
 
 

Delft University of Technology

Jamming transition and normal modes of polydispersed soft particle packing

Saitoh, Kuniyasu; Tighe, B.P.

DOI
10.1039/D4SM01305K
Publication date
2025
Document Version
Final published version
Published in
Soft Matter

Citation (APA)
Saitoh, K., & Tighe, B. P. (2025). Jamming transition and normal modes of polydispersed soft particle
packing. Soft Matter, 21(7), 1263-1268. https://doi.org/10.1039/D4SM01305K

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1039/D4SM01305K
https://doi.org/10.1039/D4SM01305K


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



This journal is © The Royal Society of Chemistry 2025 Soft Matter

Cite this: DOI: 10.1039/d4sm01305k

Jamming transition and normal modes of
polydispersed soft particle packing†

Kuniyasu Saitoh *a and Brian P. Tighe b

The jamming transition of soft particles characterized by narrow

size distributions has been well studied by physicists. However,

polydispersed systems are more relevant to engineering, and the

influence of polydispersity on jamming phenomena is still unexplored.

Here, we numerically investigate jamming transitions of polydispersed

soft particles in two dimensions. We find that polydispersity strongly

influences contact forces, local coordination, and the jamming transi-

tion density. In contrast, the critical scaling of pressure and elastic

moduli is not affected by the particle size distribution. Consistent with

this observation, we find that the vibrational density of states is also

insensitive to the polydispersity. Our results suggest that, regardless of

particle size distributions, both mechanical and vibrational properties

of soft particle packings near jamming are governed by the distance to

jamming.

Introduction

Soft particles such as foams, emulsions, and granular materials
are ubiquitous in our daily lives. They are of great importance
to technologies, including food, granular, and pharmaceutical
products.1,2 It is now well known that soft particles exhibit a
rigidity transition, i.e., the so-called jamming transition, at
critical packing fraction fc.3–5 In recent years, critical behavior
of their mechanical, geometrical, and rheological properties
(e.g., pressure, elastic moduli, excess coordination number, the
first peak of radial distribution function, and viscosity) near
jamming has well been tested by numerous experiments and
simulations.6–11 Furthermore, disordered configurations of
jammed soft particles contrast sharply with periodic structures
of regular lattices such that their normal modes are distinct

from those of usual solids.12 For instance, the vibrational density
of states (VDOS) of jammed soft particles exhibits a plateau
extending down to zero frequency as the system approaches the
unjamming transition.13–18 In addition, quasi-localized modes
coexist with low-frequency vibrations19–30 and the non-Debye
scaling of VDOS is observed in between the low-frequency and
plateau regimes.31–33 It is also theoretically and numerically con-
firmed that the elastic34–37 and complex moduli38–40 are directly
linked to the VDOS, hence linear (visco)elasticity of soft particle
packings can be predicted from knowledge of low frequency (long
wavelength) vibrations of the particles.36–40

Though the jamming transition and normal modes of soft
particle packings have extensively been explored by the the-
ories, experiments, and numerical simulations, most previous
works assumed that the particles are either monodispersed,
bidispersed, or weakly polydispersed. Since the seminal work
by O’Hern et al.3 employed monodisperse systems in three
dimensions and bidisperse mixtures of soft particles with a size
ratio of 1.4 in two dimensions, these systems have become
canonical reference points. Much less attention has been paid
to systems with broadly distributed particle sizes. Nevertheless,
polydisperse systems are intrinsically relevant to geophysics and
civil engineering,41 because grain sizes in a seismic fault are
power law-distributed.42,43 Moreover, the particle size distribu-
tion of Apollonian packings is given by a power law.44 There are
also indications that polydispersity plays an important role in
jamming and elasticity. Both the critical packing fraction fc and
bulk modulus of bidisperse mixtures are sensitive to the size
ratio.45 In addition, recent study of droplets with a power law
distribution showed that pressure and fc are controlled by
distribution’s exponent.46 In contrast, the same study found that
the distribution of coordination number is independent of the
same exponent. Similarly, an experimental study of polydispersed
granular particles revealed that the macroscopic friction coeffi-
cient in the critical state is not affected by polydispersity.47 These
contrasting results highlight the need for a systematic study of
the interplay between polydispersity and its interplay with critical
scaling near the jamming transition.
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In this communication, we report results of simulations of
polydispersed soft particles in d = 2 spatial dimensions generated
with molecular dynamics (MD). We analyze packings’ statistics,
geometry, and mechanics by systematically varying their packing
fraction f and their polydispersity, quantified by a ratio between
the maximum size to the minimum size l. We find that some
features are directly controlled by l, and we quantify the form of
this dependence. These ‘‘sensitive’’ features include the distribu-
tions of local forces and coordination (which broaden dramati-
cally) and the critical packing fraction (which increases). Other
features are surprisingly insensitive to l. These include the mean
coordination, pressure, elastic moduli, and VDOS.

