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Abstract: A methodology for retrieving the unknown object distribution and point-spread
functions (PSFs) from a set of images acquired in the presence of temporal phase aberrations is
presented in this paper. The method works by finding optimal complimentary linear filters for
multi-frame deconvolution. The algorithm uses undemanding computational operations and few
a priori, making it simple, fast and robust even at low signal-to-noise ratios. Results of numerical
simulations and experimental tests are given as empirical proof, alongside comparisons with
other algorithms found in the literature.
© 2017 Optical Society of America

OCIS codes: (100.1455) Blind deconvolution; (100.1830) Deconvolution; (100.3190) Inverse problems.
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1. Introduction

Scientific imaging systems used in real-world applications rarely produce images that are
comparable with their theoretical optimum — the diffraction limit. The presence of media-
induced aberrations, both in phase and amplitude, produces a quantitative reduction in the amount
of information that is recorded by the system. Incoherent imaging may, however, be considered
as a convolution between two functions and if the blurring kernel, or point-spread function, can
be obtained it is theoretically possible to extract the object distribution from the recorded image
data. The problem is not instantly tractable, as this deconvolution, is a classic ill-posed inverse
problem. If nothing is known a priori about the two functions, it implies that for any recorded
image there are infinite possible combinations of object and point-spread function.
To begin the story of how these inverse problem may be solved, one must go back several

decades to the pioneering work of Gerchberg and Saxton [1]. They made great practical progress
in solving these inverse problems with the application of an alternating projection (AP) framework.
Later the work of Fienup [2] refined these initial discoveries and was significant in finding practical
and robust solutions to the phase retrieval problem along with a more thorough mathematical
foundation for the operation of AP algorithms.
Gonsalves [3] worked on a related problem, known as phase diversity, approaching it with

a similar alternating framework. In phase diversity, one adds a known phase aberration to the
optical system and subsequently solves an optimisation problem in order to identify any other
unknown aberration. The work of Paxman et al. [4] shows the move towards a more explicit
optimisation framework, where a metric is explicitly evaluated and used to inform steps towards a
solution. A method for the identification of both the object and the unknown phase was presented
and marks the branching of methodology for solving inverse problems: implicit optimisation
schemes such as AP and those explicitly evaluating an optimisation metric.

Whilst adding known phases to an optical system is possible, it is indeed, not very practical in
many cases. To resolve this problem the notion of an iterative blind deconvolution was presented
by Ayers and Dainty [5]. Again, in this work they returned to the AP framework and allowed a
way to identify the object and the point-spread function by the application of a priori constraints
on the object and point-spread function.

Aberrations cause certain spatial frequencies in the object not to be transmitted to the imaging
sensor meaning that a complete reconstruction of the object from a single aberrated observation
is impossible. The way to solve this problem is by the acquisition of multiple frames with
different aberrations. If there is sufficient diversity, i.e. all frequencies have been transmitted in
the sequence, these images can be used to recover a better estimate of the object than could be
possible with a single image by using a blind multi-frame deconvolution algorithm.

Blind multi-frame deconvolution (BMFD) was first truly demonstrated in a practical setting by
Schulz [6] and later by Yaroslavsky et al. [7]. Since this point in time, the number of publications
about types and variations of blind multi-frame algorithms have multiplied beyond the scope
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that may all be summarised here [8–11]. They have become merely a subset of a host of general
deconvolution methods that can be broadly subdivided into two main groups: linear and non-linear
methods. The linear methods, e.g. Wiener-like filters [12], are fast and robust, but cannot restore
information lost during image registration and have propensity to produce non-physical solutions
(e.g. negative object intensity). Non-linear methods [13], on the other hand, use the constraints
imposed by the physical conditions and are generally less robust and slower to implement.

Another current method for blind multi-frame deconvolution is Maximum Likelihood Estima-
tion (MLE) [14, 15], which uses a Bayesian framework to find the most likely object (and PSFs)
satisfying all of the a priori information. Multi-frame may also be referred to as multichannel
deconvolution [16] and is functionally equivalent. Most of these algorithms may be reduced to
the alternating minimisation (AM) class of methods or otherwise Iterative Shrinkage [13,17].
AM methods subdivide the problem into several individual parts (usually two) and proceed
by iteratively updating each of the parts assuming the other parts to be fixed and given by the
previous iteration step, they have been well studied as a methodology for solving such inverse
problems [18, 19].

The drawback with most inverse methods, for blind deconvolution specifically, is their reliance
on a priori information to work successfully. Or to be more specific, tunable a priori information.
It is not possible to assume that all the necessary information is known to the investigator. The
second problem, and perhaps the more significant problem, is that these techniques do not work
reliably on data at low signal-to-noise ratios without significant investment of time to tune and
denoise the data.

