
C

(0,1̃)

uk+1/2
h

Whereas in the exact kinetic energy advection modeling approach:

K∂x =D(1,1̃)p
ρk+1/2E

(1̃,0̃)
(
M(0̃)

)−1
C

(0̃,1̃)
∂x

Kuk+1/2
h

=M(1,1̃)E(1̃,0̃)
(
M(0̃)

)−1
C

(0̃,1̃)

uk+1/2
h

Tildes indicate the spline product 0- and 1-form spaces Λ(0)
h,2p+1(Ωh),Λ(1)

h,2p (Ωh) and the subscript (1, 1̃) in-

dicates a (non-square) mass matrix with integrals of the products ψ(1)
i ψ(1̃)

j . The results produced with the

two discretization approaches covered here for kinetic energy advection in the skew-symmetric model will
be compared in the next section.

7.3. Application to Sod’s shock tube
The models described above are used to solve Sod’s shock tube problem as described in [50]. For this problem
the domain isΩ= [0,1]. Sod’s original formulation uses an initial condition presented in terms of pressure p,
mass density ρ and velocity u; the conversion to primary variables is given by the physical definition mx =
ρu and the equation of state, which defines E = p

γ−1 + 1
2ρu2. Figure 7.1 shows the initial condition used to

test the numerical models. As mentioned in the introduction of this chapter, the setup of Sod’s shock tube
physically represents what happens when a diaphragm at x0 = 0.5 that separates two regions with vastly
different pressures and mass densities breaks. A right-running shock wave is formed, together with a right-
running contact discontinuity and a left-running expansion fan, all originating from the diaphragm location
x0. The exact solution to this shock tube problem at any time t > 0 can be computed with one-dimensional
gas dynamics theory; Leveque goes into some detail about this in chapter 9 of [32].

The two external numerical methods that have been used to simulate this shock tube problem (Clawpack and
a nodal DG method) have been described in chapter 4. Their results are compared to the simulation results
obtained with the regular and skew-symmetric models for various mesh sizes and basis function degrees with
respect to the following aspects:

• Solutions and predicted locations of flow features (shock wave, contact discontinuity, expansion fan)
at t = 0.21

• Maximum (absolute) conservation errors w.r.t. exact solution

The simulation end time t = 0.21 is used for several of these comparisons since it is subject to all time steps
that come before it; hence any drift and growth in errors over the time span of each simulation is accumulated
and included in the results presented here. Flow feature locations are relevant performance indicators, since
they indicate (in)accurate behavior of the numerical methods when it comes to predicting the travel speeds of
various types of discontinuities in supersonic flows. The maximum conservation errors show upper bounds
of how accurate each method follows the evolution of physical quantities of interest over the whole time
interval [0,0.21]. Suppose r is a physical quantity of interest, we define the conservation error as:

∆r (t ) = (rnum(t )− rnum(0))− (rexact (t )− rexact (0))
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Figure 7.1: Initial condition of Sod’s shock tube problem as given in [50], converted to primary variables

For mass and total energy the exact amounts don’t change over time and thus the difference (rexact (t )− rexact (0))
is zero and drops out. For kinetic energy and momentum the exact and numerical amounts at t = 0 are equal
to zero, causing rnum(0) and rexact (0) to drop out. The only quantity for which all of these variables are
nonzero is the internal energy Ei nt . The maximum conservation error is then the maximum of |∆r (t n)| over
all time levels t n ∈ [0,0.21]. Due to the discontinuities in the exact solution no L2 error convergence is ex-
pected to take place; hence no quantitative comparisons are made with respect to this accuracy criterion.

Three sets of comparisons are made between the different methods, in the following order:

1. Both kinetic energy advection modeling approaches for the skew-symmetric method that were covered
in section 7.2.4, for ε= 10−6 and ε= 10−12

2. The regular and skew-symmetric methods, for ε= 10−6 and ε= 10−12

3. Clawpack, the nodal DG method and the regular and skew-symmetric methods, the latter two again for
ε= 10−6

The first of these is covered in section 7.3.1, followed by the comparison in section 7.3.2 between both numer-
ical methods derived in section 7.2. Finally in section 7.3.3 the results of both these methods with ε= 10−6 are
compared to the results obtained with Clawpack and the nodal DG method that were described in chapter 4.
For all results shown a time step size of ∆t = 10−3 was used.

7.3.1. Kinetic energy modeling comparison
As mentioned above the first comparison covered for the one-dimensional Euler equations is made between
the two kinetic energy advection modeling approaches for the skew-symmetric method that were discussed
in section 7.2.4. We start by looking at the solutions at t = 0.21 obtained with both approaches; n = 100 basis
functions and nonlinear tolerances ε = 10−6 and ε = 10−12 were used. Said mass density, momentum and
total energy density solutions are shown in figure 7.3 together with the exact solution in black.

Oscillatory behavior
It is immediately obvious that both approaches result in oscillatory solutions throughout the entire domain.
No matter what basis function order p is used the magnitude of the oscillations remains constant. Two types
of oscillations are produced during the simulations. To help illustrate this figure 7.2 shows the mass density
solutions of the skew-symmetric method with exact kinetic energy advection modeling and ε= 10−12 at time
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instants t = 0.025, t = 0.05 and t = 0.1. These three solution instants display the types of oscillations that
are being produced. Around x = 0.6−0.7 the solution at t = 0.025 contains several right-moving oscillations
that have originated from the initial discontinuity at x = 0.5; these are the same oscillations that are shown
around x = 0.8−0.9 at t = 0.05. A similar group of left-moving oscillations can be seen around x = 0.35−0.45
at t = 0.025 and around x = 0.15−0.25 at t = 0.05. Both these groups reflect off of the domain walls and travel
back towards the center of the domain. At t = 0.1 the initially-right-moving oscillations can already be seen
to interact with the solution around the two right-moving discontinuities.
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Figure 7.2: Mass density solutions at t = 0.025, t = 0.05 and
t = 0.1 of the skew-symmetric model with exact kinetic en-
ergy modeling for ∆t = 10−3, p = 2 and ε= 10−12 compared
to the exact solution

The second type of oscillations are those that travel with
the local shock speed; these can be seen at x = 0.55−0.6
at t = 0.05 and x = 0.6 − 0.7 at t = 0.1. They do not
cross the discontinuities on either side of them and have a
maximum amplitude that does not increase significantly
over time, although some interactions occur with the first
group of (traveling) oscillations that makes the amplitudes
time-varying. Note that the oscillations shown in figures
7.2 and 7.3 are bounded by the discontinuous step sizes
adjacent to them on either side; the only place where this
does not hold is in the direct vicinity of the rightmost dis-
continuity. A brief example of how all these oscillations
can be (partially) dealt with is given in section 7.3.3, where
a comparison is made between the results obtained with
the numerical methods derived in this chapter and exter-
nal methods.

Flow feature locations
Whereas the locations of the expansion wave and the left
discontinuity are resolved correctly with both methods,
the travel speed of the right discontinuity is being over-
predicted by both methods for all orders p. Moreover, the
local solutions do not display any kind of monotonic be-
havior: Going right-to-left across the rightmost disconti-
nuity we first see a local increase in mass density, momen-
tum and total energy density (similar to what is visible in
the exact solution) followed by an identical decrease for
p = 2, p = 3. Only after this local minimum do the solu-
tions start oscillating around a mean value that’s (approx-
imately) equal to the exact local value. Note that increas-
ing the order of the basis functions does not reduce the
oscillatory behavior, nor does it improve the travel speed
prediction of the right discontinuity. Lastly we note that
there are no visible differences between the results ob-
tained with ε= 10−6 and ε= 10−12.

Accuracy of conservation behavior
Next we look at the conservation behavior obtained
with both kinetic energy advection modeling approaches,
shown in figure 7.4. Both mass (in the top left corner) and
total energy (at the bottom) are conserved by each method
up to O

(
10−15

)
for all p and n, with no significant differ-

ences between both methods. For the other three physical parameters (momentum, kinetic energy and inter-
nal energy) identical trends can be seen: The exact kinetic energy modeling approach leads to slightly lower
conservation errors. Whereas for momentum the differences between both methods are constant over the
whole range of mesh sizes and a monotonic (and constant) decrease in the conservation error can be seen,
for both kinetic and internal energy refining the mesh leads to seemingly asymptotic convergence to non-
zero conservation errors with each method. Recall that the total energy is conserved up to O

(
10−15

)
; since
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total energy is the sum of kinetic and internal energy the graphs of these two energy components are identical.

While the exact kinetic energy advection approach has a small advantage over the approximate approach on
the coarser half of the mesh size range for finer meshes this advantage disappears. It can be seen that using
p = 1 with the exact advection approach gives the best results: For momentum, kinetic energy and internal
energy this gives the smallest conservation errors, though the differences with higher-order solutions are
small. Apart from this one outlier (p = 1 with the exact approach) using higher-order basis functions does not
improve conservation behavior. Lastly it is noted that the differences between the results with ε = 10−6 and
ε= 10−12 are negligible compared to the other variations: The only parameters where any difference is visible
are mass and total energy, where round-off errors dominate the conservation error.

Conclusions
While small differences exist between the results that were obtained with the approximate and exact kinetic
energy advection approaches, these do not justify the differences in computational cost between them. The
exact approach requires the construction of significantly larger contraction matrices than the approximate
approach. As the degree p is increased the difference in computational cost between the two approaches
also increases. The existence of only small differences between the results of both models does not warrant
this increase in computational cost, and hence the approximate kinetic energy advection approach was used
in lieu of the exact approach.

7.3.2. Regular & skew-symmetric model comparison
Next we compare the performance of the regular and skew-symmetric models with ε = 10−6 and ε = 10−12.
For the latter the approximate kinetic energy advection model was used.

Flow feature locations
We start by comparing their solutions at t = 0.21, which are shown in figure 7.5. As can be seen both methods
again result in oscillatory solutions, though the skew-symmetric model has notably more oscillations; this is
especially noticeable for x < 0.7 (on the left side of the left discontinuity) and to the right of the right discon-
tinuity. Between the two discontinuities the amplitude of the oscillations is similar for both models. Both the
regular and skew-symmetric models sharply capture the discontinuous gradients at either ends of the expan-
sion wave, and have high gradients at or near both discontinuities. Moreover, the regular model’s prediction
of the location of the right discontinuity is significantly more accurate than that of the skew-symmetric model
and unlike for the skew-symmetric model the right discontinuity is captured monotonically (except for Gibbs’
phenomenon). No differences are visible for either method between the results obtained with ε = 10−6 and
ε= 10−12.

Accuracy of conservation behavior
Following this we compare the conservation errors of both methods. As can be seen in figure 7.6 both mass
and total energy are again conserved up to O

(
10−15

)
for both the regular and skew-symmetric methods:

Hence the kinetic and internal energy graphs are identical for both. The mass and total energy graphs are
also the places where any differences between ε= 10−6 and ε= 10−12 are visible, due to differences in round-
off errors.

Looking at the momentum graph in the top right corner of figure 7.6, the regular method has momentum
conservation errors that are nearly an order of magnitude smaller than those of the skew-symmetric method
along the entire mesh size range. A similar trend can be seen when comparing the kinetic and internal energy
conservation errors: Although the difference between both methods is smaller than it is for momentum the
regular method consistently has lower conservation errors. With p = 1 the regular method seems to perform
best, whereas there are no noticeable differences between its various higher-order solutions.

Conclusions
In all aspects considered here the regular model outperforms the skew-symmetric model. Firstly it does not
have the same erroneous behavior in resolving the travel speed of the rightmost discontinuity. Secondly it is
less oscillatory than the skew-symmetric model in most of the domain, although their behavior is seemingly
identical between the two discontinuities that are present. Thirdly the conservation errors of the regular
model are smaller than those of the skew-symmetric method. This is especially noticeable for momentum
but also present for kinetic energy and internal energy; similar performance is seen for mass and total energy.
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7.3.3. Comparison with established methods
The last comparison to be made for the one-dimensional Euler equations is between the regular and skew-
symmetric methods with ε= 10−6 which were compared in section 7.3.2, Clawpack and the nodal DG method
of Hesthaven and Warburton; the latter two have been covered briefly in chapter 4.