Numerical methods

We study two-dimensional polydispersed particles using MD simu-
lations. We model a repulsive force between the particles, i and j, in
contact by a linear spring as fij = kdijnij with the stiffness k. Here, nij =
(ri � rj)/rij with the center-to-center distance, rij � |ri � rj|, is a unit
vector parallel to the normal direction, where ri(rj) is the position of
the i-th ( j-th) particle. In addition, dij � dij � rij is introduced as the
overlap between the particles, with dij � Ri + Rj. We randomly
sample each particle radius Ri from a power-law size distribution,
P(Ri) p Ri

�n, with the exponent n. The distribution function is
limited to the range, Rmin o Ri o Rmax, so that we can control
polydispersity of the system by changing a size ratio, l � Rmax/Rmin.
In this study, we fix n = 3, which is typical of the size distributions of
grains in seismic faults,‡ and vary l from 2 to 20. In ESI,† we show
the size distributions P(Ri). We also examined the influence of the
power-law exponent n and confirmed that our results are qualita-
tively the same if the exponent is in the range, 3 r nr 4.

To make a static packing of polydispersed particles, we
randomly distribute the N = 2048 particles in a L � L square
periodic box such that packing fraction of the particles is given

by j ¼
PN

i¼1
pRi

2
�
L2. We then minimize the elastic energy

E ¼
PN

i¼1

P

j4 i

kdij2
�
2 using the FIRE algorithm48 with all particle

masses set to unity.
Fig. 1 displays snapshots of static packings after minimization.

The packing fraction is given by f = 0.9 and the size ratio increases
from (a) l = 2 to (c) 20. See ESI† for a full image of (c). If the size ratio
is small, the force network (solid lines) is homogeneous in space and
the local coordination number for each particle varies little
(Fig. 1(a)). However, as l increases, one observes that the forces
become heterogeneous and the coordination numbers for the largest
particles are much larger than for smaller particles (Fig. 1(b) and (c)).

Statistics of contact forces and
coordination number

The force heterogeneity evident in Fig. 1 is reflected in the
distribution function of contact forces P(f), which broadens
with increasing polydispersity. Fig. 2(a) displays P( f ) for size ratios
from l = 2 to 20 (see ESI† for the full data set). Here, f represents the

magnitude of repulsive force fij, i.e. kdij, and the horizontal axis is
scaled by the average h f i for each l. If l is small, e.g. l = 2, P( f ) is
well fitted to a Gaussian distribution (solid line). However, the tail
broadens in highly polydispersed packings, such that P( f ) is better
described with an exponential at large f, P( f ) B exp(�f/h f i)
(dashed line). A similar crossover from compressed-exponential
to exponential tails has been observed as a result of other physical
parameters, including increasing stress anisotropy,49,50 increasing
spatial dimension,51,52 increasing particle asphericity,53 and
decreasing distance to the unjamming transition.54 Our results
add polydispersity to this list.

The distribution of coordination number, P(z), is also affected
by the polydispersity. Fig. 2(b) shows that P(z) broadens with
increasing l (see ESI† for the full data set). For sufficiently large
l, the distribution approaches a power law, P(z) B z�4.2 (dashed
line), with a large-z cutoff. One might expect the cutoff to be
proportional to the perimeter of the largest disks, and therefore
linear in l; instead we find z* B l0.74 (see inset), which grows more
slowly but still diverges. These results complement a previous
study,46 which found power law decay for varying exponent n. In
addition, we note that the ‘‘granocentric’’ model55,56 successfully
reproduces the contact number distribution in narrowly polydis-
perse packings of emulsion droplets. It may be possible to extend
the model to broadly polydisperse packings; however the calcula-
tion is challenging and beyond the scope of this paper.

In the ESI,† we also examine the radial distribution func-
tion, g(r), of polydispersed packings. We find that the first peak
of g(r) gets higher and both the first and second peaks shift to
shorter distances with the increase of l.