In this paper, the tangential iterative projections (TIP) algorithm is presented as an approach to
the aforementioned problems, and as a widely applicable algorithm that may be employed in
imaging scenarios where temporal variation of the phase aberration is present. It is shown that it
is possible with minimal a priori information, only the support size for the point-spread function
and its real non-negativity, that blind multi-frame deconvolution can be performed robustly at
low signal-to-noise ratios. To verify the claims, thorough qualitative and quantitative tests are
performed on numerically simulated images and those acquired with a telescope.
The outline of this paper is as follows: firstly, the formalisation of blind multi-frame (or

multi-channel) deconvolution shall be given; secondly, an outline of the framework of the TIP
algorithm will be explained integrated with a look at the implementation of the algorithm; then
the experimental results followed by a discussion and the conclusions of the article.

2. Blind multi-frame (or multi-channel) deconvolution

One has an incoherent imaging system through which it is possible to acquire a set of N
two-dimensional images {in}, n ∈ N and 1 ≤ n ≤ N , of an unknown and constant source object
o with changing isoplanatic aberrations, giving rise to different point-spread functions (PSFs)
{hn} for each of these recorded images {in} with an additive noise component wn. These images
are sampled on a discrete evenly spaced grid with M × M pixels.

In this blind case, it is assumed that one neither knows the object nor the PSFs, and both these
variables must be jointly estimated. The mathematical model for the nth image formation is:

in = o ∗ hn + wn,

in, o, hn ∈ RM×M
+ ,

(1)

where ∗ is the convolution operation and RM×M
+ defines that all the images, the object and the

point-spread functions are all discrete real non-negative (M × M)-dimensional matrices. It is
assumed that within an optimisation framework, there exists a set of {ĥn} and ô that may be used

                                                                                                 Vol. 25, No. 26 | 25 Dec 2017 | OPTICS EXPRESS 32307 



to accurately approximate the {in} in the least-squares sense:

{
ĥn, ô

}
= arg min

hn,o

N∑
n=1
‖in − o ∗ hn‖2 ,

s.t. o, hn ∈ RM×M
+ ,

(2)

where ‖·‖ denotes L2 norm. This form of the cost function ensures fidelity to the original image
data, but does not provide any constraints to what the PSFs or the object should be, and it has
seemingly trivial solutions, such as:

ĥn = in,

ô = δM×M,

in = in ∗ δM×M,
(3)

where δM×M is the Delta function on RM×M
+ . In order to obtain a solution that is closer to the

real values of {hn} and o additional terms, corresponding to the solution smoothness, reality, or
regularisation, may be added to the cost function, or otherwise achieved by imposing constraints
on the solutions instead. A discussion of which, will be returned to later.
By exploiting the properties of the Fourier transform, the relationship between the recorded

spectral images In = F(in), the optical transfer functions (OTFs) Hn = F(hn), and the object
spectrum O = F(o) is given by:

In(®vm) = Hn(®vm) · O(®vm) +Wn(®vm), (4)

where ®vm, m = 1, . . . , M2 are the spectral sampling points and · represents element-wise
multiplication. Here it is assumed that there is the presence of Wn, which corresponds to the
unknown noise spectrum. With this notation, Eq. (2) can be represented as:

{
Ĥn, Ô

}
= arg min

Hn,O

M2∑
m=1

N∑
n=1

��In(®vm) −O(®vm) · Hn(®vm)
��2 ,

s.t. O,Hn ∈
{
F( f ) with f ∈ RM×M

+

}
.

(5)

The problem of Eq. (5) is a constrained bilinear problem, with an objective function that is
linear in each of the two variables O and Hn if the other is fixed, and can be solved by alternating
minimisation fixing one variable sequentially [20]. From here the m index will be omitted for
notational clarity.
For a set of known OTFs {Hn} the solution to Eq. (5) is given by the linear multi-frame

deconvolution filter [7]:

Ô =
∑N

n=1(Hn)∗In∑N
n=1 |Hn |2

. (6)

This object estimation may be seen as a Wiener filter with a infinite signal-to-noise ratio (SNR),
whose general form for known PSFs is expressed as:

Ô =
∑N

n=1(Hn)∗In∑N
n=1 |Hn |2 + 1

SNR
. (7)

As shown in Jansson et al. [13] and elsewhere, that even for the case of one image (N = 1),
and a known PSF h, unconstrained linear deconvolution results in noise amplification and
loss of information in points where H is close to zero and can be addressed by imposing a
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non-negativity constraint on the object (and/or the PSF), which plays an important role in
establishing convergence to a solution. With this in mind, the problem stated in Eq. (5) can be
augmented by applying any other a priori knowledge in terms of the feasible sets of objects and
PSFs O andH respectively, and the optimisation problem becomes:{

Ĥn, Ô
}
= arg min

Hn,O

N∑
n=1
‖In −O · Hn‖2 ,

s.t. O ∈ O,
Hn ∈ H.