Solution quality & flow feature locations
Figure 7.7 shows the solutions at t = 0.21 for Clawpack and the DG method in the left column and the reg-
ular and skew-symmetric models in the right column. We focus on the left column after noting that the
results of the regular and skew-symmetric models were already covered in the previous comparisons. It can
be seen that the results of Clawpack and the DG method are dissipative instead of dispersive like the regular
and skew-symmetric models. Very few oscillations are present in the numerical solutions, but this comes at a
cost: The solutions at the discontinuous gradients at either end of the expansion wave and both right-moving
discontinuities are smeared out over a small area, resulting in a loss of accuracy. While this effect is most no-
ticeable for Clawpack the DG method is also affected by it and exceeds the dissipative behavior displayed by
Clawpack here and there. Increasing the order p used by the DG method also increases the area over which
discontinuities (and solutions around discontinuous gradients) are smeared out instead of improving the DG
method’s resolution. These solutions are also not completely free of unphysical oscillations, as can be seen
around x ≈ 0.45; here the mass density and momentum results of the DG method contain some oscillations
whereas the exact solution is monotonic. However, the size and effect of these oscillations pale in comparison
to those seen in the results of the regular and skew-symmetric methods.

Despite the oscillations present in the (unfiltered, non-limited) regular and skew-symmetric methods the re-
sults reproduce the features present in the exact solution. This raises the possibility of removing (part of) the
oscillations through post-processing steps after a simulation has completed. A simple example of such an
approach consists of applying a moving average-filter; averaging the numerical solution over a small region
reduces the sharpness with which solution features are resolved while removing a (portion of) the oscilla-
tions. Figure 7.8 shows how the results of the regular and skew-symmetric methods change when a moving
average-filter with a width of ∆x = 0.0375 is applied to their solutions at t = 0.21 with p = 2. This moving
average-filter works by simply taking 400 equally-spaced samples on Ω and averaging in each point all sam-
ple values within a distance of ∆x/2 = 0.0375/2.

For comparison the solutions of Clawpack and the DG method (with p = 2) are also shown, together with the
exact solution in black. While small oscillations can still be seen at x < 0.25 and to the right of the rightmost
discontinuity, their amplitudes have decreased significantly. The same can be seen throughout the expansion
wave, at the cost of discontinuous gradients at either ends of said expansion wave being resolved less sharply.
Some oscillations are still present in the skew-symmetric solution between x = 0.45− 0.65, although these
are also much smaller in amplitude than those of the non-averaged solution. Both discontinuities have been
smeared over a small area as well, in a similar way to the results of Clawpack and the DG method. Between
these discontinuities both methods still show oscillatory behavior, but as in the rest of the domain the os-
cillation amplitudes that remain are significantly smaller than those of the non-averaged solutions shown in
figure 7.7. Lastly we note that it is now more clearly visible that the skew-symmetric method overpredicts the
travel speed of the rightmost discontinuity, whereas the regular method matches the exact solution, Clawpack
and the DG method much closer.

Accuracy of conservation behavior
Turning to the conservation errors shown in figure 7.9 large differences between the various models can be
seen for some of the physical variables. Nearly identical behavior is shown for mass and total energy: Whereas
the regular & skew-symmetric models and Clawpack conserve both up to O

(
10−15

)
, the DG method has con-

servation errors up to O
(
10−2

)
on the coarsest meshes for all basis function degrees shown. Although these

conservation errors decrease to O
(
10−14

)
for p = 1 the higher-order solutions seem to converge asymptoti-

cally to O
(
10−10

)
, even when up to four times as many degrees of freedom are used as in the finest simulations

of Clawpack and the regular & skew-symmetric models.

For momentum the DG method shows the same behavior: Conservation errors up to O
(
10−4

)
are produced

on the coarsest grids and its higher-order solutions converge to conservation errors of O
(
10−9

)
on the finest

grids, again despite using up to nearly four times as many degrees of freedom as Clawpack and the regular &
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skew-symmetric methods. With p = 1 the DG method shows a decrease of its momentum conservation error
from O

(
10−4

)
on the coarsest mesh to O

(
10−16

)
on the finest meshes. Clawpack shows the same trend for

smaller amounts of degrees of freedom. Both methods clearly outperform the regular and skew-symmetric
models over the entire mesh size range when it comes to the accuracy of their momentum conservation; only
on the coarsest DG meshes with p = 2, p = 3 do the regular & skew-symmetric methods come close. Whereas
the differences between them are relatively small for the coarsest meshes, the low convergence rate of the
regular and skew-symmetric models result in differences of at least four orders of magnitude on the finest
meshes.

The last physical variables to be compared are kinetic and internal energy. Due to the significant total energy
conservation errors of the DG method these graphs are not identical to one another, unlike in the previous
comparisons. Looking at kinetic energy the best-performing method on the coarse half of the mesh size
range is the regular method, followed by the skew-symmetric method and Clawpack and the DG method
following at some distance for p = 1. Whereas the regular and skew-symmetric models converge asymptot-
ically to kinetic energy conservation errors of O

(
10−3

)
for all p as the mesh is refined, Clawpack and the DG

method both display monotonic behavior with a constant order of convergence. Clawpack’s conservation
error is smaller than that of the DG method even with p = 1; as p is increased in the DG method its kinetic
energy conservation error grows. Despite this the slopes of the conservation error graphs are the same for
p = 1,2,3. For p = 1 the DG method this results in the DG method having a smaller kinetic energy conserva-
tion error than the skew-symmetric method on its coarsest meshed, while for p > 1 its errors are still larger.
Note however that the DG method’s results still display a constant monotonic decrease, whereas the regular
& skew-symmetric methods have seemingly bottomed out.

The overall picture is similar for the internal energy conservation errors, except for the results of the DG
method. As mentioned before this method does not always conserve total energy up to machine precision
and this is reflected in the internal energy conservation errors: On the coarsest mesh the DG method’s con-
servation errors are an order of magnitude larger than the next-highest errors. As the mesh is refined and
the total energy errors decrease rapidly the internal energy errors approach the conservation errors of the
kinetic energy: Since the DG method’s total energy conservation error is smaller than O

(
10−6

)
for n > 102 it is

negligible with respect to the kinetic energy and internal energy errors, which are both O
(
10−3

)
.

Conclusions
Of the four methods compared here Clawpack seems to perform best for this case. While it is the most dif-
fusive method around discontinuities it is effective with the smallest amount of degrees of freedom. It un-
conditionally conserves mass and total energy up to machine precision on all grids and displays monotonic
convergence in its momentum, kinetic energy and internal energy conservation errors. While the DG method
generally also shows diffusive (and not dispersive) behavior it has some unphysical behavior around x = 0.5
and has large conservation errors on its coarsest grids for especially mass and total energy. While these er-
rors decrease in size as its mesh is refined, they are still significantly larger than those found with the other
methods. The DG method also has the highest kinetic and internal energy conservation errors for most of its
results, especially with p > 1. Only when it comes to momentum conservation does it consistently outper-
form the regular and skew-symmetric methods.

Lastly it can be concluded that the regular and skew-symmetric methods in their current implementations
are outperformed by Clawpack and the DG method in most aspects for this case. Their unfiltered solutions
are extremely oscillatory; using a simple moving average-filter damps out the worst of it, but in the region
between the two discontinuities of the exact solution this is not sufficient. Additionally the skew-symmetric
model wrongly predicts the location of the rightmost discontinuity. At this point it should be pointed out that
both Clawpack and the DG method use some form of filtering or flux limiting as stabilization; without this
additional stabilization none of their simulations ran successfully to t = 0.21. The fact that both the regular
and skew-symmetric methods successfully converged despite the extreme oscillations present in their solu-
tions and without any form of stabilization is testament to their stability.

In terms of conservation behavior both models performs similarly to Clawpack for mass and total energy on
all meshes, as well as for kinetic and internal energy on the coarsest half of the meshes considered here. It
is postulated here that the lack of convergence in terms of kinetic and internal energy conservation errors is
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being driven by the formation and transport of oscillations on the finest meshes. However, the biggest flaw
in terms of conservation behavior of these methods is found for momentum; these conservation errors are
significantly larger than those of Clawpack and the DG method.
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Figure 7.3: Solutions at t = 0.21 of primary physical variables of the skew-symmetric model with exact (Ex.) and approximate (Approx.)
kinetic energy modeling for ∆t = 10−3, different solution orders p, ε= 10−6 and ε= 10−12
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Figure 7.4: Maximum conservation errors for several physical variables of the skew-symmetric model with exact (Ex.) and approximate
(Approx.) kinetic energy modeling for ∆t = 10−3, different solution orders p, ε= 10−6 and ε= 10−12
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Figure 7.5: Solutions at t = 0.21 of primary physical variables of the regular (R) and skew-symmetric (SS) (with approximate kinetic
energy advection) models for ∆t = 10−3, different solution orders p, ε= 10−6 and ε= 10−12
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Figure 7.6: Maximum conservation errors for several physical variables of the regular (R) and skew-symmetric (SS) (with approximate
kinetic energy advection) models for ∆t = 10−3, different solution orders p, ε= 10−6 and ε= 10−12
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Figure 7.7: Solutions at t = 0.21 of primary physical variables of the regular (R) and skew-symmetric (SS)models with ε= 10−6, Clawpack
and the DG method, all with ∆t = 10−3 and different solution orders p where possible
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Figure 7.9: Maximum conservation errors for several physical variables of the regular (R) and skew-symmetric (SS) models with ε= 10−6,
the DG method and Clawpack (CP), all with ∆t = 10−3 and different solution orders p where possible
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Two-dimensional Euler equations

After the initial one-dimensional Euler model test with Sod’s shock tube a two-dimensional test is to be car-
ried out. Two variations of the same isentropic vortex test case are carried out on a doubly-periodic domain:
First a static vortex is simulated, followed by a moving vortex. The structure of this chapter is largely simi-
lar to those of the previous test cases. First the continuous models for the regular and skew-symmetric (Roe
variable) formulations are defined in section 8.1. These are then discretized in section 8.2. Following this
section 8.3 introduces the two-dimensional isentropic vortex test case, after which sections 8.4 and 8.5 cover
the results that were obtained for a the aforementioned static and moving vortices respectively.

8.1. Continuous models
The models introduced in chapter 7 are extended to two spatial dimensions. As is done throughout this thesis
the regular model is covered first, followed by the skew-symmetric Roe variable model. Since their original
definitions were given for an arbitrary number of dimensions this extension is straightforward; the main
differences are the types of differential forms that are used (the volume-forms are now 2-forms, for example)
and the number of momentum equations that have to be solved (two instead of one). The regular model in
two spatial dimensions is:

∂ρ(2)

∂t
+Luρ

(2) = 0

∂〈m(1,2),∂x〉
∂t

+Lu〈m(1,2),∂x〉+di∂x p(2) = 0

∂〈m(1,2),∂y 〉
∂t

+Lu〈m(1,2),∂y 〉+di∂y p(2) = 0

∂E (2)

∂t
+LuE (2) +Lup(2) = 0

(8.1)

Where x, y are spatial coordinates on Ω ⊂ R2 and the notation of the other physical variables is consistent
with previous chapters. Now momentum m(1,2) ∈ T ∗(Ω)⊗Λ(2) (Ω), with:

〈m(1,2),∂x〉 = 〈∂x ,d x〉⊗mx d x ∧d y +〈∂x ,d y〉⊗my d x ∧d y = mx d x ∧d y = m(2)
x

〈m(1,2),∂y 〉 = 〈∂y ,d x〉⊗mx d x ∧d y +〈∂y ,d y〉⊗my d x ∧d y = my d x ∧d y = m(2)
y

Although in this case the principal directions of the momentum equations align exactly with the coordinate
grid, any pointwise linearly independent pair of directions could have been defined on Ω to model momen-
tum conservation; each momentum equation would then have consisted of (possibly spatially-varying) linear
combinations of m(2)

x and m(2)
y . Note that we now have to distinguish between two kinds of 1-forms, one as-

sociated with unit covector d x and one with d y .
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Similarly the Roe variable model in two spatial dimensions is:

∂
p
ρ(2)

∂t
+ 1

2
Lu

(p
ρ(2)

)
+ 1

2
?Lu

(
?
p
ρ(2)