Jamming transition and critical packing
fraction

We have shown that distribution functions are sensitive to
polydispersity, as quantified by l. It is therefore natural to

Fig. 1 Snapshots of polydispersed particles (circles), where the packing
fraction is f = 0.9 and the size ratio increases as l = (a) 2, (b) 10, and (c) 20.
The solid lines represent force-chains, where their width is proportional to
the magnitude of repulsive force between the particles in contact, i.e. kdij.
See ESI† for a full image of (c).
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ask to what extent this polydispersity-dependence is inherited
by macroscopic (averaged) quantities. In canonical bidisperse
packings (l = 1.4), the pressure p and excess coordination
number, Dz � hzi � zc, scale as p/k B (f � fc) and Dz B
(f � fc)1/2, respectively. Here fc is the critical packing
fraction,3–5 hzi is the mean coordination number, and zc =
2d � 2d/N is the central force isostatic value (for N particles in
d-dimensions).57 We also calculate p and Dz of polydisperse
packings to examine the effect of polydispersity on their scaling
near jamming. Fig. 3 displays (a) the scaled pressure p/k and (b)
Dz as functions of the packing fraction, where l increases as
indicated by the arrows. As can be seen, both p/k and Dz start to
increase from zero at f = fc, where fc shifts to higher values
with the increase of l. When calculating Dz, we first remove
mechanically unstable particles (‘‘rattlers’’) from the system. In
the ESI,† we show that the fraction of rattlers linearly increases
with l except for the case of l = 1 (monodisperse packings).

In the ESI,† we also show the dependence of elastic energy E
and mean overlap hdi on the packing fraction. As p/k and Dz,
both E and hdi start to increase from zero at fc, where fc

increases with the increase of l.
It is apparent from Fig. 3 that the jamming transition density

is dependent on polydispersity. fc is higher in systems with higher
polydispersity, because small particles can fill voids between larger
ones. To quantify the l-dependence of fc, we fit a power law to
each p/k dataset and extrapolate the x-intercept. The results are

shown in Fig. 4, and are well described by the power-law, fc �
f�c � l� l�ð Þ0:32 (solid line). Here, l* = 1 and f�c ’ 0:81 indicate
the size ratio and critical density for monodispersed particles,
respectively. While we have been unable to find a theoretical
explanation for the specific value of the exponent, we note that
similar power-law shifts in the critical packing fraction also occur
in packings of ellipsoidal particles58 and sticky particles.37,59

Elastic moduli

Though the dependence of p/k and Dz on the packing fraction is
influenced by the polydispersity (Fig. 3), the relation between p/

Fig. 3 (a) The scaled pressure p/k and (b) excess coordination number, Dz
� hzi � zc, as functions of the packing fraction f. The size ratio l increases
as listed in the legend of (a) and indicated by the arrows. The solid lines in
(a) represent fitting functions (see the text).

Fig. 4 The critical packing fraction fc(l) extracted from the data of p/k
(Fig. 3(a)). The inset is a double logarithmic plot of fc � f�c and l � l*. The

solid lines represent the power-law, fc � f�c � l� l�ð Þ0:32 with l* = 1 and

f�c ’ 0:81.

Fig. 2 (a) Semi-logarithmic plots of the distribution function of contact
forces f and (b) double logarithmic plots of the distribution function of
coordination number z. The packing fraction of the particles is given by f =
0.90 and the size ratio l increases as listed in the legend of (a) and
indicated by the arrows. In (a), the horizontal axis is scaled by the average
hfi for each l and the solid line represents a Gaussian fit to the data of l = 2.
The dashed lines indicate (a) the exponential tail, P(f) B exp(�f/hfi), and (b)
power-law, P(z) B z�4.2, for the data of l = 20. The inset to (b) shows that
the cutoff scales as z* B l0.74 (dashed line).
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k and Dz is independent of the size ratio l. Fig. 5(a) displays
scatter plots of p/k and Dz, where l increases as listed in the
legend. Strikingly, all the data are nicely collapsed onto the
critical scaling, p/k B Dz2 (dashed line). In Fig. 5(b)–(d), we also
show elastic moduli, i.e. shear modulus G and bulk modulus B,
of polydispersed particles and their ratio, i.e. G/B, as functions
of Dz. (A discussion of how to calculate the moduli is presented
in the ESI.†) All the data in (b)–(d) are well collapsed. The scaled
shear modulus exhibits the critical scaling, G/k B Dz (dashed
line in (b)). Moreover, the scaled bulk modulus B/k converges to
a constant (dashed line in (c)) and the critical scaling, G/B B Dz
(dashed line in (d)), can be confirmed as the system approaches
the unjamming transition, i.e. as Dz - 0. Therefore, we
conclude that the scaling relations p/k B Dz2, G/k B Dz, and
G/B B Dz, which are all hallmarks of jamming transition, are
insensitive to polydispersity. Instead, linear elasticity near
jamming is controlled only by the mean coordination number.
This is especially surprising in light of the observation that the
coordination distribution P(z) is sensitive to l (Fig. 2).