(8)

For completeness, following one major family of solutions to the BMFD problem; this problem
of jointly estimating the object and the PSFs belonging to sets O andH has been alternatively
formulated as a regularised least-squares cost function [16, 17]:{

Ĥn, Ô
}
= arg min

Hn,O

N∑
n=1
‖In −O · Hn‖2 + λoQ(O) + λhR({Hn}). (9)

Here the terms Q(O) and R({Hn}) are regularisation terms on respectively the object and the
PSFs. Many different variations have been proposed in the last few decades, for the interested,
the book [17] has an overview and (convergence) analysis of some numerical solutions to this
problem based on alternating minimisation (AM). The convergence analysis in [17] is based
on the following paper [21]. In Chan and Wong [21], the use is made of quadratic smoothness
regularisers for both the image and PSFs. This type of regularisation tend to favour very smooth
solutions [17] (as will be seen later). In order to avoid such smoothing the total variation (TV)
for both the object and the PSFs has been elsewhere proposed as alternative regularisation
(metrics) [17].

3. TIP algorithm

The problem stated by Eq. (8) is a non-convex optimisation problem, leading to non-unique
solutions and multiple local minima [21]. The TIP algorithm does not attempt to minimise this
metric. The approach of the TIP algorithm is to modify the problem of Eq. (8) in such a way
that it would be possible to get a close enough estimate of the object using as little a priori
information and with as simple operations as possible.
Following this train of thought, TIP keeps using the linear deconvolution estimate for the

object Eq. (6) at every iteration step. By analysing the denominator of the formula, one can note
that, unlike the case of single-image deconvolution, the noise amplification issue will be less
prominent if the OTFs {Ĥn} do not have common zeros. Please note here, that noise still will
be amplified at high frequencies, where the OTFs are small because of the diffraction effect;
this issue will be addressed by apodisation as explained in the Discussion. Where there are no
common zeros, however, a close enough estimate of the object will be given by a simple and fast
operation of linear deconvolution provided the OTFs estimates are close enough to their true
values.

To formalise, the k-th estimate for the object spectrum Ô(k) is obtained as projection on the
feasible set of the result of the linear deconvolution filter:

Ô(k) = PO arg min
O∈CM×M

N∑
n=1




In −OĤ(k−1)
n




2
. (10)

To update the estimates of OTFs {Ĥn}, a natural approach would be to use the same Eq. (8),
now for a fixed object spectrum estimate Ô, which is equivalent to finding a projection of point
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(I1, . . . , In) on a convex set ÔH (that is a non-uniformly scaled copy ofH). Despite its convexity,
this problem is difficult to solve as one needs to update the projection operators at every iteration
step, which is contradictory to the desire for simplicity. Instead of this, TIP uses again the linear
deconvolution filter In/Ô with a subsequent projection onto feasibility set H, which remains
constant at every iteration step. To formalise:

Ĥ(k)n = PH
In

Ô(k)
, n = 1, . . . , N . (11)

At first glance, it is not clear whether this formula is relevant to the initial problem. It will now
be illustrated in a non-rigorous manner that it makes good sense for some types of constraints.
Firstly, one notes that in case of non-negative objects and PSFs, the L1 norm of the convolution
operation is equal to the product of the norms of its terms, that is:

‖o ∗ hn‖1 = ‖o‖1 · ‖hn‖1 . (12)

Here one can assume all the norms have unit value by adding the corresponding constraint
to the definitions of O and H, and including a re-normalisation step in each iteration of the
algorithm.

Secondly, if one restrictsH to being the case of the limited support constraintH = {h|h(x) =
0, x < X} for some set X, one can represent any discrete PSF h as the sum of two non-negative
components, which shall be denoted as the tangential and normal components h ‖ and h⊥, the
former made with pixels from X, and the later by the rest of the pixels:

h = h ‖ + h⊥, h(x)‖ = 0, if x < X, h(x)⊥ = 0, if x ∈ X. (13)

Non-negativity implies that ‖h‖1 =


h ‖




1 + ‖h⊥‖1 and thus for a noiseless images one yields

from Eq. (12) and Eq. (13):

‖i‖1 = ‖o ∗ h‖1 = ‖o‖1


h ‖




1 + ‖o‖1 ‖h⊥‖1 . (14)

If as an a priori one takes that (the most part of) the PSF is expected to be confined by the region
X, the last summand in Eq. (14) can be considered as fitting error and should be minimised. This
is equivalent to maximising the tangential part of PSF. It may be then seen that the tangential
part of the PSF is given by projecting the result of the linear deconvolution onH:

h ‖ = PH F−1 I
O
, (15)

and from this one gets the motivation for the use of Eq. (11). In presence of noise any tangential
component of the noise deconvolved with the object is indiscernible from the possible PSF and
will add up to the estimation:

i/o = h + w/o =
(
h ‖ + (w/o)‖

)
+

(
h⊥ + (w/o)⊥

)
, (16)

where notation has been misused to denote as a/b result of linear deconvolution of a with b. This
might result to the convergence of the algorithm to a wrong solution, which nevertheless will
satisfy the imposed constraints.

By this novel alternating minimisation of the TIP algorithm, one ensures that when the image
data is linearly deconvolved by the estimated OTFs

{
Ĥn

}
the object spectrum Ô is closest to its

feasible set. The object spectrum and the OTFs have a mutual fidelity with regards to the other.
Whereas, to the author’s knowledge the majority of blind multi-frame deconvolution methods
focus on maximising the fidelity of Hn ·O to the image data In within a regularisation framework
to minimise the contribution of Wn vis-à-vis Eq. (9).