)
= 0

∂〈φ(1,2),∂x〉
∂t

+ 1

2
Lu

(〈φ(1,2),∂x〉
)+ 1

2
?Lu

(
?〈φ(1,2),∂x〉

)+ 1

?
p
ρ(2)

di∂x p(2) = 0

∂〈φ(1,2),∂y 〉
∂t

+ 1

2
Lu

(〈φ(1,2),∂y 〉
)+ 1

2
?Lu

(
?〈φ(1,2),∂y 〉

)+ 1

?
p
ρ(2)

di∂y p(2) = 0

∂E (2)

∂t
+LuE (2) +Lup(2) = 0

(8.2)

Where:

〈φ(1,2),∂x〉 = 〈∂x ,d x〉⊗φx d x ∧d y +〈∂x ,d y〉⊗φy d x ∧d y =φx d x ∧d y = m(2)
x

〈φ(1,2),∂y 〉 = 〈∂y ,d x〉⊗φx d x ∧d y +〈∂y ,d y〉⊗φy d x ∧d y =φy d x ∧d y =φ(2)
y

Like before both models are extended with the ideal gas law, in order to express the pressure p(2) in terms of
the other variables:

p(2) = (
γ−1

)(
E (2) −E (2)

ki n

)
Once again we take the L2 inner products of the regular and Roe variable models with test function v (2) ∈
Λ(2) (Ω). For the regular model that was defined in (8.1) this leads to the following weak form:(

v (2),
∂ρ(2)

∂t

)
Ω

+ (
v (2),Luρ

(2))
Ω = 0(

v (2),
∂m(2)

x

∂t

)
Ω

+ (
v (2),Lum(2)

x

)
Ω+ (

v (2),di∂x p(2))
Ω = 0(

v (2),
∂m(2)

y

∂t

)
Ω

+
(
v (2),Lum(2)

y

)
Ω
+

(
v (2),di∂y p(2)

)
Ω
= 0

(
v (2),

∂E (2)

∂t

)
Ω

+ (
v (2),LuE (2))

Ω+ (
v (2),Lup(2))

Ω = 0

The final step in obtaining the weak form that will be discretized is to apply the equation of state:(
v (2),

∂ρ(2)

∂t

)
Ω

+ (
v (2),Luρ

(2))
Ω = 0(

v (2),
∂m(2)

x

∂t

)
Ω

+ (
v (2),Lum(2)

x

)
Ω+ (

γ−1
)(

v (2),di∂x E (2))
Ω = (

γ−1
)(

v (2),di∂x E (2)
ki n

)
Ω(

v (2),
∂m(2)

y
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Ω
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(
v (2),Lum(2)

y
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Ω
+ (
γ−1

)(
v (2),di∂y E (2)

)
Ω
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γ−1
)(

v (2),di∂y E (2)
ki n

)
Ω(

v (2),
∂E (2)

∂t

)
Ω

+γ(
v (2),LuE (2))

Ω = (
γ−1

)(
v (2),LuE (2)

ki n

)
Ω

(8.3)

In the same way the weak form of the Roe variable model defined in (8.2) is:(
v (2),

∂
p
ρ(2)

∂t

)
Ω

+ 1

2

(
v (2),Lu

(p
ρ(2)

))
Ω
+ 1

2

(
v (2),?Lu

(
?
p
ρ(2)

))
Ω
= 0(

v (2),
∂φ(2)

x

∂t

)
Ω
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2

(
v (2),Lu

(
φ(2)

x
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Ω+ 1

2

(
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(
?φ(2)
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Ω+

(
v (2),
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?
p
ρ(2)

di∂x p(2)
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∂φ(2)
y
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(
φ(2)
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di∂y p(2)

)
Ω

= 0

(
v (2),

∂E (2)

∂t

)
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+ (
v (2),LuE (2))

Ω+ (
v (2),Lup(2))

Ω = 0

(8.4)
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Since
p
ρ(2), φ(2)

x and φ(2)
y are all volume-forms the advection terms containing the Hodge-star operator (for

example:
(
v (2),?Lu

(
?
p
ρ(2)))

Ω) are rewritten in the exact same way as was shown in section 5.1 for a one-
dimensional model; recall that the same approach was used in all one-dimensional tests treated so far, in-
cluding the Euler model covered in chapter 7. Applying this to (8.4) leads to the following model:

(
v (2),

∂
p
ρ(2)

∂t

)
Ω

+ 1

2

(
v (2),Lu

(p
ρ(2)

))
Ω
− 1

2

(
Lu

(
v (2)) ,

p
ρ(2)

)
Ω
+ 1

2

∫
∂Ω

iu

(
v (2) ∧?pρ(2)

)
= 0(

v (2),
∂φ(2)

x

∂t

)
Ω

+ 1

2

(
v (2),Lu

(
φ(2)

x

))
Ω− 1

2

(
Lu

(
v (2)) ,φ(2)

x

)
Ω+ 1

2

∫
∂Ω
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(
v (2) ∧?φ(2)

x

)
+

(
v (2),

1

?
p
ρ(2)

di∂x p(2)

)
Ω

= 0(
v (2),

∂φ(2)
y

∂t

)
Ω

+ 1

2

(
v (2),Lu

(
φ(2)

y

))
Ω
− 1

2

(
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(
v (2)) ,φ(2)

y

)
Ω
+ 1

2

∫
∂Ω

iu

(
v (2) ∧?φ(2)

y

)
+

(
v (2),

1

?
p
ρ(2)

di∂y p(2)

)
Ω

= 0

(
v (2),

∂E (2)

∂t

)
Ω

+ (
v (2),LuE (2))

Ω+ (
v (2),Lup(2))

Ω = 0

(8.5)

Since domain Ω is periodic, ∂Ω = ;; thus the boundary terms vanish. Applying the ideal gas law to (8.5)
results in the weak form of the skew-symmetric (Roe variable) model that is to be discretized:

(
v (2),

∂
p
ρ(2)

∂t

)
Ω

+ 1

2

(
v (2),Lu

(p
ρ(2)

))
Ω
− 1

2

(
Lu

(
v (2)) ,

p
ρ(2)

)
Ω
= 0(

v (2),
∂φ(2)

x

∂t

)
Ω

+ 1

2

(
v (2),Lu

(
φ(2)

x

))
Ω− 1

2

(
Lu

(
v (2)) ,φ(2)

x

)
Ω
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γ−1

)(
v (2),

1

?
p
ρ(2)

di∂x E (2)

)
Ω

= (
γ−1

)(
v (2),

1

?
p
ρ(2)

di∂x E (2)
ki n

)
Ω(

v (2),
∂φ(2)

y

∂t

)
Ω

+ 1

2

(
v (2),Lu

(
φ(2)

y

))
Ω
− 1

2

(
Lu

(
v (2)) ,φ(2)

y

)
Ω

+(
γ−1

)(
v (2),

1

?
p
ρ(2)

di∂y E (2)

)
Ω

= (
γ−1

)(
v (2),

1

?
p
ρ(2)

di∂y E (2)
ki n

)
Ω(

v (2),
∂E (2)

∂t

)
Ω

+γ(
v (2),LuE (2))

Ω = (
γ−1

)(
v (2),LuE (2)

ki n

)
Ω

(8.6)

8.2. Discrete models

We convert the weak forms defined in section 8.1 into linear systems by expanding all quantities in (8.3) and
(8.6) in two-dimensional basis functions. As mentioned in chapter 2 the higher-dimensional discrete bases
are formed by taking Cartesian products of the discrete one-dimensional 0- and 1-form basis functions. In
the rest of this section we use lexicographic ordering for the basis functions and their associated expansion
coefficients; for two-dimensional basis functions this ordering maps (x, y)-index (ix , i y ) → i = ix + (i y −1)Nx ,
with Nx the number of basis functions in x-direction. While it is possible to have unequal numbers of basis
functions in the x- and y-directions (Nx 6= Ny ) this research will feature only meshes for which Nx = Ny .
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8.2.1. Regular model

The quantities given in (8.3) are expanded in the 2-form basisΛ(2)
p (Ωh) as follows:

v (2)
h =

N 2∑
i=1

viψ
(2)
i = vTψ(2) ρ(2)

h =
N 2∑
i=1

ρiψ
(2)
i =ρTψ(2)

(
m(2)

x

)
h =

N 2∑
i=1

(mx )i ψ
(2)
i = mT

x ψ
(2)

(
m(2)

y

)
h
=

N 2∑
i=1

(
my

)
i ψ

(2)
i = mT

y ψ
(2)

E (2)
h =

N 2∑
i=1

Eiψ
(2)
i = ETψ(2)

Note that N 2 two-dimensional basis functions are used, together with the aforementioned lexicographic in-

dex ordering. Kinetic energy
(
E (2)

ki n

)
h

is modeled as:

(
E (2)

ki n

)
h
= 1

2

〈
(
m(2)

x

)
h

,?
(
m(2)

x

)
h
〉+〈

(
m(2)

y

)
h

,?
(
m(2)

y

)
h
〉

?ρ(2)
h

As was done in section 7.2.4,
(
E (2)

ki n

)
h
∈ Γ(2)

h,2p,p (Ωh) ⊂Λ(2)(Ω) denotes the space of 2-form NURBS on Ωh . The

squares of φ(2)
x and φ(2)

x are again resolved with the exact B-spline multiplication algorithm that was covered
in section 2.2.4. Applying the basis function expansions to (8.3) then gives:

v TM(2) ∂ρ

∂t
+v TM(2) [E(2,1x ) E(2,1y )

][ (
M(1x )

)−1
C

(1x ,2)
uh

−(
M(1y )
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C

(1y ,2)
uh

]
ρ = 0

v TM(2) ∂mx
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uh
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(8.7)

Note that superscript 2̄ denotes the discrete 2-form NURBS space Γ(2)
h,2p,p (Ωh). Test vector v T can be factored

out without loss of generality. Before applying the time stepping method we introduce some notation to make
the resulting linear systems more compact:

Luh = [
E(2,1x ) E(2,1y )

][ (
M(1x )

)−1
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(1x ,2)
uh

−(
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C
(1y ,2)
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L∂y = E(2,1x ) (M(1x ))−1
C

(1x ,2)
∂y
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Applying this to (8.7) gives:
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(8.8)

Where the right-hand-side matrices that affect the kinetic energy have been left in their original notation. We
apply the two-stage Radau IIB time stepping method, which was introduced in section 3.6.2. This results in
two linear systems that have been decoupled in order to linearize (8.8): One system for the continuity equa-
tion, and one that defines the coupled momentum-energy system. Let ai j be the coefficients of the Radau
IIB method, given in its Butcher tableau. Then the fully-discrete formulation for the continuity equation is:I+a11∆tL

u
k1
h

a12∆tL
u

k1
h

a21∆tL
u

k2
h

I+a22∆tL
u

k2
h

[
ρk1

ρk2

]
=

−Lu
k1
h

−L
u

k2
h

ρn (8.9)

Where I is the identity matrix and the superscript n denotes a quantity at the time level t n , at which the solu-
tion is already known. Note that the Radau IIB time levels t k1 , t k2 ∈ (t n , t n+1), where t n+1 and t n are the time
levels at the end and start of the current time step respectively. In the same way the fully-discrete formulation
for the momentum-energy system becomes, by application of the Radau IIB time stepping method:

I+a11∆tL
u

k1
h

a12∆tL
u

k1
h

−a11∆t (γ−1)L∂x −a12∆t (γ−1)L∂x

a21∆tL
u

k2
h

I+a22∆tL
u

k2
h

−a21∆t (γ−1)L∂x −a22∆t (γ−1)L∂x

I+a11∆tL
u

k1
h

a12∆tL
u

k1
h

−a11∆t (γ−1)L∂y −a12∆t (γ−1)L∂y

a21∆tL
u

k2
h

I+a22∆tL
u

k2
h

−a21∆t (γ−1)L∂y −a22∆t (γ−1)L∂y

I+a11∆tγL
u

k1
h

a12∆tγL
u

k1
h

a21∆tγL
u

k2
h

I+a22∆tγL
u

k2
h





mk1
x

mk2
x

mk1
y

mk2
y

E k1

E k2



=



−L
u

k1
h

(γ−1)L∂x

−L
u

k2
h

(γ−1)L∂x

−L
u

k1
h

−(γ−1)L∂x

−L
u

k2
h

−(γ−1)L∂x

−γL
u

k1
h

−γL
u

k2
h



mn
x

mn
y

E n



+



−(
γ−1

)
E(2,1y )

(
M(1y )

)−1
C

(1y ,2̄)
∂x

−(
γ−1

)
E(2,1y )

(
M(1y )

)−1
C

(1y ,2̄)
∂x(

γ−1
)
E(2,1x )

(
M(1x )

)−1
C

(1x ,2̄)
∂y (

γ−1
)
E(2,1x )

(
M(1x )

)−1
C

(1x ,2̄)
∂y(

γ−1
)
M(2)

[
E(2,1x ) E(2,1y )

][ (
M(1x )

)−1
C

(1x ,2̄)
uh

−(
M(1y )

)−1
C

(1y ,2̄)
uh

]
(
γ−1

)
M(2)

[
E(2,1x ) E(2,1y )

][ (
M(1x )

)−1
C

(1x ,2̄)
uh

−(
M(1y )

)−1
C

(1y ,2̄)
uh

]



[
E k1

ki n
E k2

ki n

]

(8.10)

Where the empty spaces in each matrix denote zero-valued components. This is again a nonlinear system,

due to uk1
h and uk2

h being needed to compute the variables at time levels k1 and k2. As mentioned in section
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3.6.3 Picard linearization is used in this research, with uk1
h and uk2

h as the linearized terms. The variables at
time levels k1 and k2 can be used to compute the solution at the end of the current time step, leading to
estimates for the solution vectors in each Picard iteration.

