

Towards energy sufficient buildings and thermal comfort in the built environment

Aylin Ozcan | P5 | 24th January 2020

WHAT Retrofitting existing building stock into low energy Buildings.

Energy performance gap = | Predicted energy consumption - Actual energy consumption |

Energy performance gap

How to integrate the Building Management System (BMS) requirements to optimize the energy performance and user satisfaction in retrofitted residential buildings?

Research sub-questions

- What are the influential factors related to energy consumption?
- How should the project be organised with respect to these influential factors in order to achieve energy performance?
- What are the drivers and barriers for project managers for the BMS implementation to optimize the energy performance of retrofitted residential buildings?

Steps towards energy sufficient buildings

Minimize energy consumption

Use of sustainable energy generation

Efficient use of fossil fuel

Trias Energetica strategy by Duijvestein (1996)

Building Management System (BMS) integration

BMS implementation process

Part 1. Defining the smart conceptual design

- Define ambitions
- Define conceptual design
- End-user journey map

Part 2. Defining the technology needed

- Define general description of systems
- Define process scheme and function list
- Define smart application and data
- Define location of sensors

Process scheme and function list (based on the six categories of ISSO69)

Automatic controlling	 Windows (opening in %) Blinds open at night and close at day if temperature is too high Temperature control from systems, opening and closing
Switching	HVAC off if windows or garden wall is openLights off if there's daylight
Guarding	 Deploying blinds and windows only during safe weather conditions.
Optimizing	Cloud system to upgrade the house/systems
Manual controlling	WindowsBlindsLights
Managing	Energy consumption per appliance

Part 3. Looking for product providers

- Define boundary conditions and constraints
- Define implementation typologies

Multi-criteria analysis

Systems description

Building controller (Based on Priva)

BMS implementation process: Actors

BMS implementation process: Barriers

Lack of strategic vision

Internal communication

Different set of priorities

Ensuring direct feedback

Data security

 \mathbf{S}

Lack of knowledge

BMS implementation process: Organizational strategy

Data analysis

The competition week started on 14 July at 21:00 and ended on 25 July at 06:00

- Temperature values/Energy consumption and user interaction
- Temperature values and user comfort
- Theoretical versus actual consumption

Temperature values/Energy consumption and user interaction

Temperature values and user interaction

Temperature values living room vs. Timestamp

Temperature values and user comfort

- Generally comfort level comfortable
- Hot: executed activities
- Cold: health status

Person	Time	Actual temperature	Activity	Level of comfort	Age	Gender	Nationality	Health state	Reason
1	16-07-19 21:00	24	Dinner party	3	25	male	Spain	good	-
2	16-07-19 21:00	24	Dinner party	3	21	male	Spain	good	-
3	16-07-19 21:00	24	Dinner party	3	24	male	Hungary	good	-
4	16-07-19 21:00	24	Dinner party	3	21	male	Hungary	good	-
5	16-07-19 21:00	24	Dinner party	3	23	male	Algeria	good	-
6	16-07-19 21:00	24	Dinner party	3	26	female	Algeria	good	-
7	16-07-19 21:00	24	Dinner party	3	25	male	Romania	good	-
8	22-07-19 21:00	26	Dinner party	3	22	female	Romania	good	-
9	22-07-19 21:00	26	Dinner party	3	24	male	Spain	good	-
10	22-07-19 21:00	26	Dinner party	5	27	male	Spain	not good	sick
11	22-07-19 21:00	26	Dinner party	3	22	male	Hungary	good	-
12	22-07-19 21:00	26	Dinner party	3	21	male	Hungary	good	-
13	22-07-19 21:00	26	Dinner party	1	25	female	Belgium	good	Host - cooking
14	22-07-19 21:00	26	Dinner party	2	23	female	Netherlands	good	Host

Theoretical versus actual consumption

Predicted energy consumption	Actual energy consumption	
75.73KWh	68.75KWh	Ef (Appliances)*
76.70KWh	64.95KWh	Ev (HVAC + DHW)*
152.43KWh	133.7KWh	Total (Ef + Ev)

Energy performance gap = | Predicted energy consumption - Actual energy consumption |

Predicted produced energy	Actual produced energy
241.72 KWh	249.64 KWh

Self-sufficient building = | Energy production - Energy consumption |

= | 249.64 KWh - 133.7 KWh|

P5 Presentation | Aylin Ozcan

What are the influential factors related to energy consumption?

How should the project be organised with respect to these influential factors in order to achieve energy performance?

Integrated design process

Iterative process

Communication

What are the drivers and barriers for project managers for the BMS implementation to optimize the energy performance of retrofitted residential buildings?

Barriers

- Different interest and expectations
- Different set of priorities
- Lack of knowledge in some aspects
- Decision making problems
- Lack of information sharing, transparency and trust
- Privacy constrains
- Data security

Drivers

- Same mission and vision (Energy efficient and circular built environment)
- New work environment and organization (Integrated and interdisciplinary)

How to integrate the BMS requirements to optimize the energy performance and user satisfaction in retrofitted residential buildings?

- Implementing the comprehensive Trias Energetica concepts (Reduce Reuse Produce)
- Following the BMS implementation process framework
- Understanding the energy performance aspects of the building
- Integration of end-users during design process

Case study

Research relevance

Policies and energy agreememts Energy performance paradox Future proof built environment

Conclusion

Limitations & further recommendations

- Further research is needed in order to generalize and research on broader scale
- Further tests need to be done
- Feedforward: adaptive learning, not only measuring and feedback but also learn the behaviours through machine learning
- Process: agile way of working
- Policies must be more ambitious and triggering to adapt itself towards future needs

Questions. Suggestions. Discussion.