                                                                                                 Vol. 25, No. 26 | 25 Dec 2017 | OPTICS EXPRESS 32310 



Fig. 1. An algorithm flowchart showing the steps of TIP. The different projection steps are
shown in different colours and the explicit operations are given by the lines between the
boxes that contain the data. P1 is multi-frame linear deconvolution, P2 is the projection to
the feasible set O, P3 is linear deconvolution for every frame, and P4 is the projection to the
feasible setH. The details are shown in Table 1.

Figure 1 is a flow chart of the algorithm. In it the process of the TIP algorithm is given by
4 operators P1 . . .P4. The details of these operators are given in Table 1 and X continues to
define the finite support of the PSFs here, which may be a circle or a square of a tunable size.
The algorithm starts with step P1 and uses δ-functions as the initial set of unknown PSFs

{
Ĥ(0)n

}
,

corresponding to minimal a priori knowledge about the PSFs.

Table 1. Steps of the TIP algorithm with their descriptions

Step/Projection Process Description

Step 1 — P1 Õ =
∑N

n=1(Ĥn)∗In∑N
n=1 |Ĥn |2

Multi-frame linear deconvolution

Step 2 — P2 ô = F{Õ} Fourier Transform
õ = 0 if õ < 0 Non-negativity Threshold∑

õ = 1 Normalisation
Ô = F−1{õ} Inverse Fourier Transform

Step 3 — P3 H̃n =
In
Ô

Single-frame linear deconvolution

Step 4 — P4 ĥn = F{H̃n} Fourier Transform
h̃n(x) = 0 if x < X Finite Support Constraint
h̃n = 0 if h̃n < 0 Non-negativity Threshold∑

h̃n = 1 Normalisation
Ĥn = F−1{h̃n} Inverse Fourier Transform
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4. Experiments

In this section, a set of experimental tests will be run to demonstrate the properties of the TIP
algorithm. Firstly, the deconvolution results from the TIP algorithm will be presented to give an
overview of its general performance and behaviour. Secondly, it will be compared with other
blind multi-frame deconvolution algorithms and they shall be analysed in terms of their noise
robustness and performance on experimental data.

Fig. 2. On the left, the full frame object is shown, the algorithm processes the image in this
size. For clarity, a smaller region-of-interest (ROI) is reproduced on the right. This example
shows the reconstruction of the TIP algorithm is very close to the object for this data set and
provides an improvement over the input data. The PSFs for this dataset are shown in Fig. 3.

4.1. Object and PSF reconstruction

The test image of the cameraman is chosen for use as it gives a grayscale image with some features
that are quickly lost in the presence of aberrations. This image is shown in Fig. 2, (512x512px,
16-bit) and is aberrated using randomly generated PSFs, based on 20 Zernike modes, to give 4
images created by multiplication of the object spectra with the OTFs. A point to note here is that
the diffraction-limited image of the scene is lower resolution than the object in Fig. 2 due to the
size of PSF, therefore, it should be not expected that the algorithm reproduces the object to the
same resolution due to the band limitation. (In these images the loss is imperceivable.)

The result shown in Fig. 2 demonstrates that the TIP algorithm is able to correctly reconstruct
the object o from this input data, furthermore, in Fig. 3 the reconstructions of the PSFs {ĥn}
show high fidelity to those used to generate the input images. The identification of the PSFs is
not pixel perfect, however, it is good enough to produce a qualitatively good reconstruction of
the object via the least-squares deconvolution (Eq. (6)). If one closely observes the edges in the
object reconstruction, it is possible to see the effect of the errors in the PSF in the form of a halo.

4.2. Image types

The TIP result is better than any of the original observations and one is not introducing
any amplification of unwanted noise — the nemesis of linear deconvolution procedures. To
demonstrate this not a fluke of this single image, the same generation process with new PSFs is
used for different objects, and the results are shown in Fig. 4. Figure 4 shows that the algorithm
works on the following images: a cell from fluorescence microscopy (bright features on a dark
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Fig. 3. Comparison between the real PSFs, top row, used to generate the images seen in
Fig. 2 and those retrieved by the TIP algorithm, bottom row. The size of the support is shown
on the image, a circle with radius 11px.

field); a photograph of a tulip (dark features on a light field); and also the 1951 USAF test chart
(binary). It can be concluded from this that the TIP algorithm is no better suited one particular
type of image than another, making use of minimal a priori information about the system, the
algorithm is widely applicable; however, it better suited to extended sources than point-source
images

4.3. Empirical convergence

In this paper, the TIP algorithm has not been proven mathematically to converge. This is still a
matter of ongoing research for the authors. What can be shown empirically, however, is that the
algorithm does converge. To demonstrate this, 100 of trial datasets of 16 images are generated
with different aberrations and no additive noise. These are processed using the TIP algorithm and
the peak signal-to-noise ratio is recorded, and here it is defined in dB for images normalised in
the range [0, 1] for iteration k as being:

PSNRk = −10 log10

(
| |o − ôk | |22/M

2
)
, (17)

where ô follows the previous notation of being the estimated object. This is essentially, the
difference between the estimated object and the real object, the higher the number the closer the
result is to the correct solution.
A plot of these 100 datasets is shown in Fig. 5. Here all of the trialled datasets are shown to

converge rapidly to a solution, this validates the claim that 10 iterations is enough to produce the
solution, since the difference in 10 or 1000 iterations is minimal in linear space. What cannot be
claimed, however, is that the algorithm always converges to the correct solution — even if for
the a priori it is the optimal solution. The reason for this is simple, it is an inverse problem in a
highly multidimensional space, which may have non-unique solution or have trivial solutions.
The goal of the constraints used is to reduce which of these solutions the algorithm is able to
converge to. Once again, empirically one observes that if the a priori constraints are suitable, the
TIP algorithm produces a good deconvolution result — how this can be asserted is tackled in the
following section.
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Fig. 4. Comparison between the object (top), an acquired frame (middle), and the TIP
reconstructions (bottom) for different image types.

4.4. Algorithm comparisons

In this sub-section, the performance of the TIP algorithm will be compared with existing
methods found in the literature. Comparisons have been made here with: the algorithm described
by Pakhomov and Losin [22, 23], referred to as PL, an alternating projection algorithm; a
regularisation-based approach from Sroubek and Milanfar [16], written as MCD; and a Bayesian
algorithm found in Katkovnik et al. [15], written as MLE.
Fair comparison with the work of others, especially in image processing algorithms is a

difficult or even impossible task. As has been previously stated, many algorithms require or can
accept extra a priori information. By tuning these hyper-parameters, the results of the same
algorithm can vary hugely in their performance on the same datasets. For these reasons, to make
these comparisons as fair and scientific as possible, only algorithms that had an implementation
available not written by the authors have been used. The exception here is the Pakhomov and
Losin algorithm, an extension of which was used in the author’s previous work [24, 25].

Care has been taken in this process to ensure the algorithms compared with performed as well
as possible on the datasets used, by tuning of their hyper-parameters to the best of the author’s
knowledge and ability. The goal of these comparisons has been to show that with the same
minimal a priori information for all the algorithms, i.e. the support size of the PSF, TIP performs
better. This does not imply that the others are not excellent deconvolution algorithms or better
than TIP under other conditions or extra a priori. Please note that some algorithms such as MLE
have built in a priori, which makes the comparison even more difficult.
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Fig. 5. Demonstration of the convergence of the TIP algorithm by comparison of the PSNR
of the estimated object at each iteration step. The algorithm shows empirical convergence in
the majority of cases. Occasionally, the algorithm switches to another behaviour c.f. the top
black line, the cause for this numerical instability is still unknown.

4.4.1. Solution quality

Returning to the image of the cameraman as an object, 16 images are generated with the additive
Gaussian noise at one fourth 214/216 of the signal level along with Poisson noise. To quantify the
quality of the incident images with the aberrations a blurred signal-to-noise ratio (BSNR) can be
defined as:

BSNR = 10 log10

( ∑(S − µ(S))2∑(W − µ(W))2 )
, (18)

where S and W refer to the signal and the noise respectively, units of BSNR are decibels (dB). µ
is the mean. This information is not accessible for the output images and therefore, to analyse
these results quantitatively, one can compare the output PSNR. As further preparation, the images
are apodized to remove the bright edges and the images are given to the four algorithms with no
additional processing. The results of these deconvolutions for a sub-region are shown in Fig. 6.

Table 2. Comparison between the PSNR for the images shown in Fig. 6. *BSNR is shown
for the image.

Algorithm Image* PL MLE MCD TIP

PSNR (dB) 0.23 12.7 10.7 12.1 24.8

In these reconstructions one does not achieve the same result with each of the algorithms. The
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Fig. 6. Comparison between the object reconstructions for different algorithms with the same
a priori information. The sub-region of the first input image is shown on the left-hand side
and the object on the right-hand side.

difference between these reconstructions lies in the algorithms’ ability to be robust to the noise
present in the images. In this example, the noise contributions have been added to a level to ensure
that the other algorithms struggle and fail to correctly reconstruct the object. In this way, the
superiority of the TIP algorithm for this task is hopefully demonstrated. It can be asserted without
much argument that the TIP algorithm here produces the qualitatively and quantitatively better
image, in a visual and in a PSNR sense respectively, see Table 2. The MLE and MCD solutions
are corrupted by noise that destroys its dynamic range and the PL algorithm has strong sinusoidal
components that result in interference-like effects in its reconstruction. The TIP reconstruction
on the other hand contains a smoothness and fidelity to the object that is not seen in the other
algorithms.