8.2.2. Skew-symmetric Roe variable model
The same basis function expansions are used for the skew-symmetric model as for the regular model:

v (2)
h =

N 2∑
i=1

viψ
(2)
i = vTψ(2) p

ρ(2)
h =

N 2∑
i=1

p
ρiψ

(2)
i =p

ρTψ(2)

(
φ(2)

x

)
h =

N 2∑
i=1

(
φx

)
i ψ

(2)
i =φT

x ψ
(2)

(
φ(2)

y

)
h
=

N 2∑
i=1

(
φy

)
i ψ

(2)
i =φT

y ψ
(2)

E (2)
h =

N 2∑
i=1

Eiψ
(2)
i = ETψ(2)

Note that in this case the Roe variables have been expanded in the same basis as the physical variables in the

regular model. Kinetic energy
(
E (2)

ki n

)
h

is now modeled as:

(
E (2)

ki n

)
h
= 1

2

(
〈(φ(2)

x

)
h ,?

(
φ(2)

x

)
h〉+〈

(
φ(2)

y

)
h

,?
(
φ(2)

y

)
h
〉
)

In this case
(
E (2)

ki n

)
h
∈Λ(2)

h,2p (Ωh) ⊂Λ(2)(Ω). These basis function expansions then lead to the following semi-

discrete weak form with skew-symmetric advection operators:

v TM(2) ∂
p
ρ

∂t
+ 1

2
v TM(2) [E2,1x E2,1y

][ (
M(1x )

)−1
C

(1x ,2)
uh

−
(
M

(1y )
y

)−1
C

(1y ,2)
uh

]
p
ρ

−1

2
v T

(
M(2) [E2,1x E2,1y

][ (
M(1x )

)−1
C

(1x ,2)
uh

−(
M(1y )

)−1
C

(1y ,2)
uh

])T p
ρ = 0

v TM(2) ∂φx

∂t
+ 1

2
v TM(2) [E2,1x E2,1y

][ (
M(1x )

)−1
C

(1x ,2)
uh

−(
M(1y )

)−1
C

(1y ,2)
uh

]
φx

−1

2
v T

(
M(2) [E2,1x E2,1y

][ (
M(1x )

)−1
C

(1x ,2)
uh

−(
M(1y )

)−1
C

(1y ,2)
uh

])T

φx − (γ−1)v TD
(2)p
ρ
E(2,1y ) (M(1y ))−1

C
(1y ,2)
∂x

E

=−(γ−1)v TK∂x ,
p
ρEki n

v TM(2) ∂φy

∂t
+ 1

2
v TM(2) [E2,1x E2,1y

][ (
M(1x )

)−1
C

(1x ,2)
uh

−(
M(1y )

)−1
C

(1y ,2)
uh

]
φy

−1

2
v T

(
M(2) [E2,1x E2,1y

][ (
M(1x )

)−1
C

(1x ,2)
uh

−(
M(1y )

)−1
C

(1y ,2)
uh

])T

φy + (γ−1)v TD
(2)p
ρ
E(2,1x ) (M(1x ))−1

C
(1x ,2)
∂y

E

= (γ−1)v TK∂y ,
p
ρEki n

v TM(2) ∂E

∂t
+γv TM(2) [E2,1x E2,1y

][ (
M(1x )

)−1
C

(1x ,2)
uh

−(
M(1y )

)−1
C

(1y ,2)
uh

]
E = (γ−1)v TKuh Eki n

(8.11)

Where the superscript 2̃ denotes the space of product 2-forms Λ(2)
h,2p (Ωh) that contains

(
E (2)

ki n

)
h

. Like before

we factor out v T without loss of generality. The operators acting on the kinetic energy terms are denoted with
K∂x ,

p
ρ , K∂y ,

p
ρ and Kuh ; their exact formulations are covered in the next section. Matrix D(2)p

ρ
corresponds to

the 2-form mass matrix as follows: (
D

(2)p
ρ

)
i j
=

∫
Ω

ψ(2)
i ψ(2)

j

?
p
ρ(2)

h
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We also introduce the following notation, in order to make (8.11) more compact:

Luh = [
E(2,1x ) E(2,1y )

][ (
M(1x )

)−1
C

(1x ,2)
uh

−(
M(1y )

)−1
C

(1y ,2)
uh

]

L̃uh = (
M(2))−1

[
M(2)Luh −

(
M(2)Luh

)T
]

L∂x ,
p
ρ = (

M(2))−1
D

(2)p
ρ
E(2,1y ) (M(1y ))−1

C
(1y ,2)
∂x

L∂y ,
p
ρ = (

M(2))−1
D

(2)p
ρ
E(2,1x ) (M(1x ))−1

C
(1x ,2)
∂y

These operators have all been multiplied with
(
M(2)

)−1
in order to shorten some of the notation that will

follow. With this more compact notation (8.11) becomes:

M(2) ∂
p
ρ

∂t
+ 1

2
M(2)L̃uh

p
ρ = 0

M(2) ∂φx

∂t
+ 1

2
M(2)L̃uhφx − (γ−1)M(2)L∂x ,

p
ρE =−(γ−1)K∂x ,

p
ρEki n

M(2) ∂φy

∂t
+ 1

2
M(2)L̃uhφy + (γ−1)L∂y ,

p
ρE = (γ−1)K∂y ,

p
ρEki n

M(2) ∂E

∂t
+γLuh E = (γ−1)Kuh Eki n

(8.12)

Where the matrix M(2) has appeared throughout in order to balance the earlier-mentioned multiplication

with
(
M(2)

)−1
. Now we are left to apply the time stepping method. This will be the same two-stage Radau

IIB method that was applied to the regular model. In the same way as before the continuity equation can be
decoupled from the other equations through linearization, resulting in the following system to solve for mass
density: I+a11

∆t
2 L̃u

k1
h

a12
∆t
2 L̃u

k1
h

a21
∆t
2 L̃u

k2
h

I+a22
∆t
2 L̃u

k2
h

[p
ρk1

p
ρk2

]
=

− 1
2 L̃u

k1
h

− 1
2 L̃u

k2
h

p
ρn (8.13)

Similarly the fully-discrete formulation for the momentum-energy system becomes:

I+a11
∆t
2 L̃u

k1
h

a12
∆t
2 L̃u

k1
h

−a11∆t (γ−1)L
∂x ,

p
ρk1 −a12∆t (γ−1)L

∂x ,
p
ρk1

a21
∆t
2 L̃u

k2
h

I+a22
∆t
2 L̃u

k2
h

−a21∆t (γ−1)L
∂x ,

p
ρk2 −a22∆t (γ−1)L

∂x ,
p
ρk2

I+a11
∆t
2 L̃u

k1
h

a12
∆t
2 L̃u

k1
h

−a11∆t (γ−1)L
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p
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p
ρk1
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∆t
2 L̃u
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h

I+a22
∆t
2 L̃u
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h
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p
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p
ρk2

I+a11∆tγL
u
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h

a12∆tγL
u

k1
h

a21∆tγL
u

k2
h

I+a22∆tγL
u

k2
h


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h
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p
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h
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p
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p
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−γL
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x
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+
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γ−1
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M(2)

)−1
K
∂x ,

p
ρk1

−(
γ−1

)(
M(2)

)−1
K
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p
ρk2(

γ−1
)(
M(2)

)−1
K
∂y ,

p
ρk1 (

M(2)
)−1

K
∂y ,

p
ρk2(

M(2)
)−1

K
u

k1
h (

M(2)
)−1

K
u

k2
h



[
E k1

ki n
E k2

ki n

]

(8.14)

Just as in the previous section the empty spaces in each matrix correspond to zero-valued components. Pi-

card linearization is used to linearize this system through the components uk1
h , uk2

h . The solution approach
during a nonlinear iteration is identical to the one-dimensional case presented in section 7.2.2 and that of the
two-dimensional regular model covered in the previous section. From the different variables at time levels
k1, k2 the solution at t n+1 can be computed once the nonlinear convergence criterion has been satisfied.
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8.2.3. Kinetic energy modeling
As was covered in section 7.2.4 for the one-dimensional Euler equations, the skew-symmetric model gives
room to define the discretized advection of kinetic energy in two different ways. Depending on the choice
of advection operators the Lie derivative acting on the kinetic energy term maps between different discrete
spline spaces. Let χ again denote the spline product algorithm covered in section 2.2.4, then:

Λ(1)
h,p+1 (Ωh) Λ(2)

h,p (Ωh) Λ(1)
h,p+1 (Ωh) Λ(2)

h,p (Ωh)

Λ(1)
h,2(p+1) (Ωh) Λ(2)

h,2p (Ωh) Λ(1)
h,2(p+1) (Ωh) Λ(2)

h,2p (Ωh)

Λ(1)
h,2p+1 (Ωh)

d

χχ

iuh

iuh

d

iuhχ χ

d

iuh

Here the left diagram shows the ’approximate’ kinetic energy advection approach, while the right diagram
shows the ’exact’ approach. These are wholly identical to those of the one-dimensional Euler equations,
apart from the types of k-forms that are involved. Note again that the solid lines denote operators that are
used in the kinetic energy advection approaches; the dashed lines are only present to provide context and to
denote other existing operators between these spaces.

The various matrices that were denoted with K in the previous section then become, for the approximate
kinetic energy advection approach:

K∂x ,
p
ρ =D(2)p

ρ
E(2,1y ) (M(1y ))−1

C
(1y ,2̃)
∂x

K∂y ,
p
ρ =D(2)p

ρ
E(2,1x ) (M(1x ))−1

C
(1x ,2̃)
∂y

Kuh =M(2) [E2,1x E2,1y
][ (

M(1x )
)−1

C
(1x ,2̃)
uh

−(
M(1y )

)−1
C

(1y ,2̃)
uh

]

And for the exact kinetic energy advection approach:

K∂x ,
p
ρ =D(2,2̃)p

ρ
E(2̃,1̃y )

(
M(1̃y )

)−1
C

(1̃y ,2̃)
∂x

K∂y ,
p
ρ =D(2,2̃)p

ρ
E(2̃,1̃x )

(
M(1̃x )

)−1
C

(1̃x ,2̃)
∂y

Kuh =M(2,2̃)
[
E2̃,1̃x E2̃,1̃y

] (
M(1̃x )

)−1
C

(1̃x ,2̃)
uh

−
(
M(1̃y )

)−1
C

(1̃y ,2̃)
uh


Recall that the tilde superscripts 2̃, 1̃x , 1̃y are used to denote the spaces corresponding to the product 1- and

2-forms. Like in the previous chapter, double superscripts such as those used for mass matrix M(2,2̃) contain

integrals of the products ψ(2)
i ψ(2̃)

j .