Normal modes

A system’s elastic moduli are determined by its vibrational
properties.38,60 We therefore examine whether jammed sys-
tems’ vibrational properties display the same insensitivity to
polydispersity seen in G and B. We calculate eigenfrequencies o
of polydispersed packings by diagonalizing their dynamical
matrix (see ESI†). Fig. 6(a) displays the vibrational density of
states (VDOS, i.e. distribution function of o) with the horizontal

axis non-dimensionalized by a time unit, t0 �
ffiffiffiffiffiffiffiffiffiffiffi
m0=k

p
(m0 is the

particle mass). The size ratio is l = 20, and the excess coordina-
tion number increases as indicated by the arrow. As in the
case of bidispersed packings,3–5 the VDOS exhibits a plateau
(horizontal dashed line) above a characteristic frequency,
o* o o. As shown in Fig. 6(b), the characteristic frequency is
linear in the excess coordination number as o* B Dz. In
contrast, the VDOS is unaffected by the polydispersity
(Fig. 6(c)). The vibrational properties of polydispersed packings
are therefore governed only by the coordination number – just
like their elastic moduli. In the ESI,† we show our results of the
participation ratio Pr(o), where Pr(o) in intermediate frequen-
cies (the plateau regime in the VDOS) slightly decreases with
the increase of l.

Summary & outlook

In this study, we have numerically investigated polydispersed
particle packings in two dimensions. We found that the distribu-
tions of contact force broadens with increasing polydispersity l.
The contact number distribution also broadens, developing a
power law tail with a characteristic cutoff z* B l0.74. The jamming

density fc monotonically increases as fc � f�c � l� l�ð Þ0:32. In
contrast, the critical scaling of pressure and elastic moduli are
unaffected by l. Furthermore, the VDOS is independent of

Fig. 5 The (a) scaled pressure p/k, (b) scaled shear modulus G/k, (c) scaled
bulk modulus B/k, and (d) the ratio G/B as functions of the excess
coordination number Dz. The size ratio l increases as listed in the legend
of (a). The dashed lines in (a), (b), and (d) represent the critical scaling, i.e. (a)
p/k B Dz2, (b) G/k B Dz, and (d) G/B B Dz, respectively. In (c), B/k
converges to a constant (dashed line) as the system approaches the
unjamming transition, Dz - 0.

Fig. 6 (a) The VDOS of polydispersed particle packings, where the size
ratio is given by l = 20. The excess coordination number increases from
Dz = 10�1 to 100.1 (symbols) as indicated by the arrow. (b) A scaling data
collapse of the VDOS, where the horizontal axis is divided by the excess
coordination number Dz. (c) The VDOS with Dz = 10�0.5, where l increases
as listed in the legend.
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polydispersity and the critical scaling of characteristic frequency,
o* B Dz, is the same with the results of monodisperse and
bidisperse systems. Therefore, the mechanical properties and
normal modes of soft particle packings are not affected by the
particle size distribution and governed only by the excess coordi-
nation number.

In our MD simulations, we employed a minimal model of
polydispersed particles, where every contact force is propor-
tional to the same stiffness k and every mass m0 is unique.
Because the variance of particle mass, i.e., mi (i = 1,. . .,N), merely
rescales each row of the dynamical matrix, we do not expect that
distributions of particle mass significantly change the VDOS
and elastic moduli. As demonstrated in random elastic
networks,61 however, the scaling of VDOS and characteristic
frequency o* is controlled by the stiffness distribution. Thus,
the effect of stiffness distribution on our results have to be
examined, which we leave as a future work. Moreover, further
analysis in three dimensions is useful for practical applications
of this work and linear viscoelastic properties of polydispersed
particles are also an interesting topic for future works.
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