4.4.2. Effect of additive noise

Whilst in the previous section it was demonstrated on one dataset that the TIP algorithm performed
better with regard to noise, it is necessary to engage with this point further.
A similar plot for the convergence have been made in the presence of noise showing similar

behaviour and have been omitted for sake of brevity.
The other algorithms tested are very good blind multi-frame deconvolution algorithms, to

show this one shall now compare over a range of BSNR values to show the point at which TIP
becomes the better option. In each case, the a priori PSF support size is given as the same.

A set of simulated fluorescence microscopy images are used for this purpose, four images with
different aberrations. These are generated in the same manner as previously but are modified by
changing the signal-to-noise ratio. Each of the aberrated images are generated so that the signal
fills a full 16-bit range. To this a Poisson noise is added and then Gaussian noise is added with a
standard deviation of increasing bit levels, i.e. σ = 2b where b = 0, 1 . . . 15. The result is then
renormalised to use the full 16-bit range again, such that signal information is lost by casting to
the nearest integer value. Explicitly, this is given by:

in = (216 − 1) hn ∗ o∑
hn ∗ o

+ randp(λ = (216 − 1) ∗ hn ∗ o∑
hn ∗ o

) + randn(µ = 0, σ = 2b),

in = (216 − 1) in∑
in
.

(19)

As a result of this process a set of images was produced that have decreasing signal-to-noise
ratio in such a way that the signal is encoded in a decreasing number of bits, i.e. 216−b. Thus
essentially for the last set, the signal has a binary encoding, these values may also be converted
easily into BSNR values.

The algorithms are run on these sets of four images for the different noise levels and the data is
shown in Fig. 7. Here the first column shows the converted BSNR value for the bit encoding. The
second corresponds to the first image in the series, the third to PL, the fourth to MLE, fifth MCD
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Fig. 7. Comparison of algorithm performance vs. increasing noise level for four input frames
with the same a priori information. The first column is the first image from the set i1. The
second column is PL, the third MLE, fourth MCD, and the final column in the TIP algorithm.
The object is shown in the top right hand corner.

and the last to TIP. The even values of b = 0, 2, . . . , 12 have been represented here, discarding
b = 14, in order to reduce the space, but what is displayed is sufficient to see the trends and
performance of the algorithms. In the top right corner the object is shown for comparison with
the solutions.

As with the previous section, one observes that the TIP algorithm is the most robust to the noise
conditions and consistently produces the best reconstruction under all noise conditions when
compared with the other algorithms. Even at the high signal-to-noise ratios the other algorithms
fail to reproduce the object as seen in the figure; even thought MLE that produces a sharp image,
it does not accord as accurately as TIP with the object used to generate the images.
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4.4.3. Telescope tests

Fig. 8. The performance of the algorithm on test images of Jupiter and its moon from a small
amateur telescope. The top-row shows four frames from the acquisition; the bottom row
shows the PL reconstruction, the TIP reconstruction, the best frame from the sequence, and
the MLE reconstruction. The TIP algorithm performs better under these conditions than the
other algorithms tested.

Up to this point, the TIP algorithm has been shown to work on different simulated images under
different noise conditions. As the final verification of the TIP methodology, one compares the
performance of the algorithm with the other algorithms on experimental data from an amateur
telescope (20cm diameter). These images are different from the model assumed in Eq. (1) as
mostly in astronomical observation the aberration is not isoplanatic.
The object being observed is Jupiter and its moons through the turbulent atmosphere. The

dataset compromises of 20 images acquired in a timelapse resulting a drift in the position of the
object. This is corrected beforehand with cross-correlation and it is the same for all algorithms.
After this registration procedure the images are processed by the PL, MLE, and the TIP algorithm
using ≤10 iteration steps for each. The results of the reconstructions are shown in Fig. 8 along
with example frames from the sequence of images. A small region (128 × 128px) of the original
processed field-of-view (512× 512px) has been reproduced to allow the observation of the details.
One common feature for all the algorithms is the amplification of the noise when processing
images such as this. For this reason, the MLE algorithm was stopped once it started to diverge
and produced worse estimates of the object. It is clear from this test that on this dataset the TIP
algorithm performs better than the others and produces an improvement over the best or ‘lucky’
image of the sequence.
One concludes, the TIP framework produces the best results on this dataset, therefore,

experimentally demonstrating the robustness of the algorithm to the sources of noise found in
scientific imaging applications, that is those with low-light and low signal-to-noise ratios.
As a final rest, the results of the TIP algorithm is compared with MCD on experimental data.