8.3. Two-dimensional isentropic vortex
Within the current research work the two-dimensional test considered is that of the so-called isentropic vor-
tex. This case will be considered on Ω=]0,10[2, although other domain sizes and non-periodic domains are
also used throughout literature. A freestream velocity field (u∞, v∞) is defined on Ω together with tempera-
ture T∞. Perturbations are imposed linearly on the freestream conditions. As given by Yee et al. in [59] these
perturbations can be defined as:

δu =− β

2π
e

1
2 (1−r 2) (y − y0

)
δv = β

2π
e

1
2 (1−r 2) (x −x0)

δT =−
(
γ−1

)
β2

8γπ2 e1−r 2
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Whereβ ∈R is the vortex strength, (x0, y0) are the initial coordinates of the center of the vortex, r 2 = (x −x0)2+(
y − y0

)2 is the distance to the center of said vortex and γ is the ratio of specific heats. In the current research
(x0, y0) will always be taken at the center of the domain. Knowing that p = ργ and T = p/ρ allows us to
apply the perturbation δT to ρ, by noting that thus ρ = T 1/(γ−1). These perturbations are imposed onto the
freestream conditions, from which the initial conditions follow:

u = u∞+δu = u∞− β

2π
e

1
2 (1−r 2) (y − y0

)
v = v∞+δv = v∞+ β

2π
e

1
2 (1−r 2) (x −x0) (8.15)

ρ = [T∞+δT ]
1

γ−1 =
[

T∞−
(
γ−1

)
β2

8γπ2 e1−r 2

] 1
γ−1

E = p

γ−1
+ 1

2
ρ

(
u2 + v2) (8.16)

Spiegel et al. remark in [51] that this formulation of the vortex perturbation indeed leads to an initial con-
dition without entropy perturbation; since S = p/ργ and p = ργ the perturbations do not affect the entropy
distribution: δS = 0. By setting (u∞, v∞), T∞, (x0, y0), γ and vortex strength β we can thus fully define an
isentropic vortex test. Within this research work (x0, y0) will always be the domain’s center: (x0, y0) = (5,5).
Furthermore γ = 1.4 is used, together with T∞ = 1. Lastly vortex strength β = 5 will be used for all tests in
this chapter. As remarked by Spiegel et al. in section IV.D of [51] the vortex definition in (8.15) is not periodic.
Imposing periodic boundary conditions onto this non-periodic initial condition will induce some error if the
velocity perturbations at the boundaries are not zero. Within this research the aforementioned parameters
result in velocity perturbation components of O

((
e−12

))=O
((

10−6
))

on ∂Ω.

Two vortex tests will be covered in this thesis: In section 8.4 the results obtained for a static vortex (zero
freestream velocity) are discussed, followed by a moving vortex with (u∞, v∞) = (1,1) in section 8.5. For both
test cases three sets of comparisons are made, in the following order:

1. The two kinetic energy advection modeling approaches of the skew-symmetric model with ε = 10−6,
ε= 10−12;

2. The regular and skew-symmetric models with ε= 10−6, ε= 10−12;

3. Clawpack, the nodal DG method of Hesthaven & Warburton and the regular and skew-symmetric mod-
els with ε= 10−6.

The aim of this three-staged result comparison approach is to establish: The (lack of) differences between
the kinetic energy modeling approaches of the skew-symmetric model; consistency of the skew-symmetric
model and the regular model, to show that the decomposition into Roe variables does not negatively affect
the accuracy of the model; the performance of the skew-symmetric model relative to the regular model, Claw-
pack and the aforementioned nodal DG model.

Said comparisons will be made in terms of the relative L2 errors of the primary variables (mass density, x-
momentum, y-momentum, total energy density) and the conservation errors of each method. The L2 errors
are normalized by using the L2 norms of the exact variables (mass density, momentum components and
energy density). Since the exact isentropic vortex solutions conserve mass, momentum in both directions,
kinetic energy, internal energy and total energy it is straightforward to determine how well each numeri-
cal method approximates this conservation behavior: For a physical quantity of interest r the relative non-
conservation error ∆r is defined in the same way as was done in previous chapters:

∆r (t ) = (rnum(t )− rnum(0))− (rexact (t )− rexact (0))

rexact (t )
= rnum(t )− rnum(0)

rexact (0)

Here the second equality follows because (as mentioned above) the exact solutions conserve all physical
quantities of interest considered in this research. The equation above defines the relative kinetic energy con-
servation errors that are used to compare the amounts of numerical dissipation present in each method.
Lastly the absolute conservation errors of the primary variables are compared; these are not normalized,
since the exact solution of the static vortex test that is covered in section 8.4 has x- and y-momenta that are
exactly zero. For the sake of consistency the primary variables are thus compared in terms of their absolute
conservation errors rnum(t )− rnum(0).
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8.4. Static isentropic vortex test
The first of the two-dimensional test cases considered in this research work is the isentropic vortex without
background velocity: (u∞, v∞) = (0,0). This corresponds to an exact solution that is entirely static and time-
independent. Section 8.4.1 covers the first comparison, that of the two kinetic energy modeling approaches
of the skew-symmetric model which were both covered in section 8.2.3. Following this initial comparison the
skew-symmetric model’s results are compared to the regular model that is described in section 8.2 as well,
for different nonlinear convergence tolerances ε. Lastly the results of both of these models (with ε= 10−6) are
compared to Clawpack and the nodal DG method of Hesthaven & Warburton; these reference models have
been described in chapter 4.

8.4.1. Kinetic energy modeling comparison
As mentioned, we start the static vortex numerical experiments by comparing the results obtained with the
two kinetic energy modeling approaches possible with the skew-symmetric model.

Relative L2 errors
Figure 8.2 shows the L2 errors of the exact and approximate kinetic energy advection modeling approaches
for ε = 10−6 and ε = 10−12, obtained with various basis function degrees p. As can be seen the differences
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Figure 8.1: Convergence of the relative mass density L2 errors of the initial
condition for different degrees p

between both approaches are indiscernible
for most combinations of mesh sizes and
degrees, indicating that the kinetic energy
advection modeling approaches show sim-
ilar scaling behavior. Whereas all L2 er-
rors of the simulations with odd-degree ba-
sis functions decrease monotonically, the
even-degree simulations are more fickle and
do not show monotonic L2 convergence for
the mass density field. This non-monotonic
convergence appears during the simulation
itself, as is evidenced by figure 8.1. In this
figure the relative L2 errors of the mass den-
sity field are shown. Monotonic conver-
gence is shown for all degrees p is shown
over most of the mesh size range.

Numerical diffusion
The same trend is shown in figure 8.3, where
the maximum deviation of the total kinetic
energy on Ω with respect to the initial ki-
netic energy is shown. Note that the devia-
tions shown have been normalized with the
exact total kinetic energy, which is O (1) for
this static vortex. These deviations are a measure of the amount of numerical dissipation induced by the
numerical methods. Both modeling approaches again show nearly-identical behavior, which indicates that
using higher-degree spaces to resolve the advection of kinetic energy does not provide any gain. Again only
the simulations with odd-degree basis functions seem to converge monotonically.

Primary non-conservation errors
In fact, there is an apparent downside to using these higher-degree spaces for modeling kinetic energy ad-
vection: Round-off errors become more pronounced, leading to degrading conservation behavior. This can
be seen in figure 8.4, which shows the maximum mass, momentum and (total) energy deviations relative to
their respective initial values. Whereas mass is conserved up to O

(
10−13

)
for each model and all considered

p and ε, this is not the case for the momentum components and the total energy. Both kinetic energy mod-
els suffer from worse conservation performance as the basis function degree p is increased, but this effect is
more pronounced with the exact kinetic energy advection model. Momentum and total energy conservation
up to O

(
10−13

)
is attained with p = 1 for both models, with nearly identical outcomes. While their results are

still largely the same for p = 2 a further degree increase to p = 3 and p = 4 comes with significant differences
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between both models: The approximate model has a maximum non-conservation of O
(
10−12

)
for p = 3 and

O
(
10−11

)
for p = 4, whereas the exact kinetic energy advection model shows conservation errors of O

(
10−11

)
for p = 3 and O

(
10−10

)
for p = 4. These conservation errors appear to be independent of mesh size, indicating

that they originate from round-off errors that appear when constructing the discrete operators used in each
simulation.

Conclusions
Two preliminary conclusions can be drawn based on these results. The first conclusion is that the approx-
imate kinetic energy advection modeling approach is preferable over the exact approach; whereas the dif-
ferences in L2 error (accuracy) and kinetic energy non-conservation (numerical diffusion) are nearly iden-
tical for both approaches, the approximate approach has significantly smaller conservation errors for when
higher-degree basis functions are used. Furthermore the approximate approach leads to a numerical scheme
that has a lower computational cost, since smaller matrices are used for some of the discrete kinetic energy
advection operators.

The second conclusion that follows from these results is that the effect of ε within the range [10−12,10−6] is
seemingly negligible. As far as any noticeable differences exist between the results obtained with ε = 10−6

and ε = 10−12, these are dwarfed by the differences between each basis function degree p. Hence the extra
computational cost induced by running each time step until the difference between successive iterations is
smaller than ε= 10−12 is not offset by an increase in accuracy or decrease in numerical diffusion.

8.4.2. Regular & skew-symmetric model comparison
Now that the efficacy of the two kinetic energy advection modeling approaches of section 8.2.3 has been
compared and the choice has been made for the approximate approach, we turn to comparing the regular
and skew-symmetric models that were derived in section 8.2.

Relative L2 errors
The L2 errors of the regular and skew-symmetric models are shown in figure 8.6 for ε = 10−6 and ε = 10−12.
Note that the skew-symmetric results were also used in the previous section. Taking these skew-symmetric
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Figure 8.5: Convergence of relative mass density L2 errors of initial conditions
of the regular (R) and skew-symmetric (SS) models for different degrees p

results as a baseline, we can see that the re-
sults of the regular model are similar for p =
1, p = 3. For p = 2 and p = 4 however, the
regular model suffers from non-monotonic
convergence for all variables. While this is
also the case for the mass density conver-
gence of the skew-symmetric model, the L2

errors of the regular model are significantly
higher for even-valued p, indicating that it is
less stable than the skew-symmetric model.
This is further supported by noting that the
regular model diverged with p = 4 on the
finest mesh, hence the missing data point
in figure 8.6. These L2 errors are produced
during the simulation; they are not present
in the discretized initial conditions, as is ev-
idenced by figure 8.5. In this figure the rel-
ative L2 errors of the discrete mass density
initial conditions are shown for the regular
and skew-symmetric methods. It is clear
that the behavior of both methods is simi-
lar; the differences between them thus form
during the simulation itself. It is also worth
pointing out in figure 8.6 that the regular model, like the skew-symmetric model, is insensitive to whether
ε= 10−6 or ε= 10−12 is used: The results with both ε’s are indistinguishable from one another.
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Figure 8.2: Convergence of the relative L2 errors at t = 10 of the skew-symmetric model with exact (Ex.) and approximate (Approx.)
kinetic energy modeling for ∆t = 5 ·10−2, (u∞, v∞) = (0,0), different solution degrees p, ε= 10−6 and ε= 10−12

Numerical diffusion

Looking at the numerical diffusion (kinetic energy non-conservation) a similar picture is painted: As figure 8.7
shows, both the regular and skew-symmetric model have (nearly) identical amounts of numerical diffusion
for p = 1 and very similar amounts for p = 3. For p = 2, p = 4 the same pattern can be seen that was noted for
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Figure 8.3: Maximum kinetic energy non-conservation errors of the skew-symmetric model with exact (Ex.) and approximate (Approx.)
kinetic energy modeling for ∆t = 5 ·10−2, (u∞, v∞) = (0,0), different solution degrees p, ε= 10−6 and ε= 10−12

the L2 errors, with the regular model having kinetic energy conservation errors that are at least a full order of
magnitude higher than that of the skew-symmetric model. This trend is also independent of ε.

Primary non-conservation errors
Lastly, we compare the conservation errors of the primary variables of both models. These are shown in figure
8.8. As can be noted when looking at the mass (in the top left corner) and total energy (in the bottom right
corner) conservation errors, the regular model is more sensitive to the round-off errors that appear in the
continuity and energy equations when p is increased. Especially for p = 3 (O

(
10−12

)
) and p = 4 (O

(
10−11

)
)

the mass and energy conservation errors are at least an order of magnitude larger than those of the skew-
symmetric model (O

(
10−13

)
and O

(
10−12

)
respectively). When looking at X-momentum (in the top right

corner) and Y-momentum (in the bottom left corner) it is apparent that both methods have similar perfor-
mance: The conservation error is raised by similar amounts as p is increased. One can furthermore observe
that the value of ε once again has only a small effect on the results; only for p = 1, p = 2 there are noticeable
difference, though these are only small and are negligible compared to the variations that are encountered
when refining the grid or increasing the basis function degree p.

Conclusions
Based on these observations it can be concluded that the skew-symmetric model slightly outperforms the
regular model. Both models are insensitive to the values of ε used, and as long as basis functions of odd de-
grees are used their performance is largely similar; the only things distinguishing the skew-symmetric model
is its smaller sensitivity to round-off errors. For even-degree solutions a different picture can be seen: The
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Figure 8.4: Maximum non-conservation of primary variables of the skew-symmetric model with exact (Ex.) and approximate (Approx.)
kinetic energy modeling for ∆t = 5 ·10−2, (u∞, v∞) = (0,0), different solution degrees p, ε= 10−6 and ε= 10−12

regular method has significant issues (no convergence on the finest mesh for p = 4) and does not have mono-
tonic L2 convergence for any of the variables shown. Furthermore its L2 errors are larger and it has a full order
of magnitude more numerical diffusion than the skew-symmetric method for this static vortex case.
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Figure 8.6: Convergence of the relative L2 errors at t = 10 of the regular (R) and skew-symmetric (SS) models for∆t = 5 ·10−2, (u∞, v∞) =
(0,0), different solution degrees p, ε= 10−6 and ε= 10−12

8.4.3. Comparison with established methods
The last comparisons made for the static vortex test case are those between the regular and skew-symmetric
numerical models on the one hand, and Clawpack and the nodal DG method of Hesthaven & Warburton on
the other hand. As mentioned before, these external methods have been covered in chapter 4. The aim of this
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Figure 8.7: Maximum kinetic energy non-conservation errors of the regular (R) and skew-symmetric (SS) models for ∆t = 5 · 10−2,
(u∞, v∞) = (0,0), different solution degrees p, ε= 10−6 and ε= 10−12

comparison is to establish the efficacy of the methods presented in this research, relative to existing methods.
It is worth noting that both Clawpack and the nodal DG method require filtering or flux limiting in order to
converge to useful results: It was found that without the added stabilization this filtering/flux limiting pro-
vides, the DG method would not produce any results. However, even with this stabilization enabled the DG
method failed to converge on the coarsest meshes for p = 3. Clawpack’s low-order methods result in solutions
that have been dissipated greatly: The original vortex at the center of the domain is no longer recognizable.
Hence Clawpack’s high-resolution methods had to be used in order to obtain useful results, which entails the
use of a flux limiter.

Relative L2 errors
Figure 8.9 shows the relative L2 errors at t = 10 of the regular and skew-symmetric models with nonlinear
tolerance ε = 10−6 and of Clawpack and the aforementioned DG method, both for different mesh sizes and
solution degrees p. Since Clawpack uses piecewise-constant function approximations it is interpreted to be
of degree p = 0. With p = 1 and p = 3 the models presented in this research outperform the DG method on the
entire mesh size range considered here; moreover, for p = 3 the DG model diverged on the coarsest meshes.
As mentioned in previous sections as well, the even-powered degrees p = 2 and p = 4 are more problematic
for the regular and skew-symmetric models; the mass density L2 errors of both even-powered degrees do not
converge monotonically and for p = 4 the L2 errors of the other primary variables are also considerably larger
on the finest meshes than their counterparts in the DG model. For the regular model this trend is larger than
for the skew-symmetric model. Whereas Clawpack has monotonic convergence with a seemingly increasing
order of accuracy as the mesh is refined, it also has the shallowest slope and highest L2 errors of all methods
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Figure 8.8: Conservation errors of primary variables of the regular (R) and skew-symmetric (SS) models for∆t = 5·10−2, (u∞, v∞) = (0,0),
different solution degrees p, ε= 10−6 and ε= 10−12

shown here.

Numerical diffusion
Following the L2 error comparison, we look at the numerical diffusion of these methods by comparing their
maximum relative kinetic energy conservation errors. Figure 8.10 contains these conservation errors, graphed
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against the square root of the cell area. One can see that Clawpack (again) is the method that performs poor-
est; over the entire range of cell sizes considered it has the highest kinetic energy conservation error of all
methods considered in this work, except for the regular method with p = 2, p = 4 on the coarsest meshes.
The regular and skew-symmetric models outperform the DG method for p = 1, p = 3 along most of the mesh
sizes shown, though the DG method catches up on the finest mesh with p = 3. For p = 2 and p = 4 the
regular and skew-symmetric models show non-monotonic convergence of the kinetic energy conservation
error. Whereas the performance of the skew-symmetric model is at times similar, better or worse than the
DG method when looking at these even-valued p, the regular model is worse on most of the cell size range
considered. Recall that the regular model also did not converge for p = 4 on one of the meshes, hence one of
its data points is missing; this is an additional sign of its problematic stability with even-degree cases for this
static vortex.

A different picture emerges when comparing the numerical diffusion of the various methods versus the num-
ber of degrees of freedom used, rather than versus a cell area metric. This is shown in figure 8.11. As men-
tioned in section 4.2 the nodal DG method uses more degrees of freedom per cell when the degree p is in-
creased; a process called k-refinement. Hence the same mesh with p = 1 and p > 1 results in two different
amounts of degrees of freedom that are used to resolve the DG method’s numerical system. When judging the
performance of the methods in this way it is apparent that the numerical models presented in this thesis are
more efficient (in terms of numerical diffusion) than Clawpack and the DG method. Clawpack is still largely
outperformed by the three other methods over the mesh size range considered and is unlikely to catch up
to the other methods on finer meshes, while the DG method needs O

(
103

)
number of degrees of freedom to

reduce its numerical diffusion to amounts lower than O
(
10−2

)
. Compared to at most 4 ·102 degrees of free-

dom that the regular and skew-symmetric models need for even the lowest-degree solutions to attain this the
mesh size of the DG method presents a significant computational cost, as every degree of freedom constitutes
an additional equation that needs to be handled.

Primary non-conservation errors
As with the other comparisons, the final parameters that are considered here are the conservation errors
of the primary variables. These are shown in figure 8.12. We start by looking at the mass and energy con-
servation errors, shown in the top left and bottom right corners respectively. Clawpack’s performance for
these parameters is similar to the lower-degree simulations performed with the regular and skew-symmetric
methods. The DG method shows the same pattern as the regular and skew-symmetric methods: Increasing
conservation errors as the degree p is increased, although the magnitude of this increase in mass and energy
conservation errors is limited and does not exceed O

(
10−13

)
for mass and O

(
10−12

)
for energy. It can also be

noted that the conservation errors of the DG method increase as the mesh size is increased. Lastly, we note
that the regular model with p = 4 has significantly higher conservation errors than the other methods shown.

When looking at the X- and Y-momentum conservation errors (in the top right and bottom left corners of fig-
ure 8.12 respectively) it is immediately apparent that Clawpack outperforms the other methods by at least an
order of magnitude over the range of mesh sizes considered here. For X-momentum the DG method is on par
with the regular and skew-symmetric models for p = 1, but for p > 1 there are noticeable differences between
them as the mesh is refined; this is due to the apparent near-monotonic growth of momentum conservation
errors of the DG method. With the finest mesh and p = 4 the DG method reaches an X-momentum conserva-
tion error of O

(
10−10

)
, which is (nearly) an order of magnitude larger than that of the skew-symmetric model.

Turning to Y-momentum, it can be seen that even with lower-degree basis functions the DG method has con-
servation errors that are (nearly) an order of magnitude larger than those of the regular and skew-symmetric
models - save for one point with p = 2, where similar performance of the three models is observed. For
the higher-degree basis functions the conservation errors of these three methods are similar on the coarsest
meshes, while the conservation error growth with mesh refinement found in the DG method leads to large
differences on finer meshes.

Conclusions
To recap this comparison between Clawpack, the nodal DG method of Hesthaven & Warburton and the reg-
ular and skew-symmetric models presented in section 8.2, the following can be noted:

• Clawpack suffers the most from numerical diffusion for this case, as is evident by its large L2 errors
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and kinetic energy conservation errors compared to the other methods. Of the four methods being
compared Clawpack has the poorest performance on the metrics considered here, with the exception
of the conservation errors of the primary variables.

• The performance of the DG method and the regular & skew-symmetric models for this case is compa-
rable when comparing them against the square-root of their cell sizes. When comparing their results in
terms of the number of degrees of freedom the DG method performs markedly worse than the regular
& skew-symmetric models; it uses significantly more degrees of freedom to attain similar L2 errors and
kinetic energy conservation tolerances. This effect is most apparent with p = 3, p = 4, since these basis
function degrees result in the highest number of degrees of freedom for the DG method.

• Of these four methods the skew-symmetric model seems to be the most useful and robust; the other
three methods all require some sort of stabilization and/or diverged during one or more of the simu-
lations. The regular method diverged with p = 4 on the finest mesh considered (20×20), while the DG
method did not converge on the coarsest meshes with p = 3 and requires filtering as well as flux lim-
iting in order to converge. Lastly, Clawpack’s high-resolution schemes require flux limiters to stabilize
the solution in regions with high gradients.

8.5. Moving isentropic vortex test
Following the static vortex test a freestream velocity of (u∞, v∞) = (1,1) is used. This makes the vortex traverse
Ω once every 10 seconds and raises the total kinetic energy onΩ to O

(
102

)
. Note that the perturbation param-

eters are unchanged, as they are simply superimposed on the freestream conditions. The same comparisons
are made for this case as were made for the static vortex: Section 8.5.1 first covers the results obtained with the
skew-symmetric model’s two kinetic energy modeling approaches that were covered in section 8.2.3. Then
section 8.5.2 compares the skew-symmetric model with the regular model, after which a comparison of these
models with the nodal DG method of Hesthaven & Warburton and Clawpack is made in section 8.5.3. All these
comparisons are made in terms of L2 error (as measure of accuracy), relative kinetic energy non-conservation
(as measure of numerical diffusion) and non-conservation of the primary variables (as measure of physical
correctness), identical to what was done for the static vortex test case.

8.5.1. Kinetic energy modeling comparison
Like before the first comparison made for the moving vortex case is between the two kinetic energy modeling
approaches for the skew-symmetric model that were covered in section 8.2.3.

Relative L2 errors

Figure 8.16 shows the L2 errors obtained for these approaches, with ε10−6 and ε10−12. As one can see the
differences between the two approaches and the ε’s used is negligible compared to the differences of the
various basis function degrees p. Moving from p = 1 to p = 2 gives the largest decreases in the L2 errors,
including an apparent higher order of accuracy; further increases in p seemingly do not increase the order
of accuracy but do result in a somewhat lower L2 error, albeit this decrease is smaller than that found by
increasing p = 1 to p = 2. Hence L2 errors are not a reason to prefer one kinetic energy modeling approach
over another. Unlike the results of the static vortex, the numerical methods show monotonic convergence for
all p; only for the coarsest meshes using p = 1 does not result in monotonic convergence.