The dataset is acquired with a telescope through horizontal turbulence and is of a construction
crane. Of this larger dataset, 16 frames are chosen when the object is severely distorted by the
turbulence, but are sequential in time. One of the best images in the sequence is taken as a
reference and is shown in Fig. 9. The first frame of the sequence is reproduced too along with the
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Fig. 9. The performance of the algorithm on experimental images of a crane through
horizontal turbulence. The top row shows the first image from the sequence of 16 frames with
high turbulence, the middle the MCD solution and the right-hand side is the TIP solution.
The second row shows a low turbulence frame, not included in the processing, and a zoomed
region-of-interest outlined by the yellow box.

reconstructions for the MCD and the TIP algorithm. The algorithms are provided with the same
a priori information, i.e. the PSF support is a box 9 × 9 pixels. The images have been apodized
for the sake of the Fourier domain processing in both algorithms.
If one compares the results, the MCD solution is heavily filtered to suppress the effect of the

noise in the images, it is clear that this involves information loss that has been restored in the
TIP solution. The drawback of the TIP methodology is that there is a correlation with the noise,
which may be reduced with more observation frames. The key result here is that features of the
crane that are not visible in the unprocessed image sequence have been restored here, as can be
seen with comparison with the low turbulence image.

5. Discussion

In this section, the motivation, limitations and strengths of the TIP algorithm will be explored and
are provided as a contrast to the description given in Section 3. To begin, TIP does not yet fit into
a mathematically neat and tidy framework; however, it is stressed that it is an ongoing piece of
research to determine why the algorithm works as is observed in the experimental results. What
can be discussed has been empirical discovered, but not yet rigorously proven mathematically.

TIP was designed to act as an alternative to adaptive optics in wide-field microscopic imaging.
In this end application, near real-time deconvolution of the images is desired and one assumes
that it possible to acquire more frames at will, but there is some cost associated with this. For this
reason, TIP is designed to work on images of low signal-to-noise ratio extended objects, where
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the temporal dynamics of the medium are much faster than the object’s and where an upper
bound on the size of the PSF can be estimated. Furthermore, the PSF distortion is assumed to be
caused by the presence of non-uniform media. TIP was not designed to treat motion blur, for
example, and will not work when there are large displacements of the object. In fact for optimal
performance, images should be pre-registered before processing with TIP.
The application gives rise to two a priori that have been used in TIP. Firstly, one can be

reasonably certain that most of the energy of the PSF is contained within a small region determined
by the optics and the phase aberration statistics. The residual outside this region can be safely
regarded as having a negligible effect on the final image. This is a highly advantageous a priori
as it reduces the number of unknowns within the optimisation problem dramatically. Secondly,
the temporal dynamics is assumed to be non-existent under the period of acquisition, this is
justifiable since the frame rate of cameras can run much faster than many dynamical process
found in nature.
What these two a priori assumptions correspond to mathematically is a constraint of finite

support on both the object and the PSFs. The support for the object is along the temporal
dimension and the support for the PSF is along the spatial dimension. The motivation for finite
support has been physically justified above, however, in terms of signal processing this has an
intrinsic problem that all finite-supported functions are not bandlimited, whereas in fact, the
image and PSFs are bandlimited. In practice, one finds if the support is sufficient the PSF has
decayed such that there is no hard edge and no ill-effect is observed.
The authors hope that the algorithm will be useful in other imaging modalities, where it

has been impossible for the authors to currently test it on. The version of the algorithm used
in the experiments in this paper, both implemented in Matlab and Python, can be found with
examples in Code 1 [26]. It may be noted that since the image spectra are produced from the
images by discrete Fourier transforms (DFTs) zero-padding may be used to reduce any edge
effects. Moreover, it is often helpful to apodise the images optically or computationally to further
reduce these limited domain problems and the noise amplification at high spatial frequencies.
Apodisation is spatial finite support for the object and arises from a consequence of the finite
information content in an image without extra a priori.
To start addressing the limitations, the TIP algorithm is specifically and exclusively a multi-

frame (MF) algorithm. It does not work with a single-frame (SF), that is the case of N = 1. The
reason that it does not work is that it is design to work in situations where one has minimal a
priori information. One provides only the PSF support information to the algorithm; this implies
that all the other necessary information must be present in the multiple frames acquired. TIP
cannot interpolate, extrapolate or supplement the information in the datasets due to external
a priori provided by the user. This naturally imposes limitations on the performance of the
algorithm, leading to datasets where the algorithm will not be successful in finding the correct{

Ĥn, Ô
}
.

In Fig. 10, it is demonstrated that the TIP algorithm, starting from a δ-function PSF has no
information to generate the true PSF, therefore, it remains as a δ-function. The output object is
then the same as the input image, however, one observes when extending the dataset by three
more frames to be MF, the algorithm is able to extract the object information better. It should be
noted that this SF solution found, does satisfy the constraints but is not the correct solution.

This is the first and primary limitation of the algorithm, N > 1. All the other limitations of the
algorithm can be related to this first one, that is in the information content of the dataset. This
condition may be formalised; for the algorithm to work optimally, the sum OTF spectrum must
cover all frequencies within the bandlimit of the system and have no common zeros:

N∑
n=1
|Hn(®vm)| > 0 ∀ |®vm | ≤ vmax, (20)
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Fig. 10. A demonstration that single-frame use of the TIP algorithm yields the trivial
δ-function PSF due to lack of information in the dataset. Images have been cropped.

where vmax is the bandlimit of the signal. If these conditions are not met, the algorithm will
not be able to separate the zeros of the OTFs from the zeros of object spectrum, resulting in a
poor estimate of the object, as extra zeros in the spectrum correspond to missing information.
In this case, more frames should added to the dataset. The number of frames N required for
this condition to be met is dependent on the PSF support size chosen, the temporal aberration
statistics, and the signal-to-noise ratio. It is not easy to quantify this relationship, therefore, when
used experimentally one can simply acquire more images until the information content is high
enough to produce a good result. Although, it should be noted that if there is a static component
of the aberration, not removed by the temporal dynamics, then TIP can never remove this static
component.
Another case where the algorithm will not perform well is with sparse images, an example

of this is stellar images. Here one is looking at point sources of differing intensity. Due to the
simplicity of the object spectrum, the TIP algorithm struggles under these conditions to separate
the zeros between the spectra. To demonstrate this, a comparison is made with some data found
on the IDAC website [27] as seen in Fig. 11. The bandwidth of the object is much greater

Fig. 11. An example deconvolution problem where the TIP algorithm does not perform better
than another algorithm IDAC. This stellar deconvolution problem of 9 frames from [27]
cannot be reduced to δ-functions with the TIP algorithm.

than the OTF bandwidth and TIP cannot restore this information in the manner of some other
deconvolution algorithms such as IDAC. This leads us to another limitation of the TIP algorithm,
the following condition must be met:

{Hm(®vm)

}
≥ ε > 0



 � 

{O(®vm)
}
≥ ε > 0



 , (21)

where ε is some small threshold applied to the spectra. Another limitation this implies is that TIP
cannot super-resolve features beyond the optical systems bandlimit as the OTF is zero in this
region.
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Many of the strengths of TIP have been discussed throughout the article and what is placed here
will serve as a clarifier of important points. Firstly, the quality of the solution, in a PSNR sense,
produced by the TIP algorithm mainly arises from lack of noise amplification due to the choice
of P3 and P4 projections — this is the “tangential projection.” The reason for this robustness to
noise arises since the algorithm in its operation indirectly filters the noise by reduction of its
normal component. In this sense, the reconstructed images ÔĤn produced from this pair of Ô
and Ĥn with the aforementioned mutual fidelity can be seen as de-noised versions of the input
images In, reconstructed with the minimum possible a priori knowledge. They could be used
further as an input for any other algorithm making use of other a priori information. There is no
process that can remove the tangential component without further a priori about the noise.

Secondly, TIP’s operations are simple and fast. Both in the sense of requiring ≈ 10 iterations
before producing a usable estimate; but also in the number of floating point operations required.
For example, on a sufficiently small number of pixels it is possible to run this algorithm for
real-time image acquisition. The unoptimised Python or MATLAB implementation used to
generate the figures in this paper processed at an average speed of 2.2 × 10−7MNK seconds, i.e.
per pixel per iteration — for example 2.2 × 10−7 × 256 × 256 × 4 × 10 = 0.58 seconds. Even
with larger images, the speed may be greatly increased if only a sub-section of the image is used
to identify the PSFs before deconvolving the whole dataset using the identified optimal linear
filter; this possibility depends on the SNR.

Finally, whilst the convergence of the algorithm has not yet been proved, the TIP algorithm is
not seen to diverge empirically in the majority of cases tested. This has been attested to by the
measurements that have been made in this paper, see Section 4.3. The solution is stable under a
high number of iterations (up to a 1000 have been tested) or the addition of more input frames,
which for TIP only serves to increase the quality of the reconstruction by boosting the overall
SNR.
To conclude, in this paper the TIP algorithm has been presented as a multi-frame blind

deconvolution algorithm that uses minimal a priori information. It has been found to have several
key advantages when compared with other algorithms under these conditions and this comes in
the form of: the quality of final solution (Section 4.4.1), its robustness to noise (Section 4.4.2),
and its real-world applicability (Section 4.4.3).

This technique is, however, not perfect and improvements are possible, especially, with regard
to the final image reconstruction once the point spread functions have been elucidated. Whilst
the process of tangential projections provides the optimum point-spread functions these can
still be effected by the tangential noise component, therefore, it would be possible to find a
better non-blind deconvolution method than that is currently used in the algorithm. This would
remove or at least reduce the correlation with the noise that is still sometimes present in the final
reconstruction, this may be seen in Fig. 8 and Fig. 9.
The authors hope that further research will yield a satisfying mathematical proof of the

operation and convergence of the algorithm to augment this article’s empirical results along
with further experimental validation of this technique for the correction of phase aberrations in
scientific imaging applications.

Funding

European Union’s Seventh Framework Programme FP7/2007-2013 (339681); Russian Ministry
of Education (“5 in 100” Programme).

Acknowledgments

The experimental image sequences from the telescope we were kindly given permission to use by
M. Loktev. We would also like to thank the contributions of W.J.M. van Geest and C.J. Slinkman
for their technical support and Flexible Optical B.V. for their ongoing contributions to our work.

                                                                                                 Vol. 25, No. 26 | 25 Dec 2017 | OPTICS EXPRESS 32322 