Numerical diffusion

These same trends are also visible when looking at the amount of kinetic energy non-conservation, shown
in figure 8.14: The amount of kinetic energy non-conservation (and thus the numerical diffusion) decreases
monotonically for all p, with the results of p = 1 having a markedly different order of convergence than those
for p > 1. Note that again that the differences between the higher-degree basis functions are small. Further-
more they do not seem to obtain orders of accuracy higher than 2, except for the finest meshes considered
here. The differences between the kinetic energy modeling approaches and ε’s used are negligible compared
to the basis function degrees p and mesh refinements. Again, based on these results neither of the two kinetic
energy modeling approaches has an edge over the other.
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Figure 8.9: Convergence of the relative L2 errors at t = 10 of the regular (R) and skew-symmetric (SS) models for∆t = 5·10−2 and ε= 10−6,
the DG model (DG) for ∆t = 1 ·10−2 and Clawpack (CP) for ∆t = 5 ·10−3; (u∞, v∞) = (0,0) and different solution degrees p were used

Primary non-conservation errors
Lastly the primary variables’ non-conservation of both modeling approaches is compared; this is shown in
figure 8.15. What is immediately noticeable is the degradation in conservation performance as the degrees p
of both methods are increased. For mass conservation the magnitude of this effect is negligible, but for X- &
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Figure 8.10: Maximum relative kinetic energy non-conservation versus the square root of the cell area for the regular (R) and skew-
symmetric (SS) models with ∆t = 5 · 10−2 and ε = 10−6, the DG model (DG) with ∆t = 1 · 10−2 and Clawpack (CP) with ∆t = 5 · 10−3;
(u∞, v∞) = (0,0) and different solution degrees p were used

Y-momentum and energy conservation a (near-)monotonic increase in non-conservation can be seen. This
increase is significantly larger for the exact kinetic energy advection modeling approach, leading to conser-
vation errors of O

(
10−8

)
with p = 4 for X- & Y-momentum and (total) energy, compared to only O

(
10−11

)
for

the approximate kinetic energy advection modeling approach. The (near-)monotonic increase of the conser-
vation error with p combined with its independence from cell size indicates that the primary drivers behind
these conservation errors are the round-off errors encountered when constructing the various discrete oper-
ators. Also note that the absolute (not relative) non-conservation of the primary variables is plotted here; the
X- & Y-momentum and energy conservation errors of the moving vortex are O (10) times are large as those
found for the static vortex.

Conclusions

As with the static vortex, the main conclusion that can be drawn based on these results is that the approxi-
mate kinetic energy advection modeling approach is preferable. There is no significant difference between
the exact and approximate approaches when it comes to L2 errors or numerical diffusion; only the conser-
vation error at higher degrees is different between both methods, with the approximate approach having
significantly smaller conservation errors, as mentioned above. Furthermore the approximate approach has
a lower computational cost, since some of the discrete operators that have to be constructed once for every
nonlinear iteration are smaller.

A secondary conclusion is that the value of the nonlinear convergence tolerance ε does not have a noticeable
impact on L2 errors, numerical diffusion and conservation of the primary variables for the range tested here
(ε = 10−6, ε = 10−12). For both kinetic energy modeling approaches figures 8.16, 8.14 and 8.15 show that the
extra computational cost used to drive the nonlinear convergence of each time step to ε = 10−12 does not
come with a significant increase in any of the performance measures considered here.
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Figure 8.11: Maximum relative kinetic energy non-conservation versus the amount of degrees of freedom for the regular (R) and skew-
symmetric (SS) models with ∆t = 5 · 10−2 and ε = 10−6, the DG model (DG) with ∆t = 1 · 10−2 and Clawpack (CP) with ∆t = 5 · 10−3;
(u∞, v∞) = (0,0) and different solution degrees p were used

8.5.2. Regular & skew-symmetric model comparison
Following the comparison of the two kinetic energy advection modeling approaches we turn to a comparison
between the regular and skew-symmetric model (with the approximate kinetic energy approach).

Relative L2 errors
Figure 8.16 shows the relative L2 errors of several physical parameters for both models. Unlike the results of
the static vortex case, with a moving vortex the regular and skew-symmetric models perform similarly for all
mesh sizes and degrees p. In this case the L2 convergence of both methods is monotonic for all p. For all
but the coarsest mesh p = 1 leads to the highest errors for every parameter, while for the skew-symmetric
method p = 4 consistently has the lowest error on all meshes except the coarsest. For the regular method the
L2 errors with p = 4 show some oscillations, causing them to be larger than those found with p = 2, p = 3 on
some of the intermediate meshes. Both methods have similar behavior when it comes to p = 2, p = 3: The
order with the lowest L2 error changes per mesh. Overall both methods behave very similarly as far as the L2

errors for this moving vortex are concerned, and (as was also the case with the static vortex) whether ε= 10−6

or ε= 10−12 has been used does not seem to noticeably affect the results.

Numerical diffusion
Following the L2 errors, we look at the kinetic energy conservation errors; these are displayed in figure 8.17.
Some differences exist between the results obtained with both methods. On the coarse end of the mesh size
spectrum considered here the skew-symmetric model outperforms the regular method when higher-degree
(p = 3, p = 4) basis functions are used, whereas the differences between both methods decrease as the mesh is
refined. A similar trend is seen for p = 1 and p = 2, but for p = 2 the regular method displays some oscillatory
behavior, with a seemingly varying order of convergence. Lastly we note that again, the two values used for ε
result in indistinguishable results.

Primary non-conservation error
The final aspects of the comparison between the regular and skew-symmetric models are the conservation
errors of the primary physical variables, shown in figure 8.18. As is shown in the top left corner of this figure,
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Figure 8.12: Conservation errors of primary variables for the regular (R) and skew-symmetric (SS) models with∆t = 5·10−2 and ε= 10−6,
the DG model (DG) with ∆t = 1 ·10−2 and Clawpack (CP) with ∆t = 5 ·10−3; (u∞, v∞) = (0,0) and different solution degrees p were used

the regular model has significantly higher conservation errors than the skew-symmetric model, with the dif-
ferences between both models rising as p is increased; the most extreme comparison is O

(
10−11

)
with p = 4

for the regular model and O
(
10−14

)
for the skew-symmetric model. Different values of ε do not seem to af-

fect the conservation errors of the regular model whereas for the skew-symmetric model some differences
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Figure 8.13: Convergence of the relative L2 errors at t = 10 of the skew-symmetric model with exact (Ex.) and approximate (Approx.)
kinetic energy modeling for ∆t = 2.5 ·10−2, (u∞, v∞) = (1,1), different solution degrees p, ε= 10−6 and ε= 10−12

exist, likely due to round-off errors while iterating during a time step. For the other variables a different trend
can be seen, although the overall conclusion is similar. Both models show increases in conservation errors
as p is increased. Barring some individual points the regular model has higher conservation errors for all p
considered.
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Figure 8.14: Maximum kinetic energy non-conservation errors of the skew-symmetric model with exact (Ex.) and approximate (Approx.)
kinetic energy modeling for ∆t = 2.5 ·10−2, (u∞, v∞) = (1,1), different solution degrees p, ε= 10−6 and ε= 10−12

Conclusions
Unlike what was found for the static vortex, the differences between the results of both methods are generally
small. With this moving vortex monotonic L2 convergence is seen for all parameters, while the L2 errors
of both methods are similar. The same can be said about the numerical diffusion, to a certain extent: On
the coarser meshes shown the skew-symmetric method has a slight advantage over the regular method, but
these differences become smaller as the mesh becomes finer. As was found with the static vortex the regular
method is seemingly more sensitive to round-off errors than the skew-symmetric method.

8.5.3. Comparison with established methods
As with the static vortex the last comparison that will be made for the moving vortex is one between the meth-
ods presented in this thesis and the two external methods: Clawpack and the nodal DG method of Hesthaven
& Warburton, both of which are covered in chapter 4. Recall that both external methods use some form
of extra stabilization; this is also covered in the aforementioned chapter. The regular and skew-symmetric
methods do not use any form of filtering, flux-limiting or additional stabilization.

Relative L2 errors
First up is a comparison of the relative accuracy of all methods: Figure 8.19 shows the relative L2 errors of the
mass density, momentum components and total energy density. It is immediately apparent that Clawpack’s
results have much higher L2 errors for all parameters shown over the entire range of cell sizes considered
here. One can conclude that Clawpack needs a significantly finer mesh in order to resolve the moving vortex
to the same levels of accuracy as the other methods. For p = 1 and p = 2 the regular and skew-symmetric
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Figure 8.15: Maximum non-conservation of primary variables of the skew-symmetric model with exact (Ex.) and approximate (Approx.)
kinetic energy modeling for ∆t = 2.5 ·10−2, (u∞, v∞) = (1,1), different solution degrees p, ε= 10−6 and ε= 10−12

methods outperform the DG method on all but the coarsest meshes, whereas for p = 3 and p = 4 the DG
method has slightly (for p = 3) or significantly (for p = 4) lower L2 errors on most of the mesh size range
shown in figure 8.19; only for the finest mesh shown the regular and skew-symmetric models have similar or
better performance than the DG method, depending on the physical variable. With p = 3 energy density is the
only parameter for which the DG method and the regular and skew-symmetric models have nearly-identical
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Figure 8.16: Convergence of the relative L2 errors at t = 10 of the regular (R) and skew-symmetric (SS) models for ∆t = 2.5 · 10−2,
(u∞, v∞) = (1,1), different solution degrees p, ε= 10−6 and ε= 10−12

performance with the finest mesh. For p = 4 said models have similar L2 errors for all parameters.

Numerical diffusion
Next up is the comparison of numerical diffusion: This has been graphed in figure 8.20 against the square-
root of the cell area. Again we start off by remarking that Clawpack is clearly being outperformed by the
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Figure 8.17: Maximum kinetic energy non-conservation errors of the regular (R) and skew-symmetric (SS) models for ∆t = 2.5 · 10−2,
(u∞, v∞) = (1,1), different solution degrees p, ε= 10−6 and ε= 10−12

other methods; not only does it have the highest kinetic energy non-conservation of all methods shown, its
non-conservation error on the finest mesh is O

(
10−2

)
. This is nearly an order of magnitude larger than the

non-conservation errors of the other methods on their coarsest meshes. Whereas the numerical diffusion of
the DG method with p = 1 initially increases as the mesh is refined it plateaus and converges again, reach-
ing similar non-conservation errors on the finest mesh as were found on its coarsest mesh. In contrast, the
regular and skew-symmetric methods both show (near)-constant second-order convergence for p = 1 with
non-conservation errors that are at least an order of magnitude lower than those of the DG method. A sim-
ilar comparison can be made for p = 2: In this case the DG method shows monotonic convergence, but its
numerical diffusion is an order of magnitude larger than those of the regular and skew-symmetric methods
while all methods have similar orders of convergence. Note that the results of the regular method with p = 2
show variations in the order of convergence.

Looking at p = 3 for these three methods it can be noted that they have similar performance levels through-
out the mesh size range shown; which method comes out on top changes depending on the data point. For
p = 4 it can be noted that the skew-symmetric method has a slight advantage over the DG method and the
regular model for coarser meshes, whereas the DG method improves relative to the other two models as the
mesh is refined. For the finest meshes the skew-symmetric model shows superlinear convergence and again
(slightly) outperforms the other two methods, but the differences between all three methods at this point
are small. Note that the skew-symmetric is the only method that displays somewhat-constant orders of con-
vergence, with a clear difference between the left half (superlinear convergence) and right half (fifth-order
convergence) of the mesh size range.
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Figure 8.18: Conservation errors of primary variables of the regular (R) and skew-symmetric (SS) models for ∆t = 2.5 ·10−2, (u∞, v∞) =
(1,1), different solution degrees p, ε= 10−6 and ε= 10−12

These same relative kinetic energy conservation errors can be graphed against the number of degrees of free-
dom used, as is shown in figure 8.21. This places the results of figure 8.20 in a different light. Clawpack still
performs the poorest out of all four methods. Whereas the relative performance of the regular and skew-
symmetric methods have not changed (since they use the same meshes) it is apparent that the DG method
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needs significantly more degrees of freedom in order to reduce the kinetic energy conservation errors to sim-
ilar levels as those of the regular and skew-symmetric models. The differences between the DG model on the
one hand and the regular and skew-symmetric models on the other hand grow as p is increased, due to the
k-refinement happening in the DG model.

Primary non-conservation errors
Lastly the conservation errors of the primary physical parameters are compared: These are the same vari-
ables for which the L2 errors were compared before. Figure 8.22 shows these conservation errors. We start
by looking at mass non-conservation in the top left corner of figure 8.22. There is a clear divide between the
methods considered in this work: On the one hand Clawpack and the skew-symmetric model have conser-
vation errors of O

(
10−14

)
for all p (in the case of the skew-symmetric model), whereas the regular model and

the DG method show higher conservation errors as p is increased. For the X- and Y-momenta the differences
between the methods are smaller; although Clawpack still generally has the lowest conservation errors its
performance is on par with the low-degree results of the skew-symmetric model. This model now also shows
an increase in conservation errors when p is increased (in contrast to the mass conservation results), but the
magnitudes of these conservation errors are generally smaller than those of the regular model and the DG
method. Which of these two models performs best for any given degree varies per data point. Finally, looking
at the energy conservation errors it can be seen that again Clawpack performs best, while for p = 1 and p = 2
the skew-symmetric model outperforms the regular model and the DG method. For p = 3 and p = 4 the reg-
ular model is outperformed by the DG method and the skew-symmetric model, which both seem to perform
similarly.

Conclusions
Summarizing the conclusions drawn in this section, the following can be noted:

• Clawpack suffers from excessive dissipation, which affects its accuracy (high L2 errors compared to
the other methods) and its numerical dissipation (high kinetic energy non-conservation). The rate at
which this is reduced as the mesh is refined is very low compared to the other methods as well. The
only metric in which Clawpack outperforms the other methods is the magnitude of the conservation
errors of primary variables, but since these are O

(
10−10

)
at most for the highest-degree solutions this is

only a small advantage.

• Performance differences are found when comparing the DG method and the regular & skew-symmetric
models against the square-root cell area. For p = 1 and p = 2 the regular and skew-symmetric models
have somewhat lower L2 errors while also having numerical dissipation that is approximately an or-
der of magnitude smaller than that of the DG method. The performance differences with p = 3 and
p = 4 are smaller, with all three models performing similarly. A different picture emerges when looking
at their performances relative to the amount of degrees of freedom used: The DG method is outper-
formed by the regular and skew-symmetric models by nearly two orders of magnitude (for p = 1) to
approximately four orders of magnitude (with p = 4) when it comes to numerical diffusion. For the
highest-degree solutions considered here the conservation errors of the primary variables (as shown in
figure 8.22) of the three methods are of similar levels; these are also the ones that are highest in mag-
nitude (O

(
10−10

)
). For p = 1 and p = 2 the skew-symmetric model seems to outperform the regular

model and the DG method, but the magnitudes of the conservation errors in these case are smaller
than the maximal values encountered (with p = 4).

• Of the four methods considered here the regular and skew-symmetric models appear to perform best;
this is especially apparent when comparing the results of each method with respect to the number of
degrees of freedom used. These are also the models that seem to be the most robust, as they do not
use any filtering or stabilization steps. Whereas Clawpack does not strictly require any flux limiting if
a first-order scheme is used, the results found when using this scheme were significantly worse, due to
additional numerical dissipation. Whereas this generally stabilizes numerical methods it also results in
a degradation of accuracy.
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Figure 8.19: Convergence of the relative L2 errors at t = 10 of the Roe variable model with ε= 10−6,∆t = 2.5·10−2 and the DG model with
∆t = 10−2, for (u∞, v∞) = (1,1) and different solution degrees p
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Figure 8.20: Kinetic energy non-conservation errors of different models for (u∞, v∞) = (1,1) and different solution degrees p, graphed
against the square-root of the cell area; ∆t = 2.5 ·10−2 for the skew-symmetric model, ∆t = 1 ·10−2 for the DG model
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Figure 8.21: Kinetic energy non-conservation errors of different models for (u∞, v∞) = (1,1) and different solution degrees p, graphed
against the number of degrees of freedom used; ∆t = 2.5 ·10−2 for the skew-symmetric model, ∆t = 1 ·10−2 for the DG model
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Figure 8.22: Conservation errors of primary variables for the regular (R) and skew-symmetric (SS) models with ∆t = 2.5 ·10−2 and ε =
10−6, the DG model (DG) with ∆t = 1 ·10−2 and Clawpack (CP) with ∆t = 5 ·10−3; (u∞, v∞) = (1,1) and different solution degrees p were
used





Conclusions

This thesis focuses on mimetic isogeometric methods for compressible Euler flows. Its aims were threefold:

• A new geometric model for sub- and supersonic compressible Euler flows has been posed.

• A partial decomposition into Roe variables was applied to this model.

• This geometric model and the model resulting from the partial Roe decomposition have been dis-
cretized with mimetic isogeometric methods, subjected to a range of test cases and compared to ex-
ternal methods.

The first chapters of this thesis introduce the relevant theory of mimetic isogeometric discretization meth-
ods. Isogeometric spline spaces can be chosen for differential forms such that the discrete exterior derivative
is resolved exactly on any grid, independent of its shape or deformation. While the interior product was
discretized in a metric-dependent way - through a weak form - the De Rham complex of the continuous dif-
ferential form spaces is retained on the discrete level.

Chapter 3 covered the difficulties behind simultaneous conservation of momentum and kinetic energy in
simulations of (in)compressible Euler flows and covered some existing approaches for this. Whereas suitable
ways of achieving this exist for incompressible flow models, they all exploit the divergence-free nature of ad-
missible solutions. No methods currently exist that simultaneously conserve mass, momentum and kinetic
energy in compressible Euler flows; hence an attempt is made in this research to make a step towards this. A
geometric model for compressible Euler flows has been posed, based on observations made in literature. This
model resolves the energy density, pressure and mass density as volume forms while momentum is modeled
as a covector-valued volume form; it is referred to as the ’regular’ model.

Advection is a phenomenon that by its nature does not produce any mass, momentum or energy; it merely
redistributes field densities. In an attempt to retain this structure in discrete settings a partial Roe variable
decomposition was applied to the posed geometric Euler model. This approach has seen (limited) use in lit-
erature for finite volume methods, but had not been applied in any way to mimetic finite element methods
yet. The idea behind applying this decomposition is to construct discrete advection operators that simulta-
neously conserve mass, momentum, kinetic energy, internal energy and total energy for compressible Euler
flows in any number of dimensions. Said decomposition leads to advection operators that are self-adjoint
when used in a weak form. Whereas this construction leads to advection operators that contain the Hodge ?
in various ways, algebraic manipulation of said weak forms results in a (self-adjoint) combination of L2 inner
products. Discretizing the weak forms of these self-adjoint advection operators results in skew-symmetric
matrices, which conserve squared variables exactly in discrete settings. The power of the partial Roe decom-
position is then that mass, momentum and kinetic energy are all products of Roe variables. As long as the
continuity and momentum equations of the Euler model are discretized with the same advection operators,
these will then conserve mass, momentum and kinetic energy simultaneously. This requires mass density
and momentum to be expanded in the same bases, and a Bubnov-Galerkin finite element approach to be
used.

As was found during initial numerical tests, formulating advection operators in this self-adjoint/skew-symmetric
way does not affect the numerical results in a negative way: During initial tests with one-dimensional lin-
ear advection and Burgers’ equation on periodic domains the solutions and L2 errors of both the normal
and skew-symmetric advection were largely similar. Only in chapter 7 was it found that the discrete (self-
adjoint/skew-symmetric) Roe variable model gave wrong shock speed predictions in Sod’s shock tube; this is
likely due to an interaction effect in the Roe decomposed Euler model, since the shock speeds were resolved
correctly and in line with exact solutions when testing with Burgers’ equation in chapter 6. This is further
reinforced by the results of the discretized version of the regular model: It correctly resolved the locations
of all shocks. The solutions of the regular and decomposed models for this one-dimensional Euler test were
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extremely oscillatory. Despite this no stability issues were encountered and no damping or filtering of the
numerical solution was necessary. Applying a simple moving average-filter as post-processing step removed
most of the unphysical oscillations. Some oscillations remained in the region between both discontinuities
in the exact solution. This suggests that a more sophisticated post-processing method could be used to satis-
factorily improve solution quality.

Compared to the finite volume package Clawpack and a nodal Discontinuous Galerkin (DG) method the
regular and decomposed models have decent performance on coarse meshes in terms of numerical con-
servation errors relative to the exact solution. Especially the DG method suffers from large mass and energy
conservation errors, whereas Clawpack and the two methods developed in this research do not. Furthermore,
Clawpack and the DG method both require flux limiting in order to achieve sufficient stability: Without flux
limiters no solutions were obtained for Sod’s shock tube for either method, suggesting that the regular and
decomposed models have superior stability properties. While no hard data has been gathered on this, it is
suggested that the lack of monotonically-decreasing kinetic energy and internal energy conservation error on
finer meshes is due to the existence of the aforementioned oscillations, which increase in frequency as the
mesh is refined.

The last test cases covered in this report are two-dimensional isentropic vortices on a twice-periodic domain.
Both the regular geometric Euler model and its Roe variable decomposition generally outperform the refer-
ence methods for both stationary and moving vortices. Only for even-degree (p = 2, p = 4) solutions with
the stationary vortex case do the models presented in this work have some issues with non-monotonic con-
vergence - the regular model is affected by this more than the decomposed model. Clawpack displays overly
diffusive behavior, resulting in large L2 errors and high amounts of numerical diffusion. While the L2 errors
of the DG method are comparable to those of the two models developed in this work for all basis function
orders considered, it requires significantly more degrees of freedom to attain this. Since the amount of de-
grees of freedom used by the DG method scales with the maximum degree of its basis functions this effect
is especially pronounced for higher-degree solutions: To obtain similar levels of numerical diffusion the DG
method needs up to ten times as many degrees of freedom as the methods presented in the current research.

All in all, both the regular Euler model and its Roe variable decomposition perform well versus Clawpack and
the nodal DG method used as reference methods. While oscillatory solutions are obtained for Sod’s shock
tube it is to be remarked that the regular Euler model and its Roe variable decomposition are the only models
that do not use any form of damping or flux limiting. They thus seemingly have superior stability properties
over Clawpack and the DG method. For the two-dimensional isentropic vortex the methods developed in this
work both outperform the reference methods, especially when comparing them with respect to their num-
bers of degrees of freedom. The performance of the regular Euler model and the Roe variable decomposition
are similar in most aspects. Standout differences between them are the inaccurate prediction of shock advec-
tion speed by the decomposed model (while the regular model’s prediction was accurate) and the increased
sensitivity to stability issues and round-off error of the regular model.



Recommendations for further research

Over the course of this research certain choices had to be made and various avenues have been left unex-
plored due to time constraints. Several suggestions can be made for possible improvements or alternative
approaches to improve upon the work done in this thesis:

• In the current formulation of the Roe decomposed model all linear terms have been resolved implicitly.
It could be beneficial if instead the pressure terms of the momentum and energy equations would be
linearized in an explicit way. This turns the Picard-linearized model into a system of coupled advection
equations with forcing terms on the right-hand side. The advection terms have already been made to
conserve mass, momentum, kinetic energy, internal energy and total energy; perhaps these right-hand-
side forcing terms can be constructed in such a way that the total system conserves these quantities as
well.

• Alternatively a time-staggered dual system of equations can be set up to march the current linear sys-
tem in time. By staggering the two systems of equations with respect to one another the half-time step
solutions can be used to march the solution of each system in an alternating way. Palha & Gerritsma
[41] have already applied this to a mimetic discretization of incompressible flow.

• Both the regular and Roe decomposed models displayed excessive dispersive behavior for Sod’s shock
tube. This can be dealt with in two ways: Either a damping term needs to be added to the model (this
is not desirable since it introduces an unphysical influence) or a post-processing step can be added
to improve solution quality without affecting the algorithms themselves. For the former approach the
recent work on the Variational Multiscale method and Discontinuity Capturing by Ten Eikelder et al.
is suggested [52]; this provides a way of damping oscillations near discontinuities that is grounded in
approximation theory. For the latter the work of Gelb & Tadmor [18, 19] or similar approaches are
suggested.

• A recent approach by Jain et al. [29] is to discretize the Hodge ? operator as the (inverses of) mass
matricesM(k). Doing this results in increased sparsity of the linear systems and gives a way of explicitly
defining the dual De Rham complex; this structure and the possibilities it gives could be exploited for
discretizing certain operators (such as the interior product) in a metric-free way.

• Some works suggest using the covariant derivative to describe advection instead of the Lie derivative.
These include Gilbert & Vanneste [20], Kreeft [31] and Boyland [9]. By using linear mappings to orthog-
onal spaces the covariant derivative could be pulled back such that the Christoffel symbols become
trivial, foregoing the need to calculate them. This would circumvent one of the big challenges to dis-
cretizing the covariant derivative.
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